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Let p be a prime, k a field of characteristic 6= p and N the normalizer of the
maximal torus in the projective linear group PGLn . We compute the exact value
of the essential dimension edk(N ; p) of N at p for every n ≥ 1.

1. Introduction

Let k be a field, Fieldsk the category of field extensions K/k, and F a covariant
functor from Fieldsk into the category of sets. As usual, for a field extension L/K ,
we denote the image of a ∈ F(K ) under the natural map F(K )→ F(L) by aL .

Given a field extension L/k, an object a ∈ F(L) is said to descend to an inter-
mediate field k ⊆ K ⊆ L if a is in the image of the induced map F(K )→ F(L).
The essential dimension ed(a) of a ∈ F(L) is the minimum of the transcendence
degrees trdegk(K ) taken over all fields k ⊆ K ⊆ L such that a descends to K . The
essential dimension ed(a; p) of a at a prime integer p is the minimum of ed(aL ′),
taken over all finite field extensions L ′/L such that the degree [L ′ : L] is prime
to p.

The essential dimension ed(F) of the functor F (respectively, the essential di-
mension ed(F; p) of F at a prime p) is the supremum of ed(a) (respectively, of
ed(a; p)) taken over all a ∈ F(L) and over all field extensions L/k. Informally
speaking, the essential dimension of a ∈ F(L) can be thought of as the minimal
number of parameters one needs to define a, and ed(F) as the minimal number of
parameters required to define any object in F .

An important example is the Galois cohomology functor FG = H 1(∗,G) send-
ing a field K/k to the set H 1(K ,G) of isomorphism classes of G-torsors over
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Spec(K ), in the fppf topology. Here G is an algebraic group defined over k. The
essential dimension of this functor is a numerical invariant of G, which, informally
speaking, measures the complexity of G-torsors over fields. This number is usu-
ally denoted by edk(G) or, if k is fixed throughout, simply by ed(G). The notion
of essential dimension was originally introduced and has since been extensively
studied in this context; see for example [Buhler and Reichstein 1997; Reichstein
2000; Reichstein and Youssin 2000; Lemire 2004; Chernousov and Serre 2006].
The theory of essential dimension of algebraic groups may be viewed as a natural
extension of the theory of special groups initiated in [Serre 1958]. Over an alge-
braically closed field k special groups are precisely those of essential dimension 0,
these groups were classified in [Grothendieck 1958]. The more general definition
of essential dimension for a covariant functor given above is due to Merkurjev
[Berhuy and Favi 2003; Merkurjev 2007].

The purpose of this paper is to compute the relative essential dimension ed(N ;p),
where N is the normalizer of the (split) maximal torus in the projective linear group
PGLn . Before proceeding to state our main result, we would like to explain why
we are interested in the essential dimension of N .

We begin by recalling that elements of H 1(K ,G) can often be naturally identi-
fied with K -forms of a single “split” algebraic object over k. Here by an algebraic
object we mean a tensor t defined on a finite-dimensional k-vector space V ; the
group G ⊂ GL(V ) then naturally arises as the automorphism group of t [Serre
1997, Chapter III]. Two examples will be of primary interest in the sequel:

H 1(∗,PGLn) : K 7→
{

degree n central simple algebras A/K ,
up to K -isomorphism

}
(1)

and

H 1(∗, N ) : K 7→
{

K -isomorphism classes of pairs (A, L)
}
, (2)

where K is a field extension of k, A is a degree n central simple algebra over K , L
is a maximal étale subalgebra of A, and N is the normalizer of a split maximal torus
in PGLn , as above. For the functor (1) the split central simple k-algebra of degree n
is Mn , its automorphism group is PGLn . Similarly, in the case of the functor (2) the
split pair (A, L) is (Mn,Diagn), where Diagn denotes the subalgebra of diagonal
matrices in Mn(k). The automorphism group of this split pair is N .

Computing the essential dimension of the projective linear group PGLn , or
equivalently, of the functor (1), is a fundamental problem in the theory of central
simple algebras. To the best of our knowledge, it was first raised by C. Procesi, who
showed (using different terminology) that ed(PGLn)≤ n2 [Procesi 1967, Theorem
2.1]. This problem and the related question of computing the relative essential
dimension ed(PGLn; p) at a prime p remain largely open. The best currently
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known lower bound [Reichstein 1999, Theorem 16.1(b); Reichstein and Youssin
2000, Theorem 8.6] is

ed(PGLpr ; p)≥ 2r,

and it falls far below the best known upper bound [Lorenz and Reichstein 2000;
Lorenz et al. 2003, Theorem 1.1; Lemire 2004, Proposition 1.6; Favi and Florence
2008], given by

ed(PGLn)≤

{
1
2(n−1)(n−2) for every odd n ≥ 5,

n2
− 3n+ 1 for every n ≥ 4.

(3)

We remark that the primary decomposition theorem reduces the computation
of ed(PGLn; p) to the case where n is a power of p. That is, if n = pr1

1 . . . prs
s

then ed(PGLn; pi )= ed(PGLp
ri
i
; pi ). The computation of ed(PGLn) also partially

reduces to the prime power case, because

ed(PGLp
ri
i
)≤ ed(PGLn)≤ ed(PGLp

r1
1
)+ · · ·+ ed(PGLprs

s
)

for every i = 1, . . . , s [Reichstein 2000, Proposition 9.8].
Note that the proofs of the upper bounds (3) are not based on a direct analysis

of the functor H 1(∗,PGLn). Instead, one works with the related functor H 1(∗, N )
of (2). This functor is often more accessible than H 1(∗,PGLn) because many of
the standard constructions in the theory of central simple algebras depend on the
choice of a maximal subfield L in a given central simple algebra A/K . Projecting
a pair (A, L) to the first component, we obtain a surjective morphism of functors
H 1(∗, N )→ H 1(∗,PGLn), [Rowen 1980, Corollary 3.1.11]. The surjectivity of
this morphism leads to the inequalities

ed(N )≥ ed(PGLn) and ed(N ; p)≥ ed(PGLn; p); (4)

see [Merkurjev 2007, Proposition 1.3], [Berhuy and Favi 2003, Lemma 1.9] or
[Reichstein 2000, Proposition 4.3].

