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We show that the universal unitary completion of certain locally algebraic rep-
resentation of G := GL2(Qp) with p > 2 is nonzero, topologically irreducible,
admissible and corresponds to a 2-dimensional crystalline representation with
nonsemisimple Frobenius via the p-adic Langlands correspondence for G.

1. Introduction

Let G := GL2(Qp) and B be the subgroup of upper-triangular matrices in G. Let
L be a finite extension of Qp.

Theorem 1.1. Assume that p> 2, let k ≥ 2 be an integer, and let χ :Q×p → L× be
a smooth character with χ(p)2 pk−1

∈ o×L . Assume there exists a G-invariant norm
‖·‖ on (IndG

B χ ⊗χ | · |
−1)⊗Symk−2 L2. Then the completion E is a topologically

irreducible, admissible Banach space representation of G. If we let E0 be the unit
ball in E , then

Vk,2χ(p)−1 ⊗ (χ |χ |)∼= L ⊗oL lim
←−

V(E0/$ n
L E0),

where V is Colmez’s Montreal functor and Vk,2χ(p)−1 is a 2-dimensional irreducible
crystalline representation of GQp , the absolute Galois group of Qp, with Hodge–
Tate weights (0, k− 1) and the trace of crystalline Frobenius equal to 2χ(p)−1.

As we explain in Section 5, the existence of such G-invariant norm follows from
[Colmez 2008]. Our result addresses [Berger and Breuil 2007, remarque 5.3.5]. In
other words, the completion E fits into the p-adic Langlands correspondence for
GL2(Qp).

The idea is to approximate (IndG
B χ⊗χ | · |

−1)⊗Symk−2 L2 with representations
(IndG

B χδx ⊗ χδx−1 | · |
−1)⊗ Symk−2 L2, where δx : Q×p → L× is an unramified

character with δx(p)= x ∈ 1+ pL . If x2
6= 1, then χδx 6= χδx−1 and the analogue

of Theorem 1.1 is a result of Berger and Breuil [2007]. This allows to deduce
admissibility. This approximation process relies on the results of [Vignéras 2008].

MSC2000: primary 22E50; secondary 11S37, 11S20.
Keywords: p-adic Langlands, universal completion, unitary Banach space representation.
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Using Colmez’s functor V, we may then transfer the question of irreducibility to
the Galois side. Here, we use the fact that for p> 2 the representation Vk,±2p(k−1)/2

sits in the p-adic family studied by Berger, Li and Zhu [2004].

2. Notation

We fix an algebraic closure Qp of Qp. We let val be the valuation on Qp such that
val(p)= 1, and we set |x | := p−val(x). Let L be a finite extension of Qp contained
in Qp, let oL be the ring of integers of L , let $L be a uniformizer, and let pL be
the maximal ideal of oL . Given a character χ : Q×p → L×, we consider χ as a
character of the absolute Galois group GQp of Qp via the local class field theory
by sending the geometric Frobenius to p.

Let G := GL2(Qp), and let B be the subgroup of upper-triangular matrices.
Given two characters χ1, χ2 :Q

×
p → L×, we consider χ1⊗χ2 as a character of B

sending a matrix
(

a b
0 d

)
to χ1(a)χ2(d). Let Z be the centre of G. Define

K := GL2(Zp), Km :=

(
1+ pmZp pmZp

pmZp 1+ pmZp

)
for m ≥ 1,

I :=
(

Z×p Zp

pZp Z×p

)
, Im :=

(
1+ pmZp pm−1Zp

pmZp 1+ pmZp

)
for m ≥ 1.

Let K0 be the G-normalizer of K , so that K0= K Z , and let K1 be the G-normalizer
of I , so that K1 is generated as a group by I and5 :=

( 0 1
p 0
)
. We note that if m≥ 1,

then Km is normal in K0 and Im is normal in K1. We denote s :=
(

0 1
1 0

)
.

