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Cox rings of degree one del Pezzo surfaces
Damiano Testa, Anthony Várilly-Alvarado and Mauricio Velasco

Let X be a del Pezzo surface of degree one over an algebraically closed field, and
let Cox(X) be its total coordinate ring. We prove the missing case of a conjecture
of Batyrev and Popov, which states that Cox(X) is a quadratic algebra. We use
a complex of vector spaces whose homology determines part of the structure of
the minimal free Pic(X)-graded resolution of Cox(X) over a polynomial ring.
We show that sufficiently many Betti numbers of this minimal free resolution
vanish to establish the conjecture.

1. Introduction

Let k be an algebraically closed field and let X be a smooth projective integral
scheme over k. Assume that the Picard group Pic(X) is freely generated by the
classes of divisors D0, D1, . . . , Dr . The total coordinate ring, or Cox ring of X
with respect to this basis is given by

Cox(X) :=
⊕

(m0,...,mr )∈Zr+1

H0(X,OX (m0 D0+ · · ·+mr Dr )
)
,

with multiplication induced by the multiplication of functions in k(X). Different
choices of bases yield (noncanonically) isomorphic Cox rings.

The first appearance of Cox rings was in the context of toric varieties in [Cox
1995]. In that paper Cox proves that if X is a toric variety then its total coordi-
nate ring is a finitely generated multigraded polynomial ring, and that X can be
recovered as a quotient of an open subset of Spec(Cox(X)) by the action of a torus.

Cox rings are finitely generated k-algebras in several other cases, including del
Pezzo surfaces [Batyrev and Popov 2004], rational surfaces with big anticanonical
divisor [Testa et al. 2009], blow-ups of Pn at points lying on a rational normal
curve [Castravet and Tevelev 2006] and wonderful varieties [Brion 2007]. All
these varieties are examples of Mori dream spaces [Hu and Keel 2000], and for this
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class the Cox ring of X captures much of the birational geometry of the variety.
For example, the effective and nef cones of X are finitely generated polyhedral
cones and there are only finitely many varieties isomorphic to X in codimension
one, satisfying certain mild restrictions. To add to the long list of consequences of
the landmark paper [Birkar et al. 2008], we note that log Fano varieties are also
Mori dream spaces.

Colliot-Thélène and Sansuc introduced universal torsors to aid the study of the
Hasse principle and weak approximation on an algebraic variety X over a number
field [Colliot-Thélène and Sansuc 1980; 1987]; see also [Colliot-Thélène et al.
1984]. If the Cox ring of X is finitely generated, then the universal torsor of X is
an open subset of Spec(Cox(X)), an affine variety for which explicit presentations
have been calculated in many cases [Hassett and Tschinkel 2004; Hassett 2004].
Starting with Salberger [1998], universal torsors have been successfully applied to
the problem of counting points of bounded height on many classes of varieties. The
expository article [Peyre 2004] has a very readable account of the ideas involved.
The explicit descriptions of universal torsors via Cox rings have led to explicit
examples of generalized del Pezzo surfaces that satisfy Manin’s conjectures for
points of bounded height [de la Bretèche and Browning 2007; de la Bretèche et al.
2007].

Batyrev and Popov [2004] systematically study the Cox rings of del Pezzo sur-
faces X/k. They show that Cox(X) is a finitely generated k-algebra; moreover, if
deg(X)≤6 then Cox(X) is generated by sections whose classes have anticanonical
degree one [Batyrev and Popov 2004, Theorem 3.2]. Let G denote a minimal set
of homogeneous generators of Cox(X), and denote by k[G] the polynomial ring
whose variables are indexed by the elements of G. As a result, Cox(X) is a quotient
of k[G]:

Cox(X)∼= k[G]/IX .

Batyrev and Popov provided a conjectural description of the generators of IX .

Conjecture 1.1 [Batyrev and Popov 2004]. Let X be a del Pezzo surface. The
ideal IX is generated by quadrics.

Quadratic relations have a clear geometric meaning: linear systems associated
to degree two nef divisors on X have many more reducible elements than their di-
mension; thus there are linear dependence relations among degree two monomials
in k[G]. All quadratic relations arise in this way (see page 758).

Remark 1.2. Del Pezzo surfaces of degree at least six are toric varieties and hence
their Cox rings are polynomial rings. The Cox ring of a del Pezzo surface of degree
five is the homogeneous coordinate ring of the Grassmannian Gr(2, 5) [Batyrev
and Popov 2004].
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Several partial results are known about this conjecture. Stillman, Testa, and Ve-
lasco established it for del Pezzo surfaces of degree four, and general del Pezzo sur-
faces of degree three [Stillman et al. 2007]. The conjecture was proved in [Laface
and Velasco 2009] for surfaces of degree at least two. Recently, Serganova and
Skorobogatov [2007; 2008] established Conjecture 1.1 up to radical for surfaces
of degree at least two, using representation theoretic methods, (see also [Derenthal
2007] for related work). In all cases, the conjecture for degree one surfaces eluded
proof. The purpose of this paper is to fill in this gap for surfaces defined over a
field of characteristic different from two, as well as for certain general surfaces in
characteristic two that we call sweeping (see Definition 4.3).

Theorem 1.3. Let X be a del Pezzo surface of degree one; if the characteristic of
k is two, then assume that X is sweeping. The ideal IX is generated by quadrics.

Remark 1.4. Our method of proof is cohomological in nature and relies mainly on
the Kawamata–Viehweg vanishing theorem. By [Terakawa 1998] and [Xie 2008],
this theorem is independent of the characteristic of k for rational surfaces.

The argument we give works for del Pezzo surfaces of every degree. We include
a short proof of the conjecture for del Pezzo surfaces of degree at least two in
Section 10. An alternative proof of Conjecture 1.1 for general del Pezzo surfaces
in characteristic zero, obtained independently by computational means, appears
in a paper by Sturmfels and Xu [2008]. They apply the theory of sagbi bases to
construct an initial toric ideal of IX which is generated by quadrics. Geometrically
this corresponds to a degeneration of the universal torsor on X to a suitable toric
variety.

In order to prove Theorem 1.3, we modify the approach taken in [Laface and
Velasco 2009]. We use a complex of vector spaces whose homology determines
part of the structure of the minimal free Pic(X)-graded resolution of Cox(X) over
a polynomial ring. We show that sufficiently many Betti numbers of this minimal
free resolution vanish to establish the theorem. We hope that similar techniques
can be applied to obtain presentations of Cox rings of other classes of varieties, for
example singular del Pezzo surfaces, blow-ups of Pn at points lying on the rational
normal curve of degree n and M0,n .

The paper is organized as follows. In Section 2 we define del Pezzo surfaces, fix
presentations for their Cox rings and establish notation for the rest of the paper. In
Section 3 we study the nef cone of del Pezzo surfaces and prove some geometric
results. In Section 4 we analyze low-degree linear systems on del Pezzo surfaces
of degree at most two. Our proof of Theorem 1.3 uses [Batyrev and Popov 2004,
Proposition 3.4]. However, the proof given by those authors for their proposition
has a gap: it applies only to general del Pezzo surfaces of degree one in charac-
teristic not two [Popov 2004]. Thus we prove Proposition 4.4 in order to establish
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Theorem 1.3 for all del Pezzo surfaces of degree one in characteristic not two.
In Section 5 we review the approach of [Laface and Velasco 2009] to study the
ideal of relations of finitely generated Cox rings, adapting it to the case of degree
one del Pezzo surfaces. In Section 6 we define the notions of capturability of a
divisor and stopping criterion, and prove Theorem 6.7, the main ingredients in our
proof of the Batyrev–Popov conjecture. In Section 7 we show the capturability of
most divisors on del Pezzo surfaces of degree one. We then handle the remaining
cases for del Pezzo surfaces of degree one (Sections 8, 9) and del Pezzo surfaces
of higher degree (Section 10). In Section 11 we finish the proof of the Batyrev–
Popov conjecture and give the first multigraded Betti numbers of the Cox rings of
del Pezzo surfaces.

2. Notation and background on del Pezzo surfaces

We briefly review some facts about del Pezzo surfaces and establish much of the
paper’s notation along the way.

Definition 2.1. A del Pezzo surface X is a smooth, projective surface over k whose
anticanonical divisor −K X is ample. The degree of X is the integer (K X )

2.

Picard groups and Cox rings. A del Pezzo surface X not isomorphic to P1
×P1

is isomorphic to a blow-up of P2 centered at r ≤ 8 points in general position: this
means no three points on a line, no six on a conic and no eight on a singular cubic
with a singularity at one of the points. Let L be the inverse image of a line in
P2 and let E1, . . . , Er be the exceptional divisors corresponding to the blown-up
points. Then

(
L , E1, . . . , Er ) is a basis for Pic(X), and

Cox(X) :=
⊕

(m0,...,mr )∈Zr+1

H0(X,OX (m0L +m1 E1+ · · ·+mr Er )
)
.

If X has degree one, then with the above choice of basis, the classes in Pic(X) of
the 240 exceptional curves are given in Table 1 [Manin 1986].

