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We prove the effectiveness of the log Iitaka fibration in Kodaira codimension two
for varieties of dimension ≤ 4. In particular, we finish the proof of effective log
Iitaka fibration in dimension two. Also, we show that for the log Iitaka fibration,
if the fiber is of dimension two, the denominator of the moduli part is bounded.

1. Introduction

One of the main problems in birational algebraic geometry is to understand the
structure of pluricanonical maps. If X is a smooth complex projective variety of
dimension n, then we define the pluricanonical maps

φr K X : X 99K P(H 0(X,OX (r K X ))),

determined by the linear system |r K X |. If this linear system is nonempty for some
natural number r , which is conjecturally equivalent to X being nonuniruled, then
for r sufficiently divisible, the maps φr K X become birational to a fixed algebraic
fiber space φ : X ′−→Y ′ called the Iitaka fibration of X , and the Kodaira dimension
κ(X) is set to be dim Y ′. It is then natural to look for a uniform r (that is, an
integer r that depends only on the dimension of X ) for which we are inducing a
map birational to the Iitaka fibration. After the monumental work [Birkar et al.
2006] of proving the finite generation of the pluricanonical rings, the effective
Iitaka fibration problem is largely related to finding generators which are less than a
uniform degree for a given dimension. If κ(X)=dim X , then X is called of general
type and in this case Hacon–McKernan [2006] and Takayama [2006], following
ideas of Tsuji, have shown that for a smooth projective variety of general type and
dimension n, there exists an integer rn , that depends only on n, such that φr K X

is birational for r ≥ rn . The question remains widely open when the Kodaira
dimension is not maximal and it is completely known only up to dimension three
[Kawamata 1986; Fujino and Mori 2000; Viehweg and Zhang 2007; Ringler 2007].
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The current approach for studying this problem is by using Kawamata’s canon-
ical bundle formula which identifies the pluricanonical ring of X with the pluri-
canonical ring of a pair (Y,1+ L) of log general type [Fujino and Mori 2000;
Prokhorov and Shokurov 2009], where (Y,1) is a KLT pair (KLT = Kawamata
log canonical; see Definition 1.4) and L is a Q-line bundle coming from variation
of Hodge structure. This raises the natural question of a log analogue of the above
statement. Another setting where boundary divisors naturally occur is in moduli
problems. Because of the presence of a boundary divisor the best statement that we
can hope for is the following: for (X, D) a KLT pair of Kodaira dimension κ ≥ 0
there is a natural number m, that depends only on the coefficients of 1 and the
dimension of X such that

∣∣bm(K X +1)c
∣∣ is birational to the Iitaka fibration. To

be able to use the canonical bundle formula inductively we have to allow that the
coefficients of 1 lie in a possibly infinite set of rational numbers. The condition
that captures the property of this set is the descending chain condition (DCC). At
first glance, it may seem to be quite technical and somewhat artificial. However, it
turns out to be a very natural and useful condition arising in many questions. See
[Shokurov 1992] and [Kollár 1994] for more detailed discussions of this. Thus the
general conjecture is formulated as follows.

Conjecture 1.1 (Effective log Iitaka fibration conjecture). Let (X, D) be a KLT
(or ε-lc) pair such that K X + D is pseudo-effective and the coefficients in D are in
a DCC set A. Then there is a constant r depending only on the dimension X and
on A such that

∣∣br(K X + D)c
∣∣ induces a map birational to the Iitaka fibration.

For a pair (X, D), the log Kodaira dimension is defined as the Iitaka dimension
κ(K X + D) [Lazarsfeld 2004, 2.1.3]. For some partial results toward Conjecture
1.1 see [Pacienza 2007]. In this note, we prove the following.

Theorem 1.2. Let (X,1) be a KLT pair of dimension two, three or four and log
Kodaira codimension two. Assume that the coefficients of 1 are in a DCC set of
rational numbers A ⊂ [0, 1]. Then there is an explicitly computable constant m
depending only on the set A such that bm(K X +1)c induces the Iitaka fibration.

