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Let E/Q be an elliptic curve of conductor N and let p be a prime. We con-
sider trace-compatible towers of modular points in the noncommutative division
tower Q(E[p∞]). Under weak assumptions, we can prove that all these points
are of infinite order and determine the rank of the group they generate. Also,
we use Kolyvagin’s construction of derivative classes to find explicit elements in
certain Tate–Shafarevich groups.

1. Introduction

1.1. Definition of self-points. Let E/Q be an elliptic curve and write N for its
conductor. As proved in [Breuil et al. 2001], there exists a modular parametrisation

ϕE : X0(N )→ E

that is a surjective morphism defined over Q and maps the cusp∞ on the modular
curve X0(N ) to O . The open subvariety Y0(N ) in X0(N ) is a moduli space for the
set of pairs (A,C), where A is an elliptic curve and C is a cyclic subgroup in A of
order N . More precisely, if k/Q is a field, then Y0(N )(k) is in bijection with the
set of such pairs (A,C) with A and C defined over k, up to isomorphism over the
algebraic closure k̄.

In particular, we may consider the pairs xC = (E,C) for any given cyclic sub-
group C of order N in E as a point in Y0(N )(C). Its image PC = ϕE(xC) under the
modular parametrisation is called a self-point of E . The field of definition of the
point PC on E is the same as the field of definition Q(C) of C . The compositum
of all Q(C) will be denoted by KN ; it is the smallest field K such that the Galois
group Gal(K/K ) acts by scalars on E[N ].

More generally, for any integer m we define a number field Km as follows. There
is a Galois representation attached to the m-torsion points on E , given by

ρ̄m : Gal(Q/Q)−→ Aut(E[m])∼= GL2(Z/mZ)−→ PGL2(Z/mZ).

MSC2000: primary 11G05; secondary 11G18, 11G40.
Keywords: elliptic curves, modular point, modular curves.
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The field Km is the field fixed by the kernel of ρ̄m . The Galois group of the exten-
sion Km/Q can be viewed via ρ̄m as a subgroup of PGL2(Z/mZ).

We will call higher self-point the image under ϕE of any pair (A,C) in which A
is an elliptic curve that is isogenous to E over Q, though the most interesting case
of higher self-points is the case when the isogeny between E and A is of degree a
prime power pn . In particular, this prime p is allowed to divide the conductor N .

This construction imitates the definition of Heegner points, where one uses pairs
(A,C) with A having complex multiplication. More generally, modular points on
elliptic curves were considered earlier by Harris [1979] without any restriction
on A. This article is a sequel to the articles [Delaunay and Wuthrich 2008] and
[Wuthrich 2007] on self-points, where we have emphasised already that the theory
of self-points differs from the well-known theory of Heegner points. For instance,
there does not seem to be a link between the root numbers and the question of
whether the self-points are of infinite order.

We present here not only a generalisation of the previous results on self-points,
but also we introduce the construction of derivative classes à la Kolyvagin. Indeed,
Kolyvagin [1990] was able to find upper bounds on certain Selmer groups by con-
structing cohomology classes starting from Heegner points. We propose here to do
the analogue for self-points. But the situation is radically different as the Galois
groups involved are noncommutative; rather than finding upper bounds of Selmer
groups over the base field, we will find lower bounds on Selmer groups over certain
number fields.

1.2. The results for self-points. The main question that arises first is whether we
can determine if the self-points are of infinite order in the Mordell–Weil group
E(Q(C)). It was shown in [Delaunay and Wuthrich 2008] that the self-points are
always of infinite order if the conductor is a prime number. We extend here the
method and provide a framework to treat the general case. In Section 5.2 we will
prove the following.

Theorem 12. Let E/Q be a semistable elliptic curve of conductor N 6= 30 or 210.
Then all the self-points are of infinite order.

But the methods are more general and we are able to prove that they are of infinite
order in most cases. In fact, we conjecture that this holds whenever E does not
admit complex multiplication. In Section 6.2 we will give a self-point of finite
order on a curve with complex multiplication. In the largest generality, we are able
to prove in Theorem 2 that there is at least one self-point of infinite order under
the assumption that j (E) /∈ 1

2 Z.
Next we address the question of the rank of the group generated by self-points

in E(KN ). If N is prime, we saw that the only relation among the self-points is
that the sum of all of them is a torsion point in E(Q). For a general conductor, we
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find that for all proper divisors d of N and all cyclic subgroups B in E of order d ,
the sum of all self-points PC with C ⊃ B is torsion. This is proved in Proposition
4 as a consequence of the existence of the degeneracy maps on modular curves.
For a lot of semistable curves, the following result shows that these are the only
relations among self-points.

Theorem 14. Let E/Q be a semistable elliptic curve. Suppose that N is not equal
to 30 or 210. Suppose that for each prime p | N such that ρ̄p is not surjective, there
is a prime ` | N such that the Tamagawa number c` is not divisible by p. Then the
group generated by the self-points is of rank N.

We think that this may hold more generally.

Conjecture. Let E/Q be an elliptic curve without complex multiplication. Then
all the self-points are of infinite order and the only relations among them are pro-
duced by the degeneracy maps as described in Proposition 4. In particular, the
rank of the group generated by self-points is equal to

δ(N )=
∏
p|N

⌈
(1− p−2) · pordp(N )

⌉
,

where dxe denotes the smallest integer no less than x.

The expression δ(N ) in the conjecture is equal to N if and only if N is square-free.

1.3. The results for higher self-points. We are particularly interested in higher
self-points that are modular points coming from a pair (E ′,C ′) in which E ′ has
an isogeny to E of degree a power of a prime p. We treat two cases: when p is a
prime of good reduction and when p is a prime of multiplicative reduction.

For simplicity we only sketch the results for the good case here, that is, p - N .
See Section 7 for more details.

We fix now a cyclic subgroup C in E of order N ; the following construction
depends on this choice, but our notation will not reflect this. Let D be a cyclic
subgroup of E of order pn+1 and let E ′ = E/D. Given any self-point PC , we may
consider the image C ′ of C under the isogeny E→ E ′. The higher self-point Q D is
defined to be the image of (E ′,C ′)∈ Y0(N ) under the modular parametrisation ϕE .
It is a point in the Mordell–Weil group of E over the field Q(C, D), which is
contained in K pn+1 N . In Corollary 20, we are able to prove that the higher self-
points are all of infinite order in some cases.

Theorem 1. Let E/Q be a semistable curve of conductor N not equal to 30 or 210.
Suppose that p is a prime such that p> N , and such that the Galois representation
ρ̄p :Gal(Q/Q)→ PGL2(Fp) is surjective. Let s be the rank of the group generated
by the self-points in E(KN ). Then the higher self-points in E(K pn+1 N ) generate a
group of rank s · (p+ 1) · pn .
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If one assumes that the prime is of ordinary reduction for E , one can weaken the
condition on the bad reduction substantially.

Furthermore these higher self-points are trace-compatible in the following sense.
Let D be a cyclic subgroup of order pn+1, and let ap be the p-th Fourier coefficient
of the modular form associated to the isogeny class of E . Then we have∑

D′⊃D

Q D′ = ap · Q D,

where the sum runs over all cyclic subgroups D′ of order pn+2 containing D. For
any number field F , we will write

ρF,p : Gal(F/F)−→ Aut(Tp E)∼= GL2(Zp)−→ PGL2(Zp)

for the representation of Gal(F/F) on the Tate module Tp E . If the Galois repre-
sentation ρKN ,p is surjective, then we can reformulate the above relation by saying
that the trace of Q D′ from its field of definition to the field of definition of Q D is
equal to ap ·Q D. This trace compatibility reminds one of the definition of an Euler
system. However, the field Q(C, D) is not Galois over Q and the Galois closure
is not an abelian extension, and worse not even a solvable extension.

The higher self-points are the only known towers of points of infinite order in
the division tower Q(E[p∞]) of E . Nevertheless the growth of the rank of the
Mordell–Weil group should often be faster than the lower bound (p + 1)pn that
we establish here in many cases. This is due to changing signs in the functional
equations and the corresponding parity results on the corank of Selmer groups. See
[Coates et al. 2009; Mazur and Rubin 2008]. These results predict, under the as-
sumption of the finiteness of the Tate–Shafarevich group, that there should be more
points of infinite order in the division tower that are not accounted for by higher
self-points. Furthermore the higher self-points do not seem to be linked in any
obvious way to root numbers. Also it is completely unknown if there is a relation to
L-functions (or to noncommutative p-adic L-functions as in [Coates et al. 2005])
in analogy to the Gross–Zagier formula for Heegner points.

1.4. Derivatives. Kolyvagin [1990] has used Heegner points of infinite order to
construct cohomology classes that obstruct the existence of further points of infinite
order. We aim to use a similar construction to build cohomology classes from
higher self-points of infinite order.

Let p be a prime of either good ordinary reduction or of multiplicative reduction.
If p does not divide the conductor N , define Fn=K pn+1 N ; otherwise let Fn=K pn N .
Put F = F−1. If we suppose that ρF,p : Gal(F/F)→ PGL2(Zp) is surjective, then
Gal(Fn/F)= PGL2(Z/pn+1Z). We are interested in a particular cyclic subgroup A
in Gal(Fn/F). Choosing a Zp-basis of the quadratic unramified extension O of Zp
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gives a map

O×→ GL2(Zp)→ PGL2(Zp)→ PGL2(Z/pn+1Z),

whose image is a cyclic group An of order (p+1)· pn . By a slight abuse of notation
we will denote the subfield of Fn fixed by An by F A

n .
The construction of derivatives provides us with a map

∂n : H1(An, S)→X(E/F A
n ).

