

# On some crystalline representations of $GL_2(\mathbb{Q}_p)$

Vytautas Paškūnas



# On some crystalline representations of $GL_2(\mathbb{Q}_p)$

Vytautas Paškūnas

We show that the universal unitary completion of certain locally algebraic representation of  $G := \operatorname{GL}_2(\mathbb{Q}_p)$  with p > 2 is nonzero, topologically irreducible, admissible and corresponds to a 2-dimensional crystalline representation with nonsemisimple Frobenius via the *p*-adic Langlands correspondence for *G*.

#### 1. Introduction

Let  $G := \operatorname{GL}_2(\mathbb{Q}_p)$  and *B* be the subgroup of upper-triangular matrices in *G*. Let *L* be a finite extension of  $\mathbb{Q}_p$ .

**Theorem 1.1.** Assume that p > 2, let  $k \ge 2$  be an integer, and let  $\chi : \mathbb{Q}_p^{\times} \to L^{\times}$  be a smooth character with  $\chi(p)^2 p^{k-1} \in \mathfrak{o}_L^{\times}$ . Assume there exists a *G*-invariant norm  $\|\cdot\|$  on  $(\operatorname{Ind}_B^G \chi \otimes \chi |\cdot|^{-1}) \otimes \operatorname{Sym}^{k-2} L^2$ . Then the completion *E* is a topologically irreducible, admissible Banach space representation of *G*. If we let  $E^0$  be the unit ball in *E*, then

$$V_{k,2\chi(p)^{-1}} \otimes (\chi|\chi|) \cong L \otimes_{\mathfrak{o}_L} \lim_{k \to \infty} \mathbf{V}(E^0/\varpi_L^n E^0),$$

where **V** is Colmez's Montreal functor and  $V_{k,2\chi(p)^{-1}}$  is a 2-dimensional irreducible crystalline representation of  $\mathfrak{G}_{\mathbb{Q}_p}$ , the absolute Galois group of  $\mathbb{Q}_p$ , with Hodge–Tate weights (0, k - 1) and the trace of crystalline Frobenius equal to  $2\chi(p)^{-1}$ .

As we explain in Section 5, the existence of such *G*-invariant norm follows from [Colmez 2008]. Our result addresses [Berger and Breuil 2007, remarque 5.3.5]. In other words, the completion *E* fits into the *p*-adic Langlands correspondence for  $GL_2(\mathbb{Q}_p)$ .

The idea is to approximate  $(\operatorname{Ind}_B^G \chi \otimes \chi |\cdot|^{-1}) \otimes \operatorname{Sym}^{k-2} L^2$  with representations  $(\operatorname{Ind}_B^G \chi \delta_x \otimes \chi \delta_{x^{-1}} |\cdot|^{-1}) \otimes \operatorname{Sym}^{k-2} L^2$ , where  $\delta_x : \mathbb{Q}_p^{\times} \to L^{\times}$  is an unramified character with  $\delta_x(p) = x \in 1 + \mathfrak{p}_L$ . If  $x^2 \neq 1$ , then  $\chi \delta_x \neq \chi \delta_{x^{-1}}$  and the analogue of Theorem 1.1 is a result of Berger and Breuil [2007]. This allows to deduce admissibility. This approximation process relies on the results of [Vignéras 2008].

MSC2000: primary 22E50; secondary 11S37, 11S20.

Keywords: p-adic Langlands, universal completion, unitary Banach space representation.

### Vytautas Paškūnas

Using Colmez's functor **V**, we may then transfer the question of irreducibility to the Galois side. Here, we use the fact that for p > 2 the representation  $V_{k,\pm 2p^{(k-1)/2}}$  sits in the *p*-adic family studied by Berger, Li and Zhu [2004].

#### 2. Notation

We fix an algebraic closure  $\overline{\mathbb{Q}}_p$  of  $\mathbb{Q}_p$ . We let val be the valuation on  $\overline{\mathbb{Q}}_p$  such that  $\operatorname{val}(p) = 1$ , and we set  $|x| := p^{-\operatorname{val}(x)}$ . Let *L* be a finite extension of  $\mathbb{Q}_p$  contained in  $\overline{\mathbb{Q}}_p$ , let  $\mathfrak{o}_L$  be the ring of integers of *L*, let  $\varpi_L$  be a uniformizer, and let  $\mathfrak{p}_L$  be the maximal ideal of  $\mathfrak{o}_L$ . Given a character  $\chi : \mathbb{Q}_p^{\times} \to L^{\times}$ , we consider  $\chi$  as a character of the absolute Galois group  $\mathscr{G}_{\mathbb{Q}_p}$  of  $\mathbb{Q}_p$  via the local class field theory by sending the geometric Frobenius to *p*.

Let  $G := \operatorname{GL}_2(\mathbb{Q}_p)$ , and let *B* be the subgroup of upper-triangular matrices. Given two characters  $\chi_1, \chi_2 : \mathbb{Q}_p^{\times} \to L^{\times}$ , we consider  $\chi_1 \otimes \chi_2$  as a character of *B* sending a matrix  $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$  to  $\chi_1(a)\chi_2(d)$ . Let *Z* be the centre of *G*. Define

$$K := \operatorname{GL}_2(\mathbb{Z}_p), \qquad K_m := \begin{pmatrix} 1 + p^m \mathbb{Z}_p & p^m \mathbb{Z}_p \\ p^m \mathbb{Z}_p & 1 + p^m \mathbb{Z}_p \end{pmatrix} \quad \text{for } m \ge 1,$$
$$I := \begin{pmatrix} \mathbb{Z}_p^{\times} & \mathbb{Z}_p \\ p \mathbb{Z}_p & \mathbb{Z}_p^{\times} \end{pmatrix}, \quad I_m := \begin{pmatrix} 1 + p^m \mathbb{Z}_p & p^{m-1} \mathbb{Z}_p \\ p^m \mathbb{Z}_p & 1 + p^m \mathbb{Z}_p \end{pmatrix} \quad \text{for } m \ge 1.$$

Let  $\Re_0$  be the *G*-normalizer of *K*, so that  $\Re_0 = KZ$ , and let  $\Re_1$  be the *G*-normalizer of *I*, so that  $\Re_1$  is generated as a group by *I* and  $\Pi := \begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$ . We note that if  $m \ge 1$ , then  $K_m$  is normal in  $\Re_0$  and  $I_m$  is normal in  $\Re_1$ . We denote  $s := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ .

#### 3. Diagrams

Let *R* be a commutative ring, (typically R = L,  $\mathfrak{o}_L$  or  $\mathfrak{o}_L/\mathfrak{p}_L^n$ ). By a diagram *D* of *R*-modules, we mean the data  $(D_0, D_1, r)$ , where  $D_0$  is an  $R[\mathfrak{K}_0]$ -module,  $D_1$  is an  $R[\mathfrak{K}_1]$ -module and  $r : D_1 \to D_0$  is a  $\mathfrak{K}_0 \cap \mathfrak{K}_1 = IZ$ -equivariant homomorphism of *R*-modules. A morphism  $\alpha$  between two diagrams *D* and *D'* is given by  $(\alpha_0, \alpha_1)$ , where  $\alpha_0 : D_0 \to D'_0$  is a morphism of  $R[\mathfrak{K}_0]$ -modules,  $\alpha_1 : D_1 \to D'_1$  is a morphism of  $R[\mathfrak{K}_1]$ -modules, and the diagram

commutes in the category of R[IZ]-modules. The condition (1) is important, since one can have two diagrams of *R*-modules *D* and *D'*, such that  $D_0 \cong D'_0$  as  $R[\mathfrak{K}_0]$ modules and  $D_1 \cong D'_1$  as  $R[\mathfrak{K}_1]$ -modules, but  $D \not\cong D'$  as diagrams. The diagrams of R-modules with the above morphisms form an abelian category. To a diagram D one may associate a complex

$$\operatorname{c-Ind}_{\mathfrak{K}_1}^G D_1 \otimes \delta \xrightarrow{\partial} \operatorname{c-Ind}_{\mathfrak{K}_0}^G D_0 \tag{2}$$

of *G*-representations, where  $\delta : \mathfrak{K}_1 \to R^{\times}$  is the character  $\delta(g) := (-1)^{\operatorname{val}(\det g)}$ ; c-Ind $_{\mathfrak{K}_i}^G D_i$  denotes the space of functions  $f : G \to D_i$  such that f(kg) = kf(g)for  $k \in \mathfrak{K}_i$  and  $g \in G$ , and f is supported only on finitely many cosets  $\mathfrak{K}_i g$ . To describe  $\partial$ , we note that Frobenius reciprocity gives

 $\operatorname{Hom}_{G}(\operatorname{c-Ind}_{\mathfrak{K}_{1}}^{G}D_{1}\otimes\delta,\operatorname{c-Ind}_{\mathfrak{K}_{0}}^{G}D_{0})\cong\operatorname{Hom}_{\mathfrak{K}_{1}}(D_{1}\otimes\delta,\operatorname{c-Ind}_{\mathfrak{K}_{0}}^{G}D_{0});$ 

now  $\operatorname{Ind}_{IZ}^{\mathfrak{K}_1} D_0$  is a direct summand of the restriction of c- $\operatorname{Ind}_{\mathfrak{K}_0}^G D_0$  to  $\mathfrak{K}_1$ , and

$$\operatorname{Hom}_{\mathfrak{K}_{l}}(D_{1} \otimes \delta, \operatorname{Ind}_{IZ}^{\mathfrak{K}_{l}} D_{0}) \cong \operatorname{Hom}_{IZ}(D_{1}, D_{0}),$$

since  $\delta$  is trivial on IZ. Composition of the maps above yields a map

$$\operatorname{Hom}_{IZ}(D_1, D_0) \to \operatorname{Hom}_G(\operatorname{c-Ind}_{\mathfrak{K}_1}^G D_1 \otimes \delta, \operatorname{c-Ind}_{\mathfrak{K}_0}^G D_0)$$

We let  $\partial$  be the image of *r*. We define  $H_0(D)$  to be the cokernel of  $\partial$  and  $H_1(D)$  to be the kernel of  $\partial$ . So we have this exact sequence of *G*-representations:

$$0 \to H_1(D) \to \operatorname{c-Ind}_{\widehat{\mathfrak{K}}_1}^G D_1 \otimes \delta \xrightarrow{\partial} \operatorname{c-Ind}_{\widehat{\mathfrak{K}}_0}^G D_0 \to H_0(D) \to 0$$
(3)

Further, if *r* is injective then one may show that  $H_1(D) = 0$ ; see [Vignéras 2008, Proposition 0.1]. To a diagram *D* one may associate a *G*-equivariant coefficient system  $\mathcal{V}$  of *R*-modules on the Bruhat–Tits tree; see [Paškūnas 2004, Section 5]. Then  $H_0(D)$  and  $H_1(D)$  compute the homology of the coefficient system  $\mathcal{V}$ , and the map  $\partial$  has a natural interpretation. Assume that R = L (or any field of characteristic 0), and let  $\pi$  be a smooth irreducible representation of *G* on an *L*-vector space, so that for all  $v \in \pi$  the subgroup  $\{g \in G : gv = v\}$  is open in *G*. Since the action of *G* is smooth, there exists an  $m \ge 0$  such that  $\pi^{I_m} \neq 0$ . To  $\pi$  we may associate a diagram  $D := (\pi^{I_m} \hookrightarrow \pi^{K_m})$ . As a very special case of a result by Schneider and Stuhler [1997, Theorem V.1; 1993, Section 3], we obtain that  $H_0(D) \cong \pi$ .

We are going to compute such diagrams D, attached to smooth principal series representations of G on L-vector spaces. Given smooth characters  $\theta_1, \theta_2 : \mathbb{Z}_p^{\times} \to L^{\times}$ and  $\lambda_1, \lambda_2 \in L^{\times}$ , we define a diagram  $D(\lambda_1, \lambda_2, \theta_1, \theta_2)$  as follows. Let  $c \ge 1$  be an integer such that  $\theta_1$  and  $\theta_2$  are trivial on  $1 + p^c \mathbb{Z}_p$ . Set  $J_c := (K \cap B)K_c = (I \cap B)K_c$ , so that  $J_c$  is a subgroup of I. Let  $\theta : J_c \to L^{\times}$  be the character  $\theta \begin{pmatrix} a & b \\ c & d \end{pmatrix} := \theta_1(a)\theta_2(d)$ . Let  $D_0 := \operatorname{Ind}_{J_c}^K \theta$ , and let  $p \in Z$  act on  $D_0$  by a scalar  $\lambda_1 \lambda_2$ , so that  $D_0$  is a representation of  $\Re_0$ . Set  $D_1 := D_0^{I_c}$ , so that  $D_1$  is naturally a representation of IZ. We are going to put an action of  $\Pi$  on  $D_1$ , so that  $D_1$  is a representation of  $\Re_1$ . Let

$$V_1 := \{ f \in D_1 : \text{Supp } f \subseteq I \}, \quad V_s := \{ f \in D_1 : \text{Supp } f \subseteq J_c s I \}.$$
(4)

Since *I* contains  $K_1$ , we have  $J_c sI = (B \cap K)sI = IsI$ ; hence  $D_1 = V_1 \oplus V_s$ . For all  $f_1 \in V_1$  and  $f_s \in V_s$ , we define  $\Pi \cdot f_1 \in V_s$  and  $\Pi \cdot f_s \in V_1$  such that

$$[\Pi \cdot f_1](sg) := \lambda_1 f_1(\Pi^{-1}g\Pi), \quad [\Pi \cdot f_s](g) = \lambda_2 f_s(s\Pi g\Pi^{-1}) \quad \text{for all } g \in I.$$
(5)

Every  $f \in D_1$  can be written uniquely as  $f = f_1 + f_s$ , with  $f_1 \in V_1$  and  $f_s \in V_s$ , and we define  $\Pi \cdot f := \Pi \cdot f_1 + \Pi \cdot f_s$ .