3. Diagrams

Let R be a commutative ring, (typically R = L , oL or oL/p
n
L ). By a diagram D of

R-modules, we mean the data (D0, D1, r), where D0 is an R[K0]-module, D1 is an
R[K1]-module and r : D1→ D0 is a K0∩K1 = I Z -equivariant homomorphism of
R-modules. A morphism α between two diagrams D and D′ is given by (α0, α1),
where α0 : D0→ D′0 is a morphism of R[K0]-modules, α1 : D1→ D′1 is a morphism
of R[K1]-modules, and the diagram

D0
α0 // D′0

D1

r

OO

α1 // D′1

r ′

OO
(1)

commutes in the category of R[I Z ]-modules. The condition (1) is important, since
one can have two diagrams of R-modules D and D′, such that D0 ∼= D′0 as R[K0]-
modules and D1 ∼= D′1 as R[K1]-modules, but D 6∼= D′ as diagrams. The diagrams
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of R-modules with the above morphisms form an abelian category. To a diagram D
one may associate a complex

c-IndG
K1

D1⊗ δ
∂
−→ c-IndG

K0
D0 (2)

of G-representations, where δ : K1 → R× is the character δ(g) := (−1)val(det g);
c-IndG

Ki
Di denotes the space of functions f : G → Di such that f (kg) = k f (g)

for k ∈ Ki and g ∈ G, and f is supported only on finitely many cosets Ki g. To
describe ∂ , we note that Frobenius reciprocity gives

HomG(c-IndG
K1

D1⊗ δ, c-IndG
K0

D0)∼= HomK1(D1⊗ δ, c-IndG
K0

D0);

now IndK1
I Z D0 is a direct summand of the restriction of c-IndG

K0
D0 to K1, and

HomK1(D1⊗ δ, IndK1
I Z D0)∼= HomI Z (D1, D0),

since δ is trivial on I Z . Composition of the maps above yields a map

HomI Z (D1, D0)→ HomG(c-IndG
K1

D1⊗ δ, c-IndG
K0

D0).

We let ∂ be the image of r . We define H0(D) to be the cokernel of ∂ and H1(D)
to be the kernel of ∂ . So we have this exact sequence of G-representations:

0→ H1(D)→ c-IndG
K1

D1⊗ δ
∂
→ c-IndG

K0
D0→ H0(D)→ 0 (3)

Further, if r is injective then one may show that H1(D) = 0; see [Vignéras 2008,
Proposition 0.1]. To a diagram D one may associate a G-equivariant coefficient
system V of R-modules on the Bruhat–Tits tree; see [Paškūnas 2004, Section 5].
Then H0(D) and H1(D) compute the homology of the coefficient system V, and
the map ∂ has a natural interpretation. Assume that R = L (or any field of char-
acteristic 0), and let π be a smooth irreducible representation of G on an L-vector
space, so that for all v ∈ π the subgroup {g ∈ G : gv = v} is open in G. Since
the action of G is smooth, there exists an m ≥ 0 such that π Im 6= 0. To π we
may associate a diagram D := (π Im ↪→ πKm ). As a very special case of a result
by Schneider and Stuhler [1997, Theorem V.1; 1993, Section 3], we obtain that
H0(D)∼= π .

We are going to compute such diagrams D, attached to smooth principal series
representations of G on L-vector spaces. Given smooth characters θ1, θ2 :Z

×
p→ L×

and λ1, λ2 ∈ L×, we define a diagram D(λ1, λ2, θ1, θ2) as follows. Let c≥ 1 be an
integer such that θ1 and θ2 are trivial on 1+pcZp. Set Jc := (K∩B)Kc= (I∩B)Kc,
so that Jc is a subgroup of I . Let θ : Jc→ L× be the character θ

(
a b
c d

)
:=θ1(a)θ2(d).