The source is a cohomology group of the saturated group S of higher self-points
(see Section 8 for the definitions). Although we do not know its exact structure, we
can prove that it contains at least pn elements. It seems plausible to think that the
map ∂n is very often injective, but we do have no means to prove this in a single
case. Nevertheless, we are able to show the existence of points of infinite order in
E(F A

n ) whenever the map is not injective. Here is the final result:

Theorem 21. Let E/Q be an elliptic curve. Suppose E does not have potentially
good supersingular reduction for any prime of additive reduction. Let p be a prime
of either good ordinary or multiplicative reduction. Assume that ρF,p is surjective
and that KN contains a self-point of infinite order. Then we have

# Selpn (E/F A
n )> pn.

The construction of derivatives relies on a property of modular representation
theory. The higher self-points generate in the Mordell–Weil group a copy of the
irreducible Steinberg representation. More precisely, if Hn denotes Gal(Fn/F),
there is a certain Q[Hn]-module in E(Fn)⊗Q that is irreducible, but this module
is no longer irreducible over F`[Hn]when ` divides (p+1)· pn . Perhaps the idea of
using modular representation theory to study Selmer groups, which was developed
in [Greenberg 2008], could shed new light on these derivatives.

2. The fundamental theorem

Theorem 2. Let E/Q be an elliptic curve of conductor N. If the j-invariant of E
is not in 1

2 Z, then there is at least one self-point PC of infinite order in E(KN ).

Proof. Let p be a prime that divides the denominator of the j-invariant of E . If
possible, we avoid p= 2. Note that p2 may divide N , but we know that E acquires
multiplicative reduction over some extension of Q at p.

First we fix an embedding of Q into Qp. We consider the modular parame-
trisation over Zp. The modular curve X0(N ) over Zp has a neighbourhood of
the cusp ∞ consisting of pairs (A,C) of a Tate curve of the form A = Q×p /q

Z,
together with a cyclic subgroup C of order N generated by the N -th root of unity.
The parameter q is a p-adic analytic uniformiser at ∞, so that the Spf Zp[[q]] is
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the formal completion of X0(N )/Zp at the cusp ∞; see [Katz and Mazur 1985,
Chapter 8].

Let fE =
∑

an qn be the normalised newform associated to E . Then fE/q · dq
is the associated differential. Let cE be the Manin constant (of the not necessarily
strong Weil curve E), that is, the number such that ϕ∗E(ωE)= cE · fE/q ·dq , where
ωE is the invariant differential on E . The rigid analytic map induced by ϕE on the
completion can now be characterised as

logE(ϕE(q))=
∫ ϕE (q)

O
ωE = cE ·

∫ q

0
fE

dq
q
= cE ·

∑
n>1

an

n
· qn. (1)

Here logE denotes the formal logarithm associated to E from the formal group
Ê(m) to the maximal ideal Ĝa(m)=m of Zp. We deduce from this description the
following lemma that will be useful later. Write | · |p for the normalised absolute
value such that |p|p = p−1.

Lemma 3. Let (A,C) be a point in Y0(N )(Qp) such that A is isomorphic to the
Tate curve with parameter q0 6= 0 and C is isomorphic to the Galois module of
N-th roots of unity µ[N ]. If |q0|p < p−1/(p−1), then ϕE(A,C) is a point of infinite
order on E(Qp).

Proof. Under the condition on the absolute value of q0, we know that the sum on
the right-hand side of (1) converges. We consider the sum

z = cE ·
∑
n>1

an
n
· qn

0 .

Since the Manin constant is known to be an integer (see [Edixhoven 1991]), the
absolute value of the right-hand side is

|z|p = |cE |p ·

∣∣∣q0+
ap

p
q p

0

∣∣∣
p

as these are the terms of large absolute value. However note that the condition on
q0 implies that the second term on the right side is actually slightly smaller that
the first, and hence the absolute value of the sum is bounded by

|z|p = |cE |p · |q0|p < p−1/(p−1).

Therefore the value of z lies in the domain of convergence of the p-adic elliptic
exponential expE , and we obtain that ϕE(A,C) = expE(z). Since we know that
|z|p 6= 0, we can deduce that expE(z) is not a torsion point in E(Qp). �

We may now finish proving the theorem. Since E has multiplicative reduction
over Zp, exactly one of the xC = (E,C) if in the neighbourhood of∞ on X0(N );
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it is represented by the p-adic Tate parameter qE associated to E together with the
group C isomorphic to µ[N ]. If p 6= 2, then we know that

|qE |p = | j (E)|
−1
p 6 p−1 < p−1/(p−1),

and if p had to be chosen to be equal to 2 in the beginning then we know that

|qE |2 = | j (E)|
−1
2 6 p−2 < p−1/(p−1).

Hence in any case, the lemma applies and provides us with a point of infinite order
among the self-points. �

If the chosen prime p is such that p2 does not divide N , then qE lies in pvZp,
where v =− ordp( j (E)). Hence the proof’s point PC will be defined over Qp.

The restriction at p = 2 seems unnecessary. Often one can deduce the result of
the theorem by hand for curves whose j-invariant is an odd integer divided by 2.
We present here an easy example. For the curve 2450o1 in Cremona’s tables [1997]
with j-invariant −189/2, the 2-adic Tate parameter is equal to 2+22

+24
+O(29)

and the newform is fE = q − q2
+ q4

+ O(q8). From this one concludes that
logE(PC)= 23

+O(25). So PC is of infinite order. Nevertheless we do not see any
easy argument to prove that PC 6= O for a general curve with j (E) ∈ 1

2 Z \Z, as it
seems that the 2-adic valuation of logE(PC) can be arbitrarily large.

2.1. A torsion self-point. We believe that this theorem is still valid if E is a curve
with integral j-invariant as long as the curve does not admit complex multiplica-
tion. But not all self-points are of infinite order. We present here a surprisingly
easy example of a self-point that is torsion.

The curve 27a2 admits a cyclic isogeny of degree 27 defined over Q to the
curve 27a4. Let E be either of the two curves. Then E has exactly one cyclic sub-
group of order 27 defined over Q, that is, E admits a self-point in E(Q). Since the
rank of E(Q) is zero, the self-point has to be of finite order. Note that these curves
have complex multiplication. See Section 6.2 for more detailed computations on
these self-points.

3. Relations

In [Delaunay and Wuthrich 2008] it is shown that the self-points on a curve of
prime conductor satisfy exactly one relation. What kind of relations could occur
among the self-points for a curve of conductor N? Here is a first part of an answer.
First, we need some more notation. The Galois group G =G N =Gal(KN/Q) was
identified with a subgroup of PGL2(Z/NZ). For any divisor d of N , we define the
image of G N under the projection PGL2(Z/NZ)→ PGL2(Z/dZ) as Gd and by Kd

its fixed field in KN . In other words, Kd is the smallest number field for which the
absolute Galois groups acts by scalars on E[d].
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Proposition 4. The sum of all self-points is a torsion point defined over Q. If
d 6= N is an integer dividing N , then there are relations of the form

RB :
∑
C⊃B

PC is torsion in E(Kd),

where B is any given cyclic subgroup of order d and C runs through all cyclic
groups of order N containing B.

Proof. The degeneracy map π : X0(N )→ X0(d) induces π∗ : J0(d)→ J0(N ) on
Jacobians. Given a cyclic subgroup B of order d on E , we may consider the point
xB = (E, B) on X0(d). The divisor class

π∗[(xB)− (∞)] =
∑
C⊃B

[(xC)] −π
∗
[(∞)]

is in the image of π∗ in J0(N ) and hence in the kernel of the map ϕE : J0(N )→ E
because N is the exact conductor of E . This gives the relation RB .

Taking d = 1 gives the result that the sum of all self-points is a torsion point.
Since this sum is fixed by the Galois group, it has to be a rational point. �

4. The Steinberg representations

The aim is to describe certain irreducible representations that will appear in the
study of self-points. Let N > 1 be an integer. We are interested in the group
P = PGL2(Z/NZ). We will decompose the Q[P]-module V whose basis {eC} as a
Q-vector space is in bijection with the projective line P1(Z/NZ) and on which the
P-action is given by the usual permutation on the basis. So it can be written as

V =
⊕

C∈P1(Z/NZ)

QeC = IndP
B (1B),

where B is a Borel subgroup of P and 1B is its trivial representation.

Theorem 5. The Q[PGL2(Z/NZ)]-module V splits into the sum V =
⊕

D|N WD of
irreducible Q[PGL2(Z/NZ)]-modules WD , where D runs through all divisors of N .
Let D =

∏
p pdp be the prime decomposition of a divisor D of N. Define

δp =
⌈

pdp − pdp−2⌉
=


1 if dp = 0,
p if dp = 1,
pdp − pdp−2 if dp > 1.

Then WD has dimension δ(D)=
∏

p|D δp as a Q-vector space.
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Proof. We split the proof into three parts according to whether N is a prime, a
prime power or any integer. The first two cases could also be treated by invoking
[Silberger 1970, Theorem 3.3 on page 58], but, since we need the explicit descrip-
tion of WD later on, we prefer to prove this theorem in detail. Since the proof is
inductive on N , we will now write PN for PGL2(Z/NZ) and VN for its V .

Case: N is prime. Write p = N . The claim is simply that the Q[P]-module
Vp splits into two irreducible components W1 ⊕ Wp. We define W1 to be the
1-dimensional subspace of V generated by the vector v1 =

∑
C eC , where the sum

runs over all C in P1(Fp). Of course, W1 = V P
p is an irreducible Q[P]-submodule

of Vp and the space

Wp =
{∑

aC · eC

∣∣ ∑ aC = 0
}

is a complement to it. It remains to show that Wp is irreducible. Let g be an
element of order p in P , such as the class of

(
1 1
0 1

)
. On Vp⊗C the element g acts

with eigenvalues 1, 1, ζ , ζ 2, . . . , ζ p−1, where ζ is a primitive p-th root of unity.
Hence on Wp every p-th root of unity appears exactly once as an eigenvalue. So
the only possibility for Wp to split up into two Q[P]-submodules would have to
involve a 1-dimensional and a (p−1)-dimensional submodule.

