
Algebra &
Number
Theory

Volume 3

2009
No. 6

mathematical sciences publishers



Algebra & Number Theory
www.jant.org

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France
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ALGEBRA AND NUMBER THEORY 3:6(2009)

A rooted-trees q-series lifting a
one-parameter family of Lie idempotents

Frédéric Chapoton

We define and study a series indexed by rooted trees and with coefficients in
Q(q). We show that it is related to a family of Lie idempotents. We prove
that this series is a q-deformation of a more classical series and that some of its
coefficients are Carlitz q-Bernoulli numbers.

1. Introduction

The aim of this article is to introduce and study a series�q indexed by rooted trees,
with coefficients that are rational functions of the indeterminate q .

The series �q is in fact an element of the group GPL of formal power series
indexed by rooted trees, which is associated to the pre-Lie operad by a general
functorial construction of a group from an operad. As there is an injective mor-
phism of operads from the pre-Lie operad to the dendriform operad, there is an
injection of groups from GPL to the group GDend, which is a group of formal power
series indexed by planar binary trees. This means that each series indexed by rooted
trees can be mapped to a series indexed by planar binary trees, in a nontrivial way.

There is a conjectural description of the image of this injection of groups (see
[Chapoton 2007, Corollary 5.4]). This can be stated roughly as the intersection in
a bigger space (spanned by permutations) of the dendriform elements with the Lie
elements. The inclusion of the image in the intersection is known, but the converse
is not.

One starting point of this article was the existence of a one-parameter family
of Lie idempotents belonging to the descent algebras of the symmetric groups
[Duchamp et al. 1994; Krob et al. 1997]. As Lie idempotents, these are in partic-
ular Lie elements. As elements of the descent algebras, these are also dendriform
elements. Therefore, according to the conjecture stated above, they should belong
to the image of GPL in GDend.

MSC2000: primary 18D50; secondary 17D25, 05C05.
Keywords: tree series, operads, Lie idempotents, Bernoulli–Carlitz numbers.
This work received support from the ANR grant BLAN06-1_136174.
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612 Frédéric Chapoton

Bypassing the conjecture, we prove this by exhibiting an element�q of GPL and
then showing that its image is the expected sum of Lie idempotents.

We then obtain several results on �q . First, we prove that the series �q has
only simple poles at nontrivial roots of unity and, in particular, can be evaluated at
q = 1. Then we show that �q is a q-deformation of a classical series � which is
its value at q = 1. We also compute the value at q = 0 and the appropriate limit
value when q =∞.

We then consider the images of �q in some other groups. There are two mor-
phisms of groups from GPL to usual groups of formal power series in one variable,
both coming by functoriality from quotient operads of pre-Lie. Looking at linear
trees only, that is, using the quotient map from pre-Lie to the associative operad,
one gets a map from GPL to the composition group of formal power series without
constant term. The image of �q is then a q-logarithm.

On the other hand, looking at corollas only, one gets a map from GPL to the
group of formal power series with constant term 1 for multiplication. The image
of �q is then the generating function of the q-Bernoulli numbers introduced by
Carlitz. These numbers appear quite naturally here.

We recall in Appendix A the functorial definition of a group GP from an aug-
mented operad P. On this subject, the reader may also consult [Chapoton 2002a;
2007/08; van der Laan 2003; Chapoton and Livernet 2007].

In Appendix B, we give, for concreteness, the first few terms of the rooted-trees
series that we consider.

Many useful computations and checks have been done using MuPAD.

2. General setting

We will work over the field Q of rational numbers and over the field Q(q) of
fractions in the indeterminate q .

We have tried to avoid using operads as much as possible, but this language is
necessary to define the ambient groups, and we will need it at some points in this
article. The reader may consult [Loday 2001; Chapoton 2007/08] as references.
The symbol ◦i will denote the (single) composition at position i in an operad and
the symbols [ and \ will serve to note positions where composition is done.

Pre-Lie algebras. Recall (see for instance [Chapoton and Livernet 2001]) that a
pre-Lie algebra is a vector space V endowed with a bilinear map x from V ⊗ V
to V satisfying the axiom

(x x y)x z− x x (y x z)= (x x z)x y− x x (z x y). (1)

This is sometimes called a right pre-Lie algebra.
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Figure 1. Example of operation in the free pre-Lie algebra PL.

The pre-Lie product x defines a Lie bracket on V as:

[x, y] = x x y− y x x . (2)

One can easily check that the pre-Lie axiom (1) implies the Jacobi identity for the
antisymmetric bracket [ , ]. The Lie algebra (V, [ , ]) will be called VLie.

The pre-Lie product x can also be considered as a right action x of the asso-
ciated Lie algebra VLie on the vector space V . Indeed, one has

(x x y)x z− (x x z)x y = x x [y, z]. (3)

This should not be confused with the adjoint action of a Lie algebra on itself.

Free pre-Lie algebras and rooted trees. The free pre-Lie algebras have a simple
description using rooted trees. Let us recall briefly this description and other prop-
erties. Details and proofs can be found in [Chapoton and Livernet 2001].

A rooted tree is a finite, connected and simply connected graph, together with
a distinguished vertex called the root. We will picture rooted trees with their root
at the bottom and orient (implicitly) the edges towards the root. There are two
distinguished kinds of rooted trees: corollas, where every vertex other than the
root is linked to the root by an edge; and linear trees, where at every vertex, there
is at most one incoming edge. See Figure 4 on page 620 for examples. A forest of
rooted trees is a finite graph whose connected components are rooted trees.

The free pre-Lie algebra PL(S) on a set S has a basis indexed by rooted trees
decorated by S, that is, rooted trees together with a map from their set of vertices
to S.

The pre-Lie product T x T ′ of a tree T ′ on another one T is given by the sum of
all possible trees obtained from the disjoint union of T and T ′ by adding an edge
from the root of T ′ to one of the vertices of T (the root of the resulting tree is the
root of T ). An example is depicted in Figure 1.

In particular, we will denote by PL the free pre-Lie algebra on one generator.
This is the graded vector space PL=⊕n≥1PLn spanned by unlabeled rooted trees,
where the degree of a tree T is the number #T of its vertices. The pre-Lie product
obviously preserves this grading.
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Figure 2. Products of trees in the universal enveloping algebra U (PL).

Universal enveloping algebras of free pre-Lie algebras. The Lie algebras PL(S)Lie

have the curious property that their universal enveloping algebras come naturally
equipped with a basis, which depends on no choice and has nothing to do with a
Poincaré–Birkhoff–Witt basis. Let us explain this in the case of PLLie.

Let U (PL) be the universal enveloping algebra of the Lie algebra PLLie. We
will denote by ? the associative product in U (PL). We will freely identify right
PLLie-modules with right U (PL)-modules. The crucial point is the following result
[Chapoton and Livernet 2001, Theorem 3.3].

Theorem 2.1. There exists a unique isomorphismψ of graded right PLLie-modules
between the free right U (PL)-module on one generator g of degree 1 and the PLLie-
module (PL,x) such thatψ maps the generator g to , the unique rooted tree with
one vertex.

This means that there is a commutative diagram as follows:

Qg⊗U (PL)⊗PLLie

Id⊗?
��

ψ⊗Id // PL⊗PLLie

x
��

Qg⊗U (PL)
ψ // PL

(4)

As Qg has dimension 1, the map ψ can be considered as an isomorphism of
vector spaces between U (PL) and PL. One can therefore use ψ and the canonical
basis of PL (indexed by rooted trees) to get a canonical basis of the enveloping
algebra U (PL). It is more convenient to index this basis by forests of rooted trees
as follows. The inverse image ψ−1(T ) in U (PL) of a tree T in PL can be seen as an
element of U (PL). This element is defined to be the basis element corresponding
to the forest F obtained from T by removal of its root. For example, one has

ψ( )= .

By using diagram (4) for the unit element 1 in U (PL) (that is, the empty forest),
one can show that the map from PLLie to U (PL) given by the universal property of
the enveloping algebra corresponds to the inclusion of the set of rooted trees (as a
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Figure 3. Product of a forest and a tree in U (PL).

basis of PL) in the set of forests (as a basis of U (PL)). Indeed, for a rooted tree T ,
the top horizontal arrow maps g⊗ 1⊗ T to ⊗ T . The right vertical arrow maps
this to x T . Then the inverse of ψ removes the root, which just gives T (seen
as a forest with just one connected component). The image of the natural inclusion
of PLLie in U (PL) is therefore the subspace spanned by rooted trees.

Note that one can use diagram (4) to compute the ? product of a forest and a
rooted tree in U (PL), as a sum of forests (see Figure 3 for an example, compare with
Figure 1). The usual spanning set of the universal enveloping algebra U (PL) is the
set of noncommutative monomials in rooted trees (for the ? product). By induction
on the length of the monomial, one can therefore map each such noncommutative
monomial to a sum of forests. Examples are given in Figures 2 and 3.

In the basis of U (PL) indexed by forests, there is a nice combinatorial descrip-
tion of the associative product ?. Let F and F ′ be forests in U (PL). The product
F ? F ′ is the sum of all possible forests, obtained from the disjoint union of F and
F ′ by the addition of some edges (possibly none), each of these new edges going
from some root of F ′ to some vertex of F . Indeed, one can easily check that this
operation is associative and coincide with ? on rooted trees, hence the result.

There is a canonical projection π from U (PL) to PL, defined using the canonical
basis of U (PL) by projection on the subspace spanned by rooted trees, annihilating
the empty forest and all forests that are not trees.

Lemma 2.2. Let F be a forest in U (PL) and T be a rooted tree in PL. Then one
has π(F ? T )= π(F)x T .

Proof. If F is not a tree, then each term of F ? T is not a tree, therefore both sides
vanish. If F = π(F) is a tree, then F ?T is the sum of π(F)x T with the disjoint
union of F and T . Therefore π(F ? T )= π(F)x T . �

The reader can check this statement on the examples of Figures 2 and 3.

Lemma 2.3. For all n ≥ 1, the maps T 7→ x T and T 7→ T x are injective
from PLn to PLn+1.

Proof. This is obvious for the first map, which is even an injection on the set
of rooted trees. For the second map, this follows from the fact that enveloping
algebras are domains, by restriction of the commutative diagram (4). �
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Group associated to the pre-Lie operad. In the sequel, we will always work in the
completed vector space P̂L=

∏
n≥1 PLn and with its completed enveloping algebra

Û (PL). All the results above are still true in this setting.
There is a group associated to each operad; see Appendix A and [Chapoton

2002a; 2007/08; van der Laan 2003; Chapoton and Livernet 2007]. We will need
the group GPL associated to the pre-Lie operad. Its elements are the elements of P̂L

whose homogeneous component of degree 1 is . The product in GPL is defined
using the composition of the pre-Lie operad and is the unit in GPL. This group is
contained in the bigger monoid P̂L, on which it therefore acts on the right and on
the left. The right action respects all the operations on P̂L induced by the product
x, including the product and the action of Û (PL).

Let us now introduce a special element of GPL for later use. Let exp∗ ∈ GPL be

exp∗ = x ((exp( )− 1)/ ) , (5)

where the rightmost factor is an element of Û (PL) defined using the formal power
series (exp x − 1)/x and the ? product.

The series exp∗ is very classical, related to the flow of vector fields, and its
coefficients are known as the Connes–Moscovici coefficients [Chapoton 2002a].

Consider the left action of exp∗ on P̂L. Let T be an element of P̂L. Then exp∗(T )
in P̂L is defined by

exp∗(T )=
∑
n≥1

1
n!
((T x T )x . . . )x T, (6)

where there are n copies of T in the n-th term. As exp∗ belongs to the group GPL,
the map exp∗ defines a bijection from P̂L to itself.

Let us now relate the usual exponential map exp to the map exp∗.
Let T be an element of P̂L. Let exp T be the exponential of T in Û (PL) (which

is defined by the usual series and using the ? product). The map exp defines a
bijection from P̂L to the set of group-like elements of Û (PL).

Therefore, the composite map exp∗ ◦ exp−1 is a bijection from the set of group-
like elements in Û (PL) to P̂L. Let us show that this composite map is just a
restriction of the canonical projection π .

Proposition 2.4. Let T be an element of P̂L. One has π(exp T )= exp∗(T ).

Proof. Let F be in Û (PL). From Lemma 2.2 above, one knows that π(F ? T ) is
exactly π(F)x T . This implies that

π(T ?n)= ((T x T ) . . . )x T, (7)

for all n ≥ 1, hence the result. �



A rooted-trees q-series lifting a one-parameter family of Lie idempotents 617

3. The classical case

Let us start by recalling the definition of a classical element � of P̂L with rational
coefficients. It seems to have first appeared in [Agračev and Gamkrelidze 1980],
was later considered under the name of log∗ in [Chapoton 2002a] and has been
since studied in [Murua 2006; Wright and Zhao 2003; Ebrahimi-Fard and Manchon
2009; Calaque et al. 2008].

Proposition 3.1. There is a unique solution � in P̂LQ to the equation

x
(

�

exp�− 1

)
=�, (8)

where �/(exp�− 1) is in the completed enveloping algebra Û (PL).

Proof. Let us write �=
∑

n≥1�n where each �n is homogeneous of degree n.
Recall the Taylor expansion

x
exp x − 1

=

∑
k≥0

Bk

k!
xk, (9)

where the Bk are the Bernoulli numbers.
Then the homogeneous component of degree n of Equation (8) is

�n =
∑
k≥0

Bk

k!

∑
m1≥1,...,mk≥1

m1+···+mk=n−1

(( x�mk ) . . . )x�m1 . (10)

This gives a recursive definition of �n , which implies the existence and unique-
ness of �. �

Remark. One can use Equation (10) to compute � up to order n in a O(n3) num-
ber of pre-Lie operations.

As the element�/(exp�−1) is invertible in the completed enveloping algebra,
Equation (8) is also equivalent to the following equation:

�x
(

exp�− 1
�

)
= . (11)

One can interpret Equation (11) as follows.

Proposition 3.2. The series � is the inverse of exp∗ in the group GPL.

Proof. By right action by the inverse �−1 of � in GPL on (11), one shows that �−1

satisfies the same Equation (5) as exp∗. �

There is another equation for �.
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Proposition 3.3. The series � is the unique nonzero solution in P̂LQ to the equa-
tion

�x (exp�− 1)= x�, (12)

where exp�− 1 is in the completed enveloping algebra Û (PL).

Proof. First, by right action on (11) by �, one can see that the unique solution �
of (8) is indeed a solution of (12).

Let us now prove uniqueness of a nonzero solution. Let � be any solution of
(12). Let us write �=

∑
n≥1�n where each �n is homogeneous of degree n.

Then the homogeneous component of degree n of Equation (12) is

x�n−1 =
∑
k≥1

1
k!

∑
m1≥1,...,mk≥1,`≥1

m1+···+mk+`=n

((�` x�mk ) . . . )x�m1 . (13)

If n = 2, this implies that �1 is either 0 or .
Assume now that � is not zero. Let d be the degree of the first nonzero homo-

geneous component �d of �. Assume that d > 1. Then Equation (13) in degree
d + 1, together with Lemma 2.3, gives that �d = 0, a contradiction. Therefore
necessarily, one has d = 1 and �1 = .

Let us look at the homogeneous component (13) in degree n+ 1≥ 2. The only
terms involving �n are x �n in the left-hand side and �1 x �n , �n x �1 in
the right hand-side. As �1 = , two of them cancel out and one gets a recursive
expression of �n x in terms of some � j for j < n.

Using Lemma 2.3, this provides a recursive description of � (that may or may
not possess a solution) and proves its uniqueness. �

The exponential of � has a simple shape.

Proposition 3.4. In the enveloping algebra Û (PL), one has

exp�=
∑
n≥0

1
n!

. . . , (14)

where, in the n-th term, the forest has n nodes.

Proof. This is an equation for the exponential exp� of the element � in the Lie
algebra P̂L. By Proposition 2.4, it is enough to prove that

exp∗(�)= , (15)

because the image by π of the right side of (14) is .
But this amounts to saying that exp∗ is the inverse of � in the group GPL. This

is none other than Proposition 3.2. �
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It follows that

�x (exp�− 1)=
∑
n≥2

1
(n− 1)!

Crl\n ◦\�, (16)

where Crl\n is the corolla with n− 1 leaves and root labeled by \; see Figure 4.

Proposition 3.5. The series � is the unique nonzero solution in P̂LQ to the equa-
tion ∑

n≥2

1
(n− 1)!

Crl\n ◦\�= x�, (17)

where
∑

n≥2
1

(n−1)!
Crl\n is in P̂L.

Proof. This follows from (16) and Proposition 3.3. �

4. The quantum case

We will introduce now an element �q in P̂L with coefficients in Q(q). We will
show later that this is a q-deformation of �.

If A =
∑

n≥1 An is an element of P̂L, let A[q] be the q-shift of A defined by

A[q] =
∑
n≥1

qn An. (18)

Proposition 4.1. There exists a unique solution �q in PLQ(q) to the equation

�q [q]x (exp�− 1)+�q [q] −�q = x�q + (q − 1) . (19)

Moreover, the series �q has coefficients in the ring of fractions with poles only at
roots of unity.

Proof. Write �q =
∑

n≥1�q,n where each �q,n is homogeneous of degree n. The
homogeneous component of degree 1 of (19) implies that �q,1 = .

Then for n ≥ 2, the homogeneous component of degree n of Equation (19) is

(qn
− 1)�q,n

= x�q,n−1−
∑
k≥1

1
k!

∑
m1≥1,...,mk≥1,`≥1

m1+···+mk+`=n

q`((�q,` x�mk ) . . . )x�m1 . (20)

This provides an explicit recursion for �q,n in terms of �q, j and � j for j < n.
This gives existence and uniqueness and also implies that �q has coefficients with
poles only at roots of unity. �

On can reformulate the equation for �q .
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Figure 4. Rooted trees: Lnr[5, Crl\6 and Frk\4,5 = Lnr[5 ◦[ Crl\6.

Proposition 4.2. The series �q is the unique solution in P̂LQ(q) to the equation∑
n≥1

1
(n− 1)!

Crl\n ◦\�q [q] −�q = x�q + (q − 1) . (21)

Proof. This follows from (16) and Proposition 4.1. �

Let Frk\`,n be the rooted tree with a linear trunk of ` vertices, a vertex \ on top
of this trunk and a corolla with n leaves on top of the vertex \, see Figure 4. We
will call this a fork. One has Frk`,n = Lnr[`+1 ◦[ Crl\n+1.

Proposition 4.3. The series �q is the unique solution in P̂LQ(q) to the equation

�q =
∑
`≥0

∑
n≥0

(−1)`

n!
Frk\`,n ◦\�q [q] + (1− q)

∑
`≥1

(−1)`−1Lnr`. (22)

Proof. Let us compute the right-hand side of (22), using (21) for �q , written as

�q + x�q + (q − 1) =

∑
n≥1

1
(n− 1)!

Crl\n ◦\�q [q]. (23)

One gets∑
`≥1

(−1)`−1Lnr[` ◦[ (�q+ x�q+ (q−1) )+ (1−q)
∑
`≥1

(−1)`−1Lnr`. (24)

As Lnr[` ◦[ = Lnr` and Lnr[` ◦[ ( x �q) = Lnr[`+1 ◦[ �q , the two rightmost
terms cancels, and the sum simplifies to∑

`≥1

(−1)`−1Lnr[` ◦[�q −
∑
`≥2

(−1)`−1Lnr[` ◦[�q , (25)

which is just �q . This proves that �q does satisfy (22).
It is then easy to see that (22) has only one solution in P̂LQ(q) by rewriting it as

a recursion for the homogeneous components �q,n . �
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5. Image in the free dendriform algebra

We describe in this section the image of �q by the usual morphism from the free
pre-Lie algebra to the free dendriform algebra. We show that this image is related to
a family of Lie idempotents in the descent algebras of the symmetric groups. One
deduces from that a nice explicit formula, that will be used later to get arithmetic
information on �q .

Dendriform algebra. Recall that a dendriform algebra [Loday 2001] is a vector
space V endowed with two bilinear maps � and ≺ from V ⊗V to V satisfying the
following axioms:

x ≺ (y ≺ z)+ x ≺ (y � z)= (x ≺ y)≺ z, (26)

x � (y ≺ z)= (x � y)≺ z, (27)

x � (y � z)= (x � y)� z+ (x ≺ y)� z. (28)

Any dendriform algebra has the structure of a pre-Lie algebra given by

x x y = y � x − x ≺ y. (29)

Any dendriform algebra has the structure of an associative algebra given by

x ∗ y = x � y+ x ≺ y. (30)

Remark. Equation (27) means that one can safely forget some parentheses. Equa-
tions (26) and (28) can be rewritten as

x ≺ (y ∗ z)= (x ≺ y)≺ z, (31)

x � (y � z)= (x ∗ y)� z. (32)

Let Dend(S) be the free dendriform algebra over a set S. This has an explicit
basis indexed by planar binary trees with vertices decorated by S. For an example
of a planar binary tree, see Figure 5. In particular, the free dendriform algebra on
one generator, denoted by Dend, has a basis indexed by planar binary trees. This
is a graded vector space, the degree #t of a planar binary tree t being the number
of its inner vertices.

There is a unique morphism ϕ of pre-Lie algebras from PL to Dend that maps the
rooted tree to the planar binary tree . This extends uniquely to a continuous
morphism ϕ from P̂L to the completion D̂end of Dend.

Remark. With some care, one can add a unit 1 to the free dendriform algebra
Dend. Then 1 ∗ x = 1 � x = x = x ≺ 1 = x ∗ 1, but one has to pay attention to
never write either 1≺ x or x � 1. We will use this convention in the sequel.
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There are two kinds of special planar binary trees: the left combs and the right
combs. They can be defined as follows. Let L =

∑
n≥1 Ln be the unique solution

in D̂end to the equation

L = + L � = (1+ L)� , (33)

and let R =
∑

n≥1 Rn be the unique solution in D̂end to

R = + ≺ R = ≺ (1+ R). (34)

Then Ln is called the left comb with n vertices and Rn be the right comb with
n vertices.

If A =
∑

n≥1 An is an element of P̂L or D̂end, the suspension of A is Ã =∑
n≥1(−1)n−1 An .

Proposition 5.1. The inverse of 1+ R with respect to the ∗ product is 1− L̃.

Proof. One has L̃ = − L̃ � . We compute

(1− L̃) ∗ (1+ R)= 1+ R− L̃ ∗ (1+ R). (35)

By the definition of ∗ and the convention on the unit 1, this is

1+ R− L̃ ≺ (1+ R)− L̃ � R. (36)

By (33), this becomes

1+ R− ≺ (1+ R)+ L̃ � ≺ (1+ R)− L̃ � R. (37)

The last two terms cancel by (34) and one gets

1+ R− ≺ (1+ R), (38)

which is just 1, again by (34). �

Equation for the dendriform image of �q . Define a series E =
∑
n≥1

nLn in D̂end.
One can easily show that

E = L + E � . (39)

Lemma 5.2. The series B[ = ϕ(
∑

n≥1 Lnr[n) satisfies

B[ = [
+ B[ � − ≺ B[. (40)

Proof. This comes from a similar equation in PL. Let Lnr[ =
∑

n≥1 Lnr[n . Then

Lnr[ = [
+ x Lnr[, (41)

as one can easily check. �

These relations can be taken as definitions of the elements E and B[ of D̂end.
One can forget the marking [ in B[ to define a series B.
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Proposition 5.3. The series B = ϕ(
∑

n≥1 Lnrn) satisfies

E = (1+ L) ∗ B. (42)

Proof. One has to show that E = (1+L)∗ B. It is enough to prove that (1+L)∗ B
does satisfy the defining relation (39) of E .

One computes, using (40) for B,

(1+ L) ∗ B = (1+ L) ∗ ( + B � − ≺ B). (43)

Expanding the ∗ product, this is

(1+L)� +L ≺ +(1+L)� (B� − ≺ B)+L ≺ (B� − ≺ B).
(44)

Using (33) and the dendriform axioms, this becomes

L+L ≺ +((1+L)∗B)� −(1+L)� ≺ B+L ≺ (B � − ≺ B).
(45)

Using (33) again, one gets

L + ((1+ L) ∗ B)� + L ≺ ( − B+ B � − ≺ B). (46)

This simplifies, by (40) for B, to

L + ((1+ L) ∗ B)� , (47)

as expected. �

Lemma 5.4. The image of
∑
n≥1

1
(n−1)!

Crl\n by ϕ is

(1+ R)� \
≺ (1− L̃). (48)

Proof. This was proved in [Ronco 2000; 2001; Chapoton 2002b]. �

Proposition 5.5. The image of
∑̀
≥0

∑
n≥0

(−1)`

n!
Frk\`,n by ϕ is

(1+ R) ∗ \
∗ (1− L̃), (49)

where \ is the planar binary tree with vertex labeled by \.

Proof. Let D = (1+ R) ∗ \
∗ (1− L̃). Let us first show that

D = (1+ R)� \
≺ (1− L̃)+ ≺ D− D � . (50)

Expanding the ∗ product, one computes

D = ((1+ R) ∗ \)≺ (1− L̃)− ((1+ R) ∗ \)� L̃. (51)

Then one gets, by expanding again,

(1+ R)� \
≺ (1− L̃)+ (R ≺ \)≺ (1− L̃)− ((1+ R) ∗ \)� L̃. (52)
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Using the dendriform axioms, this is

(1+ R)� \
≺ (1− L̃)+ R ≺ ( \

∗ (1− L̃))− ((1+ R) ∗ \)� L̃. (53)

Then by (33) and (34), this can be rewritten

(1+ R)� \
≺ (1− L̃)+ ( ≺ (1+ R))≺ ( \

∗ (1− L̃))

− ((1+ R) ∗ \)� ((1− L̃)� ). (54)

One gets, using the dendriform axioms,

(1+ R)� \
≺ (1− L̃)+ ≺ ((1+ R) ∗ \

∗ (1− L̃))

− ((1+ R) ∗ \
∗ (1− L̃))� . (55)

This proves Equation (50) for D.
Let us show now that

D′ =
(∑
`≥1

(−1)`−1ϕ(Lnr[`)
)
◦[

(∑
n≥1

1
(n− 1)!

ϕ(Crl\n)
)

does satisfy the same equation as D.
By Lemma 5.4, one has

D′ = B̃[ ◦ [((1+ R)� \
≺ (1− L̃)). (56)

By Lemma 5.2, one has B̃[ = [
− B̃[ � + ≺ B̃[, hence

D′ = (1+ R)� \
≺ (1− L̃)+ ≺ D′− D′ � . (57)

By uniqueness of the solution D of (50), one has D = D′, that is,

(1+R)∗ \
∗(1− L̃)=

(∑
`≥1

(−1)`−1ϕ(Lnr[`)
)
◦[

(∑
n≥1

1
(n− 1)!

ϕ(Crl\n)
)
. (58)

Therefore

(1+ R) ∗ \
∗ (1− L̃)= ϕ

((∑
`≥1

(−1)`−1Lnr[`
)
◦[

(∑
n≥1

1
(n− 1)!

Crl\n
))
, (59)

which is exactly the expected image by ϕ of a sum over forks. �

One can now deduce a useful functional equation for the image of �q by ϕ,
using only the associative product ∗ of Dend.

Proposition 5.6. The series ϕ(�q) is the unique solution in D̂end of

ϕ(�q)= (1− L̃)−1
∗ϕ(�q)[q] ∗ (1− L̃)+ (1− q)

∑
`≥1

(−1)`−1ϕ(Lnr`). (60)
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Proof. Let us start from (22). By Proposition 5.5, we know the image by ϕ of the
sum over forks. One gets

ϕ(�q)= ((1+R)∗ \
∗(1− L̃))◦\ϕ(�q)[q]+(1−q)

∑
`≥1

(−1)`−1ϕ(Lnr`). (61)

Then one can use Proposition 5.1 to replace 1+ R by the inverse of 1− L̃ . �

Explicit formula. We will prove in this section that the image of�q by ϕ coincides
(in some sense) with a known family of Lie idempotents, and has an explicit de-
scription using q-binomial coefficients, descents and major indices of planar binary
trees. To obtain this description, we use a result on noncommutative symmetric
functions. We refer to [Gelfand et al. 1995; Duchamp et al. 1997; Krob et al.
1997] for background on this subject. We will use the notation of this last article.

The algebra Sym of noncommutative symmetric function is the free unital asso-
ciative algebra on generators S1, S2, . . . . It is a graded algebra (with Si of degree i),
with a basis (SI )I indexed by compositions. There is another basis (RI )I obtained
from the basis (SI )I by Möbius inversion on compositions ordered by refinement.
By convention, S0 is the unit of Sym.

As Sym is free, there is a unique morphism of associative algebras θ from Sym
to Dend which maps Si to the left comb L i for each i ≥ 0, with the convention that
L0 is the unit of Dend.

One can check that θ is the usual morphism from Sym to Dend, considered for
instance in [Hivert et al. 2005, Section 4.8] and [Loday and Ronco 1998].

In Sym, there are elements 9i for i ≥ 1, uniquely defined by the conditions

nSn =

n−1∑
i=0

Si ∗9n−i , (62)

for all n ≥ 1.

Proposition 5.7. The image of 9i by θ is ϕ(Lnri ).

Proof. This is a corollary of Proposition 5.3. Indeed, one has

1+ L =
∑
n≥0

θ(Sn) and E =
∑
n≥1

n θ(Sn). (63)

Therefore
B =

∑
n≥1

θ(9n). �

The leaves of a planar binary tree with n vertices are labeled from 0 to n from
left to right. The leaves with labels different from 0 and n are called inner leaves.
A descent in a planar binary tree t is the label of an \-oriented inner leaf. The
descent set D(t) of t is the set of its descents.



626 Frédéric Chapoton

0 1 2 3 4 5 6

Figure 5. A planar binary tree t with descents at 2 and 4.

The number of descents of a planar binary tree t will be denoted d(t). It satisfies
0≤ d(t)≤ n− 1 for a tree t of degree n.

The major index maj(t) of t is the sum of its descents. For example, Figure 5
displays a planar binary tree with descent set {2, 4} and major index 2+ 4= 6.

Let us recall that the descent set D(I ) corresponding to a composition I =
(i1, . . . , ik) of n is the set {i1, i1+ i2, . . . , i1+ · · ·+ ik}.

Proposition 5.8. The image by θ of RI is the sum∑
#t=n

D(t)=D(I )

t (64)

of all planar binary trees with n vertices and descent set D(I ).

Proof. This is a well-known property of the injection of Sym in Dend. �

In [Krob et al. 1997], elements 9n(A/(1− q)), for n ≥ 1, are defined by some
“change of alphabet” applied to the elements 9n . According to the proof of [Krob
et al. 1997, Theorem 6.11], they are characterized by∑

n≥1

9n

( A
1−q

)
=

(∑
n≥0

Sn

)−1(∑
n≥1

qn9n

( A
1−q

))(∑
n≥0

Sn

)
+

∑
n≥1

9n. (65)

There is a classical isomorphism of vector spaces α from Sym to the direct sum
of all descent algebras of symmetric groups. By this morphism, each9n(A/(1−q))
is mapped, up to a multiplicative constant, to a Lie idempotent with coefficients in
Q(q) in the descent algebra of the n-th symmetric group.

We can now state the precise relation between �q and these Lie idempotents,
or rather with the elements 9n(A/(1− q)).

Proposition 5.9. The image of (1− q)9(A/(1− q)) by θ is ϕ(�̃q).

Proof. Indeed, by Proposition 5.6, one has∑
n≥1

ϕ(�̃q)= (1+ L)−1
∗ (ϕ(�̃q)[q]) ∗ (1+ L)+ (1− q)

∑
n≥1

ϕ(Lnrn). (66)
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Then using Proposition 5.7 and (65), one gets that θ
(
(1− q)9(A/(1− q))

)
and

ϕ(�̃q) satisfy the same equation, hence they are equal. �

Let �q,n be the homogeneous component of degree n of �q .

Proposition 5.10. One has

ϕ(�q,n)=
(−1)n−1

[n]q

∑
#t=n

(−1)d(t)
[n−1

d(t)

]−1

q
qmaj(t)−(d(t)+1

2 ) t. (67)

Proof. Theorem 6.11 of [Krob et al. 1997] says that the element (1−q)9n

( A
1−q

)
is

1
[n]q

∑
|I |=n

(−1)d(I )
[n−1

d(I )

]−1

q
qmaj(I )−(d(I )+1

2 ) RI . (68)

By Proposition 5.9, the image under θ of this formula is (−1)n−1ϕ(�q,n). By
Proposition 5.8, this becomes the expected formula. �

6. Arithmetic properties

In this section, we obtain some properties of the denominators in �q and consider
what happens when q is specialized to 1, 0 and∞.

The case q = 1. First note that the morphism ϕ from P̂L to the completed free
dendriform algebra D̂end is defined over Q and injective. Hence one can deduce
results on �q from results on its image by ϕ.

Proposition 6.1. The series �q is regular at q = 1 and �q=1 =�.