The inequalities (3) were, in fact, proved as upper bounds on ed(N ) [Lorenz
et al. 2003; Lemire 2004]. It is thus natural to try to determine the exact values of
ed(N ) and ed(N ; p). In addition to being of independent interest, these numbers
represent a limitation on the techniques used in [Lorenz et al. 2003] and [Lemire
2004]. This brings us to the main result of this paper.

Theorem 1.1. Let N the normalizer of a maximal torus in the projective linear
group PGLn defined over a field k with char(k) 6= p. Then:

(a) edk(N ; p)= [n/p], if n is not divisible by p.
(b) edk(N ; p)= 2, if n = p.
(c) edk(N ; p)= n2/p− n+ 1, if n = pr for some r ≥ 2.
(d) edk(N ; p)= pe(n− pe)− n+ 1, in all other cases.
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Here [n/p] is the integer part of n/p and pe is the highest power of p dividing n.

In each part we will prove an upper bound and a lower bound on ed(N ) sepa-
rately. We do not have an a priori reason why the two should match, thus yielding
an exact value of ed(N ; p); the fact that this happens may be viewed as a lucky
coincidence. We also remark that our proof of the upper bounds on edk(N ; p) in
part (c) and (d) does not use the assumption that char(k) 6= p. These bounds are
valid for every base field k.

As we mentioned above, the computation of ed(PGLn; p) reduces to the case
where n is a power of p. A quick glance at the statement of Theorem 1.1 shows
that the computation of ed(N ; p) does not. On the other hand, the proof of part (c),
where n= pr and r ≥ 2, requires the most intricate arguments. Another reason for
our special interest in part (c) is that it leads to a new upper bound on ed(PGLn; p).
More precisely, combining the upper bound in part (c) with (4), and remembering
that the upper bound in part (c) is valid for any the ground field k, we obtain the
following inequality.

Corollary 1.2. Let n = pr be a prime power. Then

edk(PGLn; p)≤ p2r−1
− pr
+ 1

for any field k and for any r ≥ 2. �

Corollary 1.2 fails for r = 1 because

edk(PGLp; p)= 2; (5)

see [Reichstein 2000, Corollary 5.7] or [Reichstein and Youssin 2000, Lemma
8.5.7]. For r = 2, Corollary 1.2 is valid but is not optimal. Indeed, in this
case L. H. Rowen and D. J. Saltman showed that, after a prime-to-p extension
L/K , every degree p2 central simple algebra A/K becomes a (Z/pZ)2-crossed
product [Rowen and Saltman 1992, Corollary 1.3]. The upper bound on the es-
sential dimension of a crossed product given by [Lorenz et al. 2003, Corollary
3.10] then yields the inequality ed(PGLp2; p) ≤ p2

+ 1, which is stronger than
Corollary 1.2 for any p ≥ 3. Merkurjev [2008] recently showed that in fact,
edk(PGLp2; p) = p2

+ 1 for any field k of characteristic different from p. For
r ≥ 3 Corollary 1.2 gives the best currently known upper bound on ed(PGLpr ; p).

We remark that the inequalities of (4) have counterparts for algebraic groups
other than PGLn . Indeed, if G is a linear group defined over k, C is a Cartan
subgroup of G and N (C) is the normalizer of C then by a theorem of T. Springer
the natural map H 1(K , N (C))→ H 1(K ,G) is surjective for every perfect field ex-
tension K/k [Serre 1997, III.4.3, Lemma 6]. Consequently, edk(N (C))≥ edk(G)
if char(k)= 0 and edk(N (C); p)≥ edk(G; p) if char(k) 6= p; compare [Reichstein
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2000, Proposition 4.3]. It would thus be of interest to prove an analogue of Theo-
rem 1.1 in the more general setting, where N is the normalizer of a split maximal
torus in an arbitrary simple (or semisimple) linear algebraic group G. The new
technical difficulty one encounters in this more general setting is that the natural
sequence

1→ T → N →W → 1,

may not split. Here T is a split maximal torus and W = N/T is the Weyl group of
G. The fact that this sequence splits for G = PGLn is an important ingredient in
our proof of the upper bound on ed(N ; p).

A key ingredient in our proofs of the lower bounds in Theorem 1.1(c) and (d)
is a recent theorem of Karpenko and Merkurjev [2008] on the essential dimension
of a p-group, stated as Theorem 7.1 below. To the best of our knowledge, these
lower bounds were not accessible by previous techniques. Corollary 1.2 and the
other parts of Theorem 1.1 do not rely on the Karpenko–Merkurjev theorem.

2. A general strategy

Let G be an algebraic group defined over a field k. Recall that the action of G on
an algebraic variety X defined over k is generically free if the stabilizer subgroup
StabG(x) is trivial for x ∈ X (k) in general position.

Remark 2.1. If G is a finite constant group and X is irreducible then the G-action
on X is generically free if and only if it is faithful.