The proof of the above theorem contains three parts. First, we prove the dimen-
sion-two case of Theorem 1.2. This is done in Theorem 3.1 and the hardest case
there is when X itself is a ruled surface over a curve of positive genus. This
completes the effectiveness of log Iitaka fibration in dimension two (for the other
cases, see [Todorov 2008]). For this case, it relies on results from [Alexeev 1994]
and [Alexeev and Mori 2004].

Then for the higher dimensional case, the key tool is the canonical bundle for-
mula [Kawamata 1998; Fujino and Mori 2000; Kollár 2007]. In our case it roughly
says that if f : X −→ Y is the Iitaka fibration for K X +1 and K X +1 = f ∗D
for some Q-divisor D on Y , then we can define the discriminant or divisorial part
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on Y for K X +1 to be the Q-Weil divisor BY :=
∑

P bP P , where 1− bP is the
maximal real number t such that the log pair (X,1+ t f ∗(P)) has log canonical
singularities over the generic point of P . The sum runs over all codimension-one
points of Y , but it has finite support. The moduli part or J-part is the Q-line bundle
MY on Y that satisfies

K X +1= f ∗(KY + BY +MY ).

If F is the general fiber of f and if h0(F, b(KF +1|F )) 6= 0, then for every
integer r divisible by b we have

H 0(X, br(K X +1)c)= H 0(Y, br(KY + BY +MY )c).

Using ideas of Mori and Fujino, and the two-dimensional case of Theorem 1.2, we
can bound the denominators in relative dimension two.

Theorem 1.3. When the relative dimension of f is two, there is a natural number
m depending only on the coefficients of 1 such that mM is Cartier.

Note that Theorem 1.3 holds for pairs of arbitrary dimension.
Finally, after these preparations, to finish the proof it suffices to observe that the

results of [Fujino and Mori 2000] in Kodaira dimension-one case and of [Viehweg
and Zhang 2007] in Kodaira dimension-two case can be indeed generalized to a log
version. Namely, for an n-dimensional pair (X,1) of log Kodaira dimension one or
two with Iitaka fibration f : X→ Y with general fiberF , there is a constant m, that
depends only on the number b satisfying b(KF+1|F )∼0, the middle Betti number
of the associated b-fold cyclic cover and the coefficients of 1, such that bm(K X +

1)c induces the Iitaka fibration. In the three-dimensional case of Theorem 1.2, the
base is a curve and the conclusions follow from Theorem 1.3 by the same arguments
as in [Fujino and Mori 2000]. When the dimension is four, a key observation is that
many results in [Alexeev and Mori 2004] can be improved by adding a nef divisor
(Proposition 4.3). Similar statements were essentially proved in [Viehweg and
Zhang 2007], but we will simplify the proof by putting it in the context of [Alexeev
1994; Alexeev and Mori 2004] and the recent mainstream of investigations on
adjoint linear systems.

We remark that Conjecture 7.13 of [Prokhorov and Shokurov 2009] — in fact a
list of conjectures — concerns the solution of the effective Iitaka fibration problem.
We have shown item (2) of that list, in the relative dimension-two case. (However,
we do not prove the semiampleness statements in items (1) and (3) of Prokhorov
and Shorukov’s Conjecture 7.13.)

The paper is structured as following. In Section 2, we show that the DCC as-
sumption on the coefficients of the boundary indeed forces that the KLT surface
pairs of log Kodaira dimension zero to be ε-log canonical, for some ε depending
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on the set of coefficients. In Section 3, we prove that under the same assumption
there is a uniform b such that b(KS + B) ∼ 0. In Section 4, using ideas of Mori
and Fujino, we deduce Theorem 1.3 and complete the proof of Theorem 1.2.