**Lemma 3.1.** Equation (5) defines an action of  $\mathfrak{K}_1$  on  $D_1$ . We denote the diagram  $D_1 \hookrightarrow D_0$  by  $D(\lambda_1, \lambda_2, \theta_1, \theta_2)$ . Let  $\pi := \operatorname{Ind}_B^G \chi_1 \otimes \chi_2$  be a smooth principal series representation of G, with

$$\chi_1(p) = \lambda_1, \quad \chi_2(p) = \lambda_2, \quad \chi_1|_{\mathbb{Z}_p^{\times}} = \theta_1, \quad \chi_2|_{\mathbb{Z}_p^{\times}} = \theta_2.$$

There exists an isomorphism of diagrams  $D(\lambda_1, \lambda_2, \theta_1, \theta_2) \cong (\pi^{I_c} \hookrightarrow \pi^{K_c})$ . In particular, we have a *G*-equivariant isomorphism  $H_0(D(\lambda_1, \lambda_2, \theta_1, \theta_2)) \cong \pi$ .

*Proof.* We note that  $p \in Z$  acts on  $\pi$  by a scalar  $\lambda_1 \lambda_2$ . Since G = BK, we have  $\pi|_K \cong \operatorname{Ind}_{B\cap K}^K \theta$ , and so the map  $f \mapsto [g \mapsto f(g)]$  induces an isomorphism  $\iota_0 : \pi^{K_c} \cong \operatorname{Ind}_{J_c}^K \theta = D_0$ . Let

$$\mathcal{F}_1 := \{ f \in \pi : \text{Supp } f \subseteq BI \} \text{ and } \mathcal{F}_s := \{ f \in \pi : \text{Supp } f \subseteq BsI \}.$$

Iwasawa decomposition gives  $G = BI \cup BsI$ ; hence  $\pi = \mathcal{F}_1 \oplus \mathcal{F}_s$ . If  $f_1 \in \mathcal{F}_1$ , then Supp $(\Pi f_1) = (\text{Supp } f_1)\Pi^{-1} \subseteq BI\Pi^{-1} = BsI$ . Moreover,

$$[\Pi f_1](sg) = f_1(sg\Pi) = f_1(s\Pi(\Pi^{-1}g\Pi))$$
  
=  $\chi_1(p)f_1(\Pi^{-1}g\Pi)$  for all  $g \in I$ . (6)

Similarly, if  $f_s \in \mathcal{F}_s$ , then  $\text{Supp}(\Pi f_s) = (\text{Supp } f_s)\Pi^{-1} \subseteq BsI\Pi^{-1} = BI$ , and

$$[\Pi f_s](g) = f_1(g\Pi) = f_1((\Pi s)s(\Pi^{-1}g\Pi)) = \chi_2(p)f_s(s(\Pi^{-1}g\Pi)) \text{ for all } g \in I.$$
(7)

Now  $\pi^{I_c} = \mathcal{F}_1^{I_c} \oplus \mathcal{F}_s^{I_c} \subset \pi^{K_c}$ . Let  $\iota_1$  be the restriction of  $\iota_0$  to  $\pi^{I_c}$ . Then it is immediate that  $\iota_1(\mathcal{F}_1^{I_c}) = V_1$  and  $\iota_1(\mathcal{F}_s^{I_1}) = V_s$ , where  $V_1$  and  $V_s$  are as above. Moreover, if  $f \in D_1$  and  $\Pi \cdot f$  is given by (5), then  $\Pi \cdot f = \iota_1(\Pi \iota_1^{-1}(f))$ . Since  $\mathcal{K}_1$  acts on  $\pi^{I_c}$ , Equation (5) defines an action of  $\mathcal{K}_1$  on  $D_1$  such that  $\iota_1$  is  $\mathcal{K}_1$ -equivariant. Hence,  $(\iota_0, \iota_1)$  is an isomorphism of diagrams  $(\pi^{I_c} \hookrightarrow \pi^{K_c}) \cong (D_1 \hookrightarrow D_0)$ .

414

### 4. The main result

**Lemma 4.1.** Let U be a finite dimensional L-vector space with subspaces  $U_1, U_2$ such that  $U = U_1 \oplus U_2$ . For  $x \in L$  define a map  $\phi_x : U \to U$  by  $\phi_x(v_1+v_2) = xv_1+v_2$ for all  $v_1 \in U_1$  and  $v_2 \in U_2$ . Let M be an  $\mathfrak{o}_L$ -lattice in V. Then there exists an integer  $a \ge 1$  such that  $\phi_x(M) = M$  for  $x \in 1 + \mathfrak{p}_I^a$ .

*Proof.* Let *N* denote the image of *M* in  $U/U_2$ . Then *N* contains  $(M \cap U_1) + U_2$ , and both are lattices in  $U/U_2$ . Define  $a \ge 1$  to be the smallest integer such that  $\mathfrak{p}_L^{-a}(M \cap U_1) + U_2$  contains *N*. Suppose that  $x \in 1 + \mathfrak{p}_F^a$  and  $v \in M$ . We may write  $v = \lambda v_1 + v_2$ , with  $v_1 \in M \cap U_1$ ,  $v_2 \in U_2$  and  $\lambda \in \mathfrak{p}_L^{-a}$ . Now  $\phi_x(v) = v + \lambda(x-1)v_1 \in M$ . Hence we get  $\phi_x(M) \subseteq M$  and  $\phi_{x^{-1}}(M) \subseteq M$ . Applying  $\phi_{x^{-1}}$  to the first inclusion gives  $M \subseteq \phi_{x^{-1}}(M)$ .

We fix an integer  $k \ge 2$  and set  $W := \text{Sym}^{k-2} L^2$ , an algebraic representation of *G*. Let  $\pi := \pi(\chi_1, \chi_2) := \text{Ind}_B^G \chi_1 \otimes \chi_2$  be a smooth principal series *L*-representation of *G*. We say that  $\pi \otimes W$  admits a *G*-invariant norm if there exists a norm  $\|\cdot\|$  on  $\pi \otimes W$  with respect to which  $\pi \otimes W$  is a normed *L*-vector space such that  $\|gv\| = \|v\|$  for all  $v \in \pi \otimes W$  and  $g \in G$ .

