Algebra \& Number

 Theory
Volume 3

 2009 No. 4On some crystalline representations of $\mathrm{GL}_{2}\left(\mathbb{Q}_{\mathrm{p}}\right)$

Vytautas Paškūnas

On some crystalline representations of $\mathrm{GL}_{2}\left(\mathbb{Q}_{\mathrm{p}}\right)$

Vytautas Paškūnas

We show that the universal unitary completion of certain locally algebraic representation of $G:=\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ with $p>2$ is nonzero, topologically irreducible, admissible and corresponds to a 2-dimensional crystalline representation with nonsemisimple Frobenius via the p-adic Langlands correspondence for G.

1. Introduction

Let $G:=\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ and B be the subgroup of upper-triangular matrices in G. Let L be a finite extension of \mathbb{Q}_{p}.
Theorem 1.1. Assume that $p>2$, let $k \geq 2$ be an integer, and let $\chi: \mathbb{Q}_{p}^{\times} \rightarrow L^{\times}$be a smooth character with $\chi(p)^{2} p^{k-1} \in \mathfrak{o}_{L}^{\times}$. Assume there exists a G-invariant norm $\|\cdot\|$ on $\left(\operatorname{Ind}_{B}^{G} \chi \otimes \chi|\cdot|^{-1}\right) \otimes \operatorname{Sym}^{k-2} L^{2}$. Then the completion E is a topologically irreducible, admissible Banach space representation of G. If we let E^{0} be the unit ball in E, then

$$
V_{k, 2 \chi(p)^{-1}} \otimes(\chi|\chi|) \cong L \otimes_{\mathfrak{o}_{L}} \lim \mathbf{V}\left(E^{0} / \varpi_{L}^{n} E^{0}\right),
$$

where \mathbf{V} is Colmez's Montreal functor and $V_{k, 2 \chi(p)^{-1}}$ is a 2-dimensional irreducible crystalline representation of $\mathscr{G}_{\mathbb{Q}_{p}}$, the absolute Galois group of \mathbb{Q}_{p}, with HodgeTate weights $(0, k-1)$ and the trace of crystalline Frobenius equal to $2 \chi(p)^{-1}$.

As we explain in Section 5, the existence of such G-invariant norm follows from [Colmez 2008]. Our result addresses [Berger and Breuil 2007, remarque 5.3.5]. In other words, the completion E fits into the p-adic Langlands correspondence for $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$.

The idea is to approximate $\left(\operatorname{Ind}_{B}^{G} \chi \otimes \chi|\cdot|^{-1}\right) \otimes \operatorname{Sym}^{k-2} L^{2}$ with representations $\left(\operatorname{Ind}_{B}^{G} \chi \delta_{x} \otimes \chi \delta_{x^{-1}}|\cdot|^{-1}\right) \otimes \operatorname{Sym}^{k-2} L^{2}$, where $\delta_{x}: \mathbb{Q}_{p}^{\times} \rightarrow L^{\times}$is an unramified character with $\delta_{x}(p)=x \in 1+\mathfrak{p}_{L}$. If $x^{2} \neq 1$, then $\chi \delta_{x} \neq \chi \delta_{x^{-1}}$ and the analogue of Theorem 1.1 is a result of Berger and Breuil [2007]. This allows to deduce admissibility. This approximation process relies on the results of [Vignéras 2008].

[^0]Using Colmez's functor \mathbf{V}, we may then transfer the question of irreducibility to the Galois side. Here, we use the fact that for $p>2$ the representation $V_{k, \pm 2 p^{(k-1) / 2}}$ sits in the p-adic family studied by Berger, Li and Zhu [2004].

2. Notation

We fix an algebraic closure $\overline{\mathbb{Q}}_{p}$ of \mathbb{Q}_{p}. We let val be the valuation on $\overline{\mathbb{Q}}_{p}$ such that $\operatorname{val}(p)=1$, and we set $|x|:=p^{-\operatorname{val}(x)}$. Let L be a finite extension of \mathbb{Q}_{p} contained in $\overline{\mathbb{Q}}_{p}$, let \mathfrak{o}_{L} be the ring of integers of L, let ϖ_{L} be a uniformizer, and let \mathfrak{p}_{L} be the maximal ideal of \mathfrak{o}_{L}. Given a character $\chi: \mathbb{Q}_{p}^{\times} \rightarrow L^{\times}$, we consider χ as a character of the absolute Galois group $\mathscr{G}_{\mathbb{Q}_{p}}$ of \mathbb{Q}_{p} via the local class field theory by sending the geometric Frobenius to p.

Let $G:=\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$, and let B be the subgroup of upper-triangular matrices. Given two characters $\chi_{1}, \chi_{2}: \mathbb{Q}_{p}^{\times} \rightarrow L^{\times}$, we consider $\chi_{1} \otimes \chi_{2}$ as a character of B sending a matrix $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ to $\chi_{1}(a) \chi_{2}(d)$. Let Z be the centre of G. Define

$$
\left.\begin{array}{rl}
K & :=\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right), \\
I:=\left(\begin{array}{cc}
\mathbb{Z}_{p}^{\times} & \mathbb{Z}_{p}:=\left(\begin{array}{cc}
1+p^{m} \mathbb{Z}_{p} & p^{m} \mathbb{Z}_{p} \\
p \mathbb{Z}_{p} & \mathbb{Z}_{p}^{\times}
\end{array}\right),
\end{array} \quad I_{m}:=\left(\begin{array}{cc}
1+p^{m} \mathbb{Z}_{p} & 1+p^{m} \mathbb{Z}_{p}
\end{array}\right) \quad \text { for } m \geq 1,\right. \\
p^{m-1} \mathbb{Z}_{p} & 1+p^{m} \mathbb{Z}_{p}
\end{array}\right) \quad \text { for } m \geq 1 .
$$

Let \mathfrak{K}_{0} be the G-normalizer of K, so that $\mathfrak{K}_{0}=K Z$, and let \mathfrak{K}_{1} be the G-normalizer of I, so that \mathfrak{K}_{1} is generated as a group by I and $\Pi:=\left(\begin{array}{ll}0 & 1 \\ p & 0\end{array}\right)$. We note that if $m \geq 1$, then K_{m} is normal in \mathfrak{K}_{0} and I_{m} is normal in \mathfrak{K}_{1}. We denote $s:=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