Notations and conventions. We will work over the field of complex numbers C.
A Q-Cartier divisor D is nef if D ·C ≥ 0 for any curve C on X . We call two Q-
divisors D1, D2 Q-linearly equivalent D1 ∼Q D2 if there exists an integer m > 0
such that m Di are integral and linearly equivalent. We call two Q-Cartier divisors
D1, D2 numerically equivalent D1 ≡ D2 if (D1− D2) ·C = 0 for any curve C on
X . A log pair (X,1) is a normal variety X and an effective Q-Weil divisor1 such
that K X +1 is Q-Cartier. A projective morphism µ : Y −→ X is a log resolution
of the pair (X,1) if Y is smooth and µ−1(1)∪ {exceptional set of µ} is a divisor
with simple normal crossing support. For such µ we write µ∗(K X+1)= KY +0,
and 0 =6ai0i where 0i are distinct integral divisors.

Definition 1.4. A pair is called KLT (resp. lc, ε-lc) if there is a log resolution
µ :Y −→ X such that in the above notation we have ai <1 (resp. ai ≤1, ai ≤1−ε).
The number 1−ai is called the log discrepancy of0i with respect to the pair (X,1).

For conventions and results about DCC set we refer to [Alexeev and Mori 2004],
in particular, 2.2–2.7 and 3.4–3.6. When we say some quantity is bounded, it
always means there is a computable bound depending on the data we give. We
will not keep track of the explicit bound, but it does not require much effort to do
so, following the arguments in [Alexeev and Mori 2004]. (Most of the results about
surfaces that we use appear already in [Alexeev 1994], but to make the constants
explicitly computable, we refer to the joint paper, which is more recent.)

2. ε-log canonicity

The main result of this section is this:

Theorem 2.1. Let (S, B=
∑

bi Bi ) be a KLT projective surface pair. If KS+B≡0
and the coefficients of B are in a DCC set A, then there exists an ε = ε(A) > 0
that only depends on A such that (S, B) is ε-log canonical.

Proof. We can run a minimal model program for S,

S = S0→ S1→ · · · → Sn.

By pushing forward B to Sn , we see that it suffices to prove the statement for Sn . So
we need only prove the case that S is a log del Pezzo surface of Picard number 1, S
admits a Fano contraction to some curve with a general fiber P1, or S has KS ≡ 0.
This is done in Lemmas 2.4–2.6. �

The main tool we use is the following theorem,
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Theorem 2.2 [Alexeev and Mori 2004, Theorem 3.2]. Let A ⊂ [0, 1] be an arbi-
trary DCC set. There exists a constant δ = β(A) depending only on A such that
the following holds. Let X be a normal projective surface, B j be divisors on X ,
and let b j , x j be positive real numbers. Assume that

(1) X is a singular Q-factorial surface with −K X ample and ρ(X)= 1;

(2) b j > 0 and b j ∈A;

(3) 1− δ < x j ≤ 1;

(4) at least one x j is strictly less than 1;

(5) the pair (X,
∑

x j b j B j ) is lc.

Then the divisor K X +
∑

x j b j B j is not numerical equivalent to 0.

Lemma 2.3 [Alexeev and Mori 2004, Lemma 3.6]. Let A be a DCC set containing
1. Let a, δ > 0 such that δ ≤ m f2(A, a) (see [Alexeev and Mori 2004, 3.5] for the
definition of the function m f2(A, a)). Consider finitely many b j , x j ∈ R such that
0< b j ∈A, 1− δ < x j ≤ 1 for all j , and x j < 1 for some j . Then

∑
x j b j 6= a.

Lemma 2.4. If S is a log del Pezzo surface of Picard number 1. B =
∑

b j B j is a
Q-divisor such that KS + B ≡ 0, (S, B) is KLT and the coefficients of B are in a
DCC set A. Then S is ε = ε(A)-log canonical.

Proof. We assume 1 ∈ A. If (S, B) is not ε-log canonical, then we can extract a
divisor f : S′→ S such that

f ∗
(
KS +

∑
b j B j

)
≡ KS′ +

∑
b j B j + (1− a)E,

with a < ε. S′ has Picard number 2, so it has two extremal rays, one of which is
given by E . Contracting the other extremal ray we obtain a morphism S′→ S0 to a
surface S0. In fact if S0 were a curve, by taking the intersection of KS′+

∑
b j B j+

(1− a)E with a general fiber, we have∑
ni b j + n(1− a)= 2,

where ni ≥ 0 and n > 0 are integers, which contradicts Lemma 2.3, provided we
choose ε = m f2(A, 2). Then S0 is a log del Pezzo of Picard number 1. Now g
does not contract E , and

g∗
(
KS′ +

∑
b j B j + (1− a)E

)
= KS0 + (1− a)E +

∑
b j g∗(B j )≡ 0.