# of curves Picard degree (up to a permutation of E1, . . . , E8)

8 E1

28 L − E1− E2

56 2L − E1− E2− E3− E4− E5

56 3L − 2E1− E2− E3− E4− E5− E6− E7

56 4L − 2E1− 2E2− 2E3− E4− E5− E6− E7− E8

28 5L − 2E1− 2E2− 2E3− 2E4− 2E5− 2E6− E7− E8

8 6L − 3E1− 2E2− 2E3− 2E4− 2E5− 2E6− 2E7− 2E8

Table 1. Exceptional curves on X .
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For a del Pezzo surface X of any degree, we let C denote the set of exceptional
curves on X . If X has degree one, we let

G := C∪ {K1, K2},

where K1, K2 ∈ |−K X |; if X has degree at least two, then we let

G := C.

In all cases, we write k[G] for the polynomial ring whose variables are indexed
by the elements of G. By [Batyrev and Popov 2004, Theorem 3.2], we know
that Cox(X) is a finitely generated k-algebra, generated by sections whose divisor
classes have anticanonical degree one. For all G ∈ G, we let g ∈ H0

(
X,OX (G)

)
be a nonzero element. We typically use uppercase letters for divisors on X and
we denote the generator of k[G] associated to an exceptional curve E by the corre-
sponding lowercase letter e. If X has degree one, then we denote the generators of
k[G] corresponding to K1 and K2 by k1 and k2, respectively. Furthermore, given
any exceptional curve E ∈C, we let E ′ denote the unique exceptional curve whose
divisor class is−2K X−E , and we denote accordingly the generator corresponding
to E ′ by e′.
There is a surjective morphism

k[G] → Cox(X)

that maps g to g. We denote the kernel of this map by IX .
For any divisor D on X , any integer n and any Pic(X)-graded ideal J ⊂ k[G],

denote by JD the vector space of homogeneous elements of Pic(X)-degree D, by
Jn the vector space of the homogeneous elements of anticanonical degree n and
call them, respectively, the degree D part of J and the degree n part of J .

Finally, let JX be the ideal generated by (IX )2; since JX ⊂ IX , there is a surjec-
tion

(k[G]/JX )D→ (k[G]/IX )D.

This map plays a role in Section 8.

3. Remarks on the nef cone of del Pezzo surfaces

In this section we collect basic results on del Pezzo surfaces that we use in the
paper. The following result is well known [Debarre 2001, page 148, 6.5].

Proposition 3.1. Let X be a del Pezzo surface of degree d ≤ 7. A divisor class
C ∈Pic(X) is nef (respectively ample) if and only if C ·E≥0 (respectively C ·E>0)
for all (−1)-curves E ⊂ X.

Definition 3.2. Let X be a del Pezzo surface. The minimal ample divisor on X is
the ample divisor AX defined in the following table:



734 Damiano Testa, Anthony Várilly-Alvarado and Mauricio Velasco

X AX (K X )
2

P2
−

1
3 K X 9

P1
×P1

−
1
2 K X 8

Blp(P
2) 2L − E 8

Blp1,...,pr (P
2) −K X 9− r

We also extend the list to include X =P1 and we define the minimal ample divisor
on P1 to be the class of a point. To simplify the notation, if b : X → Y is a
morphism, then we may denote b∗(AY ) by AY . Minimal ample divisors allow us
to give a geometric description of nef divisors.

Corollary 3.3. Let Xr be a del Pezzo surface of degree 9− r . Let D ∈ Pic(Xr ) be
a nef divisor. Then we can find nonnegative integers n0, n1, . . . , nr and a sequence
of morphisms Xr −→ Xr−1 −→ · · · −→ X1 −→ X0 such that

• each morphism is the contraction of a (−1)-curve, except for X1→ X0, which
is allowed to be a conic bundle; and

• D can be expressed as

D = nr AXr + nr−1 AXr−1 + · · ·+ n0 AX0 .

Proof. We proceed by induction on r , the cases r ≤ 1 being immediate. Suppose
that r ≥ 2 and let n := min

{
L · D | L ⊂ X is a (−1)-curve}. By assumption we

have n ≥ 0. Let D := D+ nK Xr ; note that D is nef by Proposition 3.1. Choose a
(−1)-curve L0 ⊂ X such that D · L0 = 0. Thus D is the pull-back of a nef divisor
on the del Pezzo surface Xr−1 obtained by contracting L0. The result follows by
the inductive hypothesis. �

Observe that the integer nr in the statement of the corollary is the nef threshold
([Reid 1997, page 126]) of the divisor D with respect to the minimal ample divisor
of Xr . The minimal ample divisor is minimal in the sense that for every ample
divisor A on X , the divisor A− AX is nef: this follows from Corollary 3.3.

By [Kollár 1996, Proposition III.3.4] and Corollary 3.3 we deduce that every
nef divisor N on a del Pezzo surface is effective and that |2N | is base-point free.
Moreover, if N is a nef nonbig divisor, then N is a multiple of a conic bundle.

Let X → Y be a morphism with connected fibers and let A be the pull-back to
X of the minimal ample divisor on Y . If Y 'P1, then we call A a conic. If Y 'P2,
then we call A a twisted cubic, by analogy with the case of cubic surfaces. Finally,
if Y is a del Pezzo surface of degree d , then we call A an anticanonical divisor of
degree d in X .

We summarize and systematize the previous discussion in the following lemma.
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Lemma 3.4. Let X be a del Pezzo surface. The cone of nef divisors on X is gener-
ated by the following divisors:

(1) the conics;

(2) the twisted cubics;

(3) the anticanonical divisors of degree d ≤ 3 in X.

In particular, if N is any nonzero nef divisor on X , then we may find r :=8−deg(X)
distinct exceptional curves E1, E2, . . . , Er on X such that N−E1, . . . , N−Er are
either nef or the sum of a nef divisor and an exceptional curve, unless deg(X)= 1
and N =−K X .

Proof. The divisors in the list are clearly nef. Conversely, if D is any nef divisor,
then either D is a multiple of a conic, and we are done, or a positive multiple of
D induces a morphism with connected fibers X → Y . It is clear that if A is the
pull-back to X of the minimal ample divisor on Y , then D− A is nef. By induction
on n :=−K X ·D, we therefore reduce to showing that the anticanonical divisors of
degree d ≥ 4 in X are nonnegative linear combinations of the divisors listed. This
is immediate.

For the second statement, note that it suffices to check it for the divisors in the
list, and for −2K X if deg(X)= 1, where the result is easy to verify. �

The following lemma will be used in the proof of Lemma 7.7.

Lemma 3.5. Let X be a del Pezzo surface, let b : X → P1 be a conic bundle
with fiber class Q and let C be an exceptional curve such that C · Q = 2. There
are exactly five reducible fibers of b such that C intersects both components. In
particular, if deg(X) = 1, then there are two reducible fibers of b such that C is
disjoint from one of the two components in each fiber.

Remark 3.6. If deg(X) ≥ 4, then there are no exceptional curves C such that
C ·Q = 2, and hence the lemma applies nontrivially only to the cases deg(X)≤ 3.

Proof. Let S and T be the components of a reducible fiber of b. Since C · Q = 2,
there are only two possibilities for the intersection numbers C ·S and C ·T : they are
either both equal to one, or one of them is zero and the other is two. Suppose that
there are k reducible fibers of b such that the curve E intersects both components.
Thus contracting all the components in fibers of b disjoint from E and one compo-
nent in each of the remaining reducible fibers, we obtain a relatively minimal ruled
surface b′ : X ′→P1, together with a smooth rational curve C ′ in X ′, the image of
C , having anticanonical degree k + 1, square k − 1 and intersection number two
with a fiber of b′. Since X ′ is isomorphic to either P1

×P1 or Blp(P
2), a direct

calculation shows that this is only possible if X ′ ' P1
×P1 and k = 5.

The last statement follows from the fact that any conic bundle structure on X
contains exactly 8− deg(X) reducible fibers. �
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4. Low-degree linear systems

The lemmas in this section determine subsets of monomials that span Cox(X)D

when (deg(X), D) ∈ {(2,−K X ), (1,−2K X )}.

Lemma 4.1. Let X be a del Pezzo surface of degree two. The linear system |−K X |

is spanned by any five of its reducible elements.

Proof. The linear system |−K X | defines a separable morphism of degree two
ϕ : X→ P2 such that every pair of exceptional curves E, E ′ on X with E + E ′ =
−K X maps under ϕ to the same line in P2. To prove the result it suffices to show
that any five of these lines have no base-point. Suppose that p ∈P2 is contained in
kp ≥ 4 such lines; let q ∈ X be a point in the inverse image of p. By construction,
the point q is contained in kp exceptional curves. Let E be an exceptional curve
containing q and let E ′ be the exceptional curve such that E+E ′=−K X . The curve
E ′ is disjoint from the exceptional curves F such that F · E = 1, since F · E ′ = 0.
Thus contracting E ′ we obtain a del Pezzo surface Y of degree three with a point
contained in at least kp − 1 exceptional curves. The anticanonical linear system
embeds Y as a smooth cubic surface in P3, and exceptional curves through a point
y ∈Y are lines contained in the tangent plane to Y at y. This implies that kp−1≤3,
and the result follows. �

To study the case of degree one del Pezzo surfaces we begin with a lemma.