Proof. By Proposition 5.10, the image ϕ(�q) is regular at q = 1, as q-binomial
coefficients become usual binomial coefficients when q = 1. Therefore �q itself
is regular at q = 1.

At q = 1, (19) becomes (12). By uniqueness in Proposition 3.3, the value of �q

at q = 1 is �. �

Remark. Knowing that �q=1 = �, one can use (20) to compute simultaneously
�q and � up to order n in a O(n3) number of pre-Lie operations.

There is a lot of cancellation in the coefficients of �q , leading to a reduced
complexity of the denominators. Note that the expected denominator of �q,n

(from recursion (20)) is the product
∏n

d=2(q
d
−1). Let 8d be the d-th cyclotomic

polynomial.

Proposition 6.2. The common denominator of the coefficients of the element �q,n

divides the product
∏n

d=28d .
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Proof. For the image of �q by ϕ, this follows from 5.10 and a simple property of
the q-binomial coefficients: their only roots are simple roots at roots of unity, see
[Guo and Zeng 2006, Proposition 2.2]. This implies the same result for �q . �

Remark. The true denominator of each individual coefficient in�q is often smaller
than the complete product

∏n
d=28d , see for instance the first few terms in Appen-

dix B.

The case q = 0. Let us consider now what happens when q = 0. Then �0 is
well-defined, �q [q] vanishes and (19) becomes

�0 = − x�0. (69)

It follows that �0 is the alternating sum of linear trees.

The case q = ∞. Let us now consider what happens when q =∞. Let ωq,T be
the coefficient of the rooted tree T in the expansion of�q . We define the valuation
at q =∞ as the smallest exponent in the formal Laurent expansion in powers of
q−1 of an element of Q(q).

Proposition 6.3. The valuation of ωq,T at q =∞ is at least #T − 1.

Proof. This will follow from the recursion (20). This is true in degree n= 1. Let us
assume that n≥ 2. Then the valuation of x�q,n−1 is at least n−2 by induction
and the valuation of each term of the rightmost sum in (20) is at least −1. Hence
the valuation of �q,n is at least n− 1. �

Hence there exists a limit �∞ for �q [q]/q when q goes to∞ and the limit of
�q/q is zero.

Equation (19), divided by q , becomes, at q =∞,

�∞x exp�= . (70)

By right action by exp(−�), this is equivalent to

�∞ = x exp(−�). (71)

The element exp(−�) is the inverse of exp� in Û (PL). This has been com-
puted in [Chapoton and Livernet 2007, Section 6.4]. More precisely, the inverse of∑

n≥1
1

(n−1)!Crln in the group of characters of the Connes–Kreimer Hopf algebra
was shown there to be ∑

T

(−1)#T−1

aut(T )
T, (72)

where aut(T ) is the cardinal of the automorphism group of the rooted tree T . But it
is known [Chapoton and Livernet 2001] that this group of characters is isomorphic
to the group of group-like elements in Û (PL). Going through the isomorphism,
one gets the following result.
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Proposition 6.4. The series �∞ is given by

�∞ =
∑

T

(−1)#T−1

aut(T )
T . (73)

7. Morphisms and images

In this section, we consider several quotients of the free pre-Lie algebra PL and
the images of �q in some of these quotients. The first two quotients come from
quotients operads of the pre-Lie operad.

As shown in [Chapoton and Livernet 2001], the pre-Lie operad can be described
in terms of labeled rooted trees. We recall here briefly (see the article just cited for
details) the definition of the composition of two labeled rooted trees T and S on
the vertex sets I and J , respectively. Let i ∈ I ; the composition of S at the vertex
i of T is given by

T ◦i S =
∑

f

T ◦ f
i S, (74)

where the sum runs over all maps f from the set of incoming edges of the vertex
i of T to the set of vertices of S, and T ◦ f

i S can be described as follows: replace
the vertex i by the tree S, grafting back the subtrees of T previously attached to i ,
according to the map f .

Morphism to the free associative algebra.

Proposition 7.1. The subspace of pre-Lie spanned by nonlinear labeled trees is
an ideal. The quotient map κ coincides with the usual map from pre-Lie to the
associative operad As.

Proof. Using the description above of the composition map of the operad pre-
Lie, it is clear that the composition of two labeled trees, at least one of which
is nonlinear, is again nonlinear. The quotient operad, spanned by labeled linear
trees, has dimension n! in rank n. Its composition can be easily identified with the
associative operad As. The quotient map is then checked on generators of pre-Lie
to be the same as the usual map. �

Proposition 7.2. The group GAs is isomorphic to the group of invertible formal
power series in xQ[[x]] for the composition product.

Proof. It is more convenient here to work at the monoid level with Âs and xQ[[x]].
The vector space As(n)Sn is one dimensional for all n, with a basis element θn .
By left linearity of both monoids, it is sufficient to check the product rule for θm

and f =
∑

n≥1 fnθn . One finds that

θm × f =
∑

n1,...,nm≥1

fn1 . . . fnmθn1+···+nm , (75)
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which proves that the linear map defined by xn
7→ θn is an isomorphism between

the monoids Âs and xQ[[x]]. The proposition follows by taking invertible elements.
�

The operad morphism κ induces a morphism of pre-Lie algebras from PL to the
free (nonunital) associative algebra Q[x]+ on one generator x , sending to x .
This extends to a morphism from P̂L to the algebra Q[[x]]+ of formal power series
in x without constant term. This last morphism restricts to a group morphism from
Gpre−Lie to GAs. We will denote by κ all these morphisms.

One can see that κ sends the linear trees Lnrn = ( x ) . . . x to the
monomials (xx) . . . x = xn and maps all other trees to 0.

From (8), one obtains that κ(�) satisfies

exp(κ(�))− 1= x . (76)

Therefore κ(�) is the formal power series

log(1+ x)=
∑
n≥1

(−1)n−1

n
xn. (77)

One then deduces from (19) that the image of �q is the q-logarithm defined by

logq(x)=
∑
n≥1

(−1)n−1

[n]q
xn, (78)

which is the unique solution to the functional equation

x logq(qx)= x logq(x)+ (q − 1) x − logq(qx)+ logq(x). (79)

Morphism to corollas and point-wise multiplication. Let the depth of a rooted
tree be the maximum number of vertices in a chain of adjacent vertices between
the root and a leaf. Corollas are then the rooted trees of depth at most 2.

Proposition 7.3. The subspace of pre-Lie spanned by labeled noncorollas is an
ideal.

Proof. Using the description above of the composition of pre-Lie, one shows that
the depth of the composition of two labeled trees is greater or equal than the maxi-
mum of the depths of these labeled trees. Therefore, if one of the labeled trees has
depth greater or equal to three, so does the composition. �

Let us denote by Mu the quotient operad and by λ the quotient map from pre-Lie
to Mu. One can give a simple description of Mu. It has dimension n in rank n with
basis given by the image of the labeled corollas with n nodes. Let us call µn

i the
image of the corolla with n nodes and with root labeled by i for i = 1, . . . , n.
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Then µ1
1 is the unit of Mu and the composition is given byµ

n
i ◦i µ

`
j = µ

n+`−1
i+ j−1 ,

µn
i ◦h µ

`
j = 0 for h 6= i and `≥ 2.

(80)

Let G1 be the group of formal power series of the form 1+xQ[[x]] for the point-
wise multiplication product and G2 be the multiplicative group Q∗. There is an
action of G2 on G1 by substitution: λ · f (x)= f (λx).

From the description of Mu above, one deduces that

Proposition 7.4. The group GMu is isomorphic to G2 n G1.

Proof. The vector space Mu(n)Sn is one-dimensional for all n, with basis given
by the image of the corolla with n nodes. Let us denote this basis element by
νn−1. Any element of GMu can be uniquely written as the product λ

(∑
m≥0 fmνm

)
of λ ∈ Q∗ and f =

∑
m≥0 fmνm with f0 = 1. Let us compute the product of

λ f = λ
(∑

m≥0 fmνm
)

and θg = θ
(∑

n≥0 gnνn
)

with the conventions f0 = 1 and
g0 = 1. One finds that

λ f × θg =
∑
m≥0

∑
n≥0

λ fmθ
m(θgn)νn+m = λθ

∑
m≥0

∑
n≥0

θm fm gnνn+m . (81)

One defines a map from GMu to G2 n G1 by λ
(∑

m fmνm
)
7→ (λ, f (x)) with

f (x)=
∑

m fm xm . The product in G2 n G1 is given by

(λ, f (x))(θ, g(x))= (λθ, f (θx)g(x)). (82)

Hence the map is an isomorphism. �

The quotient map λ induces a morphism of pre-Lie algebras from PL to the
following pre-Lie algebra. Let us identify the image of the corolla Crln+1 with n
leaves to xn for all n ≥ 0. In particular, the tree is mapped to 1. The underlying
vector space is therefore identified with Q[x] and the quotient pre-Lie product is

x p x xq
=

{
x p+1 if q = 0,
0 else.

(83)

One can show (using the description of the quotient x product given above)
that the right action by λ(�) is given by the product by x . Therefore, the right
action of the image of exp(λ(�))−1 is just given by the product by exp x−1. One
sees as well that the right action by λ(�q) is also given by the product by x .

Then one deduces from Proposition 3.3 that the image λ(�) is the generating
function x/(exp x − 1) for the Bernoulli numbers.

Next, from (19), one gets that the image Fq(x) of �q satisfies the equation

(exp x − 1)[q Fq(qx)] = x + q − 1− q Fq(qx)+ Fq(x). (84)
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This functional equation is known (see for instance [Satoh 1989]) to describe
the generating function

F =
∑
n≥0

βn(q)
xn

n!
, (85)

where βq(n) are the q-Bernoulli numbers of [Carlitz 1948; 1954; 1958].
Therefore the coefficients of the corollas in �q are the q-Bernoulli numbers of

Carlitz. One may wonder whether it is possible to describe directly the coefficient
of each rooted tree in �q .

Morphism to a pre-Lie algebra of vector fields. There exists an interesting mor-
phism from PL to a pre-Lie algebra of vector fields. We describe it here only as a
side remark, as the image of �q seems to have no special property.

Consider the vector space V = Q[x]+, endowed with the following pre-Lie
product:

f x g = x f ∂x g. (86)

Then there is a unique morphism from PL to V sending to x .
This map has the following nice property: the coefficient of xn in the image of a

series A is the sum of the coefficients of the trees in the homogeneous component
An of A. The proof is just a check that this sum-of-coefficients map defines a
morphism of pre-Lie algebra from PL to V .

Appendix A. A group associated to an augmented operad

We briefly recall here the definition for each augmented operad of a group of formal
power series. This can also be found in [Chapoton 2002a; 2007/08; van der Laan
2003; Chapoton and Livernet 2007]. We use in this section the definition of the
notion operad by a multiple composition map γ , which is equivalent (using the unit)
to the definition using the single compositions ◦i that we have used elsewhere in
the article.

Let P be an operad in the category VectQ of vector spaces over Q and assume
that P(0) = {0} and that P(1) = Qe where e is the unit of P. Such an operad is
called augmented.

Let FP=⊕nP(n)Sn be the direct sum of the coinvariant spaces, which can be
identified with the underlying vector space of the free P-algebra on one generator,
and P̂=

∏
nP(n)Sn be its completion.

Let x =
∑

m xm , y =
∑

n yn be two elements of P̂. Choose any representatives
x̄m of xm (resp. ȳn of yn) in the operad P. Then one can check that the following
formula defines a product on P̂:

x × y =
∑
m≥1

∑
n1,...,nm≥1

〈γ (x̄m, ȳn1, . . . , ȳnm )〉, (A.1)
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where 〈 〉 is the quotient map to the coinvariants and γ is the (multiple) composition
map of the operad P.

Proposition A.1. The product × defines the structure of an associative monoid on
the vector space P̂. Furthermore, this product is Q-linear on its left argument.

Proof. We first prove associativity. On the one hand,

(x × y)× z

=

∑
m

∑
p1,...,pm

〈γ ((x × y)m, z̄ p1, . . . , z̄ pm )〉

=

∑
m

∑
n1,...,nm

∑
p1,...,pn1+···+nm

〈γ (γ (x̄m, ȳn1, . . . , ȳnm ), z̄ p1, . . . , z̄ pn1+···+nm
)〉. (A.2)

On the other hand,

x × (y× z)

=

∑
m

∑
n1,...,nm

〈
γ (x̄m, (y× z)n1

, . . . , (y× z)nm
)
〉

=

∑
m

∑
n1,...,nm

∑
(qi, j )

〈
γ (x̄m, γ (ȳn1, z̄q1,1, . . . , z̄q1,n1

), . . . , γ (ȳnm , z̄qm,1, . . . , z̄qm,nm
))
〉
.

(A.3)

Using then the “associativity” of the operad, one gets the associativity of ×. It is
easy to check that the image of the unit e of the operad P is a two-sided unit for
the × product. The left Q-linearity is clear from the formula (A.1). �

Proposition A.2. An element y of P̂ is invertible for × if and only if the first
component y1 of y is nonzero.

Proof. The direct implication is trivial. The reverse one is proved by a very standard
recursive argument. �

Let us call GP the set of invertible elements of P̂ for the × product.

Proposition A.3. G is a functor from the category of augmented operads to the
category of groups.

Proof. The functoriality follows from inspection of the definitions of P̂ and ×. �

In fact, one can see GP as the group of Q-points of a proalgebraic group. The
Lie algebra of this proalgebraic group is given by the usual linearization process
on the tangent space P̂, resulting in the formula

[x, y] =
∑
m≥1

∑
n≥1

〈x̄m ◦ ȳn − ȳn ◦ x̄m〉, (A.4)
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where

x̄m ◦ ȳn =

m∑
i=1

γ (x̄m, e, . . . , e︸ ︷︷ ︸
i−1 units

, ȳn, e, . . . , e). (A.5)

The graded Lie algebra structure on FP defined by the same formulas has already
appeared in the work of Kapranov and Manin on the category of right modules over
an operad [Kapranov and Manin 2001, Theorem 1.7.3].

Appendix B. First terms of some expansions

�= −
1
2
+

1
3
+

1
12

−
1
4
−

1
12
−

1
12

+
1
5
+

3
40
+

1
10
+

1
180

+
1

60

+
1
20
+

1
120

−
1

120
−

1
720

+ · · · (B.1)

For n ≥ 1, let 8n be the n-th cyclotomic polynomial.

�q = −
1
82
+

1
83
+

q
28283

−
1

8284
−

q
28384

−
q2

828384
−

q(q − 1)
6828384

+
1
85
+

q(1+ q + q2)

2828485
+

q2

8485
+

q(q3
+ q2
− 1)

6838485

+
q4

2838485
+

q3

828485
+

q2(q3
+ q2
− 1)

282838485

+
q2(q3

− q − 1)
282838485

+
q(q4
− q3
− 2q2

− q + 1)
2482838485

+ · · · (B.2)

�∞ = − + +
1
2
− −

1
2
− −

1
6

+

+
1
2
+ +

1
6
+

1
2
+ +

1
2
+

1
2
+

1
24

+ · · · (B.3)

�0 = − + − + + · · · (B.4)
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A pencil of Enriques surfaces of index one
with no section

Jason Michael Starr

Monodromy arguments and deformation-and-specialization are used to prove
existence of a pencil of Enriques surfaces with no section and index 1. The same
technique “completes” the strategy from Graber et al. (2005) proving that the
family of witness curves for dimension d depends on the integer d.

1. Introduction

This paper uses monodromy and deformation-and-specialization to answer some
questions related to [Graber et al. 2005].

Theorem 1.1. There exists a positive integer t (which the reader can readily com-
pute) such that the following holds. Let k be any algebraically closed field with
char(k) 6= 2, 3 whose transcendence degree over the prime field is ≥ t . This
holds, for instance, if k is uncountable. There exists a flat, projective k-morphism
π : X→ P1

k with the following properties.

(i) The geometric generic fiber of π is a smooth Enriques surface.

(ii) The invertible sheaf π∗[ω⊗2
π ] has degree 6.

(iii) For the function field K of P1
k and the generic fiber X K of π , the residue field

of each closed point of X K has degree ≥ 3 as an extension of K . Moreover,
there exists at least one closed point of degree 3 and at least one closed point
of degree 4. So the greatest common divisor of all degrees of closed points
equals 1.

Moreover every “very general” Enriques surface over k is a fiber of such a family.

What is the relevance of this result? First of all, in [Graber et al. 2005, Corol-
lary 1.4] it was proved that there exists an Enriques surface X defined over the func-
tion field K =C(B) of some complex curve B such that X has no K-rational points.

MSC2000: primary 14G05; secondary 14D06.
Keywords: rational point, Enriques surface.
Partially supported by NSF Grants DMS-0201423, DMS-0353692, DMS-0553921, DMS-0758521,
and an Arthur P. Sloan fellowship.

637



638 Jason Michael Starr

This answered a question which Serre asked [Colmez and Serre 2001, page 153].
Next, shortly after the results of [Graber et al. 2005] were proved, Lafon [2004]
even gave an explicit pencil of Enriques surfaces defined over (Z[1/2])[t][1/ f (t)]
for an explicit monic polynomial f (t) such that for every field k of characteristic
6= 2, the base change of the Enriques surface to K = k(t) has no K-rational point.

Motivated by this, Hélène Esnault posed to Joe Harris the important question
of whether or not these examples can be somehow explained “cohomologically”.
In particular, she posited that the Enriques surfaces from [Graber et al. 2005] have
the stronger property that every 0-cycle has degree divisible by 4. Similarly, for
Lafon’s Enriques surface, every 0-cycle has even degree. This suggests that these
examples, and by extension, perhaps all examples, can be understood in terms of
obstructions which are defined as elements in Galois cohomology groups of the
fraction field K of the base B. These obstructions are compatible with restriction
and corestriction for finite, separable field extensions L/K . In concrete terms what
this implies is that the order of the obstruction (as an element in the appropriate
torsion Galois cohomology group) divides the degree over K of the residue field
L of every closed point of X (for which L/K is separable). Thus, if one of these
obstructions is nonzero, then the greatest common divisor of the degrees of all
(separable) closed points is > 1. Therefore, since the greatest common divisor of
all (separable) closed points is > 1 in the Enriques surfaces of [Graber et al. 2005]
and [Lafon 2004], perhaps there is a cohomological explanation for those Enriques
surfaces.

In Theorem 1.1, the degree 3 and degree 4 points are separable (since the char-
acteristic is not 2, 3), and gcd(3, 4) equals 1. Therefore nonexistence of rational
points is not due to a cohomological obstruction as above. Of course there may be
a cohomological obstruction defined in a different way which does “explain” the
nonexistence of rational points of these varieties.

For comparison, note that the greatest common divisor of degrees of closed
points in Lafon’s example equals 2. Although I am not certain, I expect that also in
the examples from [Graber et al. 2005] (which are defined only in a very indirect
manner), the greatest common divisor is again > 1.

Proposition 1.2. Let k be an algebraically closed field having infinite transcen-
dence degree over its prime subfield, for example, an uncountable algebraically
closed field. Let B be an integral, normal, projective k-scheme of dimension ≥ 2.
Let M be an integral quasiprojective k-variety. And let C ⊂ M ×k B be a closed
subscheme which is flat of relative dimension 1 over M with irreducible geometric
fibers and which dominates B, that is, (M,C) is a family (Cm)m∈M of irreducible
curves Cm in B such that ∪m∈M Cm contains a dense open subset of B. For all
integers n which are sufficiently positive, there exists a projective, dominant mor-
phism of integral k-schemes π : X→ B having relative dimension n and whose
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restriction to each geometric fiber of C→M has a section, but whose restriction to
some smooth curve in B has no section. In the language of [Graber et al. 2005], this
means that for every family of curves (M,C), for all sufficiently positive integers
n, the family is not a witness family for relative dimension n.

This proposition completes the sketch given in [Graber et al. 2005, Section 7.3].
Just to repeat, the significance is that there does not exist a family of curves in B
which is simultaneously for all integers n a witness family for relative dimension n.

In proving Theorem 1.1 and Proposition 1.2 it will be useful to recall the defi-
nition of the index.

Definition 1.3. Let X be a finite type scheme, algebraic space, algebraic stack, etc.
over a field K . The index and the minimal degree are,

I (K , X) = gcd{[L : K ]|X (L) 6=∅},
M(K , X) = min{[L : K ]|X (L) 6=∅}.

The proofs of Theorem 1.1 and Proposition 1.2 both use the same technique;
here is a brief description for Theorem 1.1. Over P1 a family of reducible surfaces
is given whose monodromy group acts as the full group of symmetries of the dual
graph of the geometric generic fiber. This dual graph is the 2-skeleton of a cube.
There is an action of Z/2Z acting fiberwise on the family. The quotient by this
action is a pencil X/P1 of degenerate Enriques surfaces, that is, the geometric
generic fiber deforms to a smooth Enriques surface. The 8 vertices of the cube
give a degree 4 multisection of the pencil. The 6 faces of the cube give a degree 3
multisection of the pencil. By monodromy considerations every multisection of X
has degree≥3. The pencil X together with the degree 3 and degree 4 multisections
deforms to a pencil of surfaces whose geometric generic fiber is a smooth Enriques
surface. For such a deformation which is sufficiently general, M(K , X K ) equals 3
and I (K , X K ) equals 1.

2. The construction for hypersurfaces

Let n−1 be a positive integer. The goal of this section is to construct the morphism
π of relative dimension n − 1 satisfying the condition from Proposition 1.2. The
morphism is constructed as a family of hypersurfaces in Pn of degree d > n pa-
rameterized by B, that is, X will be constructed as a closed subscheme of B×k Pn

k
whose fibers over B, considered as closed subschemes of Pn , are hypersurfaces
of degree d . Of course this is equivalent to giving a rational transformation from
B to the Hilbert scheme HilbPd (t)

Pn
k/k of degree d hypersurfaces in Pn (where Pd(t)

is the appropriate Hilbert polynomial). This Hilbert scheme is itself a projective
space P

Nd,n
k , where Nd,n equals

(n+d
n

)
− 1. The goal of this section is to construct
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1-parameter families of degree d hypersurfaces in Pn with no section, and then
explain why some smooth curves in B give such 1-parameter families.

The parameter space for degree d hypersurfaces. Let k be a field. For simplicity
assume that k is algebraically closed. Let d, n> 0 be integers. Let V be a k-vector
space of dimension n + 1 so that P(V ) is isomorphic to Pn

k . For keeping track
of the dense notation, it is simpler to use P(V ) throughout rather than Pn

k . There
seem to be different conventions as to the meaning of P(V ). Thus to make precise,
P(V ) is defined here to be

P(V ) := Proj
⊕
i≥0

Symi
k(V
∨).

In particular, there exists an invertible sheaf OP(V )(−1) and a monomorphism of
coherent sheaves,

u : OP(V )(−1)→ V ⊗k OP(V )

whose restriction over every sufficiently small Zariski open subset of P(V ) is a split
monomorphism. Moreover, the triple (P(V ),OP(V )(−1), u) is universal among all
such triples of a k-scheme, an invertible sheaf, and a locally split monomorphism of
coherent sheaves. This is the universal property of projective space used here. (Of
course, by taking adjoint maps, it is equivalent to the property appearing elsewhere
which uses locally split epimorphisms to an invertible sheaf.)

There is a minor positive characteristic issue that merits some discussion. The
symmetric product Symd(V∨) is the maximal k-vector space quotient of

⊗d
k (V

∨),
which is invariant for the natural k-linear action of the symmetric group Sd , that is,
Symd(V∨) is the space of Sd -coinvariants. In particular,

⊕
i≥0 Symi (V∨) is the

ring of polynomial functions from V to k. The adjoint of the coinvariant quotient
map gives a canonical k-vector space isomorphism between the dual k-vector space
of Symd(V∨) and the subspace Sytd(V ) of Sd -invariants in

⊗d
k (V

∨), that is,

Homk(Symd(V∨), k)= Sytd(V ).

Of course if char(k) is > d, then the induced map from invariants to coinvariants,

Sytd(V )→ Symm(V ),

is an isomorphism of k-vector spaces. But since Proposition 1.2 involves integers
d which are arbitrarily large, it is important to distinguish between the invariants
and coinvariants.

Degree d hypersurfaces in P(V ) are parametrized by the projective space,

P Symd(V∨)= Proj
⊕
i≥0

Symi (Sytd(V )).
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To be precise, there is a closed subscheme Y ⊂ P Symd(V∨)× P(V ) such that
the projection to P Symd(V∨) is flat with geometric fibers being degree d hyper-
surfaces in P(V ). And the pair (P Symd(V∨),Y) represents the Hilbert functor
of P(V ) for the appropriate Hilbert polynomial Pd,n(t) of degree d hypersurfaces,
that is, for

Pd,n(t)=
(

n+t
n

)
−

(
n+t−d

n

)
.

Covers of P1 by P1. As an intermediate step, we will construct pencils of unions
of d hyperplanes. To be a little more precise, for a parameter curve B (which we
will assume to be P1 for simplicity), a pencil of unions of d hyperplanes over B
is a closed subscheme Z ⊂ B ×k P(V ) such that the projection Z → B is flat
and the geometric generic fiber is a union of d hyperplanes in P(V ). Consider
the normalization (Z)nor of Z. The Stein factorization of the associated morphism
(Z)nor → B is a finite morphism C → B. To construct the closed subscheme
Z ⊂ B ×k P(V ), we will first construct the morphism C → B. For simplicity,
we will construct it so that both B and C are smooth, proper, connected curves of
genus 0. Thus, let B and C be given k-curves isomorphic to P1

k .

Lemma 2.1. For every integer d ≥ 2, there exists a degree d, separably-generated
k-morphism f :C→ B such that Gal(k(C)/k(B)) is the full symmetric group Sd .

Proof. One can prove this in many ways. The following proof is simple, but is only
valid when char(k) is not 2. The proofs I know for characteristic 2 are considerably
longer. One such proof constructs the cover f as a general deformation of a degree
d , finite, flat, local complete intersection morphism C → B of nodal curves of
genus 0 such that every component Ci of C maps to its image B j in B as either an
isomorphism or as a degree 2 cover,

P1
→ P1, [X0, X1] 7→ [X2

0, X2
1 − X0 X1],

where the ramification points, resp. branch points, are smooth points of C , resp.
B, that is, the total map is not ramified at the nodes of C . In characteristic 2, notice
that the map above is an Artin–Schreier map. By analyzing the combinatorics of
the associated set map from the dual graph of C to the dual graph of B “decorated”
by the information of the degree of Ci→ B j , one can show that for a general such
morphism, every sufficiently general deformation is a morphism as in the lemma.
So the result reduces to a small amount of combinatorial analysis. On the other
hand, the following argument involves no combinatorial analysis.

Choose an isomorphism of C with P1 and let vd : C → Pd
k be the associated

d-uple Veronese morphism. Let B be a general line in the dual projective plane,
B ⊂ (Pd

k )
∨. Let 0 ⊂ C ×k B be the corresponding pencil of degree d divisors in

C parameterized by B. By [Deligne and Katz 1973, Théorème XVII.2.5], this is a
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Lefschetz pencil. Thus the base locus is transverse to C . Since C is 1-dimensional,
this means the base locus is empty. Therefore the projection 0 → C is an iso-
morphism. In other words, 0 equals the graph of a morphism f : C→ B, that is,
0 = 0 f . Since 0 is a pencil of degree d divisors in C , the morphism f has degree
d . Since this is a Lefschetz pencil, every ramification point ci of f is an ordinary
double point and the images bi = f (ci ) are all distinct points of B. Since char(k)
is not 2, this means that f is a tamely ramified cover. By Riemann–Hurwitz for
tamely ramified morphisms, there are 2d − 2 branch points b1, . . . , b2d−2.

Denote U = B \ {b1, . . . , b2d−2}. Denote by u a geometric point of U . The
morphism f : f −1(U )→ U is a finite étale morphism of degree d . Therefore it
defines a group homomorphism from the tamely ramified fundamental group

φ : π t
1(U, u)→Sd ,

which is well-defined up to inner automorphism of Sd . By the description of the
tamely ramified fundamental group in [Grothendieck 1962, Corollaire XIII.2.12],
π t

1(U, u) is topologically generated by elements σ1, . . . , σ2d−2 such that the image
of σi is a topological generator of the inertia group at bi . Because f is simply
ramified over bi , the image φ(σi ) is a transposition in Sd . Since f −1(U ) is irre-
ducible, Image(φ) is a transitive subgroup of Sd . Since Image(φ) is a transitive
subgroup of Sd which is generated by transpositions, Image(φ) equals all of Sd .
Thus the Galois group of k(C)/k(B) is the full symmetric group Sd . �

Norm sheaves and norm maps. Given a degree d cover f : C→ B as in Lemma
2.1, and given a k-morphism from g : C → P(V∨) from C to P(V∨), the pa-
rameter space of hyperplanes in P(V ), there is an associated k-morphism from B
to P(Symd(V∨)) sending a geometric point b of B to the reducible hypersurface
which is the union over the d points c of f −1(b) of the corresponding hyperplane.
This is made precise using norm sheaves and norm maps.

For simplicity, let g : C → P(V∨) be a closed immersion whose image is a
rational normal curve of degree n, for example,

P1
→ Pn, [X0, X1] 7→ [Xn

0 , Xn−1
0 X1, . . . , Xn−i

0 X i
1, . . . , X0 Xn−1

1 , Xn
1 ].

Consider the pullback under g of the tautological surjection, V ⊗k OC → g∗O(1).
Of course V ⊗k OC is canonically isomorphic to f ∗(V ⊗k OB). By adjointness of
f ∗ and f∗, there is an associated morphism of OB-modules,

β : V ⊗k OB→ f∗(g∗O(1)).

Now for every locally free OC -module E there is the associated norm sheaf on
B, defined as

Nm f (E)= HomOB

(∧d
( f∗OC),

∧d
( f∗E)

)
.
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There is also the associated norm map α′E :
d⊗
( f∗E)→ Nm f (E) of OB-modules,

defined by

e1⊗ · · ·⊗ ed 7→ (c1 ∧ · · · ∧ cd 7→ (c1 · e1)∧ · · · ∧ (cd · ed)) ,

for e1⊗· · ·⊗ed ∈
⊗d( f∗E) and c1∧· · ·∧cd ∈

∧d
( f∗OB). In fact we will only need

the restriction to the subsheaf of symmetric tensors, which we denote as follows

αE : Sytd( f∗E)→ Nm f (E).

In particular, observe that Nm f (OC) equals OB and that for every local section b
of f∗OC , the norm αOC (b⊗ · · ·⊗ b) ∈ OB is the usual norm of b.

The family of unions of hyperplanes. Denote by γ the composition,

Sytd(V )⊗k OB
Sytd (β)
−−−−→ Sytd( f∗g∗O(1))

αg∗O(1)
−−−→ Nm f (g∗O(1)).

Because β is surjective, also γ is surjective. Because f is finite, there exists a
Zariski open covering {Ui } of B such that g∗O(1) is trivial on each open f −1(Ui ).
Thus

Nm f (g∗O(1))

is locally isomorphic to Nm f (OC), that is, to OB . So Nm f (g∗O(1)) is an invertible
OB-module and γ is locally a split epimorphism. Therefore, by the universal prop-
erty of projective space, there is an induced morphism h : B→ P Symd(V∨). Let
b be a geometric point of B whose fiber f −1(b) is a reduced set {c1, . . . , cd}. For
every i = 1, . . . , d , the image g(ci ) equals [L i ] for a linear functional L i ∈ V∨.
And then h(b) equals [L1×· · ·×Ld ]. The degree of Nm f (g∗O(1)) equals n. Thus
h∗O(1) is an invertible OB-module of degree n.

Denote by Yh ⊂ B ×P(V ) the preimage under (h, Id) of the universal hyper-
surface Y in P Symd(V∨)×P(V ). And denote by π :Yh→ B the projection. Let
m =min(d, n) and let Sd,n ⊂ Z≥0 denote the additive semigroup generated by

(d
i

)
for i = 1, . . . ,m. Denote k(B) by K and denote by Yh,K the generic fiber of π .

Proposition 2.2. For every irreducible multisection of π , there exists an integer
i = 1, . . . ,m such that the degree of the multisection is divisible by

(d
i

)
. The degree

of every multisection is in the semigroup Sd,n . In particular, if d is greater than n
then M(K ,Yh,K ) equals d and I (K ,Yh,K ) is divisible by gcd

(
d,
(d

2

)
, . . . ,

(d
n

))
.

Proof. Denote by U ⊂ B the largest open subset over which f is étale and define
W = f −1(U ). For each i = 1, . . . ,m, denote by Wi/U the relative Hilbert scheme
Hilbi

W/U . Because W is étale over U , the fiber of f over a geometric point b of
B is a set of d distinct points, f −1(b) = {c1, . . . , cd}, and the fiber of Hilbi

W/U is
the set of subsets of f −1(b) of size i . Every geometric fiber of Yh ×B U → U is



644 Jason Michael Starr

a union of d hyperplanes. Denote by

Yh ×B U = Y1
h tY2

h t · · · tYn
h

the locally closed stratification where Yi
h is the set of points x in precisely i irre-

ducible components of the geometric fiber Yh ⊗OB κ(π(x)).
Because every finite subset of distinct closed points on a rational normal curve

over an algebraically closed field is in linearly general position, Yi
h is empty for

all i >m. In particular every geometric fiber of Yh×B U→U is a simple normal
crossings variety. For each i = 1, . . . ,m the morphism Yi

h → U factors as an
An−i -bundle over Wi over U .