Since KS + B ≡ 0 we still have that (S0, (1− a)E +
∑

b j g∗(B j )) is a KLT pair.
Then, applying Theorem 2.2 to S0 with bE = 1, xE = (1−a), all other x j = 1 and
ε= δ, we conclude that KS0+(1−a)E+

∑
b j g∗(B j ) is not numerically equivalent

to zero, which is a contradiction. �
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Lemma 2.5. Let (S, B)→ C be a morphism from a surface to a curve, such that
the generic fiber is P1 and let (S, B) be KLT with the coefficients of B in a DCC
set A. Then S is ε = ε(A)-log canonical.

Proof. Suppose that this is not the case. Then extract a divisor f : S′→ S such that

f ∗
(
KS +

∑
b j B j

)
≡ KS′ +

∑
b j B j + (1− a)E,

with a < ε. Running a minimal model program for (S′,
∑

b j B j ) that does not
contract E , we end up with a surface S′′ that is either log del Pezzo or admits a
Fano contraction to a curve. Furthermore the coefficients of E in the pair (S′′, B ′′)
is (1− a) and S′′+ B ′′ ≡ 0.

In the case S′′ is log del Pezzo, we get a contradiction as in Lemma 2.4. If S′′

admits a Fano contraction to a curve, by intersecting with a general fiber, we can
apply the argument in Lemma 2.4 again. �

Finally we deal with the case in which KS is numerically trivial.

Lemma 2.6. There is ε > 0 such that every KLT surface with KS ≡ 0 is ε-log
canonical.

Proof. Set ε = min{β({1}),m f2({1}′, 2)}. Suppose that S is not ε-log canonical
and extract a divisor E by f : S′ → S such that f ∗(KS) = KS′ + (1− a)E and
0 < a < ε. Then running a minimal model for S′, which does not contract E , we
can apply one of the above two cases. �

3. Bounding the index

Observe that the weighted projective space P(a, b, c) with three lines (xi = 0)
forms an unbounded family of lc surface pairs when we vary a, b and c, and the
coefficients are in the DCC set {1}. However by restricting to the KLT case we
have the boundedness result:

Theorem 3.1. If (S, B) is a KLT pair of dimension 2 such that KS + B ≡ 0 and
the coefficients of B are in a DCC set A, there is a natural number b = b(A) such
that b(KS + B) is Cartier and H 0(S, b(KS + B))= 1.

From Theorem 2.1 we know that there is an ε > 0 such that (S, B) is ε-log
canonical; we will assume 0< ε < 1/

√
3.

Lemma 3.2 [Alexeev and Mori 2004, Lemma 1.2, Theorem 1.8]. Let X be a non-
singular projective surface and B =

∑
b j B j be an R-divisor on X with 0 ≤ b j ≤

1− ε < 1. Assume K X + B ≡ 0. Then

(1) if E is an irreducible curve on X and E2 < 0, then E ∼= P1 and E2 >−2/ε;

(2) ρ(X)≤ 128/ε5.
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Proposition 3.3. Let (S, B) be as in Theorem 3.1. There exists an integer t = t (ε)
such that for any Weil divisor D on S, t D is Cartier.

Proof. The argument is parallel to the one in [Alexeev and Mori 2004, Lemma
3.7], though there S is assumed to be a del Pezzo surface of Picard number 1.

Take the minimal resolution f : S̃→ S of S and write

f ∗(KS)= K S̃ +
∑

ai Ei .

Applying Lemma 3.2, we conclude that the determinant t of the intersection matrix
of the exceptional curves (−Fi Fk)ik is bounded by

t ≤ [2/ε][128/ε5
].