As we can see from the fact that PSL2(Fp) is a simple group when p> 3 and by
direct calculations for p = 2 and 3, there are only two one-dimensional represen-
tations of PGL2(Fp): the trivial representation and the one with kernel PSL2(Fp)

of index 2. Since PSL2(Fp) acts transitively on P1(Fp), the one-dimensional sub-
representations of Vp must be contained in V PSL2(Fp)

p =W1.

Case: N is a prime power. We write N = pk with p prime. We prove the statement
by induction on k. The case k = 1 has been treated already; thus we may assume
that k > 2. The claim is that Vpk splits as

⊕
Wpm , where m runs from 0 to k.

There is a reduction map α : P1(Z/pkZ)→ P1(Z/pk−1Z) that is surjective and all
of whose fibres contain p elements. Define

V ′ =
{∑

aC eC

∣∣ aC = aC ′ whenever α(C)= α(C ′)
}
.

It is easy to see that V ′ is canonically isomorphic to Vpk−1 as a vector space, so
we will identify them. The action of Ppk factors through the quotient Ppk → Ppk−1

induced by reduction. By induction, V ′ splits as a Q[Ppk−1]-module into the sum
V ′ =

⊕k−1
m=0 Wpm ; this also decomposes V ′ into irreducible Q[Ppk ]-modules. As a

complement to V ′, we define

Wpk =

{∑
aC eC

∣∣∣ ∑
α(C)=D

aC = 0 for all D in P1(Z/pk−1Z)
}
.
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It is clear that Wpk is a Q[Ppk ]-submodule of Vpk . If k > 1 then its dimension is
equal to

dimQ Wpk = #P1(Z/pkZ)− #P1(Z/pk−1Z)

= (p+ 1) · pk−1
− (p+ 1) · pk−2

= pk
− pk−2.

It remains to show that Wpk is irreducible.
Let∞ be any point in P1(Fp) and write U∞ for the preimage of∞ under the

reduction map P1(Z/pkZ)→ P1(Fp). Within V , we define a linear subspace

V∞ =
{∑

aC eC

∣∣ aC = 0 if C ∈U∞
}

of dimension pk and let W∞ =Wpk ∩ V∞ and V ′∞=V ′∩V∞. Let g be an element
of Ppk of order pk whose fixed points lie in U∞. If∞ is (0 : 1), then we may take
the class of the matrix

(
1 1
0 1

)
. The element g acts on V∞⊗C such that every pk-th

root of unity appears exactly once. The eigenvalues of g on the subspace V ′∞

are all pk−1-st roots of unity. Hence on W∞ every primitive pk-th root of unity
appears exactly once as an eigenvalue. So W∞ is an irreducible Q[〈g〉]-module,
and so if Wpk splits as a Q[Ppk ]-module, then W∞ has to be completely contained
in one of the summands. But for any two distinct points∞ and∞′ in P1(Fp) the
spaces W∞ and W∞

′

span the whole of Wpk . Hence Wpk cannot be reducible.
The general case follows fairly easily from the previous cases. Let N =

∏
pn p

be the prime decomposition of N . We may suppose that N is not a prime power,
since we have treated this case already. Now the group PN splits as

PN = PGL2(Z/NZ)=
∏
p|N

PGL2(Z/pn p Z)=
∏
p|N

Ppnp

by the Chinese remainder theorem. Similarly, we have

P1(Z/NZ)=
∏
p|N

P1(Z/pn p Z) and so VN =
⊗
p|N

Vpn p

as a Q[PN ]-module. Now we use the previous case to rewrite

VN =
⊗
p|N

n p⊕
m=0

Wpm .

Let D be any divisor of N and
∏

pdp its prime factorisation. Then define

WD =
⊗
p|D

Wpdp .
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It is clear from the representation theory of direct products that WD is irreducible.
Rearranging the above decomposition of VN , we arrive at the desired expression
VN =

⊕
D|N WD . �

Proposition 6. Let p be a prime. Let G be a subgroup of a Borel subgroup of
PGL2(Fp) acting on Vp =

⊕
QeC . Suppose that the class of

(
1 1
0 1

)
belongs to G.

Then Vp decomposes into irreducible Q[G]-modules as W1⊕W ′1⊕W ′p, where W ′p
is an irreducible Q[G]-module of dimension p− 1.

Proof. Let C0 be the element of P1(Fp) fixed by the Borel group containing G. By
assumption, we know that C0 is the only fixed point of G acting on P1(Fp). Hence
Vp contains two linearly independent vectors that are fixed by G, namely eC0 and
v0 =

∑
C 6=C0

eC . The Q[G]-submodule

W ′p =
{∑

C 6=C0

aC · eC

∣∣∣ ∑
C 6=C0

aC = 0
}

is a complement to V G
p . Now use the class g of the matrix

(
1 1
0 1

)
as before to show

that W ′p is irreducible since the eigenvalues of g on W ′p are exactly the set of all
primitive p-th roots of unity. �

In fact one can show that Theorem 5 holds even for the complex representation
V ⊗C as C[PGL2(Z/NZ)]-modules. On the other hand, Proposition 6 really relies
on the fact that we are only considering decompositions as Q[G]-modules. For
instance, we may well take G to be the cyclic group generated by the matrix

(
1 1
0 1

)
;

then of course W ′p⊗C will split into 1-dimensional representations. But since the
p-th roots of unity are not all defined over Q, at least if p > 2, this decomposition
does not hold in general for W ′p.

We can now reformulate the statement of Proposition 4 as follows. There is a
G-equivariant map ι : VN → E(KN )⊗Q, defined by sending eC to PC . It has a
kernel containing all submodules Wd for d 6= N dividing N . So it induces a map
ι : WN → E(KN )⊗Q that is G-equivariant. By the fundamental Theorem 2, this
morphism is nontrivial if j 6∈ 1

2 Z. Hence we can deduce the following corollary.

Corollary 7. The self-points generate a group of rank at most δ(N ) inside E(KN ).
If WN is an irreducible Q[G N ]-module and the j-invariant is not in 1

2 Z, then the
self-points generate a group of rank δ(N ) and the Galois group acts like the Stein-
berg representation WN on it.

5. Self-points on semistable curves

We will suppose in this section that the curve E/Q is semistable. In particular,
the j-invariant cannot belong to 1

2 Z since all primes dividing N must appear in the
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denominator of j (E) and there is no curve of conductor 2. Hence the fundamental
Theorem 2 applies to E .

5.1. Some lemmata. Recall that Km was defined to be the field fixed by the kernel
of ρ̄m . We denote the Galois group Gal(Km/Q) by Gm and think of it as a subgroup
in PGL2(Z/mZ).

In what follows, we often have to split up the primes dividing N into two groups.
Let s, standing for “surjective”, be the product of all primes p dividing N such that
the representation ρ̄p is surjective. Let m, standing for “méchant”, be the product
of the remaining primes dividing N . Note that there are not many choices for m
as described in the following lemma.

Lemma 8. We have m ∈ {1, 2, 3, 4, 5, 6, 7, 10}. If p | m, then G p is contained in
a Borel group of PGL2(Fp) and hence is either a cyclic or a metacyclic1 group.

Proof. Let p | m. By a theorem of Serre [1996], the curve admits a p-isogeny
E→ E ′ defined over Q, and either E or E ′ must have a point of order p defined
over Q. Then by Mazur’s theorem [1978] on torsion points on elliptic curves
over Q, and we know now that p 6 7 and that m 6 10. �

Lemma 9. Let E/Q be a semistable elliptic curve. Then the largest prime p
dividing N is such that the representation ρ̄p is surjective, and p− 1 > m unless
N is 30 or 210.

Proof. If N is divisible by a prime p > 13, then the largest prime p dividing N
cannot divide m and satisfies p− 1 > m because m 6 10 by the previous lemma.
Hence we are left with a finite list of possible N to check. This can be done easily;
to illustrate it we show in Table 1 the list of curves of square-free conductors N
whose prime divisors are among {2, 3, 5, 7}. For the full proof, we would need
to list also conductors divisible by 11, but then the list will be far too long to be
included here. However the only three exceptional isogeny classes can already be
seen in this table.

To each isogeny class, we give the number i of isogenous curves, the maximal
degree d of an isogeny among them, the value of m, and the largest p | N such that
ρ̄p is surjective. This ends the proof. �

Lemma 10. Let E/Q be a semistable elliptic curve with 6 | N and such that the
representation ρ̄2 is surjective onto PGL2(F2). If there exists a prime p | N such
that 3 - cp, then K2 cannot be contained in K3.

Proof. We wish to derive a contradiction from the assumption that K2 is contained
in K3. By assumption, the Galois group G2 of the extension K2/Q is PGL2(F2),
which is isomorphic to the symmetric group on three letters S3. The Galois group

1metacyclic: a semidirect product of cyclic groups
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N 14a 15a 21a 30a 35a 42a 70a 105a 210a 210b 210c 210d 210e
i 6 8 6 8 3 6 4 4 8 8 6 4 8
d 18 16 8 12 9 8 4 4 12 12 8 4 16
m 2 1 1 6 1 2 2 1 6 6 2 2 2
p 7 5 7 5 7 7 7 7 7 7 7 7 7

Table 1. Some of the “evil curves” to be treated separately in
Lemma 9.

G3 is contained in PGL3(F3) = S4. Therefore the Galois group Gal(K3/K2) is
contained in the Klein group V4 of S4.

Suppose first that the reduction of E at p is split multiplicative. Let qE be the
Tate parameter of E over Qp. Choose a place υ above p in K2 and a placew above
υ in K3. Then the completion K3,w is equal to Qp(ζ3, 3

√
qE) and K2,υ is equal to

Qp(
√

qE). Since 3 does not divide cp > 1, we know that qE cannot be a cube.
Therefore the degree of K3,w/K2,υ is divisible by 3. This is impossible since the
degree of K3/K2 must be a power of 2.