For each irreducible multisection of π , there exists an integer i ≤m (depending
on the multisection) such that the generic point of the multisection is contained
in Yi

h . Because Gal(k(C)/k(B)) is the full symmetric group Sd , in particular
it is i-transitive. Thus Wi is irreducible. Therefore the degree of the multisec-
tion is divisible by deg(k(Wi )/k(U )) which equals

(d
i

)
. So the degree of every

multisection, irreducible or not, is in Sd,n . In particular, the degree is ≥ d , that
is, M(K ,Yh,K ) ≥ d. Conversely, the intersection of Xh,K with a general line in
P(V ⊗k K ) is a degree d multisection. Therefore M(K ,Yh,K ) equals d . �

Denote by Hom(B,P Symd(V∨)) the Hom scheme [Grothendieck 1961, 4.c,
p. 19]. And denote by Hn ⊂ Hom(B,P Symd(V∨)) the irreducible component
parameterizing those morphisms of degree n. Denote the universal morphism by

χ : Hn ×k B→ P Symd(V∨).

Denote by Yχ ⊂ Hn×k B×k P(V ) the pullback under χ × IdP(V ) of the universal
degree d hypersurface Y ⊂ P Symd(V∨)×k P(V ). For every field k ′ and every
[ j] ∈ Hn(k ′), denote by Y j the restriction of Yχ to Spec (k ′)× B. Also denote by
K ′ the function field k ′(B), and denote by Y j,K ′ the fiber of Y j over the generic
point Spec (K ′) of k ′(B).

Corollary 2.3. Assume d>n. In Hn there is a countable intersection of open dense
subsets such that for every [ j] in this set, M(K ′,Y j,K ′) = d and I (K ′,Y j,K ′) is
divisible by gcd(d, . . . ,

(d
n

)
). In particular this holds when [ j] equals the geometric

generic point of Hn .

Proof. The subset H good
n ⊂ Hn where gcd

(
d, . . . ,

(d
n

))
divides I (K ′,Xh,K ′) and

where M(K ′,XK ′) is at least d is a countable intersection of open subsets by stan-
dard Hilbert scheme arguments: the complement of this set is the union indexed
by the countably many Hilbert polynomials P(t) of multisections of degree which
are either less than d or which are not divisible by gcd(d, . . . ,

(d
n

)
) of the closed

image in Hn of the relative Hilbert scheme HilbP(t)
X/Hn

. By Proposition 2.2 H good
n is

nonempty. Therefore it is a countable intersection of open dense subsets. Of course
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the intersection of Yh,K ′ with a general line in P(V ⊗k K ′) gives a multisection
of degree d . Therefore H good

n is actually the set where M(K ′,XK ′) equals d and
where gcd(d, . . . ,

(d
n

)
) divides I (K ′,Xh,K ′). �

2.1. Proof of Proposition 1.2. Let k be an algebraically closed field having infinite
transcendence degree over its prime subfield. The main case of Proposition 1.2 is
actually the special case where B equals P1

k ×k P1
k and where the family of curves

(M,C) is the complete linear system |O(a, b)| for some integers a, b ≥ 0.
Assume first that one of a or b equals 0, say b = 0. Let f : Y → P1

k be a finite,
separably-generated morphism of irreducible curves of degree > 1, and let X be
Y ×P1 with projection π = ( f, Id). Every divisor in |O(a, 0)| is a union of fibers
of pr1, so the restriction of π has a section. The restriction of π over every fiber
of pr2 is just f , and so has no rational section.

Thus assume next that both a and b are positive. Define n = 4ab and define
d = n−1. Let V be a k-vector space of dimension n+1 as above. Let C ⊂P1

×P1

be a smooth curve in the linear system |O(1, 2b)|. By Corollary 2.3, there exists a
closed immersion of degree n, j : C→ P Symd(V∨), such that M(k(C),Y j,k(C))

equals d , which is > 1. Of course j extends to a closed immersion

j : P1
×P1

→ P Symd(V∨)

such that j∗O(1) is O(2a− 1, 2b). Indeed the restriction map

H 0(P1
×P1,O(2a− 1, 2b))→ H 0(C,OC(n))

is surjective. Define π : X→ P1
×P1 to be the pullback under j × IdP(V ) of the

universal hypersurface Y⊂P Symd(V∨)×k P(V ). By construction, the restriction
over C has no section.

Every divisor in |O(a, b)|maps under j to a curve in P Symd(V∨) whose degree
with respect to O(1) is ≤ n−b. Moreover, if the degree equals n−b, then j maps
the divisor birationally to its image. Thus the arithmetic genus pa of the image is
at least the geometric genus of the divisor, that is, pa ≥ (a − 1)(b− 1). A curve
of arithmetic genus pa and degree δ spans a linear space of (projective) dimension
≤ δ − pa . Thus the span of the image of the divisor is either ≤ n − b − 1 (if
δ≤ n−b−1) or ≤ n−b−(a−1)(b−1) which is again ≤ n−b−1 (when δ equals
n − b). The span is a linear system of hypersurfaces in P(V ). Since n − b − 1
is ≤ n, this linear system has a nonempty base locus. But every point in the base
locus gives a section of the corresponding family of hypersurfaces. Thus it also
gives a section of the restriction of X over the divisor. This proves the main case of
Proposition 1.2, that is, the case when B equals P1

×P1 and when M is a complete
linear system |O(a, b)|.
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Next let B be an arbitrary normal, projective variety of dimension≥ 2 and let M
be an irreducible family of irreducible curves dominating B. There exists a smooth
open subset U ⊂ B whose complement has codimension ≥ 2, and there exists a
dominant morphism g : U → P1

×P1. Intersecting U with general hyperplanes,
there exists an irreducible closed subset Z ⊂ U such that g|Z : Z → P1

× P1 is
generically finite of some degree e> 0. For the geometric generic point of M , the
intersection of the corresponding curve with U is nonempty, and the closure of the
image under f is a divisor in the linear system |O(a′, b′)| for some nonnegative
integers a′, b′. Let a ≥ a′, and b ≥ b′ be integers such that 4ab > e+ 1. There
exists a projective, dominant morphism π : X→ P1

×P1 whose restriction over
every divisor in |O(a, b)| has a section, but whose restriction over a general divisor
in |O(1, 2b)| has minimal degree 4ab− 1.

Define XB ⊂ B × X to be the closure of U ×P1×P1 X. Then πB : XB → B
is a projective dominant morphism. For the geometric generic point of M , the
restriction of πB to the curve has a section because the restriction of π to the
image in P1

×P1 has a section. Let CB ⊂ Z be the preimage of a general curve
C in |O(1, 2b)|. The morphism CB → C has degree e < 4ab− 1. Because every
multisection of π over C has degree ≥ 4ab− 1, πB has no section over CB .

3. The construction for Enriques surfaces

Next let k be a field of characteristic 6= 2, 3 whose transcendence degree over
the prime subfield is “sufficiently large”. In fact, let us simply assume that k is
uncountable. It is straightforward to trace through the following arguments to find
an integer N such that everything remains valid if the transcendence degree over
the prime subfield is ≥ N . However, we think this extra bookkeeping would only
distract from the proof, which is already burdened by heavy notation.

We will make use of one particular construction of Enriques surfaces over k.
To that end, let V+ and V− be three-dimensional k-vector spaces. Denote V =
V+⊕V− and denote V ′=Sym2(V∨

+
)⊕Sym2(V∨

−
). Denote by G the Grassmannian

Grass(3, V ′) parametrizing three-dimensional subspaces of V ′. This is a parameter
space for Enriques surfaces, as we shall explain.

In fact there are two descriptions of the universal family, each useful. First,
let πZ : Z → P(V+)× P(V−) be the projective bundle of the locally free sheaf
pr∗
+

OP(V+)(−2)⊕ pr∗
−

OP(V−)(−2). A general complete intersection of three divi-
sors in |OZ (1)| is an Enriques surface. Because H 0(Z ,OZ (1))= V ′, the parameter
space for these complete intersections is G. Second, G parametrizes complete in-
tersections in P(V ) of three quadric divisors that are invariant under the involution
ι of P(V ) whose (−1)-eigenspace is V− and whose (+1)-eigenspace is V+. A
general such complete intersection is a K3 surface on which ι acts as a fixed-point-
free involution. The quotient by ι is an Enriques surface.



A pencil of index one 647

These two descriptions are equivalent. The involution extends to an involution
ι̃ on the blowing up P̃(V ) of P(V ) along P(V+) ∪ P(V−) and the quotient is Z .
Denote by X→G the universal family of Enriques surfaces, and denote by Y→G
the universal family of K3 covers.

As in the proof of Corollary 2.3, the one-parameter family of Enriques sur-
faces in Theorem 1.1 will be a general deformation of a one-parameter family of
reducible surfaces. As in Proposition 2.2, the one-parameter family of reducible
surfaces will be constructed using a particular cover of P1 by P1. Thus let B,C, D
be k-curves isomorphic to P1

k . By a result similar to Lemma 2.1, there exists a
degree 2, separably-generated morphism g : D → C and a degree 3, separably-
generated morphism f : C → B such that Gal(k(D)/k(B)) is the full wreath
product W3,2, that is, the semidirect product (S2)

3 o S3. In characteristic 0, this
holds whenever g and f have simple branching and the branch points of g are in
distinct, reduced fibers of f . There is an involution ιD of D commuting with g.

Now we will construct the family of reducible surfaces using norms as in Section
2. Let j : D→P(V∨) be a closed immersion equivariant for ιD and ι whose image
is a rational normal curve of degree 5. By the construction in Section 2, there is
an associated morphism i : C→ P Sym2(V∨). Because j is equivariant, i factors
through P(V ′). In the rest of this paragraph we will compute that

i∗O(1)= Nmg( j∗O(1))∼= OC(5).

Indeed, j∗O(1) has degree 5 on D by construction. And g has degree 2. Thus
j∗O(1)⊗ g∗OC(−3) has degree −1, hence has both h0

= 0 and h1
= 0. Since g

is affine, g∗ is exact on OD-modules and Ri g∗ is zero on OD-modules for i > 0.
Thus, by a Leray spectral sequence, g∗ j∗O(1) ⊗OC OC(−3) is a rank 2 locally
free sheaf with h0

= 0 and h1
= 0. By Grothendieck’s lemma, this sheaf is a

direct sum of two invertible sheaves. And the condition on h0 and h1 implies that
g∗ j∗O(1)⊗OC OC(−3) is isomorphic to Oc(−1)⊕2. Thus g∗ j∗O(1) is isomorphic to
OC(2)⊕2, which has determinant OC(4). Again by considering h0 and h1 and using
Grothendieck’s lemma, g∗OD is isomorphic to OC⊕OC(−1), which has determinant
OC(−1). Thus Nmg( j∗O(1)) is isomorphic to HomOC (OC(−1),OC(4)), i.e., OC(5).

The pushforward by f∗ of the pullback by i∗ of the tautological surjection is a
surjection (V ′)∨⊗OB→ f∗i∗O(1). The sheaf f∗i∗O(1) is locally free of rank 3. By
the same type of analysis of h0 and h1 as in the previous paragraph, f∗OC(5)⊗OB

OB(−2) is isomorphic to OB(−1)⊕3. Thus f∗i∗O(1), that is, f∗i∗OC(5), is iso-
morphic to OB(1)3. So there is an induced morphism h : B → G. Denote by
πh :Xh→ B and ρh :Yh→ B the base-change by h of X and Y. Denote K = k(B)
and denote by Xh,K the generic fiber of πh .

Proposition 3.1. Every irreducible multisection of πh has degree divisible by 3 or
4. In particular M(K ,Xh,K )= 3.
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Proof. This is a combinatorial analysis, of precisely the sort we avoided in the
proof of Lemma 2.1. Unfortunately here it seems necessary. Denote by U ⊂ B the
open set over which f ◦g is étale, and denote by W ⊂ D the preimage of U . Denote
by c : W̃ → U the Galois closure of W/U . Then c∗ f∗OC |U ∼= OW̃ {a1, a2, a3} for
idempotents ap, p=1, 2, 3. And c∗g∗ f∗OD|U ∼=OW̃ {b1,1, b1,2, b2,1, b2,2, b3,1, b3,2}

for idempotents bp,q , p= 1, 2, 3, q = 1, 2. Of course ap 7→ bp,1+bp,2, p= 1, 2, 3.
The action of the Galois group W3,2 on ap is by the symmetric group S3, and the
action on bp,q is the standard representation of the wreath product. In the next
paragraph, every index p corresponds to an index p of ap. As here, these induces
are permuted by W3,2 through its quotient S3. And in the next paragraph, every
index (p, q) corresponds to an index (p, q) of bp,q . The action of W3,2 on these
indices is the standard representation of the wreath product.

For each p = 1, 2, 3 and q = 1, 2, denote by jp,q : W̃ → P(V∨) the morphism
obtained by composing the idempotent bp,q : W̃ → W̃ ×U W with the basechange
of j . In particular, ι ◦ jp,1 = jp,2. Denote by 3p,q ⊂ W̃ ×P(V ) the pullback by
( jp,q , Id) of the universal hyperplane. Denote by YW̃ the base-change to W̃ of Yh .
Then

YW̃ =
⋃

(q1,q2,q3)∈{1,2}3
(31,q1 ∩32,q2 ∩33,q3).

There is a locally closed stratification

YW̃ = Y3
W̃ tY4

W̃ tY5
W̃ ,

where Yl
W̃

is the set of points lying in the intersection of precisely l of the 3p,q .
The stratum Y3

W̃
is the union of eight connected open subsets,

3(q1,q2,q3) ⊂ (31,q1 ∩32,q2 ∩33,q3),

for q1, q2, q3 ∈ {1, 2}. Each connected component is a dense open subset of a
P2-bundle over W̃ . The stratum Y4

W̃
is the union of 12 connected open subsets,

3(∗,q2,q3) ⊂ (31,1 ∩31,2)∩32,q2 ∩33,q3,

3(q1,∗,q3) ⊂31,q1 ∩ (32,1 ∩32,2)∩33,q3,

3(q1,q2,∗) ⊂31,q1 ∩32,q2 ∩ (33,1 ∩33,2),

for q1, q2, q3 ∈ {1, 2}. Each connected component is a dense open subset of a
P1-bundle over W̃ . Finally Y5

W̃
is the union of the six connected sets

3(∗,∗,q3) = (31,1 ∩31,2)∩ (32,1 ∩32,2)∩33,q3,

3(∗,q2,∗) = (31,1 ∩31,2)∩32,q2 ∩ (33,1 ∩33,2),

3(q1,∗,∗) =31,q1 ∩ (32,1 ∩32,2)∩ (33,1 ∩33,2),

for q1, q2, q3 ∈ {1, 2}. Each connected component projects isomorphically to W̃ .
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There is a bijection between multisections of Yh over U and Galois invariant
multisections of YW̃ over W̃ . An irreducible multisection of Yh determines a
multisection of YW̃ contained in a single stratum Yl

W̃
. The action of the Galois

group W3,2 on the connected components of Yl
W̃

is the obvious one; in particular,
it acts transitively on the set of connected components. So every Galois invariant
multisection in Y3

W̃
has degree divisible by 8, every Galois invariant multisection

in Y4
W̃

has degree divisible by 12, and every Galois invariant multisection in Y5
W̃

has degree divisible by 6. Therefore every irreducible multisection of Yh has de-
gree divisible by 8 or 6. Because Yh is a double-cover of Xh , every irreducible
multisection of Xh has degree divisible by 4 or 3. In particular, the minimal degree
of a multisection of Xh is 3. �

Because f∗i∗O(1)∼=OB(1)3, the scheme Xh⊂ B×Z is a complete intersection of
three divisors in the linear system | pr∗B OB(1)⊗pr∗Z OZ (1)|. A general deformation
of this complete intersection is a pencil of Enriques surfaces satisfying Theorem 1.1
(i) and (ii) with M(K , X K )≥ 3, I (K , X K ) | 4 (this is valid so long as char(k) 6= 2).
For (iii), it is necessary to deform the pencil together with the degree 3 multisection.
This requires the hypothesis that char(k) 6= 2, 3. We explain the argument below.

The stratum Y5
W̃

is Galois invariant and determines a degree 3 multisection of
Xh . As a W3,2-equivariant morphism to W̃ , Y5

W̃
is just the base-change of D, and

the morphism Y5
W̃
→ P(V ) is Galois invariant. By étale descent it is the base-

change of a morphism j ′ : D→ P(V ). Now j ′ induces a morphism to P̃(V ), the
blowing up of P(V ) along P(V+) ∪ P(V−). Because j ′ is equivariant for ι and
ιD , the quotient morphism D→ Z factors through C , that is, there is an induced
morphism i ′ : C → Z . By a straightforward enumerative geometry computation,
j ′ has degree 5 with respect to OP(V )(1). Therefore i ′ has degree 5 with respect to
OZ (1). The degree 3 multisection of Xh is the image of ( f, i ′) : C→ B× Z .

Lemma 3.2. If f , g and j are general, then (i ′)∗ : H 0(Z ,OZ (1))→ H 0(C,OC(5))
is surjective.

Proof. The condition that (i ′)∗ is surjective is an open condition in families, hence
it suffices to verify (i ′)∗ is surjective for a single choice of f , g and j , even
one for which Gal(k(D)/k(B)) is not W3,2. Choose homogeneous coordinates
[S0, S1] on D, [T0, T1] on C and [U0,U1] on B. Define g([S0, S1]) = [S2

0 , S2
1 ]

and f ([T0, T1])= [T 3
0 , T 3

1 ]. Denote by µ6 the group scheme of 6th roots of unity.
There is an action of µ6 on D by ζ · [S0, S1] = [S0, ζ S1]. This identifies µ6 with
Gal(k(D)/k(B)).

Let e+,0, e+,1, e+,2 and e−,0, e−,1, e−,2 be ordered bases of V+ and V− respec-
tively, and let X+,0, X+,1, X+,2 and X−,0, X−,1, X−,2 be the dual ordered bases
of V∨

+
and V∨

−
respectively. There is an action of µ6 on V by
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ζ · [X+,0, X+,1, X+,2, X−,0, X−,1, X−,2]

= [X+,0, ζ 2 X+,1, ζ 4 X+,2, ζ X−,0, ζ 3 X−,1, ζ 5 X−,2]

and a dual action on V∨. Define j : D→ P(V ) with respect to the ordered basis
e+,0, . . . , e−,2 to be the µ6-equivariant morphism

j ([S0, S1])= [S5
0 , S3

0 S2
1 , S0S3

1 , S4
0 S1, S2

0 S3
1 , S5

1 ].

In this case U =D+(U0U1)⊂ B and W̃ =W =D+(S0S1)⊂C . It is straightforward
to compute j ′ with respect to the dual ordered basis X+,0, . . . , X−,2:

j ′([S0, S1])= [S5
1 , S2

0 S3
1 , S4

0 S1, S0S4
1 , S0S4

1 , S3
0 S2

1 , S5
0 ].

As a double-check, observe this is µ6-equivariant. The induced map ( j ′)∗ is

X+,0 X+,0 7→ T 5
1 , X+,0 X+,1 7→T0T 4

1 , X+,0 X+,2 7→T 2
0 T 3

1 ,

X+,1 X+,1 7→T 2
0 T 3

1 , X+,1 X+,2 7→T 3
0 T 2

1 , X+,2 X+,2 7→ T 4
0 T1,

X−,0 X−,0 7→ T0T 4
1 , X−,0 X−,1 7→T 2

0 T 3
1 , X−,0 X−,2 7→T 3

0 T 2
1 ,

X−,1 X−,1 7→T 3
0 T 2

1 , X−,1 X−,2 7→T 4
0 T1, X−,2 X−,2 7→ T 5

0 .

This is surjective by inspection. �

Proof of Theorem 1.1. The subvariety Xh⊂ B×Z is a complete intersection of three
divisors in the linear system | pr∗B OB(1)⊗ pr∗Z OZ (1)|, each containing ( f, i ′)(C).
Denote by I the ideal sheaf of ( f, i ′)(C)⊂ B× Z , and set

I = H 0(B× Z ,I⊗ pr∗B OB(1)⊗ pr∗Z OZ (1)).

The projective space of I is the linear system of divisors on B × Z in the linear
system | pr∗B OB(1)⊗ pr∗Z OZ (1)| that contain ( f, i ′)(C). The Grassmannian G ′ =
Grass(3, I ) is the parameter space for deformations of Xh that contain ( f, i ′)(C).
For the same reason as in Corollary 2.3, in G ′ there is a countable intersection of
dense open subsets parametrizing subvarieties X′⊂ B×Z with M(K ,X′K )≥ 3 and
I (K ,X′K ) | 4. By construction, X′ contains the degree 3 multisection ( f, i ′)(C).
Therefore M(K ,X′K ) = 3 and I (K ,X′K ) = 1. It is straightforward to compute
prB ∗[ω

⊗2
X′/B]

∼= OB(6). So to prove the theorem, it suffices to prove every “very
general” Enriques surface occurs as a fiber of some X′, that is, for a general [X ]∈G,
X occurs as prZ (X

′
∩π−1

B (b)) for some choice of f, g, i and b ∈ B.
A general zero-dimensional, length 3 subscheme of Z occurs as i ′( f −1(b)) for

some choice of f , g, i and b ∈ B. So for a general Enriques surface [X ] ∈ G and
a general choice of zero-dimensional, length 3 subscheme of X , X is a complete
intersection of three divisors in the linear system |OZ (1)| containing i ′( f −1(b)) for
some choice of f , g, i and b. To prove that a general [X ] ∈ G is the fiber over b
of X′ for some f , g, i and [X′] ∈ G ′, it suffices to prove every divisor in the linear
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system |OZ (1)| containing i ′( f −1(b)) is the fiber over b of a divisor in the linear
system |I⊗OB(1)⊗OZ (1)|.

There is a short exact sequence

0→ I⊗ pr∗Z OZ (1)→ pr∗Z OZ (1)→ pr∗Z OZ (1)|C → 0,

giving a short exact sequence

0→ prB,∗(I⊗ pr∗Z OZ (1))→ prB,∗ pr∗Z OZ (1)→ prB,∗(pr∗Z OZ (1)|C)→ 0.

Because (i ′)∗ is surjective, prB,∗(I⊗pr∗Z OZ (1)) is a locally free sheaf with h1
= 0.

So it is ∼= O6
B ⊕ OB(−1)3. Twisting by OB(1), prB,∗(I⊗ pr∗B OB(1)⊗ pr∗Z OZ (1))

is generated by global sections. Therefore every divisor on Z in the linear system
|OZ (1)| containing the scheme i ′( f −1(b)) is the fiber over b of a divisor on B× Z
in the linear system |I⊗ pr∗B OB(1)⊗ pr∗Z OZ (1)|. �
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Compactified moduli of projective bundles
Max Lieblich

We present a method for compactifying stacks of PGLn-torsors (Azumaya al-
gebras) on algebraic spaces. In particular, when the ambient space is a smooth
projective surface we use our methods to show that various moduli spaces are
irreducible and carry natural virtual fundamental classes. We also prove a ver-
sion of the Skolem–Noether theorem for certain algebra objects in the derived
category, which allows us to give an explicit description of the boundary points
in our compactified moduli problem.
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1. Introduction

In this paper, we present a method for constructing compactified moduli of princi-
pal PGLn-bundles on an algebraic space. As a demonstration of its usefulness, we
will prove the following theorem.

Irreducibility Theorem (Theorem 6.3.1). Let X be a smooth projective surface
over an algebraically closed field k and n a positive integer which is invertible in
k. For any cohomology class α ∈ H2(X,µn), the stack of stable PGLn-torsors on
X with cohomology class α and sufficiently large c2 is of finite type and irreducible
whenever it is nonempty, and it is nonempty infinitely often.
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Here the number c2 is meant to be the second Chern class of the adjoint vector
bundle associated to a PGLn-torsor. For the definition of stability of a PGLn-torsor,
we refer the reader to Definition 6.1.2 below; in characteristic 0 it is equivalent to
slope-stability of the adjoint vector bundle, while in arbitrary characteristic one
quantifies only over ideals in the adjoint (with respect to its natural Azumaya al-
gebra structure).

The Irreducibility Theorem may be viewed as a zeroth-order algebraic version
of results of Mrowka and Taubes (see [Taubes 1989], for instance) on the stable
topology of the space of PGLn-bundles; we show that π0 is a singleton. Our proof
arises out of a reduction of the moduli problem to another recently studied problem:
moduli of twisted sheaves. Before making a few historical remarks, let us outline
the contents of the paper.

In Section 3.4 we present a general theory of twisted objects in a stack, in-
cluding the resulting deformation theory and the relationship between twisted and
untwisted virtual fundamental classes. In Section 4 we apply this theory to PGLn-
torsors to show that the stack of twisted sheaves is naturally a cover of a compact-
ification of the stack of PGLn-torsors.

In Section 5, we give a reinterpretation of the results of Section 4 using certain
algebra objects of the derived category (generalized Azumaya algebras), with the
ultimate aim being an approach to virtual fundamental classes for spaces of stable
PGLn-torsors. The key result there is Theorem 5.1.5, a version of the Skolem–
Noether theorem for these algebra objects, which we believe should be of inde-
pendent interest.

In Section 6, we specialize the whole picture to study moduli of PGLn-torsors on
smooth projective surfaces. We develop the theory of stability in Section 6.1 and
use the known structure theory of moduli spaces of twisted sheaves on a surface
to prove the Irreducibility Theorem in Section 6.3. In Sections 6.4 and 6.5, we
use the interpretation of the moduli problem in terms of generalized Azumaya
algebras to produce virtual fundamental classes on moduli spaces of stable PGLn-
torsors on surfaces. In Section 6.6, we record a question due to de Jong regarding
potentially new numerical invariants for division algebras over function fields of
surfaces arising out the virtual fundamental classes constructed in Section 6.5.

Historical remarks. As has become clear in the history of algebraic geometry, a
propitious choice of compactification of a moduli problem can lead to concrete
results about the original (usually open) subproblem which is being compactified.
Thus, Deligne and Mumford proved that Mg is irreducible by embedding it as
an open substack of SMg and connecting points by first degenerating them to the
boundary. Similarly, O’Grady approached the moduli of semistable vector bundles
on a surface by considering the larger space of semistable torsion free sheaves and
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showing that the boundary admits a stratification by spaces fibered over moduli
of stable vector bundles with smaller c2. Combining this inductive structure with
delicate numerical estimates allowed him to prove that the spaces of semistable
vector bundles with sufficiently large c2 are irreducible. (This is very beautifully
explained in Chapter 9 of [Huybrechts and Lehn 1997].) The similarity between
the Irreducibility Theorem above and O’Grady’s results for stable sheaves is trace-
able to the fact that our compactification is closely related to the space of twisted
sheaves, so that we get a similar inductive structure on the moduli problem from
the geometry of its boundary.

Various attempts have been made at constructing compactified moduli spaces
of G-torsors for arbitrary (reductive) groups G (the reader can consult [Gómez
and Sols 2005; Hyeon 2002; Langer 2005; Schmitt 2002 2004] for a sampling of
moduli problems and techniques). Of course, when G =GLn , one can take torsion
free sheaves, and when G=SLn , one can take torsion-free sheaves with a trivialized
determinant. In the existing literature, most compactifications proceed (at least in
the case where the center of G is trivial) essentially by encoding a degeneration of
a principal G-bundle in a degeneration of its adjoint bundle to a torsion-free sheaf
along with data which remember the principal G-bundle structure over the open
subspace on which the degenerate sheaf is locally free.

We show how one can analyze the case G = PGLn using more subtle methods,
which roughly amount to allowing a principal bundle to degnerate by degenerating
its associated adjoint bundle to an object of the derived category (rather than simply
a torsion-free sheaf). By controlling the nature of these derived objects, we arrive
at a compact moduli stack whose geometry is as tightly controlled as that of the
stack of SLn-bundles. This “tight control” is formalized precisely by the covering
using twisted sheaves.

2. Notation

All stacks will be stacks in groupoids. Thus, given an algebraic structure such as a
torsion-free sheaf, the stack of objects with that structure will be assumed to keep
track only of isomorphisms.

Given a geometric morphism f : X→ S of topoi and a stack S on X , f∗S will
denote the stack on S whose sections over an object T ∈ S are the sections of S

over π−1T ∈ X . We will often write T → S for the map to the final object of S
and we will often use X ×S T to denote the object f −1(T ). Most of the topoi we
encounter will be the usual étale or fppf topos of an algebraic space or stack, but
we do include a few which are slightly less conventional, such as the relative small
étale topos of Section 3.2.
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A stack over an algebraic space will be called quasiproper if it satisfies the
existence part of the valuative criterion of properness over discrete valuation rings
(allowing finite extensions, as is usually required for algebraic stacks). Given a
Deligne–Mumford stack M with a coarse moduli space, we will let Mmod denote
the coarse space. Given a moduli space (stack) M of sheaves on a proper alge-
braic space X , we will let M lf denote the open subspace parametrizing locally free
sheaves.

The notation (O,m, κ) will mean that O is a local ring with maximal ideal m and
residue field κ .

3. Generalities

Throughout this section, we fix a geometric morphism of ringed topoi f : X→ S.
(In various subsections, there will be additional hypotheses on the nature of X , S,
or f , but the notation will remain unchanged.)

3.1. Stacks of sheaves. There are various types of sheaves which will be important
for us. We recall important definitions and set notations in this section. Let Z be
an algebraic space and F a quasicoherent sheaf of finite presentation on Z .

The sheaf F is

(1) perfect if its image in D(OZ ) is a perfect complex;

(2) pure if for every geometric point z→ Z the stalk Fz (which is a module over
the local ring Ohs

z,Z ) has no embedded primes;

(3) totally supported if the natural map OZ → End(F) is injective;

(4) totally pure if it is pure and totally supported.

The key property of perfect sheaves for us will be the fact that one can form the
determinant of any such sheaf. The reader is referred to [Knudsen and Mumford
1976] for the construction and basic facts.

It is clear that all of these properties are local in the étale topology on Z (in the
sense that they hold on Z if and only if they hold on an étale cover). Thus, we can
define various stacks on the small étale site of Z . We will write

(1) TZ for the stack of totally supported sheaves;

(2) T
parf
Z for the stack of perfect totally supported sheaves;

(3) PZ for the stack of pure sheaves;

(4) P
parf
Z for the stack of perfect pure sheaves;

(5) if M denotes any of the preceding stacks, we will use M(n) to denote the
substack parametrizing sheaves with rank n at each maximal point of Z .

In particular, if n > 0 then P
parf
Z (n) parametrizes perfect totally pure sheaves.
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3.2. The relative small étale site. We recall a few pieces of pure nonsense that
will help us apply the techniques of Section 3.4 below to study moduli problems.
In this section, we assume that f is a morphism of algebraic spaces.

Definition 3.2.1. The relative small étale site of X/S is the site whose underlying
category consists of pairs (U, T )with T→ S a morphism and U→ X×S T an étale
morphism. A morphism (U, T )→ (U ′, T ′) is an S-morphism T → T ′ and an T -
morphism U→U ′×′T T . A covering is a collection of maps {(Vi , T )}→ {(U, T )}
such that Vi →U form a covering.

We will denote the topos of sheaves on the relative small étale site by Xrét. There
is an obvious geometric morphism of topoi Xrét → TÉT. (In fact, Xrét is just the
“total space” of a fibered topos over TÉT whose fiber over T → S is just the small
étale topos of X ×S T .)

The relative small étale topos is naturally suited to studying moduli of T -flat
sheaves on X (as pushforwards of X -stacks).

Proposition 3.2.2. Pullback defines a natural equivalence of the category of qua-
sicoherent sheaves on X with the category of quasicoherent sheaves on Xrét. More-
over,

(1) there is a stack CX/S → Xrét whose sections over (U, T ) parametrize quasi-
coherent sheaves on U which are T -flat and which are locally of finite presen-
tation;

(2) if M denotes any of the stacks from Section 3.1, there is a substack MX/S ⊂

CX/S whose sections over (U, T ) are T -flat quasicoherent sheaves F of finite
presentation on U such that for each geometric point t → T , the restriction
Ft lies in MUt ;

(3) for each M, there is a substack M
parf
X/S ⊂MX/S parametrizing F such that each

Ft is perfect;

(4) for any M
parf
X/S as in the previous item, there is a substack MO

X/S(n) ⊂ M
parf
X/S

parametrizing sheaves F such that each fiber Ft has rank n at each maximal
point of Ut , along with a global trivialization det F ∼→ OU .

