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Frobenius splittings of toric varieties
Sam Payne

We discuss a characteristic free version of Frobenius splittings for toric varieties
and give a polyhedral criterion for a toric variety to be diagonally split. We apply
this criterion to show that section rings of nef line bundles on diagonally split
toric varieties are normally presented and Koszul, and that Schubert varieties are
not diagonally split in general.

1. Introduction

Fix an integer q greater than one. Let T = Spec Z[M] be the torus with character
lattice M , and let N be the dual lattice. Let 6 be a complete fan in NR, with
X = X (6) the associated toric variety over Z. Multiplication by q preserves the
fan and maps the lattice N into itself, and therefore gives an endomorphism

F : X→ X.

Each T -orbit in X is a torus that is preserved by F , which acts by taking a point
t to t q . For example, if X is projective space, then F is given in homogeneous
coordinates by

[x0 : · · · : xn] 7→ [x
q
0 : · · · : x

q
n ].

If q is prime and k is the field with q elements, then the restriction of F to the
variety Xk is the absolute Frobenius morphism. Pulling back functions by F gives
a natural inclusion of OX -algebras F∗ : OX ↪→ F∗OX .

Definition 1.1. A splitting of X is an OX -module map π : F∗OX → OX such that
the composition π ◦ F∗ is the identity on OX .

Standard results from the theory of Frobenius splittings generalize in a straightfor-
ward way to these splittings of toric varieties. See Section 2 for details.

If Y is a subvariety of X cut out by an ideal sheaf IY and π(F∗ IY ) is contained
in IY then we say that π is compatible with Y . If Y is a toric variety embedded
equivariantly in X , the closure of a subtorus of an orbit in X , then a splitting
compatible with Y induces a splitting of Y . We say that X is diagonally split if

MSC2000: primary 14M25; secondary 13A35, 14M15, 16S37.
Keywords: Frobenius splitting, toric variety, diagonal splitting, Koszul.
Supported by the Clay Mathematics Institute.
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there is a splitting of X×X that is compatible with the diagonal, for some q. Such
splittings are of particular interest; by classic arguments of Mehta, Ramanan and
Ramanathan, if X is diagonally split then every ample line bundle on X is very
ample and defines a projectively normal embedding.

Our main result is a polyhedral criterion for a toric variety to be diagonally split.
Let vρ denote the primitive generator of a ray, or one-dimensional cone, in 6. Let
MR = M ⊗Z R, and let the diagonal splitting polytope FX be defined by

FX = {u ∈ MR | −1≤ 〈u, vρ〉 ≤ 1 for all ρ ∈6}.

We write 1
q M for the subgroup of MR consisting of fractional lattice points u such

that qu is in M .

Theorem 1.2. The toric variety X is diagonally split if and only if the interior of
FX contains representatives of every equivalence class in 1

q M/M.

While the existence of a compatible splitting of the diagonal in X × X implies
that section rings of ample line bundles on X are generated in degree one, com-
patible splittings of large semidiagonals in products of multiple copies of X give
further information on these section rings. For example, if the union of 1× X and
X×1 is compatibly split in X× X× X , where 1 is the diagonal in X× X , then it
follows from standard arguments that the section ring of each ample line bundle on
X is normally presented, that is, generated in degree one with relations generated
in degree two. For fixed n greater than one, let 1i be the large semidiagonal

1i = X i−1
×1× Xn−i−1,

for 1≤ i < n.

Theorem 1.3. Let X be a diagonally split toric variety. Then 11 ∪ · · · ∪1n−1 is
compatibly split in Xn .

In particular, if X is diagonally split then the union of 1× X and X ×1 is com-
patibly split in X × X × X , so the section ring of any ample line bundle on X is
normally presented. Analogous results hold for any finite collection of nef line
bundles on X , as we now discuss.