Let D0 := IndK
Jc
θ , and let p ∈ Z act on D0 by a scalar λ1λ2, so that D0 is a

representation of K0. Set D1 := D Ic
0 , so that D1 is naturally a representation of I Z .
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We are going to put an action of 5 on D1, so that D1 is a representation of K1. Let

V1 := { f ∈ D1 : Supp f ⊆ I }, Vs := { f ∈ D1 : Supp f ⊆ Jcs I }. (4)

Since I contains K1, we have Jcs I = (B ∩ K )s I = I s I ; hence D1 = V1⊕Vs . For
all f1 ∈ V1 and fs ∈ Vs , we define 5 · f1 ∈ Vs and 5 · fs ∈ V1 such that

[5· f1](sg) :=λ1 f1(5
−1g5), [5· fs](g)=λ2 fs(s5g5−1) for all g ∈ I. (5)

Every f ∈ D1 can be written uniquely as f = f1+ fs , with f1 ∈ V1 and fs ∈ Vs ,
and we define 5 · f :=5 · f1+5 · fs .

Lemma 3.1. Equation (5) defines an action of K1 on D1. We denote the diagram
D1 ↪→ D0 by D(λ1, λ2, θ1, θ2). Let π := IndG

B χ1⊗χ2 be a smooth principal series
representation of G, with

χ1(p)= λ1, χ2(p)= λ2, χ1|Z×p = θ1, χ2|Z×p = θ2.

There exists an isomorphism of diagrams D(λ1, λ2, θ1, θ2) ∼= (π
Ic ↪→ πKc). In

particular, we have a G-equivariant isomorphism H0(D(λ1, λ2, θ1, θ2))∼= π .

Proof. We note that p ∈ Z acts on π by a scalar λ1λ2. Since G = BK , we
have π |K ∼= IndK

B∩K θ , and so the map f 7→ [g 7→ f (g)] induces an isomorphism
ι0 : π

Kc ∼= IndK
Jc
θ = D0. Let

F1 := { f ∈ π : Supp f ⊆ B I } and Fs := { f ∈ π : Supp f ⊆ Bs I }.

Iwasawa decomposition gives G = B I ∪ Bs I ; hence π = F1 ⊕Fs . If f1 ∈ F1,
then Supp(5 f1)= (Supp f1)5

−1
⊆ B I5−1

= Bs I . Moreover,

[5 f1](sg)= f1(sg5)= f1(s5(5−1g5))

= χ1(p) f1(5
−1g5) for all g ∈ I.

(6)

Similarly, if fs ∈ Fs , then Supp(5 fs)= (Supp fs)5
−1
⊆ Bs I5−1

= B I , and

[5 fs](g)= f1(g5)= f1((5s)s(5−1g5))

= χ2(p) fs(s(5−1g5)) for all g ∈ I.
(7)

Now π Ic =FIc
1 ⊕FIc

s ⊂ π
Kc . Let ι1 be the restriction of ι0 to π Ic . Then it is imme-

diate that ι1(F
Ic
1 )= V1 and ι1(FI1

s )= Vs , where V1 and Vs are as above. Moreover,
if f ∈ D1 and5· f is given by (5), then5· f = ι1(5ι−1

1 ( f )). Since K1 acts on π Ic ,
Equation (5) defines an action of K1 on D1 such that ι1 is K1-equivariant. Hence,
(ι0, ι1) is an isomorphism of diagrams (π Ic ↪→ πKc)∼= (D1 ↪→ D0). �
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4. The main result

Lemma 4.1. Let U be a finite dimensional L-vector space with subspaces U1,U2

such that U =U1⊕U2. For x ∈ L define a map φx :U→U by φx(v1+v2)= xv1+v2

for all v1 ∈ U1 and v2 ∈ U2. Let M be an oL -lattice in V . Then there exists an
integer a ≥ 1 such that φx(M)= M for x ∈ 1+ pa

L .