3. Diagrams

Let R be a commutative ring, (typically $R=L, \mathfrak{o}_{L}$ or $\mathfrak{o}_{L} / \mathfrak{p}_{L}^{n}$). By a diagram D of R-modules, we mean the data (D_{0}, D_{1}, r), where D_{0} is an $R\left[\mathfrak{K}_{0}\right]$-module, D_{1} is an $R\left[\mathfrak{K}_{1}\right]$-module and $r: D_{1} \rightarrow D_{0}$ is a $\mathfrak{K}_{0} \cap \mathfrak{K}_{1}=I Z$-equivariant homomorphism of R-modules. A morphism α between two diagrams D and D^{\prime} is given by (α_{0}, α_{1}), where $\alpha_{0}: D_{0} \rightarrow D_{0}^{\prime}$ is a morphism of $R\left[\mathcal{K}_{0}\right]$-modules, $\alpha_{1}: D_{1} \rightarrow D_{1}^{\prime}$ is a morphism of $R\left[\mathfrak{K}_{1}\right]$-modules, and the diagram

commutes in the category of $R[I Z]$-modules. The condition (1) is important, since one can have two diagrams of R-modules D and D^{\prime}, such that $D_{0} \cong D_{0}^{\prime}$ as $R\left[\mathfrak{K}_{0}\right]-$ modules and $D_{1} \cong D_{1}^{\prime}$ as $R\left[\mathfrak{K}_{1}\right]$-modules, but $D \not \equiv D^{\prime}$ as diagrams. The diagrams
of R-modules with the above morphisms form an abelian category. To a diagram D one may associate a complex

$$
\begin{equation*}
{\mathrm{c}-\operatorname{Ind}_{\mathfrak{K}_{1}}^{G} D_{1} \otimes \delta \xrightarrow{\partial}{\mathrm{c}-\operatorname{Ind}_{\mathfrak{K}_{0}}^{G}}_{G} D_{0} .} \tag{2}
\end{equation*}
$$

of G-representations, where $\delta: \mathfrak{K}_{1} \rightarrow R^{\times}$is the character $\delta(g):=(-1)^{\text {val }(\operatorname{det} g)}$; c-Ind $\mathfrak{K}_{i}^{G} D_{i}$ denotes the space of functions $f: G \rightarrow D_{i}$ such that $f(k g)=k f(g)$ for $k \in \mathfrak{K}_{i}$ and $g \in G$, and f is supported only on finitely many cosets $\mathfrak{K}_{i} g$. To describe ∂, we note that Frobenius reciprocity gives

$$
\operatorname{Hom}_{G}\left(\mathrm{c}-\operatorname{Ind}_{\mathfrak{K}_{1}}^{G} D_{1} \otimes \delta, \mathrm{c}-\operatorname{Ind}_{\mathfrak{K}_{0}}^{G} D_{0}\right) \cong \operatorname{Hom}_{\mathfrak{K}_{1}}\left(D_{1} \otimes \delta, \mathrm{c}-\operatorname{Ind}_{\mathfrak{K}_{0}}^{G} D_{0}\right) ;
$$

now $\operatorname{Ind}_{I Z}^{\mathfrak{K}_{1}} D_{0}$ is a direct summand of the restriction of c-Ind ${\tilde{\mathcal{K}_{0}}}_{G} D_{0}$ to \mathfrak{K}_{1}, and

$$
\operatorname{Hom}_{\mathfrak{R}_{1}}\left(D_{1} \otimes \delta, \operatorname{Ind}_{I Z}^{\mathfrak{K}_{1}} D_{0}\right) \cong \operatorname{Hom}_{I Z}\left(D_{1}, D_{0}\right),
$$

since δ is trivial on IZ. Composition of the maps above yields a map

$$
\operatorname{Hom}_{I Z}\left(D_{1}, D_{0}\right) \rightarrow \operatorname{Hom}_{G}\left(\mathrm{c}-\operatorname{Ind}_{\mathfrak{K}_{1}}^{G} D_{1} \otimes \delta, \mathrm{c}-\operatorname{Ind}_{\mathfrak{K}_{0}}^{G} D_{0}\right)
$$

We let ∂ be the image of r. We define $H_{0}(D)$ to be the cokernel of ∂ and $H_{1}(D)$ to be the kernel of ∂. So we have this exact sequence of G-representations:

$$
\begin{equation*}
0 \rightarrow H_{1}(D) \rightarrow \mathrm{c}-\operatorname{Ind}_{\mathfrak{K}_{1}}^{G} D_{1} \otimes \delta \xrightarrow{\partial} \mathrm{c}-\operatorname{Ind}_{\mathfrak{K}_{0}}^{G} D_{0} \rightarrow H_{0}(D) \rightarrow 0 \tag{3}
\end{equation*}
$$

Further, if r is injective then one may show that $H_{1}(D)=0$; see [Vignéras 2008, Proposition 0.1]. To a diagram D one may associate a G-equivariant coefficient system \mathscr{V} of R-modules on the Bruhat-Tits tree; see [Paškūnas 2004, Section 5]. Then $H_{0}(D)$ and $H_{1}(D)$ compute the homology of the coefficient system \mathscr{V}, and the map ∂ has a natural interpretation. Assume that $R=L$ (or any field of characteristic 0), and let π be a smooth irreducible representation of G on an L-vector space, so that for all $v \in \pi$ the subgroup $\{g \in G: g v=v\}$ is open in G. Since the action of G is smooth, there exists an $m \geq 0$ such that $\pi^{I_{m}} \neq 0$. To π we may associate a diagram $D:=\left(\pi^{I_{m}} \hookrightarrow \pi^{K_{m}}\right)$. As a very special case of a result by Schneider and Stuhler [1997, Theorem V.1; 1993, Section 3], we obtain that $H_{0}(D) \cong \pi$.

We are going to compute such diagrams D, attached to smooth principal series representations of G on L-vector spaces. Given smooth characters $\theta_{1}, \theta_{2}: \mathbb{Z}_{p}^{\times} \rightarrow L^{\times}$ and $\lambda_{1}, \lambda_{2} \in L^{\times}$, we define a diagram $D\left(\lambda_{1}, \lambda_{2}, \theta_{1}, \theta_{2}\right)$ as follows. Let $c \geq 1$ be an integer such that θ_{1} and θ_{2} are trivial on $1+p^{c} \mathbb{Z}_{p}$. Set $J_{c}:=(K \cap B) K_{c}=(I \cap B) K_{c}$, so that J_{c} is a subgroup of I. Let $\theta: J_{c} \rightarrow L^{\times}$be the character $\theta\left(\begin{array}{ll}a & b \\ c & d\end{array}\right):=\theta_{1}(a) \theta_{2}(d)$. Let $D_{0}:=\operatorname{Ind}_{J_{c}}^{K} \theta$, and let $p \in Z$ act on D_{0} by a scalar $\lambda_{1} \lambda_{2}$, so that D_{0} is a representation of \mathfrak{K}_{0}. Set $D_{1}:=D_{0}^{I_{c}}$, so that D_{1} is naturally a representation of $I Z$.

We are going to put an action of Π on D_{1}, so that D_{1} is a representation of \mathfrak{K}_{1}. Let

$$
\begin{equation*}
V_{1}:=\left\{f \in D_{1}: \operatorname{Supp} f \subseteq I\right\}, \quad V_{s}:=\left\{f \in D_{1}: \operatorname{Supp} f \subseteq J_{c} s I\right\} . \tag{4}
\end{equation*}
$$

Since I contains K_{1}, we have $J_{c} s I=(B \cap K) s I=I s I$; hence $D_{1}=V_{1} \oplus V_{s}$. For all $f_{1} \in V_{1}$ and $f_{s} \in V_{s}$, we define $\Pi \cdot f_{1} \in V_{s}$ and $\Pi \cdot f_{s} \in V_{1}$ such that

$$
\begin{equation*}
\left[\Pi \cdot f_{1}\right](s g):=\lambda_{1} f_{1}\left(\Pi^{-1} g \Pi\right), \quad\left[\Pi \cdot f_{s}\right](g)=\lambda_{2} f_{s}\left(s \Pi g \Pi^{-1}\right) \quad \text { for all } g \in I . \tag{5}
\end{equation*}
$$

Every $f \in D_{1}$ can be written uniquely as $f=f_{1}+f_{s}$, with $f_{1} \in V_{1}$ and $f_{s} \in V_{s}$, and we define $\Pi \cdot f:=\Pi \cdot f_{1}+\Pi \cdot f_{s}$.