Let  $c \ge 1$  be an integer such that both  $\chi_1$  and  $\chi_2$  are trivial on  $1 + p^c \mathbb{Z}_p$ . Let D be the diagram  $\pi^{I_c} \otimes W \hookrightarrow \pi^{K_c} \otimes W$ . Since  $H_0(\pi^{I_c} \hookrightarrow \pi^{K_c}) \cong \pi$ , by tensoring (2) with W we obtain  $H_0(D) \cong \pi \otimes W$ . Assume that  $\pi \otimes W$  admits a G-invariant norm  $\|\cdot\|$ , and set  $(\pi \otimes W)^0 := \{v \in \pi \otimes W : \|v\| \le 1\}$ . Then we may define a diagram  $\mathfrak{D} = (\mathfrak{D}_1 \hookrightarrow \mathfrak{D}_0)$  of  $\mathfrak{o}_L$ -modules by

$$\mathfrak{D} := ((\pi^{I_c} \otimes W) \cap (\pi \otimes W)^0 \hookrightarrow (\pi^{K_c} \otimes W) \cap (\pi \otimes W)^0).$$

In this case Vignéras [2008] has shown that the inclusion  $\mathfrak{D} \hookrightarrow D$  induces a *G*-equivariant injection  $H_0(\mathfrak{D}) \hookrightarrow H_0(D)$  such that  $H_0(\mathfrak{D}) \otimes_{\mathfrak{o}_L} L = H_0(D)$  and  $H_1(\mathfrak{D}) = 0$ . Moreover,  $H_0(\mathfrak{D})$  does not contain an  $\mathfrak{o}_L$ -submodule isomorphic to *L*; see [Vignéras 2008, Proposition 0.1]. Since  $H_0(D)$  is an *L*-vector space of countable dimension, this implies that  $H_0(\mathfrak{D})$  is a free  $\mathfrak{o}_L$ -module. By tensoring (2) with  $\mathfrak{o}_L/\mathfrak{p}_L^n$ , we obtain

$$H_0(\mathfrak{D}) \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^n \cong H_0(\mathfrak{D} \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^n).$$
(8)

**Proposition 4.2.** Let  $\pi = \pi(\chi_1, \chi_2)$  be a smooth principal series representation, assume that  $\pi \otimes W$  admits a *G*-invariant norm, and let  $\mathfrak{D}$  be as above. Then there exists an integer  $a \ge 1$  such that for all  $x \in 1 + \mathfrak{p}_F^b$ , with  $b \ge a$ , there exists both a finitely generated  $\mathfrak{o}_L[G]$ -module *M* in  $\pi(\chi_1\delta_{x^{-1}}, \chi_2\delta_x) \otimes W$  that is free as an  $\mathfrak{o}_L$ -module, and a *G*-equivariant isomorphism

$$M \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^b \cong H_0(\mathfrak{D}) \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^b,$$

where  $\delta_x : \mathbb{Q}_p^{\times} \to L^{\times}$  is an unramified character with  $\delta_x(p) = x$ .

*Proof.* Apply Lemma 4.1 to  $U = D_1$ ,  $U_1 = V_1 \otimes W$ ,  $U_2 = V_s \otimes W$  and  $M = \mathfrak{D}_1$ , where  $V_1$  and  $V_s$  are given by (4). We get an integer  $a \ge 1$  such that  $\phi_x(\mathfrak{D}_1) = \mathfrak{D}_1$ for all  $x \in 1 + \mathfrak{p}_L^a$ . It is immediate that  $\phi_x$  is *IZ*-equivariant. We define a new action  $\star$  of  $\Pi$  on  $D_1$  by  $\Pi \star v := \phi_x(\Pi \phi_x^{-1}(v))$ . This gives us a new diagram D(x), so that  $D(x)_0 = D_0$  as a representation of  $\mathfrak{K}_0$ ,  $D(x)_1 = D_1$  as a representation of *IZ*, the *IZ*-equivariant injection  $D(x)_1 \hookrightarrow D(x)_0$  is equal to the *IZ*-equivariant injection  $D_1 \hookrightarrow D_0$ , but the action of  $\Pi$  on  $D_1$  is given by  $\star$ , (here by = we really mean an equality, not an isomorphism). If  $f_1 \in V_1$  and  $f_s \in V_s$  then

$$\Pi \star (f_1 \otimes w) = f'_s \otimes (\Pi w), \quad \Pi \star (f_s \otimes w) = f'_1 \otimes (\Pi w) \quad \text{for all } w \in W,$$

where  $f'_{s} \in V_{s}$ ,  $f'_{1} \in V_{1}$  and for all  $g \in I$  we have

$$f'_{s}(sg) = x^{-1}[\Pi \cdot f_{1}](sg) = x^{-1}\lambda_{1}f_{1}(\Pi^{-1}g\Pi),$$
(9)

$$f_1'(g) = x[\Pi \cdot f_s](g) = x\lambda_2 f_s(s\Pi g \Pi^{-1}).$$
 (10)

Hence, we have an isomorphism of diagrams  $D(x) \cong D(x^{-1}\lambda_1, x\lambda_2, \theta_1, \theta_2)$ , and so Lemma 3.1 gives  $H_0(D(x)) \cong \pi(\chi_1 \delta_{x^{-1}}, \chi_2 \delta_x) \otimes W$ . Now let  $b \ge a$  be an integer and suppose that  $x \in 1 + \mathfrak{p}_b^{\mathfrak{l}}$ . Since  $\Pi \cdot \mathfrak{D}_1 = \phi_x(\mathfrak{D}_1) = \phi_x^{-1}(\mathfrak{D}_1) = \mathfrak{D}_1$ , we get

$$\Pi \star (\mathfrak{D}_0 \cap D_1) = \Pi \star \mathfrak{D}_1 = \phi_x(\Pi \phi_x^{-1}(\mathfrak{D}_1)) = \mathfrak{D}_1.$$

So if we let  $\mathfrak{D}(x)_0 := \mathfrak{D}_0$  and  $\mathfrak{D}(x)_1 := \mathfrak{D}(x)_0 \cap D(x)_1$ , where  $\Pi$  acts on  $\mathfrak{D}(x)_1$ by  $\star$ , then the diagram  $\mathfrak{D}(x) := (\mathfrak{D}(x)_1 \hookrightarrow \mathfrak{D}(x)_0)$  is an integral structure in D(x)in the sense of [Vignéras 2008]. The results of Vignéras cited above imply that  $M := H_0(\mathfrak{D}(x))$  is a finitely generated  $\mathfrak{o}_L[G]$ -submodule of  $\pi(\chi_1\delta_{x^{-1}}, \chi_2\delta_x) \otimes W$ , which is free as an  $\mathfrak{o}_L$ -module, and  $M \otimes_{\mathfrak{o}_L} L \cong \pi(\chi_1\delta_{x^{-1}}, \chi_2\delta_x) \otimes W$ . Moreover, since  $\phi_x$  is the identity modulo  $\mathfrak{p}_L^b$ , we have  $\Pi \star v \equiv \Pi \cdot v \pmod{\mathfrak{m}_L^b \mathfrak{D}_1}$  for all  $v \in \mathfrak{D}_1$ , and so the identity map  $\mathfrak{D}(x)_0 \to \mathfrak{D}_0$  induces an isomorphism of diagrams  $\mathfrak{D}(x) \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^b \cong \mathfrak{D} \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^b$ . Now (8) gives  $H_0(\mathfrak{D}) \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^b \cong M \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^b$ .