Lemma 4.2. Let R ⊂ P3 be a curve, let r ∈ R be a smooth point and let p ∈ P3

be a closed point different from r. Let H be a plane through p intersecting R at r
with order of contact m ≥ 2. Let πR : R→ P2 be the projection away from p, let
R = πR(R), and let γ : R 99K (P2)∨ be the composition of πR and the Gauss map
of R, i.e., the map sending a general point q ∈ R to the tangent line to R at πR(q).
Then the map γ is defined at r and one of the following occurs:

(1) the tangent line to R at r contains p, or

(2) the length of the localization at r of the fiber of γ at γ (r) equals m − 1 if
char(k) - m and it equals m if char(k) | m.

Proof. The rational map γ is defined at r since r ∈ R is a smooth point and the
range of γ is projective. Choose homogeneous coordinates X0, X1, X2, X3 on P3

so that p = [1, 0, 0, 1] and r = [0, 0, 0, 1]. In these coordinates H is defined
by the linear form AX1 + B X2, for some A, B ∈ k. In the affine coordinates
(x0= X0/X3, x1= X1/X3, x2= X2/X3) the curve R is defined near the origin r by
a complete intersection ( f1, f2) and thus its embedded tangent space is the kernel
of the matrix DF(r)=

(
(∂ fi/∂x j )(r)

)
with i ∈ {1, 2} and j ∈ {0, 1, 2}. Therefore

either the first column of DF(r) vanishes — that is, ∂ f1/∂x0 and ∂ f2/∂x0 vanish
at r — and the tangent line to R through r contains p, or some 2 × 2 minor of
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DF(r) containing the first column is nonzero, since otherwise all 2 × 2 minors
of DF(r) vanish, contradicting the assumption that R is nonsingular at r . In the
latter case, the completion of the local ring of R at r is isomorphic to k[[t]] via a
parametrization in formal power series of the form (x0(t), x1(t), t). Since H has
order of contact m at r , the power series Ax1(t)+Bt vanishes to order m so A 6= 0
and we have

x1(t)=−
B
A

t + cm tm
+ (higher order terms)

with cm 6= 0. The equation of the tangent line to R at πR(x0(t), x1(t), t, 1) is

−(X1− x1(t))+ (X2− t)x ′1(t)= 0,

so the morphism γ is given by

(x0(t), x1(t), t, 1) 7−→ [−1, x ′1(t), x1(t)− t x ′1(t)].

The localization at r of the fiber of γ at γ (r) is thus given by the ideal

I = (Ax ′1(t)+ B, x1(t)− t x ′1(t)).

Since we have

Ax ′1(t)+ B = Acmmtm−1
+ (higher order terms),

x1(t)− t x ′1(y)= cm(1−m)tm
+ (higher order terms),

it follows that either char(k) - m and I = (tm−1), or char(k) |m and I = (tm) as we
wanted to show. �

Let X be a del Pezzo surface of degree one. The linear system |−2K X | is base-
point free and the image of the associated morphism κ : X → |−2K X |

∗
' P3 is a

cone W over a smooth conic; the morphism κ is a separable double cover of W
branched at the cone vertex w ∈W and along a divisor R ⊂W . We call tritangent
planes of X the elements of |−2K X | supported on exceptional curves, and think of
them as planes in |−2K X |

∗
=P3. There are 120 such planes and they do not contain

the vertex w of the cone, since the planes containing w correspond to elements of
|−2K X | supported on the sum of two effective anticanonical divisors (see [Kollár
1996, Section III.3] and [Manin 1986, Chapter IV] for details).

Definition 4.3. A del Pezzo surface X of degree one over a field k is sweeping if
any 119 tritangent planes of X span |−2K X |.

Our goal in the remainder of this section is to show that every del Pezzo surface
of degree one in characteristic not two is sweeping; if the characteristic is two, then
we only show that a general del Pezzo surface of degree one is sweeping. In the
following sections we prove that if X is a sweeping del Pezzo surface of degree
one, then Conjecture 1.1 holds for X .
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From here through page 740 we assume that k does not have characteristic 2.
Then the curve R is smooth and it is the complete intersection of W with a cubic
surface. Hence R is a canonical curve of genus four and degree six admitting
a unique morphism of degree three to P1 (up to changes of coordinates on P1)
obtained by projecting away from w. The tritangent planes to R are planes in P3

not containing w whose intersection with R is twice an effective divisor.

Proposition 4.4. If X is a del Pezzo surface of degree one over a field k of char-
acteristic different from two, then X is sweeping. More precisely, any 113 of the
tritangent planes of X span |−2K X |.

Proof. Let p ∈ P3 be a closed point. We say that a tritangent plane H containing
p is p-regular (resp. p-singular) if p does not belong to (resp. p belongs to) a
tangent line to R at some point in H ∩ R; denote by kp the number of tritangent
planes containing p and by kr

p (resp. ks
p) the number of p-regular (resp. p-singular)

tritangent planes. Suppose that the point p belongs to R; then there are no p-
regular tritangent planes, since every tritangent plane containing p contains also
the tangent line to R at p. Thus if q is any point on the tangent line to R at p, we
have kp ≤ ks

q ≤ kq , so it suffices to prove the proposition assuming that p ∈P3 is a
closed point not in R. Therefore let p ∈ P3

\ R be a closed point; projecting away
from p we obtain a morphism πR : R→ P2; let R = πR(R). Let γ̄ : R 99K (P2)∨

be the Gauss map, let γ : R → (P2)∨ be the unique morphism that extends the
composition γ̄ ◦(πR), and let Ř= γ (R). The morphism γ factors as R

g
−→ N

ν
−→ Ř,

where ν : N → Ř is the normalization of Ř. We summarize these definitions in a
commutative diagram:

R
γ̄ //___ Ř

R

πR

OO
γ

??

g // N

ν

OO
(4-1)

The argument consists in identifying the contributions of the tritangent planes
through p in terms of combinatorial invariants of Diagram 1. More precisely, the
p-singular tritangent planes correspond (at most 7 : 1) to the points of R where the
morphism πR is ramified; the p-regular tritangent planes correspond to points of
Ř where (the separable part of) γ is ramified.

We now estimate the number ks
p of p-singular tritangent planes.

Lemma 4.5. As above, let R be the ramification divisor of κ .

(1) If ` ⊂ P3 is a tangent line to R, then there are at most 7 tritangent planes
containing `;

(2) Let p ∈ P3 be a closed point not in R. There are at most 42 p-singular
tritangent planes.
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Proof of Lemma 4.5. (1) Let r ∈ R be a point such that ` is tangent to R at r and let
α : R→ P1 be the morphism obtained by considering the pencil of planes in P3

containing `. The morphism α has degree at most four since every plane containing
` is tangent to R at r and hence intersects R at r with multiplicity at least two. If
α were not separable, then the characteristic of k would be three (recall that we
assume char(k) 6= 2), α would be the Frobenius morphism, and the curve R would
be rational, which is not the case. We deduce that α is separable; if α has degree
three, then ` contains the vertex w of the cone W and in this case no tritangent
plane contains `. Moreover, α cannot have degree two since R is not hyperelliptic.
Thus α is separable and we reduce to the case in which the degree of α is four. If
H is a tritangent plane to R containing `, then we have R∩H = 2((r)+(p)+(q)),
and hence the contribution of H to the ramification divisor of α is at least two.
From the Hurwitz formula we deduce that the ramification divisor has degree 14
and r is contained in at most 14/2= 7 tritangent planes.

(2) First, we reduce to the case that the morphism πR has degree at most two (and
in particular it is separable). Indeed, the degree of πR divides six, and since R is not
contained in a plane, the image R cannot be a line; therefore it suffices to analyze
the cases in which the degree of πR equals three. If πR were not separable of degree
three, then it would be purely inseparable and R would have degree two but geo-
metric genus four, which is not possible. If πR is separable of degree three, then p
is the vertex w of the cone W and hence ks

p= 0, since there are no tritangent planes
through w. This completes the reduction. Note that if the degree of πR equals two,
then the image of πR is a smooth plane cubic, since R is not hyperelliptic.

Second, by [Hartshorne 1977, Proposition IV.3.4], the morphism πR ramifies at
every tangent line to R through p.

Finally, the image of a ramification point of πR is either a singular point of R
or a ramification point of the morphism induced by πR to the normalization of R.
Using the Hurwitz formula, the formula for the arithmetic genus of a plane curve,
and the equality deg(R) · deg(πR)= 6, we deduce that the number of points in P2

corresponding to ramification points of πR is at most six. Thus there are at most
six lines in P3 containing p such that every p-singular tritangent plane contains
one of these lines. We conclude using Lemma 4.5(1). �

By Lemma 4.5(2) we have ks
p ≤ 42. Thus to prove the proposition, it suffices to

show that kr
p ≤ 70.

Define the torsion sheaf 1 on Ř by the exact sequence

0→ OŘ→ ν∗ON →1→ 0. (4-2)

From the long exact cohomology sequence, we deduce that

h1(N ,ON )+ h0(1)= h1(Ř,OŘ). (4-3)
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Applying the Hurwitz formula to the composition of πR with a projection of R
from a general point of P2, we obtain deg(Ř)≤ 18, and hence h1(Ř,OŘ)≤ 136.

