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On Oliver’s p-group conjecture
David J. Green, László Héthelyi and Markus Lilienthal

Let S be a p-group for an odd prime p. B. Oliver conjectures that a certain
characteristic subgroup X(S) always contains the Thompson subgroup J (S). We
obtain a reformulation of the conjecture as a statement about modular represen-
tations of p-groups. Using this we verify Oliver’s conjecture for groups where
S/X(S) has nilpotence class at most two.

1. Introduction

The recently introduced concept of a p-local finite group seeks to provide a treat-
ment of the p-local structure of a finite group G which does not refer directly to the
group G itself and yet retains enough information to construct the p-localisation
of the classifying space BG. Ideally one could then associate a p-local classifying
space to a p-block of G, and to certain exotic fusion systems. See the survey article
by Broto, Levi and Oliver [2004] for an introduction to this area.

A key open question about p-local finite groups is whether or not there is a
unique centric linking system associated to each saturated fusion system. Oliver
showed that this would follow from a conjecture about higher limits (see [Oliver
2004, Conjecture 2.2]) and that for odd primes this higher limits conjecture would
in turn follow from a purely group-theoretic conjecture:

Conjecture [Oliver 2004, Conjecture 3.9]. Let S be a p-group for an odd prime p.
Then

J (S)≤ X(S),

where J (S) is the Thompson subgroup generated by all elementary abelian p-
subgroups whose rank is the p-rank of S, and X(S) is the Oliver subgroup de-
scribed in Section 2.

Our main result on Oliver’s conjecture is:

Theorem 1.1. Let S be a p-group for an odd prime p. If S/X(S) has nilpotency
class at most two, then S satisfies Oliver’s conjecture.
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Remark. This subsumes all three cases of Oliver’s Proposition 3.7 in the first case
X(S)≥ J (S).

The proof of Theorem 1.1 depends on a reformulation of Oliver’s conjecture, for
which we need to recall the terms F-module and offender. See for example [Meier-
frankenfeld and Stellmacher 2006] for recent results about offenders.

Definition [Gorenstein et al. 1994, Definition 26.5]. Let G be a finite group and V
a faithful FpG-module. If there exists a nonidentity elementary abelian p-subgroup
E ≤ G which satisfies the inequality |E ||CV (E)| ≥ |V |, then V is called an F-
module for G, and E an offending subgroup.

Remark. F-module is short for “failure of (Thompson) factorization module”.
Another way to phrase the inequality is dim(V )− dim(V E)≤ rank(E).

We will always take G to be a nontrivial p-group. Hence the FpG-module V is
faithful if and only if it is faithful as a module for�1(Z(G)). We shall be interested
in the stronger condition:

(PS) The restriction of V to each central order p subgroup has a nontrivial projec-
tive summand.

Remark. Projective and free are equivalent here. We are grateful to the referee
for suggesting this formulation of the property. Another formulation is that every
central order p element operates with minimal polynomial (X − 1)p: equivalence
follows from the standard properties of the Jordan normal form.

Theorem 1.2. Let G 6= 1 be a finite p-group. Then Oliver’s conjecture holds
for every finite p-group S with S/X(S) ∼= G if and only if G has no F-modules
satisfying (PS).

Conjecture 1.3. Let p be an odd prime and G 6= 1 a finite p-group. Then G has
no F-modules which satisfy (PS).

Corollary 1.4. Conjecture 1.3 is equivalent to Oliver’s Conjecture 3.9.

We prove Theorem 1.1 by verifying Conjecture 1.3 for groups of class at most two.
For this we need this result:

Definition (See [Glauberman 1972]). Let V be a faithful FpG-module. A non-
identity element g ∈ G is called quadratic if (g− 1)2V = 0.

Theorem 1.5. Suppose that p is an odd prime, G is a p-group of nilpotence class
at most two, and V is a faithful FpG-module. If G contains a quadratic element,
then so does �1(Z(G)).
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Structure of the paper. We prove Theorem 1.2 and Corollary 1.4 in Section 2. In
Section 3 we derive a consequence of the Replacement Theorem, Theorem 3.3.
Then in Section 4 we prove Theorems 1.5 and 1.1. Finally in Section 5 we discuss
a class three example which cannot be handled using Theorem 3.3.

2. The reformulation of Oliver’s conjecture

For the convenience of the reader we start by recapping the definition and elemen-
tary properties of X(S), as given in [Oliver 2004, §3].