Let  $k \ge 2$  be an integer and  $a_p \in \mathfrak{p}_L$ . Following [Breuil 2003] we define a filtered  $\varphi$ -module  $D_{k,a_p}$  as the following data: a 2-dimensional *L*-vector space *D* with basis  $\{e_1, e_2\}$ , an *L*-linear automorphism  $\varphi : D \to D$  given by

$$\varphi(e_1) = p^{k-1}e_2$$
 and  $\varphi(e_2) = -e_1 + a_p e_2$ ,

and a decreasing filtration  $(\operatorname{Fil}^i D)_{i \in \mathbb{Z}}$  by *L*-subspaces such that if  $i \leq 0$  then Fil<sup>*i*</sup> D = D, if  $1 \leq i \leq k-1$  then Fil<sup>*i*</sup>  $D = Le_1$ , and if  $i \geq k$  then Fil<sup>*i*</sup> D = 0. We set  $V_{k,a_p} := \operatorname{Hom}_{\varphi,\operatorname{Fil}}(D_{k,a_p}, B_{cris})$ . Then  $V_{k,a_p}$  is a 2-dimensional *L*-linear absolutely irreducible crystalline representation of  $\mathscr{G}_{\mathbb{Q}_p} := \operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$  with Hodge–Tate weights 0 and k-1. We denote by  $\chi_{k,a_p}$  the trace character of  $V_{k,a_p}$ . Since  $\mathscr{G}_{\mathbb{Q}_p}$  is compact and the action is continuous,  $\mathscr{G}_{\mathbb{Q}_p}$  stabilizes some  $\mathfrak{o}_L$ -lattice in  $V_{k,a_p}$ , and so  $\chi_{k,a_p}$  takes values in  $\mathfrak{o}_L$ .

**Proposition 4.3.** Let *m* be the largest integer such that  $m \leq (k-2)/(p-1)$ . Let  $a_p, a'_p \in \mathfrak{p}_L$ , and assume that  $\operatorname{val}(a_p) > m$  and  $\operatorname{val}(a'_p) > m$ . Let  $n \geq em$  be an integer, where  $e := e(L/\mathbb{Q}_p)$  is the ramification index. Suppose  $a_p \equiv a'_p \pmod{\mathfrak{p}_L^n}$ . Then  $\chi_{k,a_p}(g) \equiv \chi_{k,a'_p}(g) \pmod{\mathfrak{p}_L^{n-em}}$  for all  $g \in \mathcal{G}_{\mathbb{Q}_p}$ .

*Proof.* This a consequence of a result of Berger, Li and Zhu [Berger et al. 2004], where the authors construct  $\mathscr{G}_{\mathbb{Q}_p}$ -invariant lattices  $T_{k,a_p}$  in  $V_{k,a_p}$ . The assumption  $a_p \equiv a'_p \pmod{\mathfrak{p}_L^n}$  implies  $T_{k,a_p} \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^{n-em} \cong T_{k,a'_p} \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^{n-em}$ ; see their [Remark 4.1.2(2)]. This implies the congruences of characters.

Let  $k \ge 2$  be an integer and choose  $\lambda_1, \lambda_2 \in L$  such that  $\lambda_1 + \lambda_2 = a_p$  and  $\lambda_1 \lambda_2 = p^{k-1}$  (enlarge *L* if necessary). Assume  $\operatorname{val}(\lambda_1) \ge \operatorname{val}(\lambda_2) > 0$ . Let  $\chi_1, \chi_2 : \mathbb{Q}_p^{\times} \to L^{\times}$  be unramified characters, with  $\chi_1(p) = \lambda_1^{-1}$  and  $\chi_2(p) = \lambda_2^{-1}$ . Let *M* be a finitely generated  $\mathfrak{o}_L[G]$ -module in  $\pi(\chi_1, \chi_2|\cdot|^{-1}) \otimes W$ , where  $W := \operatorname{Sym}^{k-2} L^2$ . In the case  $\lambda_1 \neq \lambda_2$ , Berger and Breuil have shown that the unitary *L*-Banach space representation

$$E_{k,a_p} := L \otimes_{\mathfrak{o}_L} \lim M / \varpi_L^n M$$

of *G* is nonzero, topologically irreducible, admissible in the sense of [Schneider and Teitelbaum 2002], and contains  $\pi(\chi_1, \chi_2 | \cdot |^{-1}) \otimes W$  as a dense *G*-invariant subspace [Berger and Breuil 2007, Section 5.3]. Moreover, the dual of  $E_{k,a_p}$  is isomorphic to the representation of Borel subgroup *B* constructed from the  $(\varphi, \Gamma)$ module of  $V_{k,a_p}$ .

Let  $\operatorname{Rep}_{\mathfrak{o}_L} G$  be the category of finite length  $\mathfrak{o}_L[G]$ -modules with a central character such that the action of G is smooth (that is, the stabilizer of a vector is an open subgroup of G). Let  $\operatorname{Rep}_{\mathfrak{o}_L} \mathscr{G}_{\mathbb{Q}_p}$  be the category of continuous representations of  $\mathscr{G}_{\mathbb{Q}_p}$  on  $\mathfrak{o}_L$ -modules of finite length. Colmez [2008, IV.2.14] has defined an exact covariant functor  $\mathbf{V}$ :  $\operatorname{Rep}_{\mathfrak{o}_L} G \to \operatorname{Rep}_{\mathfrak{o}_L} \mathscr{G}_{\mathbb{Q}_p}$ . The constructions in [Berger and Breuil 2007] and [Colmez 2008] are mutually inverse to one another. This means if we assume  $\lambda_1 \neq \lambda_2$  and let M be as above, then

$$V_{k,a_p} \cong L \otimes_{\mathfrak{o}_L} \lim \mathbf{V}(M/\varpi_L^n M).$$
(11)

That  $M/\varpi_L^n M$  is an  $\mathfrak{o}_L[G]$ -module of finite length follows from [Berger 2005, Theorem A].

