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Let k be a field of characteristic zero, and let k[ε]n := k[ε]/(εn). We construct
an additive dilogarithm Li2,n : B2(k[ε]n)→ k⊕(n−1), where B2 is the Bloch group
which is crucial in studying weight two motivic cohomology. We use this con-
struction to show that the Bloch complex of k[ε]n has cohomology groups ex-
pressed in terms of the K-groups K( · )(k[ε]n) as expected. Finally we compare
this construction to the construction of the additive dilogarithm by Bloch and
Esnault defined on the complex TnQ(2)(k).

1. Introduction

1.1. For any scheme S one expects a category MS of motivic (perverse) sheaves
over S, which should be an abelian tensor category that satisfies all the formalism
of mixed sheaf theory [Beı̆linson 1987, 5.10]. The Tate sheaves ZM(n) should play
a special role. Namely, letting

H i (S,ZM(n)) := ExtiMS
(ZM(0),ZM(n)),

the Chern character map

K2n−i (S)
(n)
Q
→ H i (S,QM(n)) (1.1.1)

from the n-th graded piece of Quillen’s K-theory tensored with Q, defined as the
kn-eigenspace for the k-th Adams operator (Remark 3.1.2), to motivic cohomology
of weight n should be an isomorphism when S is regular (loc. cit.). Since MS is
to have realizations corresponding to various cohomology theories, the regulator
map

K2n−i (S)
(n)
Q
→ H i (S,QM(n))→ H i

∗
(S,Q∗(n)),

where ∗ is the relevant realization, gives arithmetically important information.
The complexes RHomZar(ZM(0),ZM(n)) of sheaves on the Zariski site should

have the property that H i (SZar,RHomZar(ZM(0),ZM(n)))= H i (S,ZM(n)). Hence
the motivic cohomology of S of weight n could be computed as the hypercoho-
mology of a complex of sheaves on SZar.

MSC2000: 11G55.
Keywords: polylogarithms, additive polylogarithms, mixed Tate motives, Hilbert’s 3rd problem.
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Recently Voevodsky and others have made progress in motivic cohomology
[Mazza et al. 2006]. If S = Spec(k), where k is a field of characteristic zero,
Voevodsky constructs a triangulated category DMeff,−

Nis (k) [loc. cit., Chapter 14]
and a complex of sheaves Z(n) on the big Zariski site over k, which should be
isomorphic to the hypothetical RHomZar(ZM(0),ZM(n)) above, such that for any
smooth scheme X over k,

H i (XZar,Z(n))' Exti
DMeff,−

Nis
(M(X),Z(n))

(see [loc. cit., 14.16]), where M(X) is the motive of X [loc. cit., Definition 14.1].
Since Z(n) and Bloch’s complex of algebraic cycles of codimension n are iso-
morphic [loc. cit., Chapter 19], the Bloch–Grothendieck–Riemann–Roch theorem
[Bloch 1986] implies that the hypercohomology of Q(n) on XZar is expressed in
terms of the K-groups of X as above:

K2n−i (X)
(n)
Q
' H i (XZar,Q(n)). (1.1.2)

In order to study the motivic cohomology of S, it would be sufficient to restrict
to a subcategory of MS . Let MTMS denote the smallest full subcategory of MS that
contains the Tate motives and is closed under extensions. Then H i (S,QM(n)) '
ExtiMS

(QM(0),QM(n)) = ExtiMTMS
((QM(0),QM(n)). The category MTMS would

be simpler than MS . In fact for S=Spec(k), where k is a number field, Deligne and
Goncharov [2005] have constructed a candidate for MTMS as a tannakian category,
using DMeff,−

Nis .
It is natural to expect that MTMS can be constructed by using only the relative

cohomologies of hyperplane arrangements and in turn that motivic cohomology can
be computed using complexes of linear algebraic objects [Beı̆linson et al. 1990],
rather than all algebraic cycles. Special degenerate configurations of hyperplanes,
called the polylogarithmic configurations [Beı̆linson et al. 1990; Goncharov 1995],
act as building blocks for all configurations and thus play a special role in describ-
ing motivic cohomology.

Using the relations satisfied by the polylogarithmic configurations, Goncharov
defines a complex 0k(n)Q by

Bn(k)→Bn−1(k)⊗k×
Q
→Bn−2(k)⊗

∧2k×
Q
→· · ·→B2(k)⊗

∧n−2k×
Q
→
∧nk×

Q
,

which he conjectures can be used to compute the motivic cohomology of weight
n [Goncharov 1995, Conjectures A and 1.17].

If k = C, integration over the polylogarithmic configurations can be used to
define a map Q[P1(C)] → R, the single-valued real analytic version of the n-th
polylogarithmic function [Goncharov 1995, 1.0], which factors through the projec-
tion Q[P1(C)]→Bn(C) (loc. cit.) to give Ln :Bn(C)→R, the n-th polylogarithm
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that is expected to induce the regulator K2n−1(C)
(n)
Q
' H 1(Spec(C),QM(n))→

Bn(C)→ R [Goncharov 1995, page 224].
For a general field k, one cannot expect a polylogarithm on Bn(k). However,

through his interpretation of hyperbolic scissor congruence groups in terms of
mixed Tate motives, Goncharov expected that there should be an infinitesimal
polylogarithmic function that acts like a regulator map on K2n−1(k[ε]2, (ε))(n),
for any field k of characteristic 0 [Goncharov 1999, pages 616–617; 2004], where
k[ε]m := k[ε]/(εm). In our notation, assuming the existence of mixed Tate motives
and the complex 0n over the dual numbers, this translates to the existence of a map

Bn(k[ε]2)/Bn(k)→ k (1.1.3)

that, when composed with K2n−1(k[ε]2, (ε))(n)→Bn(k[ε]2)/Bn(k), gives an iso-
morphism. The map (1.1.3) is to be an analogue of both the volume map for
euclidean scissor congruence groups and of polylogarithms.

In this paper we are interested in this question for weight two. Next we give
details about this case.

1.2. Let A be an artinian local ring and I an ideal of A. In the rest of the paper,
when we refer to weight two (rational) motivic cohomology of A relative to I , what
we mean are the groups K3(A, I )(2)

Q
and K2(A, I )(2)

Q
and not to the Voevodsky

motivic cohomology groups in Section 1.1, which were there only to motivate the
main results of this paper. This common abuse of notions is partly justified by the
expected Chern character isomorphism (1.1.1), which is known to be true when A
is a field (1.1.2).

Let k be an algebraically closed field of characteristic 0, let S the semilocal ring
of rational functions on A1

k that are regular on {0, 1}, and let J the Jacobson radical
of S.

The first complex computing the weight two motivic cohomology is constructed
by Bloch as follows. Localizing A1

k away from 0 and 1 gives an exact sequence

0→ K3(k)(2)→ K2(S, J )
ϕ //

⊕
x∈k×\{1} k

×
→ K2(k)→ 0

(see [Lichtenbaum 1987, proof of 7.1; Bloch 1977]), where ϕ is the tame symbol
map. Let

B(k) := K2(S, J )/ im((1+ J )⊗ k×),

the part of K2(S, J ) that does not come from the products of weight 1 terms. Then
(
⊕

x∈k×\{1} k
×)/ϕ((1+ J )⊗ k×)= k×⊗ k×, and the sequence

0→ K3(k)
(2)
Q
→ B(k)Q→ (k×⊗ k×)Q→ K2(k)Q→ 0,

remains exact (same references).
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In complete analogy, Bloch and Esnault [2003] define a complex that computes
the motivic cohomology of k[t]2 relative to the ideal (t) as follows. Let R be the
local ring of A1

k at 0. Then localizing away from 0 on A1 gives the sequence

K2(k[t], (t2))→ K2(R, (t2))
ϕ //

⊕
x∈k× k×→ K1(k[t], (t2)).

Let C denote the subgroup generated by the symbols 〈a, b〉 ∈ K2(R, (t2)) with
a ∈ (t2) and b ∈ k, and put TB(k) := K2(R, (t2))/C. Then we have k× ⊗ k =
(
⊕

x∈k× k×)/ϕ(C) and an exact sequence

0→ K2(k[t], (t2))(2)→ TB(k)→ k×⊗ k→ K1(k[t], (t2))→ 0

[Bloch and Esnault 2003, Proposition 2.1 and Corollary 2.5]. Then we have

K2(k[t], (t2))
(2)
Q
' K3(k[t]2, (t))

(2)
Q

and K1(k[t], (t2))' K2(k[t]2, (t))

(loc. cit.). Therefore the complex TB(k)→ k×⊗ k (tensored with Q), really com-
putes the motivic cohomology of k[t]2 relative to (t). Moreover Bloch and Esnault
define a dilogarithm map on TB(k):

Theorem 1.2.1 [Bloch and Esnault 2003, Corollary 2.5]. Let m be the maximal
ideal of R. There is a well-defined map ρ : TB(k)→m3/m4 such that

ρ(〈a, b〉)=−a · db for 〈a, b〉 ∈ K2(R, (t2)) with a ∈m2 and b ∈ R,

and ρ induces an isomorphism K3(k[t], (t2))(2)→m3/m4 of abelian groups.

1.3. For k a field of characteristic zero there is another natural complex, which
is of more geometric origin and hence easier to relate to various definitions of cat-
egories of mixed Tate motives, that computes the weight two motivic cohomology
groups of k.

Suppose A is an artinian local ring with residue field k. The Bloch group B2(A)
(denoted by p(A) in [Suslin 1990]) is the free abelian group generated by the sym-
bols [x] such that x(1− x) ∈ A×, modulo the subgroup generated by elements of
the form

[x] − [y] + [y/x] − [(1− x−1)/(1− y−1)] + [(1− x)/(1− y)],

for all x, y ∈ A× such that (1− x)(1− y)(1− x/y) ∈ A×. The map that sends [x]
to x ∧ (1− x) ∈

∧2
Z A× induces the two term complex γA(2) that sits in [1, 2]:

δA : B2(A)→
∧2

Z A×. (1.3.1)

The complex γk(2) can be thought of as a more explicit version of 0k(2). In fact,
there is a natural map γk(2)Q→ 0k(2)Q, which is expected to be an isomorphism
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[Goncharov 1995, Conjecture 1.20], and there is an exact sequence [Suslin 1990]

0→ K3(k)
(2)
Q
→ B2(k)Q→ (

∧2k×)Q→ K2(k)Q→ 0.

For n≥ 2, we are interested in the complex γk[ε]n (2)Q, where δk[ε]n will be denoted
by δn . We show that it has the expected cohomology:

Theorem 1.3.1. For k a field of characteristic 0, there is an exact sequence

0→ K3(k[ε]n)
(2)
Q

// B2(k[ε]n)Q
δn // (

∧2k[ε]×n )Q // K2(k[ε]n)Q→ 0.

For n = 2 this theorem gives a “yes” answer to [Goncharov 2004, Problem 2.3].
While proving the previous theorem we construct an additive dilogarithm map

on B2(k[ε]n):

Theorem 1.3.2. For every n ≥ 2, there is a natural map

Li2,n : B2(k[ε]n)→ k⊕(n−1)

that, when composed with K3(k[ε]n, (ε))(2) ↪→ B2(k[ε]n), induces an isomorphism
K3(k[ε]n, (ε))(2) ' k⊕(n−1) of abelian groups.