For line bundles L1, . . . , Lr on X , let R(L1, . . . , Lr ) be the section ring

R(L1, . . . , Lr )=
⊕

(α1,...,αr )∈Nr

H 0(X, Lα1
1 ⊗ · · ·⊗ Lαr

r ).

We consider R(L1, . . . , Lr ) as a graded ring, where the degree of

H 0(X, Lα1
1 ⊗ · · ·⊗ Lαr

r )

is α1+ · · · + αr . In particular, the degree zero part of R(L1, . . . , Lr ) is Z. Recall
that a graded ring R is Koszul if the ideal generated by elements of positive degree
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has a linear resolution as an R-module. See [Polishchuk and Positselski 2005] for
background on Koszul rings and further details.

Theorem 1.4. Let X be a complete, diagonally split toric variety, and let

L1, . . . , Lr

be nef line bundles on X. Then the section ring R(L1, . . . , Lr ) is normally pre-
sented and Koszul.

In particular, if X is diagonally split then the section ring of any ample line bundle
on X is normally presented and Koszul. Well-known open problems ask whether
every ample line bundle on a smooth projective toric variety gives a projectively
normal embedding [Oda 1997] and, if so, whether its section ring is normally
presented [Sturmfels 1996, Conjecture 13.19]. When the section ring is normally
presented, it is natural to ask whether it is also Koszul. Addressing these questions
and their analogues for singular toric varieties in as many cases as possible is one
of the main motivations behind this work.

Remark 1.5. The section ring R(L1, . . . , Lr ) associated to a finite collection of
line bundles is canonically identified with the section ring of the line bundle O(1)
on the projectivized vector bundle P(L1⊕· · ·⊕Lr ), which is also a toric variety. If
L1, . . . , Lr are nef and correspond to polytopes P1, . . . , Pr , then the Cayley sum
is the polytope associated to O(1). Cayley sums have also appeared prominently in
recent work related to boundedness questions in toric mirror symmetry [Batyrev
and Nill 2008; 2007; Haase et al. 2008].

Remark 1.6. Frobenius morphisms and their lifts to characteristic zero have been
used powerfully in several other contexts related to the geometry of toric varieties,
including by Buch, Lauritzen, Mehta and Thomsen [1997] to prove Bott vanishing
and degeneration of the Hodge to de Rham spectral sequence, by Totaro [199?] to
give a splitting of the weight filtration on Borel–Moore homology, by Smith [2000]
to prove global F-regularity, by Brylinski and Zhang [2003] to prove degeneration
of a spectral sequence computing equivariant cohomology with rational coeffi-
cients, and by Fujino [2007] to prove vanishing theorems for vector bundles and
reflexive sheaves. Frobenius splittings have also played a role in unsuccessful
attempts to show that section rings of ample line bundles on smooth toric varieties
are normally presented [Bøgvad 1995]. We hope that this work will help revive the
insight of Bøgvad and others into the potential usefulness of Frobenius splittings
as a tool for understanding ample line bundles on toric varieties.

We conclude the introduction with an example illustrating Theorem 1.2 for
Hirzebruch surfaces. As mentioned earlier, the proofs that section rings of ample
line bundles on Schubert varieties are normally presented and Koszul via Frobenius
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splittings involved compatible splittings of semidiagonals in (G/B)n . It has been
an open question for over twenty years whether Schubert varieties themselves are
diagonally split (see [Ramanathan 1987, Remark 3.6] and [Brion and Kumar 2005,
p. 81]). The following example gives a negative answer: the Hirzebruch surface
F3 is a Schubert variety in the G2-flag variety, and F3 is not diagonally split.