For each tritangent plane H through p denote by `H ∈ Ř ⊂ (P2)∨ the point
corresponding to the image in P2 of H under the projection away from p. We
want to estimate the contribution of the point `H ∈ Ř to h0(1). Note that this
contribution is at least length(Oν−1(`H ))− 1, and that

length(Oν−1(`H )) · deg(g)= length(Oγ−1(`H )). (4-4)

Factor g as the composition of a power of the Frobenius morphism, followed by
a separable morphism gs . Let di be the inseparable degree of g and ds = deg(gs)

be the separable degree of g, let also ď denote the degree of Ř; recall that we have
di ds ď ≤ 18.

Suppose first that di ds = 1. By Lemma 4.2 and (4-4) each p-regular tritangent
plane contributes at least 2 to h0(1); hence we have h0(1)≥2kr

p, and we conclude
that kr

p ≤ 68.
Suppose now that di ds > 1 and hence ď ≤ 9. By the Hurwitz formula, the degree

of the ramification divisor of the morphism gs is at most 6+2 deg(gs)≤6+36=42.
The curve Ř has degree at most nine, and hence it has at most 28 singular points.

Let U ⊂ N ×P3 be the universal family of planes through p tangent to R and
let Z := (U ∩N× R). Thus Z defines a family of closed subschemes of R⊂P3 of
dimension zero and degree six. The geometric generic fiber of Z → N therefore
determines a partition of 6 that we call the generic splitting type. Alternatively, if
H is a plane through p tangent to R, then H ∩ R determines an effective divisor of
degree six on R; if H is general with the required properties, then the multiplicities
of the geometric points of H ∩ R are the generic splitting type.

By [Hefez and Kleiman 1985, Theorem 3.5] and [Kaji 1992, page 529], the
generic splitting type of γ is of the form (a, . . . , a, 1, . . . , 1), where either a = 2
and the morphism is separable or a is the inseparable degree of the rational map
R→ Ř. The possibilities are

(5, 1), (4, 1, 1), (3, 3), (3, 1, 1, 1), (2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1).

If the generic splitting type is (2, 2, 2), then the point p is the cone vertex w and in
this case kp = 0. The partition (2, 1, 1, 1, 1) corresponds to the case di ds = 1 and
we already analyzed it. The partitions (5, 1) and (4, 1, 1) can also be excluded,
since they imply that R is birational to a plane curve of degree at most b18/4c = 4
and hence cannot have arithmetic genus four.

Examining the remaining generic splitting types and using Lemma 4.2, we de-
duce that the p-regular tritangent planes correspond to ramification points of gs . In
particular, at most 42+ 28= 70 such points exist, and the proposition follows. �
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Remark 4.6. In characteristic two the curve R above has degree 3, contains the
cone vertexw, and is not necessarily smooth [Cragnolini and Oliverio 2000]. While
we are not able to prove that every del Pezzo surface of degree one in characteristic
two is sweeping, we prove it for a general such surface. We write an explicit
example of a del Pezzo surface S of degree two defined over F2 and five tritangent
planes to S no four of which share a common point. Thus S is sweeping; since the
property of being sweeping is open, we conclude that a general del Pezzo surface of
degree one in characteristic two is sweeping. We found this example using Magma
[Bosma et al. 1997].

Let P :=P(1, 1, 2, 3) be the weighted projective space over F2 with coordinates
x, y, z, w and respective weights 1, 1, 2, 3. Let S ⊂ P be the surface defined by

S : {w2
+ z3
+wxz+wy3

+ x6
= 0}.

It is immediate to check that S is smooth. Let t ∈ F2 be an element satisfying
t2
+ t + 1= 0; any four of the homogeneous forms

z+ x2, z+ y2, z+ t x2, z+ t x2
+ t2xy+ y2, z+ t x2

+ xy+ t2 y2

are linearly independent. Moreover, they represent tritangent planes since we have

F(x, y, x2, w)= w(w+x3
+y3),

F(x, y, y2, w)=
(
w+(x3

+t xy2
+x2 y+t y3)

)(
w+(x3

+t2xy2
+x2 y+t2 y3)

)
,

F(x, y, t x2, w)= w(w+t x3
+y3),

F(x, y, t x2
+t2xy+y2, w)=

(
w+y(x2

+xy+t y2)
)(
w+(t x3

+t2 y3
+t x2 y)

)
,

F(x, y, t x2
+xy+t2 y2, w)=

(
w+t y(x2

+t xy+y2)
)(
w+t (x3

+t x2 y+t y3)
)
,

and we deduce that S is sweeping.

The proof of Corollary 4.7 below given in [Batyrev and Popov 2004, Propo-
sition 3.4] contains a gap pointed out in [Popov 2004]: the original argument
implicitly assumes that the characteristic of the base field is not two, and reduces
the proof to the fact that H0

(
X,OX (−2K X )

)
is spanned by the sections supported

on exceptional curves. Proposition 4.4 fixes this gap.

Corollary 4.7. Let X be a del Pezzo surface of degree one in characteristic not
two. If D 6= −K X is an effective divisor, then H0

(
X,OX (D)

)
is spanned by global

sections supported on exceptional curves. �

Remark 4.8. A general del Pezzo surface of degree one in characteristic two is
sweeping; therefore Corollary 4.7 also holds for such surfaces.
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5. Betti numbers and the Batyrev–Popov conjecture

We review the approach of [Laface and Velasco 2009] to study the ideal of re-
lations of Cox rings. As usual, let X be a del Pezzo surface, and let R = k[G].
Throughout this section D denotes a divisor on X . Since R is positively graded
(by anticanonical degree), every finitely generated Pic(X)-graded R-module has a
unique minimal Pic(X)-graded free resolution. For the module Cox(X) = R/IX

this resolution is of the form

· · · →

⊕
D∈Pic(X)

R(−D)b2,D →

⊕
D∈Pic(X)

R(−D)b1,D → R→ 0,

where the rightmost nonzero map is given by a row matrix whose nonzero entries
are a set of minimal generators of the ideal IX . Since the differential of the resolu-
tion has degree 0, it follows that IX has exactly b1,D(Cox(X)) minimal generators
of Picard degree D.

Let K be the Koszul complex on G. Consider the degree D part of the complex
Cox(X)⊗R K. Then

Hi ((Cox(X)⊗R K)D)= (Hi (Cox(X)⊗R K))D

= (TorR
i (Cox(X), k))D = kbi,D(Cox(X)),

where the equalities on the last line follow since TorR
i (A, B) is symmetric in A

and B and the Koszul complex is the minimal free resolution of k over R. Hence
we have the equality

dimk(Hi ((Cox(X)⊗R K)D))= bi,D(Cox(X)).

Thus, Conjecture 1.1 is equivalent to the statement that b1,D(Cox(X)) = 0 for all
D ∈ Pic(X) with −K X · D ≥ 3. This is the form of the conjecture that we prove.

Let X be a del Pezzo surface of degree one. To compute the Betti numbers
b1,D(Cox(X)), denote by C1, . . . ,C240 the exceptional curves of X , and let

C240+i := Ki

for i ∈ {1, 2}. With this notation, the part of the complex relevant to our task is

⊕
1≤i< j≤242

H0(X,OX (D−Ci−C j ))
d2
−→

242⊕
i=1

H0(X,OX (D−Ci ))
d1
−→H0(X,OX (D)),

where d2 sends σi j ∈ H0(X,OX (D−Ci −C j )) to

(0, . . . , 0, σi j c j , 0, . . . , 0,−σi j ci , 0, . . . , 0)

and d1 sends σi ∈ H0
(
X,OX (D−Ci )

)
to σi ci .
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A cycle is an element of ker d1; a boundary is an element of im d2. The support
of a cycle σ = (. . . , σi , . . .) is

‖σ‖ = {Ci : σi 6= 0}

and the size of the support is the cardinality of ‖σ‖, denoted by |σ |.

Strategy. In order to show that b1,D(Cox(X))= 0 whenever−K X ·D≥ 3, we split
the divisor classes D as follows:

(1) D is ample and has anticanonical degree at least four (Section 7);

(2) D is ample and has anticanonical degree three (Section 8);

(3) D is not ample (Section 9).

The case when D is not ample follows by induction on the degree of the del
Pezzo surface, and the ample divisors of anticanonical degree three are dealt with
algebraically. In order to show that b1,D(Cox(X)) = 0 whenever D is ample and
−K X · D ≥ 4 we show that every cycle is a boundary by arguing as follows.

• We describe constructions through which a divisor may be removed from the
support of a cycle using boundaries, at the cost of possibly introducing new
divisors in the support of the cycle.

• We apply these constructions to all cycles in a systematic way to reduce their
support to at most two elements.

We conclude using the following lemma.

Lemma 5.1. Any cycle σ with |σ | ≤ 2 is a boundary.

Proof. We deduce from [Elizondo et al. 2004, Theorem 1.1] that the Cox rings
of del Pezzo surfaces are unique factorization domains. The statement follows
immediately. �

6. Capturability and stopping criteria

We introduce the following terminology to aide us in our search of ways to reduce
the support of a cycle. We keep the notation of the previous section.