The advantage of defining a dilogarithm map on B2(k[ε]n) is that this group is
closely related to the linear algebra-geometric complexes of mixed Tate motives.
More precisely, Li2,n immediately gives an analogue of the volume map for a pair
of triangles over k[ε]n , as in [Beı̆linson et al. 1990]: All one needs to do is to take
the image of the pair of triangles in B2(k[ε]n) under the map in [loc. cit., Proposi-
tion 3.7] and then apply Li2,n . In this context Theorems 1.3.1 and 1.3.2 imply that
the class of a pair of triangles in A2(k[εn])/A2(k) (loc. cit.) is determined by its
image in

∧2k[εn]
×/
∧2k× and its image under Li2,n . This is a precise analogue of

Sydler’s theorem on Hilbert’s 3rd problem that the scissors congruence class of a
three-dimensional polyhedron is determined by its volume and its Dehn invariant
[Goncharov 1999, Section 2.7]. We do not, however, pursue this application here.

1.4. In order to compare γk[ε]n (2)Q with the complex of Bloch and Esnault, we
show that their argument extends to define a complex TnQ(2)(k) by

Tn B(k)→ k×⊗ (ε · k[ε]n)

(for n= 2 this is the complex in Section 1.2). Let γk[ε]n (2)Q= γk(2)Q⊕γk[ε]n (2)
◦

Q
,

and note that the cohomology groups of γk[ε]n (2)
◦

Q
and TnQ(2)(k) coincide. We

define a subcomplex γk[ε]n (2)
′

Q
of γk[ε]n (2)

◦

Q
that has the same cohomology groups,

and obtain a direct consequence of Theorems 1.2.1, 1.3.1, and 1.3.2:

Corollary 1.4.1. For k an algebraically closed field of characteristic 0, the com-
plexes TnQ(2)(k) and γk[ε]n (2)

′

Q
are isomorphic.
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1.5. The paper is organized as follows. In Section 2, we construct the additive
dilogarithm, Li2,n : B2(k[ε]n)→ k⊕(n−1). Two results in Section 2 are useful in
studying Li2,n . On the one hand, Li2,n is explicitly described in Proposition 2.2.3
and Definition 2.2.4. On the other hand, Li2,n has a conceptual description: The
image of an element in B2(k[ε]n) under Li2,n is obtained by lifting that element
to an arbitrary element in B2(k[ε]2n−1) then taking its image in

∧2k[ε]×2n−1 under
the map in (1.3.1), and finally choosing certain algebraic combinations of its coor-
dinates in

∧2k[ε]×2n−1 as in Propositions 2.1.2, 2.2.1 and 2.2.2. It is this flexibility
in the choice of the lifting that is used in the computations in Section 4.

In this paper, rather than working with K-theory we work with cyclic homology
most of the time. This is possible since K∗(k[ε]n) = K∗(k[ε]n, (ε))⊕ K∗(k) and
by the theorem of Goodwillie [1986], HC∗−1(k[ε]n, (ε)) ' K∗(k[ε]n, (ε)), where
HC denotes cyclic homology with respect to Q. Note that since we are working
with Q-coefficients, K-theory is nothing other than the primitive part of the rational
homology of GL [Loday 1992, Corollary 11.2.12].

In Sections 3.1 through 3.6 we make Goodwillie’s theorem explicit, follow-
ing [Loday 1992], by giving the description of a map from HC2(k[ε]n, (ε)) to
H3(GL(k[ε]n),Q). Then in Sections 3.7 and 3.8, Suslin and Guin’s stability the-
orem and a construction of Bloch, Suslin and Goncharov is used to construct a
map H3(GL(k[ε]n),Q) → ker(δn). More details about Section 3 are given in
Section 3.1. This explicit description will be needed in Section 4.

In Section 4, we prove Theorem 1.3.2. This is done by first using the description
of HC2(k[ε]n, (ε)) given in [Cathelineau 1990/91] in Section 4.1.1, then construct-
ing certain elements

αw ∈ HC2(k[ε]n, ε)(1) for n+ 1≤ w ≤ 2n− 1,

and chasing the images of these elements under the maps described in Sections 2
and 3. The proof also shows that {αw}n+1≤w≤2n−1 form a basis for HC2(k[ε]n, ε)(1).

In Section 5, using [Suslin 1990], [Guin 1989], and Section 4, we show that the
infinitesimal part of ker(δ) is canonically isomorphic to HC2(k[ε]n, (ε))(1). From
this Theorem 1.3.1 follows.

In Section 6, we first define a subcomplex γk[ε]n (2)
′

Q
of γk[ε]n (2)Q. Then we

extend the construction of Bloch and Esnault to higher moduli and finally prove
Corollary 1.4.1, which compares the two constructions.

Remarks. First, we mention the work of J. Park [2007], which gives an additive
Chow theoretic description of the additive dilogarithm of Bloch and Esnault, and
the work of K. Rülling [2007], which proves that the complex of additive Chow
groups with modulus (not necessarily of 2) has the expected cohomology groups
on the level of zero cycles.



On the additive dilogarithm 7

Second, there are many problems left unanswered in this note. The most im-
portant of these is the construction of additive polylogarithms for higher weights.
We have made this construction, but we have yet to prove that the complex has the
right cohomology groups. We will address in another paper the question of what
happens in characteristic p, and we will also compare our construction to the work
of Park and Rülling.

2. Additive dilogarithm

Notation 2.0.1. Let k be a field of characteristic zero. An abelian group A endowed
with a group homomorphism k×→Autab(A) is said to be a k×-abelian group; we
denote the action of λ ∈ k× on a ∈ A by λ× a. If f : A→ k is an additive map
that satisfies f (λ× a)= λw · f (a) for all λ ∈ k× and a ∈ A, then we say that f is
of k×-weight w.

If V is a k-module with a k×-action that is k-linear, that is, defined by a homo-
morphism k×→ Autk-mod(V ), then we let

V〈w〉 := {v ∈ V | λ× v = λw · v for all λ ∈ k×}

be the subspace of elements of V of weight w.
Define k[ε]m := k[ε]/(εm), Vm := k[ε]×m⊗Z Q and B2(k[ε]m) as in Section 1.3.
For an object A defined over k[ε]m , we denote by A◦ its infinitesimal part, for

example,

B2(k[ε]m)= B2(k)⊕ B2(k[ε]m)◦, k[ε]◦m = ε · k[ε]m, V ◦m = 1+ ε · k[ε]m .

When the context requires it we write (say) K∗(k[ε]m)◦ instead of K∗(k[ε]m, (ε)).
Finally, since in what follows the infinitesimal part A◦ of an object A is canonically
a direct summand of A, we never mention the natural maps A◦→ A and A→ A◦,
and take other liberties of this kind.

The exponential map gives an isomorphism k[ε]◦m ' V ◦m , which endows V ◦m with
a k-space structure. For λ ∈ k×, the k-algebra map that sends ε to λ · ε defines an
action of k× on k[ε]m and V ◦m . Denote the weight i subspace of V ◦m under this
action by Vm,〈i〉, that is,

Vm,〈i〉 = {v ∈ V ◦m | λ× v = λ
i
· v for all λ ∈ k×} = {exp(a · εi ) | a ∈ k}.

Then V ◦m=
⊕

1≤i≤m−1 Vm,〈i〉. To simplify the notation we also put Vm,〈0〉 :=k×⊗Q.
Let k[ε]××m ⊆ k[ε]m denote the set of exceptional units, that is, those a ∈ k[ε]×m

such that 1− a ∈ k[ε]×.
Let δ :Q[k[ε]××m ] →

∧2Vm be the map that sends x ∈ k[ε]××m to x ∧ (1− x). If
we want to emphasize that we are working over k[ε]m , we will use the notation δm
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instead of δ. The map on B2(k[ε]m) induced by δm is denoted by the same letter
(see (1.3.1)).

2.1. Construction of li2. In this section we collect the combinatorial arguments
in the construction of the additive dilogarithm over k[ε]n . The crucial step is the
statement that Sk(m, n)〈w〉 is one dimensional in Proposition 2.1.2. This implies
that if one thinks that the additive dilogarithm on k[ε]n should be constructed
by first lifting to k[ε]2n−1 and then using δ, then there is essentially one way to
define it. That this is the right definition is justified in the next section.

Definition 2.1.1. Let n,m ∈N such that 2≤ n≤m. Let αm,n :Q[k[ε]××m ]→
∧2Vm

denote the map that sends γ ∈ k[ε]××m to δ(γ)−δ(γ |n), where γ |n is the truncation
of γ to the sum of first n powers of ε, that is, if γ = a0+a1 · ε+· · ·+am−1 · ε

m−1

then γ |n = a0+ a1 · ε+ · · ·+ an−1 · ε
n−1.

Let V (m, n) denote ⊕
0<i≤n−1
n≤ j≤m−1

(Vm,〈i〉⊗ Vm,〈 j〉)⊆
∧2Vm,

which we also consider as a quotient of
∧2Vm via the direct sum decomposition∧2Vm =

⊕
0≤i< j<m

(Vm,〈i〉⊗ Vm,〈 j〉)⊕
( ⊕

0≤i<m

∧2Vm,〈i〉

)
. (2.1.1)

Finally denote by Vk(m, n) the quotient⊕
0<i≤n−1
n≤ j≤m−1

(Vm,〈i〉⊗k Vm,〈 j〉)

of V (m, n), by p(m, n) :
∧2Vm→ Vk(m, n) the canonical projection, by Sk(m, n)

the k×-abelian group Vk(m, n)/ im(p(m, n) ◦ αm,n) and by Sk(m, n)〈i〉 the image
of Vk(m, n)〈i〉 in Sk(m, n). This notation is justified by noting that Sk(m, n) has
a natural k-module structure induced from that of Vk(m, n) such that its weight i
subspace is equal to Sk(m, n)〈i〉 and Sk(m, n)=

⊕
0<i Sk(m, n)〈i〉.

For 0 < i < j < m, let pi, j :
∧2Vm → Vm,〈i〉 ⊗ Vm,〈 j〉 denote the projection

determined by the decomposition (2.1.1). Then li, j :
∧2Vm→k is defined by letting

(log⊗ log)(pi, j (α))= li, j (α) · (ε
i
⊗ ε j ) in k[ε]m ⊗k k[ε]m for any α ∈

∧2Vm .

Proposition 2.1.2. Let n,m, w ∈ N such that 2 ≤ n < w ≤ min(2n− 1,m). Then
Sk(m, n)〈w〉 is a one-dimensional k-module. The unique linear functional

li2,(m,n),w : Sk(m, n)〈w〉→ k
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such that li2,(m,n),w(exp(ε)⊗ exp(εw−1))= 1 is given by

li2,(m,n),w =
∑

1≤ j≤w−n

j · l j,w− j .

Proof. Let li2,(m,n),w denote the map from
∧2Vm to k given by the formula

li2,(m,n),w =
∑

1≤ j≤w−n

j · l j,w− j .

We would like to see that li2,(m,n),w ◦αm,n = 0. Fix

x := s+ s(1− s)a1ε+ · · ·+ s(1− s)am−1ε
m−1
∈ k[ε]××m .