Remark 1.7. To see that F3 occurs as a Schubert variety in the G2-flag variety,
first note that for any G, G/B is a P1-bundle over G/P , where P is a minimal
parabolic subgroup. If w = s1s2 is an element of length two in the Weyl group of
G, and P is the minimal parabolic corresponding to s1, then Xw is a P1-bundle
over its image, which is a rational curve in G/P . In particular, Xw is a Hirzebruch
surface. Then Xs1 is a rational curve in Xw with self-intersection 〈α2, α

∨

1 〉, where
αi is the simple root corresponding to si , and α∨i = 2αi/〈αi , αi 〉. See [Kempf 1976,
Section 2] for details. For G2, we can choose coordinates identifying the root lattice
with the sublattice of Z3 consisting of those (a1, a2, a3) such that a1+a2+a3= 0,
with simple roots α1 = (1,−1, 0) and α2 = (−1, 2,−1). Then Xs1 is a curve of
self-intersection−3 in Xw, and hence Xw is isomorphic to F3. See also [Anderson
2007] for a detailed study of the G2-flag variety and its Schubert varieties.

Example 1.8. Let a be a nonnegative integer, and let 6 be the complete fan in
R2 whose rays are spanned by (1, 0), (0, 1), (0,−1), and (−1, a). Then X (6) is
isomorphic to the Hirzebruch surface Fa , the projectivization of the vector bundle
OP1 ⊕ OP1(a) [Fulton 1993, pp. 7–8]. Let q ≥ 2 be an integer. By Theorem 1.2,
X is diagonally split if and only if the fractional lattice points in the interior of
FX represent every equivalence class in 1

q Z2/Z2. The polytopes FX for different
values of a are shown below.

a = 0 a  = 1

If a is equal to 0 or 1, the interior of FX contains the half open unit square
[0, 1)×[0, 1), which contains representatives of every equivalence class in 1

q Z2/Z2.
Therefore, F0 and F1 are diagonally split for all q.

If a = 2, then FX is the parallelogram with vertices (±1, 0), ±(1, 1). For
0 ≤ m < q, the interior of this intersection contains the fractional lattice points
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(m/q, n/q) for (m−q)/2< n< (m+q)/2. If q is odd, then these represent every
equivalence class in 1

q Z2/Z2. In particular, F2 is diagonally split for q odd.
If a is greater than two, then FX is the parallelogram with vertices (±1, 0),
±(1, 2/a). The only points in the interior of this intersection whose first coordinate
is integral, are of the form (0, y) for−1/a< y<1/a. In particular, the equivalence
class of (0, bq/2c/q) in 1

q Z2/Z2 is not represented by any point in the interior of
this intersection. Therefore, Fa is not diagonally split for a greater than two.

a = 2 a > 2

(0, 1/a)

2. Preliminaries

Frobenius splittings were introduced and developed by Mehta, Ramanathan, and
their collaborators in the 1980s. The original paper of Mehta and Ramanathan is
exceedingly well written and remains an excellent first introduction to the subject
[1985]. Frobenius splittings were rapidly applied to give elegant unified proofs that
all ample line bundles on generalized Schubert varieties of all types are very ample
and give projectively normal embeddings whose images are cut out by quadrics
[Ramanan and Ramanathan 1985; Ramanathan 1987]. Inamdar and Mehta [1994],
and independently Bezrukavnikov [1995], later showed that the homogeneous co-
ordinate rings of these embeddings are Koszul. In characteristic zero, these results
are deduced from the positive characteristic case using general semicontinuity the-
orems. See the recent book of Brion and Kumar [2005] for a unified exposition
of these results, along with further details, references, and applications. On toric
varieties, the Frobenius endomorphisms lift to endomorphisms over Z, and it seems
easiest and most natural to work independently of the characteristic using these
lifted endomorphisms. One feature of this approach is that we can prove results
about section rings of toric varieties over Z, or an arbitrary field, by producing a
splitting of the diagonal in X × X for a single q .