Since S has rational singularities, for any Weil divisor D on S, t D is a Cartier
divisor. �

In the next proposition we repeatedly use the trivial property of DCC set stated
in the following Lemma.

Lemma 3.4. Let c be a positive real number and A⊂ [0, 1] a DCC set. Then there
are a finite number of ways to write c as the sum of ai ∈A.

Proposition 3.5. Let (S, B) be as in Theorem 3.1. There exists an integer t = t (ε)
such that t (KS + B) is Cartier.

Proof. This follows from Proposition 3.3 once we make sure that there is a uniform
multiple of KS + B that is a Weil divisor for all pairs (S < B) satisfying our
conditions.

Running a minimal model program for S, we end up with a KLT surface f :
S→ S′. If t (K ′S + B ′) is Cartier, since

f ∗(t (KS′ + B ′))∼ t (KS + f −1
∗

B ′+ ai Ei )

and
KS + f −1

∗
B ′+ ai Ei ≡ KS + B ≡ 0,

we conclude that KS+ f −1
∗

B ′+ai Ei = KS+B, so it suffices to prove it for (S′, B ′).
S′ is either of Kodaira dimension 0, has a contraction to a curve with general fiber
P1 or a log del Pezzo surface, so we need only prove the proposition in these cases.

Case 1: S has Kodaira dimension 0. Then B = 0 and it follows directly from
Proposition 3.3.

Case 2: S admits a contraction to a curve f : S→C with the general fiber P1. By
taking the intersection of (S, B) with a generic fiber, we have

2=
∑

f (B j ) 6=pt

a j , where a j ∈A′.
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On the other hand, applying the canonical bundle formula in this simple case, we
have

KS + B ≡ f ∗(KC + BC)≡ 0, where BC =
∑

f (B j )=Pj

a j + n− 1
n

Pj .

From Lemma 3.4 we know that there are only finitely many choices of a j , and we
choose a natural number N = N (A) that clears all the denominators of a j .

Case 3: S is a log del Pezzo surface of Picard number one. For t as in Proposition
3.3, KS +

∑
b j B j ≡ 0 implies that

−t K 2
S =

∑
tb j B j · KS.

Here t K 2
S and t B j · KS are integers. From the proof of [Alexeev and Mori 2004,

Lemma 3.7], we can bound t K 2
S by

t K 2
S ≤ [2/ε]

[128/ε5
] ([2/ε] + 2)2.

Lemma 3.4 implies that there are only finitely many possible bi appearing as the
coefficients of the boundary divisor. So there is a positive number N = N (A) such
that N KS and N (b j B j ) are all Cartier divisors. �

In view of this discussion, if we take the minimal resolution π : S̃ → S of S
and pull back KS + B, then the denominators can be killed by a uniform multiple
t = t (ε). Running a minimal model program for S̃, thus we only need to prove
Theorem 3.1 in the case that S is a smooth minimal surface and that the coefficients
of B all have the form r/t for some uniform t . When KS ≡ 0, then B = 0, then it
is from the classification theory of smooth surfaces; when S is rational, a Cartier
divisor is numerically trivial if and only if it is a trivial divisor. Thus the only tricky
case is the following.

Lemma 3.6. If S is a smooth minimal ruled surface over a curve of positive genus
and there is a Q-divisor B such that (S, B) is KLT and KS+B≡0, then S= E×P1,
where E is an elliptic curve. In particular, if there is some integer N such that NB
is an integer divisor, then O(N (KS + B))∼= OS .

Proof. We use conventions for ruled surfaces as in [Hartshorne 1977, V.2]. Let
π : S→ C be P(E) over a curve C of positive genus g and let the general fiber of
π be F . We can assume H 0(E) 6= 0 and H 0(E⊗ L)= 0 for any line bundle L of
degree −1. Then e=− deg(E) is an invariant of S. There is a section C0 such that
C0|C0 =

∧2 E, which we denote as D. Then deg(D)=−e.

