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What is the probability that an integer matrix chosen at random has a particular
integer as an eigenvalue, or an integer eigenvalue at all? For a random real
matrix, what is the probability of there being a real eigenvalue in a particular
interval? This paper solves these questions for 2× 2 matrices, after specifying
the probability distribution suitably.

1. Introduction

Random matrices arise in many mathematical contexts, and it is natural to ask
about the properties that such matrices satisfy. If we choose a matrix with integer
entries at random, for example, we would like to know the probability that it has a
particular integer as an eigenvalue, or an integer eigenvalue at all. Similarly, if we
choose a matrix with real entries at random, we would like to know the probability
that it has a real eigenvalue in a particular interval. Certainly the answer depends
on the probability distribution from which the matrix entries are drawn.

In this paper, we are primarily concerned with uniform distribution, so for both
integer-valued and real-valued cases we must restrict the entries to a bounded in-
terval. In [Martin and Wong 2008], we showed that random n × n matrices of
integers almost never have integer eigenvalues. An explicit calculation by Hetzel,
Liew and Morrison [Hetzel et al. 2007] shows that a 2 × 2 matrix with entries
independently chosen uniformly from [−1, 1] has real eigenvalues with probability
49
72 . This calculation gives hope that our more precise questions about eigenvalues
of a particular size might be accessible in the 2× 2 setting. The purpose of this
paper is to resolve these questions, once we make them suitably precise.

For an integer k ≥ 1, let M2(k) denote the uniform probability space of 2× 2
matrices of integers with absolute value at most k. Note that

|M2(k)| = (2k+ 1)4 = 16k4
+ O(k3).

MSC2000: primary 15A36, 15A52; secondary 11C20, 15A18, 60C05.
Keywords: random matrix, eigenvalue, integer eigenvalue, integer matrix, distribution of

eigenvalues.

979

http://pjm.math.berkeley.edu/ant
http://dx.doi.org/10.2140/ant.2008.2-8


980 Greg Martin and Erick Wong

We will obtain exact asymptotics for the number of matrices in M2(k) having in-
teger eigenvalues and, more precisely, for the number of matrices with a given
integer eigenvalue λ.

For any integer λ, define

Mλ
2(k)= {M ∈M2(k) : λ is an eigenvalue of M},

and let
MZ

2 (k)=
⋃
λ∈Z

Mλ
2(k).

Theorem 1. Define the function V : [−2, 2] → R by V (−δ)= V (δ) and

V (δ)=


4−2δ−δ2

+δ2 log(1+δ)−2(1−δ) log(1−δ) if 0≤ δ < 1,

1+log 2 if δ = 1,

4−2δ−δ2
+δ2 log(δ+1)+2(δ−1) log(δ−1) if 1< δ ≤

√
2,

δ2
−2δ−(δ2

−2δ+2) log(δ−1) if
√

2< δ ≤ 2

(1)

(where log is the natural logarithm). Then for any integer λ between −2k and 2k,

|Mλ
2(k)| =

24V (λ/k)
π2 k2 log k+ O(k2), (2)

where the implied constant is absolute. On the other hand, if |λ| > 2k then Mλ
2(k)

is empty.

We remark that the function V (δ) is continuous and, with the exception of the
points of infinite slope at δ=±1, differentiable everywhere (even at δ=±2, if we
imagine that V (δ) is defined to be 0 when |δ|>2). Notice that (2) is technically not
an asymptotic formula when λ is extremely close to±2k, because then the value of
V (λ/k) can have order of magnitude 1/log k or smaller, making the “main term”
no bigger than the error term. However, (2) is truly an asymptotic formula for
|λ| < 2k −ψ(k)k/(log k)1/3, where ψ(k) is any function tending to infinity (the
exponent 1

3 arises because V (δ) approaches 0 cubically as δ tends to 2 from below).
By summing the formula (2) over all possible values of λ, we obtain an asymp-

totic formula for |MZ
2 (k)|. We defer the details of the proof to Section 3.

Corollary 2. Let

C = 7
√

2+4+3 log(
√

2+1)
3π2 ≈ 0.55873957.

The probability that a randomly chosen matrix in M2(k) has integer eigenvalues is
asymptotically C(log k)/k. More precisely,

|MZ
2 (k)| = 16Ck3 log k+ O(k3).
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If M ∈ M2(k) has eigenvalue λ, then the scaled matrix k−1 M has eigenvalue
λ/k, which is the argument of V that appears on the right-hand side of (2). Thus
one interpretation of Theorem 1 is that for large k, the rational eigenvalues of k−1 M
tend to be distributed like the function V .

Note that the entries of k−1 M are sampled uniformly from a discrete, evenly-
spaced subset of [−1, 1]. As k → ∞ this probability distribution converges in
law to the uniform distribution on the interval [−1, 1]. Let M2([−1, 1]) denote the
probability space of all 2×2 matrices whose entries are independent random vari-
ables drawn from this distribution. One might ask whether the distribution given
by Theorem 1 is just a discrete approximation to the distribution of eigenvalues in
M2([−1, 1]); the answer, perhaps surprisingly, is no. The next theorem provides
this latter distribution.

Theorem 3. Define W (δ) to be the density function for real eigenvalues of matrices
in M2([−1, 1]): if M is a randomly chosen matrix from M2([−1, 1]), then the
expected number of eigenvalues of M in the interval [s, t] is

∫ t
s W (δ) dδ. Then

W (−δ)=W (δ) and

W (δ)=



80+20δ+90δ2
+52δ3

−107δ4

144(1+δ)
−

1
4δ(1−δ

2) log(1+δ)

−
1
12(5− 7δ+ 8δ2)(1−δ) log(1−δ) if 0≤ δ ≤ 1,

δ(20+10δ−12δ2
−3δ3)

16(1+δ)
+

1
4δ(δ

2
−1) log(δ+1)

+
1
4(3δ−1)(δ−1) log(δ−1) if 1≤ δ ≤

√
2,

δ(δ−2)(2−6δ+3δ2)
16(δ−1)

−
1
4(δ−1)3 log(δ−1) if

√
2≤ δ ≤ 2,

0 if δ ≥ 2.