We begin by considering the structure of F∗OX as an OX -module. As a sheaf of
groups, F∗OX evaluated on the invariant affine open set Uσ associated to a cone
σ ∈6 is the coordinate ring Z[Uσ ], which is usually identified with the semigroup
ring Z[σ∨ ∩M]. However, the module structure on F∗Z[Uσ ] is different from the
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action of Z[Uσ ] on itself. For this reason, we identify F∗Z[Uσ ] with the semigroup
ring of fractional lattice points

F∗Z[Uσ ] = Z[σ∨ ∩ 1
q M],

taking a monomial xu
∈ Z[Uσ ] to xu/q . The action of Z[Uσ ] on F∗Z[Uσ ] is then

induced by the natural action of M on 1
q M , so

xu
· xu′
= xu+u′,

for u ∈ M and u′ ∈ 1
q M . If Y is a toric variety embedded equivariantly in X , then

a splitting π is compatible with Y if and only if the induced map

Z[Uσ ]
∼
−→ Z[σ∨ ∩ 1

q M]
π
−→ Z[Uσ ]

maps IY (Uσ ) into IY (Uσ ) for every σ ∈6.
We now summarize some basic properties of compatible splittings and their

applications to section rings of ample line bundles. Let X be a complete toric
variety, and let L be a line bundle on X . A splitting π of X makes OX a direct
summand of F∗OX and hence L a direct summand of L⊗ F∗OX . By the projection
formula, L⊗F∗OX is isomorphic to F∗(F∗L), and we claim that F∗L is isomorphic
to Lq . To see this, note that there is a T -invariant Cartier divisor D such that L is
isomorphic to O(D) [Fulton 1993, Section 3.4]. The restriction of D to an invariant
affine open Uσ is the divisor of a rational function xu for some u ∈ M , and hence
the restriction of F∗D to Uσ is the divisor of xqu . It follows that F∗L is isomorphic
to Lq , as claimed. Now, since cohomology commutes with direct sums, π induces
a split injection

H i (X, L) ↪→ H i (X, Lq),

for every i . Iterating this argument gives split injections of H i (X, L) in H i (X, Lqr
)

for all positive integers r . In particular, if H i (X, Lqr
) vanishes for some r , as is

the case when L is ample, then H i (X, L) vanishes as well.
The proofs of the following five propositions are essentially identical to the stan-

dard proofs of the analogous results for Frobenius splittings, and are omitted. See
[Brion and Kumar 2005]; Proposition 1.2.1, Theorem 1.2.8, and Exercises 1.5.E.1,
1.5.E.2, and 1.5.E.3, respectively, for the case where the line bundles in question
are ample. The extensions to nef bundles can be deduced following the arguments
in [Inamdar 1994], using the fact that any nef line bundle on X is the pullback
of an ample line bundle on some toric variety X ′ under a proper birational toric
morphism f : X→ X ′.

Proposition 2.1. Let Y and Y ′ be toric varieties equivariantly embedded in X. If
Y ∪ Y ′ is split compatibly in X then Y , Y ′, and Y ∩ Y ′ are split compatibly in X.
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Proposition 2.2. Let Y be a compatibly split subvariety of X. If L is a nef line
bundle on X then the restriction map

H 0(X, L)→ H 0(Y, L)

is surjective and H 1(X, IY ⊗ L)= 0.

Proposition 2.3. Let L1, . . . , Lr be nef line bundles on X. If the diagonal is com-
patibly split in X × X then the section ring R(L1, . . . , Lr ) is normally generated.

Proposition 2.4. Let L1, . . . , Lr be nef line bundles on X. If the union of 1× X
and X ×1 is compatibly split in X × X × X then the section ring R(L1, . . . , Lr )

is normally presented.

Proposition 2.5. Let L1, . . . , Lr be nef line bundles on X. If 11 ∪ · · · ∪1n−1 is
compatibly split in Xn for every n then the section ring R(L1, . . . , Lr ) is normally
presented and Koszul.