Indeed, the “only if” is obvious. Conversely, if the G-action on X is faithful
then StabG(x)={1} for any x outside of the closed subvariety

⋃
16=g∈G X 〈g〉, whose

dimension is at most dim X − 1. �

Remark 2.2. Suppose k ′/k is a field extension of degree prime to p. Then the
essential dimension at p does not change if we replace k by k ′ [Merkurjev 2007,
Proposition 1.5(2)]. This happens in particular if char(k) 6= p and k ′ is obtained
from k by adjoining a primitive p-th root of unity. Thus in the course of proving
Theorem 1.1 we may assume without loss of generality that k contains a primitive
p-th root of unity.

In the sequel we will repeatedly encounter the following situation. Suppose we
want to show that

edk(G)= edk(G; p)= d, (6)

where G is a linear algebraic group defined over k. All such assertions will be
proved in two steps:

(i) Construct a generically free linear representation of G over k of dimension
d+dim G. This implies that edk(G)≤ d; see [Reichstein 2000, Theorem 3.4]
or [Berhuy and Favi 2003, Proposition 4.11].
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(ii) Prove the lower bound edk(G; p)≥ d .

Since clearly ed(G; p)≤ ed(G), equality (6) follows from (i) and (ii).
The group G will always be of the form G = D o F , where D is diagonalizable

and F is finite. In the next section we will recall some known facts about represen-
tations of such groups. This will help us in carrying out step (i) and, in the most
interesting cases, step (ii) as well, via the Karpenko–Merkurjev Theorem 7.1.

3. Representation-theoretic preliminaries

We will work over a ground field k which remains fixed throughout. Suppose that
a linear algebraic k-group G contains a diagonalizable (over k) group D and the
quotient G/D is a constant finite group F . Here diagonalizable over k means that D
is a subgroup of the split torus Gd

m defined over k or, equivalently, that every linear
representation of D defined over k decomposes as a direct sum of one-dimensional
subrepresentations.

Denote the group of (multiplicative) characters of D by X (D). Note that since
D is diagonalizable over k, every multiplicative character of D is defined over k.
Consider a linear k-representation G→ GL(V ). Restricting this representation to
D, we decompose V into a direct sum of one-dimensional character spaces. Let
3⊂ X (D) be the set of characters (weights) of D which occur in this decomposi-
tion. Note that here |3| ≤ dim V , and equality holds if and only if each character
from 3 occurs in V with multiplicity 1. The finite group F acts on X (D) and 3
is invariant under this action. Moreover, if the G-action (and hence, the D-action)
on V is generically free then 3 generates X (D) as an abelian group. In summary,
we have proved the following lemma; cf. [Serre 1977, Section 8.1].

Lemma 3.1. Suppose that every F-invariant generating set 3 of X (D) contains
at least d elements. If G→GL(V ) is a generically free k-representation of G then
dim V ≥ d. �

As we explained in the previous section, we are interested in constructing low-
dimensional generically free representations of G. In this section we will prove
simple sufficient conditions for generic freeness for two particular families of rep-
resentations.

Lemma 3.2. Let W be a faithful representation of F and V be a representation
of G whose restriction to D is generically free. Then V ×W is a generically free
representation of G.

Here we view W as a representation of G via the natural projection

G→ G/D = F.
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Proof. For w ∈ W (k) in general position, we have StabG(w)= D by Remark 2.1.
Choosing v in general position in V (k), we see that StabG(v,w) = StabG(v) ∩

StabG(w)= StabD(v)= {1}. �

From now on we will assume that G= Do F is the semidirect product of D and
F . In this case, given an F-invariant generating set 3⊂ X (D), we can construct a
linear k-representation V3 of G so that each character from3 occurs in V3 exactly
once. To do this, we associate a basis element vλ to each λ ∈3. The finite group
F acts on

V3 = Span(vλ | λ ∈3)

by permuting these basis elements in the natural way, that is, via

σ : vλ 7→ vσ(λ) (7)

for any σ ∈ F and any λ ∈3. The diagonalizable group D-acts by the character λ
on each one-dimensional space Span(vλ), that is, via

t : vλ 7→ λ(t)vλ (8)

for any t ∈ D and λ ∈ 3. Extending (7) and (8) linearly to all of V3, we obtain
a linear representation G = D o F → GL(V3). Note that by our construction
dim V3 = |3|.

Our second criterion for generic freeness is a variant of [Lorenz and Reichstein
2000, Lemma 3.1] or [Lemire 2004, Proposition 2.1]. For the sake of completeness
we outline a characteristic-free proof.

Lemma 3.3. Let 3 be an F-invariant subset of X (D) and φ : Z[3] → X (D) be
the natural morphism of Z[F]-modules, taking λ∈3 to itself. Let V3 be the linear
representation of G = D o F defined by (7) and (8), as above. The G-action on
V3 is generically free if and only if

(a) 3 spans X (D) (or equivalently, φ is surjective) and

(b) the F-action on Kerφ is faithful.

Proof. Let U 'Gn
m be the diagonal subgroup of GL(V3), in the basis eλ, where λ∈

3. Here n=|3|=dim V3. The G-action on V induces an F-equivariant morphism
ρ : D → U , which is dual to φ under the usual (antiequivalence) Diag between
finitely generated abelian groups and diagonalizable algebraic groups. Applying
Diag to the exact sequence

(0) - Kerφ - Z[3]
φ- X (D) - Cokerφ - (0)

of finitely generated abelian Z[F]-modules and setting

U = Diag(Z[3]), N = Diag(Cokerφ), Q = Diag(Kerφ),



474 Aurel Meyer and Zinovy Reichstein

we obtain an F-equivariant exact sequence

1 - N - D
ρ- U - Q - 1

of diagonalizable groups; see [Jantzen 2003, I 5.6] or [Demazure and Gabriel 1970,
IV 1.1]. Since U is F-equivariantly isomorphic to a dense open subset of V , the
G-action on V is generically free if and only if the G-action on U is generically
free. On the other hand, the G-action on U is generically free if and only if the
D-action on U is generically free and the F-action on Q is generically free. But
the first of these conditions is equivalent to (a), while the second is equivalent to
(b); see Remark 2.1. �

4. Subgroups of prime-to- p index

Lemma 4.1. Let G ′ be a closed subgroup of a smooth algebraic group G defined
over k. Assume that the index [G : G ′] := dimk k[G/G ′] is finite and prime to p.
Then ed(G; p)= ed(G ′; p).