Lemma 3.1. Equation (5) defines an action of \mathfrak{K}_{1} on D_{1}. We denote the diagram $D_{1} \hookrightarrow D_{0}$ by $D\left(\lambda_{1}, \lambda_{2}, \theta_{1}, \theta_{2}\right)$. Let $\pi:=\operatorname{Ind}_{B}^{G} \chi_{1} \otimes \chi_{2}$ be a smooth principal series representation of G, with

$$
\chi_{1}(p)=\lambda_{1}, \quad \chi_{2}(p)=\lambda_{2},\left.\quad \chi_{1}\right|_{\mathbb{Z}_{p}^{\times}}=\theta_{1},\left.\quad \chi_{2}\right|_{\mathbb{Z}_{p}^{\times}}=\theta_{2} .
$$

There exists an isomorphism of diagrams $D\left(\lambda_{1}, \lambda_{2}, \theta_{1}, \theta_{2}\right) \cong\left(\pi^{I_{c}} \hookrightarrow \pi^{K_{c}}\right)$. In particular, we have a G-equivariant isomorphism $H_{0}\left(D\left(\lambda_{1}, \lambda_{2}, \theta_{1}, \theta_{2}\right)\right) \cong \pi$.

Proof. We note that $p \in Z$ acts on π by a scalar $\lambda_{1} \lambda_{2}$. Since $G=B K$, we have $\left.\pi\right|_{K} \cong \operatorname{Ind}_{B \cap K}^{K} \theta$, and so the map $f \mapsto[g \mapsto f(g)]$ induces an isomorphism $\iota_{0}: \pi^{K_{c}} \cong \operatorname{Ind}_{J_{c}}^{K} \theta=D_{0}$. Let

$$
\mathscr{F}_{1}:=\{f \in \pi: \operatorname{Supp} f \subseteq B I\} \quad \text { and } \quad \mathscr{F}_{s}:=\{f \in \pi: \operatorname{Supp} f \subseteq B s I\} .
$$

Iwasawa decomposition gives $G=B I \cup B s I$; hence $\pi=\mathscr{F}_{1} \oplus \mathscr{F}_{s}$. If $f_{1} \in \mathscr{F}_{1}$, then $\operatorname{Supp}\left(\Pi f_{1}\right)=\left(\operatorname{Supp} f_{1}\right) \Pi^{-1} \subseteq B I \Pi^{-1}=B s I$. Moreover,

$$
\begin{align*}
{\left[\Pi f_{1}\right](s g)=f_{1}(s g \Pi) } & =f_{1}\left(s \Pi\left(\Pi^{-1} g \Pi\right)\right) \\
& =\chi_{1}(p) f_{1}\left(\Pi^{-1} g \Pi\right) \quad \text { for all } g \in I . \tag{6}
\end{align*}
$$

Similarly, if $f_{s} \in \mathscr{F}_{s}$, then $\operatorname{Supp}\left(\Pi f_{s}\right)=\left(\operatorname{Supp} f_{s}\right) \Pi^{-1} \subseteq B s I \Pi^{-1}=B I$, and

$$
\begin{align*}
{\left[\Pi f_{s}\right](g)=f_{1}(g \Pi) } & =f_{1}\left((\Pi s) s\left(\Pi^{-1} g \Pi\right)\right) \tag{7}\\
& =\chi_{2}(p) f_{s}\left(s\left(\Pi^{-1} g \Pi\right)\right) \quad \text { for all } g \in I .
\end{align*}
$$

Now $\pi^{I_{c}}=\mathscr{F}_{1}^{I_{c}} \oplus \mathscr{F}_{s}^{I_{c}} \subset \pi^{K_{c}}$. Let l_{1} be the restriction of t_{0} to $\pi^{I_{c}}$. Then it is immediate that $l_{1}\left(\mathscr{F}_{1}^{I_{c}}\right)=V_{1}$ and $l_{1}\left(\mathscr{F}_{s}^{I_{1}}\right)=V_{s}$, where V_{1} and V_{s} are as above. Moreover, if $f \in D_{1}$ and $\Pi \cdot f$ is given by (5), then $\Pi \cdot f=l_{1}\left(\Pi l_{1}^{-1}(f)\right)$. Since \mathfrak{K}_{1} acts on $\pi^{I_{c}}$, Equation (5) defines an action of \mathfrak{K}_{1} on D_{1} such that l_{1} is \mathfrak{K}_{1}-equivariant. Hence, $\left(l_{0}, l_{1}\right)$ is an isomorphism of diagrams $\left(\pi^{I_{c}} \hookrightarrow \pi^{K_{c}}\right) \cong\left(D_{1} \hookrightarrow D_{0}\right)$.

4. The main result

Lemma 4.1. Let U be a finite dimensional L-vector space with subspaces U_{1}, U_{2} such that $U=U_{1} \oplus U_{2}$. For $x \in L$ define a map $\phi_{x}: U \rightarrow U$ by $\phi_{x}\left(v_{1}+v_{2}\right)=x v_{1}+v_{2}$ for all $v_{1} \in U_{1}$ and $v_{2} \in U_{2}$. Let M be an \mathfrak{o}_{L}-lattice in V. Then there exists an integer $a \geq 1$ such that $\phi_{x}(M)=M$ for $x \in 1+\mathfrak{p}_{L}^{a}$.
Proof. Let N denote the image of M in U / U_{2}. Then N contains $\left(M \cap U_{1}\right)+U_{2}$, and both are lattices in U / U_{2}. Define $a \geq 1$ to be the smallest integer such that $\mathfrak{p}_{L}^{-a}\left(M \cap U_{1}\right)+U_{2}$ contains N. Suppose that $x \in 1+\mathfrak{p}_{F}^{a}$ and $v \in M$. We may write $v=\lambda v_{1}+v_{2}$, with $v_{1} \in M \cap U_{1}, v_{2} \in U_{2}$ and $\lambda \in \mathfrak{p}_{L}^{-a}$. Now $\phi_{x}(v)=$ $v+\lambda(x-1) v_{1} \in M$. Hence we get $\phi_{x}(M) \subseteq M$ and $\phi_{x^{-1}}(M) \subseteq M$. Applying $\phi_{x^{-1}}$ to the first inclusion gives $M \subseteq \phi_{x^{-1}}(M)$.

We fix an integer $k \geq 2$ and set $W:=\operatorname{Sym}^{k-2} L^{2}$, an algebraic representation of G. Let $\pi:=\pi\left(\chi_{1}, \chi_{2}\right):=\operatorname{Ind}_{B}^{G} \chi_{1} \otimes \chi_{2}$ be a smooth principal series L-representation of G. We say that $\pi \otimes W$ admits a G-invariant norm if there exists a norm $\|\cdot\|$ on $\pi \otimes W$ with respect to which $\pi \otimes W$ is a normed L-vector space such that $\|g v\|=\|v\|$ for all $v \in \pi \otimes W$ and $g \in G$.