Definition [Oliver 2004, Definition 3.1]. Let S be a p-group and K C S a normal
subgroup. A Q-series leading up to K consists of a series of subgroups

1= Q0 ≤ Q1 ≤ · · · ≤ Qn = K

such that each Qi is normal in S, and such that

[�1(CS(Qi−1)), Qi ; p− 1] = 1

holds for each 1 ≤ i ≤ n. The unique largest normal subgroup of S which admits
such a Q-series is called X(S), the Oliver subgroup of S.

Lemma 2.1 (Oliver). If 1 = Q0 ≤ Q1 ≤ · · · ≤ Qn = K is such a Q-series and
H C G also admits a Q-series, then there is a Q-series leading up to H K which
starts with Q0, . . . , Qn .

Hence there is indeed a unique largest subgroup admitting a Q-series, and this
subgroup X(S) is characteristic in S. In addition, X(S) is centric in S: recall that
P ≤ S is centric if CS(P)= Z(P).

Proof. See [Oliver 2004, pp. 334–5]. �

Now we can start to derive the reformulation of Oliver’s conjecture.

Lemma 2.2. Let S be a finite p-group with X(S) < S. Then the induced action of
G := S/X(S) on V :=�1

(
Z(X(S))

)
satisfies (PS).

Proof. Pick g ∈ S such that 1 6= gX(S) ∈ �1(Z(G)). Then 〈X(S), g〉 C S and
so [V, g; p− 1] 6= 1, by maximality of X(S). So the minimal polynomial of the
action of g does not divide (X − 1)p−1. But it has to divide (X − 1)p

= X p
− 1.

So (X − 1)p is the minimal polynomial. This is the reformulation of (PS). �

Proof of Theorem 1.2. Suppose first that no F-module for G satisfies (PS), and that
S/X(S)∼= G. Let us prove Oliver’s Conjecture for G. By Lemma 2.2 the induced
action of G on V := �1

(
Z(X(S))

)
satisfies (PS), so by assumption there are no

offending subgroups.
Let E ≤ S be an elementary abelian subgroup not contained in X(S). It suffices

for us to show that X(S) contains an elementary abelian subgroup of greater rank
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than E . We can split E up as E = E1 × E2 × E3, with E1 = E ∩ V ≤ V E and
E1 × E2 = E ∩X(S). By assumption, 1 6= E3 embeds in S/X(S) ∼= G. As there
are no offenders, we have dim(V )− dim(V E3) > rank(E3). But V E3 = V E . So
V × E2 lies in X(S) and has greater rank than E .

Conversely suppose that the FpG-module V is an F-module and satisfies (PS).
Set S to be the semidirect product S= V oG defined by this action. From Lemma
2.3 below we see that V = X(S). As V is an F-module, there is an offender: an
elementary abelian subgroup 1 6= E ≤G with dim(V )−dim(V E)≤ rank(E). This
means that W := V E

× E is an elementary abelian subgroup which does not lie in
V = X(S) but does have rank at least as great as that of X(S). So W ≤ J (S) and
therefore J (S)� X(S). �

Lemma 2.3. Suppose that V is an FpG-module which satisfies (PS). Let S be the
semidirect product S = V oG defined by this action. Then V = X(S).

Proof. First we prove that V is a maximal normal abelian subgroup of S: clearly
it is abelian and normal. If A is a normal abelian subgroup strictly containing V ,
then A= VoH for some nontrivial abelian H CG. As H is nontrivial and normal
it contains an order p element g of Z(G). Since V satisfies (PS), it follows that
g acts on V with minimal polynomial (X − 1)p. But that is a contradiction, as A
is abelian. So V is indeed maximal normal abelian.

We now argue as in the proof of Oliver’s Lemma 3.2. Since V is maximal
normal abelian, it is centric in S: for if not then V <CS(V )C S, and so CS(V )/V
has nontrivial intersection with the centre of S/V . Picking an x ∈ CS(V ) whose
image in CS(V )/V is a nontrivial element of this intersection, we obtain a strictly
larger normal abelian subgroup 〈V, x〉, a contradiction. Hence �1(CS(V ))= V .

Moreover, since V is normal abelian and p> 2, there is a Q-series 1< V . So by
Lemma 2.1 there is a Q-series leading up to X(S) with Q1 = V . If V <X(S) then
there is Q1 < Q2 C S with [V, Q2; p− 1] = 1. But this cannot happen, because
by the argument of the first paragraph of this proof there is a g ∈ Q2 whose action
on V has minimal polynomial (X − 1)p. So V = X(S). �

Proof of Corollary 1.4. Immediate from Theorem 1.2. If X(S) = S then Oliver’s
Conjecture holds automatically. �

3. The Replacement Theorem

We shall need the following lemma, which is a special case of the Replacement
Theorem and its proof in [Huppert and Blackburn 1982, X, 3.3].