Proof. Let N denote the image of M in U/U2. Then N contains (M ∩U1)+U2,
and both are lattices in U/U2. Define a ≥ 1 to be the smallest integer such that
p−a

L (M ∩U1)+U2 contains N . Suppose that x ∈ 1+ pa
F and v ∈ M . We may

write v = λv1 + v2, with v1 ∈ M ∩ U1, v2 ∈ U2 and λ ∈ p−a
L . Now φx(v) =

v+λ(x−1)v1 ∈ M . Hence we get φx(M)⊆ M and φx−1(M)⊆ M . Applying φx−1

to the first inclusion gives M ⊆ φx−1(M). �

We fix an integer k ≥ 2 and set W := Symk−2 L2, an algebraic representa-
tion of G. Let π := π(χ1, χ2) := IndG

B χ1 ⊗ χ2 be a smooth principal series
L-representation of G. We say that π ⊗ W admits a G-invariant norm if there
exists a norm ‖·‖ on π ⊗W with respect to which π ⊗W is a normed L-vector
space such that ‖gv‖ = ‖v‖ for all v ∈ π ⊗W and g ∈ G.

Let c ≥ 1 be an integer such that both χ1 and χ2 are trivial on 1+ pcZp. Let D
be the diagram π Ic ⊗W ↪→ πKc ⊗W . Since H0(π

Ic ↪→ πKc) ∼= π , by tensoring
(2) with W we obtain H0(D)∼= π ⊗W . Assume that π ⊗W admits a G-invariant
norm ‖·‖, and set (π ⊗W )0 := {v ∈ π ⊗W : ‖v‖ ≤ 1}. Then we may define a
diagram D= (D1 ↪→ D0) of oL -modules by

D := ((π Ic ⊗W )∩ (π ⊗W )0 ↪→ (πKc ⊗W )∩ (π ⊗W )0).

In this case Vignéras [2008] has shown that the inclusion D ↪→ D induces a
G-equivariant injection H0(D) ↪→ H0(D) such that H0(D)⊗oL L = H0(D) and
H1(D)= 0. Moreover, H0(D) does not contain an oL -submodule isomorphic to L;
see [Vignéras 2008, Proposition 0.1]. Since H0(D) is an L-vector space of count-
able dimension, this implies that H0(D) is a free oL -module. By tensoring (2) with
oL/p

n
L , we obtain

H0(D)⊗oL oL/p
n
L
∼= H0(D⊗oL oL/p

n
L). (8)

Proposition 4.2. Let π = π(χ1, χ2) be a smooth principal series representation,
assume that π ⊗W admits a G-invariant norm, and let D be as above. Then there
exists an integer a ≥ 1 such that for all x ∈ 1+ pb

F , with b ≥ a, there exists both
a finitely generated oL [G]-module M in π(χ1δx−1, χ2δx)⊗ W that is free as an
oL -module, and a G-equivariant isomorphism

M ⊗oL oL/p
b
L
∼= H0(D)⊗oL oL/p

b
L ,

where δx :Q
×
p → L× is an unramified character with δx(p)= x.
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Proof. Apply Lemma 4.1 to U = D1, U1 = V1⊗W , U2 = Vs ⊗W and M = D1,
where V1 and Vs are given by (4). We get an integer a ≥ 1 such that φx(D1)=D1

for all x ∈ 1+ pa
L . It is immediate that φx is I Z -equivariant. We define a new

action ? of5 on D1 by5?v := φx(5φ
−1
x (v)). This gives us a new diagram D(x),

so that D(x)0 = D0 as a representation of K0, D(x)1 = D1 as a representation of
I Z , the I Z -equivariant injection D(x)1 ↪→ D(x)0 is equal to the I Z -equivariant
injection D1 ↪→ D0, but the action of 5 on D1 is given by ?, (here by = we really
mean an equality, not an isomorphism). If f1 ∈ V1 and fs ∈ Vs then

5? ( f1⊗w)= f ′s ⊗ (5w), 5 ? ( fs ⊗w)= f ′1⊗ (5w) for all w ∈W,

where f ′s ∈ Vs , f ′1 ∈ V1 and for all g ∈ I we have

f ′s (sg)= x−1
[5 · f1](sg)= x−1λ1 f1(5

−1g5), (9)

f ′1(g)= x[5 · fs](g)= xλ2 fs(s5g5−1). (10)

Hence, we have an isomorphism of diagrams D(x) ∼= D(x−1λ1, xλ2, θ1, θ2), and
so Lemma 3.1 gives H0(D(x))∼=π(χ1δx−1, χ2δx)⊗W . Now let b≥a be an integer
and suppose that x ∈ 1+ pb

L . Since 5 ·D1 = φx(D1)= φ
−1
x (D1)= D1, we get

5? (D0 ∩ D1)=5?D1 = φx(5φ
−1
x (D1))= D1.