KS ∼−2C0+π
∗(KC + D).
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Then we have

0= (KS + B) ·C0 = e+ 2g− 2+ tC2
0 +

∑
Bi 6=C0

bi Bi ·C0 ≥ 2g− 2+ (1− t)e,

where t < 1 is the coefficient of C0 in B. So e ≤ 0, and if e = 0, then g = 1. On
the other hand, if e < 0, it follows from [Hartshorne 1977, V.2.21] that

B ·C0 ≥ (2C0+ eF) ·C0 ≥−e,

so again we conclude g= 1. And the equality holds only when for each irreducible
component Bi of Supp(B), gi : Bi → C is unramified.

Now we have Bi ≡ a(2C0+ eF) and B2
i = 0.

Claim. For g : Bi → C , there are line bundles M and N on Bi such that

0→ O→ g∗(E)⊗M→ N → 0 and deg N = 0.

Proof of the claim. It suffices to show that h(Bi )
2
= 0, where h : Bi → PBi (g

∗

i E)

is the induced section. But for Bi ⊂ P(E),

0→ IBi /I 2
Bi
→�1

P(E)⊗ Bi →�1
Bi
→ 0,

where deg(IBi /I 2
Bi
) = 0. Since Bi → C is unramified, the same exact sequence

indeed also computes the conormal bundle of h(Bi )⊂PBi (g
∗

i E); thus we conclude
that h(Bi )

2
= 0. �

If e > 0, then E is indecomposable which also means it is stable. But the exact
sequence of the claim shows that g∗(E) is not semistable, which is a contradiction.

When e = 0, if E is indecomposable, then E is given by a nonsplit extension

0→ O→ E→ O→ 0.

For any isogeny g : B → C , if there is a surjection g∗(E)→ G → 0 for a line
bundle G of degree 0, then it is given by the pull-back of the above exact sequence.
So B = 2C0, which contradicts the assumption that (S, B) is KLT. Similarly, if
E = O⊕ L for some degree-0 bundle L , we have at most two candidates for Bi ,
which again contradicts (S, B) being KLT.

Finally, when E= O2, all candidates of Bi are proportional to C0. Thus the last
statement of the lemma holds. �

4. Effectiveness of the Iitaka fibration

In this section we prove the effectiveness of the log Iitaka fibration for (X,1) a
KLT pair of dimension three and four and log Kodaira codimension two.
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Consider a log resolution π : X ′ −→ X of (X,1) and write

π∗(K X +1)≡ K X ′ + (π
−1)∗1+

∑
i

ei Ei ,

with Ei exceptional. There is a natural number n such that ei < 1− 1
n

for every i .
Define

1′ = (π−1)∗1+
∑(

1−
1
n

)
Ei .

Since all Ei are exceptional divisors, we have

H 0(X ′, bm(K X ′ +1
′)c)= H 0(X, bm(K X +1)c).

By replacing the A with the DCC set A∪ {1− 1
n |n ∈N}, we can assume that X is

smooth and 1 is simple normal crossing. Furthermore, we can assume that there
is a morphism f : X −→ Y giving the Iitaka fibration for K X+1 with Y a smooth
projective variety of dimension m [Lazarsfeld 2004, 2.1.C]. For F the general fiber
of f , we have that κ(KF +1F )= 0.

From Kawamata’s canonical bundle formula, we know that there is a Q-line
bundle M = M SS

(M,1)/Y , a Q-divisor B on Y and a Q-divisor R on X such that

K X +1∼Q f ∗(KY + B+M + B)+ R,

where the terms in the formula satisfy the property that if b(KF +1F ) is Cartier
and h0(F, b(K F +1F ))= 1, then for any r ∈ Z≥0 divided by b,

H 0(X, br(K X +1)c)= H 0(Y, br(KY +M + B)c),

[Fujino and Mori 2000, Theorem 4.5]. M and B are usually referred as the moduli
part and the boundary part of the algebraic fiber space.