If the reduction is nonsplit multiplicative at p, one can do the same argument
but transposed to the extension L of Qp over which E acquires split multiplicative
reduction. As L/Qp is of degree 2, we still find that the degree of K3,w/K2,υ must
be a multiple of 3. �

Lemma 11. Let E/Q be a semistable elliptic curve. For (ii) and (iii) below, we
assume that if 2 | N and 3 | N , then there is a prime p | N such that 3 - cp.

(i) Gs acts transitively on the set P1(Z/sZ) of cyclic subgroups of order s in E.

(ii) The Steinberg representation Ws is irreducible as a Q[Gs]-module.

(iii) Suppose Wm decomposes into irreducible Q[Gm]-modules as U1⊕ · · · ⊕Uk .
Then WN decomposes into irreducible Q[G N ]-modules as

WN =

k⊕
i=1

(Ui ⊗Ws).

Proof. We will first prove by induction the statement in (ii) with s replaced by
any of its divisors r , assuming the additional hypothesis. If r = p is prime then
G p = PGL2(Fp) and Theorem 5 shows that Wp is irreducible as a Q[G p]-module.
Let p be the largest prime factor of r . We may suppose that r is composite and so
p > 2. Put t = r/p > 2. We assume that Wt is an irreducible Q[G t ]-module. We
wish to prove that Wr is an irreducible Q[Gr ]-module.
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The Galois group Hp = Gal(Kr/Kt) is isomorphic to that of the extension
K p/Kt ∩ K p. Hence Hp is a normal subgroup of G p = PGL2(Fp). We use the
fact that PSL2(Fp) is simple for p > 3. So Hp is either all of G p, PSL2(Fp), the
trivial group or, in the case p= 3, the Klein group V4 in PGL2(F3)=S4. Treating
the four cases separately, we will prove that Wp is an irreducible Q[Hp]-module.

If Hp is all of G p, then Wp is irreducible as a Q[Hp]-module by Theorem 5. If
Hp is equal to PSL2(Fp), then Wp could split at most into two subspace of equal
dimension since PSL2(Fp) has index 2 in PGL2(Fp). But the dimension of Wp is
odd unless p = 2, which we excluded. Hence Wp is irreducible.

Next, we will exclude the case when Hp is trivial. If it were so, then there is
a surjective map from G t onto G p = PGL2(Fp). The group G t is contained in
PGL2(Z/tZ), whose order is ∏

`|t

` · (`+ 1) · (`− 1).

So the order of G t cannot be divisible by p since p is larger than any of the `,
unless p = 3 and t = 2. It is also impossible that there is a surjective map from
PGL2(F2) onto PGL2(F3). So Hp is not trivial.

Finally, we treat the case when Hp is the Klein group in PGL2(F3). Since p= 3,
we have t = 2. As G2 = PGL2(F2)=S3, the only possibility for this case is when
K2 is contained in K3. But it was shown in Lemma 10 that this is not possible
under our additional hypothesis.

Let X be a sub-Q[Gr ]-module of Wr =Wp⊗Wt . As Hp acts trivially on Wt , we
deduce that there is a subspace Z of Wt such that X = Wp ⊗ Z . By the induction
hypothesis, we know that Wt is irreducible as a Q[G t ]-module. Hence Z =Wt and
we have shown that Wr is Q[Gr ]-irreducible.

Now we will prove (i). If the additional hypothesis is verified, then Ws is an
irreducible Q[Gs]-module by (ii); hence Gs acts transitively on P1(Z/sZ). But the
only place where we used the additional hypothesis in the proof of (ii) is when
we excluded the possibility that Hp is the Klein group in PGL2(F3). But since the
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Klein group acts transitively on P1(F3), we can prove directly the truth of (i) in
general.

Finally we must prove (iii). We follow again along the same lines as the proof
of (ii). Of course, we may assume that m > 1. Let 1 6 i 6 k, and let r | s. We
will prove by induction that Ui ⊗Wr is an irreducible Q[Grm]-module. Let p be
the largest prime dividing r and let t = r/p. By induction, we may suppose that
Ui⊗Wt is G tm-irreducible. Let Hp=Gal(Krm/Ktm)⊂PGL2(Fp). As before, if we
can prove that Wp is an irreducible Q[Hp]-module, then we know that Ui ⊗Wr =

Ui⊗Wt⊗Wp is Grm-irreducible. Once again we must exclude only the possibility
that Hp is trivial or equal to the Klein group V4 in PGL2(F3).

Suppose first that p = 2. By maximality of p, we must have t = 1. If Hp

is trivial, then there is a surjective map from Gm to PGL2(F2). Running through
all the possible odd m in Lemma 8, we find that only m = 3 can be possible.
Moreover in this case we must have K2= K3. Again we use Lemma 10 to exclude
this possibility.

We treat now the case that p= 3. Then t = 1 or t = 2. Suppose that Hp is trivial.
There must be a surjective map from G tm to PGL2(F3)∼=S4. We can check that if
t = 1, then we must have m = 7 since otherwise #Gm will not be a multiple of 3.
But #G7 is not divisible by 24. If t = 2, then m can only be 5 or 7. Again it cannot
be 7. So we must have G tm ⊂S3× (Z/4Z n Z/5Z), and it is easy to check that the
latter group does not have a subquotient isomorphic to S4.

Continuing with the case p = 3, we suppose now that Hp is the Klein group
in PGL2(F3). This time we have a surjection of G tm onto S3. If t = 1, we can
again check that there is no possibility for Gm . So suppose that t = 2. Then G tm is
contained in S3×Gm . Then the only possibility for the surjection is that Gm lies
in its kernel and PGL2(F2) maps isomorphically onto S3. In this case we would
have that K2 is contained in K3. Once again Lemma 10 excludes this.

The very last step is to assume that p > 3 and that Hp is trivial. Then there is
a surjective map from G tm to PGL2(Fp). By the maximality of p, we know that
# PGL2(Z/tZ) is not divisible by p. Therefore p 6= m must divide #Gm . Running
through the list of possible groups in Lemma 8, we find that this is not possible. �

5.2. Results for semistable curves.

Theorem 12. Let E/Q be a semistable elliptic curve of conductor N with N not
equal to 30 or 210. Then all the self-points PC are of infinite order in E(Q(C)).

Proof. By Lemma 9, we may choose a prime p dividing N such that ρ̄p is surjective
and such that p− 1> m.

Any cyclic subgroup C of order N may be written as C = A ⊕ B, with A
of order m and B of order s = N/m. Now we use the previous lemma. For any
fixed A, the group G N acts transitively on the set {A⊕B}B as B runs over all cyclic
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subgroups of order s in E . Hence all self-points {PC} with the m-part A fixed are
conjugate in E(KN ). In particular, if m = 1, then all self-points are conjugate and
the fundamental Theorem 2 proves the theorem. So suppose now that m > 1.

Now we use the p-adic proof of Theorem 2. We identify the curve E/Qp with
the Tate curve Q×p /q

Z
E . Fix a cyclic subgroup A of order m in E , and let B =µ[s]

and C = A⊕ B. Since any self-point is conjugate to such a point, it is sufficient to
prove that PC is of infinite order.

For each ` |m, let A` be the `-torsion part of A. Write A′′ for the direct sum of
all A` such that A` is generated by the `-th roots of unities µ[`] in E(Qp). Write
A′ for the sum of all other A`. So A= A′⊕ A′′. Denote the order of A′ by m′ and
likewise the order of A′′ by m′′. Now we consider the isogeny ψ with kernel A′,
given by

0 � A′ � E
ψ
� E ′ � 0.

If Â′ is the kernel of the dual isogeny ψ̂ : E ′→ E , then we may consider the point

x ′C = (E
′, Â′⊕ψ(A′′)⊕ψ(B)) ∈ X0(N )(Qp),

which is nothing other than the Atkin–Lehner involution wm′ applied to the point
xC = (E,C). We know already that ψ(B)=µ[k] and ψ(A′′)=µ[m′′], but we also
see that the group Â′ is isomorphic to µ[m′]. Hence the point x ′C lies now close to
the cusp∞ and its Tate-parameter will be a certain m′-th root u of qE . Since

|u|p = (|qE |p)
1/m′
= p−cp/m′ < p−1/(p−1)

because m′ 6m < p−1, we can apply Lemma 3 to show that ϕE(x
′
C) is of infinite

order. But the Atkin–Lehner involutions w` act like multiplication by −a` ∈ {±1}
for all primes ` dividing N , as shown in [Atkin and Lehner 1970]. Therefore
PC = ϕE(xC)=±ϕE(x

′
C)+ T , where T is a point of finite order, and hence PC is

of infinite order. �

As remarked earlier we have a G N -equivariant map

ι :WN → E(KN )⊗Q

Part (ii) of Lemma 11 shows this:

Theorem 13. Let E/Q be a semistable elliptic curve with N not equal to 30
or 210. Suppose all the representations ρ̄p for all primes p | N are surjective.
Then the group generated by the self-points is of rank N and the Galois group acts
like the irreducible Steinberg representation WN on it.

We prove now an extension of this theorem to the case when m 6=1. In particular
WN might not be irreducible anymore. Unfortunately we cannot prove that the
rank is N in general for a semistable curve since we have to exclude the possibility
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that the curve has two distinct isogenies of the same degree defined over Q: If
the curve has two isogenies of degree p over Q, then in the decomposition of
WN into irreducible Q[G]-modules, there will be a representation that appears
with multiplicity 2. The second hypothesis in the following theorem excludes this
possibility, but it is also needed elsewhere to be able to apply the lemmata from
the previous section.

Theorem 14. Let E/Q be a semistable elliptic curve. Suppose that N is not equal
to 30 or 210. Suppose that for each prime p | N such that ρ̄p is not surjective, there
is a prime ` | N such that the Tamagawa number c` is not divisible by p. Then the
group generated by the self-points is of rank N.