Let Am := {1, . . . ,m − 1} and let (Am)
×α denote the cartesian product of Am

with itself α-times. Define p : (Am)
×α
→ k by p(i1, . . . , iα) := ai1 · ai2 · · · aiα , and

w : (Am)
×α
→ N by w(i1, . . . , iα) := i1+ i2+ · · · + iα. Note that even though p

depends on x , we suppress it from the notation. In order to simplify the notation
let A(α) := (Am)

×α and B(α) := (Am)
×α
\ (An)

×α.
If 1≤ α, β ≤ w, let

C(α, β) := {(a, b) | a ∈ A(α), b ∈ B(β), w(a)+w(b)= w}.

Let the permutation group Sα+β on α+β letters act on A(α)×A(β) by permuting
the coordinates. On C(α, β) ⊆ A(α)× A(β) consider the following equivalence
relation. If (a, b), (c, d) ∈ C(α, β), then (a, b) and (c, d) are equivalent if there
exists a permutation σ ∈ Sα+β such that (a, b)σ = (c, d). Denote the equivalence
class of (a, b) by [(a, b)] and the set of all equivalence classes by S(α, β). Let
p([a, b])= p(a) · p(b).

Assume from now on that α+β ≤w. Note that since w ≤ 2n− 1, any element
(a, b) ∈ C(α, β) has a unique coordinate that is greater than or equal to n. Denote
this coordinate by e(a, b). Denote by (a, b)0 the element of C(α, β) obtained by
interchanging the last coordinate of (a, b) with the coordinate containing e(a, b).

Then we define a map ι : C(α, β)→ C(β, α) as follows. Let (a, b) ∈ C(α, β).
Then ι(a, b) ∈C(β, α) is the element (a, b)0, where we think of both C(α, β) and
C(β, α) as subsets of A(α)× A(β) ' A(α + β) ' A(β)× A(α). This passes to
equivalence classes and gives a map S(α, β)→S(β, α) that we continue to denote
by ι. Note that ι2 = 1, and if G ∈ S(α, β), then p(ι(G))= p(G), and∑

(a,b)∈G

w(a)=
∑

(c,d)∈ι(G)

w(c).

Letting z = a1ε+ a2ε
2
+ · · ·+ am−1ε

m−1, we have

x = s(1+ (1− s)z) and 1− x = (1− s)(1− sz).
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Computing in k[ε]m , this gives

log(x/s)=−
m−1∑
`=1

(s−1)`z`

`
and log((1− x)/(1− s))=−

m−1∑
`=1

s`z`

`
.

Since zα =
∑

u∈A(α) p(u)ε
w(u), we have

log(x/s)=−
m−1∑
`=1

(s−1)`

`

∑
u∈A(`)

p(u)εw(u),

log((1− x)/(1− s))=−
m−1∑
`=1

s`

`

∑
u∈A(`)

p(u)εw(u).

Then li2,(m,n),w(αm,n(x)) is equal to∑
1≤α≤w
1≤β≤w

∑
a∈A(α)
b∈B(β)

w(a)+w(b)=w

w(a)·p(a)·p(b)
α ·β

· ((s− 1)α · sβ − sα · (s− 1)β)

=

∑
1≤α≤w
1≤β≤w

((s− 1)α · sβ − sα · (s− 1)β)
∑

G∈S(α,β)

(
p(G)
α ·β

) ∑
(a,b)∈G

w(a).

On the other hand∑
G∈S(α,β)

(
p(G)
α ·β

) ∑
(a,b)∈G

w(a)=
∑

G∈S(α,β)

(
p(ι(G))
α ·β

) ∑
(c,d)∈ι(G)

w(c)

=

∑
G∈S(β,α)

(
p(G)
β ·α

) ∑
(a,b)∈G

w(a).

Therefore li2,(m,n),w(αm,n(x))= 0, and we have a linear functional

li2,(m,n),w : Sk(m, n)〈w〉→ k.

By the definition of li2,(m,n),w it is clear that li2,(m,n),w(exp(ε)⊗ exp(εw−1))= 1.
To finish the proof we only need to show that the space of linear functionals on

Sk(m, n)〈w〉 is generated by li2,(m,n),w, or equivalently that if l is a linear combina-
tion of {l2,w−2, l3,w−3, . . . , lw−n,n} such that l(αm,n(x))= 0 for all x ∈ k[ε]××m , then
l is zero. So let l =

∑
2≤i≤w−n ci · li,w−i satisfy l(αm,n(x))= 0 for all x ∈ k[ε]××m .

Assume that l 6= 0 and let i0 be the smallest integer i such that ci 6= 0. For all
s ∈ k×× and a1, ai0−1, aw−i0 ∈ k, we have

l(αm,n(s+ s(1− s) · a1 · ε+ s(1− s) · ai0−1 · ε
i0−1
+ s(1− s) · aw−i0 · ε

w−i0))= 0.
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If we denote the left hand side of the above equation by l(s, a1, ai0−1, aw−i0), then

ci0 ·
1
2((s− 1)2s− s2(s− 1)) · (a1 · ai0−1 · aw−i0)

= l(s, a1, ai0−1, aw−i0)− l(s, a1, 0, aw−i0)= 0.

Therefore ci0 = 0, contradicting the assumption. �

2.2. Construction of Li. Using the construction in the previous section, we show
that li2,(2n−1,n),w descends to a function on B2(k[ε]n), as defined in Section 1.3.

Proposition 2.2.1. For n+ 1≤ w ≤ 2n− 1, the map

li2,(2n−1,n),w ◦δ :Q[k[ε]××2n−1] → k

factors through the canonical projection Q[k[ε]××2n−1] →Q[k[ε]××n ].

We denote the induced map from Q[k[ε]××n ] to k by Li2,n,w.

Proof. This follows from the fact that li2,(2n−1,n),w ◦α2n−1,n= 0 by the construction
in Proposition 2.1.2. �

Proposition 2.2.2. The map Li2,n,w :Q[k[ε]××n ]→ k factors through the canonical
projection Q[k[ε]××n ] → B2(k[ε]n).

We continue to denote the induced map by Li2,n,w.

Proof. We need to show that for x, y ∈ k[ε]××n such that x/y ∈ k[ε]××n ,

Li2,n,w([x] − [y] + [y/x] − [(1− x−1)/(1− y−1)] + [(1− x)/(1− y)])= 0.

If x̃ and ỹ are arbitrary liftings of x and y to k[ε]××2n−1, then Proposition 2.2.1
implies that the left side of the last equation is equal to

(li2,(2n−1),w ◦δ)([x̃] − [ỹ] + [ỹ/x̃] − [(1− x̃−1)/(1− ỹ−1)] + [(1− x̃)/(1− ỹ)]).

The proposition then follows from the fact that

δ([x̃] − [ỹ] + [ỹ/x̃] − [(1− x̃−1)/(1− ỹ−1)] + [(1− x̃)/(1− ỹ)])= 0. �

If c= (c1, . . . , cr )∈Nr and x= s+s(1−s)a1ε+· · ·+s(1−s)an−1ε
n−1
∈ k[ε]××n

then
p(x; c) := ac1 · ac2 · · · acr and w(c) := c1+ · · ·+ cr .

Let C(α) := {1, 2, . . . , n− 1}×α.

Proposition 2.2.3. For n+ 1≤ w ≤ 2n− 1, we have

Li2,n,w([x])=
∑

1≤α,β≤w

(s−1)α ·sβ−sα ·(s−1)β

α ·β

∑
(a,b)∈C(α)×C(β)

w(a)≤w−n
w(a,b)=w

w(a) · p(x; (a, b)).
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Proof. Direct computation. �

Definition 2.2.4. Define the additive dilogarithm Li2,n : B2(k[ε]n)→ k⊕(n−1) by

Li2,n :=
⊕

n+1≤w≤2n−1

Li2,n,w .

3. The map from cyclic homology to the Bloch group

3.1. This section is based on Goodwillie’s theorem [1986] and the construction
of Bloch [1977], Suslin [1990] and Goncharov [1995] of a map from the K3 of a
field to its Bloch group. Our main reference for cyclic homology and Goodwillie’s
theorem is [Loday 1992]. Here all cyclic homology groups are relative to Q.

We will need the following to pass from cyclic homology to the rational homol-
ogy of GL.

Theorem 3.1.1 [Goodwillie 1986; Loday 1992, Theorem 11.3.1]. Let A be a
Q-algebra and I a nilpotent ideal in A. Then there is a canonical isomorphism

HCn−1(A, I )' Kn(A, I )Q for n ≥ 1.

Remark 3.1.2. This isomorphism is compatible with the λ-structures on both sides
by [Cathelineau 1990/91, Theorem 1]. Hence, if HC∗(A, I )(i−1) and K∗(A, I )(i)

Q

denote the ki -eigenspace for the k-th Adams operator (for any k), then the above
isomorphism induces an isomorphism HC∗−1(A, I )(i−1)

'K∗(A, I )(i)
Q

by [loc. cit.,
corollary in Section 1.3].

For a ring A, the Hurewicz map induces an isomorphism from ⊕n>0Kn(A)Q
to the primitive part Prim H∗(GL(A),Q) of the homology of GL [Loday 1992,
11.2.12 Corollary]. The map in Theorem 3.1.1 is constructed as the composition
of a map from cyclic homology to the primitive part of the homology of GL and
then using the inverse of the Hurewicz map. Since we will only need the map
from cyclic homology to the homology of GL, we next describe the steps in its
construction, following [Loday 1992].

In Section 3.2, cyclic homology of A is computed as the homology of the
Connes complex. This section also describes the natural map from the Connes
complex to the Chevalley–Eilenberg complex of the Lie algebra gl. This map
induces an isomorphism from cyclic homology to the primitive homology of gl.
In Section 3.3, homology of gl is replaced with the sum of the homology of its
nilpotent parts tσ (A, I ). In Section 3.4, homology of tσ (A, I ) is replaced with
that of the completion of its universal enveloping algebra, and in Section 3.5, the
latter is replaced with the homology of the group algebra of Tσ (A, I ), via Malčev
theory. We reach the group homology of GL(A) in Section 3.6.
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In Section 3.7, this construction in combination with Suslin and Guin’s stability
theorem [Suslin 1984; Guin 1989] induces a map

HCn−1(A, I )→ Hn(GLn(A),Q) (3.1.1)

when A is an artinian local algebra over Q and I is a proper ideal of A. We will
use this map for n = 3.

Finally we use a slight variation of the construction of Suslin and Goncharov in
Section 3.8 to get a map H3(GL3(A),Q)→ ker(δ).

The details can be found in [Loday 1992, Section 11.3] and the references
therein. The main result of this section is Proposition 3.8.9.

3.2. Map from cyclic homology to Lie algebra homology.

3.2.1. For any associative Q-algebra A, the Connes complex Cλ
∗
(A) is defined as

follows. Let Z/nZ act on A⊗n by

1× (a1⊗ a2⊗ · · ·⊗ an)= (−1)n−1a2⊗ a3⊗ · · ·⊗ an ⊗ a1,

and let Cλ
n−1(A) denote the coinvariants of A⊗n under this action. Define

b : Cλ
n (A)→ Cλ

n−1(A),

(a0, a1, . . . , an) 7→
∑

0≤i≤n−1

(−1)i (a0, . . . , ai · ai+1, . . . , an)

+ (−1)n(an · a0, a1, . . . , an−1).