So if we let D(x)0 := D0 and D(x)1 := D(x)0 ∩ D(x)1, where 5 acts on D(x)1
by ?, then the diagram D(x) := (D(x)1 ↪→D(x)0) is an integral structure in D(x)
in the sense of [Vignéras 2008]. The results of Vignéras cited above imply that
M := H0(D(x)) is a finitely generated oL [G]-submodule of π(χ1δx−1, χ2δx)⊗W ,
which is free as an oL -module, and M ⊗oL L ∼= π(χ1δx−1, χ2δx)⊗W . Moreover,
since φx is the identity modulo pb

L , we have 5 ? v ≡ 5 · v (mod $ b
L D1) for all

v ∈D1, and so the identity map D(x)0→D0 induces an isomorphism of diagrams
D(x)⊗oL oL/p

b
L
∼=D⊗oL oL/p

b
L . Now (8) gives H0(D)⊗oL oL/p

b
L
∼=M⊗oL oL/p

b
L .
�

Let k ≥ 2 be an integer and ap ∈ pL . Following [Breuil 2003] we define a
filtered ϕ-module Dk,ap as the following data: a 2-dimensional L-vector space D
with basis {e1, e2}, an L-linear automorphism ϕ : D→ D given by

ϕ(e1)= pk−1e2 and ϕ(e2)=−e1+ ape2,

and a decreasing filtration (Fili D)i∈Z by L-subspaces such that if i ≤ 0 then
Fili D= D, if 1≤ i ≤ k−1 then Fili D= Le1, and if i ≥ k then Fili D= 0. We set
Vk,ap :=Homϕ,Fil·(Dk,ap , Bcris). Then Vk,ap is a 2-dimensional L-linear absolutely
irreducible crystalline representation of GQp := Gal(Qp/Qp) with Hodge–Tate
weights 0 and k−1. We denote by χk,ap the trace character of Vk,ap . Since GQp is
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compact and the action is continuous, GQp stabilizes some oL -lattice in Vk,ap , and
so χk,ap takes values in oL .

Proposition 4.3. Let m be the largest integer such that m ≤ (k − 2)/(p− 1). Let
ap, a′p ∈ pL , and assume that val(ap) > m and val(a′p) > m. Let n ≥ em be an
integer, where e := e(L/Qp) is the ramification index. Suppose ap≡a′p (mod pn

L).
Then χk,ap(g)≡ χk,a′p(g) (mod pn−em

L ) for all g ∈ GQp .

Proof. This a consequence of a result of Berger, Li and Zhu [Berger et al. 2004],
where the authors construct GQp -invariant lattices Tk,ap in Vk,ap . The assumption
ap ≡ a′p (mod pn

L) implies Tk,ap ⊗oL oL/p
n−em
L
∼= Tk,a′p ⊗oL oL/p

n−em
L ; see their

[Remark 4.1.2(2)]. This implies the congruences of characters. �

Let k ≥ 2 be an integer and choose λ1, λ2 ∈ L such that λ1 + λ2 = ap and
λ1λ2 = pk−1 (enlarge L if necessary). Assume val(λ1)≥ val(λ2) > 0. Let χ1, χ2 :

Q×p→ L× be unramified characters, with χ1(p)= λ
−1
1 and χ2(p)= λ

−1
2 . Let M be

a finitely generated oL [G]-module in π(χ1, χ2|·|
−1)⊗W , where W :=Symk−2 L2.