In the case where G is finite a proof can be found in [Merkurjev 2007, Proposi-
tion 4.10]; the argument below proceeds along similar lines.

Proof. Recall that if G is a linear algebraic group and H is a closed subgroup then

ed(G; p)≥ ed(H ; p)+ dim H − dim G (9)

for any prime p; see [Brosnan et al. 2008, Lemma 2.2] or [Merkurjev 2007, Corol-
lary 4.3]. Since dim G ′ = dim G, this yields ed(G; p)≥ ed(G ′; p).

To prove the opposite inequality, it suffices to show that for any field K/k the
map H 1(K ,G ′)→ H 1(K ,G) induced by the inclusion G ′ ⊂ G is p-surjective,
meaning that for every α ∈ H 1(K ,G) there is a finite field extension L/K of
degree prime to p such that αL is in the image of H 1(L ,G ′)→ H 1(L ,G); see for
example [Merkurjev 2007, Proposition 1.3].

Let X→ Spec(K ) be a G-torsor and X/G ′ be the natural quotient of X by the
action of G ′. Recall that X/G ′ is a K -form of G/G ′ and that it is constructed by
descent [Serre 1962, 1.3.2]. Alternatively, X/G ′ may be viewed as the Galois twist
of G/G ′ by X with respect to the natural G-action on G/G ′ [Milne 1980, p. 134].

For a field L/K and an L-point Spec(L)→ X/G ′ we construct a G ′-torsor Y
as the pullback

Y - X

Spec(L)
?

- X/G ′
?

Spec(K )
?
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In this situation Y ×G ′ G ∼= X L as G-torsors. Thus we have the natural diagram

H 1(L ,G ′) - H 1(L ,G)

[Y ] - [X ]L

[X ]

6

H 1(K ,G)

6

where [X ] and [Y ] denote the classes of X and Y in H 1(K ,G) and H 1(L ,G ′),
respectively. It remains to show the existence of such an L-point, with the degree
[L : K ] prime to p.

Note that G/G ′ is affine, since G and G ′ are of the same dimension and hence
G/G ′∼= (G/G◦)/(G ′/G◦)= Spec k[G/G◦]G

′/G◦ where G◦ is the connected com-
ponent of G (and G ′). Furthermore G/G ′ is smooth [Demazure and Gabriel 1970,
III 3.2.7]. Let Ks be a separable closure of K . Since X is a G-torsor, we have
X Ks
∼= G Ks and (X/G ′)Ks

∼= (G/G ′)Ks which implies that X/G ′ is also affine
[Demazure and Gabriel 1970, III 3.5.6 d)]. Thus, K [X/G ′]⊗Ks ∼= k[G/G ′]⊗Ks

is reduced and its dimension dimK K [X/G ′] = [G : G ′] is not divisible by p by
assumption.

Therefore K [X/G ′] is étale or, equivalently, a product of separable field exten-
sions of K

K [X/G ′] = L1× · · ·× Lr ;

see for example [Bourbaki 1990, V, Theorem 4]. For each L j the projection
K [X/G ′]→ L j is an L j -point of X/G ′ and since dimK K [X/G ′]=

∑r
j=1[L j : K ]

is prime to p, one of the fields L j must be of degree prime to p over K . We now
take L = L j . �

Corollary 4.2. Suppose k is a field of characteristic 6= p. Then edk(Sn; p)=[n/p].

Proof. Let m = [n/p] and let D ' (Z/pZ)m be the subgroup generated by the
disjoint p-cycles

σ1 = (1, . . . , p), . . . , σm =
(
(m− 1)p+ 1, . . . ,mp

)
.

The inequality ed(Sn; p) ≥ edk(D; p) ≥ [n/p] is well known; see any of [Buhler
and Reichstein 1997, Section 6; Buhler and Reichstein 1999, Section 7; Berhuy
and Favi 2003, Proposition 3.7].

To the best of our knowledge, the opposite inequality was first noticed by J.-
P. Serre (private communication, May 2005) and independently by R. Lötscher
[Lötscher 2008]. The proof is quite easy. However, since it has not previously
appeared in print, we reproduce it below.
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The semidirect product D o Sm , where Sm permutes σ1, . . . , σm , embeds in Sn

with index prime to p. By Lemma 4.1, edk(DoSm; p)= edk(Sn; p) and it suffices
to show that edk(DoSm)≤[n/p]. As we mentioned in Section 2, in order to prove
this, it is enough to construct a generically free m-dimensional representation of
D o Sm defined over k. Moreover, by Remark 2.2 we may assume that ζp ∈ k,
where ζp denotes a primitive p-th root of unity.

To construct a generically free m-dimensional representation of D o Sm , let
σ ∗1 , . . . , σ

∗
m ⊂ X (D) be the “basis” of D dual to σ1, . . . , σm . That is,

σ ∗i (σ j )=

{
ζp if i = j,

1 otherwise.