Then Cλ
∗
(A) is the complex

· · ·
b // Cλ

n+1(A)
b // Cλ

n (A)
b // · · · // Cλ

0 (A) // 0,

and HC∗(A) = H∗(Cλ
∗
(A)) [Loday 1992, Theorem 2.1.5]: The cyclic homology

relative to Q can be computed as the homology of the Connes complex.

3.2.2. For g a Lie algebra over Q, the Chevalley–Eilenberg complex C∗(g,Q)

of g with coefficients in Q is defined by

· · ·
d //

∧ng
d //

∧n−1g // · · ·
d // g

d // Q // 0,

where d :
∧ng→

∧n−1g is given by

d(a1∧a2∧· · ·∧an)=
∑

1≤i< j≤n

(−1)i+ j−1
[ai , a j ]∧a1∧· · ·∧ âi∧· · ·∧ â j∧· · ·∧an.

The Lie algebra homology H∗(g,Q) of g with coefficients in Q is the homology
of the complex C∗(g,Q). The diagonal map g→ g⊕ g induces a map

1 : C∗(g,Q)→ C∗(g,Q)⊗C∗(g,Q),



14 Sinan Ünver

which makes (C∗(g,Q), d) a DG-coalgebra. Let Prim H∗(g,Q) denote the primi-
tive elements in H∗(g,Q), that is, those α such that 1(α)= 1⊗α+α⊗ 1.

Let gln(A) denote the Lie algebra of n × n matrices, and let gl(A) denote the
direct limit limn→∞ gln(A) with respect to the natural inclusions gln(A)⊆ glm(A)
for n ≤ m. Then gl(Q) acts on C∗(gl(A),Q) by

[h, g1 ∧ · · · ∧ gn] :=
∑

1≤i≤n

g1 ∧ · · · ∧ [h, gi ] ∧ · · · ∧ gn.

Let C∗(gl(A),Q)gl(Q) denote the complex of coinvariants with respect to this ac-
tion, and let H∗(gl(A),Q)gl(Q) and Prim H∗(gl(A),Q)gl(Q) denote respectively the
homology and the primitive part of the homology of the complex C∗(gl(A),Q)gl(Q).
Then the theorem of Loday, Quillen, and Tsygan says this:

Theorem 3.2.1 [Loday 1992, Theorem 10.2.4]. If A is an algebra over Q, then
there is a natural isomorphism

HC∗−1(A)' Prim H∗(gl(A),Q)gl(Q) ' Prim H∗(gl(A),Q).

Explicitly, the first isomorphism above is induced by the chain map that sends the
class of a1⊗ a2⊗ · · · ⊗ an in Cλ

n−1(A) to the class of a1e12 ∧ a2e23 ∧ · · · ∧ anen1

in Cn(gl(A),Q)gl(Q). Here ei j denotes the matrix whose only nonzero entry is the
one in the i-th row and the j-th column, which is 1.

3.3. Volodin’s construction in the Lie algebra case. Assume that I is a nilpo-
tent ideal of A, and let HC∗(A, I ) denote the cyclic homology of A relative to I ,
the homology of the complex Cλ

∗
(A, I ) that is the kernel of the natural surjection

Cλ
∗
(A)→ Cλ

∗
(A/I ).

For any permutation σ ∈ Sn , let tσ (A, I ) denote the Lie subalgebra of gl(A)
given by tσ (A, I ) := {(ai j ) ∈ gl(A) : ai j ∈ I if σ( j) ≤ σ(i)}. Let x(A, I ) :=∑

σ C∗(tσ (A, I ),Q) denote the sum of the subcomplexes

C∗(tσ (A, I ),Q)⊆ C∗(gl(A),Q),

over all n and σ ∈ Sn , and let H∗(gl(A, I ),Q) denote the homology of x(A, I ).
Then the map in Theorem 3.2.1 induces an isomorphism

HC∗−1(A, I )' Prim H∗(gl(A, I ),Q)'
∑
σ

Prim H∗(tσ (A, I ),Q) (3.3.1)

[Loday 1992, Proposition 11.3.12].

3.4. From the Lie algebra to the universal enveloping algebra. For a Lie alge-
bra g over Q, let U(g) denote its universal enveloping algebra and Û(g) its com-
pletion with respect to its augmentation ideal. We will next express the homology
of g in terms of the homology of U(g).
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Let B be an associative algebra over Q endowed with an augmentation map
ε : B→Q. Let C∗(B,Q) denote the complex

· · ·
b // B⊗n b // B⊗(n−1) b // · · ·

b // Q // 0,

where b : B⊗n
→ B⊗(n−1) is the map that sends b1⊗ · · ·⊗ bn to

ε(b1) · b2⊗ · · ·⊗ bn +
∑

1≤i≤n−1

(−1)i b1⊗ · · ·⊗ bi · bi+1⊗ · · ·⊗ bn

+ (−1)nε(bn) · b1⊗ · · ·⊗ bn−1.

Let H∗(B,Q) denote the homology of this complex.
Then the natural maps

H∗(tσ (A, I ),Q)' H∗(U(tσ (A, I )),Q)' H∗(Û(tσ (A, I )),Q) (3.4.1)

are isomorphisms [Loday 1992, Theorem 3.3.2]. Here the first map is induced by
the chain map αas, where “as” stands for antisymmetrization, defined by

αas(t1 ∧ · · · ∧ tn)=
∑
τ∈Sn

sign(τ ) · tτ(1)⊗ · · ·⊗ tτ(n).

3.5. Malčev theory. For σ ∈ Sn , let Tσ (A, I )⊆ GLn(A) denote the group

{1+ (ai j ) ∈ GLn(A) | ai j ∈ I if σ( j)≤ σ(i)}.

For a discrete group G, denote by U (G) its group ring over Q, and by Û (G) its
completion with respect to the augmentation ideal.

Since Tσ (A, I ) is a unipotent group with Lie algebra tσ (A, I ), the natural maps

H∗(Û(tσ (A, I ),Q)= H∗(Û (Tσ (A, I ),Q)' H∗(U (Tσ (A, I )),Q). (3.5.1)

are isomorphisms [Loday 1992, Section 11.3.13].
Combining (3.3.1), (3.4.1) and (3.5.1) we get a map

HC∗−1(A, I )→
∑
σ

H∗(U (Tσ (A, I )),Q)→ H∗(U (GL(A)),Q). (3.5.2)

3.6. Group homology. Let G be any (discrete) group and C∗(G,Q) the complex

· · ·
d // Q[Gn+1

]
d // Q[Gn

]
d // · · ·

d // Q[G] // 0,

where Cn(G,Q)=Q[Gn+1
] and d is the map that sends (g0, g1, . . . , gn) to∑

0≤i≤n

(−1)i (g0, . . . , ĝi , . . . , gn).

Let G act on this complex by multiplication on the left, that is, g×(g0, . . . , gn) :=

(g · g0, . . . , g · gn), and let H∗(G,Q) := H∗(C∗(G,Q)G) where the subscript G
denotes the space of coinvariants.
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The natural map C∗(U (G),Q)→ C∗(G,Q) that sends g1⊗ g2⊗ · · ·⊗ gn to

(1, g1, g1 · g2, . . . , g1 · g2 · · · gn)

induces an isomorphism H∗(U (G),Q)→ H∗(G,Q) [Loday 1992, Appendix C.3].
Applying this to GL(A) and combining with (3.5.2) we obtain the map

HC∗−1(A, I )→ H∗(GL(A),Q). (3.6.1)

3.7. Suslin’s stability theorem. Suslin’s stability theorem [1990] was generalized
by Guin:

Theorem 3.7.1 [Guin 1989, Section 2]. For any 1 ≤ n and any artinian local
algebra A over Q, the map Hn(GLn(A),Q) → Hn(GL(A),Q) induced by the
inclusion GLn ↪→ GL is an isomorphism.

Therefore if A is an artinian local algebra over Q and I is a proper ideal, we have
a map ρ1 : HCn−1(A, I )→ Hn(GLn(A),Q).

3.8. Bloch–Suslin map. Let A be an artinian local algebra over Q with residue
field k. We now describe the Bloch–Suslin map [Goncharov 1995, Section 2.6]

ρ2 : H3(GL3(A),Q)→ ker(δA),

where δA : B2(A)Q→
∧2 A×

Q
is the differential in the Bloch complex.

Definition 3.8.1. Let V be a finite free module over A, and denote C̃m(V ) by the Q-
vector space with basis consisting of m-tuples (x0, . . . , xm−1) of elements of V that
are in general position, that is, for any I ⊆{0, 1, . . . ,m−1}with |I |≤ rank(V ), the
set {xi | i ∈ I } can be extended to a basis of V . Let Cm(V ) denote the coinvariants
of this space under the natural action of GL(V ). Finally, let C̃m(p) := C̃m(A⊕p)

and Cm(p) := Cm(A⊕p).

Remark 3.8.2. Let C̃m(P(V )) denote the Q-space with basis (v0, . . . , vm−1) of
m-tuples of points in P(V ) that are in general position, and define

d : C̃m+1(P(V ))→ C̃m(P(V )), (v0, . . . , vm) 7→
∑

0≤i≤m

(−1)i (v0, . . . , v̂i , . . . , vm).

Let Cm(P(V )) denote the space of coinvariants of C̃m(P(V )) under the natural
action of GL(V ). Then by identifying [x] with (0, x, 1,∞) ∈ C4(P(A⊕2)) and by
comparing the dilogarithm relation in the definition of B2(A) to d(0, x, y, 1,∞)
in C4(P(A⊕2)), we see that

B2(A)Q = C4(P(A⊕2))/d(C5(P(A⊕2))).

For (x1, . . . , x4) a quadruple of points in P1
A, we denote the corresponding element

in B2(A)Q by [x1, . . . , x4].
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Since A is a local ring, a subset of V is in general position if its reduction modulo
the maximal ideal is in general position in the k-space V ⊗A k.

Define two maps d, d ′ : C̃m+1(p)→ C̃m(p) by

d(x0, x1, . . . , xm)=
∑

0≤i≤m

(−1)i (x0, . . . , x̂i , . . . , xm),

d ′(x0, x1, . . . , xm)=
∑

1≤i≤m

(−1)i (x0, . . . , x̂i , . . . , xm).

Let ε : C̃1(p)→Q be the map that sends each term to the sum of its coefficients.

Lemma 3.8.3. The following complexes are acyclic.

· · ·
d // C̃2(p)

d // C̃1(p)
ε // Q // 0,

· · ·
d ′ // C̃2(p)

d ′ // C̃1(p) // 0.

Proof. Let
∑

j∈J a j · (x0( j), . . . , xm−1( j)) be an m-cycle in the first or the second
complex. Since the reductions modulo the maximal ideal {x0( j), . . . , xm−1( j)} are
in general position in k⊕p and k is an infinite field, we can choose α ∈ A such that
all {x0( j), . . . , xm−1( j), α} are in general position. Note that if Wi for 1≤ i ≤ r are
proper subspaces of a vector space W over an infinite field, then

⋃
1≤i≤r Wi 6=W .