Lemma 3.1. Suppose that G 6= 1 is elementary abelian, that V is a faithful FpG-
module, and that G contains no quadratic elements. Let us write

T = {(H,W ) | H ≤ G and W is a subspace of V H
}.
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Suppose that (H,W ) ∈ T with H 6= 1. Then there is (K ,U ) ∈ T with K < H ,
W (U ( V and |H ×W | = |K ×U |.

Proof. Let us set

I = {v ∈ V | (h− 1)v ∈W for every h ∈ H},

J = {v ∈ V | (h− 1)v ∈ I for every h ∈ H}.

If 1 6= h ∈ H then (h − 1)2v 6= 0 for some v ∈ V . Then v 6∈ I , for otherwise
(h − 1)v ∈ W and so (h − 1)2v = 0. So I ( V , and therefore W ( I ( J by the
usual orbit length argument. Pick v0 ∈ J \ I and set U to be the subspace spanned
by W and {(h− 1)v0 | h ∈ H}. Set K = {h ∈ H | (h− 1)v0 ∈ W }. So U ) W by
choice of v0. Also U ⊆ I ( V . If h, h′ ∈ H then

(hh′− 1)v0 = (h− 1)v0+ (h′− 1)v0+ (h− 1)(h′− 1)v0,

and so
(hh′− 1)v0 ≡ (h− 1)v0+ (h′− 1)v0 (mod W ). (3-1)

So K ≤ H , and in fact K < H by choice of v0. By (3-1) it also follows that
|H : K | = pr for r = dim U − dim W . Finally U ⊆ V K , for if k ∈ K and u ∈ U ,
then

u =
∑
h∈H

λh(h− 1)v0+w

for suitable λh ∈ Fp, w ∈W . So

(k− 1)u =
∑
h∈H

λh(h− 1)(k− 1)v0 = 0,

since (k− 1)v0 ∈W ⊆ V H . �

Corollary 3.2. Suppose as in Lemma 3.1 that (H,W ) ∈ T and H 6= 1. Then
|H ×W |< |V |.

Proof. By induction on |H |. By the lemma we may reduce |H | whilst keeping
|H ×W | constant. This process only stops when we arrive at (K ,U ) with K = 1.
But U ( V by the lemma. �

The following result is presumably well known to those familiar with Thompson
factorization.

Theorem 3.3. Suppose that p is an odd prime, G is a finite group, V is a faithful
FpG-module, and E ≤ G is a nonidentity elementary abelian p-subgroup. If E is
an offender, then it must contain a quadratic element.

Proof. Without loss of generality E = G. Apply Corollary 3.2 to the pair

(G, V G) ∈ T . �
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Remark. Pursuing this direction further, it might be worthwhile to investigate po-
tential applications of the P(G, V )-theorem in the theory of p-local finite groups.
The properties of the Thompson subgroup J (S) which Chermak describes in his
comments on the motivation for the P(G, V )-theorem [Chermak 1999, Remark 2]
are the same properties which led to J (S) featuring in Oliver’s conjecture. And
Timmesfeld’s Replacement Theorem plays an important part in the proof of the
P(G, V )-theorem.

4. Nilpotence class at most two

We can now start work on the proof of Theorem 1.1.

Lemma 4.1. Suppose that p is an odd prime, that G 6= 1 is a finite p-group, and
that V is a faithful FpG-module. Suppose that A, B ∈G are such that C := [A, B]
is a nontrivial element of CG(A, B). If C is nonquadratic, then so are A and B.

Proof. By symmetry it suffices to prove that B is nonquadratic. So suppose that
B is quadratic. Denote by α, β, γ the action matrices on V of A− 1, B − 1 and
C − 1 respectively.

By assumption we have γ 2
6= 0 and β2

= 0. As C commutes with A and B,
we have αγ = γα and βγ = γβ. Since [A, B] = C , we have AB = B AC and
therefore

αβ −βα = γ (1+β +α+βα). (4-1)

Evaluating β · (4-1) ·β, we deduce that γβαβ = 0. So when we evaluate β · (4-1)+
(4-1) · β, we find that γ (2β + βα + αβ) = 0. Let us write λ = −1

2 and δ = γβ.
Then we have

δ = λ(δα+αδ).

From this one sees by induction upon r ≥ 1 that

δ = λr
r∑

s=0

(
r
s

)
αsδαr−s .