Let $c \geq 1$ be an integer such that both χ_{1} and χ_{2} are trivial on $1+p^{c} \mathbb{Z}_{p}$. Let D be the diagram $\pi^{I_{c}} \otimes W \hookrightarrow \pi^{K_{c}} \otimes W$. Since $H_{0}\left(\pi^{I_{c}} \hookrightarrow \pi^{K_{c}}\right) \cong \pi$, by tensoring (2) with W we obtain $H_{0}(D) \cong \pi \otimes W$. Assume that $\pi \otimes W$ admits a G-invariant norm $\|\cdot\|$, and set $(\pi \otimes W)^{0}:=\{v \in \pi \otimes W:\|v\| \leq 1\}$. Then we may define a diagram $\mathscr{D}=\left(\mathscr{D}_{1} \hookrightarrow \mathscr{D}_{0}\right)$ of \mathfrak{o}_{L}-modules by

$$
\mathscr{D}:=\left(\left(\pi^{I_{c}} \otimes W\right) \cap(\pi \otimes W)^{0} \hookrightarrow\left(\pi^{K_{c}} \otimes W\right) \cap(\pi \otimes W)^{0}\right) .
$$

In this case Vignéras [2008] has shown that the inclusion $\mathscr{D} \hookrightarrow D$ induces a G-equivariant injection $H_{0}(\mathscr{D}) \hookrightarrow H_{0}(D)$ such that $H_{0}(\mathscr{D}) \otimes_{\mathcal{o}_{L}} L=H_{0}(D)$ and $H_{1}(\mathscr{D})=0$. Moreover, $H_{0}(\mathscr{D})$ does not contain an \mathfrak{o}_{L}-submodule isomorphic to L; see [Vignéras 2008, Proposition 0.1]. Since $H_{0}(D)$ is an L-vector space of countable dimension, this implies that $H_{0}(\mathscr{D})$ is a free \mathfrak{o}_{L}-module. By tensoring (2) with $\mathfrak{o}_{L} / \mathfrak{p}_{L}^{n}$, we obtain

$$
\begin{equation*}
H_{0}(\mathscr{D}) \otimes_{\mathfrak{o}_{L}} \mathfrak{o}_{L} / \mathfrak{p}_{L}^{n} \cong H_{0}\left(\mathscr{D} \otimes_{\mathfrak{o}_{L}} \mathfrak{o}_{L} / \mathfrak{p}_{L}^{n}\right) . \tag{8}
\end{equation*}
$$

Proposition 4.2. Let $\pi=\pi\left(\chi_{1}, \chi_{2}\right)$ be a smooth principal series representation, assume that $\pi \otimes W$ admits a G-invariant norm, and let \mathscr{D} be as above. Then there exists an integer $a \geq 1$ such that for all $x \in 1+\mathfrak{p}_{F}^{b}$, with $b \geq a$, there exists both a finitely generated $\mathfrak{o}_{L}[G]$-module M in $\pi\left(\chi_{1} \delta_{x^{-1}}, \chi_{2} \delta_{x}\right) \otimes W$ that is free as an \mathfrak{o}_{L}-module, and a G-equivariant isomorphism

$$
M \otimes_{\mathfrak{o}_{L}} \mathfrak{o}_{L} / \mathfrak{p}_{L}^{b} \cong H_{0}(\mathscr{D}) \otimes_{\mathfrak{o}_{L}} \mathfrak{o}_{L} / \mathfrak{p}_{L}^{b},
$$

where $\delta_{x}: \mathbb{Q}_{p}^{\times} \rightarrow L^{\times}$is an unramified character with $\delta_{x}(p)=x$.

Proof. Apply Lemma 4.1 to $U=D_{1}, U_{1}=V_{1} \otimes W, U_{2}=V_{s} \otimes W$ and $M=\mathscr{D}_{1}$, where V_{1} and V_{s} are given by (4). We get an integer $a \geq 1$ such that $\phi_{x}\left(\mathscr{D}_{1}\right)=\mathscr{D}_{1}$ for all $x \in 1+\mathfrak{p}_{L}^{a}$. It is immediate that ϕ_{x} is $I Z$-equivariant. We define a new action \star of Π on D_{1} by $\Pi \star v:=\phi_{x}\left(\Pi \phi_{x}^{-1}(v)\right)$. This gives us a new diagram $D(x)$, so that $D(x)_{0}=D_{0}$ as a representation of $\mathfrak{K}_{0}, D(x)_{1}=D_{1}$ as a representation of $I Z$, the $I Z$-equivariant injection $D(x)_{1} \hookrightarrow D(x)_{0}$ is equal to the $I Z$-equivariant injection $D_{1} \hookrightarrow D_{0}$, but the action of Π on D_{1} is given by \star, (here by $=$ we really mean an equality, not an isomorphism). If $f_{1} \in V_{1}$ and $f_{s} \in V_{s}$ then

$$
\Pi \star\left(f_{1} \otimes w\right)=f_{s}^{\prime} \otimes(\Pi w), \quad \Pi \star\left(f_{s} \otimes w\right)=f_{1}^{\prime} \otimes(\Pi w) \quad \text { for all } w \in W
$$

where $f_{s}^{\prime} \in V_{s}, f_{1}^{\prime} \in V_{1}$ and for all $g \in I$ we have

$$
\begin{align*}
f_{s}^{\prime}(s g) & =x^{-1}\left[\Pi \cdot f_{1}\right](s g)=x^{-1} \lambda_{1} f_{1}\left(\Pi^{-1} g \Pi\right), \tag{9}\\
f_{1}^{\prime}(g) & =x\left[\Pi \cdot f_{s}\right](g)=x \lambda_{2} f_{s}\left(s \Pi g \Pi^{-1}\right) . \tag{10}
\end{align*}
$$

Hence, we have an isomorphism of diagrams $D(x) \cong D\left(x^{-1} \lambda_{1}, x \lambda_{2}, \theta_{1}, \theta_{2}\right)$, and so Lemma 3.1 gives $H_{0}(D(x)) \cong \pi\left(\chi_{1} \delta_{x^{-1}}, \chi_{2} \delta_{x}\right) \otimes W$. Now let $b \geq a$ be an integer and suppose that $x \in 1+\mathfrak{p}_{L}^{b}$. Since $\Pi \cdot \mathscr{D}_{1}=\phi_{x}\left(\mathscr{D}_{1}\right)=\phi_{x}^{-1}\left(\mathscr{D}_{1}\right)=\mathscr{D}_{1}$, we get

$$
\Pi \star\left(\mathscr{D}_{0} \cap D_{1}\right)=\Pi \star \mathscr{D}_{1}=\phi_{x}\left(\Pi \phi_{x}^{-1}\left(\mathscr{D}_{1}\right)\right)=\mathscr{D}_{1} .
$$