**Theorem 4.4.** Assume that p > 2. Let  $\lambda = \pm p^{(k-1)/2}$ , and let  $\chi : \mathbb{Q}_p^{\times} \to L^{\times}$  be a smooth character with  $\chi(p) = \lambda^{-1}$ . Assume there exists a *G*-invariant norm  $\|\cdot\|$  on  $\pi(\chi, \chi| \cdot |^{-1}) \otimes W$ , where  $W := \text{Sym}^{k-2} L^2$ . Let *E* be the completion of  $\pi(\chi, \chi| \cdot |^{-1}) \otimes W$  with respect to  $\|\cdot\|$ . Then *E* is a nonzero, topologically

*irreducible, admissible Banach space representation of G. If we let*  $E^0$  *be the unit ball in E, then*  $V_{k,2\lambda} \otimes (\chi |\chi|) \cong L \otimes_{\mathfrak{o}_L} \lim_{L \to \mathfrak{o}_L} \mathbf{V}(E^0 / \varpi_L^n E^0)$ .

*Proof.* Since the character  $\chi |\chi|$  is integral, by twisting we may assume that  $\chi$  is unramified. We denote the diagram

$$\pi(\chi,\chi|\cdot|^{-1})^{I_1}\otimes W \hookrightarrow \pi(\chi,\chi|\cdot|^{-1})^{K_1}\otimes W$$

by  $D = (D_1 \hookrightarrow D_0)$ . Let  $\mathfrak{D} = (\mathfrak{D}_1 \hookrightarrow \mathfrak{D}_0)$  be the diagram of  $\mathfrak{o}_L$ -modules with  $\mathfrak{D}_1 = D_1 \cap E^0$  and  $\mathfrak{D}_0 = D_0 \cap E^0$ . Let  $a \ge 1$  be the integer Proposition 4.2 gives. For each  $j \ge 0$ , we fix  $x_j \in 1 + \mathfrak{p}_L^{a+j}$  with  $x_j \ne 1$  and a finitely generated  $\mathfrak{o}_L[G]$ -submodule  $M_j$  in  $\pi(\chi \delta_{x_j^{-1}}, \chi \delta_{x_j} | \cdot |^{-1}) \otimes W$  (which is then a free  $\mathfrak{o}_L$ -module) such that

$$H_0(\mathfrak{D}) \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^{a+j} \cong M_j \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^{a+j}.$$

This is possible by Proposition 4.2. To ease the notation we set  $M := H_0(\mathfrak{D})$ . Let  $a_p(j) := \lambda x_j^{-1} + \lambda x_j$ , let  $a_p := 2\lambda$ , and let *m* be the largest integer such that  $m \le (k-2)/(p-1)$ . Since p > 2,  $x_j + x_j^{-1}$  is a unit in  $\mathfrak{o}_L$ , we have  $\operatorname{val}(a_p(j)) = \operatorname{val}(a_p) = (k-1)/2 > m$ . (Here we really need p > 2.) Moreover, we have  $a_p \equiv a_p(j) \pmod{p_j^{j+a+em}}$ , where  $e := e(L/\mathbb{Q}_p)$  is the ramification index. Now since  $x_j \ne 1$  we get that  $\lambda x_j \ne \lambda x_j^{-1}$ , and hence we may apply the results of Berger and Breuil to  $\pi(\chi \delta_{x_i^{-1}}, \chi \delta_{x_j} |\cdot|^{-1}) \otimes W$ . By (11),

$$T_{k,a_p(j)} := \lim \mathbf{V}(M_j/\varpi_L^n M_j)$$

is a  $\mathcal{G}_{\mathbb{Q}_p}$ -invariant lattice in  $V_{k,a_p(j)}$ . Since  $M \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^{a+j} \cong M_j \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^{a+j}$  we get

$$\mathbf{V}(M/\varpi_L^{a+j}M) \cong \mathbf{V}(M_j/\varpi_L^{a+j}M_j) \cong T_{k,a_p(j)} \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^{a+j}.$$
 (12)

Set  $V := L \otimes_{\mathfrak{o}_L} \varprojlim \mathbf{V}(M/\varpi_L^n M)$ . Then (12) implies that V is a 2-dimensional L-vector space. Let  $\chi_V$  be the trace character of V. Then it follows from (12) that  $\chi_V \equiv \chi_{k,a_p(j)} \pmod{\mathfrak{p}_L^{a+j}}$ . Since  $a_p \equiv a_p(j) \pmod{\mathfrak{p}_L^{a+j+em}}$ , Proposition 4.3 says that  $\chi_{k,a_p} \equiv \chi_{k,a_p(j)} \pmod{\mathfrak{p}_L^{a+j}}$ . We obtain  $\chi_V \equiv \chi_{k,a_p} \pmod{\mathfrak{p}_L^{a+j}}$  for all  $j \ge 0$ . This gives us  $\chi_V = \chi_{k,a_p}$ . Since  $V_{k,a_p}$  is irreducible, the equality of characters implies  $V \cong V_{k,a_p}$ .

Set  $\widehat{M} := \lim_{L \to \infty} M/\varpi_L^n M$ , and  $E' := \widehat{M} \otimes_{\mathfrak{o}_L} L$ . Since M is a free  $\mathfrak{o}_L$ -module, we get an injection  $M \hookrightarrow \widehat{M}$ . In particular, E' contains  $\pi(\chi, \chi|\cdot|^{-1}) \otimes W$  as a dense G-invariant subspace. We claim that E' is a topologically irreducible and admissible G-representation. Now Theorem 4.1.1 and Proposition 4.1.4 of [Berger et al. 2004] say that the semisimplification of  $T_{k,a_p(j)} \otimes_{\mathfrak{o}_L} k_L$  is irreducible if  $p + 1 \nmid k - 1$  and is otherwise isomorphic to

On some crystalline representations of  $GL_2(\mathbb{Q}_p)$ 

$$\begin{pmatrix} \mu_{\sqrt{-1}} & 0 \\ 0 & \mu_{-\sqrt{-1}} \end{pmatrix} \otimes \omega^{(k-1)/(p+1)},$$

where  $\mu_{\pm\sqrt{-1}}$  is the unramified character sending arithmetic Frobenius to  $\pm\sqrt{-1}$ , and  $\omega$  is the cyclotomic character. Then [Berger 2005, Theorem A] implies that if  $p+1 \nmid k-1$ , then  $M_j \otimes_{\mathfrak{o}_L} k_L$  is an irreducible supersingular representation of G, and if  $p+1 \mid k-1$ , then the semisimplification of  $M_j \otimes_{\mathfrak{o}_L} k_L$  is a direct sum of two irreducible principal series. The irreducibility of principal series follows from [Barthel and Livné 1994, Theorem 33], since  $\sqrt{-1} \neq \pm 1$ , as p > 2. Since  $M \otimes_{\mathfrak{o}_L} k_L \cong M_j \otimes_{\mathfrak{o}_L} k_L$ , we get that  $M \otimes_{\mathfrak{o}_L} k_L$  is an admissible representation of G (so that for every open subgroup  $\mathfrak{A}$  of G, the space of  $\mathfrak{A}$ -invariants is finite dimensional). This implies that E' is admissible.