Since the order of A is a power of p, it follows that (A−1) and its action matrix α
are nilpotent. From this we deduce that δ = 0, that is γβ = 0. Applying this to
γ · (4-1) we see that γ 2(1+ α) = 0. As α is nilpotent it follows that γ 2

= 0, a
contradiction. So β2

6= 0 after all. �

Proof of Theorem 1.5. We suppose that �1(Z(G)) has no quadratic elements, and
show that G has none either. Suppose 1 6= B ∈ Z(G). Then there is an r ≥ 0 with
1 6= B pr

∈�1(Z(G)). So B pr
is not quadratic. Hence (B−1)2pr

= (B pr
−1)2 has

nonzero action. So (B − 1)2 has nonzero action, and Z(G) contains no quadratic
elements.
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If B 6∈ Z(G) then the nilpotency class is two and there is an element A ∈G with
1 6= [A, B] ∈ Z(G). So (B− 1)2 has nonzero action by Lemma 4.1. �

Corollary 4.2. Suppose that p is an odd prime, G 6= 1 a finite p-group and V an
FpG-module which satisfies (PS). If the nilpotence class of G is at most two then
V cannot be an F-module.

Proof. As p is odd, condition (PS) means that there are no quadratic elements in
�1(Z(G)). Then Theorem 1.5 says that there are no quadratic elements in G. So
by Theorem 3.3 there are no offenders. �

Proof of Theorem 1.1. Follows from Corollary 4.2 and Theorem 1.2 if X(S) < S.
If X(S)= S then there is nothing to prove. �

5. A class 3 example

Theorem 1.5 was a key step in the proof of Theorem 1.1. We now give an example
which shows that Theorem 1.5 does not apply to groups of nilpotence class three.

Let G be the semidirect product G = K o L , where the K = F3
3 is elementary

abelian of order 33, L = 〈A〉 is cyclic of order 3, and the action of L on v ∈ K is
given by

AvA−1
=

1 1 0
0 1 1
0 0 1

 · v.
Observe that G is isomorphic to the wreath product C3 o C3, as the action of A
permutes the following basis of K cyclically: (0, 0, 1), (0, 1, 1), (1, 2, 1).

Setting B = (0, 0, 1), C = (0, 1, 0) and D = (1, 0, 0) we obtain the following
presentation of G, where we take [A, B] to mean AB A−1 B−1.

G =
〈

A, B,C, D
∣∣∣∣ A3
= B3

= C3
= D3

= 1, D central,
[B,C] = 1, [A, B] = C , [A,C] = D

〉
,

From this we deduce that matrices α, β, γ, δ ∈ Mn(F3) induce a representation
ρ : G→ GLn(F3) with

ρ(A)= 1+α, ρ(B)= 1+β, ρ(C)= 1+ γ, ρ(D)= 1+ δ,

if and only if the following relations are satisfied, where [α, β] now of course
means αβ −βα:

α3
= β3

= γ 3
= δ3
= 0,

[α, δ] = [β, δ] = [γ, δ] = [β, γ ] = 0,

[α, β] = γ (1+β)(1+α), [α, γ ] = δ(1+ γ )(1+α).

(5-1)
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Now we consider what it means for such a representation to satisfy (PS). Here,

Z(G)= 〈D〉

is cyclic of order 3. So we need both (ρ(D)−1)2 and (ρ(D2)−1)2 to be nonzero.
That is, δ2 and (δ2

+2δ)2 = δ2(1+ δ+ δ2) should both be nonzero. But 1+ δ+ δ2

is invertible, since δ is nilpotent.
We deduce therefore that matrices α, β, γ, δ ∈GLn(F3) induce a representation

of G satisfying (PS) if and only if they satisfy the inequality

δ2
6= 0 (5-2)

in addition to (5-1).
Using GAP [2007] we obtained the following matrices in GL8(F3). The reader

is invited to check1 that they satisfy the relations (5-1) and (5-2).

δ =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, γ =



0 0 1 1 2 2 2 1
0 0 1 0 1 1 0 0
0 0 0 0 0 0 2 2
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

β =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, α =



2 2 0 2 0 1 0 1
1 1 2 2 0 0 0 0
0 0 2 2 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 2 0 0 1 1
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


.

Observe that β2
=0. So although this module satisfies (PS), the elementary abelian

subgroups 〈B〉 and 〈B,C, D〉 both contain B, a quadratic element. So we must find
another way to show that they are not offenders: Theorem 3.3 does not apply.

Remark. More generally, we are not currently able to decide Conjecture 1.3 either
way for the wreath product group H oC3, where the group H on the bottom is an
elementary abelian 3-group.

1See http://users.minet.uni-jena.de/~green/Documents/matTest.g for a GAP script that per-
forms these checks.

http://users.minet.uni-jena.de/~green/Documents/matTest.g
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