3. Canonical splittings

Every toric variety has a splitting, and among all splittings of X there is a unique
one that extends to every toric compactification X ′ ⊃ X and lifts to every proper
birational toric modification X ′′ → X ′ of such a compactification. If q is prime
and k is the field with q elements, then the restriction of this splitting to Xk is
the unique Frobenius splitting that is canonical in the sense of Mathieu [Brion and
Kumar 2005, Chapter 4]. We now describe this canonical splitting, starting with
its restriction to the dense torus T .

Let π0 be the map of Z[T ]-modules from F∗Z[T ] to Z[T ] given by

π0(xu)=

{
xu if u ∈ M,
0 otherwise.

The pullback map F∗ :Z[T ]→ F∗Z[T ] is induced by the inclusion of M in 1
q M ; if

q is prime and k is the field with q elements, then the induced map k[T ]→ F∗k[T ]
may be identified with the inclusion of k[T ] in k[T ]1/q .

In particular, π0 ◦ F∗ is the identity, and hence gives a splitting of T .

Proposition 3.1. For any toric variety X , π0 extends to a splitting of X.

Proof. The composition π0 ◦ F∗ is the identity, and for each affine open Uσ , π0

maps Z[σ∨ ∩ 1
q M] into Z[σ∨ ∩M]. �

Properties of this canonical splitting π0 are closely related to Smith’s proof [2000,
Proposition 6.3] that toric varieties are globally F-regular.

Proposition 3.2. The canonical splitting π0 is compatible with every T -invariant
subvariety.
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Proof. First we claim that π0 is compatible with the union of the T -invariant
divisors. To see this, note that the ideal sheaf I of the union of the invariant divisors
is given by

I (Uσ )= Z[int(σ∨)∩M],

where int(σ∨) is the interior of σ∨. If u is a fractional lattice point in the interior of
σ∨ then π0(xu) is either zero or xu , and so is contained in I (Uσ ), which proves the
claim. The proposition then follows from Proposition 2.1, since every T -invariant
subvariety is an intersection of invariant divisors. �

However, if X is positive dimensional then the canonical splitting π0 of X × X is
not compatible with the diagonal 1. To see this, observe that if u ∈ 1

q M is not in
M , then 1− xu

⊗ x−u is in F∗ I1, but

π0(1− xu
⊗ x−u)= 1,

which is not in I1. To apply the standard techniques relating splittings to section
rings of ample line bundles discussed in Section 2, we must look for other splittings
of X× X , and X r for r greater than two, that are compatible with the diagonal and
the union of the large semidiagonals, respectively.

4. Splittings of diagonals

We now describe the space of all splittings of a toric variety and use this description
to characterize diagonally split toric varieties. First, it is helpful to consider the
structure of F∗OX as an OX -module in more detail.

Recall that an equivariant structure, or T -linearization, on a coherent sheaf F

on X is an isomorphism of sheaves on T × X ,

ϕ : µ∗F→ p∗F,

whereµ :T×X→ X is the torus action and p is the second projection, that satisfies
the usual cocycle condition [Brion and Kumar 2005, Section 2.1]. For example, the
natural equivariant structure on OX is given by 1⊗ xu

7→ x−u
⊗ xu . In general, the

push forward of an equivariant sheaf under an equivariant morphism does not carry
a natural equivariant structure. However, the equivariant endomorphism F has
the property that F∗OX is equivariantizable [Bøgvad 1998; Thomsen 2000]; it is
possible to choose an equivariant structure as follows. First, choose representatives
u1, . . . , us of the cosets in 1

q M/M . Let ϕ be the map from µ∗F∗OX to p∗F∗OX

that takes 1⊗ xu to xui−u
⊗ xu , for u in the coset ui + M . It is straightforward

to check that ϕ is an isomorphism and gives an equivariant structure on F∗OX , as
required.

A splitting of X restricts to a splitting of T , and two splittings of X agree if and
only if they agree on T , so we describe the space of all splittings of X in terms of
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splittings of T that extend to X , as follows. For fractional lattice points a ∈ 1
q M ,

let
πa : F∗Z[T ] → Z[T ]

be the map given by

πa(xu)=

{
xa+u if a+ u is in M,
0 otherwise.