In the case λ1 6=λ2, Berger and Breuil have shown that the unitary L-Banach space
representation

Ek,ap := L ⊗oL lim
←−

M/$ n
L M

of G is nonzero, topologically irreducible, admissible in the sense of [Schneider
and Teitelbaum 2002], and contains π(χ1, χ2| · |

−1)⊗W as a dense G-invariant
subspace [Berger and Breuil 2007, Section 5.3]. Moreover, the dual of Ek,ap is
isomorphic to the representation of Borel subgroup B constructed from the (ϕ, 0)-
module of Vk,ap .

Let RepoL
G be the category of finite length oL [G]-modules with a central char-

acter such that the action of G is smooth (that is, the stabilizer of a vector is an open
subgroup of G). Let RepoL

GQp be the category of continuous representations of
GQp on oL -modules of finite length. Colmez [2008, IV.2.14] has defined an exact
covariant functor V : RepoL

G → RepoL
GQp . The constructions in [Berger and

Breuil 2007] and [Colmez 2008] are mutually inverse to one another. This means
if we assume λ1 6= λ2 and let M be as above, then

Vk,ap
∼= L ⊗oL lim

←−
V(M/$ n

L M). (11)

That M/$ n
L M is an oL [G]-module of finite length follows from [Berger 2005,

Theorem A].

Theorem 4.4. Assume that p > 2. Let λ = ±p(k−1)/2, and let χ : Q×p → L×

be a smooth character with χ(p)= λ−1. Assume there exists a G-invariant norm
‖·‖ on π(χ, χ | · |−1) ⊗ W , where W := Symk−2 L2. Let E be the completion
of π(χ, χ | · |−1) ⊗ W with respect to ‖·‖. Then E is a nonzero, topologically
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irreducible, admissible Banach space representation of G. If we let E0 be the unit
ball in E , then Vk,2λ⊗ (χ |χ |)∼= L ⊗oL lim

←−
V(E0/$ n

L E0).

Proof. Since the character χ |χ | is integral, by twisting we may assume that χ is
unramified. We denote the diagram

π(χ, χ | · |−1)I1 ⊗W ↪→ π(χ, χ | · |−1)K1 ⊗W

by D = (D1 ↪→ D0). Let D = (D1 ↪→ D0) be the diagram of oL -modules with
D1 = D1 ∩ E0 and D0 = D0 ∩ E0. Let a ≥ 1 be the integer Proposition 4.2 gives.
For each j ≥ 0, we fix x j ∈ 1+ p

a+ j
L with x j 6= 1 and a finitely generated oL [G]-

submodule M j in π(χδx−1
j
, χδx j | · |

−1)⊗W (which is then a free oL -module) such
that

H0(D)⊗oL oL/p
a+ j
L
∼= M j ⊗oL oL/p

a+ j
L .

This is possible by Proposition 4.2. To ease the notation we set M := H0(D).
Let ap( j) := λx−1

j + λx j , let ap := 2λ, and let m be the largest integer such that
m ≤ (k− 2)/(p− 1). Since p > 2, x j + x−1

j is a unit in oL , we have val(ap( j))=
val(ap) = (k − 1)/2 > m. (Here we really need p > 2.) Moreover, we have
ap ≡ ap( j) (mod p

j+a+em
L ), where e := e(L/Qp) is the ramification index. Now

since x j 6= 1 we get that λx j 6=λx−1
j , and hence we may apply the results of Berger

and Breuil to π(χδx−1
j
, χδx j | · |

−1)⊗W . By (11),

Tk,ap( j) := lim
←−

V(M j/$
n
L M j )

is a GQp -invariant lattice in Vk,ap( j). Since M⊗oL oL/p
a+ j
L
∼= M j ⊗oL oL/p

a+ j
L we

get

V(M/$ a+ j
L M)∼= V(M j/$

a+ j
L M j )∼= Tk,ap( j)⊗oL oL/p

a+ j
L . (12)

Set V := L ⊗oL lim
←−

V(M/$ n
L M). Then (12) implies that V is a 2-dimensional

L-vector space. Let χV be the trace character of V . Then it follows from (12)
that χV ≡ χk,ap( j) (mod p

a+ j
L ). Since ap ≡ ap( j) (mod p

a+ j+em
L ), Proposition

4.3 says that χk,ap ≡ χk,ap( j) (mod p
a+ j
L ). We obtain χV ≡ χk,ap (mod p

a+ j
L ) for

all j ≥ 0. This gives us χV = χk,ap . Since Vk,ap is irreducible, the equality of
characters implies V ∼= Vk,ap .