The Sm-invariant subset3={σ ∗1 , . . . , σ
∗
m} of X (D) gives rise to the m-dimensional

k-representation V3 of D o Sm , as in Section 3. An easy application of Lemma
3.3 shows that this representation is generically free. �

5. First reductions and proof of Theorem 1.1 parts (a) and (b)

Let T 'Gn
m/1 be the diagonal maximal torus in PGLn , where1=Gm is diagonally

embedded into Gn
m . Recall that the normalizer N of T is isomorphic to T o Sn ,

where we identify Sn with the subgroup of permutation matrices in PGLn .
Let Pn be a Sylow p-subgroup of Sn . Lemma 4.1 tells us that

edk(N ; p)= edk(T o Pn; p).

Note also that by Remark 2.2 we may assume without loss of generality that k
contains a primitive p-th root of unity.

Thus in order to prove Theorem 1.1 it suffices to establish the following propo-
sition.

Proposition 5.1. Let T 'Gn
m/1, where1=Gm is diagonally embedded into Gn

m .
Assume that k is of characteristic 6= p, containing a primitive p-th root of unity.
Then:

(a) edk(T o Pn)= edk(T o Pn; p)= [n/p], if n is not divisible by p.

(b) edk(T o Pn)= edk(T o Pn; p)= 2, if n = p.

(c) edk(T o Pn)= edk(T o Pn; p)= n2/p− n+ 1, if n = pr for some r ≥ 2.

(d) edk(T o Pn)= edk(T o Pn; p)= pe(n− pe)− n+ 1, in all other cases.

Here Pn is a Sylow p-subgroup of Sn , [n/p] is the integer part of n/p and pe is
the highest power of p dividing n.

The assumption that k contains a primitive p-th root of unity is only needed for
the proof of the first equality in parts (a) and (b).
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Our proof of each part of this proposition will be based on the strategy outlined
in Section 2, with G= T o Pn . We start by recalling that the character lattice X (T )
is naturally isomorphic to{

(a1, . . . , an) ∈ Zn
| a1+ · · ·+ an = 0

}
,

where we identify the character

(t1, . . . , tn)→ ta1
1 . . . tan

n

of T =Gn
m/1with (a1, . . . , an)∈Zn . Note that (t1, . . . , tn) is viewed as an element

of Gn
m modulo the diagonal subgroup 1, so the above character is well defined if

and only if a1+ · · · + an = 0. An element σ of Sn (and in particular, of Pn ⊂ Sn)
acts on a= (a1, . . . , an) ∈ X (T ) by naturally permuting a1, . . . , an .

For notational convenience, we will denote by ai, j = (a1, . . . , an) ∈ X (T ) the
element such that ai = 1, a j =−1 and ah = 0 for every h 6= i, j .

We also recall that for n = pr the Sylow p-subgroup Pn of Sn can be described
inductively as the wreath product

Ppr ∼= Ppr−1 oZ/p ∼= (Ppr−1)p o Z/p.

For general n, Pn is the direct product of certain Ppr ; see Section 8.

Proof of Proposition 5.1(a). (i) Since n is not divisible by p, we may assume that
Pn is contained in Sn−1, where we identify Sn−1 with the subgroup of Sn consisting
of permutations σ ∈ Sn such that σ(1)= 1.

We will now construct a generically free linear representation V of T o Pn of
dimension n− 1+ [n/p]. This will show that ed(T o Pn)≤ [n/p].

To construct V , let 3 = {a1,i | i = 2, . . . , n} and V3 be as in Section 3 and
let W be an [n/p]-dimensional faithful linear representation of Pn constructed in
the proof of Corollary 4.2. Applying Lemma 3.2, we see that V = V3 × W is
generically free.

(ii) Since the natural projection p : T o Pn → Pn has a section, so does the map
p∗ : H 1(K , T o Pn) → H 1(K , Pn) of Galois cohomology sets. Hence, p∗ is
surjective for every field K/k. This implies that

ed(T o Pn)≥ ed(Pn; p)= [n/p].

Here ed(Pn; p) = ed(Sn; p) by Lemma 4.1 and ed(Sn; p) = [n/p] by Corollary
4.2. �

Remark 5.2. We will now outline a different and perhaps more conceptual proof
of the upper bound ed(N ; p)≤ [n/p] of Theorem 1.1(a). As we pointed out in the
introduction, ed(N ; p) is the essential dimension at p of the functor

H 1(∗, N ) : K 7→
{

K -isomorphism classes of pairs (A, L)
}
,
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where A is a degree n central simple algebra over K and L is a maximal étale
subalgebra of A. Similarly, ed(Sn; p) is the essential dimension at p of the functor

H 1(∗,Sn) : K 7→ {K -isomorphism classes of n-dimensional étale algebras L/K }.

Let α : H 1(∗,Sn)→ H 1(∗, N ) be the map taking an n-dimensional étale algebra
L/K to (EndK (L), L). Here we embed L in EndK (L) ' Mn(K ) via the regular
action of L on itself.

It is easy to see that, in the terminology of [Merkurjev 2007, Section 1.3], α
is p-surjective. That is, for any class (A, L) in H 1(K , N ) there exists a prime-
to-p extension K ′/K such that (A ⊗K K ′, L ⊗K K ′) lies in the image of α. In
fact, any K ′/K of degree prime to p which splits A will do (such an extension
exists because we are assuming that the degree n of A is not divisible by p).
Indeed, by the Skolem–Noether theorem, any two embeddings of L ⊗K K ′ into
Mn(K ′) are conjugate. By [Merkurjev 2007, Proposition 1.3], we conclude that
ed(N ; p) ≤ ed(Sn; p). Combining this with Corollary 4.2 yields the desired in-
equality ed(N ; p)≤ [n/p].
�

Proof of Proposition 5.1(b). Here n= p and Pn 'Z/p is generated by the p-cycle
(1, 2, . . . , n). We follow the strategy outlined in Section 2.