Lemma 4.1. The set of maps πa , for a in 1
q M , is a Z-basis for

Hom(F∗Z[T ],Z[T ]).

Proof. The maps πa are independent, and the free generators xu1, . . . , xus for
F∗Z[T ] can be sent to an arbitrary s-tuple of elements of Z[T ] by a suitable linear
combination of the maps πa . �

If we choose an equivariant structure for Hom(F∗Z[T ],Z[T ]), as above, then the
maps πa form a T -eigenbasis. Therefore, a rational section

π = c1πa1 + · · ·+ crπar

of the sheaf Hom(F∗OX ,OX ), with each ci nonzero, extends to X if and only if
each πai is regular on X . For a ray, or one-dimensional cone ρ in 6, we write vρ
for the primitive generator of ρ.

Proposition 4.2. Let Uσ be an affine toric variety. Then πa is regular on Uσ if and
only if 〈a, vρ〉 is greater than minus one for each ray ρ in σ .

Proof. The map πa is regular on Uσ if and only if it takes

Z[σ∨ ∩ 1
q M]

into Z[σ∨ ∩ M]. Suppose 〈a, vρ〉 is greater than minus one for each ray ρ in σ
and u is in σ∨ ∩ 1

q M . Either πa(xu) is zero or a + u is in M and 〈u, vρ〉 is a
nonnegative integer for all rays ρ in σ , and hence a + u is in σ∨. Therefore πa

extends to Uσ . Conversely, if 〈a, vρ〉 is less than or equal to minus one for some
ρ, then it is straightforward to produce points u ∈ σ∨ such that a+ u is in M , but
not in σ∨. In this case, πa is not regular on Uσ . �

We follow the usual toric convention fixing K =−
∑

Dρ , the sum of the prime
T -invariant divisors each with multiplicity minus one, as a convenient represen-
tative of the canonical class. The polytope associated to a divisor D =

∑
dρDρ

is
PD = {u ∈ MR | 〈u, vρ〉 ≥ −dρ for all ρ}.

In particular, the polytope P−K associated to the anticanonical divisor is

P−K = {u ∈ MR | 〈u, vρ〉 ≥ −1 for all ρ}.
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The interior of the polytope P−K controls the space of OX -module maps from F∗OX

to OX as follows.

Proposition 4.3. The set of maps πa for fractional lattice points a in the interior
of P−K is a basis for Hom(F∗OX ,OX ).

Proof. If a is not in the interior of P−K then 〈a, vρ〉 is less than or equal to minus
one for some ray ρ ∈6 and then πa is not regular on Uρ . Conversely, if a is in the
interior of P−K , then πa extends to every invariant affine open subvariety of X , by
Proposition 4.2, and therefore is regular on X . �

Remark 4.4. When X is smooth, Proposition 4.3 corresponds to the natural iden-
tification between Hom(F∗OX ,OX ) and H 0(X, K 1−q

X ) given by duality for finite
flat morphisms [Brion and Kumar 2005, Section 1.3].

Proposition 4.5. A map
∑

caπa in Hom(F∗OX ,OX ) is a splitting if and only if
c0 = 1.

Proof. Zero is the only lattice point in the interior of P−K ∩M , so the image of xu

under π =
∑

caπa is equal to c0xu for u ∈ M . In particular, since F∗ maps xu to
xu in F∗OX , π ◦ F∗ is the identity if and only if c0 is equal to one. �

The set of splittings of X is an affine hyperplane in Hom(F∗OX ,OX ) by Proposition
4.5. For any subvariety Y ⊂ X , the condition that π(F∗ IY ) is contained in IY cuts
out a linear subspace of Hom(F∗OX ,OX ). So the set of splittings of X that are com-
patible with Y is an affine subspace of Hom(F∗OX ,OX ), which may be empty. We
now prove Theorem 1.2, which gives a necessary and sufficient condition for the
space of splittings of X× X that are compatible with the diagonal to be nonempty.