In the last item, we implicitly use the standard fact that a quasicoherent sheaf of
finite presentation which is flat over the base and perfect on each geometric fiber
is perfect. As an example, we have that PO

X/S(n) denotes the stack on Xrét whose
objects over (U, T ) are pairs (F, δ) with F perfect and T -flat, δ : det F ∼→ OU an
isomorphism, and such that for each geometric point t→ T , the sheaf Ft has rank
n at each maximal point of Ut .

The proof of Proposition 3.2.2 is essentially a sequence of tautologies and is
omitted. Note that we cannot make any claims about algebraicity of C, T, or
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P because such a statement is meaningless for stacks on Xrét. However, when
f : X→ S is a proper morphism of finite presentation between algebraic spaces, it
is of course standard that the pushforward of CX/S to SÉT is an algebraic stack (and
similarly for any MX/S or MO

X/S , as the added conditions are open and the addition
of a trivialization of the determinant is algebraic).

The following lemma will be useful later.

Lemma 3.2.3. Suppose f : Y → Z is a flat morphism of locally Noetherian
schemes and F is a Z-flat coherent sheaf on Y . If the restriction of F to every
fiber of f is totally supported, then F is totally supported on Y .

Proof. We may assume that X = Spec B and S = Spec A are local schemes and
that f is the map associated to a local homomorphism ϕ : A → B. Write F
for the stalk of F at the closed point of B. Choosing generators x1, . . . , xn for
F , we find a surjection Bn � F which yields an injection End(F) ↪→ Fn . The
composition of this injection with the natural inclusion of B sends 1 ∈ B to the
n-tuple (x1, . . . , xn) ∈ Fn . We will show that this map ι : B→ Fn is an injection.
Note that ι respects base change in the sense that for any A-algebra C , ι⊗A C is the
map corresponding to the composition C→EndC(F ⊗A C)→ (F ⊗A C)n . As the
right-hand map in that sequence is always an injection, we find that the left-hand
map is an injection if and only if ι⊗A C is an injection.

We proceed by “infinitesimal induction” relative to A, i.e., we write A with the
mA-adic topology as an inverse limit of small extensions {Am} with A0 = k(A),
the residue field of A. We will show that lim

←−
ιm : B̂→ F̂n is an injection. Krull’s

theorem and the obvious compatibility then show that ι itself is an injection.
By hypothesis ι0 is an injection. Suppose by induction that ιm is an injection.

Let ε generate the kernel of Am+1 → Am . By flatness, there are identifications
εBm+1 ∼= (ε)⊗Am+1 Bm+1 ∼= B0 and εFn

m+1
∼= (ε)⊗ Fn

m+1
∼= Fn

0 , and under these
identifications, ε · ιm+1 is identified with ι0. Now consider the diagram

0 // εBm+1 //

��

Bm+1 //

��

Bm //

��

0

0 // εFn
m+1

// Fn
m+1

// Fn
m

// 0.

By the Snake Lemma and the inductive hypothesis, the kernel of the left-hand
vertical map is identified with the kernel of the middle map (which is ιm+1). But
the left-hand map is identified with ι0, hence is injective. �

In particular, a section of TO
X/S over T → S lies in T

parf
XT
(XT ). This will be

essential when we study relative generalized Azumaya algebras in Lemma 3.2.3.
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3.3. Azumaya algebras. For the sake of completeness, we recall a few basic facts
about Azumaya algebras, which can be thought of as coherent models for PGLn-
torsors. We suppose that f : X → S is a proper morphism of finite presentation
between algebraic spaces. By abuse of notation, we will also write f for the in-
duced geometric morphism Xrét→ SÉT.

Let G → S be a flat linear algebraic S-group of finite presentation. It follows
from the definition that f∗ BG X is the stack of (étale) G-torsors on X , whose sec-
tions over an S-scheme T are GT -torsors on XT .

Lemma 3.3.1. The stack f∗ BG X is an Artin stack locally of finite presentation
over S.

Sketch of proof. By the usual arguments, we may assume that S is the spectrum
of an excellent Noetherian ring (even a finite type Z-algebra if we so desire) and
that there is a closed immersion G ↪→GLn,S for some n. It is well known that the
stack f∗ BGLn is an Artin stack locally of finite presentation over S. (One can see
[Laumon and Moret-Bailly 2000] for the case of X projective or apply the main
theorem of [Artin 1974] — the standard deformation theory of [Grothendieck 1971]
and the usual Grothendieck existence theorem [1961] — in the arbitrary proper
case.) Furthermore, extension of structure group yields a 1-morphism

ε : f∗ BG→ f∗ BGLn;

it suffices to show that ε is representable by algebraic spaces locally of finite pre-
sentation. To see this, let T → f∗ BGLn be any morphism over S, corresponding
to some GLn-torsor V on XT . The fiber product f∗ BG × f∗ BGLn T is identified
with the sheaf of reductions of structure group of V to G, which is simply V/G.
Thus, we will be done if we show that f∗(V/G) is an algebraic space locally of
finite presentation over T .

By [Artin 1974, Corollary 6.3], the quotient sheaf V/G is representable by a
separated algebraic space of finite presentation over XT . The fact that f∗(V/G)
is an algebraic space may be seen in several ways. Here is one of them: we can
identify it with the fiber of HomT (XT , V/G)→ HomT (XT , XT ) over the section
idXT . Thus, it suffices to show that HomT (XT , V/G) is an algebraic space locally
of finite presentation over T ; this is a standard result, as XT is proper and V/G is
separated. Its algebraicity follows from, for example, Artin’s theorem or from the
methods of [Lieblich 2006b]. �

In the case of G=PGLn,S , there is a natural closed immersion G ↪→GLn2 given
by the action of PGLn on Mn(O) by conjugation (the adjoint representation). In
this case, in fact, PGLn = Autalg(Mn(O)). Thus, there this is a very concrete way
to describe the bundles admitting a reduction of structure group to PGLn , since
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these bundles are such that the associated locally free sheaves of rank n2 carry the
structure of an Azumaya algebra.

Definition 3.3.2. An Azumaya algebra A of degree n on a ringed topos T is a form
of Mn(OT ).

More precisely, to give a reduction of structure group on a GLn2-torsor is to give
a multiplication on the associated locally free sheaf making it into an Azumaya
algebra. The diagram

1 // Gm // GLn // PGLn // 1

1 // µn //

OO

SLn //

OO

PGLn // 1

(where the horizontal sequences are exact in the fppf topology, with the bottom
exact in the étale topology only if n is invertible on S) gives rise to a diagram of
coboundary maps in non-abelian (flat) cohomology

H2(T,Gm)

H1(T,PGLn)

77

''
H2(T,µn).

OO

In Giraud’s theory [1971, Section V.4.2], one can be more precise: given a PGLn-
torsor P→ T , the cohomology class cl(P) ∈H2(T,µn) is precisely that given by
the µn-gerbe of liftings (reductions of structure group) of T to an SLn-torsor. In
the language of Azumaya algebras, this is accomplished by looking at the gerbe of
trivializations: a trivialization of A is given by a triple (V, δ, ϕ) with V a locally
free sheaf, δ : det V ∼→ O a trivialization of the determinant, and ϕ : End(V) ∼→ A

an isomorphism.

3.4. Twisted objects and rigidifications. In this section, we give a possible defini-
tion for a twisted object in a stack (relative to an abelian gerbe). We then review a
basic stack-theoretic construction of Abramovich, Corti, and Vistoli [Abramovich
et al. 2003] and show how pushing it forward naturally yields coverings by stacks
of twisted objects.

3.4.1. Twisted objects. Let S→ X be a stack. Suppose (for the sake of simplicity)
that A is an abelian sheaf on X admitting a central injection χ : A→ I(S) into
the inertia stack of S. Let X→ X be an A-gerbe on X . (Since A is abelian, we
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may view this as an X -stack along with an identification of A with the inertia stack
I(X).)

Definition 3.4.1.1. An X-twisted section of S over T → X is a 1-morphism f :
X×X T → S such that the induced map A→ I(X×X T )→ f ∗I(S) is identified
with the pullback under f of the canonical inclusion χ : A→ I(S).

The collection of X-twisted sections of S forms a substack of the Hom-stack
HomX (X,S), as the condition on the inertial morphism is local on the base of
any family. We will write this substack as SX. Note that there is a natural central
injection A→ I(SX) given by acting on a map X→S by acting on sections of S,
or (what amounts to the same thing by the twisted condition) on the sections of X.

The following transition results will prove useful.

Lemma 3.4.1.2. Let S be an X-stack and σ : X → S a section. There is an
essentially unique 1-morphism BAut (σ )→ S sending the section corresponding
to the trivial torsor to σ .

Proof. Let Sσ ⊂ S be the stack-theoretic image of σ (so that σ factors as an epi-
morphism X →Sσ followed by a monomorphism Sσ → S). By definition, Sσ is the
substack of S consisting of objects which are locally isomorphic to σ(X). Given
an object Y ofSσ over some X -space T , the sheaf IsomT (Y, σ (T )) is an Aut (σ )T -
torsor; this defines a 1-morphism γ : Sσ → BAut (σ ).

To check that this is a 1-isomorphism, we choose a cleavage for S. It is enough
to prove that γ is fully faithful on fiber categories, as it is clear that any torsor is
locally in the image of γ. Let Y and Y ′ be two objects of SσT , and consider the
induced map of sheaves Isom(Y, Y ′)→ Isom(Isom(X, Y ), Isom(X, Y ′)). Since Y
and Y ′ are both locally isomorphic to X , this map of sheaves is trivially a surjection.
Thus, we are done once we show that it is injective, for which it suffices (by the
universality of the argument) to show that it is injective on global sections.

The map described in the statement is simply the 1-inverse ofSσ→BAut (σ ). �

Proposition 3.4.1.3. Given a section σ : X→X, the natural restriction map SX
→

HomX (X,S)= S is a 1-isomorphism.

Proof. Given a section of S, the injection A→I(S) combined with Lemma 3.4.1.2
yields an essentially unique induced map BA→S which respects the A-structures
on the inertia stacks. This construction gives an isomorphism S→ SBA. Using σ
to identify X with BA, we have just described the inverse of the natural map given
in the statement. �

Proposition 3.4.1.4. Let X and Y be A-gerbes on X. There is a natural 1-iso-
morphism

(SX)Y ∼→ SY∧X

of stacks of twisted objects.
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Proof. Consider the diagram

Hom(Y,Hom(X,S)) Hom(Y×X,S)

Hom(Y∧X,S)

OO

(SX)Y

OO

//________ SY∧X

OO

The top equality comes from the natural adjunction and the uppermost vertical
right map comes from the natural map m : Y×X→ Y∧X. The map A× A→
I(Y×X)→m∗I(Y∧X)= A is just the addition map, from which it follows that a
unique (up to 2-isomorphism) dashed arrow exists filling in the diagram. The fact
that every arrow is either an equality or an inclusion shows that the dashed arrow
is a 1-isomorphism. �

3.4.1.5. There is a more ad hoc description of X-twisted objects in terms of a
cocycle representing the cohomology class of X. This can be useful for its value
in constructing quick (but perhaps not philosophically satisfying) proofs, but we
will not use this formalism. In order to make the definition, we must fix a cleavage
(pseudo-functor structure) on S.

Given X, we can choose a hypercovering U•→ X which splits X, in the following
sense:

(1) there is a section σ of X over U0, and

(2) the two pullbacks of σ to U1 are isomorphic, say via ϕ.

Computing the coboundary of ϕ and using the fact that X is an A-gerbe yields a
2-cocycle a ∈ 0(U2, A). It is a standard fact that this cocycle represents the same
cohomology class as X. Slightly more subtle is the fact that one can explicitly
construct a gerbe from a cocycle on a hypercovering. (This gerbe is just the stack
of “twisted A-torsors”; we will not describe it in detail here.)

Definition 3.4.1.6. Given (U•, a) as above, a (U•, a)-twisted section of S over
T → X is given by

(1) a 1-morphism ϕ :U0×X T → S, and

(2) a 2-morphism ψ : (p1
0)
∗ϕ ∼→ (p1

1)
∗ϕ, where p1

0 and p1
1 are the two natural

maps U1×X T →U0×X T ,

subject to the condition that the coboundary δψ ∈ Aut((p2
0)
∗ϕ) is equal to the

action of a (via the inclusion of A in I(S)).
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It is clear that (U•, a)-twisted objects of S form a stack on X .
Moreover, given an X-twisted object of S over T , the construction of (U•, a)

induces a (U•, a)-twisted object of S over T .

Proposition 3.4.1.7. There is a natural equivalence between the stack of X-twisted
objects of S and (U•, a)-twisted objects of S.

Sketch of proof. Let f : X→ S be an X-twisted object of S. Let ϕ :U0→ X→ S

be the composition of f with the map coming from the chosen trivialization of
X over U0. Via the cleavage on S, the two maps U1→ U0 give an isomorphism
ψ : (p1

0)
∗ϕ ∼→ (p1

1)
∗ϕ of the pullbacks. The condition that f be X-twisted shows

that the action of the coboundary is precisely multiplication by a, giving a (U•, a)-
twisted object of S.

By descent theory, the statement that this gives an equivalence boils down to
the proposition that a morphism X→ S is equivalent to a natural transformation
between fibered categories. (This requires some careful justification, which can
come from the realization that X is the stack of a-twisted torsors with respect to
the pair (U•, a). Since we will not use this formalism in this paper, we will not go
into the rather unpleasant details.) �

3.4.2. Pushing forward rigidifications. Let S→ X be a stack on X with inertia
stack I(S)→S. Suppose A is an abelian sheaf on X admitting a central injection
AS ↪→ I(S). Abramovich, Corti, and Vistoli constructed in [Abramovich et al.
2003] the rigidification of S along A, which we denote by S( A, following [Ro-
magny 2005, Section 5]. It is characterized by a universal property: there is a
1-morphism S→ S( A which is 1-universal among morphisms ϕ : S→ T for
which AS is in the kernel of the induced map I(S)→ ϕ∗I(T). We will freely use
the standard fact that S→ S( A is representable by A-gerbes.

Remark 3.4.2.1. While all existing references discuss rigidifications only for alge-
braic stacks on the category of S-schemes for some scheme S, the abstract nonsense
works perfectly well for stacks on any site. We will implicitly use this in what
follows.

In this section we study the morphism f∗S→ f∗(S( A). Given an S-space
T → S and a 1-morphism γ : T → f∗(S( A), an AT -gerbe results on X ×S T ,
coming from the fact that S→ S( A is represented by A-gerbes and the fact that
T → f∗(S( A) corresponds to a morphism X ×S T → S( A.

Definition 3.4.2.2. With the above notation, the A-gerbe associated to γ will be
denoted Xγ and called the gerbe of γ. The class of Xγ in H2(X ×S T, A) will be
called the (cohomology) class of γ.
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Proposition 3.4.2.3. Let X→ X be an A-gerbe. There is a canonical isomorphism
SX( A ∼= S( A. Moreover, for any T → S, a 1-morphism γ : T → f∗(S( A) lifts
to a 1-morphism T → f∗(SXγ ).

Proof. Consider the diagram

SX //

���
�
�

HomX (X,S)

��
HomX (X,S( A) // HomX (X,S( A)

S( A.

(3.4.2.3.1)

The X-twisted condition shows that the dashed arrow exists, and since every arrow
in question is a monomorphism, the dashed arrow is unique up to 2-isomorphism.
By the universal property of(, there results a natural morphism ν :SX( A→S( A.

To show that ν is an equivalence, we may work locally on X and assume that X is
trivial. In this case, Proposition 3.4.1.3 shows that the dashed arrow in (3.4.2.3.1) is
the image of a 1-isomorphism S∼→SX which respects the A-structures. It follows
that the map on rigidifications is an isomorphism, as desired. �

Definition 3.4.2.4. Given an A-gerbe X → X , let f X
∗
(S( A) denote the stack-

theoretic image of f∗(SX) under the natural map f∗(SX)→ f∗(S( A). We will
call f X

∗
(S( A) the X-twisted part of f∗(S( A).

Lemma 3.4.2.5. Given an A-gerbe X→ X and a 1-morphism ϕ : T → f X
∗
(S( A),

there is an étale surjection U → T and an isomorphism

T × f X
∗ (A( A) f∗(SX)|U ∼= f∗ BA|U .

Proof. By construction f∗(SX)→ f X
∗
(S( A) is an epimorphism of stacks, so there

is some U → T such that ϕ|U lifts into f∗(SX). Thus, it suffices to show that if ϕ
lifts to f∗(SX) then the fiber product is isomorphic to f∗ BA. In this case the gerbe
Xγ→ X ×S T is isomorphic to BA. The result follows from the compatibility of
the formation of fiber product with pushforward. �

3.4.3. Deformation theory. In this section we assume that f is a proper morphism
of finite presentation between algebraic spaces and A a tame constructible abelian
étale sheaf.

We assume throughout this section that f∗A and R1 f∗A are finite étale over S.
(It is known that they are both constructible; if f is smooth and A is the pullback
of a finite étale group scheme then this hypothesis will be satisfied. This will be
the case in applications of interest to us.)
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Lemma 3.4.3.1. There is a natural morphism f∗ BA → R1 f∗A which realizes
f∗ BA as a f∗A-gerbe over R1 f∗A.

Proof. Recall that R1 f∗A is defined as the sheafification of the functor (T→ S) 7→
H1(X ×S T, A) on the big étale site of S. A section of f∗ BA over T → S cor-
responds to an A-torsor T on X ×S T . In fact, the set of isomorphism classes of
objects of f∗ BA over T is naturally isomorphic to H1(X ×S T, A). Thus, R1 f∗A
is the sheafification of the stack f∗ BA, from which it immediately follows that
f∗ BA→ R1 f∗A is a gerbe. It remains to identify the inertia stack I( f∗ BA). But
the inertia stack of BA is naturally identified with A, from which it follows that
there is a natural isomorphism f∗A ∼→ I( f∗ BA). �

Corollary 3.4.3.2. The cotangent complex of f∗ BA over S is trivial.

Proof. By the usual triangles and the fact that R1 f∗A is étale over S, it suffices
to show that if 0 is a finite étale group scheme and Y→ Y is a 0-gerbe then the
cotangent complex of Y over Y is trivial. But this follows immediately from the
fact that Y there is a surjection U→Y such that U is étale over both Y and Y . �

Corollary 3.4.3.3. The natural map χ : f∗(SX)( f∗A→ f X
∗
(S( A) is representable

by finite étale covers.

Proof. By Lemma 3.4.2.5, the fiber of χ is locally f∗ BA( f∗A. Applying Lemma
3.4.3.1 shows that this is precisely R1 f∗A. �

Lemma 3.4.3.4. If f : S→ S′ is a map of S-stacks which is representable by fppf
morphisms of algebraic stacks then S is algebraic if and only if S′ is.

Proof. First, we show that the diagonal of S is separated, quasicompact, and rep-
resentable by algebraic spaces if and only if the same is true for S′. To this end,
let T ′→ S′×S′ be a morphism with T ′ an affine scheme. Consider the diagram

S //

��

S×S

��

I

>>

//

��

T

;;

��

S′ // S′×S′

I ′ //

??

T ′

;;

whose terms we now explain. The sheaf I ′ is the pullback of T ′ along the diagonal.
By assumption, the fiber product S×S×S′×S′ T ′ is an algebraic stack over T ′ with
fppf structure morphism. Thus, we may let T be a scheme which gives a smooth
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cover, and then we let I be the pullback sheaf of T along the diagonal of S. We
see that I → I ′ is relatively representable by fppf morphisms of algebraic spaces.
By a result of Artin [Laumon and Moret-Bailly 2000, 10.1], I is an algebraic space
if and only if I ′ is.

It remains to show that S has a smooth cover by an algebraic space if and only
if S′ does. In fact, it suffices to replace the word “smooth” by “fppf,” by Artin’s
theorem [ibid.]. But then the statement is clear. �

Proposition 3.4.3.5. Given an X-stack S and an A-gerbe X→ X , the stack f∗(SX)

is an Artin (resp. DM) stack if and only if the stack f X
∗
(S( A) is an Artin (resp.

DM) stack.

Proof. This follows immediately from Lemmas 3.4.2.5, 3.4.3.1, and 3.4.3.4. �

3.4.3.6. We apply the preceding considerations to give a relation between certain
virtual fundamental classes on f∗(SX) and f X

∗
(S( A).

Proposition 3.4.3.7. Let ξ :Z→W be a map of S-stacks. Suppose there is a tame
finite étale group scheme G→ S and a central injection GZ ↪→ I(Z) such that

(1) the map GZ→ I(Z)→ ξ∗I(W) is trivial;

(2) the induced 1-morphism Z(G→W is representable by finite étale morphisms
of degree invertible on W.

Given a perfect complex E ∈ D(W) and a map ξ∗E→ LZ/S which gives a perfect
obstruction theory, there is a map E→ LW/S giving a perfect obstruction theory.

Proof. Write SZ := Z( G. We have a diagram Z→SZ→W with the property that
the relative cotangent complex of any pair vanishes. We first claim that any map
ξ∗E→ LZ/S is the pullback of a map E|SZ→ LSZ/S . This follows from the fact that
A acts trivially on the sheaves making up the complexes E and LZ/S and the usual
description of sheaves on gerbes in terms of the representation theory of A.

Thus, to prove the result, we are reduced to the case where Z → W is rep-
resentable by finite étale maps with invertible degrees. In this case, there is a
splitting trace map given by dividing the trace of the covering by the degree.
Note that LZ/S = ξ

∗LW/S , so that the perfect obstruction theory becomes a map
α : ξ∗E→ ξ∗LW/S . Taking the splitting trace produces a map E→ LW/S , which
is a perfect obstruction theory because it is a summand of ξ∗α. �

Corollary 3.4.3.8. A complex in D( f X
∗
(S( A)) can be realized as a perfect ob-

struction theory if and only if its pullback to f∗(SX) can be realized as a perfect
obstruction theory.
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4. Compactified moduli of PGLn-torsors: an abstract approach

In this section we compactify the moduli of PGLn-torsors using the techniques of
Section 3.4 and use the structure of our compactification to prove the Irreducibility
Theorem. In Section 5 we will give a more concrete description of the abstract
compactification we construct here and use it to describe the virtual fundamental
class on the moduli stack.

Throughout this section, f : X → S will be a proper flat morphism of finite
presentation between algebraic spaces, n will be an integer invertible on S, and
π : X→ X will be a fixed µn-gerbe. We will abuse notation and let f stand for
the geometric morphism Xrét→ SÉT as well.

4.1. Twisted sheaves. We briefly describe how the theory developed in Section
3.4.1 works out in the case of twisted objects of the stack of coherent sheaves on
X/S. We fix the µn-gerbe X→ X and do the twisting with respect to the natural
inclusion of µn into the inertia stack of f∗CX/S (see Proposition 3.2.2).

Definition 4.1.1. An X-twisted object of f∗CX/S over T→ S is called a flat family
of X-twisted coherent sheaves parametrized by T .

If the fibers of the family are torsion-free, we will speak of a flat family of
torsion-free X-twisted sheaves, etc. The reader is referred to [Lieblich 2007, para-
graph 2.2.6.3] for a discussion of associated points, purity, and torsion-free sheaves
on Artin stacks.

Concretely, an X-twisted sheaf is a sheaf F on X such that the representation of
µn on each geometric fiber of F is given by scalar multiplication. These sheaves
were originally introduced in [Giraud 1971] and have found various recent appli-
cations in mathematical physics and in algebra.

Notation 4.1.2. The stack of totally pure X-twisted coherent sheaves with rank n
and trivialized determinant will be denoted TwX/S(n,O).

It is relatively straightforward to prove that TwX/S(n,O) is an Artin stack locally
of finite presentation over S. This is done in detail in section 2.3 of [Lieblich
2007]. Earlier work on twisted sheaves in the context of elliptic fibrations and K 3
surfaces was carried out by Căldăraru [2002a; 2002b], and a study of their moduli
for projective varieties, with a description of the moduli spaces associated to K 3
and abelian surfaces, by [Yoshioka 2006]. Applications of Yoshioka’s results to
a conjecture of Căldăraru were discovered by Huybrechts and Stellari (described
in the appendix of [Yoshioka 2006]). The abstract approach taken here has also
proven useful in the study of certain arithmetic questions [Lieblich 2008b]. When
X admits a locally free twisted sheaf V (that is, when its class in H2(X,Gm) lies in
the Brauer group of X ), X-twisted sheaves are equivalent to π∗End(V)-modules,
where the problem of constructing moduli under various stability conditions was
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first studied in [Simpson 1994]. The case in which the π∗End(V)-modules have
rank 1 was studied in [Hoffmann and Stuhler 2005]; they also produced a sym-
plectic structure on the moduli space when X is a K 3 or abelian surface, giving
results analogous to those of Yoshioka.

4.2. Compactification by rigidification. The natural map SLn → PGLn gives an
“extension of structure group” morphism ε : BSLn→ BPGLn .

Lemma 4.2.1. The map ε induces an isomorphism BSLn( µn
∼
→ BPGLn .

Proof. Given a stack S, there is a natural equivalence of categories between mor-
phisms BSLn → S and SLn-equivariant objects of S. (The reader is referred to
[Kovács and Lieblich 2006, Section 3.A] for a description of this equivalence.) On
the other hand, there is clearly a natural equivalence between PGLn-equivariant
objects of S and SLn-equivariant objects on which the µn ⊂ SLn acts trivially. But
these correspond precisely to morphisms BSLn→S such that the induced map on
inertia annihilates µn ⊂ I(BSLn). The lemma follows from the universal property
of the rigidification. �

Taking the associated locally free sheaf with trivialized determinant yields an
inclusion BSLn ⊂ TO

X/S(n). (Note that the natural target is not PO
X/S(n) unless

the fibers of X/S are Cohen–Macaulay.) Moreover, there is a natural inclusion
µn ↪→ I(TO

X/S(n)) extending the inclusion over BSLn . It follows that there is an
inclusion BPGLn ↪→ (TO

X/S(n)( µn).
There is a natural morphism from χ : f∗ BPGLn → R2 f∗µn which we may

define as follows. (Note that since X is proper over S, the sheaf R2 f∗µn on SÉT is
a quasifinite algebraic space of finite presentation by Artin’s theorem. A proof in
terms of algebraic spaces may be found in the last chapter of [Artin 1973].) Given
an object of f∗ BPGLn = f∗(BSLn( µn) over some T → S, there is an associated
µn-gerbe on X ×S T (see Definition 3.4.2.2), and we simply take the image in
H0(T,R2 f∗µn).

Lemma 4.2.2. The stack f∗(TO
X/S(n)( µn) is an Artin stack locally of finite pre-

sentation over S. If in addition f is smooth then the stack is quasiproper.

Proof. Since R2 f∗µn is an algebraic space, it suffices to show that χ makes
f∗(TO

X/S(n)) into an algebraic (R2 f∗µn)-stack of finite presentation. To prove
this, it suffices to work locally on R2 f∗µn . Thus, as any section of R2 f∗µn (and in
particular, the “universal section” given by the identity map) is locally associated
to the cohomology class of a µn-gerbe, we see that it suffices to prove that, given
a µn-gerbe X→ X , the stack f X

∗
(TO

X/T (n)( µn) is an Artin stack locally of finite
presentation. Applying Proposition 3.4.3.5, we see that it suffices to prove that
f∗((TO

X/T (n))
X) is an Artin stack locally of finite presentation. But this is an open
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substack of the stack of perfect X-twisted sheaves with trivialized determinant,
which is known to be Artin and locally of finite presentation. (For the proof that
it is an Artin stack, the reader is referred to [Lieblich 2007, Section 2.3]. The
condition that the fibers be perfect is clearly an open condition, and closed if X/S
is smooth.)

Suppose f is smooth, and let (R, (t), κ) be a discrete valuation ring over S with
fraction field K . Suppose Spec K → f∗(TO

X/S(n)( µn) is a 1-morphism. We may
suppose without loss of generality that S= Spec R. Since f is proper and smooth,
R2 f∗µn is finite and étale over R. Making a finite base change (which is permitted
in the stacky version of the valuative criterion), we may assume that R2 f∗µn is a
disjoint union of sections over Spec R. It follows that to prove that f∗(TO(n)(µn) is
quasiproper, it suffices to prove that f∗((TO

X/S(n))
X) is quasiproper, where X→ X

is an arbitrary µn-gerbe. Since X is regular, the condition that the twisted sheaf
be perfect is trivial, and the result comes down to showing that given a discrete
valuation ring R and a torsion-free X-twisted sheaf F of rank n with trivialized
determinant over the generic point of R, there is an extension of F to a flat fam-
ily over a finite flat extension of R such that the trivialization of the determinant
extends.

Let K be the fraction field of R and κ its residue field. It is easy to see that
any flat extension G of F will have trivial determinant (as all invertible sheaves
on Spec R are trivial). Choose an isomorphism ι : det G ∼→ O. Composing with
the fixed generic isomorphism det F ∼→ OX K yields an injection α : det G→ OX K

(the latter being viewed as a sheaf on X by pushforward from X K ). Since X is
geometrically connected, the trivial invertible OX R -subsheaves of OX K all have the
form t sOX R for some s ∈ Z. Taking an n-th root of t if necessary (which may
result in a finite extension of R), we may assume that s = ns ′ for some integer s ′.
Replacing G by G(t−s′) yields det G(t−s′)= (det G)(t−s). Thus, via ι and the given
isomorphism det F ∼→ O, det G(t−s′) gets identified with t−s t sO, that is, ι yields a
trivialization of det G(t−s′) which extends that of det F, as desired. �

Lemma 4.2.3. The natural map f∗ BPGLn → f∗(TO
X/S(n)( µn) is representable

by open immersions.

Proof. It again suffices to prove this for f∗ BSLX
n and f∗(TO

X/S(n))
X, where we note

that f∗ BSLX
n parametrizes locally free X-twisted sheaves of rank n and trivialized

determinant and hence constitutes an open substack, as desired. �

4.2.4. When the fibers of X/S are Cohen–Macaulay, the entire discussion from the
beginning of the section until the present paragraph also yields a compactification
coming from the induced inclusion BPGLn ↪→ PO

X/S . We omit the details; the
statements of the results are literally identical, with P replacing T. Since TO

X/S is
much larger than PO

X/S , it is preferable to use the latter whenever possible. Thus,
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for example, if X/S is a smooth morphism, then there results an open immersion
into a quasiproper Artin stack f∗ BPGLn ↪→ f∗(PO

X/S(n)(µn). This latter stack will
play an important role in what follows. We endow it with the following notation.

Notation 4.2.5. Given a µn-gerbe X, let MX
n := f X

∗
(PO

X/S( µn).

There is a surjective map TwX/S(n,O) → MX
n which is universally closed and

submersive.

5. An explicit description of MX
n : generalized Azumaya algebras

In this section, we use certain algebra objects of the derived category to give a
concrete description of MX

n . Using this description, we will show that when X is
a smooth projective surface and X→ X has order n in H2(X,Gm) then MX

n has a
virtual fundamental class.

5.1. Derived Skolem–Noether. In this section, we work primarily in the derived
category of modules over a local commutative ring (O,m, k). For the sake of a
smoother exposition, we assume that O is Noetherian, but this is unnecessary. On
occasion, we will work in the category of chain complexes. However, we will use
the word “complex” in both settings; it will be clear in context whether we mean an
object of D(O) or an object of K(O). Similarly, “isomorphism” will be consistently
used in place of “quasiisomorphism” and we will always assume that isomorphisms
preserve whatever additional structures of objects are implicit. Given a scheme X ,
the symbol D(X) will denote a derived category of sheaves of OX -modules, with
various conditions (boundedness, perfection, quasicoherence of cohomology) clear
from context. In the end, it will suffice to work in the category denoted DfTd(X)
in [Hartshorne 1966], so the hypotheses on D will not be a focus of attention.

Definition 5.1.1. Given a scheme X , an object A ∈ D(X) will be called a weak
O-algebra if there are maps µ : A

L
⊗ A→ A and i : O→ A in D(X) which satisfy

the usual axioms for an associative unital algebra, the diagrams being required to
commute in the derived category.

In other words, a weak algebra is an algebra object of the derived category. Note
that the derived tensor product makes D(X) into a symmetric monoidal additive
category (as the universal property of derived functors ensures that all different
associations of an iterated tensor product are naturally isomorphic). Thus, it makes
sense to speak of “associative” algebra structures.

Given an additive symmetric monoidal category, one can define most of the
usual objects and maps of the theory of algebras: (unital) modules, bimodules,
linear maps, derivations, inner derivations, maps of algebras, etc. We leave it to
the reader to write down precise definitions of these terms, giving two examples:
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Given a map of weak algebras A→ B, an O-linear derivation from A to B is a
map δ : A→ B in D(X) such that

δ ◦µA = µB ◦ (id
L
⊗δ+ δ

L
⊗ id)

in D(X). A derivation from A to A is inner if δ = µ ◦ (α
L
⊗ id)−µ ◦ (id

L
⊗α) for

some α : O→ A.
Given a ring map O→ O′, the derived functor (·)

L
⊗O O′ :D(O)→D(O′) respects

the monoidal structure. There results a natural base change operation for weak
algebras and modules. (This operation will be consistently written as a change of
base on the right to avoid sign errors.)