Suppose that  $E_1$  is a closed *G*-invariant subspace of E' with  $E' \neq E_1$ . Let  $E_1^0 := E_1 \cap \widehat{M}$ . We obtain a *G*-equivariant injection  $E_1^0 \otimes_{\mathfrak{o}_L} k_L \hookrightarrow M \otimes_{\mathfrak{o}_L} k_L$ . If  $E_1^0 \otimes_{\mathfrak{o}_L} k_L = 0$  or  $M \otimes_{\mathfrak{o}_L} k_L$ , then Nakayama's lemma gives  $E_1^0 = 0$  or  $E_1^0 = \widehat{M}$ , respectively. If  $p + 1 \nmid k - 1$ , then  $M \otimes_{\mathfrak{o}_L} k_L$  is irreducible and we are done. If  $p+1 \mid k-1$ , then  $E_1^0 \otimes_{\mathfrak{o}_L} k_L$  is an irreducible principal series, and so  $\mathbf{V}(E_1^0 \otimes_{\mathfrak{o}_L} k_L)$  is one-dimensional [Colmez 2008, IV.4.17]. But then  $V_1 := L \otimes_{\mathfrak{o}_L} \lim_{k \to \infty} \mathbf{V}(E_1^0/\varpi_L^n E_1^0)$  is a 1-dimensional subspace of  $V_{k,a_p}$  stable under the action of  $\mathscr{G}_{\mathbb{Q}_p}$ . Since  $V_{k,a_p}$  is irreducible we obtain a contradiction.

Since E' is a completion of  $\pi(\chi, \chi | \cdot |^{-1}) \otimes W$  with respect to a finitely generated  $\mathfrak{o}_L[G]$ -submodule, E' is in fact the universal completion; see for example [Emerton 2005, Proposition 1.17]. In particular, we obtain a nonzero *G*-equivariant map of *L*-Banach space representations  $E' \to E$ , but since E' is irreducible and  $\pi(\chi, \chi | \cdot |^{-1}) \otimes W$  is dense in *E*, this map is an isomorphism.

**Corollary 4.5.** Assume that p > 2, and let  $\chi : \mathbb{Q}_p^{\times} \to L^{\times}$  be a smooth character such that  $\chi(p)^2 p^{k-1} = 1$ . Assume that there is a *G*-invariant norm  $\|\cdot\|$  on  $\pi(\chi, \chi| \cdot |^{-1}) \otimes W$ , where  $W := \text{Sym}^{k-2} L^2$ . Then every bounded *G*-invariant  $\mathfrak{o}_L$ -lattice in  $\pi(\chi, \chi| \cdot |^{-1}) \otimes W$  is finitely generated as an  $\mathfrak{o}_L[G]$ -module.

*Proof.* The existence of a *G*-invariant norm implies that the universal completion is nonzero. It follows from Theorem 4.4 that the universal completion is topologically irreducible and admissible. The assertion follows from the proof of [Berger and Breuil 2007, Corollary 5.3.4].

For the purposes of [Paškūnas 2008] we record the following corollary to the proof of Theorem 4.4.

**Corollary 4.6.** Assume p > 2, and let  $\chi : \mathbb{Q}_p^{\times} \to L^{\times}$  be a smooth character such that  $\chi^2(p)p^{k-1}$  is a unit in  $\mathfrak{o}_L$ . Assume there exists a unitary L-Banach space representation  $(E, \|\cdot\|)$  of G containing  $(\operatorname{Ind}_B^G \chi \otimes \chi |\cdot|^{-1}) \otimes \operatorname{Sym}^{k-2} L^2$  as a dense G-invariant subspace and satisfying  $\|E\| \subseteq |L|$ . Then there exists  $x \in 1+\mathfrak{p}_L$ 

419

with  $x^2 \neq 1$  and a unitary completion  $E_x$  of  $(\operatorname{Ind}_B^G \chi \delta_x \otimes \chi \delta_{x^{-1}} |\cdot|^{-1}) \otimes \operatorname{Sym}^{k-2} L^2$ such that  $E^0 \otimes_{\mathfrak{o}_L} k_L \cong E_x^0 \otimes_{\mathfrak{o}_L} k_L$ , where  $E_x^0$  is the unit ball in  $E_x$  and  $E^0$  is the unit ball in E.

*Proof.* Let  $\pi := \operatorname{Ind}_B^G \chi \otimes \chi |\cdot|^{-1}$  and  $M := (\pi \otimes W) \cap E^0$ . Now  $M \cap \varpi_L E^0 = (\pi \otimes W) \cap \varpi_L E^0 = \varpi_L M$ . So  $\iota : M/\varpi_L M \hookrightarrow E^0/\varpi_L E^0$  is a *G*-equivariant injection. We claim that  $\iota$  is a surjection. Let  $v \in E^0$ . Since  $\pi \otimes W$  is dense in *E*, there exists a sequence  $\{v_n\}_{n\geq 1}$  in  $\pi \otimes W$  such that  $\lim v_n = v$ . We also have  $\lim \|v_n\| = \|v\|$ . Since  $\|E\| \subseteq |L| \cong \mathbb{Z}$ , there exists an  $m \geq 0$  such that  $v_n \in M$  for all  $n \geq m$ . This implies the surjectivity of  $\iota$ . So we get  $M \otimes_{\mathfrak{o}_L} k_L \cong E^0 \otimes_{\mathfrak{o}_L} k_L$ .

By Corollary 4.5 we may find  $u_1, \ldots, u_n \in M$  that generate M as an  $\mathfrak{o}_L[G]$ module. Further,  $u_i = \sum_{j=1}^{m_i} v_{ij} \otimes w_{ij}$  with  $v_{ij} \in \pi$  and  $w_{ij} \in W$ . Since  $\pi$  is a smooth representation of G, there exists an integer  $c \ge 1$  such that  $v_{ij}$  is fixed by  $K_c$  for all  $1 \le i \le n$  and  $1 \le j \le m_i$ . Set

$$\mathfrak{D} := \left( (\pi^{I_c} \otimes W) \cap M \hookrightarrow (\pi^{K_c} \otimes W) \cap M \right), \quad D := \left( \pi^{I_c} \otimes W \hookrightarrow \pi^{K_c} \otimes W \right)$$

and let M' be the image of  $H_0(\mathfrak{D}) \hookrightarrow H_0(D) \cong \pi \otimes W$ . It follows from (3) that M' is generated by  $(\pi^{K_c} \otimes W) \cap M$  as an  $\mathfrak{o}_L[G]$ -module. Hence,  $M' \subseteq M$ . By construction  $(\pi^{K_c} \otimes W) \cap M$  contains  $u_1, \ldots u_n$ , and so  $M \subseteq M'$ . In particular,  $H_0(\mathfrak{D}) \otimes_{\mathfrak{o}_L} k_L \cong M \otimes_{\mathfrak{o}_L} k_L$ . The claim follows from the proof of Theorem 4.4.  $\Box$ 

#### 5. Existence

Recent results of Colmez, which appeared after the first version of this note, imply the existence of a *G*-invariant norm on  $(\operatorname{Ind}_B^G \chi \otimes \chi | \cdot |^{-1}) \otimes \operatorname{Sym}^{k-2} L^2$  for  $\chi^2(p)p^{k-1} \in \mathfrak{o}_L^{\times}$ , thus making our results unconditional. We briefly explain this.