Definition 6.1. A capture move for a divisor D is a pair (S,C), where S ⊂ G,
C ∈ G \S and the map⊕

S∈S

H0(X,OX (D− S−C))⊗H0(X,OX (S))−→ H0(X,OX (D−C))

induced by tensor product of sections is surjective. We say that C is the captured
curve, and that C is capturable for D by S.
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Let T be a set; for a direct sum
⊕

t∈T Vt of vector spaces indexed by T and
T ′ ⊂ T , we write

∑
t∈T ′ at êt for the element (bt)t∈T of

⊕
t∈T Vt where bt = at if

t ∈ T ′ and bt = 0 otherwise. As usual, if S ∈ G, we denote by s the chosen global
section of OX (S). Let (S,C) be a capture move for D, let σC ∈H0(X,OX (D−C)),
and let σ ∈

⊕
H0(X,OX (D−Ci )) be the element corresponding to σC . Then we

have
σC =

∑
S∈S

pss, ps ∈ H0(X,OX (D− S−C)),

and thus we obtain

σ =
∑
S∈S

psc ês + d2

(∑
S∈S

εC S ps êC+S

)
∈

⊕
i

H0(X,OX (D−Ci )) (6-1)

where εC S ∈ {±1}.
Hence, if σ is a cycle and there is a capture move (S,C), then we can modify

σ by a boundary so that C /∈ ‖σ‖. In this sense we have captured the curve C
from the support of σ . Observe, however, that this modification adds a subset of
S to ‖σ‖, so a priori the size of the support may not have decreased. We need to
find and apply capture moves in an organized way to ensure that we are genuinely
decreasing the size of the support of a cycle.

Finally note that if (S,C) is a capture move and S′ ⊃ S with C /∈ S′, then
(S′,C) is also a capture move. We frequently use this observation without explic-
itly mentioning it.

Lemma 6.2. Let A, B and C be distinct exceptional curves on X , with A and
B disjoint, and let D be any divisor. If H1

(
X,OX (D − A − B − C)

)
= 0, then

({A, B},C) is a capture move for D. In particular, if (−K X + D− A− B−C) is
nef , and if either it is big or it has anticanonical degree two, then ({A, B},C) is a
capture move for D.

Proof. Since A and B are disjoint, there is an exact sequence of sheaves

0→ OX (−A− B)→ OX (−A)⊕OX (−B)→ OX → 0.

Tensoring with OX (D−C) we obtain the short exact sequence

0→ OX (D− A−B−C)→ OX (D− A−C)⊕OX (D−B−C)→ OX (D−C)→ 0

and the desired surjectivity follows from the associated long exact sequence in
cohomology and the assumption that

H1(X,OX (D− A− B−C)
)
= 0.

The last statement follows from the Kawamata–Viehweg vanishing theorem when
−K X +D− A− B−C is nef and big. Otherwise −K X +D− A− B−C = Q for
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some conic Q and the statement follows from the exact sequence

0→ OX (K X )→ OX (K X + Q)→ OQ(K X + Q)→ 0,

by considering the associated long exact sequence in cohomology. �

Lemma 6.3. If X is sweeping, then the pairs (C, K1) and (C, K2) are capture
moves for all D 6= −2K X .

Proof. Since D + K X 6= −K X , it follows from Corollary 4.7 and Remark 4.8
that H0

(
X,OX (D+ K X )

)
is spanned by global sections supported on exceptional

curves. Thus the following map is surjective⊕
S∈C

H0(X,OX (D− S+ K X ))⊗H0(X,OX (S))−→ H0(X,OX (D+ K X ))

and (C, K1) and (C, K2) are capture moves for D. �

Definition 6.4. A stopping criterion for a divisor D is a set S ⊂ G such that the
following complex is exact:⊕
Ci ,C j∈S

i< j

H0(X,OX (D−Ci −C j ))
d2
−→

⊕
Ci∈S

H0(X,OX (D−Ci ))
d1
−→ H0(X,OX (D))

Remark 6.5. By Lemma 5.1, a subset of G of cardinality two is a stopping criterion
for any divisor D.

The name stopping criterion is motivated by Theorem 6.7: whenever we can
capture all curves in a given degree D by curves contained in a stopping criterion,
then there are no relations in degree D. In this case, we may stop looking for
capture moves.

Definition 6.6. Let D ∈ Pic(X) be a divisor class and let M := (E1, . . . , En) be a
sequence of elements of G; define Si :=G\{E1, E2, . . . , Ei } for all i ∈ {1, . . . , n}.
We say that D is capturable (by M) if

(1) (Si , Ei ) is a capture move for D for all i ∈ {1, . . . , n},

(2) Sn is a stopping criterion for D.

Theorem 6.7. Fix a divisor class D ∈ Pic(X). If D is capturable then

b1,D(Cox(X))= 0

and hence there are no minimal generators of the ideal IX in degree D.

Proof. Let M := (E1, . . . , En) be such that D is capturable by M. Let S0 = G and,
for i ∈ {1, . . . , n} define Si := G \ {E1, E2, . . . , Ei }. We want to show that every
cycle σ is a boundary. Let j (σ ) :=max{i ∈ {0, . . . , n} | ‖σ‖ ⊂ Si }. By definition
if ‖σ‖ ⊂ Sn , or equivalently if j (σ )= n, then σ is a boundary.
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Suppose that j = j (σ ) < n; since (S j+1, E j+1) is a capture move for D, we
deduce as in (6-1) that σ is homologous to a cycle τ such that j (τ ) ≥ j + 1.
Repeating this argument we conclude that σ is homologous to a cycle with support
contained in Sn and thus that σ is itself a boundary. �

7. Ample divisors of anticanonical degree at least four

Let X be a del Pezzo surface of degree one. Assume throughout this section that if
X is defined over a field of characteristic two, then X is sweeping. In this section
we prove that there are no minimal generators of the ideal IX in all sufficiently large
ample degrees. More precisely, if D is an ample divisor such that −K X · D ≥ 4
then we show that D is capturable.

The general strategy is the following. First we capture K1 and K2 using C via
Lemma 6.3. Next, assume C is an exceptional curve and we want to capture it
using S ⊂ C. We prove that there exist disjoint exceptional curves S and T in S

such that H1
(
X,OX (K X + L ST )

)
= 0, where L ST :=−K X +D−C− S−T . Then

({S, T },C) is a capture move for D by Lemma 6.2. Often we show that L ST is nef
and either big or of anticanonical degree two, omitting any reference to Lemma 6.2.
In all cases we capture enough curves to conclude that D is a capturable divisor,
using Lemma 5.1 as stopping criterion.

Lemma 7.1. Let X be a del Pezzo surface of degree one and let b : X → Y be
a birational morphism. Denote by KY the pull-back to X of a canonical divisor
on Y and let N be a nef divisor on X. Assume that deg(Y ) ≥ 3; then the divisor
D =−K X −KY + N is capturable.

Proof. Let S be the set of exceptional curves contracted by b and note that S

consists of at least two disjoint exceptional curves and that −KY − S − T is big
and nef for all S, T ∈ S, S 6= T . Let C ∈ C \ S be any exceptional curve and
let C ′ := −2K X − C . First we capture the curves C such that C ′ ∈ S using S:
LC ′T := −KY + N − T is big and nef for any choice of T ∈ S \ {C ′}.

Second we choose any two distinct S, T ∈S, we let S′ := {S, T } and we capture
all curves C ∈C\S′ such that C ′ /∈S: the divisor L ST =C ′+ (−KY − S−T )+N
is big and nef provided C ′ · (−KY − S− T ) > 0; since the only curves orthogonal
to (−KY − S− T ) are the curves in S \S′, we conclude. �

Lemma 7.2. Let X be a del Pezzo surface of degree one and let b : X → Y be a
birational morphism. Denote by A the pull-back to X of the minimal ample divisor
on Y and let N be a nef divisor on X. Assume that deg(Y ) ≥ 8; then the divisor
D =−K X + A+ N is capturable.

Proof. Note that Y is isomorphic to P2, Blp(P
2) or P1

×P1.
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Case 1: Y 6' P1
×P1. In this case A = L + Q, where L is a twisted cubic and Q

is either zero or a conic. Thus it suffices to treat the case D =−K X + L + N .
Let S be the set of curves contracted by L; thus S consists of eight disjoint

exceptional curves. Note that
∑

S 6=T∈S L − S− T = 7(−K X + L) has intersection
number at least 7 with every exceptional curve on X . Since the intersection number
of two exceptional curves on X is at most 3, it follows that every exceptional curve
on X intersects positively at least two of the curves {L − S − T | S 6= T ∈ S}.

For any C ∈ C \S let S, T ∈ S be such that (−2K X −C) · (L − S− T ) > 0 and
such that no (rational) multiple of N equals (−2K X − C)+ (L − S − T ). Note
that the second condition ensures that N does not contract both −2K X − C and
(L − S − T ) when −2K X − C + (L − S − T ) is a conic. We have that L ST :=

−2K X + L−C − S− T + N = (−2K X −C)+ (L− S− T )+ N is nef and either
it has anticanonical degree two or it is also big. Thus (S,C) is a capture move for
all C ∈ C \ S. Let S, T ∈ S be distinct elements and let S′ := {S, T }. For any
C ∈S\S′ the divisor L ST := (−2K X −C)+ (L− S−T )+N is big and nef since
(−2K X −C) · (L − S− T )= 2.