Set M̂ := lim
←−

M/$ n
L M , and E ′ := M̂ ⊗oL L . Since M is a free oL -module, we

get an injection M ↪→ M̂ . In particular, E ′ contains π(χ, χ |·|−1)⊗W as a dense G-
invariant subspace. We claim that E ′ is a topologically irreducible and admissible
G-representation. Now Theorem 4.1.1 and Proposition 4.1.4 of [Berger et al. 2004]
say that the semisimplification of Tk,ap( j)⊗oL kL is irreducible if p+ 1 - k− 1 and
is otherwise isomorphic to
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µ√
−1 0

0 µ
−
√
−1

)
⊗ω(k−1)/(p+1),

where µ
±
√
−1 is the unramified character sending arithmetic Frobenius to ±

√
−1,

and ω is the cyclotomic character. Then [Berger 2005, Theorem A] implies that if
p+ 1 - k− 1, then M j ⊗oL kL is an irreducible supersingular representation of G,
and if p + 1 | k − 1, then the semisimplification of M j ⊗oL kL is a direct sum
of two irreducible principal series. The irreducibility of principal series follows
from [Barthel and Livné 1994, Theorem 33], since

√
−1 6= ±1, as p > 2. Since

M ⊗oL kL ∼= M j ⊗oL kL , we get that M ⊗oL kL is an admissible representation
of G (so that for every open subgroup U of G, the space of U-invariants is finite
dimensional). This implies that E ′ is admissible.

Suppose that E1 is a closed G-invariant subspace of E ′ with E ′ 6= E1. Let
E0

1 := E1 ∩ M̂ . We obtain a G-equivariant injection E0
1 ⊗oL kL ↪→ M ⊗oL kL . If

E0
1 ⊗oL kL = 0 or M ⊗oL kL , then Nakayama’s lemma gives E0

1 = 0 or E0
1 = M̂ ,

respectively. If p + 1 - k − 1, then M ⊗oL kL is irreducible and we are done. If
p+1 |k−1, then E0

1⊗oL kL is an irreducible principal series, and so V(E0
1⊗oL kL) is

one-dimensional [Colmez 2008, IV.4.17]. But then V1 := L⊗oL lim
←−

V(E0
1/$

n
L E0

1)

is a 1-dimensional subspace of Vk,ap stable under the action of GQp . Since Vk,ap is
irreducible we obtain a contradiction.

Since E ′ is a completion of π(χ, χ | · |−1)⊗W with respect to a finitely gen-
erated oL [G]-submodule, E ′ is in fact the universal completion; see for example
[Emerton 2005, Proposition 1.17]. In particular, we obtain a nonzero G-equivariant
map of L-Banach space representations E ′→ E , but since E ′ is irreducible and
π(χ, χ | · |−1)⊗W is dense in E , this map is an isomorphism. �

Corollary 4.5. Assume that p > 2, and let χ :Q×p → L× be a smooth charac-
ter such that χ(p)2 pk−1

= 1. Assume that there is a G-invariant norm ‖·‖ on
π(χ, χ | · |−1) ⊗ W , where W := Symk−2 L2. Then every bounded G-invariant
oL -lattice in π(χ, χ | · |−1)⊗W is finitely generated as an oL [G]-module.

Proof. The existence of a G-invariant norm implies that the universal completion is
nonzero. It follows from Theorem 4.4 that the universal completion is topologically
irreducible and admissible. The assertion follows from the proof of [Berger and
Breuil 2007, Corollary 5.3.4]. �

For the purposes of [Paškūnas 2008] we record the following corollary to the
proof of Theorem 4.4.