We continue to assume that p > 2, that  $k \ge 2$  is an integer and that  $a_p = 2p^{(k-1)/2}$ . The representation  $V_{k,a_p}$  of  $\mathcal{G}_{\mathbb{Q}_p}$  sits in the *p*-adic family of Berger, Li and Zhu, [2004, 3.2.5]. Moreover, all the other points in the family correspond to the crystalline representations with distinct Frobenius eigenvalues, to which the theory of [Berger and Breuil 2007] applies. Hence [Colmez 2008, II.3.1 and IV.4.11] imply that there exists an irreducible unitary *L*-Banach space representation  $\Pi$  of  $GL_2(\mathbb{Q}_p)$  such that  $\mathbf{V}(\Pi) \cong V_{k,a_p}$ . If  $p \ge 5$  or p = 3 and  $k \ne 3 \pmod{8}$  and  $k \ne 7 \pmod{8}$ , the existence of such  $\Pi$  also follows from [Kisin 2008]. It follows from [Colmez 2008, VI.6.46] that the set of locally algebraic vectors  $\Pi^{\text{alg}}$  of  $\Pi$  is isomorphic to

$$(\operatorname{Ind}_B^G \chi \otimes \chi |\cdot|^{-1}) \otimes \operatorname{Sym}^{k-2} L^2,$$

where  $\chi : \mathbb{Q}_p^{\times} \to L^{\times}$  is an unramified character with  $\chi(p) = p^{-(k-1)/2}$ . The restriction of the *G*-invariant norm of  $\Pi$  to  $\Pi^{\text{alg}}$  solves the problem. Also, if  $\delta : \mathbb{Q}_p^{\times} \to L^{\times}$  is a unitary character, then we also obtain a *G*-invariant norm on  $\Pi^{\text{alg}} \otimes \delta \circ \text{det}$ .

#### Acknowledgments

I thank Laurent Berger, Christophe Breuil, Gaëtan Chenevier and Pierre Colmez for answering my questions. I also thank Guy Henniart, Ariane Mézard and Rachel Ollivier for organizing 'Groupe de Travail sur les représentations *p*-adiques de  $GL_2(\mathbb{Q}_p)$ ', where I learnt about Colmez's functor. This paper was written when I was visiting IHÉS and Université Paris-Sud, supported by Deutsche Forschungsgemeinschaft. I would like to thank these institutions.

## References

- [Barthel and Livné 1994] L. Barthel and R. Livné, "Irreducible modular representations of GL<sub>2</sub> of a local field", *Duke Math. J.* **75**:2 (1994), 261–292. MR 95g:22030 Zbl 0826.22019
- [Berger 2005] L. Berger, "Représentations modulaires de  $GL_2(\mathbb{Q}_p)$  et représentations galoisiennes de dimension 2", preprint, 2005. To appear in *Astérisque*. arXiv math/0510090
- [Berger and Breuil 2007] L. Berger and C. Breuil, "Sur quelques représentations potentiellement cristallines de  $GL_2(\mathbb{Q}_p)$ ", preprint, 2007, Available at http://tinyurl.com/qtbvtz. To appear in *Astérisque*.
- [Berger et al. 2004] L. Berger, H. Li, and H. J. Zhu, "Construction of some families of 2-dimensional crystalline representations", *Math. Ann.* **329**:2 (2004), 365–377. MR 2005k:11104 Zbl 1085.11028
- [Breuil 2003] C. Breuil, "Sur quelques représentations modulaires et *p*-adiques de  $GL_2(\mathbb{Q}_p)$ , II", *J. Inst. Math. Jussieu* **2**:1 (2003), 23–58. MR 2005d:11079
- [Colmez 2008] P. Colmez, "Représentations de  $GL_2(\mathbb{Q}_p)$  et ( $\varphi$ ,  $\Gamma$ )-modules", preprint, 2008, Available at http://www.math.jussieu.fr/~colmez/kirilov.pdf.
- [Emerton 2005] M. Emerton, "*p*-adic *L*-functions and unitary completions of representations of *p*-adic reductive groups", *Duke Math. J.* **130**:2 (2005), 353–392. MR 2007e:11058 Zbl 1092.11024

[Kisin 2008] M. Kisin, "Deformations of  $G_{\mathbb{Q}_p}$  and  $\operatorname{GL}_2(\mathbb{Q}_p)$  representations", preprint, 2008, Available at http://www.math.uchicago.edu/~kisin/dvifiles/dense.dvi.

[Paškūnas 2004] V. Paškūnas, *Coefficient systems and supersingular representations of*  $GL_2(F)$ , Mém. Soc. Math. Fr. (N.S.) **99**, Société Mathématique de France, Paris, 2004. MR 2005m:22017

- [Paškūnas 2008] V. Paškūnas, "Admissible unitary completions of locally  $\mathbb{Q}_p$ -rational representations of  $GL_2(F)$ ", preprint, 2008. arXiv 0805.1006
- [Schneider and Stuhler 1993] P. Schneider and U. Stuhler, "Resolutions for smooth representations of the general linear group over a local field", *J. Reine Angew. Math.* **436** (1993), 19–32. MR 94a:22039 Zbl 0780.20026
- [Schneider and Stuhler 1997] P. Schneider and U. Stuhler, "Representation theory and sheaves on the Bruhat–Tits building", *Inst. Hautes Études Sci. Publ. Math.* 85 (1997), 97–191. MR 98m:22023 Zbl 0892.22012
- [Schneider and Teitelbaum 2002] P. Schneider and J. Teitelbaum, "Banach space representations and Iwasawa theory", *Israel J. Math.* **127** (2002), 359–380. MR 2003c:22026 Zbl 1006.46053

[Vignéras 2008] M.-F. Vignéras, "A criterion for integral structures and coefficient systems on the tree of PGL(2, *F*)", *Pure Appl. Math. Q.* **4**:4, part 1 (2008), 1291–1316. MR 2009e:20059

Communicated by Marie-France Vignéras

Received 2008-05-07 Revised 2009-02-09 Accepted 2009-03-12

paskunas@mathematik.uni-bielefeld.de Universität Bielefeld, Fakultät für Mathematik, Postfach 100131, D-33501 Bielefeld, Germany