Proof of Theorem 1.3. First we can assume that (F,1F ) is a minimal pair, that is,
KF +1F ≡ 0. In fact, from [Kollár 2007, Definition 8.4.6], we know the moduli
part M only depends on the birational class of the morphism X→ Y , and we can
choose one such that the generic fiber is minimal. Hence Theorem 2.1 implies that
(F,1F ) is ε = ε(A)-lc.

Let d be the smallest positive integer such that d(KF + 1F ) is Cartier and
h0(F, d(KF +1F ))= 1. Note that here we do not need the uniform integer from
Theorem 1.3. Then we can construct the corresponding cyclic cover g : E → F ,
and let φ : E ′ → E be the minimal resolution of E . Then, as in [Fujino and
Mori 2000, Theorem 3.1], it suffices to bound the second Betti number of E ′.
Write g∗(KF +1F )= KE +1E . From [Kollár and Mori 1998, 5.20.3], we know
(E,1E) is ε-log canonical, provided that so is (F,1F ), which is the case because
of Theorem 2.1. Pulling back to E ′, we conclude that (E ′,1E ′) is ε-log canonical.
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Then [Alexeev and Mori 2004, Theorem 1.8] implies that ρ(E ′) ≤ 128/ε5. Thus
the second Betti number of E ′ is bounded by a constant depending only on A.

The remainder of the proof was indeed given in [Todorov 2008, Section 3]. We
give a sketch here. First we assume that the generic fiber (F,1F ) is log smooth.
Then, as in [Kollár 2007, 8.4.5(7)], we can define a local system V on an open
set U ⊂ X . Furthermore, if the monodromy action on R2 f∗(V) is unipotent, the
moduli part M is identified with the bottom Hodge filtration of R2 f∗(V), which is
an integral divisor. In general, we take a log resolution F̃→ F and write

π∗(KF +1F )= K F̃ +1F̃ −G,

where b1F̃b= 0, G ≥ 0 is an integral divisor and Supp(1F̃ ) has no common
component with G. Near every codimension one point P , there is a Galois cover
Y ′ of Y such that when we pull back everything to Y ′, the monodromy action
becomes unipotent near P . Thus as in [Fujino and Mori 2000, 3.6], the remaining
question is to bound the character of G→ Y∗ corresponding to the representation
of G on H 0(F̃,O(G)). If we write Ẽ as the degree-b cyclic cover corresponding to
b(K F̃ +1F̃ −G)∼ 0, then H 0(F̃,O(G)) is a direct summand of the bottom piece
of the Hodge filtration of H 2(Ẽ,C), which is also the bottom piece of H 2(E ′,C)

since Ẽ and E ′ are birational.
Then from [Fujino and Mori 2000, 3.8], we conclude that if the index of (F,1F )

is bounded by b=b(A) and the second Betti number of the cyclic cover is bounded
by B = B(A), then the denominator of the moduli part is bounded by

a = b · lcm{m ∈ Z>0|ϕ(m)≤ B},

where ϕ denotes the Euler ϕ-function. �

Theorem 4.1. Let the notation be as above. Assume that the coefficients of 1 are
in a DCC set of rational numbers A⊂[0, 1]. Let the dimension of X be either three
or four and the dimension of the general fiber be two. Then there is a constant N
depending only on the set A such that bN (K X +1)c induces the Iitaka fibration.

We will prove this statement when the dimension of X is four, and leave the
easier dimension-three case to the reader. In fact, this follows directly from the
argument in [Fujino and Mori 2000, Section 6], and Theorem 1.3.

As we mentioned before, the main theorem of [Viehweg and Zhang 2007] says
that for an arbitrary dimensional smooth variety X of Kodaira dimension 2, if we
assume that the generic fiber of the Iitaka fibration is a smooth variety F , then
there is a constant N depending on the middle Betti number bm of F and the index
of F , such that |N K X | gives the Iitaka fibration. The following discussion shows
this is still true for the log case. Then because of Theorems 3.1 and 1.3, where we
prove that the analogous bounds for the Betti number and the index, which only
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depend on the DCC set A, exist even in the log case, provided the generic fiber is of
dimension 2, we in fact get unconditional bounds (depending only on coefficients
set) as in Theorem 1.2.