(i) To show that edk(T o Pn)≤ 2, we construct a generically free k-representation
of T o Pn of dimension 2+ dim(T o Pn)= n+ 1.

Let3={a1,2, . . . , ap−1,p, ap,1} and V = V3×L , where L is a one-dimensional
faithful representation of Pn 'Z/p and T o Pn acts on L via the natural projection
T o Pn → Pn . Note that dim V = |3| + 1 = n + 1. Since 3 generates X (T ),
Lemma 3.2 tells us that V is a generically free representation of T o Pn .

(ii) Recall that edk(T o Pn; p)= edk(N ; p) by Lemma 4.1. On the other hand, as
we mentioned in the introduction,

edk(N ; p)≥ edk(PGLp; p)= 2;

see (4) and (5). This completes the proof of Proposition 5.1(b) and of Theorem
1.1(b). �

6. Proof of Theorem 1.1(c): The upper bound

In the next two sections we will prove Proposition 5.1(c), and hence Theorem
1.1(c). We will assume that n = pr for some r ≥ 2 and follow the strategy of
Section 2. In this section we will carry out Step (i). That is, we will construct a
generically free representation V of T o Pn of dimension p2r−1. This will show
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that ed(T o Pn)≤ p2r−1
− pr
+1. Our V will be of the form V3 for a particular Pn-

invariant 3⊂ X (T ), following the recipe of Section 3. Note that this construction
(and thus the above inequality) will not require any assumption on the base field k.

For notational convenience, we will subdivide the integers 1, 2, . . . , pr into p
big blocks B1, . . . , Bp, where each Bi consists of the pr−1 consecutive integers
(i − 1)pr−1

+ 1, (i − 1)pr−1
+ 2, . . . , i pr−1.

We define 3⊂ X (T ) as the Pn-orbit of the element

a1,pr−1+1 = (1, 0, . . . , 0︸ ︷︷ ︸
B1

,−1, 0, . . . , 0︸ ︷︷ ︸
B2

, 0, 0, . . . , 0︸ ︷︷ ︸
B3

, . . . , 0, 0, . . . , 0︸ ︷︷ ︸
Bp

)

in X (T ). Thus, 3 consists of elements aα,β , subject to the condition that if α lies
in the big block Bi then β has to lie in B j , where j − i ≡ 1 modulo p. There are
pr choices for α. Once α is chosen, there are exactly pr−1 further choices for β.
Thus

|3| = pr
· pr−1

= p2r−1.

As described in Section 3, we obtain a linear representation V3 of T o Pn of the
desired dimension

dim V3 = |3| = p2r−1.

It remains to prove that V3 is generically free. By Lemma 3.3 it suffices to show
that

(i) 3 generates X (T ) as an abelian group and

(ii) the Pn action on the kernel of the natural morphism φ : Z[3] → X (T ) is
faithful.

The elements aα,β clearly generate X (T ) as an abelian group, as α and β range
over 1, 2, . . . , pr . Thus in order to prove (i) it suffices to show that SpanZ(3)

contains every element of this form. Suppose α lies in the big block Bi and β in
B j . If j − i ≡ 1 (mod p), then aα,β lies in 3 and there is nothing to prove. If
j − i ≡ 2 (mod p) then choose some γ ∈ Bi+1 (where the subscript i + 1 should
be viewed modulo p) and write

aα,β = aα,γ + aγ,β .

Since both terms on the right are in 3, we see that in this case aα,β ∈ SpanZ(3).
Using this argument recursively, we see that aα,β also lies in SpanZ(3) if j − i ≡
3, . . . , p (mod p), i.e., for all possible i and j . This proves (i).

To prove (ii), denote the kernel of φ by M . Since Pn is a finite p-group, every
normal subgroup of Pn intersects the center of Pn , which we shall denote by Zn .
Thus it suffices to show that Zn acts faithfully on M .
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Recall that Zn is the cyclic subgroup of Pn of order p generated by the product
of disjoint p-cycles

σ1 . . . σpr−1 = (1 · · · p) (p+1 · · · 2p) · · · (pr
−p+1 · · · pr ).

Since |Zn| = p, it either acts faithfully on M or it acts trivially, so we only need to
check that the Zn-action on M is nontrivial. Indeed, Zn does not fix the nonzero
element

a1,pr−1+1+ apr−1+1,2pr−1+1+ · · ·+ a(p−1)pr−1+1,1 ∈ Z[3]

which lies in M . This proves the upper bound of Proposition 5.1(c) and Theorem
1.1(c). �

7. Proof of Theorem 1.1(c): The lower bound

In this section we will continue to assume that n = pr . We will show that

ed(N ; p)≥ p2r−1
− pr
+ 1, (10)

thus completing the proof of Proposition 5.1(c) and Theorem 1.1(c). Let

q := pe,where e ≥ 1 if p is odd and e ≥ 2 if p = 2. (11)

be a power of p. The specific choice of e will not be important in the sequel; in
particular, the reader may assume that q = p if p is odd and q = 4, if p = 2.
Whatever e we choose, q = pe will remain unchanged for the rest of this section.

We now recall that if k ′/k is a field extension then

edk(N ; p)≥ edk′(N ; p),

by [Merkurjev 2007, Proposition 1.5(1)]. Thus for the purpose of proving (10) we
may replace k by k ′. In particular, we may assume that k ′ contains a primitive q-th
root of unity.

Let T(q) = µn
q/µq be the q-torsion subgroup of T = Gn

m/1. Applying the
inequality (9) to G = T o Pn and its finite subgroup H = T(q) o Pn , we obtain

ed(T o Pn; p)≥ ed(T(q) o Pn; p)− pr
+ 1.