Proof. As a consequence of the second hypothesis, we know that for each p | N
there is an element of order p in G p. See the appendix of [Serre 1968]. Since
either G p is all of PGL2(Fp) or it is contained in the Borel subgroup, we conclude
that either G p acts transitively on P1(Fp) or it has one single fixed point, which we
will call C p ∈ P1(Fp).

Let p |m. Then by Proposition 6, the Q[G p]-module Wp decomposes as the
sum of the trivial part W ′1 and an irreducible part W ′p of dimension p− 1. If m is
not prime it can only be either 2 · 3 or 2 · 5 by Mazur’s theorem. If m = 6, then
W6 decomposes as W ′1 ⊕W ′2 ⊕W ′3 ⊕W ′6, where W ′6 = W ′2 ⊗W ′3. To see that the
latter is also irreducible one needs only to note that the dimension of W ′2 is 1. In
the same way, for m = 10, we have an irreducible component W ′10.

Using Lemma 11, we know now that WN decomposes as

WN =
⊕
d |m

(W ′d ⊗Ws)

into irreducible Q[G N ]-modules. We must now prove that none of the components
belongs to the kernel of the map ι :WN → E(K )⊗Q.

First recall the definition of W ′d ⊗Ws . It contains all elements∑
C∈P1(Z/NZ)

aC eC ∈
⊕

C∈P1(Z/NZ)

QeC ,

subject to the following three conditions.

• For all N 6= b | N and all cyclic subgroups B of order b, the sum
∑

C⊃B aC

vanishes.

• For all primes p | d and all C ⊃ C p, we have aC = 0.

• For all primes p | (m/d) and all C 6⊃ C p, we have aC = 0.
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Let d |m. Define A to be the direct sum of C p for all p | (m/d). So A is a cyclic
group of order m/d. The map ι on W ′d ⊗Ws is induced from the map

ιd :
⊕

D

QeA⊕D −→ E(K )⊗Q,

where D runs through all the cyclic subgroups D in E of order d · s such that
D does not contain any of the C p with p | d. Since this map sends eA⊕D to the
self-point PA⊕D , it follows from Theorem 12 that the map ιd is not trivial.

Now we use the relations in Proposition 4 to see that, for all b | ds and all cyclic
groups B of order b not containing any of the C p, we have

∑
D⊃B eA⊕D ∈ ker ιd .

Hence the only irreducible part of the domain of ιd that does not lie in the kernel
is W ′d ⊗Ws Hence ιd induces an injection W ′d ⊗Ws→ E(K )⊗Q. �

The hypothesis in this last theorem is fulfilled for the very large part of semistable
curves. We could not find a strong Weil curve with N <10,000 for that the theorem
would not apply. The first curve which does not satisfy the hypothesis with p = 3
is 651e2 since it has G3 = Z/2Z, and the Tamagawa numbers are c3 = 3, c7 = 3,
and c31 = 3. For p= 2, the examples that do not satisfy the hypothesis are exactly
those that have all 2-torsion points defined over Q, as for instance 30a2.

6. Examples

Table 2 shows some computations done for the optimal curves (with one exception)
of smallest conductor. We do not give the complete explanation of how one obtains
these results. For more detail, we refer the reader to [Delaunay and Wuthrich 2008]
and [Wuthrich 2007]. We will consider two curves in more detail later.

N 11a1 14a1 15a1 17a1 19a1 20a1 21a1 24a1 26a1

torsion 5 2 · 3 2 · 4 4 3 2 · 3 2 · 4 2 · 4 3
isogeny 25 18 16 4 9 6 8 8 9

WN 1 2 1 1 1 2 1 4 1
rank 11 14 15 17 19 15 21 18∗ 26

N 26b1 27a2 30a1 32a1 33a1 34a1 35a1 37a1 38a1

torsion 7 3 2 · 3 4 2 · 2 2 · 3 3 1 3
isogeny 7 27 12 4 4 6 9 1 9

WN 1 5 4 ? 1 2 1 1 1
rank 26 20 30∗ 12∗ 33 34 35 37 38

Table 2. The ranks of the group generated by self-points for some curves.
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We label the curves as in Cremona’s tables [1997]. The first line of our table
shows the structure of the torsion group over Q; for example, 2 · 4 means that
E(Q)tors = Z/2Z ⊕ Z/4Z. The next line indicates the largest degree of a cyclic
isogeny defined over Q on E . The last two lines are those containing information
about self-points: First we counted the number of irreducible Q[G N ]-modules
in WN , and finally we computed the rank of the group generated by self-points in
E(KN ).

The two values in bold face are lower than the usual conjectured rank, which is
no surprise since these two curves have complex multiplication. When there is no
∗ sign next to the rank, the value is proved using the results in the previous section.
The sign ∗ indicates that we have only empirically computed the rank using the
following method.

Using high precision computation we may find a very good approximation to
the values of

zC =

∫
∞

xC

fE(q)
dq
q

as elements of C, where C runs over all cyclic subgroups of order N in E . Hence
zC maps to PC under C→ C/3E → E(C), where 3E = Zω1⊕Zω2 is the period
lattice of E . Let t be the order of the torsion subgroup of E over Q. Consider the
abelian group spanned by 1

t ω1, 1
t ω2 and all the zC in a complex vector space of

dimension 2+#P1(Z/NZ). Using the LLL algorithm, we find small vectors in this
lattice. These are likely to give relations

b1ω1+ b2ω2+
∑

C

aC zC = 0

with b1, b2, and aC all integers. This yields a probable relation among the self-
points. Unfortunately we might not catch those relations involving torsion points
on E not defined over Q. So to increase the likelihood of finding all relations we
multiply t by a product of small primes. For all cases for which we were able to
determine the rank, this empirical computation gave the same answer. In principle
these computations could be made rigorous by considering exact estimates for the
error terms.

6.1. Conductor 24. We present here an example of a curve where we are unable
to determine the rank of the group generated by self-points. The Mordell–Weil
group of the curve 24a1, given by the equation

E : y2
= x3
− x2
− 4 · x + 4,

is E(Q)= Z/2Z⊕Z/4Z. The situation is rather complicated and we do not explain
all computations here. The field K4 turns out to be Q(i,

√
3), which happens to

be equal to Q(E[4]). There is are two nontrivial Galois-orbits of 4-torsion points,
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one over Q(
√

3) and the other over Q(
√
−3). Hence the representation V4 splits

as
V4 = 1⊕1⊕1⊕1⊕1(

√
3)⊕1(

√
−3) ,

where 1(
√

d) is the one-dimensional representation corresponding to the Dirichlet
character associated to Q(

√
d). Now the field K8 can be computed too; it coincides

with Q(E[8]) in this case. It is a degree 16 extension of discriminant 236
· 312,

and contains the extension Q(i,
√

2,
√

3). The subextension K4 is fixed by the
centre of the Galois group G8. The group G8 admits two irreducible 2-dimensional
representations, one of which we call Z2. Then the representation V8 splits in many
components and we find that

W8 = 1(
√

2)⊕1(
√
−2)⊕ Z2⊕ Z2.

The first two factors correspond to two pairs of lines in E[8] defined over Q(
√

2)
and Q(

√
−2) respectively. The other lines are defined over fields of degree 4.

Using that the field K3 intersects K8 in Q(
√
−3), we find that W24 splits into 4

irreducible factors W24 = W3(
√

2)⊕W3(
√
−2)⊕ Z6 ⊕ Z6. Here Z6 = W3 ⊗ Z2

is an irreducible representation of dimension 6. In particular, this representation
appears with multiplicity 2. So the usual proof that there are no further relations
among self-points will not work.

The cyclic subgroup of order 8 in E that corresponds to µ[8] over Q3 contains
the rational 4-torsion point. So one of the two factors of dimension 3 in W24

certainly appears in E(KN )⊗Q. But we are unable to show that any other self-
points are of infinite order by means of Theorem 12.

Though we can only conclude that the rank r of the group generated by the
self-points satisfies 3 6 r 6 18, we strongly believe that r = 18, as suggested by
the empirical computations.

6.2. Conductor 27. There are four curves of conductor 27 forming the isogeny
graph

27a2← 27a1← 27a3← 27a4

The isogenies ← are all of degree 3, and in the sense that they are drawn here,
the kernels are Z/3Z while the dual isogenies have kernel µ[3]. Over the field
F = Q(

√
−3) = Q(ζ ), with ζ a third root of unity, the curves 27a1 and 27a3

become isomorphic, the same holds for the curves 27a2 and 27a4. The first pair
has complex multiplication by the maximal order Z[ζ ], while the second pair has
complex multiplication by Z[3ζ ].

Let E be the curve 27a2 defined by y2
+ y = x3

− 270 · x − 1708.

Theorem 15. The self-points on the curve 27a2 generate a group of rank 20
in E(K27). There are exactly two linearly independent self-points defined over
K3 =Q( 6

√
−3), and they generate a subgroup of finite index in E(K3).
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The proof is contained in the following explanations, but we do omit certain
computations.

The field K3 is equal to Q( 6
√
−3), and the Galois group G3 is a dihedral group

of order 6. In fact some 3-torsion points are defined over F = Q(
√
−3), some

others are over Q( 3
√
−3), and we have V3 = 1⊕ 1(

√
−3)⊕ Z2, where Z2 is the

unique irreducible 2-dimensional representation of G3.
In order to determine the structure of V27, we need to use the theory of complex

multiplication. Let H27 be the subgroup Gal(K27/F) inside G27. We know that
the representation ρ̄27,F now maps to

ρ̄27,F : H27 � �
AutO/27O(E[27])

(Z/27Z)
× =

(O/27O)
×

(Z/27Z)×

∼=
�
{(

1 ∗
0 1

)
∈ PGL2(Z/27Z)

} ∼=
� Z/27Z,

where O=Z[3 ζ ] is the ring of endomorphisms of E/F . It is possible to verify that
H27 is equal to this group, and hence G27 is a dihedral group of order 54 generated
by h =

(
1 1
0 1

)
and s =

(
1 0
0 −1

)
. The computation of V27 is now easy and one finds

W27 = 1⊕1(
√
−3)⊕ Z2⊕ Z2⊕ Z18.