So if we let $\mathscr{D}(x)_{0}:=\mathscr{D}_{0}$ and $\mathscr{D}(x)_{1}:=\mathscr{D}(x)_{0} \cap D(x)_{1}$, where Π acts on $\mathscr{D}(x)_{1}$ by \star, then the diagram $\mathscr{D}(x):=\left(\mathscr{D}(x)_{1} \hookrightarrow \mathscr{D}(x)_{0}\right)$ is an integral structure in $D(x)$ in the sense of [Vignéras 2008]. The results of Vignéras cited above imply that $M:=H_{0}(\mathscr{D}(x))$ is a finitely generated $\mathfrak{o}_{L}[G]$-submodule of $\pi\left(\chi_{1} \delta_{x^{-1}}, \chi_{2} \delta_{x}\right) \otimes W$, which is free as an \mathfrak{o}_{L}-module, and $M \otimes_{\mathfrak{o}_{L}} L \cong \pi\left(\chi_{1} \delta_{x^{-1}}, \chi_{2} \delta_{x}\right) \otimes W$. Moreover, since ϕ_{x} is the identity modulo \mathfrak{p}_{L}^{b}, we have $\Pi \star v \equiv \Pi \cdot v\left(\bmod \varpi_{L}^{b} \mathscr{D}_{1}\right)$ for all $v \in \mathscr{D}_{1}$, and so the identity map $\mathscr{D}(x)_{0} \rightarrow \mathscr{D}_{0}$ induces an isomorphism of diagrams $\mathscr{D}(x) \otimes_{\mathfrak{o}_{L}} \mathfrak{o}_{L} / \mathfrak{p}_{L}^{b} \cong \mathscr{D} \otimes_{\mathfrak{o}_{L}} \mathfrak{o}_{L} / \mathfrak{p}_{L}^{b}$. Now (8) gives $H_{0}(\mathscr{D}) \otimes_{\mathfrak{o}_{L}} \mathfrak{o}_{L} / \mathfrak{p}_{L}^{b} \cong M \otimes_{\mathfrak{o}_{L}} \mathfrak{o}_{L} / \mathfrak{p}_{L}^{b}$.

Let $k \geq 2$ be an integer and $a_{p} \in \mathfrak{p}_{L}$. Following [Breuil 2003] we define a filtered φ-module $D_{k, a_{p}}$ as the following data: a 2-dimensional L-vector space D with basis $\left\{e_{1}, e_{2}\right\}$, an L-linear automorphism $\varphi: D \rightarrow D$ given by

$$
\varphi\left(e_{1}\right)=p^{k-1} e_{2} \quad \text { and } \quad \varphi\left(e_{2}\right)=-e_{1}+a_{p} e_{2},
$$

and a decreasing filtration $\left(\text { Fil }^{i} D\right)_{i \in \mathbb{Z}}$ by L-subspaces such that if $i \leq 0$ then $\mathrm{Fil}^{i} D=D$, if $1 \leq i \leq k-1$ then $\mathrm{Fil}^{i} D=L e_{1}$, and if $i \geq k$ then $\mathrm{Fil}^{i} D=0$. We set $V_{k, a_{p}}:=\operatorname{Hom}_{\varphi, \text { Fil }}\left(D_{k, a_{p}}, B_{c r i s}\right)$. Then $V_{k, a_{p}}$ is a 2-dimensional L-linear absolutely irreducible crystalline representation of $\varphi_{\mathbb{Q}_{p}}:=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ with Hodge-Tate weights 0 and $k-1$. We denote by $\chi_{k, a_{p}}$ the trace character of $V_{k, a_{p}}$. Since $\mathscr{G}_{\mathbb{Q}_{p}}$ is
compact and the action is continuous, $\mathscr{G}_{\mathbb{Q}_{p}}$ stabilizes some \mathfrak{o}_{L}-lattice in $V_{k, a_{p}}$, and so $\chi_{k, a_{p}}$ takes values in \mathfrak{o}_{L}.

Proposition 4.3. Let m be the largest integer such that $m \leq(k-2) /(p-1)$. Let $a_{p}, a_{p}^{\prime} \in \mathfrak{p}_{L}$, and assume that $\operatorname{val}\left(a_{p}\right)>m$ and $\operatorname{val}\left(a_{p}^{\prime}\right)>m$. Let $n \geq e m$ be an integer, where $e:=e\left(L / \mathbb{Q}_{p}\right)$ is the ramification index. Suppose $a_{p} \equiv a_{p}^{\prime}\left(\bmod \mathfrak{p}_{L}^{n}\right)$. Then $\chi_{k, a_{p}}(g) \equiv \chi_{k, a_{p}^{\prime}}(g)\left(\bmod \mathfrak{p}_{L}^{n-e m}\right)$ for all $g \in \mathscr{G}_{\mathbb{Q}_{p}}$.
Proof. This a consequence of a result of Berger, Li and Zhu [Berger et al. 2004], where the authors construct $\mathscr{G}_{\mathbb{Q}_{p}}$-invariant lattices $T_{k, a_{p}}$ in $V_{k, a_{p}}$. The assumption $a_{p} \equiv a_{p}^{\prime}\left(\bmod \mathfrak{p}_{L}^{n}\right)$ implies $T_{k, a_{p}} \otimes_{\mathfrak{o}_{L}} \mathfrak{o}_{L} / \mathfrak{p}_{L}^{n-e m} \cong T_{k, a_{p}^{\prime}} \otimes_{\mathfrak{o}_{L}} \mathfrak{o}_{L} / \mathfrak{p}_{L}^{n-e m}$; see their [Remark 4.1.2(2)]. This implies the congruences of characters.

Let $k \geq 2$ be an integer and choose $\lambda_{1}, \lambda_{2} \in L$ such that $\lambda_{1}+\lambda_{2}=a_{p}$ and $\lambda_{1} \lambda_{2}=p^{k-1}$ (enlarge L if necessary). Assume $\operatorname{val}\left(\lambda_{1}\right) \geq \operatorname{val}\left(\lambda_{2}\right)>0$. Let χ_{1}, χ_{2} : $\mathbb{Q}_{p}^{\times} \rightarrow L^{\times}$be unramified characters, with $\chi_{1}(p)=\lambda_{1}^{-1}$ and $\chi_{2}(p)=\lambda_{2}^{-1}$. Let M be a finitely generated $\mathfrak{o}_{L}[G]$-module in $\pi\left(\chi_{1}, \chi_{2}|\cdot|^{-1}\right) \otimes W$, where $W:=\operatorname{Sym}^{k-2} L^{2}$. In the case $\lambda_{1} \neq \lambda_{2}$, Berger and Breuil have shown that the unitary L-Banach space representation

$$
E_{k, a_{p}}:=L \otimes_{\mathfrak{o}_{L}} \underset{\leftarrow}{\lim M / \varpi_{L}^{n} M}
$$

of G is nonzero, topologically irreducible, admissible in the sense of [Schneider and Teitelbaum 2002], and contains $\pi\left(\chi_{1}, \chi_{2}|\cdot|^{-1}\right) \otimes W$ as a dense G-invariant subspace [Berger and Breuil 2007, Section 5.3]. Moreover, the dual of $E_{k, a_{p}}$ is isomorphic to the representation of Borel subgroup B constructed from the (φ, Γ)module of $V_{k, a_{p}}$.

Let $\operatorname{Rep}_{\mathfrak{o}_{L}} G$ be the category of finite length $\mathfrak{o}_{L}[G]$-modules with a central character such that the action of G is smooth (that is, the stabilizer of a vector is an open subgroup of $G)$. Let $\operatorname{Rep}_{o_{L}} \mathscr{G}_{\mathbb{Q}_{p}}$ be the category of continuous representations of $\mathscr{G}_{\mathbb{Q}_{p}}$ on \mathfrak{o}_{L}-modules of finite length. Colmez [2008, IV.2.14] has defined an exact covariant functor $\mathbf{V}: \operatorname{Rep}_{o_{L}} G \rightarrow \operatorname{Rep}_{o_{L}} \mathscr{G}_{\mathbb{Q}_{p}}$. The constructions in [Berger and Breuil 2007] and [Colmez 2008] are mutually inverse to one another. This means if we assume $\lambda_{1} \neq \lambda_{2}$ and let M be as above, then

$$
\begin{equation*}
V_{k, a_{p}} \cong L \otimes_{\mathfrak{o}_{L}} \lim _{\leftarrow} \mathbf{V}\left(M / \varpi_{L}^{n} M\right) . \tag{11}
\end{equation*}
$$

That $M / \varpi_{L}^{n} M$ is an $\mathfrak{o}_{L}[G]$-module of finite length follows from [Berger 2005, Theorem A].