Case 2: Y ' P1
×P1. Let S be the set of curves contracted by A; thus S consists

of seven disjoint exceptional curves. Note that
∑

S 6=T∈S A− S−T =−6K X +9A
has intersection number at least six with every exceptional curve on X and that
the summands are conics. Since the intersection number of an exceptional curve
and a conic on X is at most four, it follows that every exceptional curve on X
intersects positively at least two of the conics {A− S − T | S 6= T ∈ S}. For any
C ∈ C \S let S, T ∈ S be such that (−2K X −C) · (A− S− T ) > 0. We have that
L ST := −2K X + A−C − S − T + N = (−2K X −C)+ (A− S − T )+ N is big
and nef. Thus (S,C) is a capture move for all C ∈ C \S. Let S, T ∈ S be distinct
elements and let S′ := {S, T }. For any C ∈ S \S′ the divisor

L ST := (−2K X −C)+ (A− S− T )+ N

is big and nef since (−2K X −C) · (A− S− T )= 4. �

Lemma 7.3. Let X be a del Pezzo surface of degree one, E an exceptional curve on
X and N 6=0 a nef divisor on X such that N ·E=0. The divisor−(n+2)K X+E+N
is capturable for n ≥ 0.

Proof. By Lemma 3.4, for i ∈{1, 2}, there is an exceptional curve Fi on X such that
Fi · E = 0 and N − Fi is either nef or the sum of a nef divisor and an exceptional
curve, with F1 6= F2, . Let S := {E, F1, F2}. For any C ∈ C \S, let F ∈ {F1, F2}

be such that (−2K X − C) is not a fixed component of (N − F); we have that
L E F =−(n+3)K X+E−C−E−F+N =−K X+(−2K X−C)+(N−F)−nK X

is big and nef and we conclude that we can capture all curves in C \S, using only
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the three curves in S. Finally, by the same argument, we find ({E, F1}, F2) is a
capture move and we are done. �

Lemma 7.4. Let X be a del Pezzo surface of degree one, E an exceptional curve on
X and N a nef divisor on X. The divisor D := −(n+3)K X + E+N is capturable
for n ≥ 0.

Proof. Let E, E2, . . . , E8 be eight disjoint exceptional curves on X and let Ẽi :=

−K X + E − Ei for 2 ≤ i ≤ 8. Let S := {E, E2, . . . , E8, Ẽ2, . . . , Ẽ8}. It is clear
from Table 1 that every exceptional curve C ∈ C \S intersects positively at least
two of the curves in S; in particular for every C ∈ C \S there is S ∈ S such that
S · E = 0, S ·C > 0 and N is not a (rational) multiple of −4K X − (S+C). Thus
L E S =−K X + D− E − S−C = (−4K X −C − S)+ N −nK X is nef and it either
has anticanonical degree two or it is big. In either case H1

(
X,OX (K X+L E S)

)
= 0

and we may capture all the curves in C \S using the curves in S.
Note that for all integers i, j, k, l ∈ {2, 3, . . . , 8}, i 6= j , k 6= l, we have

(−4K X − Ei − Ẽ j ) · (−4K X − Ek − Ẽl)= 0

if and only if i = k and j = l. In particular, if N is a multiple of a conic, it
is proportional to at most one of the divisors (−4K X − Ei − Ẽ j ); relabeling the
indices if necessary, we may assume that N is not proportional to−4K X−(Ei+Ẽ j )

for all i, j ∈ {2, 3, . . . , 8} and i 6= j , (i, j) 6= (7, 8). Thus for all i ∈ {3, 4, . . . , 8}
the divisor L E Ẽ2

= (−4K X − Ei − Ẽ2)+ N − nK X is either a conic or big and
nef and we may capture E3, E4, . . . , E8 using E, Ẽ2. Similarly we can capture
Ẽ2, Ẽ3, . . . , Ẽ8 using E, E2 and we are done. �

Lemma 7.5. Let X be a del Pezzo surface of degree one. Let D=−(n+4)K X+N
where n ≥ 0 and N is a nef divisor. Let C, S and T be exceptional curves such that
S · T = 0 and that C · S, C · T are at least 2. Then ({S, T },C) is a capture move
for D if either

(1) C · (S+ T )= 5, or

(2) C · (S + T ) = 4 and the divisor N is either 0 or not a multiple of the conic
T ′+ S′+C ′+ K X .

Proof. Consider L ST := −K X + D− S− T −C = S′+ T ′+C ′− (n− 1)K X + N .
Since the inequalities C ′ · S′ ≥ 2 and C ′ · T ′ ≥ 2 hold, the curves S′,C ′ and T ′,
taken together, are not all pullbacks of exceptional curves on a del Pezzo surface
Y of degree at least two. It follows that every exceptional curve V 6∈ {S′, T ′,C ′}
intersects at least one curve in this set and thus L ST is nef. If C · (S+ T )= 5 then
either C ′ + S′ = −2K X or C ′ + T ′ = −2K X and L ST is big. If N = 0 then L ST

has anticanonical degree 2 and capturability follows from Lemma 6.2. Finally,
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assume that C · S = C · T = 2. In this case S′+ T ′+C ′+ K X = Q is a conic and
L ST = Q− nK X + N is big unless N = m Q for some m ≥ 1. �

Lemma 7.6. Let X be a del Pezzo surface of degree one and let N be a nef divisor
on X. The divisor −(n+ 4)K X + N is capturable for n ≥ 0.

Proof. Let L be a twisted cubic and let E1, . . . , E8 be exceptional curves on X
contracted by L . First we capture all curves C ∈ C such that L · C = 3. From
Table 1 it is clear that C =−K X + Ei − E j for some i 6= j . Set

S= E j , T1= 2L−Ei−Ei1−Ei2−Ei3−Ei4, T2= 2L−Ei−E j1−E j2−E j3−E j4,

with {i, j}∩{i1, . . . , i4}=∅, {i, j}∩{ j1, . . . , j4}=∅, {i1, . . . , i4} 6= { j1, . . . , j4}.
Note that L · S, L · Ti 6= 3, C · S = C · Ti = 2 and S · Ti = 0 for i = 1, 2. Let T be
an exceptional curve in {T1, T2} such that N 6=m(T ′+ S′+C ′+ K X ). By Lemma
7.5(2), ({S, T },C) is a capture move.

Next, we capture curves C with L ·C ∈{4, 5}. It is clear from Table 1 that for any
such curve there exists a pair of distinct exceptional curves S, T ∈ {E1, . . . , E8}

such that ({S, T },C) is a capture move via Lemma 7.5(2). Similarly we capture
curves C with L ·C ∈ {1, 2} using some pair S, T ∈ {E ′1, . . . , E ′8}. Next we capture
E3, . . . , E8 using E ′1 and E ′2 via Lemma 7.5(1) and finally, we capture E ′1, . . . , E ′8
using E1 and E2. This concludes the proof. �

Lemma 7.7. Let X be a del Pezzo surface of degree one and let Q be a conic on X.
The divisor D=−(n+1)K X+(m+1)Q is capturable for m, n≥ 0 and m+n≥ 1.

Proof. Suppose first that n ≥ 1. Let S be the set of curves contracted by Q and
for any S ∈ S, let S̃ be the unique curve such that S + S̃ = Q. If S, T,C are
exceptional curves let BST = −K X +C ′+ Q − S− T and note that if BST is nef
and big then so is L ST :=−K X+D−C−S−T = BST +m Q−(n−1)K X because
n ≥ 1. Moreover BST has anticanonical degree 2 and h2

(
X,OX (BST )

)
= 0 so by

Riemann–Roch BST is nef if and only if B2
ST = 2Q ·C ′− 2C ′ · S− 2C ′ · T ≥ 0.

We first show that the curves C in C \S can be captured with the curves in S.
To do so, we split them into cases according to the value of Q ·C ′.

If Q ·C ′= 0 choose T ∈S disjoint from C ′. In this case BC ′T =−K X+ T̃ is nef
and big, and ({C ′, T },C) is a capture move. If Q ·C ′ = 1 choose disjoint curves
S and T ∈ S which are also disjoint from C ′ and note that BST has anticanonical
degree 2 and square 2 so it is the pullback to X of the anticanonical divisor of a
del Pezzo surface of degree 2 and thus it is nef and big; whence ({S, T },C) is a
capture move. If Q · C ′ = 2, by Lemma 3.5 there exist disjoint curves S,T in S

such that S ·C ′ = T ·C ′ = 0 so BST has square 4 and hence BST =−2K is nef and
big. Thus ({S, T },C) is a capture move in this case. Finally if Q ·C ′ = 3, then let
S and T be disjoint curves in S such that S ·C ′ = T ·C ′ = 1; then BST has square
2 and it is a nef and big divisor since it is the pullback to X of the anticanonical
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divisor of a del Pezzo surface of degree 2. Thus ({S, T },C) is a capture move in
this case.

Now choose S, T disjoint exceptional curves in S. We show that all curves C
in S \ {S, T } can be captured from {S, T }. In this case Q · C ′ = 4 and S · C ′,
T · C ′ ≤ 2, so B2

ST ≥ 0. If BST is big the statement follows since so is L ST . If
B2

ST = 0 there are two cases to consider, either n = 1 and m = 0 and the statement
follows from Lemma 6.2, or at least one of n, m is greater than one. In this case
L ST = BST − (n−1)K X +m Q is big because BST ·Q = 6 6= 0. It follows that we
can capture every exceptional curve in S \ {S, T } from {S, T }.