As in the case of V (δ), the function W (δ) is continuous and differentiable ev-
erywhere, with the exception of the points of infinite slope at δ =±1. (The value
W (1) = 15

32 makes the function continuous there, although the value of a density
function at a single point is irrelevant to the probability distribution.) It also shares
the same cubic decay as δ tends to 2 from below. However, there are obvious
qualitative differences between the functions V and W . In Figure 1 we plot V and
W on the same axes, normalized so that the area under each is 2 (these normalized
versions are denoted U Z and U R in our earlier paper [Martin and Wong 2008]). In
the case of M2(k), this normalization corresponds to conditioning on having integer
eigenvalues, that is, scaling by the probability C(log k)/k from Corollary 2. For
M2([−1, 1]) we are conditioning on having real eigenvalues, which occurs with
probability 49

72 (this can be obtained by integrating W (δ), analogously to the proof
of Corollary 2; the computation in [Hetzel et al. 2007] is more direct).
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Figure 1. Graph of U Z (V normalized) versus U R (W normalized).

Note that the distribution W (δ) is bimodal, having its maxima at

δ ≈±0.75030751.

Thus, a random matrix in M2([−1, 1]) is more likely to have an eigenvalue of
magnitude near 3

4 than one of magnitude near 0. We expect this would still hold if
we were to condition on matrices in M2([−1, 1]) having rational eigenvalues, since
any matrix with real eigenvalues is a small perturbation from one with rational
eigenvalues. That this is not true for V (δ) shows that the eigenvalue distribution of
M2(k) is not purely the result of magnitude considerations but also encodes some
of the arithmetic structure of the integers up to k.

We remark that Theorem 1 can also be obtained from a powerful result of
Katznelson [1993]. Let B be a convex body containing the origin in R4, and embed
the set of 2× 2 integer matrices (

a c
b d

)
as lattice points (a, b, c, d) ∈ Z4. Then [Katznelson 1993, Theorem 1] gives an
asymptotic formula for the number of singular integer matrices inside the dilate
k ·B. Taking

B= [−1, 1]4

then yields an asymptotic formula for |M0
2 (k)|, and more generally one can ob-

tain |Mλ
2 (k)| by adding and subtracting appropriate shifts of B. The asymptotic

formula in [Katznelson 1993] is defined in terms of an unusual singular measure
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supported on the Zariski-closed subset of R4 corresponding to singular matrices.
The explicit computation of this measure is roughly analogous to our case-by-
case considerations in Section 4, modulo the significant complications of carrying
error terms. Our techniques are more elementary, but Katznelson’s results apply
in theory to matrices of any size, whereas our methods become unwieldy even for
3× 3 matrices.

In the case of n×n matrices with entries independently chosen from a Gaussian
distribution, a great deal more is known. Edelman [1997] has computed the exact
distributions of the real and complex eigenvalues for any n, as well as the number
of real eigenvalues (for instance, the probability of having all n eigenvalues real is
precisely 2−n(n−1)/4). As n→∞, the real eigenvalues, suitably rescaled by a factor
of 1/
√

n, converge to the uniform distribution on [−1, 1]. Similarly, the complex
eigenvalues converge to the “circular law” predicted by Girko [1984], namely the
uniform distribution on the unit disk centered at the origin. Very recently, Tao
and Vu [2008] have shown that the circular law is universal: one can replace
the Gaussian distribution by an arbitrary distribution with mean 0 and variance 1.
Similar results have been established for random symmetric matrices with entries
independently chosen from a Gaussian distribution (Wigner law) or from other
distributions.

Those who are interested in the connections between analytic number theory
and random matrix theory might wonder whether those connections are related to
the present paper. The matrices in that context, however, are selected from classical
matrix groups, such as the group of n×n Hermitian matrices, randomly according
to the Haar measures on the groups. The relationship to our results is therefore
minimal.

2. Preliminaries about matrices

We begin with some elementary observations about 2× 2 matrices that will sim-
plify our computations. The first lemma explains why the functions V and W are
supported only on [−2, 2].

Lemma 4. Any eigenvalue of a matrix in M2(k) is bounded in absolute value by
2k. Any eigenvalue of a matrix in M2([−1, 1]) is bounded in absolute value by 2.

Proof. We invoke Gershgorin’s circle theorem [1931], a standard result in spectral
theory: let M = (mi j ) be an n×n matrix, and let D(z, r) denote the disk of radius
r around the complex number z. Then Gershgorin’s theorem says that all of the
eigenvalues of M must lie in the union of the disks

D
(

m11,
∑

1≤ j≤n
j 6=1

|m1 j |

)
, D

(
m22,

∑
1≤ j≤n

j 6=2

|m2 j |

)
, . . . , D

(
mnn,

∑
1≤ j≤n

j 6=n

|mnj |

)
.
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In particular, if all of the entries of M are bounded in absolute value by B, then all
the eigenvalues are bounded in absolute value by nB. �

The key to the precise enumeration of Mλ
2(k) is the simple structure of singular

integer matrices:

Lemma 5. For any singular matrix M ∈ M2(k), either at least two entries of M
equal zero, or else there exist nonzero integers a, b, c, d with (a, b)= 1 such that

M =
(

ac bc
ad bd

)
. (3)

This representation of M is unique up to replacing each of a, b, c, d by its negative.

Proof. If one of the entries of M equals zero, then a second one must equal zero
as well for the determinant to vanish. Otherwise, given

M =
(

m11 m12

m21 m22

)
with none of the mi j equal to zero, define c = (m11,m12), and set a = m11/c and
b = m12/c, so that (a, b) = 1. Since M is singular, the second row of m must be
a multiple of the first row, that is, there exists a real number d such that m21 = ad
and m22= bd . And since a and b are relatively prime, d must in fact be an integer.