Corollary 4.6. Assume p > 2, and let χ :Q×p → L× be a smooth character such
that χ2(p)pk−1 is a unit in oL . Assume there exists a unitary L-Banach space
representation (E, ‖·‖) of G containing (IndG

B χ ⊗ χ | · |
−1) ⊗ Symk−2 L2 as a

dense G-invariant subspace and satisfying ‖E‖⊆ |L|. Then there exists x ∈ 1+pL
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with x2
6= 1 and a unitary completion Ex of (IndG

B χδx⊗χδx−1 | · |
−1)⊗Symk−2 L2

such that E0
⊗oL kL ∼= E0

x ⊗oL kL , where E0
x is the unit ball in Ex and E0 is the

unit ball in E.

Proof. Let π := IndG
B χ ⊗ χ | · |

−1 and M := (π ⊗W )∩ E0. Now M ∩$L E0
=

(π ⊗ W ) ∩ $L E0
= $L M . So ι : M/$L M ↪→ E0/$L E0 is a G-equivariant

injection. We claim that ι is a surjection. Let v ∈ E0. Since π ⊗ W is dense
in E , there exists a sequence {vn}n≥1 in π⊗W such that lim vn = v. We also have
lim‖vn‖ = ‖v‖. Since ‖E‖ ⊆ |L| ∼= Z, there exists an m ≥ 0 such that vn ∈ M for
all n ≥ m. This implies the surjectivity of ι. So we get M ⊗oL kL ∼= E0

⊗oL kL .
By Corollary 4.5 we may find u1, . . . , un ∈ M that generate M as an oL [G]-

module. Further, ui =
∑mi

j=1 vi j ⊗wi j with vi j ∈ π and wi j ∈ W . Since π is a
smooth representation of G, there exists an integer c ≥ 1 such that vi j is fixed by
Kc for all 1≤ i ≤ n and 1≤ j ≤ mi . Set

D :=
(
(π Ic ⊗W )∩M ↪→ (πKc ⊗W )∩M

)
, D :=

(
π Ic ⊗W ↪→ πKc ⊗W

)
and let M ′ be the image of H0(D) ↪→ H0(D) ∼= π ⊗W . It follows from (3) that
M ′ is generated by (πKc ⊗W ) ∩ M as an oL [G]-module. Hence, M ′ ⊆ M . By
construction (πKc ⊗W ) ∩ M contains u1, . . . un , and so M ⊆ M ′. In particular,
H0(D)⊗oL kL ∼= M ⊗oL kL . The claim follows from the proof of Theorem 4.4. �

5. Existence

Recent results of Colmez, which appeared after the first version of this note, im-
ply the existence of a G-invariant norm on (IndG

B χ ⊗ χ | · |
−1)⊗ Symk−2 L2 for

χ2(p)pk−1
∈ o×L , thus making our results unconditional. We briefly explain this.

We continue to assume that p>2, that k≥2 is an integer and that ap=2p(k−1)/2.
The representation Vk,ap of GQp sits in the p-adic family of Berger, Li and Zhu,
[2004, 3.2.5]. Moreover, all the other points in the family correspond to the crys-
talline representations with distinct Frobenius eigenvalues, to which the theory
of [Berger and Breuil 2007] applies. Hence [Colmez 2008, II.3.1 and IV.4.11]
imply that there exists an irreducible unitary L-Banach space representation 5 of
GL2(Qp) such that V(5) ∼= Vk,ap . If p ≥ 5 or p = 3 and k 6≡ 3 (mod 8) and
k 6≡ 7 (mod 8), the existence of such 5 also follows from [Kisin 2008]. It follows
from [Colmez 2008, VI.6.46] that the set of locally algebraic vectors 5alg of 5 is
isomorphic to

(IndG
B χ ⊗χ | · |

−1)⊗Symk−2 L2,

where χ :Q×p→ L× is an unramified character with χ(p)= p−(k−1)/2. The restric-
tion of the G-invariant norm of5 to5alg solves the problem. Also, if δ :Q×p→ L×

is a unitary character, then we also obtain a G-invariant norm on 5alg
⊗ δ ◦ det.
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