Suppose now that n = 0 and m ≥ 1. Note that if Q ·C ′ ≤ 1 then

Q · (D−C)= Q · (K X +C ′+ (m+ 1)Q)=−2+ Q ·C ′ < 0,

so D − C is not an effective divisor. In this case C is captured vacuously and
thus we restrict our attention to curves C with Q · C ′ ≥ 2. Let S be the set of
exceptional curves contracted by Q and for any S ∈ S let S̃ be the unique curve
such that S+ S̃ = Q.

For any C ∈ C \S which satisfies Q ·C ′ ≥ 2 there exist disjoint curves S, T in
S such that S̃ and T̃ intersect C ′. By construction S̃+ T̃ +C ′ is nef and big and
so is L ST := −K X + D− S− T −C = S̃+ T̃ +C ′+ (m−1)Q. It follows that we
can capture C \S with S.

Finally, fix two disjoint curves S, T ∈ S and let C be any curve in S \ {S, T }.
Since Q ·C = 0 we have Q ·C ′ = 4 so C ′ intersects both S̃ and T̃ . It follows that
L ST is nef and big and that S can be captured from {S, T }. �

Theorem 7.8. Let X be a sweeping del Pezzo surface of degree one and let D be
an ample divisor. If −K X · D ≥ 4, then D is capturable.

Proof. Write D = −nK X + N , where n ≥ 1, the divisor N is nef and not ample
and n−K X · N ≥ 4. If N = 0, then n ≥ 4 and we conclude using Lemma 7.6. If
N 6= 0, write N =m A+N ′ where X→ Y is a morphism with connected fibers, A
is the pull-back to X of the minimal ample divisor on Y , N ′ is the pull-back of a nef
divisor on Y and m≥ 1. If Y is a surface, then we conclude using Lemmas 7.1–7.4.
If Y ' P1, then we conclude using Lemma 7.7. �

8. Ample divisors of anticanonical degree three

The only ample divisors D that seem to elude the strategy of Section 7 are those of
anticanonical degree three. These divisors are−3K X ,−2K X+E ,−K X+Q, where
E is any exceptional curve and Q is any conic. Recall that there is a surjection

(k[G]/JX )D→ (k[G]/IX )D;
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see Section 2. We show the dimension of (k[G]/JX )D is at most h0
(
X,OX (D)

)
=

dim(k[G]/IX ) and conclude that (IX )D = (JX )D .

Lemma 8.1. Let X be a del Pezzo surface of degree one and let A, B,G be ex-
ceptional curves with A + B = −K X + G. Then k1g, k2g and ab form a basis
for H0

(
X,OX (−K X + G)

)
. In particular, if C, D are exceptional curves with

C + D = −K X + G then cd = α1k1g + α2k2g + α3ab and the coefficient α3 is
nonzero.

Proof. The morphism X→P2 associated to |−K X+G| contracts G and is ramified
along a smooth plane quartic R. The image of G is a point not lying on any
bitangent to R since otherwise X would have had a (−2)-curve. The images of
K1 and K2 in P2 are distinct lines through the image of G and therefore the three
lines in P2 corresponding to A+ B, K1+G K2+G have no common point and
are independent. �

Lemma 8.2. Let X be a del Pezzo surface of degree one; then the ideal IX has no
minimal generators in degree D =−3K X .

Proof. The only ways of writing −3K X as a sum of three effective divisors are
given in the following table.

Monomial Description

h1h2h3 h1, h2, h3 ∈ {k1, k2}

haa′ h ∈ {k1, k2} , A ∈ C

abc A, B,C ∈ C

A · B = A ·C = B ·C = 2

(8-1)

Indeed, let −3K X = A + B + C be any expression of −3K X as a sum of three
effective divisors. If one among A, B,C is in |−K X |, then we are in one of the
first two cases above. If A, B,C ∈ C, then intersecting with A, B,C successively
both sides of the equation −3K X = A+ B+C we obtain the system

A · B+ A ·C = 4,

A · B+ B ·C = 4,

A ·C + B ·C = 4,

whose only solution is A · B = A ·C = B ·C = 2.
By definition (IX )2 = (JX )2; we deduce that the span of the monomials of the

first two forms in (8-1) in k[G]/JX has dimension at most six, being the image of
H0
(
X,OX (−K X )

)
⊗ H0

(
X,OX (−2K X )

)
under the multiplication map (note that

dim H0
(
X,OX (−K X )

)
= 2, dim H0

(
X,OX (−2K X )

)
= 4 and the linearly indepen-

dent elements k1 ⊗ k2
2e − k2 ⊗ k1k2 and k2 ⊗ k2

1e − k1 ⊗ k1k2 are in the kernel).
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Fix any monomial p = abc of the third form in (8-1) and denote the span of p
together with the monomials of the first two forms in (8-1) by V . Let q = de f be
any monomial of the third form in (8-1); we prove that q can be written as the sum
of an element of V and an element of JX .

The result is clear if c = f , since in this case we can use the relation coming
from degree A+ B involving the monomials k1gc, k2gc, abc and dec to conclude
(see Lemma 8.1). By the same reasoning we reduce to the case in which {a, b, c}
and {d, e, f } are disjoint.

Suppose that A · D = 2; then the divisor G := −3K X − A− D satisfies G2
=

K X ·G = −1, and hence G is an exceptional curve. Moreover from the fact that
D · G = 2, we deduce that G is an exceptional curve on the del Pezzo surface
obtained by contracting D′ and whose anticanonical divisor pulled-back to X is
E+F ; let H := E+F−G and note that H is also an exceptional curve. In particular
we can use a relation coming from degree E + F involving the monomials dk1d ′,
dk2d ′, dgh and de f to reduce to the case {a, b, c} ∩ {d, e, f } 6=∅.

Finally, if A · D = A · E = A · F = 1, then A is a conic in the del Pezzo surface
obtained by contracting F ′. From Table 1 it follows that there are exceptional
curves intersecting any given conic twice; denote the strict transform in X of one
such curve of X by H and the exceptional curve E + F − H by J . Thus we can
use a relation coming from degree E + F involving the monomials dk1d ′, dk2d ′,
dhj and de f to reduce to the case in which A · D = 2. �

Lemma 8.3. Let E be an exceptional curve on X ; then the ideal IX has no minimal
generators in degree D =−2K X + E.

Proof. The monomials of degree D are of the following forms:

Monomial Description

ks k ∈ {k1, k2} , s ∈ k[G]−K X+E

aa′e A · A′ = 3

abc

A · E = 1
B · E = C · E = 0
A · B = A ·C = 2
B ·C = 1

Indeed let m ∈ k[G]D be a monomial. If k ∈{k1, k2}, or e divides m, then m is of one
of the first two forms. Otherwise let m=abc, with {a, b, c}∩{k1, k2, e}=∅; if two
of the curves A, B,C have intersection number three, then the remaining one is
E , which we are excluding. If the intersection numbers among the curves A, B,C
are all at most two, then the required conditions follow multiplying successively
the equality A+ B+C =−2K X + E by A, B,C .
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We show that the monomials of degree D span a subspace of dimension at most
six of (k[G]/JX )D; since dim Cox(X)D = 6, the result follows.

First, the image of H0
(
X,OX (−K X )

)
⊗ H0

(
X,OX (−K X + E)

)
in k[G]D has

dimension at most five: dim H0
(
X,OX (−K X )

)
= 2, dim H0

(
X,OX (−K X+E)

)
= 3

and the element k1⊗ k2e− k2⊗ k1e is in the kernel.
Second, the span of the monomials of the first two forms has dimension at most

six. Let aa′e, bb′e be any two monomials of the second form. There is a quadratic
relation q involving aa′, bb′, k2

1, k1k2, k2
2 since these five vectors correspond to five

elements of the four dimensional space H0
(
X,OX (−2K X )

)
. Moreover aa′ and bb′

are independent from k2
1, k1k2, k2

2 , since the monomials in k1, k2 correspond to
sections having a base-point, and neither of the remaining elements aa′ and bb′

vanishes at the base-point. Thus in the relation q the coefficients of aa′ and bb′

are both nonzero. We deduce that the span of the elements of the first two forms
has dimension at most six in (k[G]/JX )D .

Third, let abc be a monomial of the third form. The divisor A+ B contracts the
unique exceptional curve F := K X + A+ B, and the divisor G := A+ B− E is an
exceptional curve on the del Pezzo surface Y obtained from X by contracting F .
Therefore there is a quadratic relation involving the monomials ab, ge, k1 f, k2 f
and the monomials ab and ge are independent from k1 f, k2 f , by Lemma 8.1. Thus
we may use this relation to write the image of abc in k[G]/JX as a combination of
divisors of the first two forms and the proof is complete. �

Lemma 8.4. Let Q be a conic on X ; then the ideal IX has no minimal generators
in degree D =−K X + Q.

Proof. The monomials of degree D are of the following forms:

Monomial Description

ks k ∈ {k1, k2} , s ∈ k[G]Q

e f e1

E1 · Q = 0
E · F = 2
E1 · (E + F)= 2
Q · E = Q · F = 1

ee1e2
E1 · Q = E2 · Q = E1 · E2 = 0
Q · E = E1 · E = E2 · E = 2

Note that E1, E2 are disjoint components of reducible fibers of the conic bundle
associated to Q. Indeed let

−K X + Q ∼ A+ B+C. (8-2)
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Multiplying both sides of (8-2) by Q we find

2= A · Q+ B · Q+C · Q;

thus at least one of the intersection products is zero. Suppose that C · Q = 0, and
let C̃ = Q−C ; then A+ B =−K X + C̃ is a reducible divisor in the linear system
associated to the pull-back of the anticanonical divisor on the del Pezzo surface of
degree two obtained from X by contracting Ẽ . The first case in (8-2) corresponds
to the sections containing a divisor in the linear system |−K X |; the second to one
not containing it and containing two curves not in the linear system |Q|; the last
one to one containing two elements of |Q|.