This argument shows that every such matrix has one such representation. If

M =
(

a′c′ b′c′

a′d ′ b′d ′

)
is another such representation, then (a′, b′) = 1 implies (a′c′, b′c′) = |c′|, which
shows that |c′| = c; the equalities |a′| = |a|, |b′| = |b|, and |d ′| = |d| follow quickly.

�

For a 2× 2 matrix M =
(a

b
c
d

)
, we define

disc M = (tr M)2− 4 det M = (a− d)2+ 4bc.

It is easily seen that this is the discriminant of the characteristic polynomial of M .
We record the following elementary facts, which will be useful in the proofs of
Lemma 7 and Proposition 13.

Lemma 6. Let M be a 2× 2 matrix with real entries

(a) M has repeated eigenvalues if and only if disc M = 0.

(b) M has real eigenvalues if and only if disc M ≥ 0.

(c) det M < 0 if and only if M has two real eigenvalues of opposite sign.

(d) If det M > 0 and disc M ≥ 0, then the eigenvalues of M have the same sign as
tr M.
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Proof. Let λ1, λ2 denote the eigenvalues of M , so

tr M = λ1+ λ2, det M = λ1λ2 and disc M = (λ1− λ2)
2,

each of which is real. Parts (a), (b) and (d) follow immediately from these obser-
vations, and part (c) from the fact that λ2 = λ1 if λ1, λ2 are complex. �

The next lemma gives a bound for the probability of a matrix having repeated
eigenvalues. It is natural to expect this probability to converge to 0 as k increases,
and indeed such a result was obtained in [Hetzel et al. 2007] for matrices of arbi-
trary size. We give a simple proof of a stronger bound for the 2× 2 case, as well
as an analogous qualitative statement for real matrices which will be helpful in the
proof of Theorem 3.

Lemma 7. The number of matrices in M2(k) with a repeated eigenvalue, for every
ε > 0, is �ε k2+ε. The probability that a random matrix in M2([−1, 1]) has a
repeated eigenvalue or is singular is 0.

Proof. By Lemma 6 (a), the 2 × 2 matrix
(a

c
b
d

)
has a double eigenvalue if and

only if 4bc = −(a − d)2. For matrices in M2([−1, 1]) this is easily seen to be a
zero-probability event, as is the event that det M = ad − bc = 0.

For matrices in M2(k), we enumerate how many can satisfy 4bc = −(a − d)2.
If a = d then there are 4k + 1 choices for b, c ∈ {−k, . . . , k}; otherwise there are
at most 2τ((a− d)2/4) choices if a ≡ d (mod 2) and no choices otherwise. (Here
τ(n) is the number-of-divisors function; the factor of 2 comes from the fact that b
and c can be positive or negative, while the “at most” is due to the fact that not all
factorizations of −(a − d)2 result in two factors not exceeding k.) Therefore the
number of matrices in M2(k) with a repeated eigenvalue is at most∑

|a|≤k

(4k+ 1)+ 2
∑
|a|≤k

∑
|d|≤k, d 6=a

a≡d (mod 2)

τ
(
(a−d)2

4

)
�ε k2+ε,

where the inequality follows from (a− d)2/4 ≤ k2 and the well-known fact that
τ(n) �ε nε for any ε > 0 — see for instance [Montgomery and Vaughan 2007,
p. 56]. �

3. Enumeration theorems for integer eigenvalues

Let µ(n) be the Möbius function, characterized by the identity∑
d|n

µ(d)=
{

1 if n = 1,

0 if n > 1.
(4)
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The well-known Dirichlet series identity 1/ζ(s) =
∑
∞

n=1 µ(n)n
−s is valid for

Re s > 1 (see [Montgomery and Vaughan 2007, Corollary 1.10], for example).
In particular, ∑ µ(n)

n2 =
6
π2 ,

and we can estimate the tail of this series (using |µ(n)| ≤ 1) to obtain the quanti-
tative estimate ∑

d≤k

µ(d)
d2 =

6
π2 + O

(1
k

)
. (5)

Lemma 8. For nonzero integers a, b and parameters k, λ, define the function

Nk,λ(a, b)= #
{
(c, d) ∈ Z2, c 6= 0, d 6= 0 : |ac+λ|, |bc|, |ad|, |bd+λ| ≤ k

}
. (6)

Then

|Mλ
2(k)| = 4

∑
d≤k

µ(d)
∑

1≤α<β≤k/d

Nk,λ(dα, dβ)+ O(k2),

where the implied constant is independent of λ and k.

Proof. Fix an integer 0 ≤ λ ≤ 2k, and let M ∈Mλ
2(k), so that M − λI is singular.

By Lemma 5, either at least two entries of M−λI equal zero, or else M−λI has
exactly two representations of the form (3). In the former case, there are 2k + 1
choices for each of the two potentially nonzero entries, hence O(k2) such matrices
in total (even taking into account the several different choices of which two entries
are nonzero). In the latter case, there are exactly two corresponding quadruples
a, b, c, d of integers as in Lemma 5. Taking into account that each entry of M
must be at most k in absolute value, we deduce that

|Mλ
2(k)| =

1
2 #{(a, b, c, d) ∈ Z4

: a, b, c, d 6= 0, (a, b)= 1,
|ac+ λ|, |bc|, |ad|, |bd + λ| ≤ k}+ O(k2)

=
1
2

∑
1≤|a|,|b|≤k
(a,b)=1

Nk,λ(a, b)+ O(k2).

Because of the symmetries Nk,λ(a,b)=Nk,λ(−a,b)=Nk,λ(a,−b)=Nk,λ(−a,−b),
we have

|Mλ
2(k)| = 2

∑
1≤a,b≤k
(a,b)=1

Nk,λ(a, b)+ O(k2).