Theorem 4.4. Assume that $p>2$. Let $\lambda= \pm p^{(k-1) / 2}$, and let $\chi: \mathbb{Q}_{p}^{\times} \rightarrow L^{\times}$ be a smooth character with $\chi(p)=\lambda^{-1}$. Assume there exists a G-invariant norm $\|\cdot\|$ on $\pi\left(\chi, \chi|\cdot|^{-1}\right) \otimes W$, where $W:=\operatorname{Sym}^{k-2} L^{2}$. Let E be the completion of $\pi\left(\chi, \chi|\cdot|^{-1}\right) \otimes W$ with respect to $\|\cdot\|$. Then E is a nonzero, topologically
irreducible, admissible Banach space representation of G. If we let E^{0} be the unit ball in E, then $V_{k, 2 \lambda} \otimes(\chi|\chi|) \cong L \otimes_{\mathfrak{o}_{L}} \lim \mathbf{V}\left(E^{0} / \varpi_{L}^{n} E^{0}\right)$.

Proof. Since the character $\chi|\chi|$ is integral, by twisting we may assume that χ is unramified. We denote the diagram

$$
\pi\left(\chi, \chi|\cdot|^{-1}\right)^{I_{1}} \otimes W \hookrightarrow \pi\left(\chi, \chi|\cdot|^{-1}\right)^{K_{1}} \otimes W
$$

by $D=\left(D_{1} \hookrightarrow D_{0}\right)$. Let $\mathscr{D}=\left(\mathscr{D}_{1} \hookrightarrow \mathscr{D}_{0}\right)$ be the diagram of \mathfrak{o}_{L}-modules with $\mathscr{D}_{1}=D_{1} \cap E^{0}$ and $\mathscr{D}_{0}=D_{0} \cap E^{0}$. Let $a \geq 1$ be the integer Proposition 4.2 gives. For each $j \geq 0$, we fix $x_{j} \in 1+\mathfrak{p}_{L}^{a+j}$ with $x_{j} \neq 1$ and a finitely generated $\mathfrak{o}_{L}[G]-$ submodule M_{j} in $\pi\left(\chi \delta_{x_{j}^{-1}}, \chi \delta_{x_{j}}|\cdot|^{-1}\right) \otimes W$ (which is then a free \mathfrak{o}_{L}-module) such that

$$
H_{0}(\mathscr{D}) \otimes_{\mathfrak{o}_{L}} \mathfrak{o}_{L} / \mathfrak{p}_{L}^{a+j} \cong M_{j} \otimes_{\mathfrak{o}_{L}} \mathfrak{o}_{L} / \mathfrak{p}_{L}^{a+j} .
$$

This is possible by Proposition 4.2. To ease the notation we set $M:=H_{0}(\mathscr{D})$. Let $a_{p}(j):=\lambda x_{j}^{-1}+\lambda x_{j}$, let $a_{p}:=2 \lambda$, and let m be the largest integer such that $m \leq(k-2) /(p-1)$. Since $p>2, x_{j}+x_{j}^{-1}$ is a unit in \mathfrak{o}_{L}, we have $\operatorname{val}\left(a_{p}(j)\right)=$ $\operatorname{val}\left(a_{p}\right)=(k-1) / 2>m$. (Here we really need $p>2$.) Moreover, we have $a_{p} \equiv a_{p}(j)\left(\bmod \mathfrak{p}_{L}^{j+a+e m}\right)$, where $e:=e\left(L / \mathbb{Q}_{p}\right)$ is the ramification index. Now since $x_{j} \neq 1$ we get that $\lambda x_{j} \neq \lambda x_{j}^{-1}$, and hence we may apply the results of Berger and Breuil to $\pi\left(\chi \delta_{x_{j}^{-1}}, \chi \delta_{x_{j}}|\cdot|^{-1}\right) \otimes W$. By (11),

$$
T_{k, a_{p}(j)}:=\lim _{\leftarrow} \mathbf{V}\left(M_{j} / \varpi_{L}^{n} M_{j}\right)
$$

is a $\mathscr{Q}_{\mathbb{Q}_{p}}$-invariant lattice in $V_{k, a_{p}(j)}$. Since $M \otimes_{\mathfrak{o}_{L}} \mathfrak{o}_{L} / \mathfrak{p}_{L}^{a+j} \cong M_{j} \otimes_{\mathfrak{o}_{L}} \mathfrak{o}_{L} / \mathfrak{p}_{L}^{a+j}$ we get

$$
\begin{equation*}
\mathbf{V}\left(M / \varpi_{L}^{a+j} M\right) \cong \mathbf{V}\left(M_{j} / \varpi_{L}^{a+j} M_{j}\right) \cong T_{k, a_{p}(j)} \otimes_{\mathfrak{o}_{L}} \mathfrak{o}_{L} / \mathfrak{p}_{L}^{a+j} \tag{12}
\end{equation*}
$$

Set $V:=L \otimes_{\mathcal{o}_{L}} \lim \mathbf{V}\left(M / w_{L}^{n} M\right)$. Then (12) implies that V is a 2-dimensional L-vector space. Let χ_{V} be the trace character of V. Then it follows from (12) that $\chi_{V} \equiv \chi_{k, a_{p}(j)}\left(\bmod \mathfrak{p}_{L}^{a+j}\right)$. Since $a_{p} \equiv a_{p}(j)\left(\bmod \mathfrak{p}_{L}^{a+j+e m}\right)$, Proposition 4.3 says that $\chi_{k, a_{p}} \equiv \chi_{k, a_{p}(j)}\left(\bmod \mathfrak{p}_{L}^{a+j}\right)$. We obtain $\chi_{V} \equiv \chi_{k, a_{p}}\left(\bmod \mathfrak{p}_{L}^{a+j}\right)$ for all $j \geq 0$. This gives us $\chi_{V}=\chi_{k, a_{p}}$. Since $V_{k, a_{p}}$ is irreducible, the equality of characters implies $V \cong V_{k, a_{p}}$.