Here Z2 is the unique 2-dimensional irreducible Q[G27]-module (the action of h
has trace−1), and Z18 is the unique irreducible 18-dimensional Q[G27]-module (it
splits over C into six 2-dimensional representations). Since the curve 27a2 is not
the strong Weil curve in the isogeny class, the modular parametrisation ϕE from
the elliptic curve X0(27) to E is not an isomorphism but an isogeny of degree 3.
The curve X0(27) has six cusps represented by the classes {∞, 0, 1

3 ,
2
3 ,

2
9 ,

4
9}. The

group X0(27)(Q) contains the cusps∞ and 0 and the self-point obtained from the
isogeny 27a2→27a4. They form exactly the kernel of ϕE . The other cusps are
mapped to the 3-torsion points defined over F on E . In fact E(F) = Z/3Z and
E(K3)tors = Z/3Z⊕ Z/3Z. A two-descent over K3 shows that the 2-Selmer group
of E/K3 has two copies of Z/2Z in it.

The trivial factor in W27 corresponds to the self-point obtained from the 27-
isogeny defined over Q on 27a2. We know that it is the point O in E(Q). The
factor 1(

√
−3) in W27 must also belong to the kernel of ι : W27 → E(K27)⊗Q

since the Mordell–Weil group E(F) is of rank 0. Of the factors Z2 at least one
must be in the kernel since the rank of E(K3) is bounded by 2 from above. It is not
hard to check by looking at traces of Frobenii that the torsion subgroup of E(K27)

only contains nine 3-torsion points. Since the degree of ϕE is 3, there are at most
27 points in X0(27)(K27) that map to torsion points in E(K27) under ϕE . Since
there are 36 points xC , we conclude that at least 9 self-points are of infinite order.
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Looking at the decomposition of W27, we see that Z18 cannot belong to the kernel
of ι.

Finally we have to show that there is a self-point of infinite order in E(K3).
This will show that the second copy of Z2 does not belong to the kernel of ι. This
can be done numerically. The point τC =

1
6 · (−1+

√
−3) in the upper half plane

corresponds to a point xC in X0(27). We find that

−
1
8(36 · s5

+ 15 · s4
− 45 · s3

− 18 · s2
+ 69 · s+ 99) with s = 6

√
−3

is the x-coordinate of the self-point PC in E(K3). Its canonical height is 1.5191
and hence PC is of infinite order. This point PC and its conjugates over F will
generate a group of rank 2 in E(K3). Since we have computed the 2-Selmer group
earlier, we conclude that the rank of E(K3) is as claimed equal to 2.

It seems plausible that this PC can also be constructed as an “exotic Heegner
point” using the construction of Bertolini, Darmon and Prasanna [≥ 2009], but the
authors exclude there explicitly the case of conductor N = 27.

7. Higher self-points

In this section, we investigate three particular cases of higher self-points. Let E/Q
be an elliptic curve of conductor N . For any cyclic subgroup D in E we may
consider the isogenous curve E/D with a suitable choice of a cyclic subgroup of
order N in it. In the first case, we use subgroups D defined over Q to construct new
points and for the two other cases we use subgroups D of prime-power order pn ,
first when p divides the conductor and then when it does not divide the conductor.

7.1. Self-points via rational isogenies. Let D be a cyclic subgroup in E defined
over Q. Suppose for simplicity that the order of D is prime to N . Then for any
cyclic subgroup C of order N on E ,

Q D = ϕE(E/D, (C + D)/D)

is a higher self-point defined over the same field as PC . It would be interesting
to know in general when PC and Q D are linearly independent. For instance this
can be shown on the curves of conductor 11: There are 3 curves in the isogeny
class, and hence we find, for any fixed C , one self-point and two higher self-points
on E defined over Q(C). Using the canonical height pairing, we can prove the
linear independence of these three points computed explicitly on E . So the rank
of E(Q(C)) will have to be at least 3. See [Delaunay and Wuthrich 2008] and
[Wuthrich 2007] for more details on this example.

In some cases the method of the proof of Theorem 12 can be used to show that
Q D is also of infinite order. But the methods of the proof of Theorem 14 will not
be sufficient to prove the independence of PC and Q D.
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7.2. The multiplicative case. Let now p be a prime dividing N exactly once,
that is, E has multiplicative reduction at p. Let M be such that N = p · M . As a
base-field we will consider here the number field F = KM , the smallest field such
that its absolute Galois group acts as scalars on E[M]. In the particular situation
when N = p is prime then F =Q; the same is true for instance if E is a curve of
conductor 14 and p = 7.

For any n > 0, we define now Fn to be the field K pn N and Hn to be the Galois
group of Fn/F . Via the Galois representation

ρF,p : Gal(F/F)−→ Aut(Tp E)∼= GL2(Zp)−→ PGL2(Zp),

the group Hn identifies with a subgroup of PGL2(Z/pn+1Z).
Fix a subgroup B of order M in E . Let n > 0, and let D be a cyclic subgroup

of order pn+1 in E . Let A = D[p] and C = A⊕ B, which is a cyclic subgroup of
order N . Write ψ for the isogeny E→ E ′ of kernel D and ψ̂ for its dual. Define

C ′ = ker(ψ̂)[p]⊕ψ(B),

which is a cyclic subgroup of E ′ of order M · p = N . The image of the point
yD = (E ′,C ′) ∈ Y0(N ) through the map ϕE will be denoted by Q D. It is by
definition a higher self-point. We will say that “Q D lies over PC” or “over B”.

In particular, if n = 0, then D = A is a cyclic subgroup of order p. From the
construction above, we see that the point yD is nothing but wp(xC), where wp is
the Atkin–Lehner involution on X0(N ). Hence we have that Q D = −ap · PC + T
for some 2-torsion point T defined over Q. Here ap =±1 is, as before, the Hecke
eigenvalue of the newform fE attached to the isogeny class of E .

Let D be a cyclic subgroup of E of order pn+1. By the definition of the Hecke
operator Tp on J0(N ), we have Tp((yD)− (∞)) =

∑
D′⊃D((yD′)− (∞)), where

the sum runs over all cyclic subgroups D′ in E of order pn+2 containing D. This
gives us the relation

ap · Q D =
∑

D′⊃D

Q D′ . (2)

Hence by induction, we know that Q D is of infinite order if the self-point PC is.

Lemma 16. Let B be a fixed subgroup of order M in E , and let n > 0. Then∑
D Q D is a torsion point in E(F), where the sum is over all cyclic subgroups D

of E of order pn+1.

Proof. Suppose first that n = 0. Then we sum over all cyclic subgroups D = A of
order p, which gives∑

D

Q D =
∑
C⊃B

(−ap PC + T )= (p+ 1) · T − ap

∑
C⊃B

PC .
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The first term on the right side is clearly torsion and the second term contains
exactly one of the relations from Proposition 4. Now by induction, we assume that
the statement holds for n. But then

∑
D′ Q D′ , with the sum running over all cyclic

subgroups D′ of order pn+2, is, by (2), equal to ap ·
∑

D Q D, with the sum now
running over cyclic subgroups of order pn+1. �

The Q-vector space with basis {eD}D in bijection with P1(Z/pn+1Z) is a natural
Q[Hn]-module. Define

V ′(n) =
⊕

A QeD

Q(
∑

D eD)
,

which is a vector space of dimension pn+1
+ pn

− 1.
Fix a cyclic subgroup B of order M in E . By the previous lemma, there is a

morphism of Q[Hn]-modules given by

ιn = ιB,n : V ′(n) −→ E(Fn)⊗Q, eD 7−→ Q D

We assume that the Galois representation ρF,p is surjective onto PGL2(Zp). So
Hn is isomorphic to PGL2(Z/pn+1Z) and the Q[Hn]-module V ′(n) is the Steinberg
representation, which was denoted by Vpn/W1 in Section 4.

Theorem 17. Suppose E/Q is an elliptic curve and p a prime of multiplicative
reduction. Suppose that ρF,p is surjective and that there is a self-point PC of infinite
order in E(F0). Then for all n > 0 and all cyclic subgroups D of order pn+1

with D[p] ⊂ C , the point Q D is of infinite order. They generate in E(Fn)⊗Q a
Q[Hn]-module isomorphic to the representation V ′(n) of dimension pn+1

+ pn
− 1.

As a special case, we recover [Delaunay and Wuthrich 2008, Theorem 8] in the
case when N = p is prime and F =Q.

Proof. We only have to show that ιn is injective. Suppose n>0 is the smallest value
such that ιn is not injective. Since V ′(n) =Wpn+1 ⊕ V ′(n−1) if n > 0 and V ′(0) =Wp,
this means that ιn induced on Wpn+1 is not injective. Since this is an irreducible
Q[Hn]-module when ρF,p is surjective, this means that ιn is trivial on Wpn+1 . This
is impossible since we have shown that all Q D above PC are of infinite order. �

7.3. The good case. Let p be a prime not dividing N , that is, of good reduction
for E . Let F be a number field such that E(F) contains a self-point PC of infinite
order. We fix the corresponding cyclic subgroup C of order N in E .

For any n>0, let Fn be the smallest Galois extension of F such that the absolute
Galois group Gal(F/F) acts via scalars on E[pn+1

]; hence Fn = F ·K pn+1 . Define
Hn to be the Galois group Gal(Fn/F), which will be considered as a subgroup of
PGL2(Z/pn+1Z).