The only term in the sum where a= b is the term a= b= 1, and for all other terms
we can invoke the additional symmetry Nk,λ(a, b) = Nk,λ(b, a), seen to be valid
by switching the roles of c and d in the definition (6) of Nk,λ(a, b). We obtain
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|Mλ
2(k)| = 4

∑
1≤a<b≤k
(a,b)=1

Nk,λ(a, b)+ 2Nk,λ(1, 1)+ O(k2)

= 4
∑

1≤a<b≤k
(a,b)=1

Nk,λ(a, b)+ O(k2),

where the last step used the fact that Nk,λ(1, 1)≤ #{(c, d)∈Z2
: |c|, |d| ≤ k}� k2.

Using the characteristic property of the Möbius function (4), we can write the
last expression as

|Mλ
2(k)| = 4

∑
1≤a<b≤k

Nk,λ(a, b)
∑

d|(a,b)

µ(d)+ O(k2)

= 4
∑
d≤k

µ(d)
∑

1≤a<b≤k
d|a, d|b

Nk,λ(a, b)+ O(k2)

= 4
∑
d≤k

µ(d)
∑

1≤α<β≤k/d

Nk,λ(dα, dβ)+ O(k2). �

Lemma 9. Let k and λ be integers with 0 ≤ λ ≤ 2k, and let x and y be integers
with 1≤ x ≤ y ≤ k. Then

Nk,λ(x, y)= k2C
(
λ
k
; x, y

)
D
(
λ
k
; x, y

)
+ O

( k
y

)
,

where

C(δ ;x, y)=max
{

0,min
{1−δ

x
+

1
y
,

2
y

}}
, D(δ ;x, y)=min

{1−δ
y
+

1
x
,

2
y

}
. (7)

Proof. We have

Nk,λ(x, y)= #
{
(c, d) ∈ Z2, c 6= 0, d 6= 0 : |xc+ λ|, |yc|, |xd|, |yd + λ| ≤ k

}
= #

{
c ∈ Z, c 6= 0 : −k ≤ xc+ λ≤ k, −k ≤ yc ≤ k

}
× #

{
d ∈ Z, d 6= 0 : −k ≤ xd ≤ k, −k ≤ yd + λ≤ k

}
.

Since x and y are positive, we can rewrite this product as

Nk,λ(x, y)= #
{

c ∈ Z, c 6= 0 : −k−λ
x
≤ c ≤ k−λ

x
, −

k
y
≤ c ≤ k

y

}
× #

{
d ∈ Z, d 6= 0 : − k

x
≤ d ≤ k

x
,
−k−λ

y
≤ d ≤ k−λ

y

}
= #

{
c ∈ Z, c 6= 0 : − k

y
≤ c ≤min

{k−λ
x
,

k
y

}}
× #

{
d ∈ Z, d 6= 0 : max

{
−

k
x
,
−k−λ

y

}
≤ d ≤ k−λ

y

}
, (8)
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where we have used λ≥ 0 and x ≤ y to simplify the inequalities slightly. The first
factor on the right-hand side of (8) is

min
{k−λ

x
,

k
y

}
−

(
−

k
y

)
+ O(1)= k min

{1− λ/k
x
+

1
y
,

2
y

}
+ O(1)

if this expression is positive, and 0 otherwise; it is thus precisely kC(λ/k; x, y)+
O(1). Similarly, the second factor on the right-hand side of (8) is

k−λ
y
−max

{
−

k
x
,
−k−λ

y

}
+ O(1)= k min

{1− λ/k
y
+

1
x
,

2
y

}
+ O(1)

(note that this expression is always positive under the hypotheses of the lemma),
which is simply k D(λ/k; x, y)+ O(1). Multiplying these two factors yields

Nk,λ(x, y)=k2C
(
λ
k
; x, y

)
D
(
λ
k
; x, y

)
+k·O

(
C
(
λ
k
; x, y

)
+D

(
λ
k
; x, y

))
+O(1).

The lemma follows upon noting that both C(λ/k; x, y) and D(λ/k; x, y) are �
1/y by definition, so the second summand becomes simply O(k/y), and the O(1)
term may be subsumed into O(k/y) since y ≤ k. �

We have already used the trivial estimate∑
L≤α<U

1= (U − L)+ O(1),

provided 0< L <U . We will also use, without further comment, the estimates∑
L≤α<U

1
α
= log U

L
+ O

( 1
L

)
,

with its particular case ∑
1≤α<U

1
α
= log U + O(1),

and ∑
L≤α<U

1
α2 =

1
L
−

1
U
+ O

( 1
L2

)
.

These estimates (also valid for 0< L <U ) follow readily from comparison to the
integrals

∫ U
L dx/x and

∫ U
L dx/x2.

Most of the technical work in proving Theorem 1 lies in establishing an estimate
on a sum of the form

∑
1≤α<β C(δ ;α, β)D(δ ;α, β) for a fixed β. The following

proposition provides an asymptotic formula for this sum; we defer the proof until
the next section. Assuming this proposition, though, we can complete the proof of
Theorem 1, as well as Corollary 2.
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Proposition 10. Let β ≥ 1 and 0≤ δ ≤ 2 be real numbers, and let C and D be the
functions defined in (7). Then∑

1≤α<β

C(δ ;α, β)D(δ ;α, β)=
V (δ)
β
+ O

(1+ logβ
β2

)
,

where V (δ) was defined in (1).

Proof of Theorem 1 assuming Proposition 10. The functions C and D defined in (7)
are homogeneous of degree −1 in the variables x and y, so that Lemma 9 implies

Nk,λ(dα, dβ)= k2

d2 C
(
λ
k
;α, β

)
D
(
λ
k
;α, β

)
+ O

( k
dβ

)
.

Inserting this formula into the conclusion of Lemma 8 yields

|Mλ
2(k)| = 4k2

∑
d≤k

µ(d)
d2

∑
1≤α<β≤k/d

C
(
λ
k
;α, β

)
D
(
λ
k
;α, β

)
+ O

(∑
d≤k

∑
1≤α<β≤k/d

k
dβ

)
+ O(k2).