Similarly, given a weak algebra A and a left A-module P , the functor P
L
⊗ (·)

takes objects of D(O) to A-modules. This follows from the natural associativity of
the derived tensor product.

The first nontrivial example of a weak algebra is given by

REnd(K ) := RHom(K , K )

for a perfect complex K . Replacing K by a projective resolution, one easily de-
duces the weak algebra structure from the usual composition of functions: if we
write K as a finite complex of free modules (which we will also call K ), then
REnd(K ) has as its n-th module

∏
p Hom(K p, K p+n), with differential

∂n(αp)q = (−1)n+1αq+1d + dαq .

Since K is perfect, the n-th module of REnd(K )
L
⊗REnd(K ) is equal to∏

a+b=n

∏
s,t

Hom(K s, K s+a)⊗Hom(K t , K t+b)

and the multiplication projects to the factors with s = t + b and then composes
functions as usual. Setting K∨ = RHom(K ,O) (the derived dual of K ), we have
the following basic lemma.

Lemma 5.1.2. Let K be a perfect complex.

(i) There is a natural isomorphism K
L
⊗ K∨ ∼→ REnd(K ).

(ii) There is a natural left action of REnd(K ) on K .

Tensoring the action REnd(K )
L
⊗K→ K with K∨ on the right and using (i) yields

the multiplication of REnd(K ).

It is essential that the action be written on the left (when using the standard sign con-
vention for forming the total complex of a double complex [Illusie 1971, I.1.2.1],
[Matsumura 1989, Appendix]) and that K∨ be written on the right for the signs
to work out. These kinds of sign sensitivities abound in the derived category and
require vigilance.
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An algebra of the form REnd(K ) will be called a derived endomorphism alge-
bra. Our goal is to reprove the classical results about matrix algebras for derived
endomorphism algebras of perfect complexes.

Notation 5.1.3. The symbols P and Q will always be taken to mean perfect com-
plexes with a chosen realization as a bounded complex of finite free modules.
Thus, maps P → Q in the derived category will always come from maps of
the “underlying complexes” (taken to mean the chosen realizations). Similarly,
REnd(P) will have as chosen representative the complex constructed from the un-
derlying complex of P as above: REnd(P)n=

∏
t Hom(P t , P t+n)with differential

∂(αt)s = (−1)n+1αs+1d + dαs .

These conventions facilitate making certain basic arguments without speaking of
replacing the object by a projective resolution, etc., but it is ultimately only impor-
tant for this book-keeping reason; the reader may ignore it without fear (until it is
explicitly invoked!).

Definition 5.1.4. Given M ∈ D(O), the annihilator of M is the kernel Ann(M) of
the natural map from O to EndD(O)(M). The quotient O/Ann(M) will be denoted
by OM .

Given an isomorphism ψ : P→ Q(n), there is an isomorphism

ψ∗ : REnd(P)→ REnd(Q)

given by functorial conjugation by ψ followed by the natural identification of
REnd(Q(n)) with REnd(Q). We will call this the induced map. The map ψ∗

may also be described as follows: under the natural identification of REnd(P)
with P

L
⊗ P∨, ψ∗ is identified with ψ

L
⊗ (ψ∨)−1.

Theorem 5.1.5. Let P and Q be nonzero perfect complexes of O-modules. If
REnd(P) ∼= REnd(Q) as weak algebras, then there exists a unique n such that
the map

Isom(P, Q(n))→ Isom(REnd(P),REnd(Q))

is surjective with each fiber a torsor under O×P . If P = Q, then n= 0 and the kernel
is naturally a split torsor.

Corollary 5.1.6. The sequence

0→ OP → End(P)→ Der(REnd(P))→ 0

is exact. More generally, if P and Q(n) are isomorphic, then the map

Hom(P, Q(n))→ Der(REnd(P),REnd(Q))

is surjective with each fiber naturally a torsor under OP .
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Proof. Apply Theorem 5.1.5 to P[ε] (as a complex over O[ε]) and look at automor-
phisms of the weak algebra REndO[ε](P[ε]) reducing to the identity modulo ε. �

The proof of Theorem 5.1.5 will make use of the completion of O to lift the
classical theorems on matrix algebras from the closed fiber by “infinitesimal in-
duction.”

Proposition 5.1.7. If O is a field k then Theorem 5.1.5 and Corollary 5.1.6 hold.

Proof. The bounded derived category of k is naturally identified with the cate-
gory of Z-graded finite k-modules by sending a complex to the direct sum of its
cohomology spaces. Given perfect complexes P and Q, the algebras REnd(P)
and REnd(Q) are then each identified with a matrix algebra carrying the induced
grading from the grading of the vector spaces P and Q, respectively, and an iso-
morphism from REnd(P)→REnd(Q) is identified with an isomorphism of matrix
algebras which respects the gradings. By the allowance of a shift, we may restrict
our attention to graded spaces whose minimal nonzero graded piece is in degree
0; any reference in what follows to graded vector spaces will implicitly assume
this hypothesis. (Of course the algebras involved will still carry nontrivial graded
pieces with negative degrees.)

Let A be a graded matrix algebra of rank n2 and V and W two graded n-
dimensional vector spaces with nontrivial graded A-actions. From the Skolem–
Noether theorem, we see that there is an A-linear isomorphism α : V → W . We
claim that α is graded. To prove this, it suffices to show that given a nonzero
vector v ∈ V0, α(v) is in W0 (because V and W are simple A-modules). Write
α(v)=

∑
wi . Since V is a simple A- module, An ·v=Vn; a similar statement holds

for W (given a choice of nonzero weight 0 vector, which exists by the hypothesis
on the gradings). Thus, the highest nontrivial grading N of A will equal the highest
nontrivial grading of both V and W . Furthermore, given any i such that wi 6= 0,
the fact that A−i ·wi =W0 means that A−i 6= 0. Given i > 0 such that wi 6= 0, we
have for all τ ∈ A−i that

0= α(0)= α(τ(v))= τ(α(v))= τ
(∑

w j

)
= τ(wi )+ higher terms.

Thus, τ(wi ) = 0, which implies that W0 = 0. This contradicts the assertion that
W0 is the minimal nontrivial graded piece. So wi = 0 for all i > 0 and therefore
w ∈ W0. Translating this back into the derived language, we have proven that
given an isomorphism ϕ :REnd(P)→REnd(Q), there is an isomorphism P→ Q
in D(k) which induces ϕ by functoriality. In fact, we have shown the rest of the
proposition as well, because α is the unique choice for such an isomorphism up to
scalars by the Skolem–Noether theorem.

To prove Corollary 5.1.6, let V =⊕Vi be a graded vector space and T ∈End(V )
a noncentral linear transformation. We wish to show that if the (nontrivial) inner
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derivation by T is homogeneous of degree 0 then T is homogeneous of degree 0.
To do this, consider the restriction of T to the degree 0 part of End(V ). Let T n

be a graded component of T (so that T n
: V → V shifts degrees by n). Let V m

be a graded component such that the induced transformation T n
: V m
→ V m+n is

nonzero. Consider the graded linear transformation (of degree 0) S : V→ V which
acts as the identity on V m and annihilates every other component. It is easy to
see that the commutator [T n, S] is T n S, which implies that [T, S] has a nontrivial
component of degree n. Since the derivation [T,−] is homogeneous of degree 0,
it follows that n = 0, and thus T is homogeneous of degree 0, as desired. �

Lemma 5.1.8. Theorem 5.1.5 is true for O if it is true for Ô.

Proof. We proceed by reducing the problem to a question of linear algebra and
then using the faithful flatness of completion.

Suppose given P and Q and an isomorphism ϕ : REnd(P)→ REnd(Q); this
defines an action of A := REnd(P) on Q. We claim that finding u : P→ Q such
that ϕ= u∗ is equivalent to finding an A-linear isomorphism from P to Q. Indeed,
suppose u : P→ Q is A-linear, so that the diagram

REnd(P)
L
⊗ P

ϕ
L
⊗u //

��

REnd(Q)
L
⊗ Q

��
P

u // Q

commutes, where the vertical arrows are the actions. Tensoring the left side with
P∨ and the right side with Q∨, we see that the resulting diagram

REnd(P)
L
⊗ P

L
⊗ P∨

ϕ
L
⊗u

L
⊗(u∨)−1

//

��

REnd(Q)
L
⊗ Q

L
⊗ Q∨

��
P

L
⊗ P∨

u
L
⊗(u∨)−1

// Q
L
⊗ Q∨

also commutes. Applying Lemma 5.1.2 and writing B for REnd(Q), we find that
the diagram

A
L
⊗ A

u∗
L
⊗ϕ //

��

B
L
⊗ B

��
A

u∗ // B

commutes, where the vertical arrows are the multiplication maps. Considering the
units in the algebras, one readily concludes the proof of the claim. Note that to
conclude that any such u as above is an isomorphism, it suffices for its reduction
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to the residue field to be an isomorphism (for example, because the complexes are
bounded above).

It is easy to see (using the realization in terms of diagrams of finite flat O-
modules) that HomD(O) is compatible with flat base change and completion when
restricted to the category of perfect complexes: given a flat ring extension O→ O′,
there is a natural isomorphism

HomD(O′)(M
L
⊗O′, N

L
⊗O′)∼= HomD(O)(M, N )⊗O′

for all perfect M and N in D(O). Furthermore, given a perfect weak algebra 4, the
realization of the module of 4-linear maps as a kernel of maps of Hom-modules
shows that the same statement is true for Hom4. Thus there is a commutative
diagram

Hom4(M, N )

��

// Hom4̂(M̂, N̂ )

��
Hom4(M, N )⊗O k

))

Hom4̂(M̂, N̂ )⊗Ô k

uu
Hom4

L
⊗k(M

L
⊗ k, N

L
⊗ k).

with surjective vertical arrows. This immediately applies to our situation to show
that the map of Theorem 5.1.5 is surjective for O if it is for Ô (for a fixed n, which
may be determined from the reduction to the residue field). Indeed, a 4̂-linear
map M̂ → N̂ yields an element of Hom4̂(M̂, N̂ )⊗ k whose image in the bottom
module is an isomorphism. It follows from the diagram that there is a 4-linear
map u : M → N whose (derived) reduction to k is an isomorphism, whence u is
an isomorphism by Nakayama’s lemma for perfect complexes (see, for example,
[Lieblich 2006a, Lemma 2.1.3]).

Similarly, to verify that an isomorphism ξ : P ∼→ P in the kernel of the au-
tomorphism map is homotopic to a constant, it suffices to show that an element
ξ ∈EndD(O)(P) is in OP if and only if this is true after completing. But the module
of maps homotopic to a constant is also clearly compatible with flat base change
and completion is moreover faithfully flat (all modules involved are finite over O

because the complexes involved are perfect), so ξ is in a submodule Z of End(P)
if and only if its image in End(P)⊗ Ô is contained in Z ⊗ Ô. �

From this point onward, we assume that O is a complete local Noetherian ring.
Recall that a quotient of local rings 0→ I→O→SO→0 is small if I is generated by
an element ε which is annihilated by the maximal ideal of O (so that, in particular,
ε2
= 0). We can choose a filtration O⊃m= I0 ⊃ I1 ⊃ I2 ⊃ · · · which is separated
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(i.e., so that ∩i Ii = 0) and defines a topology equivalent to the m-adic topology
such that for all i ≥ 0, the quotient 0→ Ii/Ii+1→ O/Ii+1→ O/Ii → 0 is a small
extension, with Ii/Ii+1 generated by εi . We fix such a filtration for remainder of
this section, and we denote O/In by On .

Lemma 5.1.9. Let 0→ I→ R→ R→ 0 be a surjection of rings. Let A be a weak
R-algebra and P and Q two left A-modules. Let T denote the triangle in D(R)
arising from the quotient map R→ R.

(i) The maps in P
L
⊗ T are A-linear (with the natural A-module structures).

(ii) Any A-linear map ψ : P→ Q
L
⊗ R factors through an A-linear map

Sψ : P
L
⊗ R→ Q

L
⊗ R

which is the derived restriction of scalars of an A
L
⊗ R-linear map from P

L
⊗ R

to Q
L
⊗ R.

(iii) If R → R is a small extension of local rings with residue field k, then the
natural identification P

L
⊗ I ∼→ Pk induced by a choice of basis for I over k is

A-linear.

Proof. Note that basic results about homotopy colimits allow us to replace any
object of D(R) by a complex of projectives, so there are no boundedness conditions
on any of the complexes involved. Part (i) follows immediately from the fact that
P

L
⊗ (·) is a functor from D(R) to A-modules. Part (ii) follows from writing P

and A as complexes of projectives and representing the map P→ Q
L
⊗ R as a map

on complexes. (Note that this factorization need not be unique as a map in D(R),
but it is unique as the derived restriction of scalars from a map in D(R).) Part (iii)
follows similarly from looking at explicit representatives of P and A. �

Lemma 5.1.10. Suppose f, g : P → Q are two maps of perfect complexes in
K (O). Let Pn = P ⊗On , Qn = Q⊗On , fn = f ⊗On , gn = g⊗On . Suppose there
are homotopies

h(n) ∈
∏

t

Hom(P t , Qt−1
⊗ In)

such that for all n,

fn − gn = d
(∑

s<n

h̄(s)
)
+

(∑
s<n

h̄(s)
)

d

as maps of complexes, where h̄ denotes the induced map. Then f is homotopic to g.

Proof. The element h =
∑
∞

s=0 h(s) converges and defines the homotopy. �
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Lemma 5.1.11. Let 0→ I → R → R → 0 be a small extension of local rings
with residue field k. Let P and Q be perfect complexes of R-modules (with chosen
realizations) and ϕ : REnd(P)→ REnd(Q) an isomorphism of the derived endo-
morphism algebras, written as a map in that direction on the underlying complexes.
If there exists an isomorphism of the underlying complexes ū : P ∼→ SQ such that
Sϕ = ū∗ as maps of complexes, then there is a lift u of ū and a homotopy h between
ϕ and u∗ such that h(REnd(P))⊂ REnd(Q)⊗ I . In particular, ϕ = u∗ in D(R).
Proof. Let A=REnd(P) and let A act on Q via ϕ. The identification of Sϕ with ū∗

provides an SA-linear isomorphism γ : P→Q, and we wish to lift this to an A-linear
isomorphism P→ Q. Consider the composition P→ Q→ Q⊗ I (1)∼= Qk(1) in
the derived category. By Lemma 5.1.9, this map is A-linear and factors through an
A-linear map α : Pk→Qk(1)which comes by derived restriction of scalars from an
Ak-linear map in D(k). By Proposition 5.1.7 (and the method of its proof), we see
that α is either zero or an isomorphism. But Pk ∼=Qk 6∼=0, which implies that α=0.
This means that there is an R-linear lift γ of γ. Now (γ∗)−1

◦ ϕ− id is identified
with a map REndk(Pk)→REndk(Pk) in D(k) which is a derivation of the algebra,
hence is homotopic to the inner derivation induced by a map ωk : Pk→ Pk in D(k).
Writing ω for the composition

P // Pk
ωk // Pk

∼= // P
L
⊗ I // P,

we see that there exists a homotopy between ϕ and γ(1 + ω)∗ having image in
REnd(Q)⊗ I , and that γ(1+ω) is a lift of γ as maps of complexes. �

Lemma 5.1.12. Let 0→ I → R → R → 0 be a small extension of local rings
with residue field k. Let P be a perfect complex of R-modules (with a chosen
realization) and ψ : P→ P an automorphism of the underlying complex such that
Sψ =Sα for someSα ∈ R P as maps of the complex P and such that ψ∗ is homotopic
to the identity as a map of weak algebras. Then there is a unit α lifting Sα and a
homotopy h between ψ and α such that h(REnd(P))⊂ REnd(P)⊗ I .

Proof. The proof is quite similar to the proof of Lemma 5.1.11, using the left half
of the exact sequence of Corollary 5.1.6 rather than the right half. �

Proposition 5.1.13. Theorem 5.1.5 holds for O (now assumed complete).

Proof. Given an isomorphism ϕ : REnd(P) ∼→ REnd(Q), we may assume after
adding zero complexes to P and Q, shifting Q, and applying a homotopy to ϕ, that
there is an isomorphism ψ0 : P0→ Q0 such that ϕ0 = ψ

∗

0 as maps of complexes.
We can now apply Lemma 5.1.11 to arrive at an isomorphism ψ1 lifting ψ0 and
a homotopy h̄(0) with image in REndO1(Q1)⊗O1 I0/I1 between ϕ1 and ψ∗1 . Lift
h̄(0) to a homotopy h(0) with image in REnd(Q)⊗ I0. Then

(ϕ− (dh(0)+ h(0)d))1 = ψ∗1
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as maps of complexes, and we may find a homotopy h(1), etc. By Lemma 5.1.10,
we see that there is an isomorphism ψ : P → Q such that ϕ = ψ∗ in D(O). A
similar argument shows that the kernel is O∗P . �

5.2. The construction of GAz. In this section, we define a stack which we will
use to compactify the stack of Azumaya algebras. While the definition is rather
technical in general, in the case of a relative surface it assumes a simpler and more
intuitive form.

Let (X,O) be a ringed topos.

Definition 5.2.1. A pregeneralized Azumaya algebra on X is a perfect algebra
object A of the derived category D(X) of OX -modules such that there exists an
object U ∈ X covering the final object and a totally supported perfect sheaf F on
U with A|U ∼= REndU (F) as weak algebras. An isomorphism of pregeneralized
Azumaya algebras is an isomorphism in the category of weak algebras.

5.2.1. Stackification. Consider the fibered category PR→ Sch ét of pregeneralized
Azumaya algebras on the large étale topos over Spec Z. We will stackify this to
yield the stack of generalized Azumaya algebras. This is slightly different from the
construction given in [Laumon and Moret-Bailly 2000, 3.2], as we do not assume
that the fibered category is a prestack.

Lemma 5.2.1.1. Suppose T is a topos and C→T is a category fibered in groupoids.
There exists a stack Cs , unique up to 1-isomorphism, and a 1-morphism C→ Cs

which is universal among 1-morphisms to stacks (up to 2-isomorphism).

Proof. The proof is the usual type of argument. A reader interested in seeing a
generalization to stacks in categories larger than groupoids should consult [Giraud
1971]. First, we may assume that in fact C→T admits a splitting (after replacing C

by a 1-isomorphic fibered category). Define a new fibered category Cp as follows:
the objects will be the same, but the morphisms between two objects a and b over
t ∈ T will be the global sections of the sheafification of the presheaf Homt(a, b) :
(s

ϕ
−→ t) 7→ Homs(ϕ

∗a, ϕ∗b) on t . Clearly Cp is a prestack (that is, given any two
sections a and b over t , the hom-presheaf just described is a sheaf) and the natural
map C→ Cp of fibered categories over T is universal up to 1-isomorphism for
1-morphisms of C into prestacks. Now we apply [Laumon and Moret-Bailly 2000,
3.2] to construct Cs as the stackification of Cp. �

Definition 5.2.1.2. The stack of generalized Azumaya algebras on schemes is de-
fined to be the stack in groupoids PRs

→ Sch ét associated to the fibered category
of pregeneralized Azumaya algebras.

Remark 5.2.1.3. Explicitly, given a scheme X , to give a generalized Azumaya
algebra on X is to give an étale 3-hypercovering Y ′′

////// Y ′ //// Y // X ,
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a totally supported sheaf F on Y , and a gluing datum for REndY (F) in the de-
rived category D(Y ′) whose coboundary in D(Y ′′) is trivial. Two such objects
(Y1,F1, δ1) and (Y2,F2, δ2) are isomorphic if and only if there is a common re-
finement Y3 of the 3-hypercovers Y1 and Y2 and an isomorphism ϕ :F1|Y3

∼
→F2|Y3

commuting with the restrictions of δ1 and δ2. Thus, a generalized Azumaya algebra
is gotten by gluing “derived endomorphism algebras” together in the étale topology.
When X is a quasiprojective smooth surface, or, more generally, a quasiprojective
scheme smooth over an affine with fibers of dimension at most 2, then the sections
of PR over X are the same as the sections of PRs over X ; see Section 6.4.

Example 5.2.1.4. Let π : X→ X be a µn-gerbe and F a totally supported perfect
X-twisted sheaf. The complex Rπ∗REndX(F)∈D(X) is a pregeneralized Azumaya
algebra, hence has a naturally associated generalized Azumaya algebra. We will
see below that the global sections of the stack PRs are precisely the weak algebras
of this form.

Lemma 5.2.1.5. Let F and G be totally supported perfect sheaves on a Gm-gerbe
X→ X.

(1) The sheaf of isomorphisms between the generalized Azumaya algebras as-
sociated to the weak algebras Rπ∗REnd(F) and Rπ∗REnd(G) is naturally
isomorphic to Isom(F,G)/Gm , with Gm acting by scalar multiplication on G.

(2) Any isomorphism of generalized Azumaya algebras

ϕ : Rπ∗REnd(F) ∼→ Rπ∗REnd(G)

is the isomorphism associated to an isomorphism F∼→L⊗G for some invert-
ible sheaf L on X.

Proof. Temporarily write I for the sheaf of isomorphisms of generalized Azumaya
algebras from Rπ∗REnd(F) to Rπ∗REnd(G). There is clearly a map

χ : Isom(F,G)/Gm→ I.

To verify that it is an isomorphism, it suffices to verify it étale-locally on X , whence
we may assume that X is strictly local. Choosing an invertible X-twisted sheaf
and twisting down F and G, we are reduced to showing the analogous statement
for totally supported sheaves on X itself. Any local section of I comes from an
isomorphism of weak algebras REnd(F)∼→REnd(G), so Theorem 5.1.5 shows that
χ is surjective. Similarly, any section of the kernel of χ must locally be trivial,
whence χ is an isomorphism.

The second part is a formal consequence of the first: there is an étale covering
U → X such that ϕ|U is associated to an isomorphism ψ : F|U

∼
→ G|U . The

coboundary of ψ on the product U ×X U is multiplication by some scalar, which
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is a cocycle by a formal calculation. This gives rise to the invertible sheaf L;
tensoring with L makes the coboundary of ψ trivial, whence it descends to an
isomorphism F→ L⊗G inducing ϕ, as desired. �

Definition 5.2.1.6. Let A be a generalized Azumaya algebra on X . The gerbe of
trivializations of A, denoted X(A), is the stack on the small étale site X ét whose
sections over V→ X given by pairs (F, ϕ), where F is a totally supported sheaf on
V and ϕ :REndV (F)

∼
→A|V is an isomorphism of generalized Azumaya algebras.

The isomorphisms in the fiber categories are isomorphisms of the sheaves which
respect the identifications with A, as usual.

This is entirely analogous to the gerbe produced in [Giraud 1971, section V.4.2].
There is also an analogue of the µn-gerbe associated to an Azumaya algebra of
degree n.

Definition 5.2.1.7. Given a generalized Azumaya algebra A of degree n on X,
the gerbe of trivialized trivializations of A, denoted Xtriv(A), is the stack on the
small étale site of X whose sections over U → X consist of triples (F, ϕ, δ)
with ϕ : REndU (F)

∼
→AU an isomorphism of generalized Azumaya algebras and

OU
∼
→det(F) an isomorphism of invertible sheaves on U . The isomorphisms in the

fiber categories are isomorphisms of the sheaves which preserve the identifications
with A and the trivializations of the determinants.

Lemma 5.2.1.8. The stack X(A) is a Gm-gerbe. If A has degree n, then Xtriv(A)

is a µn-gerbe whose associated cohomology class maps to [X(A)] in H2(X,Gm).

Proof. This follows immediately from the derived Skolem–Noether Theorem 5.1.5
and the fact that all of the sheaves F are totally supported. �

Corollary 5.2.1.9. A generalized Azumaya algebra A has a class in H2(X,Gm).
When the rank of A is n2, A has a class in H2(X,µn) (in the fppf topology).

Definition 5.2.1.10. When rk A= n2, we call the cohomology class in H2(X,µn)

the class of A, and write cl(A).

Let π : X(A)→ X denote the natural projection.

Lemma 5.2.1.11. There is an X(A)-twisted sheaf F and an isomorphism of gen-
eralized Azumaya algebras ϕ : Rπ∗REndX(A)(F)

∼
→ A. The datum (X(A),F, ϕ)

is functorial in A.

Proof. As usual, the construction of X(A) yields by first projection a twisted sheaf
F. Whenever X(A) has a section f over V , there is by construction an isomorphism
REndV ( f ∗F)→A|V , and this is natural in V and f . This is easily seen to imply
the remaining statements of the lemma. �

Let D→ Sch ét denote the fibered category of derived categories which to any
scheme X associates the derived category D(X) of étale OX -modules.



Compactified moduli of projective bundles 681

Proposition 5.2.1.12. There is a faithful morphism of fibered categories PRs
→D

which identifies PRs with the subcategory of D whose sections over X are weak
algebras of the form Rπ∗REndX(F), where π : X→ X is a Gm-gerbe, and whose
isomorphisms Rπ∗REndX(F)

∼
→Rπ ′

∗
REndX′(F

′) are naturally a pseudotorsor un-
der Aut (F)/Gm .

Proof. The morphism PRs
→ D comes from Lemma 5.2.1.11. Given A and

B, an isomorphism ϕ : A→ B induces an isomorphism X(A) ∼→ X(B). Thus,
given X,F,X′,F′, an isomorphism Rπ∗REnd(F) ∼→ Rπ ′

∗
REnd(F′) induces an

isomorphism ε : X→ X′ and an isomorphism of generalized Azumaya algebras
Rπ∗REnd(F) ∼→ Rπ∗REnd(ε∗F′). (In particular, any isomorphism is identified
with an isomorphism of the underlying weak algebras.) By Lemma 5.2.1.5, once
there is an isomorphism the set of isomorphisms is a torsor under Aut (F)/Gm , as
claimed. The faithfulness also results from Lemma 5.2.1.5. �

Remark 5.2.1.13. When X=X′ in Proposition 5.2.1.12, the sheaf of isomorphisms
is simply identified with the quotient sheaf Isom(F,F′)/Gm . This will be the case
when we study the moduli of generalized Azumaya algebras on a surface, as the
(geometric) Brauer class will be constant in families.

Thus, at the end of the complex process of stackification, one is left simply
with the derived endomorphism algebras of twisted sheaves, with a subset of the
quasiisomorphisms giving the isomorphisms.

5.2.2. Identification with rigidifications. Let GX (n) be the stack of generalized
Azumaya algebras on X of degree n.

Proposition 5.2.2.1. The morphism ρ : T
parf
X → GX sending F to REnd(F) yields

an isomorphism TX( Gm
∼
→ GX .

Proof. It follows from Theorem 5.1.5 that GX is the stackification of the pre-
stack given by taking totally supported sheaves and replacing Isom(F,G) with
Isom(F,G)/Gm . But this is precisely how T

parf
X ( Gm is constructed! �

Lemma 5.2.2.2. If Q → Q′ is a morphism of prestacks on a site which is fully
faithful on fiber categories and an epimorphism (that is, any object of Q′ is locally
in the image of Q) then the induced map of stackifications is an isomorphism.

Proof. An object of the stackification is just an object of the prestack with a descent
datum. Moreover, refining the descent datum yields a naturally isomorphic object
of the stackification. Thus, we see that the map on stackifications Q̃→ Q̃′ is fully
faithful and an epimorphism. (Indeed, after refining the descent datum on an object
of Q′, we can assume the object and descent datum come from Q.) It follows that
it must be an isomorphism. �
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Proposition 5.2.2.3. Assume n is invertible on X. The morphism

ρ : TO
X (n)→ GX (n)

sending F to REnd(F) yields an isomorphism TO
X( µn

∼
→ GX .

Proof. In light of Proposition 5.2.2.1, it is enough to prove that the natural map
ϕ : TO

X (n)→ TX (n) yields an isomorphism of the appropriate rigidifications. But
ϕ is clearly an epimorphism. Further, for any F and G with trivialized determinants,
ϕ induces an isomorphism of sheaves f : Isomdet(F,G)/µn

∼
→ Isom(F,G)/Gm .

To check this, it is enough to suppose X = Spec A is strictly Henselian. Since
n is invertible on X , any unit of A has an n-th root, from which it follows that
f is surjective. If γ : F→ G and η : F→ G are isomorphisms which preserve
determinants and differ by multiplication by a scalar θ on G then θ must be an n-th
root of unity, which shows that f is injective.

Forming prestacks by dividing out by the appropriate scalars, we thus find a
morphism of prestacks Q→ Q′ which is fully faithful on fiber categories and is an
étale epimorphism. Applying Lemma 5.2.2.2 completes the proof. �

5.2.3. The relative case. Now we push everything forward (with one important
Warning 5.2.3.2 below) to define relative stacks of generalized Azumaya algebras.

Definition 5.2.3.1. Let f : X→ S be a morphism. A relative generalized Azumaya
algebra on X/S is a generalized Azumaya algebra on X whose local sheaves are
S-flat and totally pure in each geometric fiber. This is equivalent to writing A ∼=
Rπ∗REndX(F) with X→ X a Gm-gerbe and F an S-flat X-twisted sheaf which is
totally pure in every geometric fiber.

Warning 5.2.3.2. Even though the absolute theory of generalized Azumaya al-
gebras used totally supported sheaves, in the relative theory we will use totally
pure sheaves. While this is not necessary for the abstract results to be true, it
gives a better moduli theory when X/S is sufficiently nice (for example, a smooth
projective surface).

As in Definition 5.2.1.6, one may define the class of such a generalized Azumaya
algebra. Let X→ X be a fixed µn-gerbe, with n ∈ OS(S)×.

Notation 5.2.3.3. Let GAzX/S(n) denote the stack of generalized Azumaya al-
gebras on X/S of rank n2 in every geometric fiber whose class agrees with [X]
étale locally around every point on the base. When we do not wish to specify the
cohomology class, we will write GAzX/S(n) for the stack of generalized Azumaya
algebras of rank n2 on each fiber.

When X→ S is proper and n is invertible on S, the condition that the cohomology
class agree with [X] étale-locally on S is equivalent to the condition that it agree
with [X] in every geometric fiber.
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5.2.4. Identification of GAzX/S(n) with MX
n . Let GX/S(n) be the stack on Xrét par-

ametrizing generalized Azumaya algebras that are locally isomorphic to REnd(F)
with F an object of P

parf
X/S(n). An argument identical to Proposition 5.2.2.1 shows

that the natural map PO
X/S(n)→ GX/S(n) yields an isomorphism

PO
X/S(n)( µn

∼
→ GX/S(n).

On the other hand, it is easy to see that GAzX/S(n) = f∗(GX/S(n)) and that
GAzX/S(n) = f X

∗
(GX/S(n)). We conclude that GAzX/S(n) ∼= MX

n , thus showing
that generalized Azumaya algebras give a coherent model for MX

n . Moreover,
it is easy to see that MX

n (c) is identified with the stack of generalized Azumaya
algebras of the form RHom(F) with F an X-twisted sheaf with trivialized deter-
minant and deg c2(F) = c/2n. This condition is equivalent to the condition that
deg c2(REnd(F))= c, giving a coherent interpretation of MX

n (c).
For the reader uncomfortable with the stackification procedure (in spite of its

concrete outcome), we will show in Section 6.4 that when X is a surface stackifi-
cation is in fact unnecessary.

6. Moduli of stable PGLn-torsors on surfaces

For the rest of this paper, we assume that S = Spec k with k a separably closed
field and X/S a smooth projective surface with a fixed ample divisor H .

6.1. Stability of torsors. We first recall a basic definition.

Definition 6.1.1. Given a torsion-free sheaf F, the slope of F is deg F/ rk F.

To define stability for PGLn-torsors, we use the adjoint sheaf. As described in
Section 3.3, this adjoint sheaf naturally comes with an algebra structure, which we
will use in our definition.

Definition 6.1.2. An Azumaya algebra A on X is stable if for all nonzero right
ideals I⊂A of rank strictly smaller than rk A we have µ(I) < 0.

Remark 6.1.3. It is equivalent to quantify over left ideals. Thus, one could state
the definition by omitting the word “right” and quantifying over arbitrary ideals,
understood as right or left ideals. It is of course not sufficient to quantify over
two-sided ideals.

Remark 6.1.4. This definition is meant to apply only to the classical notion of
slope-stability, and not to the more refined notion due to Gieseker. While such
notions of stability using normalized Hilbert polynomials are essential for the
development of moduli theory using geometric invariant theory (GIT), they are
somewhat artificial in the sense that they no longer correspond to the existence
of a Hermite-Einstein connection. (However, recent work of Wang [2002; 2005]
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has clarified the analytic meaning of Gieseker-stability in terms of the existence of
certain weak Hermite–Einstein connections.)