Theorem 4.2. If (W, D) is a KLT surface, L is a nef Q-divisor (not necessarily
effective) such that and KW+D+L is big. Assume that a is a positive integer such
that aL is a Cartier divisor, the coefficients of D are in a DCC set B, then we have
a uniform N = N (a,B) such that

∣∣bN (KW + D+ L)c
∣∣ gives a birational map.

Proof of Theorem 4.1. We apply Theorem 4.2 to W =C , D= B, L =M . To check
the assumptions, the coefficients of B are of the form

b+ n− 1
n

, for some b ∈A∪ {0} and n ∈ Z>0,

[Kollár 2007, Theorem 8.3.7(2)], which forms a DCC set depending on A. And
for a, it can be chosen as in the last part of the proof of Theorem 1.3. �

Proof of Theorem 4.2. This is essentially proved in [Viehweg and Zhang 2007],
so here we only give a sketch which streamlines the arguments by using tools in
[Alexeev and Mori 2004]. As before, we can start by assuming that W is smooth.
The main observation is that in fact many of the results of Alexeev and Mori can be
strengthened in such a way that instead of assuming

(
W, D=

∑
b j D j

)
(b j ∈B) is

big, we can assume that (W, D+ L) is big, where L is a nef line bundle such that
for any curve C , L ·C is in another DCC set C. Then we get the same conclusion
by changing all our constants c = c(B) to c = c(B,C). In particular:

Proposition 4.3. Let the notation be as in Theorem 4.2. Then there is a uniform
β = β(B, a) such that KW +

∑
(1− x j )b j B j + L is big, provided x j ≤ β.

Because of Proposition 4.3 and the fact that all positive b j have a lower bound,
we can indeed assume that all b j are of the form n j/m for some m = m(B, a).

Then the usual argument of cutting log canonical centers [Todorov 2008] works
as long as we can prove that the volume of KW+

∑
(1−x j )b j B j+L has a uniform

lower bound.
Now we run the minimal model program, f : (W, D)→ (W ′, D′ = f∗(D)),

L ′ = f∗L . Because f ∗(L ′)≥ L , we have

H 0(W, bn(KW + D+ L)c)= H 0(W ′, bn(KW ′ + D′+ L ′)c) for all n.

Case 1: KW + D is pseudo-effective. Then we end up with a minimal model
(W ′, D′) such that KW ′ + D′ is nef. If KW ′ + D′ is big, this is so from [Alexeev
and Mori 2004]. Otherwise,

(KW ′ + D′+ L ′)2 = 2(KW ′ + D′) · L ′+ L ′2 > 0,

which has a uniform lower bound by our assumption.
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Case 2: KW + D is not pseudo-effective. Then we define the pseudo-effective
threshold, which is the smallest number e such that KW + D + eL is pseudo-
effective. Note that since KW+D+L is big we have that e≤ 1. Then we have two
subcases, for which we give a sketch of the argument. For details see the proof of
[Viehweg and Zhang 2007, Proposition 2.7].

Case 2a: We end up with a log del Pezzo surface (W ′, D′) of Picard number 1. So

KW ′ + D′+ eL ′ ≡ 0.

The discussion above about the generalization of [Alexeev and Mori 2004] indeed
implies that 1− e has a uniform lower bound. So (KW ′ + D′+ L ′)2 = (1− e)L ′2.

Case 3b: We end up with a Fano contraction (W ′, D′) to a curve. By the argument
above, we can assume L ′ is not big. Then W ′ is of Picard number 2 and generated
by the fiber of the Fano contraction and L ′. Taking the intersection of K ′W+D′+eL ′

with the fiber, we conclude that e is uniformly far from 1. Since the coefficients
of D′ have bounded denominators, the fact that (KW ′+D′) · L ′ is positive actually
implies it is uniformly away from 0. So the volume

(KW ′ + D′+ L ′)2 = (1− e)(KW ′ + D′) · L ′

is bounded from below. This concludes all possible cases, and hence Theorem 4.2
is proved. �
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