Set $\widehat{M}:=\lim _{\leftarrow} M / \varpi_{L}^{n} M$, and $E^{\prime}:=\widehat{M} \otimes_{\mathfrak{o}_{L}} L$. Since M is a free \mathfrak{o}_{L}-module, we get an injection $M \hookrightarrow \widehat{M}$. In particular, E^{\prime} contains $\pi\left(\chi, \chi|\cdot|^{-1}\right) \otimes W$ as a dense G invariant subspace. We claim that E^{\prime} is a topologically irreducible and admissible G-representation. Now Theorem 4.1.1 and Proposition 4.1 .4 of [Berger et al. 2004] say that the semisimplification of $T_{k, a_{p}(j)} \otimes_{\mathcal{o}_{L}} k_{L}$ is irreducible if $p+1 \nmid k-1$ and is otherwise isomorphic to

$$
\left(\begin{array}{cc}
\mu_{\sqrt{-1}} & 0 \\
0 & \mu_{-\sqrt{-1}}
\end{array}\right) \otimes \omega^{(k-1) /(p+1)}
$$

where $\mu_{ \pm \sqrt{-1}}$ is the unramified character sending arithmetic Frobenius to $\pm \sqrt{-1}$, and ω is the cyclotomic character. Then [Berger 2005, Theorem A] implies that if $p+1 \nmid k-1$, then $M_{j} \otimes_{\mathfrak{o}_{L}} k_{L}$ is an irreducible supersingular representation of G, and if $p+1 \mid k-1$, then the semisimplification of $M_{j} \otimes_{\mathfrak{o}_{L}} k_{L}$ is a direct sum of two irreducible principal series. The irreducibility of principal series follows from [Barthel and Livné 1994, Theorem 33], since $\sqrt{-1} \neq \pm 1$, as $p>2$. Since $M \otimes_{\mathfrak{o}_{L}} k_{L} \cong M_{j} \otimes_{\mathfrak{o}_{L}} k_{L}$, we get that $M \otimes_{\mathfrak{o}_{L}} k_{L}$ is an admissible representation of G (so that for every open subgroup ϑ of G, the space of U-invariants is finite dimensional). This implies that E^{\prime} is admissible.

Suppose that E_{1} is a closed G-invariant subspace of E^{\prime} with $E^{\prime} \neq E_{1}$. Let $E_{1}^{0}:=E_{1} \cap \widehat{M}$. We obtain a G-equivariant injection $E_{1}^{0} \otimes_{\mathfrak{o}_{L}} k_{L} \hookrightarrow M \otimes_{\mathfrak{o}_{L}} k_{L}$. If $E_{1}^{0} \otimes_{\mathfrak{o}_{L}} k_{L}=0$ or $M \otimes_{\mathfrak{o}_{L}} k_{L}$, then Nakayama's lemma gives $E_{1}^{0}=0$ or $E_{1}^{0}=\widehat{M}$, respectively. If $p+1 \nmid k-1$, then $M \otimes_{\mathfrak{o}_{L}} k_{L}$ is irreducible and we are done. If $p+1 \mid k-1$, then $E_{1}^{0} \otimes_{\mathfrak{o}_{L}} k_{L}$ is an irreducible principal series, and so $\mathbf{V}\left(E_{1}^{0} \otimes_{\mathfrak{o}_{L}} k_{L}\right)$ is one-dimensional [Colmez 2008, IV.4.17]. But then $V_{1}:=L \otimes_{\mathfrak{o}_{L}} \lim _{\leftarrow} \mathbf{V}\left(E_{1}^{0} / \varpi_{L}^{n} E_{1}^{0}\right)$ is a 1-dimensional subspace of $V_{k, a_{p}}$ stable under the action of $\mathscr{G}_{\mathbb{Q}_{p}}$. Since $V_{k, a_{p}}$ is irreducible we obtain a contradiction.

Since E^{\prime} is a completion of $\pi\left(\chi, \chi|\cdot|^{-1}\right) \otimes W$ with respect to a finitely generated $\mathfrak{o}_{L}[G]$-submodule, E^{\prime} is in fact the universal completion; see for example [Emerton 2005, Proposition 1.17]. In particular, we obtain a nonzero G-equivariant map of L-Banach space representations $E^{\prime} \rightarrow E$, but since E^{\prime} is irreducible and $\pi\left(\chi, \chi|\cdot|^{-1}\right) \otimes W$ is dense in E, this map is an isomorphism.
Corollary 4.5. Assume that $p>2$, and let $\chi: \mathbb{Q}_{p}^{\times} \rightarrow L^{\times}$be a smooth character such that $\chi(p)^{2} p^{k-1}=1$. Assume that there is a G-invariant norm $\|\cdot\|$ on $\pi\left(\chi, \chi|\cdot|^{-1}\right) \otimes W$, where $W:=\operatorname{Sym}^{k-2} L^{2}$. Then every bounded G-invariant \mathfrak{o}_{L}-lattice in $\pi\left(\chi, \chi|\cdot|^{-1}\right) \otimes W$ is finitely generated as an $\mathfrak{o}_{L}[G]$-module.
Proof. The existence of a G-invariant norm implies that the universal completion is nonzero. It follows from Theorem 4.4 that the universal completion is topologically irreducible and admissible. The assertion follows from the proof of [Berger and Breuil 2007, Corollary 5.3.4].

For the purposes of [Paškūnas 2008] we record the following corollary to the proof of Theorem 4.4.
Corollary 4.6. Assume $p>2$, and let $\chi: \mathbb{Q}_{p}^{\times} \rightarrow L^{\times}$be a smooth character such that $\chi^{2}(p) p^{k-1}$ is a unit in \mathfrak{o}_{L}. Assume there exists a unitary L-Banach space representation $(E,\|\cdot\|)$ of G containing $\left(\operatorname{Ind}_{B}^{G} \chi \otimes \chi|\cdot|^{-1}\right) \otimes \operatorname{Sym}^{k-2} L^{2}$ as a dense G-invariant subspace and satisfying $\|E\| \subseteq|L|$. Then there exists $x \in 1+\mathfrak{p}_{L}$
with $x^{2} \neq 1$ and a unitary completion E_{x} of $\left(\operatorname{Ind}_{B}^{G} \chi \delta_{x} \otimes \chi \delta_{x^{-1} \mid}|\cdot|^{-1}\right) \otimes \operatorname{Sym}^{k-2} L^{2}$ such that $E^{0} \otimes_{\mathfrak{o}_{L}} k_{L} \cong E_{x}^{0} \otimes_{\mathfrak{o}_{L}} k_{L}$, where E_{x}^{0} is the unit ball in E_{x} and E^{0} is the unit ball in E.

Proof. Let $\pi:=\operatorname{Ind}_{B}^{G} \chi \otimes \chi|\cdot|^{-1}$ and $M:=(\pi \otimes W) \cap E^{0}$. Now $M \cap \varpi_{L} E^{0}=$ $(\pi \otimes W) \cap \varpi_{L} E^{0}=\varpi_{L} M$. So $\imath: M / \varpi_{L} M \hookrightarrow E^{0} / \varpi_{L} E^{0}$ is a G-equivariant injection. We claim that l is a surjection. Let $v \in E^{0}$. Since $\pi \otimes W$ is dense in E, there exists a sequence $\left\{v_{n}\right\}_{n \geq 1}$ in $\pi \otimes W$ such that $\lim v_{n}=v$. We also have $\lim \left\|v_{n}\right\|=\|v\|$. Since $\|E\| \subseteq|L| \cong \mathbb{Z}$, there exists an $m \geq 0$ such that $v_{n} \in M$ for all $n \geq m$. This implies the surjectivity of t. So we get $M \otimes_{\mathfrak{o}_{L}} k_{L} \cong E^{0} \otimes_{\mathfrak{o}_{L}} k_{L}$.