If m ≥ 2 and d
∑

j∈J a j · (x0( j), . . . , xm−1( j))= 0, or if m = 1 and
∑

j∈J a j = 0,
we have

(−1)md
(∑

j∈J

a j · (x0( j), . . . , xm−1( j), α)
)
=

∑
j∈J

a j · (x0( j), . . . , xm−1( j)).

Similarly, if m ≥ 2 and d ′
∑

j∈J a j · (x0( j), . . . , xm−1( j)) = 0, or if m = 1, we
have

(−1)md ′
(∑

j∈J

a j · (x0( j), . . . , xm−1( j), α)
)
=

∑
j∈J

a j · (x0( j), . . . , xm−1( j)). �

Define maps λ : C̃m(p)→ C̃m(p) by

λ(x0, . . . , xm−1)=
∑

0≤i≤m−1

sign(σ (m)i )(xσ(m)i (0), . . . , xσ(m)i (m−1)),

where σ(m) := (0 1 · · · m− 1) is the standard m-cyclic permutation.
Then λ ◦ d = d ′ ◦ λ, and we have a double complex

· · ·
d // C̃3(3)

λ
��

d // C̃2(3)

λ
��

· · ·
d ′ // C̃3(3)

d ′ // C̃2(3).
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Definition 3.8.4. Let D̃ be the complex associated to the double complex above.
That is, D̃0 = C̃2(3) and D̃i = C̃i+2(3) ⊕ C̃i+1(3) and the maps are given by
(x, y)→ (d ′(x)+ λ(y),−d(y)).

Let ε : D̃0→Q be the map that sends each term to the sum of its coefficients. Then
by Lemma 3.8.3 the complex · · · // D̃1 // D̃0

ε // Q // 0 is acyclic.
If we endow D̃ with its natural GL3(A) action and Q with the trivial action, then

the complex above is an acyclic complex of GL3(A)-modules. Therefore we get a
canonical map

H3(GL3(A),Q)→ H3(D), (3.8.1)

where D := D̃GL3(A) is the complex of coinvariants of D̃.
Next we define a map from H3(D) to B2(A)Q. This will be a slight modification

of Goncharov’s map [1995, Section 2.6].
From the double complex above, we are interested in the part

C6(3)

λ
��

d // C5(3)

λ
��

d // C4(3)

λ
��

C6(3)
d ′ // C5(3)

d ′ // C4(3).

We define a map φ from this double complex to the double complex

0 //

��

0 //

��

0

��

0 // B2(A)Q //
∧2 A×

Q
.

In φ, the only nontrivial map

C5(3)
d ′ //

��

C4(3)

��

B2(A)Q
δ //

∧2 A×
Q

(3.8.2)

is a composition of the following two maps:
The first map is

C5(3)
d ′ //

−p
��

C4(3)

p
��

C4(2)
d // C3(2),

where p : Cm+1(3)→ Cm(2) sends (v0, v1, . . . , vm−1) to (ṽ1, . . . , ṽm−1). Here ṽi

denotes the image of vi in A⊕3/〈v0〉, and the term (ṽ1, . . . , ṽm−1) is identified with
an element of Cm(2) by choosing any isomorphism between A⊕3/〈v0〉 and A⊕2.
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The second map is
C4(2)

d //

α

��

C3(2)

β

��

B2(A)Q
δ //

∧2 A×
Q
,

(3.8.3)

where α is the map that sends (v0, v1, v2, v3) to [v0, v1, v2, v3]. Here vi denotes
the image of vi in P(A⊕2), and [v0, v1, v2, v3] denotes the image of (v0, v1, v2, v3)

under the map C4(P(A⊕2))→ B2(A)Q, as in Remark 3.8.2. And β is the map that
sends (v0, v1, v2) to (

v0∧v1
v1∧v2

)
∧

(v0 ∧ v2

v1 ∧ v2

)
.

The next three lemmas imply that the maps defined so far can be extended to a
map φ of the double complexes.

Lemma 3.8.5. The map C6(3)
d ′ // C5(3)

−p // C4(2)
α // B2(A)Q is zero.

Proof. This follows from that −p ◦d ′(v0, v1, v2, v3, v4, v5)= d(v1, v2, v3, v4, v5),
and that this maps to zero in B2(A)Q, by Remark 3.8.2. �

Lemma 3.8.6. The map C5(3)
λ // C5(3)

−p // C4(2)
α // B2(A)Q is zero.

Proof. (See [Goncharov 1995, Lemma 2.18].) Let (v0, . . . , c4) ∈ C5(3). Then
there is a conic Q passing through the images of the five points v0, v1, v2, v3, v4 in
the projective plane. Choosing any isomorphism, we identify Q with P1

A. Let the
images of vi be xi ∈ P1

A under this isomorphism. The composition of the maps in
the statement of the lemma then maps (v0, . . . , v4) in C5(3) to

−

∑
0≤i≤4

[xi , xi+1, . . . , xi+3]

in B2(A)Q, where the indices are modulo 5.

Claim 3.8.7. In B2(A)Q we have

[x1, x2, x3, x4] = sign(σ ) · [xσ(1), xσ(2), xσ(3), xσ(4)] for any σ ∈ S4.

Proof of the claim. Note that since we are working with Q-modules we have
[0, x, 1,∞]=−[0, x/(x−1), 1,∞] by [Suslin 1990, Lemmas 1.2 and 1.5]. Hence

[0, x, 1,∞] =−[x, 0, 1,∞] and [0, x, 1,∞] =−[0, 1/x, 1,∞]

[loc. cit., Lemma 1.2]. Hence [0, x, 1,∞] = −[0, 1, x,∞], and using again that
[0, x, 1,∞] =−[0, x/(x − 1), 1,∞], we have [0, x, 1,∞] =−[0, x,∞, 1].

Therefore the formula in the statement holds for the transpositions (1 2), (2 3),
and (3 4). Since these generate S4, the statement follows. �
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Finally by the claim,∑
0≤i≤4

[xi , xi+1, . . . , xi+3] =
∑

0≤i≤4

(−1)i [x0, . . . , x̂i , . . . , x4]

and the right side is zero in B2(A)Q by Remark 3.8.2. �

Lemma 3.8.8. The map C4(3)
λ // C4(3)

p // C3(2)
β //

∧2 A×
Q

is zero.

Proof. First note that β sends (v0, v1, v2) to(
v0∧v1
v1∧v2

)
∧

(
v0∧v2
v1∧v2

)
=

(
`(v0∧v1)
`(v1∧v2)

)
∧

(
`(v0∧v2)
`(v1∧v2)

)
,

where ` : detA(A⊕2) → A is any surjective A-linear map. Therefore since we
are looking at configurations in general position, the composition β ◦ p maps
(y0, y1, y2, y3) ∈ C4(3) to( y0∧y1∧y2

y0∧y2∧y3

)
∧

( y0∧y1∧y3
y0∧y2∧y3

)
.

This implies the statement by direct computation. �

Therefore φ is a map of double complexes that induces a map H3(D)→ ker(δ)
of the homology of the associated complexes. Combining this with the map

H3(GL3(A),Q)→ H3(D)

in (3.8.1), we obtain a map ρ2 : H3(GL3(A),Q)→ ker(δ).
Therefore applying Sections 3.1–3.7 to (A, I )= (k[ε]n, (ε)) proves this:

Proposition 3.8.9. The composition T := ρ2 ◦ ρ1 defines a natural map

T : HC2(k[ε]n, (ε))(1) ↪→ HC2(k[ε]n, (ε))→ B2(k[ε]n)Q,

whose image lies in ker(δn).

4. Nonvanishing of Li2,n on HC2(k[ε]n, (ε))
(1)

4.1. This section shows that Li2,n is the correct map, as we show that it does not
vanish on HC2(k[ε]n, (ε))(1). First we describe HC2(k[ε]n, (ε))(1) and define some
elements αw in it on which we will evaluate the additive dilogarithm.

4.1.1. Note that HC∗(k[ε]n, (ε)) is a k×-abelian group, where λ ∈ k× acts as the
map induced by the k-algebra automorphism of k[ε]n that sends ε to λ · ε. This
action is compatible with the decomposition (Remark 3.1.2) of

HC2(k[ε]n, (ε))= HC2(k[ε]n, (ε))(1)⊕HC2(k[ε]n, (ε))(2)
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[Cathelineau 1990/91, pages 593–594];

HC2(k[ε]n, (ε))(1) =
⊕

n+1≤w≤2n−1

HC2(k[ε]n, (ε))
(1)
〈w〉,

where each summand is isomorphic to k (loc. cit.); and

HC2(k[ε]n, (ε))(2) =
⊕

1≤w≤n−1

HC2(k[ε]n, (ε))
(2)
〈w〉,

where each summand is isomorphic to �2
k/Q (loc. cit.).

4.1.2. χ(n)= 0 if n is even and χ(n)= 1 if n is odd. For n+1≤w≤ 2n−1, let

αw :=
∑

0≤ j<(2n−1−w)/2

(εn−1− j , εw−n+ j , ε)+ 1
2 ·χ(w) · (ε

(w−1)/2, ε(w−1)/2, ε)

in Cλ
2 (k[ε]n). Since αw is a cycle, as can be checked by direct computation, with

k×-weight w, it defines an element αw ∈ HC2(k[ε]n, (ε))
(1)
〈w〉 by Section 4.1.1.

4.2. Computation of Li2,n on HC2. In this section, we compute Li2,n(T (αw))
(which is the same as Li2,n,w(T (αw))). This we will do in several steps.

4.2.1. From gl3(k[ε]n) to gl2(k[ε]n). Consider the 2-chain (εa, εb, ε)∈Cλ
2 (k[ε]n)

in the Connes complex, where a+ b ≥ n. By the map in Section 3.2, at the chain
complex level, (εa, εb, ε) goes to βa,b := ε

ae12∧ε
be23∧εe31∈C3(gl3(k[ε]n))gl3(Q).

Therefore we need to compute the image of

βw :=
∑

0≤ j<(2n−1−w)/2

βn−1− j,w−n+ j +
1
2χ(w)β(w−1)/2,(w−1)/2

in k. Let γa,b := ε
ae12 ∧ ε

be21 ∧ εe11, and

γw :=
∑

0≤ j<(2n−1−w)/2

γn−1− j,w−n+ j +
1
2χ(w)γ(w−1)/2,(w−1)/2.

We defined T as the composition

HC2(k[ε]n, (ε))(1)→ Prim H3(gl(k[ε]n),Q)gl(Q) ' Prim H3(gl(k[ε]n),Q)

→ H3(gl(k[ε]n),Q)→ H3(GL(k[ε]n),Q)→ ker(δ).

Let T ′ : Prim H3(gl(k[ε]n),Q)gl(Q)→ ker(δ) and T ′′ : H3(gl(k[ε]n),Q)→ ker(δ)
be the obvious compositions.

The following lemma enables us to work in the homology of gl2(k[ε]n) rather
than that of gl3(k[ε]n).