We bound the first error term by summing over 1≤ α < β to obtain∑
d≤k

∑
1≤α<β≤k/d

k
dβ
≤

∑
d≤k

∑
1<β≤k/d

k
d
<
∑
d≤k

k2

d2 � k2,

so that we have the estimate

|Mλ
2(k)| = 4k2

∑
d≤k

µ(d)
d2

∑
1≤α<β≤k/d

C
(
λ
k
;α, β

)
D
(
λ
k
;α, β

)
+ O(k2).

We now apply Proposition 10 to obtain

|Mλ
2(k)| = 4k2

∑
d≤k

µ(d)
d2

∑
1≤β≤k/d

(V (λ/k)
β
+ O

(1+ logβ
β2

))
+ O(k2)

= 4k2
∑
d≤k

µ(d)
d2

(
V
(
λ
k

)(
log k

d
+ O(1)

)
+ O(1)

)
+ O(k2)

= 4k2
(

V
(
λ
k

)
log k

∑
d≤k

µ(d)
d2 + O

(∑
d≤k

log d
d2

))
+ O(k2)

= 4k2
(

V
(
λ
k

)
log k

( 6
π2 + O

(1
k

))
+ O(1)

)
+ O(k2)

=
24
π2 V

(
λ
k

)
k2 log k+ O(k2),

where we have used (5) and the convergence of
∑

1/n2 and
∑
(log n)/n2 (so the

partial sums are uniformly bounded). �
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Proof of Corollary 2 from Theorem 1. Note that for any M ∈M2(k), if one eigen-
value is an integer then both of them are (since the trace of M is an integer). Thus
if we add up the cardinalities of all of the Mλ

2(k), we get twice the cardinality
of MZ

2 (k), except that matrices with repeated eigenvalues only get counted once.
However, the number of such matrices is�ε k2+ε by Lemma 7. Therefore

2|MZ
2 (k)| =

∑
λ∈Z

|Mλ
2(k)| + Oε(k2+ε)

=

∑
−2k≤λ≤2k

(
24
π2 V

(
λ
k

)
k2 log k+ O(k2)

)
+ Oε(k2+ε)

=
24
π2 k3 log k

∑
−2k≤λ≤2k

V (λk )
k
+ O(k3).

The sum is a Riemann sum of a function of bounded variation, so this becomes

2|MZ
2 (k)| =

24
π2 k3 log k

(∫ 2

−2
V (δ) dδ+ O

(1
k

))
+ O(k3).

The corollary then follows from the straightforward computation of the integral∫ 2

−2
V (δ) dδ = 4

9(7
√

2+ 4+ 3 log(
√

2+ 1)),

noting that log(
√

2− 1)=− log(
√

2+ 1). �

4. Proving the key proposition

It remains to prove Proposition 10. Recalling that the functions C and D defined
in (7) are formed by combinations of minima and maxima, we need to separate our
arguments into several cases depending on the range of δ. The following lemma
addresses a sum that occurs in two of these cases (0 < δ < 1 and 1 < δ <

√
2).

Note that because of the presence of terms like log(δ−1) in the formula for V (δ),
we need to exercise some caution near δ = 1.

Lemma 11. Let β ≥ 1 and 0≤ δ ≤
√

2 be real numbers, with δ 6= 1. Then∑′

α

(1−δ
α
+

1
β

) 2
β
=

2
β

( 1
1+δ
− |1− δ| − (1− δ) log |1− δ2

|

)
+ O

(1+logβ
β2

)
,

where
∑
′

α is the sum subject to the condition max{1, |1−δ|β} ≤ α < β/(1+ δ).

Proof. Suppose first that |1− δ|β ≥ 1. Then the sum in question is
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2(1−δ)
β

∑
α≥|1−δ|β
α<β/(1+δ)

1
α
+

2
β2

∑
α≥|1−δ|β
α<β/(1+δ)

1

=
2(1−δ)
β

(
log β

(1+δ)|1−δ|β
+ O

( 1
|1−δ|β

))
+

2
β2

(
β

1+δ
− |1− δ|β + O(1)

)
=

2
β

( 1
1+δ
− |1− δ| − (1− δ) log |1− δ2

|

)
+ O

( 1
β2

)
,

which establishes the lemma in this case. On the other hand, if |1− δ|β < 1 then
the sum in question is

2(1−δ)
β

∑
1≤α<β/(1+δ)

1
α
+

2
β2

∑
1≤α<β/(1+δ)

1

=
2(1−δ)
β

(
log β

1+δ
+ O(1)

)
+

2
β2

(
β

1+δ
+ O(1)

)
=

2
β

( 1
1+δ
− (1− δ) log(1+ δ)

)
+ O

( 1
β2 +

|1−δ| logβ
β

)
.

We subtract 2(|1− δ|+ (1− δ) log |1− δ|)/β from the main term and compensate
in the error term to obtain

2(1−δ)
β

∑
1≤α<β/(1+δ)

1
α
+

2
β2

∑
1≤α<β/(1+δ)

1

=
2
β

( 1
1+δ
− |1− δ| − (1− δ) log |1− δ2

|

)
+ O

( 1
β2 +

|1−δ| logβ
β

+
|1−δ|+|1−δ| log |1−δ|−1

β

)
=

2
β

( 1
1+δ
−|1−δ|−(1−δ) log |1−δ2

|

)
+O

(1+logβ
β2 +

|1−δ| log |1−δ|−1

β

)
,

since we are working with the assumption that |1−δ|< 1/β. Because the function
t log t−1 is increasing on the interval (0, 1/e) and bounded on the interval (0, 1],
we have |1−δ| log |1−δ|−1<(1/β) logβ if β > e and |1−δ| log |1−δ|−1

�1� 1
β

if 1≤ β ≤ e. In either case, the last error term can be simplified to

O
(1+logβ

β2

)
,

which establishes the lemma in second case. �

Proof of Proposition 10. We consider separately the four cases corresponding to
the different parts of the definition (1) of V (δ). To lighten the expressions, we use
the

∑
′

α notation from the statement of Lemma 11 and omit the dependence on δ,
α, and β from the notation for C and D.
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Case 1: 0≤ δ < 1. In this case we have 0< 1− δ < 1
1+δ ≤ 1 and

C =


2
β

if α ≤ (1− δ)β,

1−δ
α
+

1
β
, if (1− δ)β ≤ α,

D =


2
β

if α ≤ β
1+δ

,

1−δ
β
+

1
α
, if β

1+δ
≤ α.