Thus it suffices to show that

ed(T(q) o Pn; p)≥ p2r−1. (12)

The advantage of replacing T o Pn by T(q)o Pn is that T(q)o Pn is a finite p-group,
so that we can apply the following result:
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Theorem 7.1 [Karpenko and Merkurjev 2008]. Let G be a finite p-group and k
be a field containing a primitive p-th root of unity. Then edk(G; p) = edk(G)
equals the minimal value of dim V , where V ranges over all faithful linear k-
representations G→ GL(V ).

Now recall that we are assuming that k contains a primitive q-th root of unity and
hence, a primitive p-th root of unity. Hence, Theorem 7.1 applies in our situation.
That is, in order to prove (12) it suffices to show that T(q) o Pn does not have
a faithful linear representation of dimension less than p2r−1. Lemma 3.1 further
reduces this representation-theoretic assertion to the combinatorial statement of
Proposition 7.2 below. Before stating the proposition we recall that the character
lattice of T(q) ' µn

q/µq is

Xn := {(a1, . . . , an) ∈ (Z/qZ)n | a1+ · · ·+ an = 0 in Z/qZ},

where we identify the character

(t1, . . . , tn)→ ta1
1 . . . tan

n

of T(q) with (a1, . . . , an)∈ (Z/qZ)n . Here (t1, . . . , tn) stands for an element of µn
q ,

modulo the diagonally embedded µq , so the character above is well defined if and
only if a1+· · ·+an = 0 in Z/qZ. (This is completely analogous to our description
of the character lattice of T in the previous section.) Note that Xn depends on the
integer q = pe, which we assume to be fixed throughout this section.

Proposition 7.2. Let n = pr and Pn be a Sylow p-subgroup of Sn . If 3 is a Pn-
invariant generating subset of Xn then |3| ≥ p2r−1 for any r ≥ 1.

Our proof relies on the following special case of Nakayama’s Lemma:

Lemma 7.3 [Atiyah and Macdonald 1969, Proposition 2.8]. Let q = pe be a prime
power, M = (Z/qZ)d and 3 be a generating subset of M (as an abelian group).
If we remove from 3 all elements that lie in pM , the remaining set, 3 \ pM , will
still generate M. �

Proof of Proposition 7.2. We argue by induction on r . For the base case, set r = 1.
We need to show that |3| ≥ p. Assume the contrary. In this case Pn is a cyclic
p-group, and every nontrivial orbit of Pn has exactly p elements. Hence, |3|< p
is only possible if every element of 3 is fixed by Pn . Since we are assuming that
3 generates Xn as an abelian group, we conclude that Pn acts trivially on Xn . This
can happen only if p=q=2. Since these values are ruled out by our definition (11)
of q , we have proved the proposition for r = 1.

In the previous section we subdivided the integers 1, 2, . . . , pr into p big blocks
B1, . . . , Bp of length pr−1. Now we will now work with small blocks b1, . . . , bpr−1 ,



482 Aurel Meyer and Zinovy Reichstein

where b j consists of the p consecutive integers

( j − 1)p+ 1, ( j − 1)p+ 2, . . . , j p.

We can identify Ppr−1 with the subgroup of Ppr that permutes the small blocks
b1, . . . , bpr−1 without changing the order of the elements in each block.

For the induction step, assume r ≥2 and consider the homomorphism6 : X pr→

X pr−1 given by

a= (a1, a2, . . . , apr ) 7→ s= (s1, . . . , spr−1), (13)

where si = a(i−1)p+1 + a(i−1)p+2 + · · · + ai p is the sum of the entries of a in the
i-th small block bi . Thus

(i) if 3 generates X pr then 6(3) generates X pr−1 .

(ii) if 3 is a Ppr -invariant subset of X pr then 6(3) is a Ppr−1-invariant subset of
X pr−1 .

Let us remove from 6(3) all elements which lie in pX pr−1 . The resulting set,
6(3)\ pX pr−1 , is clearly Ppr−1-invariant. By Lemma 7.3 this set generates X pr−1 .
Thus by the induction assumption |6(3) \ pX pr−1 | ≥ p2r−3.

We claim that the fiber of each element s= (s1, . . . , spr−1) in 6(3)\ pX pr−1 has
at least p2 elements in 3. If we can show this, then we will be able to conclude
that

|3| ≥ p2
· |6(3) \ pX pr−1 | ≥ p2

· p2r−3
= p2r−1,

thus completing the proof of Proposition 7.2.
Let σi be the single p-cycle, cyclically permuting the elements in the small block

bi . To prove the claim, note that the subgroup

〈σi | i = 1, . . . , pr−1
〉 ' (Z/pZ)pr−1

of Pn acts on each fiber of 6.
To simplify the exposition in the argument to follow, we introduce the following

bit of terminology. Let us say that a∈ (Z/qZ)n is scalar in the small block bi if all
the entries of a in the block bi are the same, that is, if

a(i−1)p+1 = a(i−1)p+2 = · · · = ai p.

We are now ready to prove the claim. Suppose a = (a1, . . . , apr ) ∈ X pr lies in
the preimage of s = (s1, . . . , spr−1), as in (13). If a is scalar in the small block bi

then clearly
si = a(i−1)p+1+ a(i−1)p+2+ · · ·+ ai p ∈ pZ/qZ.