One way to understand the compactifications of the stack of slope-stable bun-
dles — using slope-semistability or Gieseker-semistability, GIT-bound or purely
stacky, etc. — is that each really only serves to impose the kind of inductive strucure
on the moduli problem necessary to prove theorems about the actual part of interest:
the open sublocus of slope-stable bundles. Working in a GIT-free manner (which
is necessary in the context of twisted sheaves) frees us to ignore the subtleties (both
algebraic and analytic) of Gieseker-stability. This is pursued in [Lieblich 2008a],
where the asymptotic properties of moduli are proved entirely without GIT.

6.1.5. To relate Definition 6.1.2 to the cover of f∗(BPGLn) by the stack of twisted
sheaves, we recall some rudiments from the theory of Chern classes for twisted
sheaves. A different development of the theory of Chern classes for twisted sheaves
and the relationship to the theory described here is given in [Heinloth 2005].

Given a coherent X-twisted sheaf F, we can use the rational Chow theory of X

to define Chern classes ci (F), i = 1, 2. (The first Chern class c1(F) is just the class
in Chow theory associated to the invertible sheaf det F.) There is also a degree map
from d : A0(X)→Q; this has the property that the 0-cycle supported over a closed
point of X has degree 1/n. We define a normalized degree function by deg= nd.
Using this degree, we have the following definition.

Definition 6.1.6. A torsion-free X twisted sheaf V is stable if for every subsheaf
W⊂ V we have

µ(W) < µ(V).

As a special case of [Lieblich 2007, 2.2.7.22], it follows that if F is a flat family
of coherent X-twisted sheaves parametrized by T with trivialized determinant, then
the function t 7→deg c2(Ft) is locally constant on T . Moreover, by [Lieblich 2008a,
Proposition 4.3.1.2], we have that stability is an open condition in a flat family of
torsionfree X-twisted sheaves.

Notation 6.1.7. Let TwX/k(n,O, c) ⊂ TwX/k(n,O) denote the open and closed
substack parametrizing families such that deg c2(Ft) = c in each geometric fiber.
Let Tws

X/k(n,O, c)⊂TwX/k(n,O, c) denote the open substack whose objects over
T are families F such that the fiber Ft is stable for each geometric point t→ T .

Lemma 6.1.8. A locally free X-twisted sheaf V is stable if and only if the Azumaya
algebra π∗End(V) is stable.

Proof. Given a subsheaf W⊂ V, a straightforward computation shows that

µ(Hom(V,W))= µ(W)−µ(V).
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On the other hand, any right ideal of A has the form Hom(V,W) for a subsheaf
W⊂ V. The result follows. �

6.1.9. Suppose B→ S is a k-scheme and T → X B is a PGLn-torsor. Let A be the
locally free sheaf (of rank n2) associated to the adjoint torsor (which is a GLn2-
torsor). Using the Riemann-Roch theorem, the invariance of Euler characteristic in
a flat family, and the fact that det A∼= O, we see that the function b 7→ deg c2(Ab)

is locally constant on B. This provides a numerical invariant of a PGLn-torsor
which is constant in a family. Given a µn-gerbe X → X and an integer c, let
( f X
∗

BPGLn)(c) be the substack of f X
∗

BPGLn parametrizing families where the
locally free sheaf associated to the adjoint bundle has deg c2 = c in every fiber.

Thus, there is a decomposition

f∗ BPGLn = tX tc ( f X
∗

BPGLn)(c),

where the first disjoint union is taken over a set of µn-gerbe representatives for
H2(X,µn) and the second is taken over Z. Similarly, there is a decomposition

f∗(BPGLn)
s
= tX tc ( f X

∗
(BPGLn)

s

of stable loci.

Lemma 6.1.10. Given an integer c, the closed and open substack TwX/S(n,O,c/2n)
is equal to the preimage of its image in MX

n . Similarly, Tws
X/k(n,O,c/2n) is equal

to the preimage of its image in MX
n .

Proof. Given a point p of MX
n which lifts into [F] ∈ TwX/S(n,O, c/2n), it is easy

to see that the full preimage of p in TwX/S(n,O) is given by the twists F⊗L with
L ∈ PicX/S[n]. But these have the same (rational) Chern classes as F, as L is
trivial, so they also lie in TwX/S(n,O, c/2n). The second statement follows from
the fact that F is stable if and only if F⊗L is stable for an invertible sheaf L. �

Corollary 6.1.11. There is an open substack f∗(BPGLn)
s
⊂ f∗(BPGLn) param-

etrizing families P→ XT of PGLn-torsors such that for all geometric points t→ T
the fiber Pt → X t is a stable PGLn-torsor.

Proof. This follows from Lemma 6.1.10 together with the fact that TwX/k(n,O)lf→

f∗(BPGLn) is universally submersive. �

Hence, since TwX/S(n,O, c/2n) is open and closed in TwX/S(n,O), there is a well-
defined open and closed substack MX

n (c) whose preimage is TwX/S(n,O,c/2n).
There is an open substack MX

n (c)
s whose preimage is Tws

X/k(n,O, c/2n). Each
MX

n (c) is quasiproper and there is an open immersion f X
∗

BPGLn(c) ↪→MX
n (c) and

an open immersion f X
∗

BPGLn(c)s ↪→MX
n (c)

s . Moreover, each MX
n (c) is covered

by TwX/S(n,O, c/2n) in such a way that the fibers are locally µn-gerbes over
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PicX/S[n]-torsors, and likewise for the open substacks parametrizing stable objects.
This covering restricts to a covering of ( f X

∗
BPGLn)(c)s by Tws

X/S(n,O, c/2n)lf.
In particular, MX

n (c)
s is irreducible, separated, etc. if Tws

X/S(n,O, c/2n) has the
same property; and MX

n (c)
s has a local property stable for the étale topology if

and only if the same is true for Tws
X/S(n,O, c/2n) Moreover, there is a virtual

fundamental class for MX
n (c)

s if and only if there is one for Tws
X/S(n,O, c/2n).

Notation 6.1.12. Let GAzX/S(n)s denote the open substack parametrizing stable
generalized Azumaya algebras via the isomorphism GAzX/S(n) ∼→ (MX

n )
s of Sec-

tion 5.2.4.

6.2. Structure of moduli of twisted sheaves. The following results show that infin-
itely many of the spaces Tws

X/k(n,O, γ) are nonempty. It is a geometric restatement
of the fundamental result of [de Jong 2004] on the period-index problem for Brauer
classes over functionf ields of algebraic surfaces.

Lemma 6.2.1. There is a stable locally free X-twisted sheaf of rank n.

A proof of this result may be found in [Lieblich 2008b, Theorem 4.2.2.3] and
[Lieblich 2008a, Proposition 5.1.2].

Lemma 6.2.2. Suppose F is a coherent X-twisted sheaf of rank n with det F ∼= O

and deg c2(F) = γ. For each integer ` ≥ 0, there is a (noncanonical) subsheaf
F`⊂F such that dim F/F`= 0, det F`

∼= O, and deg c2(F`)= γ+`. If F is stable
then so is F`.

Proof. By induction, it suffices to construct F1. Choose a point x ∈ X (k) around
which F is locally free and let F⊗ κ(x) � Q be a quotient with geometric fiber
of dimension 1. (In other words, given an algebraically closed extension field
L/κ(x) and a map Spec L → X⊗ κ(x), the pullback of Q to Spec L is the sheaf
associated to a one-dimensional vector space.) We claim that deg(c2(Q)) = −1,
from which the result follows by the multiplicativity of the total Chern polynomial.
A proof of the claim uses the Grothendieck–Hirzebruch–Riemann–Roch theorem
for representable morphisms of Deligne–Mumford stacks and can be found in the
proof of [Lieblich 2007, Lemma 3.2.4.8] (where there is an unfortunate sign error
in the statement, even though the proof is correct!).

To deduce stability of F1 from stability of F, first note that the two sheaves
agree in codimension 1. Since stability depends on a calculation of degree and
this calculation depends only on a sheaf in codimension 1, we see that we need
only quantify over saturated subsheaves [Huybrechts and Lehn 1997, Definition
1.1.5], which are determined by their values in codimension 1. Thus, the criterion
determining stability of F and F1 quantifies over the same set of subsheaves with
the same numerical calculations. �
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Corollary 6.2.3. If Tws
X/k(n,O, γ) is nonempty then so is Tws

X/k(n,O, γ + `) for
all integers `≥ 0.

Here is the fundamental structure theorem concerning these moduli spaces:

Theorem 6.2.4. There exists a constant C such that for all γ ≥ C ,

(1) the open substack Tws
X/k(n,O, γ)lf ⊂ Tws

X/k(n,O, γ) is schematically dense;

(2) Tws
X/k(n,O, γ) is an irreducible proper normal lci tame Deligne–Mumford

stack over k whenever it is nonempty;

(3) it is nonempty for infinitely many γ.

Proof. The third statement follows immediately from Corollary 6.2.3. For the proof
of the first and second, the reader is referred to paragraph 3.2.4.1 (and especially
Theorem 3.2.4.11) of [Lieblich 2007]. �

6.2.5. Since every object of Tws
X/k(n,O, γ) is geometrically stable, it is simple

(see, for example, Corollary 1.2.8 and Theorem 1.6.6 of [Huybrechts and Lehn
1997]); that is, its automorphisms are simply given by multiplication by scalars
(in µn , since the determinant is trivialized). It follows that Tws

X/k(n,O, γ) is a
µn-gerbe over its coarse moduli space Tws

X/k(n,O, γ).

6.3. Consequences for MX
n and f X

∗ BPGLn.

Theorem 6.3.1. There is a constant D such that for all c ≥ D,

(1) the open substack f X
∗

BPGLn(c)s is schematically dense in MX
n (c)

s ;

(2) MX
n (c)

s is an irreducible proper normal lci tame Deligne–Mumford stack over
k whenever it is nonempty;

(3) it is nonempty for infinitely many c.

In particular, the open substack ( f X
∗

BPGLn)(c)s is irreducible (and nonempty for
infinitely many c).

Proof. The proof follows immediately by combining the covering described at the
end of Section 4.2 with Lemma 6.2.1, Lemma 6.2.2, and Theorem 6.2.4. �

Recall that “lciq singularities” are by definition finite quotients of lci singularities.

Corollary 6.3.2. For sufficiently large c, the coarse moduli space (MX
n (c)

s)mod is
an irreducible proper normal algebraic space with lciq singularities.

Proof. Lemma 3.4.2.5 gives rise to a finite morphism

Tws
X/k(n,O, c/2n)→ (MX

n (c)
s)mod
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from the coarse space of Paragraph 6.2.5 which is invariant for the natural action
of PicX/k[n] on Tws

X/k(n,O, c/2n) and such that the natural map

χ : Tws
X/k(n,O, c/2n)/PicX/k[n] → (MX

n (c)
s)mod

is birational. Since the coarse space of a normal tame Deligne–Mumford stack is
normal, it follows from Zariski’s Main Theorem that χ is an isomorphism. Since
Tws

X/k(n,O, c/2n) is lci, it follows that (MX
n (c)

s)mod is lciq. �

6.4. Stackification is unnecessary on a surface. Let f : X→ S be a smooth pro-
jective relative surface. We will prove here that pregeneralized Azumaya algebras
on X as in Section 5.2 form a stack on S.

Given a pregeneralized Azumaya algebra A on X , Lemma 5.2.1.11 produces
a Gm-gerbe X, an X-twisted sheaf F, and an isomorphism of generalized Azu-
maya algebras B := Rπ∗REnd(F) ∼→ A. We will show that in fact B and A are
isomorphic as pregeneralized Azumaya algebras. We will temporarily call B the
associated twisted derived endomorphism algebra (or TDEA for short).

Proposition 6.4.1. Suppose f : X → S is a smooth (possibly nonproper) relative
surface over an affine scheme. Any pregeneralized Azumaya algebra A is isomor-
phic to the associated TDEA in PR. Furthermore, the isomorphisms of two such
weak algebras form a sheaf on S.

Proof. By standard arguments (for example, [Beı̆linson et al. 1982, Theorem 3.2.4]
or [Abramovich and Polishchuk 2006, Theorem 2.1.9]), it suffices to prove that
Ext−i (A,A)= 0 for all i > 0 (as long as we allow f : X→ S to be arbirary with
the stated hypotheses). From the definition of pregeneralized Azumaya algebra,
we know that A has cohomology only in degrees 0 and 1, that H0(A) has totally
pure fibers over S, and that H1(A) has support with relative dimension 0. The
natural triangle

H0(A)→A→H1(A)[−1]
+
−→

gives rise to an exact sequence

Ext−i (H1(A),A[1])→ Ext−i (A,A)→ Ext−i (H0(A),A).

The left-hand group fits into an exact sequence

Ext−i (H1(A),H0(A))→ Ext−i (H1(A),A[1])→ Ext−i (H1(A),H1(A))

and the right-hand group fits into an exact sequence

Ext−i (H0(A),H0(A))→ Ext−i (H0(A),A)→ Ext−i−1(H0(A),H1(A)).

(This is simply an explicit description of a certain spectral sequence, which is espe-
cially simple because A has so few cohomology sheaves.) We wish to show that the
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ends of the last two sequences vanish, for which it is enough to show (using the
local-to-global Ext-spectral sequence) that the Ext-sheaves Ext∗(H∗(A),H∗(A))

vanish for appropriate indices. But there are no negative Ext-groups for modules
over a ring. This completes the proof. �

Remark 6.4.2. When X/S is quasiprojective, one can also give an explicit proof of
Proposition 6.4.1 (which does not rely on [Beı̆linson et al. 1982]) using resolutions
by sums of powers of O(1).

6.5. Deformation theory and the virtual fundamental class. Let k be an alge-
braically closed field and X/k a smooth projective surface over k. Fix a µn-gerbe
X→ X with n invertible in k.

6.5.1. Perfect obstruction theory for twisted sheaves. Let F be the universal X-
twisted sheaf on X × Tws

X/k(n,O). Write p (resp. q) for the projection of X ×

Tws
X/k(n,O) to X (resp. Tws

X/k(n,O)). Recall that there is a natural isomorphism

LX×Tws
X/k(n,O)

∼= Lp∗LX⊕Lq∗LTws
X/k(n,O),

and that there is an isomorphism of functors (coming from Grothendieck duality
for q)

Lq∗ ∼= Lq !
L
⊗Lp∗ω∨X [−2].

The Atiyah class
F→ LX×Tws

X/k(n,O)
L
⊗F[1]

yields by projection a map

F→ Lq∗LTws
X/k(n,O)[1]

L
⊗F.

Since F is perfect, this is equivalent (by the cher à Cartan isomorphism) to a map

REnd(F)→ Lq∗LTws
X/k(n,O)[1],

yielding a map

REnd(F)→ Lq !LTws
X/k(n,O)[−1]

L
⊗Lp∗ω∨X .

Applying Grothendieck duality yields a morphism

b : Rq∗RHom(F,Lp∗ωX
L
⊗F)→ LTws

X/k(n,O)[−1]

and restriction to the traceless part finally yields a morphism

b0 : Rq∗RHom(F,Lp∗ωX
L
⊗F)0→ LTws

X/k(n,O)[−1]

Proposition 6.5.1.1. The shifted map b0[1] gives a perfect obstruction theory for
Tws

X/k(n,O).
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Proof. There are three things to check: that the complex Rq∗RHom(F,Lp∗ωX
L
⊗

F)0 is perfect of amplitude [0, 1], that b0 induces an isomorphism on H1 sheaves,
and that b0 induces a surjection on H0 sheaves. The first assertion follows from the
compatibility of the formation of the complex with base change on Tws

X/k(n,O)

(which shows that it is perfect, as its fibers are bounded complexes on regular
schemes) and the fact that the fibers of R2q∗RHom(F,Lp∗ωX

L
⊗F)0 over geometric

points of Tws
X/k(n,O) compute (by Serre duality) the traceless endomorphisms of

stable sheaves, which must be trivial (so that the amplitude is as claimed). The
other two assertions will follow from Illusie’s theory. We already know (thanks to
Illusie) that deformations and obstructions are governed by Atiyah classes; we will
describe how this allows us to show that b0 gives a perfect obstruction theory.

Since both the domain and codomain of b0 have no cohomology above degree
1, to show that b0 induces an isomorphism on H1 sheaves, it suffices to show
this after base change to geometric points of Tws

X/k(n,O). Given a geometric
point x → Tws

X/k(n,O) corresponding to a twisted sheaf on X⊗ κ(x), we know
that Hom(LTws

X/k(n,O), κ(x)) is naturally identified with the space T of first order
determinant-preserving deformations of F over κ(x)[ε]. Moreover, by the functo-
riality of our construction with respect to base change on Tws

X/k(n,O), the map b0

is the Serre dual of the Kodaira–Spencer map T → Ext1(F, F)0 (see, for example,
[Huybrechts and Lehn 1997, Example 10.1.9]). This is well-known to give an
isomorphism (for example, [Huybrechts and Lehn 1997, Section 10.2]).

To show that H0(b0) is surjective, we may proceed as follows. Recall from
[Illusie 1971, IV.3.1.8] that if A → A0 is a small extension of B-algebras with
kernel I in a topos and M is an A0-module, then one can find the obstruction to
deforming M to an A-module as the composition

M→ L A0/B
L
⊗M[1] → I

L
⊗M[2] → I ⊗M[2],

where the first map is the Atiyah class of M with respect to A0/B, the second map
comes from the morphism L A0/B → I parametrizing the class of the extension
A→ A0, and the third map is the natural augmentation onto the zeroth cohomology
module. To apply this to our case, consider a situation

Spec B← Spec B0→ Tws
X/k(n,O)

with B→ B0 a small extension of strictly Henselian local rings and kernel anni-
hilated by the maximal ideal of B. We let A be the structure sheaf of X× Spec B
and A0 that of X×Spec B0 = X×Spec B×Spec B Spec B0. Thus, we have that

L A0/B = Lp∗LX⊕Lq∗L B0/B .
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Moreover, it is clear that the morphism L A0/B → OX⊗ I [1] parametrizing the
extension A→ A0 is given by the map

L A0/B→ Lq∗L B0/B→ Lq∗ I [1].

By functoriality, composing the Atiyah class with the natural map

LTws
X/k(n,O)|B0 → L B0/B

gives rise to the map

F→ Lq∗L B0/B
L
⊗F[1]

associated to the projection of the Atiyah class. Thus, we find that the obstruc-
tion to deforming F over B is the element corresponding by Serre duality to the
composition

Rq∗RHom(F,Lq∗ω
L
⊗F)|B0 → LTwX/k(n,O)[−1]|B0 → L B0/B[−1] → κ.

On the other hand, the last two arrows give precisely the obstruction to extending
the map Spec B0 → TwX/k(n,O) to a map Spec B → TwX/k(n,O). Thus, the
entire composition is trivial if and only if the composition of the last two maps
is trivial. Since any map LTwX/k(n,O) → κ[1] factors through some deformation
situation B → B0, this shows that H0(b) is surjective. Using the fact that n is
invertible in k, and thus the existence of a splitting trace map, it is easy to see that
the canonical obstruction given here actually lies in the traceless part of Ext2(F,F);
this shows that in fact H0(b0) is surjective, as desired. �

The deformation theory described here has a concrete form: given a generalized
Azumaya algebra REnd(F) on X , the first-order infinitesimal deformations form a
pseudo-torsor under the hypercohomology H1(X,REnd(F)0), while there is nat-
urally a class in H2(X,REnd(F)0) giving the obstruction to deforming F. When
F is locally free, so that REnd(F) ∼= A is an Azumaya algebra, we recover the
well-known fact that H1(X, A0) parametrizes deformations of A, while H2(X, A0)

receives obstructions. If A ∼=Hom(V) is the sheaf of endomorphisms of a locally
free sheaf on X with trivial(ized) determinant, our general machine simply says
that the deformation and obstruction theory of the algebra A is the same as the
deformation and obstruction theory of V as a locally free sheaf with trivialized
determinant. (This similarly describes the deformation theory of a twisted sheaf
with trivialized determinant.)

6.5.2. The virtual fundamental class of GAzX/k(n)s . By construction, GAzX/k(n)s

is a subfibered category of the fibered category of weak algebras on Xrét. As such,
there is a universal generalized Azumaya algebra A on X ×GAzX/k(n)s whose
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fibers over the moduli space have cohomology class [X]. If

π : Y→ X ×GAzX/k(n)s

is the gerbe of trivialized trivializations of A, then A ∼= Rπ∗REnd(F) for some
Y-twisted sheaf F. Moreover, the covering Tws

X/k(n,O)→GAzX/k(n)s gives rise
to an isomorphism

ρ : Y×X×GAzX/k(n)s X ×Tws
X/k(n,O) ∼→ X×Tws

X/k

as well as an isomorphism G→ ρ∗F, where G is the universal twisted sheaf on
X×Tws

X/k(n,O). There results from this a natural isomorphism of weak algebras
REnd(F) ∼→ Lρ∗A.

Letting A0 ⊂A be the traceless part, there is an induced isomorphism

REnd(F)0 ∼→ Lρ∗A0.

Applying Proposition 3.4.3.7 and Proposition 6.5.1.1, we conclude that there is a
perfect obstruction theory A0→ LGAzX/k(n)s , giving rise to a virtual fundamental
class on GAzX/k(n)s .

6.6. A potential application: numerical invariants of division algebras over func-
tion fields. Suppose that the cohomology class α of X in H2(X,Gm) has order n.
If A is an Azumaya algebra of degree n with cohomology class α, then the generic
fiber of A must be a finite dimensional central division algebra D over the function
field k(X). In this case, we have an especially nice description of the stable locus.

Lemma 6.6.1. When [X] has order n in H2(X,Gm), any PGLn-torsor T with class
α is stable.

Proof. Indeed, if A is the Azumaya algebra associated to T then any nonzero right
ideal must have rank n2, since the generic fiber of A is a division algebra. �

Thus, GAzX/k(n)s is a proper Deligne–Mumford stack which carries a virtual
fundamental class, as described in Section 6.5.2. The following question was asked
by de Jong.

Question 6.6.2. Does the virtual class [GAzX/k(n)s]vir lead to any new numerical
invariants attached to D?

Via Proposition 3.4.3.7, any invariants coming from [GAzX/k(n)s]vir will be
closely related to similar numbers attached to [Tws

X/k(n,O)s]vir. One might expect
the latter invariants to be related to Donaldson invariants.

One interesting direct comparison might arise as follows: suppose given a family
of surfaces X→ S and a class α∈H2(X,µn)with n invertible on the base, such that
there are two geometric points 0, 1→ S such that α|X0 has order n in H2(X0,Gm)

and α|X1 vanishes in H2(X1,Gm). (This happens whenever there is jumping in
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the rank of the Néron–Severi group in the family.) Assuming one could prove
deformation invariance of whatever invariants one eventually defines, one would
then be able to give a direct comparision between the division-algebra invariants
attached to X0 and the classical invariants attached to X1.
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Effectiveness of the log Iitaka fibration
for 3-folds and 4-folds
Gueorgui Todorov and Chenyang Xu

We prove the effectiveness of the log Iitaka fibration in Kodaira codimension two
for varieties of dimension ≤ 4. In particular, we finish the proof of effective log
Iitaka fibration in dimension two. Also, we show that for the log Iitaka fibration,
if the fiber is of dimension two, the denominator of the moduli part is bounded.

1. Introduction

One of the main problems in birational algebraic geometry is to understand the
structure of pluricanonical maps. If X is a smooth complex projective variety of
dimension n, then we define the pluricanonical maps

φr K X : X 99K P(H 0(X,OX (r K X ))),

determined by the linear system |r K X |. If this linear system is nonempty for some
natural number r , which is conjecturally equivalent to X being nonuniruled, then
for r sufficiently divisible, the maps φr K X become birational to a fixed algebraic
fiber space φ : X ′−→Y ′ called the Iitaka fibration of X , and the Kodaira dimension
κ(X) is set to be dim Y ′. It is then natural to look for a uniform r (that is, an
integer r that depends only on the dimension of X ) for which we are inducing a
map birational to the Iitaka fibration. After the monumental work [Birkar et al.
2006] of proving the finite generation of the pluricanonical rings, the effective
Iitaka fibration problem is largely related to finding generators which are less than a
uniform degree for a given dimension. If κ(X)=dim X , then X is called of general
type and in this case Hacon–McKernan [2006] and Takayama [2006], following
ideas of Tsuji, have shown that for a smooth projective variety of general type and
dimension n, there exists an integer rn , that depends only on n, such that φr K X

is birational for r ≥ rn . The question remains widely open when the Kodaira
dimension is not maximal and it is completely known only up to dimension three
[Kawamata 1986; Fujino and Mori 2000; Viehweg and Zhang 2007; Ringler 2007].

MSC2000: primary 14E05; secondary 14J35, 14J30.
Keywords: Iitaka fibration, boundedness.
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The current approach for studying this problem is by using Kawamata’s canon-
ical bundle formula which identifies the pluricanonical ring of X with the pluri-
canonical ring of a pair (Y,1+ L) of log general type [Fujino and Mori 2000;
Prokhorov and Shokurov 2009], where (Y,1) is a KLT pair (KLT = Kawamata
log canonical; see Definition 1.4) and L is a Q-line bundle coming from variation
of Hodge structure. This raises the natural question of a log analogue of the above
statement. Another setting where boundary divisors naturally occur is in moduli
problems. Because of the presence of a boundary divisor the best statement that we
can hope for is the following: for (X, D) a KLT pair of Kodaira dimension κ ≥ 0
there is a natural number m, that depends only on the coefficients of 1 and the
dimension of X such that

∣∣bm(K X +1)c
∣∣ is birational to the Iitaka fibration. To

be able to use the canonical bundle formula inductively we have to allow that the
coefficients of 1 lie in a possibly infinite set of rational numbers. The condition
that captures the property of this set is the descending chain condition (DCC). At
first glance, it may seem to be quite technical and somewhat artificial. However, it
turns out to be a very natural and useful condition arising in many questions. See
[Shokurov 1992] and [Kollár 1994] for more detailed discussions of this. Thus the
general conjecture is formulated as follows.

Conjecture 1.1 (Effective log Iitaka fibration conjecture). Let (X, D) be a KLT
(or ε-lc) pair such that K X + D is pseudo-effective and the coefficients in D are in
a DCC set A. Then there is a constant r depending only on the dimension X and
on A such that

∣∣br(K X + D)c
∣∣ induces a map birational to the Iitaka fibration.

For a pair (X, D), the log Kodaira dimension is defined as the Iitaka dimension
κ(K X + D) [Lazarsfeld 2004, 2.1.3]. For some partial results toward Conjecture
1.1 see [Pacienza 2007]. In this note, we prove the following.

Theorem 1.2. Let (X,1) be a KLT pair of dimension two, three or four and log
Kodaira codimension two. Assume that the coefficients of 1 are in a DCC set of
rational numbers A ⊂ [0, 1]. Then there is an explicitly computable constant m
depending only on the set A such that bm(K X +1)c induces the Iitaka fibration.

The proof of the above theorem contains three parts. First, we prove the dimen-
sion-two case of Theorem 1.2. This is done in Theorem 3.1 and the hardest case
there is when X itself is a ruled surface over a curve of positive genus. This
completes the effectiveness of log Iitaka fibration in dimension two (for the other
cases, see [Todorov 2008]). For this case, it relies on results from [Alexeev 1994]
and [Alexeev and Mori 2004].

Then for the higher dimensional case, the key tool is the canonical bundle for-
mula [Kawamata 1998; Fujino and Mori 2000; Kollár 2007]. In our case it roughly
says that if f : X −→ Y is the Iitaka fibration for K X +1 and K X +1 = f ∗D
for some Q-divisor D on Y , then we can define the discriminant or divisorial part
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on Y for K X +1 to be the Q-Weil divisor BY :=
∑

P bP P , where 1− bP is the
maximal real number t such that the log pair (X,1+ t f ∗(P)) has log canonical
singularities over the generic point of P . The sum runs over all codimension-one
points of Y , but it has finite support. The moduli part or J-part is the Q-line bundle
MY on Y that satisfies

K X +1= f ∗(KY + BY +MY ).

If F is the general fiber of f and if h0(F, b(KF +1|F )) 6= 0, then for every
integer r divisible by b we have

H 0(X, br(K X +1)c)= H 0(Y, br(KY + BY +MY )c).

Using ideas of Mori and Fujino, and the two-dimensional case of Theorem 1.2, we
can bound the denominators in relative dimension two.

Theorem 1.3. When the relative dimension of f is two, there is a natural number
m depending only on the coefficients of 1 such that mM is Cartier.

Note that Theorem 1.3 holds for pairs of arbitrary dimension.
Finally, after these preparations, to finish the proof it suffices to observe that the

results of [Fujino and Mori 2000] in Kodaira dimension-one case and of [Viehweg
and Zhang 2007] in Kodaira dimension-two case can be indeed generalized to a log
version. Namely, for an n-dimensional pair (X,1) of log Kodaira dimension one or
two with Iitaka fibration f : X→ Y with general fiberF , there is a constant m, that
depends only on the number b satisfying b(KF+1|F )∼0, the middle Betti number
of the associated b-fold cyclic cover and the coefficients of 1, such that bm(K X +

1)c induces the Iitaka fibration. In the three-dimensional case of Theorem 1.2, the
base is a curve and the conclusions follow from Theorem 1.3 by the same arguments
as in [Fujino and Mori 2000]. When the dimension is four, a key observation is that
many results in [Alexeev and Mori 2004] can be improved by adding a nef divisor
(Proposition 4.3). Similar statements were essentially proved in [Viehweg and
Zhang 2007], but we will simplify the proof by putting it in the context of [Alexeev
1994; Alexeev and Mori 2004] and the recent mainstream of investigations on
adjoint linear systems.

We remark that Conjecture 7.13 of [Prokhorov and Shokurov 2009] — in fact a
list of conjectures — concerns the solution of the effective Iitaka fibration problem.
We have shown item (2) of that list, in the relative dimension-two case. (However,
we do not prove the semiampleness statements in items (1) and (3) of Prokhorov
and Shorukov’s Conjecture 7.13.)

The paper is structured as following. In Section 2, we show that the DCC as-
sumption on the coefficients of the boundary indeed forces that the KLT surface
pairs of log Kodaira dimension zero to be ε-log canonical, for some ε depending
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on the set of coefficients. In Section 3, we prove that under the same assumption
there is a uniform b such that b(KS + B) ∼ 0. In Section 4, using ideas of Mori
and Fujino, we deduce Theorem 1.3 and complete the proof of Theorem 1.2.

Notations and conventions. We will work over the field of complex numbers C.
A Q-Cartier divisor D is nef if D ·C ≥ 0 for any curve C on X . We call two Q-
divisors D1, D2 Q-linearly equivalent D1 ∼Q D2 if there exists an integer m > 0
such that m Di are integral and linearly equivalent. We call two Q-Cartier divisors
D1, D2 numerically equivalent D1 ≡ D2 if (D1− D2) ·C = 0 for any curve C on
X . A log pair (X,1) is a normal variety X and an effective Q-Weil divisor1 such
that K X +1 is Q-Cartier. A projective morphism µ : Y −→ X is a log resolution
of the pair (X,1) if Y is smooth and µ−1(1)∪ {exceptional set of µ} is a divisor
with simple normal crossing support. For such µ we write µ∗(K X+1)= KY +0,
and 0 =6ai0i where 0i are distinct integral divisors.

Definition 1.4. A pair is called KLT (resp. lc, ε-lc) if there is a log resolution
µ :Y −→ X such that in the above notation we have ai <1 (resp. ai ≤1, ai ≤1−ε).
The number 1−ai is called the log discrepancy of0i with respect to the pair (X,1).

For conventions and results about DCC set we refer to [Alexeev and Mori 2004],
in particular, 2.2–2.7 and 3.4–3.6. When we say some quantity is bounded, it
always means there is a computable bound depending on the data we give. We
will not keep track of the explicit bound, but it does not require much effort to do
so, following the arguments in [Alexeev and Mori 2004]. (Most of the results about
surfaces that we use appear already in [Alexeev 1994], but to make the constants
explicitly computable, we refer to the joint paper, which is more recent.)

2. ε-log canonicity

The main result of this section is this:

Theorem 2.1. Let (S, B=
∑

bi Bi ) be a KLT projective surface pair. If KS+B≡0
and the coefficients of B are in a DCC set A, then there exists an ε = ε(A) > 0
that only depends on A such that (S, B) is ε-log canonical.

Proof. We can run a minimal model program for S,

S = S0→ S1→ · · · → Sn.

By pushing forward B to Sn , we see that it suffices to prove the statement for Sn . So
we need only prove the case that S is a log del Pezzo surface of Picard number 1, S
admits a Fano contraction to some curve with a general fiber P1, or S has KS ≡ 0.
This is done in Lemmas 2.4–2.6. �

The main tool we use is the following theorem,
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Theorem 2.2 [Alexeev and Mori 2004, Theorem 3.2]. Let A ⊂ [0, 1] be an arbi-
trary DCC set. There exists a constant δ = β(A) depending only on A such that
the following holds. Let X be a normal projective surface, B j be divisors on X ,
and let b j , x j be positive real numbers. Assume that

(1) X is a singular Q-factorial surface with −K X ample and ρ(X)= 1;

(2) b j > 0 and b j ∈A;

(3) 1− δ < x j ≤ 1;

(4) at least one x j is strictly less than 1;

(5) the pair (X,
∑

x j b j B j ) is lc.