Therefore,∑
1≤α<β

C D

=

∑
1≤α<(1−δ)β

2
β
·

2
β
+

∑′

α

(1−δ
α
+

1
β

) 2
β
+

∑
β/(1+δ)≤α<β

(1−δ
α
+

1
β

)(1−δ
β
+

1
α

)
.

(9)
(The first sum might be empty, but this does not invalidate the argument that fol-
lows.) The first sum is simply

4
β2

∑
1≤α<(1−δ)β

1= 4
β2 ((1− δ)β + O(1))= 4(1−δ)

β
+ O

( 1
β2

)
.

By Lemma 11, the second sum is∑′

α

(1−δ
α
+

1
β

) 2
β
=

2
β

( 1
1+δ
+ δ− 1− (1−δ) log(1−δ2)

)
+ O

(1+ logβ
β2

)
,

while the third sum is∑
β/(1+δ)≤α<β

(1−δ
α
+

1
β

)(1−δ
β
+

1
α

)
= (1− δ)

∑
β/(1+δ)≤α<β

1
α2 +

δ2
−2δ+2
β

∑
β/(1+δ)≤α<β

1
α
+

1−δ
β2

∑
β/(1+δ)≤α<β

1

= (1− δ)
(1+δ
β
−

1
β
+ O

( 1
β2

))
+
δ2
−2δ+2
β

(
log β

(1+δ)−1β
+ O

( 1
β

))
+

1−δ
β2

(
β −

β
1+δ
+ O(1)

)
=

1
β

(
2− δ2

−
2

1+δ
+ (δ2

− 2δ+ 2) log(1+ δ)
)
+ O

( 1
β2

)
.

(10)
This case of the proposition then follows from (9) by noting that

4−4δ+ 2
1+δ
+2δ−2−2(1−δ) log(1−δ2)+2−δ2

−
2

1+δ
+(δ2
−2δ+2) log(1+δ)

= 4− 2δ− δ2
+ δ2 log(1+ δ)− 2(1− δ) log(1− δ).
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Case 2: δ = 1. In this case we have

C = 1
β
, D =


2
β

if α ≤ β
2
,

1
α

if β
2
≤ α.

Therefore,∑
1≤α<β

C D =
∑

1≤α<β/2

1
β
·

2
β
+

∑
β/2≤α<β

1
β
·

1
α

=
2
β2

(
β
2
+ O(1)

)
+

1
β

(
log β

β/2
+ O

( 1
β

))
=

1+log 2
β

+ O
( 1
β2

)
,

as desired.

Case 3: 1< δ ≤
√

2. In this case we have

C =


0 if α ≤ (δ− 1)β,

1−δ
α
+

1
β

if (δ− 1)β ≤ α,
D =


2
β

if α ≤ β
δ+1

,

1−δ
β
+

1
α

if β
δ+1
≤ α.

Therefore,∑
1≤α<β

C D =
∑′

α

(1−δ
α
+

1
β

) 2
β
+

∑
β/(δ+1)≤α<β

(1−δ
α
+

1
β

)(1−δ
β
+

1
α

)
. (11)

(We note that (δ− 1)β ≤ β/(δ+ 1) for δ between 1 and
√

2. For very small β we
might have 1 > β/(δ+ 1), in which case the first sum is empty, but that does not
invalidate the argument that follows.) By Lemma 11, the first sum is∑′

α

(1−δ
α
+

1
β

) 2
β
=

2
β

( 1
1+δ
+ 1− δ− (1− δ) log(δ2

− 1)
)
+ O

(1+logβ
β2

)
,

while the second sum has already been evaluated in (10) above. This case of the
proposition then follows from (11) by noting that

2
1+δ
+ 2− 2δ− 2(1− δ) log(δ2

− 1)+ 2− δ2
−

2
δ+1
+ (δ2

− 2δ+ 2) log(δ+ 1)

= 4− 2δ− δ2
+ δ2 log(δ+ 1)+ 2(δ− 1) log(δ− 1).

Case 4:
√

2< δ ≤ 2. Just as in Case 3, we have

C =

 0 if α ≤ (δ− 1)β,
1−δ
α
+

1
β

if (δ− 1)β ≤ α,
D =


2
β

if α ≤ β
δ+1

,

1−δ
β
+

1
α

if β
δ+1
≤ α.
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However, the inequality (δ − 1)β ≤ α automatically implies that β
δ+1 ≤ α when

δ ≥
√

2. Therefore,∑
1≤α<β

C D =
∑

(δ−1)β≤α<β

(1−δ
α
+

1
β

)(1−δ
β
+

1
α

)
.

(In this case we will not need to use max{1, (δ − 1)β} ≤ α, which is the more
precise lower bound.) This yields∑
1≤α<β

C D

= (1− δ)
∑

(δ−1)β≤α<β

1
α2 +

δ2
−2δ+2
β

∑
(δ−1)β≤α<β

1
α
+

1−δ
β2

∑
(δ−1)β≤α<β

1

= (1− δ)
( 1
(δ−1)β

−
1
β
+ O

( 1
(δ−1)2β2

))
+
δ2
−2δ+2
β

(
log β

(δ−1)β
+ O

( 1
(δ−1)β

))
+

1−δ
β2

(
β − (δ− 1)β + O(1)

)
=

1
β

(
δ2
− 2δ− (δ2

− 2δ+ 2) log(δ− 1)
)
+ O

( 1
β2

)
,

the error terms having been simplified since δ− 1 is bounded away from 0. �

5. Distribution of real eigenvalues

In proving Theorem 3, it will be convenient to define the odd function

G(z)=
∫ z

0
−log |t | dt = z(1− log |z|), (12)

whose relevance is demonstrated by the following lemma.