Since we are assuming that s lies in

6(3) \ pX pr−1,



The essential dimension of the normalizer of a maximal torus 483

s must have at least two entries that are not divisible by p, say, si and s j . (Recall
that s1+· · ·+ spr = 0 in Z/qZ, so s cannot have exactly one entry not divisible by
p.) Thus a is nonscalar in the small blocks bi and b j . Consequently, the elements
σ αi σ

β
j (a) are distinct, as α and β range between 0 and p−1. All of these elements

lie in the fiber of s under 6. Therefore we conclude that this fiber contains at least
p2 distinct elements. This completes the proof of the claim and thus of Proposition
7.2, Proposition 5.1(c) and Theorem 1.1(c). �

8. Proof of Theorem 1.1(d)

In this section we assume that n is divisible by p but is not a power of p. We will
modify the arguments of the last two sections to show that

ed(T o Pn)= ed(T o Pn; p)= pe(n− pe)− n+ 1,

where pe is the highest power of p dividing n. This will complete the proof of
Proposition 5.1 and thus of Theorem 1.1.

Write out the p-adic expansion

n = n1 pe1 + n2 pe2 + · · ·+ nu peu , (14)

of n, where 1 ≤ e = e1 < e2 < · · · < eu , and 1 ≤ ni < p for each i . Subdivide
the integers 1, . . . , n into n1+· · ·+nu blocks Bi

j of length pei , for j ranging over
1, 2, . . . , ni . By our assumption there are at least two such blocks. The Sylow
subgroup Pn is a direct product

Pn = (Ppe1 )n1 × · · ·× (Ppeu )nu

where each Ppei acts on one of the blocks Bi
j .

Once again we will use the strategy outlined in Section 2.

(i) We will construct a generically free representation of T o Pn of dimension
pe1(n− pe1). This will prove the upper bound edk(T o Pn) ≤ pe1(n− pe1)− n+
1. Note that this construction (and thus the above inequality) do not require any
assumption on the field k.

To construct this representation, let 3⊂ X (T ) be the union of the Pn-orbits of
the elements

a1, j+1 where j = pe1, . . . , n1 pe1, n1 pe1+pe2, . . . , n−peu ,

i.e., the union of the Pn-orbits of elements of the form (1, 0, . . . , 0,−1, 0, . . . , 0),
where 1 appears in the first position of the first block and −1 appears in the first
position of one of the other blocks. For aα,β in 3 there are pe1 choices for α and
n− pe1 choices for β. Thus

dim V3 = |3| = pe1(n− pe1).
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It is not difficult to see that 3 generates X (T ) as an abelian group. To conclude
with Lemma 3.3 that V3 is a generically free representation of T o Pn , it remains
to show that the Pn-action on the kernel of the natural morphism φ :Z[3]→ X (T )
is faithful when e1 ≥ 1. As in Section 6 we only need to check that the center
Zn of Pn acts faithfully on the kernel. Let σ be a nontrivial element of Zn =

(Z pe1 )n1×· · ·× (Z peu )nu , with each Z pei cyclic of order p. Let h, h′ be in the first
block B1

1 and l, l ′ in some other block B j
i (there are at least two blocks each of

size at least p). The element

a= ah,l − ah,l ′ + ah′,l ′ − ah′,l

lies in the kernel of φ. To fix a, σ must either (1) fix all h, h′, l, l ′ or (2) σ(h) =
h′, σ (h′) = h and σ(l) = l ′, σ (l ′) = l. Since σ is nontrivial we may choose B j

i
such that (1) is not possible and if p 6= 2, (2) is not possible either. If p = 2, by
(14), B j

i is at least of size 4 and we can choose l, l ′ within B j
i such that (2) does

not hold. Therefore σ does not fix a nonzero element of the kernel of φ.

(ii) We now want to prove the lower bound,

ed(T o Pn; p)≥ pe1(n− pe1)− n+ 1.

Arguing as in Section 7 (and using the same notation, with q = p), it suffices to
show that ed(T(p)o Pn; p)≥ pe1(n− pe1). By the Karpenko–Merkurjev Theorem
7.1 this is equivalent to showing that every faithful representation of T(p) o Pn

has dimension at least pe1(n − pe1). By Lemma 3.1 it now suffices to prove the
following lemma.

Lemma 8.1. Let n be a positive integer, Pn be the Sylow subgroup of Sn , pe be the
highest power of p dividing n, and

Xn :=
{
(a1, . . . , an) ∈ (Z/pZ)n | a1+ · · ·+ an = 0 in Z/pZ

}
.

Then every Pn-invariant generating subset of Xn has at least pe(n− pe) elements.

In the statement of the lemma we allow e = 0, to facilitate the induction argu-
ment. For the purpose of proving the lower bound in Proposition 5.1(d) we only
need this lemma for e ≥ 1.

Proof. Once again, we consider the p-adic expansion (14) of n with 0≤ e1 < e2 <

· · ·< eu and 1≤ ni < p. We may assume that n is not a power of p, since otherwise
the lemma is vacuous.

We will argue by induction on e = e1. For the base case, let e1 = 0. Here the
lemma is obvious: since Xn has rank n− 1, every generating set (Pn-invariant or
not) has to have at least n− 1 elements.
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For the induction step, we may suppose e = e1 ≥ 1; in particular, n is divisible
by p. Define 6 : Xn→ Xn/p by sending (a1, . . . , an) to (s1, . . . , sn/p), where

s j = a( j−1)p+1+ · · ·+ a j p

for j = 1, . . . , n/p. Arguing as in Section 7 we see that 6(3) \ pXn/p is a
(Ppe1−1)n1 × · · ·× (Ppeu−1)nu -invariant generating subset of Xn/p and that every

s ∈6(3) \ pXn/p

has at least p2 preimages in 3. By the induction assumption,

|6(3) \ pXn/p| ≥ pe−1
( n

p
− pe−1

)
and thus

|3| ≥ p2
· pe−1

( n
p
− pe−1

)
= pe(n− pe)

This completes the proof of Lemma 8.1 and thus of parts (d) of Proposition 5.1
and of Theorem 1.1. �
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