Then the divisor K X +
∑

x j b j B j is not numerical equivalent to 0.

Lemma 2.3 [Alexeev and Mori 2004, Lemma 3.6]. Let A be a DCC set containing
1. Let a, δ > 0 such that δ ≤ m f2(A, a) (see [Alexeev and Mori 2004, 3.5] for the
definition of the function m f2(A, a)). Consider finitely many b j , x j ∈ R such that
0< b j ∈A, 1− δ < x j ≤ 1 for all j , and x j < 1 for some j . Then

∑
x j b j 6= a.

Lemma 2.4. If S is a log del Pezzo surface of Picard number 1. B =
∑

b j B j is a
Q-divisor such that KS + B ≡ 0, (S, B) is KLT and the coefficients of B are in a
DCC set A. Then S is ε = ε(A)-log canonical.

Proof. We assume 1 ∈ A. If (S, B) is not ε-log canonical, then we can extract a
divisor f : S′→ S such that

f ∗
(
KS +

∑
b j B j

)
≡ KS′ +

∑
b j B j + (1− a)E,

with a < ε. S′ has Picard number 2, so it has two extremal rays, one of which is
given by E . Contracting the other extremal ray we obtain a morphism S′→ S0 to a
surface S0. In fact if S0 were a curve, by taking the intersection of KS′+

∑
b j B j+

(1− a)E with a general fiber, we have∑
ni b j + n(1− a)= 2,

where ni ≥ 0 and n > 0 are integers, which contradicts Lemma 2.3, provided we
choose ε = m f2(A, 2). Then S0 is a log del Pezzo of Picard number 1. Now g
does not contract E , and

g∗
(
KS′ +

∑
b j B j + (1− a)E

)
= KS0 + (1− a)E +

∑
b j g∗(B j )≡ 0.

Since KS + B ≡ 0 we still have that (S0, (1− a)E +
∑

b j g∗(B j )) is a KLT pair.
Then, applying Theorem 2.2 to S0 with bE = 1, xE = (1−a), all other x j = 1 and
ε= δ, we conclude that KS0+(1−a)E+

∑
b j g∗(B j ) is not numerically equivalent

to zero, which is a contradiction. �
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Lemma 2.5. Let (S, B)→ C be a morphism from a surface to a curve, such that
the generic fiber is P1 and let (S, B) be KLT with the coefficients of B in a DCC
set A. Then S is ε = ε(A)-log canonical.

Proof. Suppose that this is not the case. Then extract a divisor f : S′→ S such that

f ∗
(
KS +

∑
b j B j

)
≡ KS′ +

∑
b j B j + (1− a)E,

with a < ε. Running a minimal model program for (S′,
∑

b j B j ) that does not
contract E , we end up with a surface S′′ that is either log del Pezzo or admits a
Fano contraction to a curve. Furthermore the coefficients of E in the pair (S′′, B ′′)
is (1− a) and S′′+ B ′′ ≡ 0.

In the case S′′ is log del Pezzo, we get a contradiction as in Lemma 2.4. If S′′

admits a Fano contraction to a curve, by intersecting with a general fiber, we can
apply the argument in Lemma 2.4 again. �

Finally we deal with the case in which KS is numerically trivial.

Lemma 2.6. There is ε > 0 such that every KLT surface with KS ≡ 0 is ε-log
canonical.

Proof. Set ε = min{β({1}),m f2({1}′, 2)}. Suppose that S is not ε-log canonical
and extract a divisor E by f : S′ → S such that f ∗(KS) = KS′ + (1− a)E and
0 < a < ε. Then running a minimal model for S′, which does not contract E , we
can apply one of the above two cases. �

3. Bounding the index

Observe that the weighted projective space P(a, b, c) with three lines (xi = 0)
forms an unbounded family of lc surface pairs when we vary a, b and c, and the
coefficients are in the DCC set {1}. However by restricting to the KLT case we
have the boundedness result:

Theorem 3.1. If (S, B) is a KLT pair of dimension 2 such that KS + B ≡ 0 and
the coefficients of B are in a DCC set A, there is a natural number b = b(A) such
that b(KS + B) is Cartier and H 0(S, b(KS + B))= 1.

From Theorem 2.1 we know that there is an ε > 0 such that (S, B) is ε-log
canonical; we will assume 0< ε < 1/

√
3.

Lemma 3.2 [Alexeev and Mori 2004, Lemma 1.2, Theorem 1.8]. Let X be a non-
singular projective surface and B =

∑
b j B j be an R-divisor on X with 0 ≤ b j ≤

1− ε < 1. Assume K X + B ≡ 0. Then

(1) if E is an irreducible curve on X and E2 < 0, then E ∼= P1 and E2 >−2/ε;

(2) ρ(X)≤ 128/ε5.
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Proposition 3.3. Let (S, B) be as in Theorem 3.1. There exists an integer t = t (ε)
such that for any Weil divisor D on S, t D is Cartier.

Proof. The argument is parallel to the one in [Alexeev and Mori 2004, Lemma
3.7], though there S is assumed to be a del Pezzo surface of Picard number 1.

Take the minimal resolution f : S̃→ S of S and write

f ∗(KS)= K S̃ +
∑

ai Ei .

Applying Lemma 3.2, we conclude that the determinant t of the intersection matrix
of the exceptional curves (−Fi Fk)ik is bounded by

t ≤ [2/ε][128/ε5
].

Since S has rational singularities, for any Weil divisor D on S, t D is a Cartier
divisor. �

In the next proposition we repeatedly use the trivial property of DCC set stated
in the following Lemma.

Lemma 3.4. Let c be a positive real number and A⊂ [0, 1] a DCC set. Then there
are a finite number of ways to write c as the sum of ai ∈A.

Proposition 3.5. Let (S, B) be as in Theorem 3.1. There exists an integer t = t (ε)
such that t (KS + B) is Cartier.

Proof. This follows from Proposition 3.3 once we make sure that there is a uniform
multiple of KS + B that is a Weil divisor for all pairs (S < B) satisfying our
conditions.

Running a minimal model program for S, we end up with a KLT surface f :
S→ S′. If t (K ′S + B ′) is Cartier, since

f ∗(t (KS′ + B ′))∼ t (KS + f −1
∗

B ′+ ai Ei )

and
KS + f −1

∗
B ′+ ai Ei ≡ KS + B ≡ 0,

we conclude that KS+ f −1
∗

B ′+ai Ei = KS+B, so it suffices to prove it for (S′, B ′).
S′ is either of Kodaira dimension 0, has a contraction to a curve with general fiber
P1 or a log del Pezzo surface, so we need only prove the proposition in these cases.

Case 1: S has Kodaira dimension 0. Then B = 0 and it follows directly from
Proposition 3.3.

Case 2: S admits a contraction to a curve f : S→C with the general fiber P1. By
taking the intersection of (S, B) with a generic fiber, we have

2=
∑

f (B j ) 6=pt

a j , where a j ∈A′.
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On the other hand, applying the canonical bundle formula in this simple case, we
have

KS + B ≡ f ∗(KC + BC)≡ 0, where BC =
∑

f (B j )=Pj

a j + n− 1
n

Pj .

From Lemma 3.4 we know that there are only finitely many choices of a j , and we
choose a natural number N = N (A) that clears all the denominators of a j .

Case 3: S is a log del Pezzo surface of Picard number one. For t as in Proposition
3.3, KS +

∑
b j B j ≡ 0 implies that

−t K 2
S =

∑
tb j B j · KS.

Here t K 2
S and t B j · KS are integers. From the proof of [Alexeev and Mori 2004,

Lemma 3.7], we can bound t K 2
S by

t K 2
S ≤ [2/ε]

[128/ε5
] ([2/ε] + 2)2.

Lemma 3.4 implies that there are only finitely many possible bi appearing as the
coefficients of the boundary divisor. So there is a positive number N = N (A) such
that N KS and N (b j B j ) are all Cartier divisors. �

In view of this discussion, if we take the minimal resolution π : S̃ → S of S
and pull back KS + B, then the denominators can be killed by a uniform multiple
t = t (ε). Running a minimal model program for S̃, thus we only need to prove
Theorem 3.1 in the case that S is a smooth minimal surface and that the coefficients
of B all have the form r/t for some uniform t . When KS ≡ 0, then B = 0, then it
is from the classification theory of smooth surfaces; when S is rational, a Cartier
divisor is numerically trivial if and only if it is a trivial divisor. Thus the only tricky
case is the following.

Lemma 3.6. If S is a smooth minimal ruled surface over a curve of positive genus
and there is a Q-divisor B such that (S, B) is KLT and KS+B≡0, then S= E×P1,
where E is an elliptic curve. In particular, if there is some integer N such that NB
is an integer divisor, then O(N (KS + B))∼= OS .

Proof. We use conventions for ruled surfaces as in [Hartshorne 1977, V.2]. Let
π : S→ C be P(E) over a curve C of positive genus g and let the general fiber of
π be F . We can assume H 0(E) 6= 0 and H 0(E⊗ L)= 0 for any line bundle L of
degree −1. Then e=− deg(E) is an invariant of S. There is a section C0 such that
C0|C0 =

∧2 E, which we denote as D. Then deg(D)=−e.

KS ∼−2C0+π
∗(KC + D).
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Then we have

0= (KS + B) ·C0 = e+ 2g− 2+ tC2
0 +

∑
Bi 6=C0

bi Bi ·C0 ≥ 2g− 2+ (1− t)e,

where t < 1 is the coefficient of C0 in B. So e ≤ 0, and if e = 0, then g = 1. On
the other hand, if e < 0, it follows from [Hartshorne 1977, V.2.21] that

B ·C0 ≥ (2C0+ eF) ·C0 ≥−e,

so again we conclude g= 1. And the equality holds only when for each irreducible
component Bi of Supp(B), gi : Bi → C is unramified.

Now we have Bi ≡ a(2C0+ eF) and B2
i = 0.

Claim. For g : Bi → C , there are line bundles M and N on Bi such that

0→ O→ g∗(E)⊗M→ N → 0 and deg N = 0.

Proof of the claim. It suffices to show that h(Bi )
2
= 0, where h : Bi → PBi (g

∗

i E)

is the induced section. But for Bi ⊂ P(E),

0→ IBi /I 2
Bi
→�1

P(E)⊗ Bi →�1
Bi
→ 0,

where deg(IBi /I 2
Bi
) = 0. Since Bi → C is unramified, the same exact sequence

indeed also computes the conormal bundle of h(Bi )⊂PBi (g
∗

i E); thus we conclude
that h(Bi )

2
= 0. �

If e > 0, then E is indecomposable which also means it is stable. But the exact
sequence of the claim shows that g∗(E) is not semistable, which is a contradiction.

When e = 0, if E is indecomposable, then E is given by a nonsplit extension

0→ O→ E→ O→ 0.

For any isogeny g : B → C , if there is a surjection g∗(E)→ G → 0 for a line
bundle G of degree 0, then it is given by the pull-back of the above exact sequence.
So B = 2C0, which contradicts the assumption that (S, B) is KLT. Similarly, if
E = O⊕ L for some degree-0 bundle L , we have at most two candidates for Bi ,
which again contradicts (S, B) being KLT.

Finally, when E= O2, all candidates of Bi are proportional to C0. Thus the last
statement of the lemma holds. �

4. Effectiveness of the Iitaka fibration

In this section we prove the effectiveness of the log Iitaka fibration for (X,1) a
KLT pair of dimension three and four and log Kodaira codimension two.
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Consider a log resolution π : X ′ −→ X of (X,1) and write

π∗(K X +1)≡ K X ′ + (π
−1)∗1+

∑
i

ei Ei ,

with Ei exceptional. There is a natural number n such that ei < 1− 1
n

for every i .
Define

1′ = (π−1)∗1+
∑(

1−
1
n

)
Ei .

Since all Ei are exceptional divisors, we have

H 0(X ′, bm(K X ′ +1
′)c)= H 0(X, bm(K X +1)c).

By replacing the A with the DCC set A∪ {1− 1
n |n ∈N}, we can assume that X is

smooth and 1 is simple normal crossing. Furthermore, we can assume that there
is a morphism f : X −→ Y giving the Iitaka fibration for K X+1 with Y a smooth
projective variety of dimension m [Lazarsfeld 2004, 2.1.C]. For F the general fiber
of f , we have that κ(KF +1F )= 0.

From Kawamata’s canonical bundle formula, we know that there is a Q-line
bundle M = M SS

(M,1)/Y , a Q-divisor B on Y and a Q-divisor R on X such that

K X +1∼Q f ∗(KY + B+M + B)+ R,

where the terms in the formula satisfy the property that if b(KF +1F ) is Cartier
and h0(F, b(KF +1F ))= 1, then for any r ∈ Z≥0 divided by b,

H 0(X, br(K X +1)c)= H 0(Y, br(KY +M + B)c),

[Fujino and Mori 2000, Theorem 4.5]. M and B are usually referred as the moduli
part and the boundary part of the algebraic fiber space.

Proof of Theorem 1.3. First we can assume that (F,1F ) is a minimal pair, that is,
KF +1F ≡ 0. In fact, from [Kollár 2007, Definition 8.4.6], we know the moduli
part M only depends on the birational class of the morphism X→ Y , and we can
choose one such that the generic fiber is minimal. Hence Theorem 2.1 implies that
(F,1F ) is ε = ε(A)-lc.

Let d be the smallest positive integer such that d(KF + 1F ) is Cartier and
h0(F, d(KF +1F ))= 1. Note that here we do not need the uniform integer from
Theorem 1.3. Then we can construct the corresponding cyclic cover g : E → F ,
and let φ : E ′ → E be the minimal resolution of E . Then, as in [Fujino and
Mori 2000, Theorem 3.1], it suffices to bound the second Betti number of E ′.
Write g∗(KF +1F )= KE +1E . From [Kollár and Mori 1998, 5.20.3], we know
(E,1E) is ε-log canonical, provided that so is (F,1F ), which is the case because
of Theorem 2.1. Pulling back to E ′, we conclude that (E ′,1E ′) is ε-log canonical.
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Then [Alexeev and Mori 2004, Theorem 1.8] implies that ρ(E ′) ≤ 128/ε5. Thus
the second Betti number of E ′ is bounded by a constant depending only on A.

The remainder of the proof was indeed given in [Todorov 2008, Section 3]. We
give a sketch here. First we assume that the generic fiber (F,1F ) is log smooth.
Then, as in [Kollár 2007, 8.4.5(7)], we can define a local system V on an open
set U ⊂ X . Furthermore, if the monodromy action on R2 f∗(V) is unipotent, the
moduli part M is identified with the bottom Hodge filtration of R2 f∗(V), which is
an integral divisor. In general, we take a log resolution F̃→ F and write

π∗(KF +1F )= K F̃ +1F̃ −G,

where b1F̃b= 0, G ≥ 0 is an integral divisor and Supp(1F̃ ) has no common
component with G. Near every codimension one point P , there is a Galois cover
Y ′ of Y such that when we pull back everything to Y ′, the monodromy action
becomes unipotent near P . Thus as in [Fujino and Mori 2000, 3.6], the remaining
question is to bound the character of G→ Y∗ corresponding to the representation
of G on H 0(F̃,O(G)). If we write Ẽ as the degree-b cyclic cover corresponding to
b(K F̃ +1F̃ −G)∼ 0, then H 0(F̃,O(G)) is a direct summand of the bottom piece
of the Hodge filtration of H 2(Ẽ,C), which is also the bottom piece of H 2(E ′,C)

since Ẽ and E ′ are birational.
Then from [Fujino and Mori 2000, 3.8], we conclude that if the index of (F,1F )

is bounded by b=b(A) and the second Betti number of the cyclic cover is bounded
by B = B(A), then the denominator of the moduli part is bounded by

a = b · lcm{m ∈ Z>0|ϕ(m)≤ B},

where ϕ denotes the Euler ϕ-function. �

Theorem 4.1. Let the notation be as above. Assume that the coefficients of 1 are
in a DCC set of rational numbers A⊂[0, 1]. Let the dimension of X be either three
or four and the dimension of the general fiber be two. Then there is a constant N
depending only on the set A such that bN (K X +1)c induces the Iitaka fibration.

We will prove this statement when the dimension of X is four, and leave the
easier dimension-three case to the reader. In fact, this follows directly from the
argument in [Fujino and Mori 2000, Section 6], and Theorem 1.3.

As we mentioned before, the main theorem of [Viehweg and Zhang 2007] says
that for an arbitrary dimensional smooth variety X of Kodaira dimension 2, if we
assume that the generic fiber of the Iitaka fibration is a smooth variety F , then
there is a constant N depending on the middle Betti number bm of F and the index
of F , such that |N K X | gives the Iitaka fibration. The following discussion shows
this is still true for the log case. Then because of Theorems 3.1 and 1.3, where we
prove that the analogous bounds for the Betti number and the index, which only
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depend on the DCC set A, exist even in the log case, provided the generic fiber is of
dimension 2, we in fact get unconditional bounds (depending only on coefficients
set) as in Theorem 1.2.

Theorem 4.2. If (W, D) is a KLT surface, L is a nef Q-divisor (not necessarily
effective) such that and KW+D+L is big. Assume that a is a positive integer such
that aL is a Cartier divisor, the coefficients of D are in a DCC set B, then we have
a uniform N = N (a,B) such that

∣∣bN (KW + D+ L)c
∣∣ gives a birational map.

Proof of Theorem 4.1. We apply Theorem 4.2 to W =C , D= B, L =M . To check
the assumptions, the coefficients of B are of the form

b+ n− 1
n

, for some b ∈A∪ {0} and n ∈ Z>0,

[Kollár 2007, Theorem 8.3.7(2)], which forms a DCC set depending on A. And
for a, it can be chosen as in the last part of the proof of Theorem 1.3. �

Proof of Theorem 4.2. This is essentially proved in [Viehweg and Zhang 2007],
so here we only give a sketch which streamlines the arguments by using tools in
[Alexeev and Mori 2004]. As before, we can start by assuming that W is smooth.
The main observation is that in fact many of the results of Alexeev and Mori can be
strengthened in such a way that instead of assuming

(
W, D=

∑
b j D j

)
(b j ∈B) is

big, we can assume that (W, D+ L) is big, where L is a nef line bundle such that
for any curve C , L ·C is in another DCC set C. Then we get the same conclusion
by changing all our constants c = c(B) to c = c(B,C). In particular:

Proposition 4.3. Let the notation be as in Theorem 4.2. Then there is a uniform
β = β(B, a) such that KW +

∑
(1− x j )b j B j + L is big, provided x j ≤ β.

Because of Proposition 4.3 and the fact that all positive b j have a lower bound,
we can indeed assume that all b j are of the form n j/m for some m = m(B, a).

Then the usual argument of cutting log canonical centers [Todorov 2008] works
as long as we can prove that the volume of KW+

∑
(1−x j )b j B j+L has a uniform

lower bound.
Now we run the minimal model program, f : (W, D)→ (W ′, D′ = f∗(D)),

L ′ = f∗L . Because f ∗(L ′)≥ L , we have

H 0(W, bn(KW + D+ L)c)= H 0(W ′, bn(KW ′ + D′+ L ′)c) for all n.

Case 1: KW + D is pseudo-effective. Then we end up with a minimal model
(W ′, D′) such that KW ′ + D′ is nef. If KW ′ + D′ is big, this is so from [Alexeev
and Mori 2004]. Otherwise,

(KW ′ + D′+ L ′)2 = 2(KW ′ + D′) · L ′+ L ′2 > 0,

which has a uniform lower bound by our assumption.
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Case 2: KW + D is not pseudo-effective. Then we define the pseudo-effective
threshold, which is the smallest number e such that KW + D + eL is pseudo-
effective. Note that since KW+D+L is big we have that e≤ 1. Then we have two
subcases, for which we give a sketch of the argument. For details see the proof of
[Viehweg and Zhang 2007, Proposition 2.7].

Case 2a: We end up with a log del Pezzo surface (W ′, D′) of Picard number 1. So

KW ′ + D′+ eL ′ ≡ 0.

The discussion above about the generalization of [Alexeev and Mori 2004] indeed
implies that 1− e has a uniform lower bound. So (KW ′ + D′+ L ′)2 = (1− e)L ′2.

Case 3b: We end up with a Fano contraction (W ′, D′) to a curve. By the argument
above, we can assume L ′ is not big. Then W ′ is of Picard number 2 and generated
by the fiber of the Fano contraction and L ′. Taking the intersection of K ′W+D′+eL ′

with the fiber, we conclude that e is uniformly far from 1. Since the coefficients
of D′ have bounded denominators, the fact that (KW ′+D′) · L ′ is positive actually
implies it is uniformly away from 0. So the volume

(KW ′ + D′+ L ′)2 = (1− e)(KW ′ + D′) · L ′

is bounded from below. This concludes all possible cases, and hence Theorem 4.2
is proved. �
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A formalism for equivariant
Schubert calculus

Dan Laksov

In previous work we have developed a general formalism for Schubert calculus.
Here we show how this theory can be adapted to give a formalism for equivariant
Schubert calculus consisting of a basis theorem, a Pieri formula and a Giambelli
formula. Our theory specializes to a formalism for equivariant cohomology of
grassmannians. We interpret the results in a ring that can be considered as the
formal generalized analog of localized equivariant cohomology of infinite grass-
mannians.

Introduction

Schubert calculus, in the form of the cohomology, or Chow ring, of a Grassmann
variety Grassl(n) of n − l-planes in n-space, has a long and important history.
Recently much of the story has been extended to the equivariant cohomology ring,
which has a much richer structure, being an algebra over a polynomial ring with n
generators. One knows generators and relations for this algebra, and formulas for
Schubert classes, which form a basis.

In this article we give a different and more general perspective on these alge-
bras. The idea comes from a previous article [Laksov and Thorup 2009] where a
generalized Schubert calculus is considered as the ring of symmetric polynomials
A[T1, . . . , Tl]

sym in l variables over an arbitrary ring A acting on the exterior prod-
uct

∧l
A A[T ] of the polynomial ring A[T ] in one variable (see also [Gatto 2005]

and [Gatto and Santiago 2009]).
In the present article we show how this formalism, when expressed in terms of

the basis of A[T ] consisting of generalized factorial powers

(T |y)i = (T − y1) · · · (T − yi )

for given elements y1, y2, . . . in A, gives a general equivariant Schubert calculus
consisting of a basis theorem, a Pieri formula and a Giambelli formula. The theory

MSC2000: primary 14N15; secondary 57R91, 14M15.
Keywords: equivariqant cohomology, Schubert calculus, quantum cohomology, symmetric

polynomials, exterior products, Pieri’s formula, Giambelli’s formula, GKM condition, factorial
Schur functions, grassmannians.
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is further specialized for each n in [Laksov 2008] (which builds upon the results
of the present article) to give the equivariant Schubert calculus for Grassl(n), or
more generally for the l-quotients Grassl

S(E) of a locally free OS-module on any
scheme S with a bivariant intersection theory. In Section 6 of [Laksov 2008] we
gave a detailed account of the geometric interpretation of A[T1, . . . , Tl]

sym, and in
Section 7 we showed how the theory of the present article can be used to recover
the quantum and equivariant quantum cohomology of grassmannians.

The geometry whose cohomology we are generalizing can be realized as the
union of the grassmannians Grassl(n), as n goes to infinity, taken over the natural
embedding of Grassl(n) in Grassl(m), for n < m, equivariant with respect to a
natural embedding of GL(n) in GL(m). The surjections to equivariant cohomology
of Grassl(n) for each n can be constructed using the description of equivariant
cohomology that comes from localization, so that an element of the equivariant
cohomology is given by specifying a polynomial at each fixed point of the torus
(C∗)n , subject to the conditions made explicit by M. Goresky, R. Kottwitz and
R. MacPherson, and called GKM conditions.

In our generalization the connection between the above construction and the de-
scription of equivariant cohomology coming from localization is given, in the case
when A is a polynomial ring Z[y1, y2, . . . ] in independent variables y1, y2, . . . , via
an A[T1, . . . , Tl]

sym-module isomorphism∧l
A A[T ] → H(l),

where H(l) is the A-algebra consisting of elements that are of bounded total degree
in the variables y1, y2, . . . and satisfy the GKM condition in the product

∏
λ∈{

∞

l }
A

of A taken over all lists λ : λ1λ2 . . . of ones and zeros with exactly l zeros, with
coordinatewise addition and multiplication. The ring H(l) can be thought of as the
graded limit of the equivariant cohomologies of the grassmannians Grassl(n), as n
goes to infinity.

The observation that equivariant cohomology could be interpreted within the
framework of exterior powers was made in [Gatto and Santiago 2006] and [Santi-
ago 2006]. In the latter reference it was proved that there exists an isomorphism
between Schubert calculus on exterior powers, that is, Schubert calculus in a set-
ting similar to the Grassl(n) case mentioned above, and equivariant cohomology
for Grassmann manifolds, and for simple examples (projective space k = 1, and
the Knutson–Tao [2003] example with k = 2, n = 4) it was indicated what the
isomorphism should look like; see [Gatto and Santiago 2006]. It was this work
that inspired us to consider the equivariant cohomology of Grassmann schemes
and to describe the explicit isomorphism in the general case.

We note that we obtain a generalization of the full equivariant Pieri formula, and
not only the Chevalley formula for divisors (see, for example, [Knutson and Tao
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2003; Mihalcea 2006; Lakshmibai et al. 2006; Kostant and Kumar 1986; Molev
and Sagan 1999; Okun’kov and Ol’shanskiı̆ 1997] for various forms of the latter
formula). This general form was first given by T. Santiago and we essentially
reproduce the calculations of [Santiago 2006] in our language. A full version is
also obtained by S. Robinson [2002] by different methods.

Our adaption of the general Schubert calculus to the equivariant case is built
upon factorial Schur functions used by L. C. Mihalcea [2006; 2008] to describe the
equivariant quantum cohomology ring of grassmannians (see [Arabia 1989; Billey
1999; Lascoux 2003], for earlier related work on double Schubert polynomials and
complete flag varieties). We develop the theory of factorial Schur functions in such
a way that specialization of our formalism directly gives the Goresky–Kottwitz–
MacPherson description of equivariant cohomology coming from localization (see
also [Knutson and Tao 2003; Arabia 1989; Kostant and Kumar 1986]), and the
theory of L. C. Mihalcea [2006; 2008]. It should be pointed out that our equi-
variant Giambelli formula is a generalization of an unshifted version of that of
[Mihalcea 2008], that is, it uses only generalized factorial powers and not their
shifted counterparts. A different, but similar, equivariant Giambelli formula is
given in [Lakshmibai et al. 2006]. All versions specialize to the classical Gi-
ambelli formula [Fulton 1998; 1997]. Fulton [2007, Lecture 7] explains how the
equivariant Giambelli formula for grassmannians amounts to a degeneracy formula
[Kempf and Laksov 1974] in algebraic geometry.

1. Exterior powers and residues

In this section we interpret the main results of [Laksov and Thorup 2009] in terms
of factorial Schur functions. Our general version of equivariant Schubert calculus
is the general Schubert calculus interpreted using polynomials of the form

(T − y1) · · · (T − yi )

for elements y1, y2, . . . in A. These polynomials form the building blocks of the
approach to equivariant quantum Schubert calculus by Mihalcea. To facilitate the
understanding of the correspondence between our theory and Mihalcea’s we use the
notation of [Macdonald 1995, I §3 Example 20], which is also used in [Mihalcea
2008].

Notation 1.1. All rings in the following will be commutative with a unit. Let A
be such a ring. All exterior powers and tensor products will be taken with respect
to A. We denote by A[T ] and A[T1, . . . , Tl] the polynomial rings over A in 1,
respectively l, independent variables. The symmetric functions in A[T1, . . . , Tl]

we denote by A[T1, . . . , Tl]
sym. We identify the tensor product

⊗l
A A[T ] with

A[T1, . . . , Tl] and consider
⊗l

A A[T ] as a module over A[T1, . . . , Tl]
sym via this
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identification. The starting point of our interpretation of Schubert calculus is the
easily verified observation that the A[T1, . . . , Tl]

sym-module structure on the tensor
product

⊗l
A A[T ] induces an A[T1, . . . , Tl]

sym-module structure on the exterior
power

∧l
A A[T ] via the canonical surjection

⊗l
A A[T ]→

∧l
A A[T ]; [Laksov and

Thorup 2009, Section 1].
Let ei = · · · + bi,−l T−l

+ bi,−l+1T−l+1
+ · · · + bi,−1T−1

+ · · · for i = 1, . . . , l
be a collection of Laurent series with coefficients bi, j in a ring. We write, as in
[Laksov and Thorup 2009, 0.3],

Res(e1, . . . , el) := det(bi,− j )=


b1,−1 b1,−2 · · · b1,−l

b2,−1 b2,−2 · · · b2,−l
...

...
. . .

...

bl,−1 bl,−2 · · · bl,−l

 .
Let y1, y2, . . . be elements in A and write

(T |y)i = (T − y1) · · · (T − yi ) for i = 0, 1, . . . .

The polynomials (T |y)0, (T |y)1, . . . are called generalized factorial powers and
form a basis for the A-module A[T ]. Let Q(T ) = (T − T1) · · · (T − Tl), and let
b : b1 ≥ · · · ≥ bl ≥ 0 be a partition. We write

sb(T1, . . . , Tl |y)= Res((T |y)b1+l−1/Q(T ), . . . , (T |y)bl/Q(T )).

The polynomials sb(T1, . . . , Tl |y) we refer to as factorial Schur functions; [Mac-
donald 1995, I §3 Example 20].

We now rewrite the Main result 0.5 of [Laksov and Thorup 2009] in the basis
(T |y)0, (T |y)1, . . . of A[T ].

Theorem 1.2. Let Q(T ) = (T − T1) · · · (T − Tl). For every collection f1, . . . , fl

of polynomials in A[T ] and for every partition b : b1 ≥ · · · ≥ bl ≥ 0 we have:

(1) (Poincaré duality) The A[T1, . . . , Tl]
sym-module

∧l
A A[T ] is free of rank one

with generator (T |y)l−1
∧ · · · ∧ (T |y)0.

(2) (The determinantal formula)

f1 ∧ · · · ∧ fl = Res( f1/Q, . . . , fl/Q)((T |y)l−1
∧ · · · ∧ (T |y)0).

(3) (The equivariant Giambelli–Gatto formula)

(T |y)b1+l−1
∧ · · · ∧ (T |y)bl = sb(T1, . . . , Tl |y)((T |y)l−1

∧ · · · ∧ (T |y)0).
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Proof. Since we clearly have (T |y)l−1
∧ · · · ∧ (T |y)0 = T l−1

∧ · · · ∧ T 0 the first
and second assertion are equivalent to the first and second assertions of [Laksov
and Thorup 2009, 0.5].

Assertion (3) is a particular case of assertion (2). �

Notation 1.3. For every collection f1, . . . , fl of elements in A[T ] we write

(
fi (T j )

)
=

 f1(T1) · · · f1(Tl)
...

...

fl(T1) · · · fl(Tl)

 ,
and we let 1 =

∏
1≤i< j≤l(Ti − T j ) = det(T l−i

j ). The polynomial det( fi (T j )) is
divisible by 1 because it is alternating in T1, . . . , Tl .

Proposition 1.4. Let Q(T ) = (T − T1) · · · (T − Tl). For every collection of poly-
nomials f1, . . . , fl in A[T ] we have

Res( f1/Q, . . . , fl/Q)= det( fi (T j ))/1.

In particular, for every partition b : b1 ≥ · · · ≥ bl ≥ 0 we have

sb(T1, . . . , Tl |y)= Res((T |y)b1+l−1/Q, . . . , (T |y)bl/Q)

= det((T j |y)bi+l−i )/ det((T j |y)l−i ). (1)

Proof. Both sides of the first equality of the proposition are multilinear and alter-
nating in f1, . . . , fl . Hence it suffices to prove the equality when fi = T hi+l−i with
h1≥ · · · ≥ hl . An easy calculation (see [Laksov and Thorup 2009, 0.6]) shows that
we then have an equality Res( f1/Q, . . . , fl/Q) = sh1,...,hl (T1, . . . , Tl), where the
polynomials sh1,...,hl (T1, . . . , Tl) = (shi−i+ j ), with si the i-th complete symmetric
function in T1, . . . , Tl , are the ordinary Schur functions (see [Macdonald 1995, I
§3], for example). However, by the Jacobi–Trudi formula (see [Macdonald 1995, I
§3 (3.4)], for example) we have sh1,...,hl (T1, . . . , Tl)= det(T hi+l−i

j )/ det(T l−i
j ). �

The following result indicates a different approach to the determinantal formula
from that presented in [Laksov and Thorup 2009].