Lemma 12. If B and C are independent random variables uniformly distributed
on [−1, 1], the product BC is a random variable whose distribution function is

FBC(z)= Pr(BC < z)= 1
2(1+G(z))

for z ∈ [−1, 1].

Of course, for z <−1 we have FBC(z)= 0, and likewise FBC(z)= 1 for z > 1.

Proof. Note that |B| and |C | are uniformly distributed on [0, 1]. For 0≤ z ≤ 1, we
easily check that

Pr(|BC |< z)=
∫ 1

0
min

{
1, z

s

}
ds = G(z).
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Thus |BC | is distributed on [0, 1] with density f|BC |(z) = − log z, and by sym-
metry BC has density fBC(z) = −1

2 log |z| on [−1, 1]. The lemma follows upon
computing

FBC(z)=
∫ z

−1
fBC(s) ds. �

It will also be helpful to define the following functions, which are symmetric in
x and y:

ν1(x, y)= 1
2 +

1
2 G(xy)+G

(
(x−y)2

4

)
, (13)

ν2(x, y)= 1
2 −

1
2 G(xy), (14)

ν(x, y)=



ν1(x, y), if xy < 1 and x + y < 0,

ν2(x, y), if xy < 1 and x + y > 0,

1+G
(
(x−y)2

4

)
, if xy > 1 and x + y < 0,

0, otherwise.

(15)

To prove Theorem 3, we first consider the distribution function

FW (δ)=

∫
t<δ

W (t) dt

associated to the density W (δ). For a random matrix M in M2([−1, 1]) and a real
number δ, we will derive an expression for the expected number of real eigenvalues
of M falling below δ, then differentiate it to obtain W (δ).

It is clear that W (−δ)=W (δ) since the set M2([−1, 1]) is closed under negation,
so it suffices to compute W (δ) for δ ∈ [0, 2]. It turns out that our calculations for
FW will be somewhat simplified by considering FW (−δ) rather than FW (δ).

Proposition 13. We have

FW (−δ)=
1
4

∫ 1+δ

−1+δ

∫ 1+δ

−1+δ
ν(x, y) dx dy

for all 0≤ δ ≤ 2, where ν is defined in (15).

Proof. Denote the entries of M by A, B, C , D, which by assumption are indepen-
dent random variables uniformly distributed in [−1, 1]. Let δ be fixed in the range
[0, 2], and consider the shifted matrix M ′ = M + δ I , which we write as

M ′ =
(

X B
C Y

)
,

where X , Y range independently and uniformly in [−1+ δ, 1+ δ] and B, C are
as before. Clearly the eigenvalues of M less than −δ correspond to the negative
(real) eigenvalues of M ′. By Lemma 7, we are free to exclude the null set where
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M ′ is singular or has repeated eigenvalues. Outside of this null set, M ′ has exactly
one negative eigenvalue if and only if

det M ′ = XY − BC < 0,

by Lemma 6 (c). Likewise by Lemma 6 (d), M ′ has exactly two negative eigen-
values if and only if

XY − BC > 0, X + Y < 0 and disc M ′ = (X − Y )2+ 4BC > 0.

We thus have:

FW (−δ)= Pr(BC > XY )+ 2Pr
(

X + Y < 0 and − (X−Y )2

4
< BC < XY

)
.

We may express this probability as the average value

FW (−δ)=
1
4

∫ 1+δ

−1+δ

∫ 1+δ

−1+δ
ρ(x, y) dx dy,

where for fixed x and y,

ρ(x, y)= Pr(BC > xy)+ 2Pr
(

x + y < 0 and − (x−y)2

4
< BC < xy

)
= Pr(BC > xy)+ 2Pr

(
−
(x−y)2

4
< BC < xy

)
1{x + y < 0} (16)

(here 1{·} denotes the indicator function of the indicated relation). To complete the
proof it suffices to show that ρ equals the function ν defined in (15).

The probabilities appearing in (16) are effectively given by Lemma 12. How-
ever, there is some case-checking involved in applying this lemma, since the value
of, say,

Pr(BC > xy)= 1− FBC(xy)

depends on whether xy < −1, −1 ≤ xy ≤ 1, or xy < −1. We make some obser-
vations to reduce the number of cases we need to examine.

Note that (x − y)2/4 is bounded between 0 and 1 for any x, y ∈ [−1+δ, 1+δ],
so that − (x−y)2

4 always lies in the interval [−1, 1] prescribed by Lemma 12. From
the identity

(x + y)2− (x − y)2 = 4xy

we see also that xy ≥−(x − y)2/4. Thus xy is never lower than −1, and we need
only consider whether xy > 1 (in which case FBC(xy)= 1). We therefore have

Pr(BC > xy)= 1− FBC(xy)= 1
2(1−G(xy))1{xy < 1},

2Pr
(
−
(x−y)2

4
< BC < xy

)
= 2FBC(xy)− 2FBC

(
−
(x−y)2

4

)
= 1{xy > 1}+G(xy)1{xy < 1}+G

(
(x−y)2

4

)
.
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Inserting these two evaluations into the formula (16), we obtain

ρ(x, y)= 1
2(1−G(xy))1{xy < 1}

+

(
1{xy > 1}+G(xy)1{xy < 1}+G

(
(x−y)2

4

))
1{x + y < 0}.

It can be verified that this last expression is indeed equal to the right-hand side of
the definition (15) of ν. �

Since
W (δ)=W (−δ)=−

d
dδ

FW (−δ),

to finish the proof of Theorem 3 it therefore suffices to prove that − d
dδ

FW (−δ)

equals the formula given in Theorem 3.

6. The derivative of the distribution

Proposition 13 expresses FW (δ) as an integral, of a function ν that is independent
of δ, over the square

Sδ = [−1+ δ, 1+ δ]2.