Lemma 4.2.1. We have (Li2,n,w ◦T ′)(βw)= (Li2,n,w ◦T ′)(γw).
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Proof. First note that

d(e13 ∧ ε
ae12 ∧ ε

be21 ∧ εe31)=−βa,b+ γa,b

− εae12 ∧ ε
be21 ∧ εe33− e13 ∧ ε

a+1e32 ∧ ε
be21,

that εae12∧ ε
be21∧ εe33 is a cycle; and that e13∧ ε

a+1e32∧ ε
be21 is a boundary in

C∗(gl(k[ε]n))gl(Q), since this element corresponds to the element (1, εa+1, εb) in
the Connes complex and d(1, εa+1, εb, 1)= (1, εa+1, εb).

Therefore since βw is a cycle, so is γw, and to prove the lemma it suffices to
show that (Li2,n,w ◦T ′)(εae12 ∧ ε

be21 ∧ εe33)= 0 for a+ b ≥ n.
Note that since

d(e12 ∧ ε
ae11 ∧ ε

be21 ∧ εe33)=−ε
ae12 ∧ ε

be21 ∧ εe33

+ εae11 ∧ ε
be11 ∧ εe33− ε

ae11 ∧ ε
be22 ∧ εe33,

it is sufficient to show the vanishing of both

(Li2,n,w ◦T ′)(εae11 ∧ ε
be11 ∧ εe33)= (Li2,n,w ◦T ′′)(εae11 ∧ ε

be11 ∧ εe33),

(Li2,n,w ◦T ′)(εae11 ∧ ε
be22 ∧ εe33)= (Li2,n,w ◦T ′′)(εae11 ∧ ε

be22 ∧ εe33).

The equalities above follow immediately from the fact that εae11 ∧ ε
be11 ∧ εe33

and εae11 ∧ ε
be22 ∧ εe33 are cycles not only in C∗(gl3(k[ε]n),Q)gl3(Q) but also in

C∗(gl3(k[ε]n),Q).
Propositions 2.2.1 and 2.2.2 give that Li2,n,w(x)= (li2,(2n−1,n),w ◦δ2n−1)(x̃) for

x ∈ B2(k[ε]n), where x̃ ∈ B2(k[ε]2n−1) is any lift of x .
Let α̃ ∈ {εae11∧ ε

be11∧ εe33, ε
ae11∧ ε

be22∧ εe33} ⊆ C3(gl(k[ε]2n−1),Q), and
let α the reduction of α̃ to C3(gl(k[ε]n),Q). Then

Li2,n,w(T ′′(α))= (li2,(2n−1,n),w ◦δ2n−1)(T ′′(α̃)).

Here T ′′ denotes the chain map, mapping C3(gl3(k[ε]2n−1),Q) to B2(k[ε]2n−1)Q
and C2(gl3(k[ε]2n−1),Q) to

∧2V2n−1, that induces T ′′. The map T ′′ depends on
certain choices (see the next paragraph).

Recall how T ′′(α̃) is defined in Section 3: Through the antisymmetrization
map αas (Section 3.4) and the exponential map [Loday 1992, Sections 3.5 and
11.3.13], we get a chain map C∗(gl3(k[ε]2n−1),Q)◦→C∗(Û (GL3(k[ε]2n−1)),Q).
In fact, it is immediately seen that the image of α̃ under these maps lies inside
the image of C∗(U (GL3(k[ε]2n−1)),Q) in C∗(Û (GL3(k[ε]2n−1)),Q). To get from
C∗(U (GL3(k[ε]2n−1)),Q) to C∗(GL3(k[ε]2n−1),Q)we pass via the map described
in Section 3.6. Bypassing the need for stabilization since we are already in GL3,
and using that D̃ is an acyclic complex of GL3(k[ε]2n−1) modules, we get a (non-
canonical) map from C∗(GL3(k[ε]2n−1),Q) to D̃. Finally taking GL3(k[ε]2n−1)
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coinvariants, we end up in the complex D, and using the map of double complexes
(induced by (3.8.2)), we pass from D to the complex

γk[ε]2n−1(2)Q : B2(k[ε]2n−1)Q
δ2n−1 //

∧2V2n−1.

Since T ′′ is a map of complexes, δ2n−1(T ′′(α̃)) = T ′′(d(α̃)) = 0, as d(α̃) = 0 in
C∗(gl3(k[ε]2n−1),Q). This implies that

Li2,n,w(T ′′(α))= li2,(2n−1,n),w(δ2n−1(T ′′(α̃)))= 0. �

The next lemma will help us to reduce the computation to gl2:

Lemma 4.2.2. The chain γw as defined above is a cycle in C3(gl2(k[ε]n),Q)gl2(Q)

and hence defines an element in H3(gl2(k[ε]n),Q)gl2(Q).

Proof. We already know that γw defines a cycle in C3(gl3(k[ε]n),Q)gl3(Q). Since
Ci (glm(k[ε]n),Q)glm(Q) = (

∧iglm(k[ε]n))glm(Q) (see Section 3.2.2) and

(
∧iglm(k[ε]n))glm(Q) = (

∧igli (k[ε]n))gli (Q) for m ≥ i

[Loday 1992, Corollary 9.2.8 and (10.2.10.1)], we have

d(γw)= 0 ∈ C2(gl3(k[ε]n),Q)gl3(Q) = C2(gl2(k[ε]n),Q)gl2(Q). �

4.2.2. From C∗(gl2(k[ε]2n−1),Q)gl2(Q) to C∗(gl2(k[ε]2n−1),Q). In order to con-
tinue with the computation of Li2,n,w(T ′(γw)), we need to compute the image of
γw in C3(gl2(k[ε]n,Q). This would be a very long computation, but in fact we will
see in this section that we can get away with much less. The following proposition
will be crucial.

Proposition 4.2.3. For any Q-algebra A, let gln(Q) act on gln(A) by its adjoint ac-
tion. Let C ′

∗
(gln(A),Q)gln(Q) be the subcomplex of C∗(gln(A),Q) on which gln(Q)

acts trivially. Then the canonical map

C ′
∗
(gln(A),Q)gln(Q)→ C∗(gln(A),Q)→ C∗(gln(A),Q)gln(Q)

is an isomorphism and there is a canonical direct sum of complexes

C∗(gln(A),Q)= C ′
∗
(gln(A),Q)gln(Q)⊕ L∗, (4.2.1)

with gln(Q)-action, such that L∗ is acyclic.

Proof. This is [Loday 1992, Proposition 10.1.8], taking g= gln(A) and h= gln(Q),
and noting the reductivity of gln(Q) [loc. cit., 10.2.9]. �

To continue, we need to compute the image γ′w of γw in H3(gl2(k[ε]n),Q).
Then we should lift γ′w to a chain γ̃′w in C ′3(gl2(k[ε]2n−1),Q)gl2(Q) and continue
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just as in the last part of the proof of Lemma 4.2.1. Namely,

Li2,n,w(T ′(γw))= Li2,n,w(T ′′(γ̃′w))= li2,(2n−1,n),w(δ2n−1(T ′′(γ̃′w)))

= li2,(2n−1,n),w(T ′′(d(γ̃′w))).

Let γ̃∗w be any chain in C3(gl2(k[ε]2n−1),Q) that has a cycle for its image in
C3(gl2(k[ε]n),Q)gl2(Q) (under the canonical maps) and that lifts γw. Then, by
Proposition 4.2.3, the first component γ̃∗(1)w of γ̃∗w under the decomposition in
(4.2.1) is a lift of the element γ′w. Therefore we can choose γ̃′w := γ̃

∗(1)
w , and

to continue we need to compute d(γ̃∗(1)w )= d(γ̃∗w)
(1).

For the rest of the computation, we will let γ̃∗w := γ̃w, where

γ̃w :=
∑

0≤ j<(2n−1−w)/2

γ̃n−1− j,w−n+ j +
1
2χ(w)γ̃(w−1)/2,(w−1)/2,

γ̃a,b := ε
ae12 ∧ ε

be21 ∧ εe11.

Combining the above we have

Li2,n,w(T ′(γw))= li2,(2n−1,n),w(T ′′(d(γ̃w)
(1))). (4.2.2)

Next we will compute d(γ̃a,b)
(1). For any Q-algebra A there is a canonical

isomorphism for i ≥ n given by

Cn(gli (A),Q)gli (Q) = (
∧ngli (A))gli (Q)→ (Q[Sn]⊗ A⊗n)Sn , (4.2.3)

where Sn acts on Q[Sn] by conjugation and on A⊗n by permuting the factors and
multiplying with sign [Loday 1992, 10.2.10.1].

Letting

0x,y := xe12 ∧ ye21+ xe21 ∧ ye12+
1
2 x(e22− e11)∧ y(e22− e11) for x, y ∈ A,

we see by direct computation that 0x,y ∈ C ′2(gl2(A),Q)gl2(Q).
Under the map (4.2.3),

0x,y 7→ (3 · τ)⊗ (x ⊗ y), x(e11− e22)∧ ye11 7→ (1 · τ)⊗ (x ⊗ y),

xe21 ∧ ye12 7→ (1 · τ)⊗ (x ⊗ y),

xe12 ∧ ye21 7→ (1 · τ)⊗ (x ⊗ y),

where S2 = {id, τ }. Therefore, using Proposition 4.2.3, we have

(x(e11− e22)∧ ye11)
(1)
= (xe21 ∧ ye12)

(1)
= (xe12 ∧ ye21)

(1)
=

1
30x,y .

Since d(γ̃a,b)= ε
a+b(e11− e22)∧ εe11− ε

be21∧ ε
a+1e12− ε

ae12∧ ε
b+1e21, we

have
d(γ̃a,b)

(1)
=

1
3(0εa+b,ε −0εb,εa+1 −0εa,εb+1). (4.2.4)
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4.2.3. Fixing a choice for T ′′. We need to fix a choice for the restriction of T ′′ to
C∗(gl2(k[ε]2n−1),Q). So, recalling the last part of the proof of Lemma 4.2.1, we
need to fix the map from C∗(GL2(k[ε]2n−1),Q)→ D̃ → D → γk[ε]2n−1(2)Q, in
degree 2.

Fixing v1, v2, v3 any three vectors in k[ε]⊕2
2n−1 in general position, we define a

map that sends (g1, g2, g3) ∈ C2(GL2(k[ε]2n−1),Q) to

(w, g1v1, g2v2, g3v3)− (w, g1v1, g2v2, g2v3)

− (w, g1v1, g1v2, g3v3)+ (w, g1v1, g1v2, g2v3)

in C̃4(k[ε]⊕3
2n−1)= C̃4(3)⊆ C̃4(3)⊕ C̃3(3), where we view

k[ε]⊕2
2n−1 = {(a1, a2, a3) ∈ k[ε]⊕3

2n−1 | a3 = 0},

and we let w= (0, 0, 1). It is seen without difficulty that this map can be extended
to a map of complexes C∗(GL2(k[ε]2n−1),Q)→ D̃.

Composing with the remaining map given in (3.8.2) this gives a map that sends
(g1, g2, g3) to

β((g1v1, g2v2, g3v3)−(g1v1, g2v2, g2v3)−(g1v1, g1v2, g3v3)+(g1v1, g1v2, g2v3))

in
∧2V2n−1, where β is the map in (3.8.3). From now on we fix v1 := (1, 1),

v2 := (0, 1) and v3 := (1, 0) and denote the resulting map by T ′′.