Proposition 1.5. There is an isomorphism of A[T1, . . . , Tl]
sym-modules

σ sym
:
∧l

A A[T ] → A[T1, . . . , Tl]
sym

determined by mapping f1 ∧ · · · ∧ fl to det( fi (T j ))/1.

Proof. The existence of the homomorphism follows since det( fi (T j ))/1 is multi-
linear and alternating in f1, . . . , fl .

To prove that the homomorphism is A[T1, . . . , Tl]
sym-linear it suffices to prove

that the homomorphism σ :
⊗l

A A[T ] → A[T1, . . . , Tl]
sym determined by σ( f1⊗
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· · ·⊗ fl)= det( fi (T j ))/1 is A[T1, . . . , Tl]
sym-linear. We first note that we have an

equality σ((T h1
1 · · · T

hl
l ) f1(T1) · · · fl(Tl))= det(T hi

j fi (T j ))/1. Fix a permutation
τ of [1, l]. The contribution to det(T hi

j fi (T j )) from the elements in rows 1, . . . , l
and the corresponding columns τ(1), . . . , τ (l) is T h1

τ(1) · · · T
hl
τ(l) f1(Tτ(1)) · · · fl(Tτ(l)).

Let f be the sum of the elements T k1
τ(1) · · · T

kl
τ(l) taken over all the different l-

tuples (k1, . . . , kl) that are permutations of (h1, . . . , hl). Then the contribution
to σ( f ( f1(T1) ⊗ · · · ⊗ fl(Tl))) from the elements in rows 1, . . . , l and corre-
sponding columns τ(1), . . . , τ (l) is equal to f f1(Tτ(1)) · · · fl(Tτ(l)). Consequently
we have σ( f ( f1 ⊗ · · · ⊗ fl)) = f det( fi (T j ))/1. The homomorphism σ sym is
A[T1, . . . , Tl]

sym-linear since all symmetric functions are linear combinations of
polynomials of the form f .

It follows from Theorem 1.2(1) that
∧l

A A[T ] is a free A[T1, . . . , Tl]
sym-module

of rank one with generator (T |y)l−1
∧ · · · ∧ (T |y)0. Since this generator maps to

1 by σ sym and σ sym is an A[T1, . . . , Tl]
sym-module homomorphism it follows that

σ sym is an isomorphism. �

2. Strings, partitions and factorial Schur functions

In this section we give the main properties of factorial Schur functions. This will
provide us with the natural foundation for the treatment of the generalization of the
description of equivariant cohomology given by Goresky–Kottwitz–MacPherson
(see also [Knutson and Tao 2003; Arabia 1989; Kostant and Kumar 1986]) and
of the theory of Mihalcea, both mentioned above. To facilitate the understanding
of the correspondence between the theories we have conformed to the notation of
[Knutson and Tao 2003] as much as possible.

Notation 2.1. Denote by
{
∞

l

}
all strings λ : λ1λ2 . . . consisting of zeros and

ones, with exactly l zeros. We consider
{
∞

l

}
as a lattice with inequality λ′ ≥ λ if∑ j

i=1 λ
′

i ≥
∑ j

i=1 λi for j = 1, 2, . . . .
An inversion in λ is a pair (i, j) with i < j such that 1 = λi > λ j = 0. Denote

by inv(λ) the inversions in λ and write l(λ)= | inv(λ)|.
We introduce a similar terminology and notation for partitions. Let

{
∞

l

}
P

con-
sist of all partitions b : b1 ≥ · · · ≥ bl ≥ 0. We consider

{
∞

l

}
P

as a lattice with in-
equality b′≥b when b′i ≥bi for i=1, . . . , l. To each partition b :bl≥· · ·≥bl≥0 we
associate a strictly decreasing sequence a1> · · ·> al > 0, where a j = b j+l− j+1
for j = 1, . . . , l.

An inversion in b is a pair (i, a j ) such that i < a j and i 6∈ {a j+1, . . . , al}. We
denote the inversions in b by inv(b) and write l(b) = | inv(b)|. Clearly l(b) =∑l

i=1 bi .
Let 0 < a(λ)l < · · · < a(λ)1 be the positions where the zeros appear in λ :

λ1λ2 . . . for λ in
{
∞

l

}
, that is λa(λ)i = 0 for i = 1, . . . , l. We obtain a partition



A formalism for equivariant Schubert calculus 717

b(λ) : b(λ)1 ≥ · · · ≥ b(λ)l ≥ 0 in
{
∞

l

}
P

, with a(λ) j = b(λ) j + l − j + 1 for
j = 1, . . . , l, and

b(λ)i = {the number of ones to the left of zero number l − i + 1 in the string λ}.

Example. Take l = 5. Consider the sequence λ = 0 1 0 0 1 0 1 0 1 1 1 . . . . Then
the sequence a(λ) is equal to 1 3 4 6 8 , and the sequence b(λ) to 3 2 1 1 0 . More
geometrically, one can record the sequence λ by a planar path, read from southwest
to northeast, starting from (0, 0), and ending on the line y = l, by making zeros
correspond to vertical steps and ones to horizontal steps. Then b(λ) is the partition
whose boundary is traced by λ.

1 1 1

1 0

1 0

0

1 0

0

It is clear that inv(λ)= inv b(λ) and thus l(λ)=
∑l

i=1 b(λ)i = l(b(λ)).
From a partition b : b1 ≥ · · · ≥ bl ≥ 0 we obtain, conversely, a string λ(b) :

λ(b)1λ(b)2 . . . in
{
∞

l

}
defined by λ(b)ai = 0 for i = 1, . . . , l, the remaining λ(b)i

being one.

Lemma 2.2. There is a length preserving bijection of lattices between partitions{
∞

l

}
P

and
{
∞

l

}
that maps b to λ(b), and λ to b(λ).

Proof. It is obvious from the definitions that the map described in the lemma gives
a bijection between

{
∞

l

}
P

and
{
∞

l

}
, and we observed above that the map preserves

length.
That the map is a homomorphism of lattices follows since b(λ)i and b(λ′)i are

the number of ones to the left of zero number l − i + 1 in λ, respectively λ′. �

Lemma 2.3. Let λ, λ′ be strings in
{
∞

l

}
, and let b, b′ be the corresponding parti-

tions in
{
∞

l

}
P

.

(1) When λ and λ′ differ only in the i-th and j-th positions and (i, j) ∈ inv(λ),
then j = a(λ)p and i = a(λ′)q for some p and q, and the remaining elements
in the sequences a(λ)1 > · · ·> a(λ)l and a(λ′)1 > · · ·> a(λ′)l are the same.

(2) When b and b′ are such that the sequences al < · · · < a1 and a′l < · · · < a′1
differ only where j = ap and i = aq with i < j , then the strings λ(b) and λ(b′)
differ only in the positions i and j , and (i, j) ∈ inv(λ(b)).
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Proof. Assertion (1) follows since the zeros in λ are in the same positions as the
zeros in λ′ except in positions i and j where λ j = 0 and λ′i = 0.

Similarly assertion (2) follows since the zeros in λ(b) and λ(b′) are in the same
positions except zero number j in λ(b) and zero number i in λ(b′). �

In the next two results we give the main properties of factorial Schur functions.

Theorem 2.4 (Vanishing Theorem; see also [Molev and Sagan 1999]). For every
partition b : b1 ≥ · · · ≥ bl ≥ 0 we have:

(1) sb(yb1+l, . . . , ybl+1|y)=
∏
(i, j)∈inv(b)(y j − yi ).

(2) Let h : h1 ≥ · · · ≥ hl ≥ 0 be a partition that is not greater than or equal to b.
Then sb(yh1+l, . . . , yhl+1|y)= 0.

Proof. We may assume that A is the polynomial ring Z[y1, y2, . . . ] in the variables
y1, y2 . . . because, once the theorem is proved in this case, we can, for general A,
specialize the variables y1, y2, . . . to any sequence of elements in A.

(1) The (p, q)-th entry in ((T j |y)bi+l−i ) is (Tq |y)bp+l−p
=
∏bp+l−p

i=1 (Tq − yi ). If
p < q we have bq + l − q + 1≤ bp + l − p, and thus (T |ybq+l−q+1)

bp+l−p
= 0.

When p = q we have (T |ybp+l−p+1)
bp+l−p

=
∏bp+l−p

i=1 (ybp+l−p+1− yi ). Con-
sequently the matrix (T |yb j+l− j+1)

bi+l−i is lower triangular, and it follows from
what we just saw and from Notation 2.1 that the product of the diagonal elements
divided by

∏
1≤i< j≤l(ybi+l−i+1− yb j+l− j+1) is

∏
(i, j)∈inv(λ(b))(y j − yi ).

(2) By assumption h p < bp for some p and thus h p+ l − p+ 1< bp+ l − p+ 1.
Then, for i ≤ p and p ≤ j we have h j + l − j + 1 ≤ h p + l − p + 1 < bp +

l − p + 1 ≤ bi + l − i + 1. Consequently (T |yh j+l− j+1)
bi+l−i

= 0. Thus the
(p× (l− p+1))-matrix in the upper right corner of ((T |yh j+l− j+1)

bi+l−i ) is zero,
and thus det((T |yh j+l− j+1)

bi+l−i )= 0. Since
∏

1≤i< j≤l(ybi+l−i+1− yb j+l− j+1) is
not a zero divisor in Z[y1, y2, . . . ] we have sb(yh1+l, . . . , yhl+1|y)= 0. �

The next result will be used in Section 3 to describe equivariant Schubert calcu-
lus as presented above. It will imply the main properties of Schubert classes gener-
alizing the description Goresky–Kottwitz–MacPherson in the notation of [Knutson
and Tao 2003]. We stress that the methods used to prove parts (2) and (3) of the
next result are similar to those used by Knutson and Tao to prove corresponding
results for Schubert classes (proof of Lemma 1 in Section 2.1 and of Proposition 1
in Section 2.4). We could have chosen the opposite approach and used the results of
Knutson and Tao to obtain information on factorial Schur functions. It is however,
more in the spirit of this work to focus on the properties of factorial Schur functions.

Theorem 2.5. Let A = Z[y1, y2, . . . ] be the polynomial ring in the independent
variables y1, y2, . . . , and let g ∈ A[T1, . . . , Tl]

sym. Moreover, let
{
∞

l

}
k be the

subset of
{
∞

l

}
P

consisting of partitions h : h1 ≥ · · · ≥ hl ≥ 0 with h1 ≤ k.
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(1) g satisfies the GKM (Goresky–Kottwitz–MacPherson) condition. That is:
When b and b′ are partitions in

{
∞

l

}
P

such that the sequences bl + 1 <
· · · < b1 + l and b′l + 1 < · · · < b′1 + l differ only where the first sequence is
equal to j and the second is equal to i with i 6= j , then g(ybl+1, . . . , yb1+l)−

g(yb′l+1, . . . , yb′1+l) is divisible by yi − y j .

(2) Let g=
∑

h∈I zhsh(T1, . . . , Tl |y) with zh ∈ A and with I⊆
{
∞

l

}
k , and assume

that g(yh1+l, . . . , yhl+1)= 0 for all partitions h in
{
∞

l

}
k . Then zh = 0 for all

h ∈ I.

(3) For a given partition b, conditions (1) and (2) of Theorem 2.4 characterize the
homogeneous symmetric functions. More precisely and more generally:

We have equality g(yc1+l, . . . , ycl+1) = sb(yc1+l, . . . , ycl+1|y) for all c ∈{
∞

l

}
k when the following three conditions are fulfilled:

(a) For every partition b ∈
{
∞

l

}
k we have an equality g(yb1+l, . . . , ybl+1) =∏

1≤i< j≤inv(b)(y j − yi ).
(b) g(yh1+l, . . . , yhl+1) = 0 for all partitions h ∈

{
∞

l

}
k that are not greater

than or equal to b
(c) For all c in

{
∞

l

}
k we have that g(yc1+l, . . . , ycl+1) is homogeneous in

y1, y2, . . . of degree l(b).

Proof. Assertion (1) is clear since g is symmetric in T1, . . . , Tl .
To prove assertion (2) we assume that some zh is non-zero and choose b min-

imal such that zb 6= 0. If zh 6= 0 we must then have bp < h p for some p. It
follows from Theorem 2.4(2) that sh(yb1+l, . . . , ybl+1|y) = 0. Consequently we
have that g(yb1+l, . . . , ybl+1) is equal to the sum

∑
h∈I zhsh(yb1+l, . . . , ybl+1|y)=

zbsb(yb1+l, . . . , ybl+1|y) which is non-zero by Theorem 2.4(1). This contradicts
the assumption of (2) and thus proves that zh = 0 for all h ∈ I.

We now prove assertion (3). Let g satisfy the conditions (i)–(iii) for some b.
Assume that g(yh1+l, . . . , yhl+1) is not equal to sb(yh1+l, . . . , yhl+1|y) for some
h ∈

{
∞

l

}
k and let c be a minimal element in

{
∞

l

}
k with the property that(

g− sb(T1, . . . , Tl |y)
)
(yc1+l, . . . , ycl+1) 6= 0.

Then c ≥ b; otherwise it follows from assumption (ii) and from Theorem 2.4(2)
that g(yc1+l, . . . , ycl+1)= 0= sb(yc1+l, . . . , ycl+1|y). Moreover c is strictly bigger
than b, since (g−sb(T1, . . . , Tl |y))(yb1+l, . . . , ybl+1)= 0 by assumption (i) and by
Theorem 2.4(1). In particular, l(c) > l(b). But from the GKM condition 2.5(1) it
follows that

∏
(i, j)∈inv(c)(y j − yi ) divides (g− sb(T1, . . . , Tl |y))(yc1+l, . . . , ycl+1).

This is impossible since (g− sb(T1, . . . , Tl |y))(yc1+l, . . . , ycl+1) is homogeneous
of degree l(b) in y1, y2, . . . by assumption (iii) of (3). We have thus a contradiction
showing that there is an equality g(yc1+l, . . . , ycl+1) = sb(yc1+l, . . . , ycl+1|y) for
all c ∈

{
∞

l

}
k , and we have proved assertion (3). �
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3. Factorial Schur functions and Schubert classes

In this section we present the generalization of the Goresky–Kottwitz–MacPherson
description of equivariant cohomology alluded to several times above. We also
give the precise correspondence between this formalism and the general Schubert
calculus interpreted via factorial Schur functions.

Notation 3.1. Let A=Z[y1, y2, . . . ] be the polynomial ring in the variables y1, y2,

. . . over Z. We denote by
∏
λ∈{

∞

l }
A all lists α= (α|λ) of elements in A. This is a

ring with componentwise multiplication, and the unit is the list with 1|λ= 1A for
all λ. We consider

∏
λ∈{

∞

l }
A as an A-algebra mapping a ∈ A to the list αa with

αa|λ= a for all λ, and we define an A-algebra homomorphism

σ equ
: A[T1, . . . , Tl]

sym
→

∏
λ∈{

∞

l }

A

by σ equ( f (T1, . . . , Tl))= α f where α f |λ= f (yb(λ)1+l, . . . , yb(λ)l+1).
For each partition b : b1 ≥ · · · ≥ bl ≥ 0 in

{
∞

l

}
P

and for each string λ : λ1λ2 . . .

in
{
∞

l

}
we write

Sb = σ
equ(sb(T1, . . . , Tl |y)) and Sλ = Sb(λ).

Definition 3.2. An element α ∈
∏
λ∈{

∞

l }
A is called a class if the polynomials α|λ

for all λ ∈
{
∞

l

}
have bounded total degree in the variables y1, y2, . . . and if it

satisfies the GKM (Goresky–Kottwitz–MacPherson) condition, that is:
If λ, λ′ in

{
∞

l

}
differ in the positions i and j only, the element α|λ− α|λ′ is

divisible by yi − y j .
It is clear that the classes in

∏
λ∈{

∞

l }
A form an A-algebra with coordinatewise

addition and multiplication. We denote this algebra by H(l).
A class α∈

∏
λ∈{

∞

l }
A is a Schubert class corresponding to λ in

{
∞

l

}
if it satisfies

the following three conditions:

(1) α|λ=
∏
(i, j)∈inv(λ)(y j − yi ).

(2) If α|λ′ 6= 0 then λ′ ≥ λ.

(3) For all µ∈
{
∞

l

}
the element α|µ is homogeneous of degree l(λ) in y1, y2, . . . .

The ring H(l) can be thought of as the formal generalized analog of the localized
equivariant cohomology of the infinite grassmannian described in the introduction,
with one torus fixed point for each partition. In the following result we give the
exact connection between classes and symmetric polynomials. Observe that the
proof of assertion (2) is modelled after the proof of Proposition 1 in [Knutson and
Tao 2003].

Proposition 3.3. Let A= Z[y1, y2, . . . ] be the polynomial ring in the independent
variables y1, y2, . . . over Z. Then:
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(1) The image of the homomorphism σ equ
: A[T1, . . . , Tl]

sym
→
∏
λ∈{

∞

l }
A con-

sists of classes, that is, σ equ induces an A-algebra homomorphism

σ : A[T1, . . . , Tl]
sym
→ H(l).

Moreover, the images Sb = σ(sb(T1, . . . , Tl |y)) of the factorial Schur func-
tions are Schubert classes corresponding to λ(b), for each partition b : b1 ≥

· · · ≥ bl ≥ 0 in
{
∞

l

}
P

.

(2) Let α be a class. Then α is a linear combination, with coefficients in A, of the
Schubert classes Sb = σ(sb(T1, . . . , Tl |y)) for partitions b : b1 ≥ · · · ≥ bl ≥ 0
in
{
∞

l

}
P

. In particular σ is surjective.
If all the elements α|λ are in Z[y1, . . . , yn] for some n, the coefficients are

in Z[y1, . . . , yn], and if σ equ(sb(T1, . . . , Tl |y)) has a non-zero coefficient then
b ∈

{
∞

l

}
k with k = n− l.

Proof. It is clear that for g ∈ A[T1, . . . , Tl]
sym the elements σ equ(g)|λ are of total

degree at most equal to the total degree of g plus the total degree of the coefficients.
Moreover, it follows from Theorem 2.5(1) that σ equ(g) satisfies the GKM condi-
tion. Hence σ equ(g) is a class. That Sb is a Schubert class follows from Theorem
2.4. Thus we have proved assertion (1).

We next prove assertion (2). Let α be a non-zero class. Let µ be minimal
in the support of α, that is, µ is minimal such that α|µ 6= 0. It follows from
the GKM condition that α|µ is a multiple β of

∏
(i, j)∈inv(µ)(y j − yi ). Moreover,

if α|µ is in Z[y1, . . . , yn] we must have b(µ)1 + l ≤ n, that is, µ ∈
{
∞

l

}
k and

β ∈Z[y1, . . . , yn]. Theorem 2.4(1) implies that α|µ=βσ equ(sb(µ)(T1 . . . , Tl |y))|µ
and Theorem 2.4(2) that µ is not in the support of α−βσ equ(sb(µ)(T1, . . . , Tl |y))
and that no element smaller than µ is in the support. Continuing this process
we can successively reduce the support upwards. By the definition of a class the
total degrees of α|λ for all λ ∈

{
∞

l

}
are bounded. Thus the process must end.

Moreover, in the process we have that if α|λ ∈ Z[y1, . . . , yn] for all λ ∈
{
∞

l

}
then

the coefficients β are in Z[y1, . . . , yn] and the µ involved are in
{
∞

l

}
k . Hence

assertion (2) holds. �

The correspondence between the equivariant Schubert calculus of Section 1 and
the generalization of the Goresky–Kottwitz–MacPherson description mentioned
above (see also [Knutson and Tao 2003], [Arabia 1989] and [Kostant and Kumar
1986]) is given by the following results.

Theorem 3.4. (1) The homomorphism σ : A[T1, . . . , Tl]
sym
→ H(l) of Proposi-

tion 3.3 is an A-algebra isomorphism.

(2) The Schubert classes Sλ for λ∈
{
∞

l

}
form a basis for the A-module of classes.

(3) Sλ is the unique Schubert class belonging to λ.
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Proof. Let g ∈ A[T1, . . . , Tl]
sym. The elements (T |y)h1+l−1

∧ · · · ∧ (T |y)hl for
all partitions h1 ≥ · · · ≥ hl ≥ 0 form a basis for

∧l
A A[T ]. In particular, it

follows from Proposition 1.5 that g is the image by σ sym of a unique element∑
h∈I zh((T |y)h1+l−1

∧ · · · ∧ (T |y)hl ) with zh ∈ A, and where the sum is over a
finite set of partitions in

{
∞

l

}
. Hence it follows from Theorem 1.2(1) and (3) that

g=
∑

h∈I zhsh(T1, . . . , Tl |y) and that the elements sb(T1, . . . , Tl |y) for b ∈
{
∞

l

}
P

form an A-basis for A[T1, . . . , Tl]
sym. If σ equ(g) = 0 it follows from Theorem

2.5(2) that zh = 0 for all h ∈ I. Thus σ equ is injective. The A-algebra homomor-
phism σ equ maps A[T1, . . . , Tl]

sym onto classes by Proposition 3.3(2). Thus we
have proved assertion (1).

Since we just proved that the classes sb(T1, . . . , Tl |y) for b in
{
∞

l

}
P

form a
basis for A[T1, . . . , Tl]

sym assertion (2) follows from (1) and the definition of Sλ.
Assertion (3) follows easily from Theorem 2.5(3) and the definition of Sλ. �

Corollary 3.5. Consider H(l) as an A[T1, . . . , Tl]
sym-module via σ . Then the

composite homomorphism

σσ sym
:
∧l

A A[T ] → H(l)

determined by mapping

(T |y)b1+l−1
∧· · ·∧(T |y)bl = sb(T1, . . . , Tl |y)((T |y)l−1

∧· · ·∧(T |y)0) to Sλ(b),

for each partition b : b1 ≥ · · · ≥ bl ≥ 0, is an isomorphism of A[T1, . . . , Tl]
sym-

modules.

Proof. The proposition immediately follows from Proposition 1.5 and from asser-
tion (1) of the theorem. �

4. Pieri’s formula

Let A be an arbitrary ring. From the action of A[T1, . . . , Tl]
sym on

∧l
A A[T ] we

obtain that the product shT h1 ∧ · · · ∧ T hl , where sh is the h-th complete sym-
metric function in T1, . . . , Tl and h1 ≥ · · · ≥ hl ≥ 0 is a partition, can be ex-
pressed as a linear combination of elements T j1 ∧ · · · ∧ T jl with coefficients in
A[T1, . . . , Tl]

sym, where j1 ≥ · · · ≥ jl ≥ 0 is a partition such that j1 + · · · + jl =
h1+· · ·+hl+h. After suitable cancellations the resulting formula is called Pieri’s
formula. In Sections 1 and 2 we have seen how the multiplication can be expressed
in terms of factorial Schur functions. Here we shall give the explicit calculations of
sh0...0(T1, . . . , Tl |y)((T |y)h1∧· · ·∧(T |y)hl ) in

∧l
A A[T ] and perform the necessary

simplifications to obtain the equivariant Pieri formula.



A formalism for equivariant Schubert calculus 723

Using the isomorphism in Corollary 3.5 the calculations and the resulting for-
mulas can be translated into the algebra H(l). There we obtain an explicit ex-
pression for the coordinatewise product sh0...0sh(T1, . . . , Tl |y) as linear combina-
tions of elements si1,...,il (T1, . . . , Tl |y) with coefficients in A[T1, . . . , Tl]

sym where
i1 + · · · + il = b1 + · · · + bl + h, the coefficients are those of [Knutson and Tao
2003]. After the appropriate cancellations of terms we obtain the Pieri formula in
H(l). The results are direct translations of those in

∧l
A A[T ] and we therefore do

not repeat them.
Similar calculations to those performed in this section were first made by San-

tiago in [Santiago 2006] (see also [Gatto and Santiago 2009; Laksov and Thorup
2009]). The formula specializes to those of [Mihalcea 2006; 2008]. A different
approach to Pieri’s formula can be found in [Robinson 2002].

To make the expressions of the calculations more transparent we simplify the
notation somewhat.

For independent variables T1, . . . , Tl over A we denote by

sh = sh(T1, . . . , Tl)

the h-th complete symmetric function in T1, . . . , Tl , and by sh(y1, . . . , yl) its value
at y1, y2, . . . , yl ∈ A. Similarly, for elements y1, y2, . . . in A and for any h and m
we denote by

ch(y1, . . . , ym)

the value at y1, . . . , ym of the h-th elementary symmetric function in m variables.
We write

gh = (T |y)h = (T − y1) · · · (T − yh)

and let

Sh0···0(T |y)= sh0···0(T1, . . . , Tl |y)

= Res((T |y)h+l−1/Q(T ), (T |y)l−2/Q(T ), . . . , (T |y)0/Q(T ))

be the h-th factorial Schur function where h ≥ 0≥ · · · ≥ 0 is in
{
∞

l

}
P

.

Lemma 4.1. We have

gh+l−1 ∧ gl−2 ∧ · · · ∧ g0 =

h∑
j=0

(−1) j sh− j c j (y1, . . . , yh+l−1)(gl−1 ∧ · · · ∧ g0),

where c j (y1, . . . , yh+l−1) is the j-th elementary symmetric function in the vari-
ables y1, . . . , yh+l−1. Moreover,

sh0···0(T |y)=
h∑

j=0

(−1) j sh− j c j (y1, . . . , yh+l−1).
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Proof. We develop gh+l−1, gl−2, . . . , g0 in powers of the variable T and obtain

gh+l−1 ∧ gl−2 ∧ · · · ∧ g0

=

( h+l−1∑
j=0

(−1) j c j (y1, . . . , yh+l−1)T h+l−1− j
)
∧ T l−2

∧ · · · ∧ T 0.

Theorem 1.2(3) implies that T h+l−1− j
∧ T l−2

∧· · ·∧ T 0
= sh− j (T l−1

∧· · ·∧ T 0).
Thus

gh+l−1 ∧ gl−2 ∧ · · · ∧ g0 =
h+l−1∑

j=0
(−1) j sh− j c j (y1, . . . , yh+l−1)(T l−1

∧ · · · ∧ T 0),

which gives the first part of the lemma since sh− j = 0 for j > k, as required.
To obtain the last part of the lemma it suffices to compare the first equation of

the lemma with the equation gh+l−1∧gl−2∧· · ·∧g0= sh0···0(T |y)(gl−1∧· · ·∧g0)

of Theorem 1.2(3). �

Lemma 4.2. We have

T hgi =

h∑
j=0

sh− j (yi+1, . . . , yi+ j+1)gi+ j .

Proof. We prove the equation by induction on h. It holds trivially for h=0. Assume
it holds for h > 0. From T gi = gi+1+ yi+1gi and the induction hypothesis we get

T h+1gi =
h∑

j=0
sh− j (yi+1, . . . , yi+ j+1)(gi+ j+1+ yi+ j+1gi+ j )

=

h+1∑
j=1

sh+1− j (yi+1, . . . , yi+ j )gi+ j +
h∑

j=0
sh− j (yi+1, . . . , yi+ j+1)yi+ j+1gi+ j

= s0(yi+1, . . . , yi+h+1)gi+h+1

+

h∑
j=1
(sh+1− j (yi+1, . . . , yi+ j )+ sh− j (yi+1, . . . , yi+ j+1)yi+ j )gi+ j

+ sh(yi+1)yi+1gi

= gi+h+1+
h∑

j=1
sh+1− j (yi+1, . . . , yi+ j+1)gi+ j + sh+1(yi+1)gi

=

h+1∑
j=0

sh+1− j (yi+1, . . . , yi+ j+1)gi+ j . �

Lemma 4.3. Let j1, . . . , jl, h1, . . . , hl, h be non-negative integers with j1+ · · ·+
jl ≤ h. Then∑
i1+···+il=h

si1− j1(yh1+1, . . . , yh1+ j1+1) · · · sil− jl (yhl+1, . . . , yhl+ jl+1)

= sh− j1−···− jl (yh1+1, . . . , yh1+ j1+1, . . . , yhl+1, . . . , yhl+ jl+1).
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Proof. It is clear that all the monomials on the left-hand side of the equation of
the lemma appear in the right-hand side. Conversely, consider a monomial that
appears on the right-hand side with a contribution of degree ki from the variables
yhi+1, . . . , yhi+ ji+1 for i = 1, . . . , l. Then k1 + · · · + kl = h − j1 − · · · − jl . Let
i1 := h − j2 − · · · − jl − k2 − · · · − kl . Then i1 − j1 = k1. Correspondingly we
define i2, . . . , il such that i p − jp = kp for p = 1, . . . , l. The monomial that we
consider will then be the product of monomials in yh p+1, . . . , yh p+ jp+1 of degree
i p− jp = kp for p= 1, . . . , l, and thus appear on the left-hand side of the equation
in the lemma. �

Proposition 4.4. Let h1, . . . , hl, h be non-negative integers. Then

sh(gh1 ∧ · · · ∧ ghl )=

h∑
i=0

∑
j1+···+ jl=h−i

si (yh1+1, . . . , yh1+ j1+1, . . . , yhl+1, . . . , yhl+ jl+1)(gh1+ j1 ∧ · · · ∧ ghl+ jl ).

Proof. By definition ω := shgh1 ∧ · · · ∧ ghl =
∑

i1+···+il=h T i1 gh1 ∧ · · · ∧ T il ghl . It
follows from Lemma 4.2 that

ω =
∑

i1+···+il=h

i1∑
j1=0
· · ·

il∑
jl=0

si1− j1(yh1+1, · · · , yh1+ j1+1) · · ·

sil− jl (yhl+1, . . . yhl+ jl+1)(gh1+ j1 ∧ · · · ∧ ghl+ jl ).

Since si p− jp(yh p+1, . . . , yh p+ jp+1)= 0 when jp > i p we obtain

ω =
∑

i1+···+il=h

h∑
j1+···+ jl=0

si1− j1(yh1+1, . . . , yh1+ j1+1) · · ·

sil− jl (yhl+1, . . . , yhl+ jl+1)(gh1+ j1 ∧ · · · ∧ ghl+ jl ).

Exchanging the order of summation we obtain by Lemma 4.3

ω =
h∑

j1+···+ jl=0
sh− j1−···− jl (yh1+1, . . . , yh1+ j1+1, . . . , yhl+1, . . . , yhl+ jl+1)

(gh1+ j1 ∧ · · · ∧ ghl+ jl ),

that immediately gives the equation of the proposition. �

Theorem 4.5 (Pieri’s formula). Let h1 ≥ · · · ≥ hl ≥ 0 be a partition and let h be a
non-negative integer. Then

sh(gh1 ∧ · · · ∧ ghl )=

h∑
i=0

∑
( j1,..., jl )∈Jh−i

si (yh1+1, . . . , yh1+ j1+1, . . . , , yhl+1, . . . , yhl+ jl+1)(gh1+ j1 ∧ · · · ∧ ghl+ jl ),
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where Jh−i is the collection of all l-tuples ( j1, . . . , jl) such that j1+· · ·+ jl = h−i
and j1+ h1 ≥ h1 > j2+ h2 ≥ h2 > · · ·> jl + hl ≥ hl . We also have

sh0···0(T |y)(gh1 ∧ · · · ∧ ghl )

=

h∑
j=0

h∑
i=0

∑
( j1,..., jl )∈Jh−i

(−1) j c j (y1, . . . , yh+l−1)

si (yh1+1, . . . , yh1+ j1+1, . . . , , yhl+1, . . . , yhl+ jl+1)(gh1+ j1 ∧ · · · ∧ ghl+ jl ),

Proof. Let si (gh1+ j1∧· · ·∧ghl+ jl ) be a term on the right-hand side of the equation of
Proposition 4.4. Assume that h p+ jp ≥ h p−1 for some p. If h p+ jp = h p−1+ jp−1

the term is zero. Assume, on the other hand, that j ′p−1 := h p+ jp− h p−1 6= jp−1,
and let j ′p := h p−1+ jp−1− h p. Then j ′p−1 ≥ 0 and j ′p = h p−1− h p + jp−1 ≥ 0.
Moreover we have j ′p−1+ j ′p = jp−1+ jp, and j ′p 6= jp because j ′p−1 6= jp−1. On
the right-hand side of the sum in Proposition 4.4 we thus have two terms

si ( . . . , yh p−1+1, . . . , yh p−1+ jp−1+1, yh p+1, . . . , yh p+ jp+1, . . . )

( · · · ∧ gh p−1+ jp−1 ∧ gh p+ jp ∧ · · · )

+ si ( . . . , yh p−1+1, . . . , yh p−1+ j ′p−1+1, yh p+1, . . . , yh p+ j ′p+1, . . . )

( · · · ∧ gh p−1+ j ′p−1
∧ gh p+ j ′p ∧ · · · ).

Since h p−1+ jp−1= h p+ j ′p and h p+ jp= h p−1+ j ′p−1 and the si are symmetric in
yhl+1, . . . , yh1+ j1+l , these two terms cancel. In Proposition 4.4 there remain only
the terms in Pieri’s formula.

The last formula follows from the first and Lemma 4.1. �
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