By Corollary 4.5 we may find $u_{1}, \ldots, u_{n} \in M$ that generate M as an $\mathfrak{o}_{L}[G]-$ module. Further, $u_{i}=\sum_{j=1}^{m_{i}} v_{i j} \otimes w_{i j}$ with $v_{i j} \in \pi$ and $w_{i j} \in W$. Since π is a smooth representation of G, there exists an integer $c \geq 1$ such that $v_{i j}$ is fixed by K_{c} for all $1 \leq i \leq n$ and $1 \leq j \leq m_{i}$. Set

$$
\mathscr{D}:=\left(\left(\pi^{I_{c}} \otimes W\right) \cap M \hookrightarrow\left(\pi^{K_{c}} \otimes W\right) \cap M\right), \quad D:=\left(\pi^{I_{c}} \otimes W \hookrightarrow \pi^{K_{c}} \otimes W\right)
$$

and let M^{\prime} be the image of $H_{0}(\mathscr{D}) \hookrightarrow H_{0}(D) \cong \pi \otimes W$. It follows from (3) that M^{\prime} is generated by $\left(\pi^{K_{c}} \otimes W\right) \cap M$ as an $\mathfrak{o}_{L}[G]$-module. Hence, $M^{\prime} \subseteq M$. By construction $\left(\pi^{K_{c}} \otimes W\right) \cap M$ contains $u_{1}, \ldots u_{n}$, and so $M \subseteq M^{\prime}$. In particular, $H_{0}(\mathscr{D}) \otimes_{\mathcal{o}_{L}} k_{L} \cong M \otimes_{\mathfrak{o}_{L}} k_{L}$. The claim follows from the proof of Theorem 4.4.

5. Existence

Recent results of Colmez, which appeared after the first version of this note, imply the existence of a G-invariant norm on $\left(\operatorname{Ind}_{B}^{G} \chi \otimes \chi|\cdot|^{-1}\right) \otimes \operatorname{Sym}^{k-2} L^{2}$ for $\chi^{2}(p) p^{k-1} \in \mathfrak{o}_{L}^{\times}$, thus making our results unconditional. We briefly explain this.

We continue to assume that $p>2$, that $k \geq 2$ is an integer and that $a_{p}=2 p^{(k-1) / 2}$. The representation $V_{k, a_{p}}$ of $\mathscr{\varphi}_{\mathbb{Q}_{p}}$ sits in the p-adic family of Berger, Li and Zhu, [2004, 3.2.5]. Moreover, all the other points in the family correspond to the crystalline representations with distinct Frobenius eigenvalues, to which the theory of [Berger and Breuil 2007] applies. Hence [Colmez 2008, II.3.1 and IV.4.11] imply that there exists an irreducible unitary L-Banach space representation Π of $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ such that $\mathbf{V}(\Pi) \cong V_{k, a_{p}}$. If $p \geq 5$ or $p=3$ and $k \not \equiv 3(\bmod 8)$ and $k \not \equiv 7(\bmod 8)$, the existence of such Π also follows from [Kisin 2008]. It follows from [Colmez 2008, VI.6.46] that the set of locally algebraic vectors $\Pi^{\text {alg }}$ of Π is isomorphic to

$$
\left(\operatorname{Ind}_{B}^{G} \chi \otimes \chi|\cdot|^{-1}\right) \otimes \operatorname{Sym}^{k-2} L^{2},
$$

where $\chi: \mathbb{Q}_{p}^{\times} \rightarrow L^{\times}$is an unramified character with $\chi(p)=p^{-(k-1) / 2}$. The restriction of the G-invariant norm of Π to $\Pi^{\text {alg }}$ solves the problem. Also, if $\delta: \mathbb{Q}_{p}^{\times} \rightarrow L^{\times}$ is a unitary character, then we also obtain a G-invariant norm on $\Pi^{\text {alg }} \otimes \delta \circ$ det.

Acknowledgments

I thank Laurent Berger, Christophe Breuil, Gaëtan Chenevier and Pierre Colmez for answering my questions. I also thank Guy Henniart, Ariane Mézard and Rachel Ollivier for organizing 'Groupe de Travail sur les représentations p-adiques de $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ ', where I learnt about Colmez's functor. This paper was written when I was visiting IHÉS and Université Paris-Sud, supported by Deutsche Forschungsgemeinschaft. I would like to thank these institutions.

References

[Barthel and Livné 1994] L. Barthel and R. Livné, "Irreducible modular representations of GL_{2} of a local field", Duke Math. J. 75:2 (1994), 261-292. MR 95g:22030 Zbl 0826.22019
[Berger 2005] L. Berger, "Représentations modulaires de $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ et représentations galoisiennes de dimension 2", preprint, 2005. To appear in Astérisque. arXiv math/0510090
[Berger and Breuil 2007] L. Berger and C. Breuil, "Sur quelques représentations potentiellement cristallines de $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ ", preprint, 2007, Available at http://tinyurl.com/qtbvtz. To appear in Astérisque.
[Berger et al. 2004] L. Berger, H. Li, and H. J. Zhu, "Construction of some families of 2-dimensional crystalline representations", Math. Ann. 329:2 (2004), 365-377. MR 2005k:11104 Zbl 1085.11028 [Breuil 2003] C. Breuil, "Sur quelques représentations modulaires et p-adiques de $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$, II", J. Inst. Math. Jussieu 2:1 (2003), 23-58. MR 2005d:11079
[Colmez 2008] P. Colmez, "Représentations de $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ et ($\left.\varphi, Г\right)$-modules", preprint, 2008, Available at http://www.math.jussieu.fr/~colmez/kirilov.pdf.
[Emerton 2005] M. Emerton, " p-adic L-functions and unitary completions of representations of p adic reductive groups", Duke Math. J. 130:2 (2005), 353-392. MR 2007e:11058 Zbl 1092.11024 [Kisin 2008] M. Kisin, "Deformations of $G_{\mathbb{Q}_{p}}$ and $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ representations", preprint, 2008, Available at http://www.math.uchicago.edu/~kisin/dvifiles/dense.dvi.
[Paškūnas 2004] V. Paškūnas, Coefficient systems and supersingular representations of $\mathrm{GL}_{2}(F)$, Mém. Soc. Math. Fr. (N.S.) 99, Société Mathématique de France, Paris, 2004. MR 2005m:22017
[Paškūnas 2008] V. Paškūnas, "Admissible unitary completions of locally \mathbb{Q}_{p}-rational representations of $\mathrm{GL}_{2}(F)$ ", preprint, 2008. arXiv 0805.1006
[Schneider and Stuhler 1993] P. Schneider and U. Stuhler, "Resolutions for smooth representations of the general linear group over a local field", J. Reine Angew. Math. 436 (1993), 19-32. MR 94a:22039 Zbl 0780.20026
[Schneider and Stuhler 1997] P. Schneider and U. Stuhler, "Representation theory and sheaves on the Bruhat-Tits building", Inst. Hautes Études Sci. Publ. Math. 85 (1997), 97-191. MR 98m:22023 Zbl 0892.22012
[Schneider and Teitelbaum 2002] P. Schneider and J. Teitelbaum, "Banach space representations and Iwasawa theory", Israel J. Math. 127 (2002), 359-380. MR 2003c:22026 Zbl 1006.46053
[Vignéras 2008] M.-F. Vignéras, "A criterion for integral structures and coefficient systems on the tree of PGL(2, F)", Pure Appl. Math. Q. 4:4, part 1 (2008), 1291-1316. MR 2009e:20059

Communicated by Marie-France Vignéras
Received 2008-05-07 Revised 2009-02-09 Accepted 2009-03-12
paskunas@mathematik.uni-bielefeld.de Universität Bielefeld, Fakultät für Mathematik, Postfach 100131, D-33501 Bielefeld, Germany

[^0]: MSC2000: primary 22E50; secondary 11S37, 11S20.
 Keywords: p-adic Langlands, universal completion, unitary Banach space representation.