4.2.4. Computing li2,(2n−1,n),w(T ′′(0ε p,εq )). From (4.2.2) and (4.2.4) we realize
that we need to compute li2,(2n−1,n),w(T ′′(0ε p,εq )) for p+ q =w. We will do this
in a few steps.

Lemma 4.2.4. For i = 1, 2 and p+ q = w, with p, q ≥ 1, we have

li2,(2n−1,n),w(T ′′(ε pei i ∧ ε
qei i ))= 0.

Proof. The element ε pei i ∧ ε
qei i maps to

ε pei i ⊗ ε
qei i − ε

qei i ⊗ ε
pei i ∈ C2(U(gl2(k[ε]2n−1)),Q).

Since εx ei i = log(1− (1− exp(εx ei i ))) = −
∑

1≤k(1− exp(εx ei i ))
k/k for x ≥ 1,

we see that ε pei i ⊗ ε
qei i is a Q-linear combination of terms of the form

exp(εsei i )
u
⊗ exp(εt ei i )

v.

Let g1 := exp(εsei i )
u and g2 := exp(εt ei i )

v. Then g1 ⊗ g2 maps to (1, g1, g1g2),
which maps to

(v1, g1v2, g1g2v3)− (v1, g1v2, g1v3)− (v1, v2, g1g2v3)+ (v1, v2, g1v3). (4.2.5)

Since, depending on i , g1(v2)= v2 or g1(v3)= g1g2(v3)= v3, we see that the last
expression is 0. �
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Lemma 4.2.5. The value of li2,(2n−1,n),w on the image of the element ε pei j ⊗ε
qekl

in
∧2V2n−1, under the chain map that we fixed in Section 4.2.3, is 0 if p+ q 6= w

and p, q ≥ 1.

Proof. By Proposition 2.1.2 to compute the value of li2,(2n−1,n),w on the image of
ε pei j ⊗ ε

qekl in
∧2V2n−1, we first need to project that image to Sk(2n− 1, n)〈w〉.

But for λ ∈ Q, replacing ε with λε multiplies ε pei j ⊗ ε
qekl by λp+q , whereas the

projection of its image to Sk(2n − 1, n)〈w〉 gets multiplied by λw. Therefore this
projection is 0. Hence the statement in the lemma. �

Lemma 4.2.6. For p+ q = w with p, q ≥ 1, we have

li2,(2n−1,n),w(T ′′(ε pe22 ∧ ε
qe11))= li2,(2n−1,n),w((1+ εq)∧ (1+ ε p)).

Proof. The expression ε pe22 ∧ ε
qe11 maps to

ε pe22⊗ ε
qe11− ε

qe11⊗ ε
pe22. (4.2.6)

Both ε pei i ⊗ ε
qe j j and exp(ε pei i )⊗ exp(εqe j j )− exp(ε pei i )⊗1−1⊗ exp(εqe j j )

have the same k×-weight w component, and therefore by Lemma 4.2.5 have the
same image. Note that terms of the form 1⊗ g and g ⊗ 1 map to 0, because of
the computation in (4.2.5). Hence the left side of the expression in the lemma is
equal to the image of exp(ε pe22)⊗ exp(εqe11)− exp(εqe11)⊗ exp(ε pe22). Since
exp(εqe11)v2=v2, using the expression (4.2.5) we see that exp(εqe11)⊗exp(ε pe22)

maps to 0. Again using (4.2.5) and the definition of β and li2,(2n−1,n),w, we see
that exp(ε pe22)⊗ exp(εqe11) maps to li2,(2n−1,n),w((1+ εq)∧ (1+ ε p)). �

Lemma 4.2.7. For p+ q = w with p, q ≥ 1, we have

li2,(2n−1,n),w(T ′′(ε pe12 ∧ ε
qe21))= li2,(2n−1,n),w((1− ε p)∧ (1− εq)).

Proof. Exactly as in the proof of Lemma 4.2.6, we see that the left side of the
expression above is equal to the image of

exp(ε pe12)⊗ exp(εqe21)− exp(εqe21)⊗ exp(ε pe12).

As exp(εqe21)(v2)= v2, we see, using (4.2.5), that exp(εqe21)⊗ exp(ε pe12) maps
to 0. Finally using (4.2.5), and the definition of β and li2,(2n−1,n),w we see that
exp(ε pe12)⊗ exp(εqe21) maps to li2,(2n−1,n),w((1− ε p)∧ (1− εq)). �

Lemma 4.2.8. For p+ q = w with p, q ≥ 1,

li2,(2n−1,n),w(T ′′(0ε p,εq ))= 3 li2,(2n−1,n),w((1− ε p)∧ (1− εq)).

Proof. This follows from Lemmas 4.2.4, 4.2.6, and 4.2.7, together with the fact,
which is immediate from the definition of li2,(2n−1,n),w, that

li2,(2n−1,n),w((1− ε p)∧ (1− εq))= li2,(2n−1,n),w((1+ ε p)∧ (1+ εq)). �
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Let [| · |] denote the greatest integer function.

Theorem 4.2.9. With the notation as in Section 4.1.2,

Li2,n(T (αw))=
{
−([| 12(2n− 1−w)|] +w− n+ 1+ 1

2χ(w)) if w 6= 2n− 1,
−

1
2(2n− 1) if w = 2n− 1.

Proof. Since Li2,n(T (αw))= Li2,n,w(T ′(βw)), using Lemma 4.2.1, (4.2.2), (4.2.4)
we see that Li2,n(T (αw))= 1

2 li2,(2n−1,n),w ◦T ′′ evaluated on∑
0≤ j<(2n−1−w)/2

(0εw−1,ε −0εw−n+ j ,εn− j −0εn−1− j ,εw−n+ j+1)

+
1
2χ(w)(0εw−1,ε − 20ε(w−1)/2,ε(w+1)/2).

Using Lemma 4.2.8 and the definition of li2,(2n−1,n),w we see that if w 6= 2n−1,
then the contribution from j = 0 is −(w− n + 1); the contribution from each of
the terms where 0< j is −1; the last term contributes − 1

2χ(w).
In the case w = 2n − 1, there is only one contribution, coming from the last

term, and this is 1
2χ(2n− 1)(−1− 2(n− 1))=− 1

2(2n− 1). �

4.3. Proof of Theorem 1.3.2. In order to prove this, by Goodwillie’s theorem
(Theorem 3.1.1), Remark 3.1.2 and Sections 4.1.1 and 4.1.2, we need only show

Li2,n,w : (k ')HC2(k[ε]n, (ε))
(1)
〈w〉→ k

is an isomorphism. We know that this map is nonzero by Theorem 4.2.9, and
replacing ε by λε has the effect of multiplication by λw, using the vector space
structures on both sides [Hesselholt 2005, Proposition 8.1]. This immediately im-
plies the theorem when k is algebraically closed. In the general case, we just need
to use Theorem 1.3.2 for k, and the equivariance of Li2,n,w with respect to Gal(k/k)
and take galois invariants on both sides.

5. The complex γk[ε]n(2)Q

5.1. To compute the kernel of δn in Theorem 1.3.1, we will need the following
proposition. Following Suslin’s notation, let Tm(A)⊆GLm(A) denote the subgroup
of diagonal matrices.

Proposition 5.1.1. The map ρ2 : H3(GL3(k[ε]n),Q)→ ker(δn) from Section 3.8
has the property that

ρ2(H3(GL2(k[ε]n),Q)= ker(δn) and H3(T3(k[ε]n),Q)⊆ ker(ρ2).
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Proof. The first statement is proved in the case of fields in [Suslin 1990, Section
2]. The same proof works for k[ε]n , if in the first line of [Suslin 1990, page 222],
we use [Guin 1989, Theorem 2.2.2] to show that

H∗(T2(k[ε]n),Q)= H∗(UT2(k[ε]n),Q),

where UT2(A) denotes upper triangular matrices in GL2(A) (this is denoted by
B2(A) in [Suslin 1990]). We note that there is a slight difference between the
construction of our map ρ2 and the corresponding map of Suslin. Namely, Suslin
uses configurations in the projective space rather than the affine space, but the
resulting maps H3(GL3(k[ε]n),Q)→ ker(δn) are the same.

The proof of [Suslin 1990, Proposition 3.1] works for k[ε]n as well, proving the
second statement. �

Proposition 5.1.2. The map T :HC2(k[ε]n, (ε))(1)→ker(δn)
◦ (see Notation 2.0.1)

defined in Proposition 3.8.9 is surjective.

Proof. Because of Proposition 5.1.1, Theorem 3.1.1 and Remark 3.1.2, it suffices
to show that the image of K3(k[ε]n)

(2)
Q

in H3(GL3(k[ε]n),Q)◦/H3(T3(k[ε]n),Q)◦,
under the composition of the maps

K3(k[ε]n)
(2)
Q
→ K3(k[ε]n)Q→ H3(GL(k[ε]n),Q)' H3(GL3(k[ε]n),Q)

→ H3(GL3(k[ε]n),Q)◦/H3(T3(k[ε]n),Q)◦,

contains that of H3(GL2(k[ε]n),Q) in H3(GL3(k[ε]n),Q)◦/H3(T3(k[ε]n),Q)◦.
Let

∧
V denote the graded symmetric algebra over a graded vector space V .

By the Milnor–Moore theorem, H∗(GL(A),Q) '
∧
((K∗(A)Q)>0) [Loday 1992,

Corollary 11.2.12]; by the stability theorem,

H3(GL3(k[ε]n),Q)= H3(GL(k[ε]n),Q)

[Guin 1989, Section 2]. Combining these, we obtain

H3(GL3(k[ε]n),Q)=
∧3K1(k[ε]n)Q⊕(K1(k[ε]n)Q⊗K2(k[ε]n)Q)⊕K3(k[ε]n)Q.

The first two components of the decomposition lie inside

H1(GL1(k[ε]n),Q)⊗ H2(GL2(k[ε]n),Q)⊆ H3(T3(k[ε]n),Q),

(by the proof of [Suslin 1990, Lemma 4.2]; [Guin 1989]). Therefore it suffices to
prove that the image of K3(k[ε]n)

(2)
Q

under the canonical projection

H3(GL3(k[ε]n),Q)→ Prim H3(GL3(k[ε]n),Q)→ (Prim H3(GL3(k[ε]n),Q))◦

contains the image of H3(GL2(k[ε]n),Q).
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By the construction of ρ1 in Sections 3.2–3.7 and Remark 3.1.2, the last trans-
lates to showing that the image im(H3(gl2(k[ε]n),Q)) of H3(gl2(k[ε]n),Q) in

(Prim H3(gl3(k[ε]n),Q))◦ = HC2(k[ε]n)◦ = HC2(k[ε]n)◦(1)⊕HC2(k[ε]n)◦(2)

is contained in HC2(k[ε]n)◦(1).
First note that αw for n + 1 ≤ w ≤ 2n − 1 form a basis for HC2(k[ε]n)◦(1)

by Theorem 4.2.9 and Section 4.1.1. By Lemmas 4.2.1 and 4.2.2 and Proposi-
tion 4.2.3 and the discussion following it, the image of αw in H3(gl3(k[ε]n))◦ is
equal to that of an element γ′w ∈ H3(gl2(k[ε]n))◦. This implies immediately that
HC2(k[ε]n)◦(1) ⊆ im(H3(gl2(k[ε]n),Q)).