Proof of Theorem 1.2. Suppose

π =
∑

ca,a′πa,a′

is a splitting of X× X that is compatible with the diagonal. Then the restriction of
π to the dense torus is a splitting compatible with the diagonal in T × T . For any
u ∈ 1

q M , we have
1− xu

⊗ x−u

in F∗ I1, where I1 is the ideal of the diagonal in T ×T . Since π(1) is equal to one,
the restriction of π(xu

⊗ x−u) to the diagonal must also be equal to one. Now the
restriction of π(xu

⊗ x−u) to the diagonal is a Laurent polynomial in Z[T ] whose
constant term is ∑

a∈[u]

c−a,a,

where [u] is the coset of u in 1
q M/M . Since the polytope associated to −K X×X is

P−K X × P−K X , there must be a representative a of [u] such that both a and −a are
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contained in the interior of P−K X , which means that a is contained in the interior
of the diagonal splitting polytope

FX = P−K X ∩−P−K X .

For the converse, suppose that every nonzero equivalence class [ui ] in 1
q M/M

has a representative ai in the interior of FX . Then

π1 = π0+

s∑
i=1

πai ,−ai

is a splitting, and we claim that π1 is compatible with the diagonal. To see this, note
that the ideal of the diagonal in Uσ ×Uσ is generated by the Laurent polynomials
1− xu

⊗ x−u for u in σ∨ ∩M . Then F∗ I1 is generated as a Z[Uσ ×Uσ ]-module
by the

xb
− xb
· (xu
⊗ x−u),

as b= (b1, b2) ranges over 1
q (M×M) and u ranges over 1

q M . Now the restriction
of π1(xb) to the diagonal is xb1+b2 if b1 + b2 is in M and zero otherwise. In
particular, the restriction of π1(xb

− xb
· (xu
⊗ x−u)) to the diagonal vanishes, as

required. �

Proof of Theorem 1.3. Suppose the diagonal is compatibly split in X × X . Then
every nonzero equivalence class [u j ] in 1

q M/M is represented by a fractional lattice
point a j in the interior of FX , by Theorem 1.2.

A splitting of Xn is compatible with the union11∪· · ·∪1n−1 if it is compatible
with each1i . For u ∈M , let u(i) denote the lattice point in Mn whose only nonzero
coordinate is the i-th one, which is equal to u. The ideal of 1i is generated by the
functions

1− xu(i)
· x−u(i+1)

.

We claim that the splitting

π = π0+

n−1∑
i=1

∑
j

πa(i)j −a(i+1)
j

is compatible with 1i for 1 ≤ i < n, and hence with the union 11 ∪ · · · ∪1n−1.
The proof of the claim is then similar to the proof of Theorem 1.2 above, and the
theorem follows. �

Proof of Theorem 1.4. Suppose the diagonal is compatibly split in X × X . Then
11∪· · ·∪1n−1 is compatibly split in Xn for every n, by Theorem 1.3. Therefore,
for any nef line bundles L1, . . . , Lr on X the section ring R(L1, . . . , Lr ) is normal
and Koszul, by Proposition 2.5. �
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Remark 4.6. Pairs of opposite lattice points u and −u in the polytopes associ-
ated to anticanonical divisors have also appeared in relation to the classification
of smooth toric Fano varieties. In particular, Ewald [1988] conjectured twenty
years ago that if X is a smooth toric Fano variety then FX contains a basis for the
character lattice M . Ewald’s conjecture has been verified for smooth toric Fano
varieties of dimension less than or equal to seven by Øbro [2007, Section 4.1].
However, it remains unknown in higher dimensions whether there exists a single
nonzero lattice point u in FX [Kreuzer and Nill 2007, Section 4.6].
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