Since the region Sδ varies continuously with δ, we can compute the derivative

−
d
dδ

FW (−δ)

by an appropriate line integral around the boundary of Sδ. Indeed, by the funda-
mental theorem of calculus, we have

−
d

dδ
FW (−δ)=−

1
4

d
dδ

(∫ 1+δ

−1+δ

∫ 1+δ

−1+δ
ν(x, y) dx dy

)
=−

1
4

(∫ 1+δ

−1+δ
ν(1+ δ, y) dy−

∫ 1+δ

−1+δ
ν(−1+ δ, y) dy

+

∫ 1+δ

−1+δ
ν(x, 1+ δ) dx −

∫ 1+δ

−1+δ
ν(x,−1+ δ) dx

)
=

1
2

∫ 1+δ

−1+δ
ν(x,−1+ δ) dx − 1

2

∫ 1+δ

−1+δ
ν(x, 1+ δ) dx, (17)

where we have used the symmetry ν(x, y)= ν(y, x) to reduce the integral to just
the top and bottom edges of Sδ (where y = 1+ δ and y =−1+ δ, respectively).

The evaluation of (17) divides into three cases depending on the behavior of the
indicator functions 1{x + y < 0} and 1{xy < 1} on the boundary of Sδ (Figure 2).

Case 1: 0 ≤ δ ≤ 1. For this range of δ, the line x + y = 0 intersects the bottom
edge of Sδ at x = 1 − δ, while the hyperbola xy = 1 intersects the top edge at
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Ν1

Ν2

0

Ν2

0

Ν2

0

Figure 2. The three cases: 0≤ δ ≤ 1, 1≤ δ ≤
√

2 and
√

2≤ δ ≤ 2.

x = (1+ δ)−1. Thus by the definition of ν, (17) becomes

−
d

dδ
FW (−δ)=

1
2

(∫ 1−δ

−1+δ
ν1(x,−1+ δ) dx

+

∫ 1+δ

1−δ
ν2(x,−1+ δ) dx −

∫ (1+δ)−1

−1+δ
ν2(x, 1+ δ) dx

)
.

The following elementary antiderivatives, which are readily obtained by substi-
tution and integration by parts, follow for any fixed nonzero real number y from
the definitions (12), (13), and (14) of G, ν1, and ν2:∫

ν1(x, y) dx = 1
2 x + 1

8 x2 y(3− 2 log |xy|)+ 1
36(x−y)3

(
5− 6 log

∣∣∣ x−y
2

∣∣∣),∫
ν2(x, y) dx = 1

2 x − 1
8 x2 y(3− 2 log |xy|).

(18)

Therefore in this case,

−
d

dδ
FW (−δ)=

1
2

((
1
2 x + 1

8 x2(−1+ δ)(3− 2 log |x(−1+ δ)|)

+
1

36(x + 1− δ)3
(

5− 6 log
∣∣∣ x+1−δ

2

∣∣∣)) ∣∣∣1−δ
x=−1+δ

+
( 1

2 x − 1
8 x2(−1+ δ)(3− 2 log |x(−1+ δ)|)

) ∣∣∣1+δ
x=1−δ

−
( 1

2 x − 1
8 x2(1+ δ)(3− 2 log |x(1+ δ)|)

) ∣∣∣(1+δ)−1

x=−1+δ

)
=

80+ 20δ+ 90δ2
+ 52δ3

− 107δ4

144(1+ δ)

−
(5− 7δ+ 8δ2)(1− δ)

12
log(1− δ)−

δ(1− δ2)

4
log(1+ δ)



The number of 2×2 integer matrices having a prescribed integer eigenvalue 999

(after some algebraic simplification), which verifies the first case of Theorem 3.
(Note that the integrands really are continuous, despite terms that look like log 0,
because the function G is continuous at 0; hence evaluating the integrals by an-
tiderivatives is valid.)

Case 2: 1 ≤ δ ≤
√

2. Now, the line x + y = 0 does not intersect Sδ, while the
hyperbola xy = 1 intersects the top edge at x = (1+ δ)−1. Thus by the definition
of ν and the antiderivative (18) of ν2, (17) becomes

−
d

dδ
FW (−δ)=

1
2

(∫ 1+δ

−1+δ
ν2(x,−1+ δ) dx −

∫ (1+δ)−1

−1+δ
ν2(x, 1+ δ) dx

)
=

1
2

((1
2 x − 1

8 x2(−1+ δ)(3− 2 log |x(−1+ δ)|)
) ∣∣1+δ

x=−1+δ

−
( 1

2 x − 1
8 x2(1+ δ)(3− 2 log |x(1+ δ)|)

) ∣∣(1+δ)−1

x=−1+δ

)
=
δ(20+ 10δ− 12δ2

− 3δ3)

16(1+ δ)
+
(3δ− 1)(δ− 1)

4
log(δ− 1)

+
δ(δ2
− 1)

4
log(δ+ 1),

which verifies the second case of Theorem 3.

Case 3:
√

2< δ ≤ 2. As before, the line x+ y = 0 does not intersect Sδ, while the
hyperbola xy = 1 now intersects the bottom edge at x = (δ − 1)−1. Thus by the
definition of ν and the antiderivative (18) of ν2, (17) becomes

−
d

dδ
FW (−δ)=

1
2

∫ (−1+δ)−1

−1+δ
ν2(x,−1+ δ) dx

=
1
2

( 1
2 x − 1

8 x2(1+ δ)(3− 2 log |x(1+ δ)|)
) ∣∣(−1+δ)−1

x=−1+δ

=
δ(δ− 2)(2− 6δ+ 3δ2)

16(δ− 1)
−
(δ− 1)3

4
log(δ− 1),

which verifies the third case of Theorem 3.
Since the last case of Theorem 3 is a consequence of Lemma 4, the proof of the

theorem is complete.

Remark. One could also use the same method to extract the individual distri-
butions of the greater and lesser eigenvalues of M : for instance, eliminating the
factor of 2 from (16) would yield an expression for the distribution of just the lesser
eigenvalue of M .
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