On the other hand [Loday 1992, Theorems 10.3.4 and 4.6.8] and [Loday and
Quillen 1984, Remark 6.10] imply that there is a natural map

(Prim H3(gl3(k[ε]n),Q))◦/ im(H3(gl2(k[ε]n),Q))→ HC2(k[ε]n)◦(2)

which induces an automorphism of HC2(k[ε]n)◦(2) when precomposed with

HC2(k[ε]n)◦(2)→ (Prim H3(gl3(k[ε]n),Q))◦/ im(H3(gl2(k[ε]n),Q)).

These imply that im(H3(gl2(k[ε]n),Q))= HC2(k[ε]n)◦(1). �

The corollary below computes the infinitesimal part of the first cohomology of
the complex γk[ε]n (2)Q. Note that H 1(γk[ε]n (2)Q)

◦
= ker(δn)

◦.

Corollary 5.1.3. The maps

T : HC2(k[ε]n, (ε))(1)→ ker(δn)
◦ and Li2,n : ker(δn)

◦
→ k⊕n−1

are isomorphisms.

Proof. This follows from the fact that T is surjective (Proposition 5.1.2) and that
Li2,n ◦T is an isomorphism (Theorem 1.3.2). �

Proposition 5.1.4. There are natural isomorphisms

H 2(γk[ε]n (2)Q)
◦
' HC1(k[ε]n)◦ = HC1(k[ε]n))◦(1) '

⊕
1≤i≤n−1

�1
k .

Proof. Note that by the definition of Milnor K-theory [Loday 1992, 11.1.16]

H 2(γk[ε]n (2)Q)= K M
2 (k[ε]n). (5.1.1)

Since
K M

2 (k[ε]n)= K2(k[ε]n) (5.1.2)

[Guin 1989, Section 4.2], we have, by [Loday 1992, Proposition 2.1.14],

K2(k[ε]n)◦ = HC1(k[ε]n)◦ =�1
k[ε]n/(�

1
k + d(k[ε]n))'

⊕
1≤i≤n−1

�1
k .
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Finally HC1(k[ε]n)=HC1(k[ε]n)(1) follows from [loc. cit., Theorem 4.6.7]. �

5.2. Proof of Theorem 1.3.1. Over k this is the main theorem in [Suslin 1990].
However, note that there the indecomposable quotient K3(k)ind,Q of K3(k)Q ap-
pears instead of K3(k)

(2)
Q

. To see that these two groups are canonically isomorphic,
see [Lichtenbaum 1987, page 207]. Therefore we only need to compute the co-
homology of the infinitesimal part of the complex γk[ε]n (2)Q. And this is done in
Corollary 5.1.3 and (5.1.1) and (5.1.2).

6. Comparison with the additive dilogarithm of Bloch and Esnault

In this section we compare the complex γk[ε]n (2)
◦

Q
to the complex TnQ(2)(k) of

Bloch and Esnault.

6.1. The reduced complex. To make the comparison we first define a subcomplex
of γk[ε]n (2)

◦

Q
: Define γk[ε]n (2)

′

Q
to be the subcomplex of γk[ε]n (2)

◦

Q
whose degree

2 term is
k×⊗ V ◦n ⊆ (

∧2Vn)
◦

and whose degree 1 term is the inverse image δ−1
n (k×⊗V ◦n )⊆ B2(k[ε]n)◦Q. Denote

this last group by B2(k[ε]n)′Q. Then we have

γk[ε]n (2)
′

Q : B2(k[ε]n)′Q→ k×⊗ V ◦n .

We need a lemma to compute the cohomology of this reduced complex.

Lemma 6.1.1. The natural map (k×)⊗(i−1)
⊗ k[ε]×n → K M

i (k[ε]n) is a surjection.

Proof. By the definition of Milnor K-theory, it is clear that it suffices to prove the
lemma for i = 2. In this case the lemma follows from the isomorphism

K2(k[ε]n)' K2(k)⊕
�1

k[ε]n

�1
k + d(k[ε]n)

,

[Graham 1973, Theorem 3] and the observation that k×⊗ k[ε]×n surjects onto the
expression on the right, under this isomorphism. Note that K M

2 (k[ε]n)= K2(k[ε]n)
[Guin 1989]. �

Proposition 6.1.2. The inclusion γk[ε]n (2)
′

Q
→ γk[ε]n (2)

◦

Q
is a quasiisomorphism.

Proof. The only thing that needs justification is the surjectivity of the induced
map on the degree 2 cohomology groups or equivalently the surjectivity of the
composition

k×
Q
⊗Q V ◦n → (

∧2Vn)
◦
→�1

k[ε]n/(�
1
k + d(k[ε]n)),

where the last map is the one in the proof of Proposition 5.1.4. But this is exactly
Lemma 6.1.1. �
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6.2. The construction of Bloch and Esnault with higher modulus. For the rest of
the section we assume that k is algebraically closed. In [2003], Bloch and Esnault
construct the additive weight 2 complex with modulus 2; their proof goes through
to give a construction for all moduli n ≥ 2. We describe the properties of this
complex below. The proofs and the details of the construction can be found in
[Bloch and Esnault 2003, Section 2].

Following their notation, we let R be the local ring of 0 in A1
k . The localization

(away from 0) sequence for the pair (k[t], (tn)) splits into the exact sequences

K2(k[t], (tn))→ K2(R, (tn))
∂ //

⊕
x∈k× K1(k)→ K1(k[t], (tn))→ 0

and
0→ K1(R, (tn))

∂ //
⊕

x∈k× K0(k)→ K0(k[t], (tn))→ 0,

since K0(R, (tn)) = 0 and the map K1(R, (tn))→
⊕

x∈k× K0(k) is injective, as
K1(R, (tn))= 1+ (tn) and the map is given by the divisor of the function [Licht-
enbaum 1987, Appendix]. This description also gives a canonical identification

K0(k[t], (tn))= (k[t]×n )
◦.

Using the product structure on K-theory, let

Tn B2(k) := (K2(R, (tn))/ im(K1(k) · K1(R, (tn)))Q,

and let Tn H 1
M(k, 2) be the image of K2(k[t], (tn))Q in Tn B2(k). Then the above

exact sequences give the exact sequence

0→ Tn H 1
M(k, 2)→ Tn B2(k)→ k×⊗ V ◦n → K1(k[t], (tn))Q→ 0. (6.2.1)

We let TnQ(2)(k) : Tn B2(k)→ k×⊗ V ◦n denote the middle part of this sequence.
This is the exact generalization to higher moduli of the complex considered by
Bloch and Esnault [2003] (the complex described in Section 1.2).

We will try to express the cohomology groups of TnQ(2)(k) in terms of the
groups K∗(k[t]n, (t))Q.

First note that the long exact sequence for the pair (k[t], (tn)), together with the
homotopy invariance of K-theory, gives canonical isomorphisms

K∗+1(k[t]n, (t))' K∗(k[t], (tn)),

and therefore there is a surjection( K3(k[t]n, (t))
K1(k)·K2(k[t]n, (t))

)
Q
'

( K2(k[t], (t))
K1(k)·K1(k[t], (t))

)
Q
→ Tn H 1

M(k, 2). (6.2.2)

Lemma 6.2.1. There is a canonical surjection K3(k[t]n, (t))
(2)
Q
→ Tn H 1

M(k, 2).
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Proof. By [Lichtenbaum 1987, page 191],

K3(k[t]n)Q = K3(k[t]n)
(2)
Q
⊕ K M

3 (k[t]n)Q,

and by Lemma 6.1.1, the image of K1(k)⊗ K2(k[t]n) in K3(k[t]n) is K M
3 (k[t]n).

Hence that (6.2.2) is a surjection proves the lemma. �

Let

ρ : Tn B2(k)=
( K2(R, (tn))

K1(k)·K1(R, (tn))

)
Q
→

( K2(k[t]2n−1, (tn))
K1(k)·K1(k[t]2n−1, (tn))

)
Q
=: N

denote the map induced by reduction modulo (t2n−1). We will prove that ρ behaves
like an additive dilogarithm in this setting.

Proposition 6.2.2. The composition K3(k[t]n, (t))
(2)
Q
→Tn H 1

M(k, 2)→ N induced
by the inclusion

K3(k[t]n, (t))
(2)
Q
→ K3(k[t]n, (t))Q,

(6.2.2), and ρ is an isomorphism.

Proof. This map is induced by the long exact sequence of the pair (k[t]2n−1, (tn)):

· · · → K3(k[t]n, (t))→ K2(k[t]2n−1, (tn))→ K2(k[t]2n−1, (t))→ · · · .

By Goodwillie’s theorem, Remark 3.1.2 and Section 4.1.1, the map

K3(k[t]2n−1, (t))
(2)
Q
→ K3(k[t]n, (t))

(2)
Q

is equivalent to a map k⊕(2n−2)
→ k⊕(n−1), where the k×-weights in the source

range in [2n, 4n−3], whereas in the target they range in [n, 2n−1]. Therefore this
last map is zero and hence K3(k[t]n, (t))

(2)
Q
→ K2(k[t]2n−1, (tn))Q is injective.

By [Stienstra 1981, Theorem 1.11], K2(k[t]2n−1, (tn))Q' k⊕(n−1)
⊕(�1

k)
⊕(n−1),

and K1(k)⊗ K1(k[t]2n−1, (tn))→ K2(k[t]2n−1, (tn))Q has image (�1
k)
⊕(n−1). �

Corollary 6.2.3. There are canonical isomorphisms

H 1(TnQ(2)(k))' K3(k[t]n, (t))
(2)
Q
' HC2(k[t]n, (t))(1),

H 2(TnQ(2)(k))' K2(k[t]n, (t))Q ' HC1(k[t]n, (t)).

Proof. The first isomorphism is an immediate consequence of Lemma 6.2.1 and
Proposition 6.2.2, and the second is a consequence of the isomorphism

K2(k[t]n, (t))' K1(k[t], (tn)),

which follows from the long exact sequence for (k[t], (tn)) and the homotopy in-
variance of K -theory. �
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Proof of Corollary 1.4.1. First we note that the degree 2 terms of TnQ(2)(k)
and γk[ε]n (2)

′

Q
are both equal to k× ⊗ V ◦n and that the cohomology groups of

the two complexes are canonically isomorphic (Theorem 1.3.1, Proposition 6.2.2,
and Corollary 6.2.3). In both cases the projection from k× ⊗ V ◦n to the degree 2
cohomology is induced by the composition

k×⊗ V ◦n → K M
2 (k[ε]n)→�1

k[ε]n/(�
1
k + d(k[ε]n))

(see the proof of Lemma 6.1.1). Therefore the images of Tn B2(k) and of B2(k[ε]n)′Q
in k×⊗ V ◦n are the same. The exact sequence (6.2.1) and Proposition 6.2.2 give a
splitting of Tn B2(k); and Theorems 1.3.1 and 1.3.2 give a splitting of B2(k[ε]n)′Q.
This proves the corollary. �

We would like to emphasize that the isomorphism given in the statement of the
corollary uses the additive dilogarithm in both constructions and thus should not
be considered as natural.
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