For any n > 0 and any cyclic subgroup D of order pn+1, we construct a higher
self-point Q D in E(Fn) as follows. Let ψ : E → E/D be the isogeny associated
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to D. Put yD= (E/D, ψ(C))∈Y0(N ) and Q D=ϕE(yD). This is a higher self-point
“above PC”.

Again we may use the definition of the Hecke operator Tp to prove that, for all
n > 0 and D as before,

ap · Q D =
∑

D′⊃D

Q D′, (3)

where the sum runs over all cyclic subgroups D′ of order pn+2 in E containing D.
Furthermore we have

ap · PC =
∑

D

Q D, (4)

with the sum running over all cyclic subgroups D of order p in E .
Let V(n)= Vpn+1 be the Q[Hn]-module whose basis {eD}D as a vector space over

Q is in bijection with P1(Z/pn+1Z). We have a Hn-morphism defined by

ιn = ιC,n : V(n) −→ E(Fn)⊗Q, eD 7−→ Q D

Theorem 18. Let E/Q be an elliptic curve of conductor N. Let p be a prime
of good and ordinary reduction for E. Let F be a number field such that E(F)
contains a self-point PC of infinite order. Suppose that the representation ρF,p is
surjective. Then all higher self-points Q D constructed above are of infinite order
and they generate a group of rank pn

· (p+ 1).

Proof. By induction on n, using the formulae (3) and (4) and the hypothesis that p
is ordinary to guarantee that ap 6= 0. �

The above easy proof of the theorem breaks down if E has supersingular reduc-
tion at p, for ap is then almost always equal to 0.

Theorem 19. Let E/Q be a semistable elliptic curve of conductor N not equal to
30 or 210. Let p > N be a supersingular prime for E. Let F = KN . Suppose that
the representation ρF,p is surjective. Then all higher self-points Q D above a given
self-point PC are of infinite order, and they generate a group of rank pn

· (p+ 1).

Proof. We follow the proof of Theorem 12. Let ` > 2 be a prime dividing N .
We proved that the self-points are of infinite order by showing that when a certain
Atkin–Lehner involution is applied to one of the conjugates of xC , one obtains a
point `-adically close to the cusp∞ on X0(N )(Q`).

Let Q D be a higher self-point above the self-point PC . Since ρF,p is surjective,
the point Q D will be conjugate over KN to all other higher self-points above the
same self-point. Therefore without loss of generality we may assume that the cyclic
subgroup D on E corresponds to µ[pn+1

] in E(Q`). Then the point yD = (E ′,C ′)
is represented by a Tate curve over Q` with parameter qE ′ equal to the pn+1-st
power of qE .
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Let r be a divisor of N such that wr (yD) is the pair (E ′′, µ[N ]), with E ′′ the
Tate curve with parameter q1/r

E ′ . Using that p > N > r , we find that

|q1/r
E ′ |` = |qE |

pn+1/r
` 6 `−(p/r)·pn

6 `−1 < `−1/(`−1),

and hence Lemma 3 shows that ϕE(E
′′, µ[N ]) is of infinite order. Then as usual

Q D differs from ±ϕE(wr (yD)) by a torsion point. So Q D is of infinite order.
Since the representation Wpn is irreducible for PGL2(Z/pn+1Z), we can show by

induction that the rank of the group generated by higher self-points is dim(V(n))=
pn
· (p+ 1). �

Putting the previous two results together, we are able to show a corollary that
holds for all but finitely many primes p.

Corollary 20. Suppose E/Q is a semistable curve of conductor N not equal to 30
or 210. Let p be a prime such that p> N , (so it is of good reduction), and such that
ρ̄p :Gal(Q/Q)→ PGL2(Fp) is surjective. Let s be the rank of the group generated
by self-points in E(KN ). Then the higher self-points in E(K pn+1 N ) generate a
group of rank s · (p+ 1) · pn .

Proof. Take F = KN in the previous theorems. We only have to show the condition
that ρF,p is surjective. It is enough to show that ρ̄F,p :Gal(F/F)→ PGL2(Fp) has
all of PSL2(Fp) in its image, since the representation Vpn will still have the same
decomposition.

Let Hp be the group Gal(KN p/KN ), that is, the image of ρ̄F,p. It is equal to the
normal subgroup in Gal(K p/Q) ∼= PGL2(Fp) corresponding to the subextension
K p/KN ∩ K p. Since p > 11 when p > N , we have that PGL2(Fp) has only three
normal subgroups, namely itself, PSL2(Fp) and {1}. By the remark above, we only
have to exclude that Hp is not trivial.

If Hp was trivial, then p, dividing the order of PGL2(Fp), would have to divide
the order of G N , which is a subgroup of PGL2(Z/NZ). But if p > N , then p
cannot divide the order of PGL2(Z/NZ), except when p = 3 and N = 2, which
cannot occur as a conductor. �

8. Derivatives

Let E/Q be an elliptic curve of conductor N . Let p be an odd prime of ordinary,
either good or multiplicative, reduction. To treat the cases of higher self-points
discussed in the Sections 7.2 and 7.3 simultaneously, we choose now a base field F .
If E has good ordinary reduction at p, then F is any number field such that E(F)
contains a self-point PC of infinite order. If p divides N , then F is a number field
such that the absolute Galois group of F acts by scalars on E[N/p].

We will suppose from now on that ρF,p :Gal(F/F)→ PGL2(Zp) is surjective.
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We suppose that Fn is the smallest extension of F such that the Galois group
Hn = Gal(Fn/F) acts by scalars on E[pn+1

]. By assumption the map ρF,p induces
an isomorphism from Hn to PGL2(Z/pn+1Z). Also, this implies that E(Fn) has no
p-torsion elements.

Let O be the ring of integers in the unramified quadratic extension of Qp. Choos-
ing a basis of O over Zp and viewing each element u ∈ O× as the (Zp-linear)
multiplication by u on O, we get a homomorphism

9 : O×→ GL2(Zp)→ PGL2(Zp),

whose kernel is Z×p . The image of the composition

O×→ PGL2(Zp)→ PGL2(Z/pn+1Z)→ Hn

will be denoted by An . This is a cyclic group of order (p+1)·pn
=#P1(Z/pn+1Z). It

is the projective version of the nonsplit Cartan group in GL2(Z/pn+1Z). To simplify
notation, we will write F A

n for the subfield of Fn fixed by An .

Theorem 21. Let E/Q be an elliptic curve. Suppose E does not have potentially
good supersingular reduction for any prime of additive reduction. Let p be a prime
of either good ordinary or multiplicative reduction. Let F be the number field as
above and assume that ρF,p is surjective. Then we have # Selpn (E/F A

n ) > pn ,
where A is any nonsplit Cartan group in PGL2(Zp).

The proof of this theorem will be completed in Section 8.3.
Since there are no p-torsion points in E(Fn), as ρF,p is assumed to be surjec-

tive, there is an isomorphism H1(F A
n , E[pk

])→ H1(Fn, E[pk
])An induced by the

restriction map. This implies that the map

Selpn (E/F A
n )→ Selpn (E/Fn)

An

is injective. We conjecture that the elements in the Selmer group constructed in
Theorem 21 do not lie in the image of the Kummer map, but represent nontrivial
elements in the Tate–Shafarevich group X(E/F A

n ). If so, these classes in the Tate–
Shafarevich group will capitulate in the extension Fn/F A

n , since the elements of
the Selmer group in the theorem restrict to elements in the image of the higher self-
points inside Selpn (E/Fn). It would be very interesting to verify this conjecture
in some cases, but even for the smallest cases like p = 11 it seems completely
impossible to compute the classes explicitly. Nevertheless it is natural to make
this conjecture when comparing it to Kolyvagin’s conjecture on the nontriviality
of derivative classes of Heegner points (as investigated in [Jetchev et al. 2007]).

8.1. The field extension.

Lemma 22. The cyclic group An intersects trivially any Borel subgroup in Hn .
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Proof. We prove the statement that the image of 9 in PGL2(Zp) intersects trivially
any of its Borel subgroups B. Let L be the Zp-line in O such that B is the stabiliser
under the action of PGL2(Zp) on P1(Zp) viewed as the set of Zp-modules in O

generated by a unit. Let α ∈ O× be any element with a nontrivial image under 9.
Then α 6∈ Z×p cannot fix L . �

This implies in particular that any generator αn of An acts simply transitively
on the set P1(Z/pn+1Z).

Lemma 23. Let υ be either a place of ordinary reduction above p or an infinite
place or a place of potentially multiplicative reduction. Then the image of

ρ̄Fυ ,p : Gal(Fυ/Fυ)→ PGL2(Z/pn+1Z)

lies in a Borel subgroup of PGL2(Z/pn+1Z).

Proof. First suppose that υ divides p. Since E is of ordinary reduction at υ,
there is a cyclic subgroup of E[pn+1

] of order pn+1 that is fixed by the Galois
group Gal(Fυ/Fυ). This subgroup consists of all elements of E[pn+1

] with trivial
reduction over Fυ . Therefore the image of ρ̄Fυ ,p is contained in the stabiliser of
this point in P1(Z/pn+1Z), which is a Borel subgroup.

Now, let υ be a place of split multiplicative reduction for E . From the descrip-
tion of E as a Tate curve over Fυ , we see that there is subgroup isomorphic to
µ[pn+1

] inside E[pn+1
]. As before Gal(Fυ/Fυ) will fix this subgroup and hence

the image of ρ̄Fυ ,p is contained in a Borel subgroup.
Next, we suppose that υ is a place of bad reduction, but not of split multiplicative

type. Then by hypothesis, E has either nonsplit multiplicative or additive and
potentially multiplicative reduction. In both cases there exists a quadratic extension
L of Fυ , unramified in the first case and ramified in the second, such that E has split
multiplicative reduction over L; see [Serre 1972, page 312]. Hence E[pn+1

] can
be described as the set of ζ i

·a j , with ζ a primitive pn+1-st root of unity, a a pn+1-
st root of the Tate-parameter q and 06 i, j < pn+1; the action of σ ∈Gal(Fυ/Fυ)
is given by σ ∗(ζ i

·a j )= χL(σ ) ·σ(ζ )
i
·σ(a) j , where χL is the quadratic character

associated to L/Fυ . Therefore the subgroup generated by ζ is still fixed under
Gal(Fυ/Fυ).

Finally, we have to treat the case when υ is an infinite place. But for any p,
there is a cyclic subgroup of order pn+1 in E(R); hence the image is contained in
a Borel subgroup. �

Remark: We used here in a crucial way the assumption that p is a prime of
ordinary reduction. Certainly it will not hold for places of additive reduction that
are potentially supersingular.
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Proposition 24. Suppose that none of the primes of additive reduction for E are
potentially good supersingular. Then then extension Fn/F A

n is nowhere ramified.
Moreover all places above∞, p, and N split completely in this extension.

Proof. Since Fn is a subfield of F(E[p∞]), it is unramified outside∞, p, and N .
By the previous lemma, the decomposition group of a place υ dividing∞· p ·N in
F inside Hn is contained in a Borel. Since any Borel intersects An =Gal(Fn/F A

n )

trivially by Lemma 22, the places above∞· p · N in F A
n split completely. �

8.2. The A-cohomology of the Steinberg representation. Let

V ′n =
{

f : P1(Z/pn+1Z)→Q
∣∣ ∑

D f (D)= 0
}

be the Q[Hn]-module considered earlier in Section 7.2. It is a Q-vector space of
dimension m − 1 with m = (p+ 1) · pn . There is a natural lattice T ′n in V ′n that is
fixed by Hn , defined by

T ′n =
{

f : P1(Z/pn+1Z)→ Z
∣∣ ∑

D f (D)= 0
}
.

Lemma 25. H1(An, T ′n)= Z/mZ.

Proof. The An-fixed part of V ′n is trivial, since An acts transitively on P1(Z/pn+1Z):
A function f : P1(Z/pn+1Z)→Q that is fixed by An would necessarily be constant,
but then

∑
D f (D)= 0 implies that f = 0. Consider now the exact sequence

0→ T ′n→ V ′n→ V ′n/T ′n→ 0

of Hn-modules, which induces an isomorphism (V ′n/T ′n)
An → H1(An, T ′n) since

H1(Hn, V ′n) = 0 as V ′n is divisible. So we are looking to determine the An-fixed
functions in

V ′n/T ′n =
{

f : P1(Z/pn+1Z)→ Q/Z
∣∣ ∑

D f (D)= 0
}
.

Such a function must be constant, since An acts transitively. Say f (D)= f0. Then
m · f0 = 0, so f0 ∈ (1/m)Z gives the result. �

Proposition 26. If U is any lattice in V ′n fixed by Hn , then # H1(An,U )= m.

Proof. The lattice U is contained in a scaled version of T ′n with finite index, say
0→ U → T ′n → Z → 0. Since the Herbrand quotient2 satisfies h(An, Z) = 1
for the finite An-module Z , we have # H1(An,U ) = h(An,U ) = h(An, T ′n) =
# H1(An, T ′n)= m. �

It is not true in general that H1(An,U ) is cyclic. For n = 0, it can have up to three
cyclic factors.

2We set h(G, A)= # H1(G, A)/# H2(G, A) for a finite cyclic group G acting on a G-module A.
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8.3. Proof of Theorem 21. We have an injection

ι : V ′n→ E(Fn)⊗Q, f 7→
∑

D f (D) · Q D,

where Q D is the higher self-point constructed in Sections 7.2 and 7.3. Let Sn be
the saturated group generated by the higher self-points in E(Fn), that is,

Sn =
{

P ∈ E(Fn)
∣∣ there is a k > 0 such that k · P ∈ Z[Hn] · Q D

}
.

By definition all torsion points in E(Fn) belong to Sn; moreover we have

0→ E(Fn)tors→ Sn→Un→ 0,

where Un can be identified as a Hn-stable lattice in the image of ι. Because there
are no An-fixed elements in Un , we find

0−→ H1(An, E(Fn)tors)−→ H1(An, Sn)−→ H1(An,Un)

−→ H2(An, E(Fn)tors)−→ H2(An, Sn)−→ 0.

Since the Herbrand quotient h(An, E(Fn)tors) is trivial, we find

# H1(An, Sn)= # H1(An,Un) · # H1(An, Sn)

> # H1(An,Un)= m = (p+ 1) · pn

by Proposition 26. Note also that since E(Fn) has no p-torsion points, we know
that # H1(An, Sn)[pn

] = # H1(An,Un)[pn
] = pn . Consider the natural inclusion

of Sn into E(Fn). The cokernel of this inclusion Yn is a free Z-module. The long
exact sequence

0−→ E(F A
n )tors −→ E(F A

n )−→ Yn
An −→ H1(An, Sn)−→ H1(An, E(Fn)) (5)

shows that Yn
An has the same rank as E(F A

n ).
Composing the last map in the above sequence with the inflation map will be

called the derivation map

∂n : H1(An, Sn) � H1(An, E(Fn))�
inf
� H1(F A

n , E).

Since Sn has no p-torsion elements, we can identify the pn-torsion part of the
source with ( Sn

pn Sn

)An ∼=
� H1(An, Sn)[pn

] ,

and therefore we call the image of ∂n the derived classes of higher self-points.

Lemma 27. The image of ∂n is contained in X(E/F A
n ).



Self-points on elliptic curves 313

Proof. Let κ be the lift of an element in the image of ∂n under the map

H1(F A
n , E[m′])−→ H1(F A

n , E)[m′]

for a sufficiently large m′. Since the extension Fn/F A
n is nonramified at a place

υ outside the set 6 of places in F A
n above p, N or ∞, the restriction of κ to

H1(F A
n,υ, E[m′]) will lie in H1

f (F
A

n , E[m′]). Now for any place υ in 6, the place υ
splits completely in extension Fn/F A

n by Proposition 24. Therefore the restriction
of κ to H1(F A

n,υ, E)[m′] is trivial since it comes from the inflation

H1(Fn/F A
n , E(Fn))−→ H1(F A

n , E).

Hence κ belongs to the Selmer group within H1(F A
n , E[m′]). �

We can now end the proof of Theorem 21. Denote by s the minimal number of
generators of the kernel of ∂n . From the long exact sequence (5), we see that the
rank of Yn

An is at least s. So, if ∂n is not injective, then rank(E(F A
n )) is positive.

So either the image of ∂ , lifted to the Selmer group, will contribute pn elements or
else E(F A

n ) will give rise to a copy of Z/pnZ in Selpn (E/F A
n ). �

We add here a comment on the case when E has supersingular reduction at p.
It turns out that construction of derivative classes in H1(F A

n , E) using higher self-
points works the same, provided that the higher self-points are of infinite order.
The main difference is that the cohomology classes do not belong to the Tate–
Shafarevich group. In fact, under the assumption that the derivative map is not
trivial, they will provide classes that are orthogonal to elements from the Selmer
group and could be used to bound the Selmer group from above, just like Koly-
vagin’s classes built from Heegner points. Unfortunately we do not know a way
of proving the assumption; hence these derivative classes cannot be used to say
something about the Selmer group.

8.4. Derivative of self-points. Besides constructing derivative classes of higher
self-points, we can also produce cohomology classes from self-points. We only
sketch here the results whose proofs are similar to the previous sections.

Let E/Q be an elliptic curve of conductor N . Assume for simplicity that N = p
is prime. Put K = K p. It is known that ρp is surjective; for more details see
[Delaunay and Wuthrich 2008]. So the Galois group G=Gal(K/Q) is isomorphic
to PGL2(Fp). Let A be any cyclic subgroup of order p+ 1 in G.

Theorem 28. There is map ∂ to the Tate–Shafarevich group X(E/K A) from a
group of order at least p + 1. If r is the difference of the rank of E(Q(C)) and
E(Q), then

# Selp+1(E/K A)> (p+ 1)r · #E(Q)[p+ 1].
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As before we consider the saturation of the self-points S in E(K ). We know that S
modulo its torsion part is a lattice U in the Steinberg representation of PGL2(Fp).
As we have seen in Section 8.2, the cohomology group H1(A,U ) will have p+ 1
elements. In [Delaunay and Wuthrich 2008, Section 4], we computed the torsion
subgroup of E(K ). Using this we obtain that E(K A)tors = E(Q)tors and

H1(A, E(K )tors)= H2(A, E(K )tors)=

{
Z/2Z,

0,

the nontrivial case occurring exactly when E is one of the curves 17a2, 17a3, 17a4
or any Neumann–Setzer curve. As before, this shows that H1(A, S) has either p+1
or 2 (p+ 1) elements. The derivative map is again

∂ : H1(A, S)−→ H1(A, E(K ))−→ H1(K A, E),

and its image is in the Tate–Shafarevich group X(E/K A). Denote by Y the quo-
tient of E(K ) by S. Then ker ∂ is the quotient of Y A by E(K A). If this map ∂ is not
injective, then there is a y ∈ Y G , lifting to a point of infinite order Q ∈ E(K ), such
that Q does not belong to E(K A) but a nonzero multiple of it does. So either ∂ is
surjective or there are points of infinite order defined over K A that only become
divisible in E(K ).

We should add that the control theorem for the Selmer group is not necessarily
perfect; the kernel of Selp+1(E/K A)→ Selp+1(E/K ) can be of order 1 or 2.

It is also worth adding another particular property of K A: the L-series of E
over K A is the product of

∏
ρ L(E, ρ, s), where ρ runs over all distinct irreducible

representations of PGL2(Fp) except the Steinberg representation and the nontrivial
1-dimensional representation. It is not known whether this L-series admits analytic
continuation.
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