Since (k[G]/JX )2 = Cox(X)2, it follows that the dimension of the span of the
monomials of the first form in (8-2) modulo (JX )−K X+Q is at most four. Let
p = ee1e2 be a monomial in k[G]−K X+Q of the third form in (8-2) and let V
denote the span of the monomials of the first form in (8-2) together with p in
(k[G]/JX )−K X+Q . Since dim(Cox(X)−K X+Q) = 5, the result follows if we show
that

V = (k[G]/JX )−K X+Q .

Let q = ēē1ē2 be a monomial in k[G]−K X+Q of the third form in (8-2).
If ē1=e1, then let E3=K X+E+E2=K X+E+E2 be the exceptional curve con-

tracted by E + E2. By Lemma 8.1, applied to the monomials ēē2, ee2, k1e3, k2e3,
we conclude that the image of q in (k[G]/JX )−K X+Q belongs to V .

If {E1, E2}∩ {E1, E2} =∅, then at least one curve in {E1, E2} is disjoint from
one curve in {E1, E2} and relabeling the indices if necessary we may assume that
E1 · E1 = 0. By the same reasoning above q = ēē1ē2 is in the span of V and
q̃ = ẽē1e1 (note that Ẽ :=−K X+Q−E1−E1 is an exceptional curve, since it has
anticanonical degree one and square negative one), and we conclude since q̃ is in
the span of V .

Finally, if q = ē f̄ ē1, then at least one curve in E1, E2 is disjoint from E1 and
relabeling the indices if necessary we may assume that E1 · E1 = 0. Reasoning as
above, q is in the span of V and ẽe1ē1, and we are done. �

Corollary 8.5. Let X be a sweeping del Pezzo surface of degree one and let D be
an ample divisor on X such that −K X · D ≥ 3. Then the ideal IX has no minimal
generators in degree D.

Proof. By Theorem 7.8, if −K X ·D ≥ 4 then D is capturable and the result follows
from Theorem 6.7. Since the only ample divisors of anticanonical three are−3K X ,
−2K X + E and −K X + Q, where E is an exceptional curve and Q is a conic, the
result is true if −K X · D = 3, by Lemmas 8.2–8.4. �
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9. Nonample divisors

In this section we prove that the relations in degree D, where D is a nonample
divisor on X of anticanonical degree at least three, coming from JX are sufficient
to show that the quotient (k[G]/JX )D is in fact spanned by monomials coming from
a del Pezzo surface of smaller degree. This is the basis for the inductive procedure
of Section 11. Throughout this section we assume that del Pezzo surfaces X of
degree one defined over fields of characteristic two are sweeping.

Lemma 9.1. Let X be a del Pezzo surface of degree at most five and let D be a
divisor on X. Suppose that E is an exceptional curve on X such that D · E = 0.
Then (k[G]/JX )D is spanned by products of variables corresponding to exceptional
curves disjoint from E.

Proof. Let m ∈ k[G]D be a monomial and write m = ep
· s, where p ≥ 0 and s is

a product of variables different from E . Note that if p = 0, then s is a product of
variables corresponding to divisors disjoint from E , since by assumption D ·E = 0.
We shall show that if p≥ 1, then using the quadratic relations we may decrease p;
the result then follows by induction on p.

Suppose that p ≥ 1. Since D · E = 0, there is a variable c ∈ G such that
E · C > 0 and c divides s. The monomial ce is a monomial of anticanonical
degree two corresponding to a nef divisor. By definition of JX , the vector space
(k[G]/JX )C+E coincides with Cox(X)C+E ; thus it suffices to show that there is
a basis of Cox(X)C+E consisting of sections vanishing along exceptional curves
different from E . To conclude, we analyze all the possibilities for the divisor C+E .

Case 1. The divisor C+E is a conic. The linear system |C+E | contains 8−deg(X),
i.e., at least three, distinct reducible elements and any two of these span it.

Case 2. The divisor C+E is−b∗KY , where b : X→Y is a birational morphism, Y
has degree two. The linear system |C+ E | contains 28 distinct reducible elements
and any five of these span it (Lemma 4.1).

Case 3. The divisor C+ E is −2K X and the degree of X is one. The linear system
|−2K X | contains 120 distinct reducible elements whose irreducible components
are (−1)-curves and any 113 of these span it (Proposition 4.4).

In all these cases the sections supported on (−1)-curves distinct from E span
Cox(X)C+E , and the lemma follows. �

Lemma 9.2. Let X be a del Pezzo surface of degree at most five and let D be a
divisor on X. Suppose that E is an exceptional curve on X such that D · E < 0.
Then dim(k[G]/JX )D = dim(k[G]/JX )D−E and dim Cox(X)D = dim Cox(X)D−E .

Proof. If D is not effective, then D−E is not effective and k[G]D = k[G]D−E = 0.
If D is effective, then E ·D< 0 implies that E is a component of D and thus every
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monomial in k[G]D is divisible by e; the same argument also proves the statement
about the Cox ring. �

10. Del Pezzo surfaces of degree at least two

Lemma 10.1. Let X be a del Pezzo surface of degree two. Any ample divisor is
capturable except −K X .

Proof. Let D 6= −K X be an ample divisor and write D = −nK X + N , with n ≥ 1
and N nef and not ample; by assumption either n ≥ 2 or N 6= 0.

Suppose first that N 6= 0; if N contracts more than one exceptional curve, then
we let S be the set of exceptional curves contracted by N . If N contracts exactly
one exceptional curve E , then we let F be any exceptional curve disjoint from E
and let S := {E, F}.

Let C ∈ C \ S and let C ′ := −K X − C . If C ′ ∈ S, then the divisor LC ′T =

N + (−K X − T )− (n− 1)K X is big and nef for all T ∈ S, T 6= C ′ since

(−K X − T ) · N =−K X · N > 0;

thus we can capture all such curves using S. If C ′ /∈S, then let S, T ∈S be disjoint
and note that N − T is either nef or N is a multiple of a conic and it is the sum of
a multiple of a conic and a single exceptional curve. Moreover

• S′ · (N − T )=−K X · N − 1> 0;

• if N is a multiple of a conic, then S′ also intersects the fixed component of
N − T ;

• C ′ · (N − T ) = −K X · N − 1−C · T is zero if and only if N is a conic and
C · T = 1.

In this last case, note that C · N 6= 0, and C intersects at least one component in
every reducible fiber of the conic bundle determined by N ; hence we may choose T
to be the other component if C ′ ·(N−T )= 0. In all cases we may choose S, T ∈S

disjoint such that L ST is big and nef, and hence capture all C ∈ C \S using only
curves in S. In particular, we are done if N contracts at most two exceptional
curves.

To conclude it suffices to treat the two cases N = L + N ′ and N = Q + N ′,
where L is a twisted cubic, Q is a conic and N ′ is nef; note also that S · N ′ = 0,
for all S ∈ S.

Choose any two disjoint S, T ∈ S and let C ∈ S, C 6= S, T . If N = L + N ′,
we have that the divisor L ST =−K X + (−K X −C)+ (L− S− T )+ N ′ is big and
nef since (−K X −C) · (L − S − T ) = 1 and we conclude. If N = Q + N ′, then
the divisor L ST = (−K X − S)+ (−K X − T )+ (Q−C)+ N ′ is big and nef since
(−K X − S) · (Q−C)= (−K X − T ) · (Q−C)= 1 and again we conclude.
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Suppose now that N =0 and hence D=−nK X , where n≥2. Let S be any set of
seven disjoint exceptional curves. For all C ∈C\S, there are distinct S, T ∈S such
that C · S,C ·T > 0: this is clear from the list of exceptional curves. Thus for such
a choice of S, T , we have that the divisor L ST =−3K X−C−S−T =C ′+S′+T ′

is big and nef and we may capture all the curves in C \ S using S. Finally let
S, T ∈ S be distinct elements and let S′ := −K X − S, T ′ := −K X − T ; for all
C ∈ S the divisor L S′T ′ = −3K X −C − S′− T ′ = C ′+ S+ T is big and nef and
we conclude. �

Lemma 10.2. Let X be a del Pezzo surface of degree three. Any ample divisor is
capturable.

Proof. Let D be an ample divisor and write D =−K X + N , with N a nef divisor.
Let S be a set of six disjoint exceptional curves. For all C ∈C\S there are two

distinct S, T ∈ S such that C · S = C · T = 1. With these choices of S, T we have
that the divisor L ST =−2K X+N−C−S−T = (−K X−T )+(−K X−C−S)+N
is big and nef since (−K X −T ) · (−K X −C− S)= 1. Thus we may capture all the
exceptional curves C ∈C\S using the curves in S. Let S′ be the set of six disjoint
exceptional curves each intersecting all the curves in S except for one (thus S∪S′

is a Schläfli double-six). Choose S, T ∈S and let S′, T ′ ∈S′ be two corresponding
curves, that is S · S′ = T · T ′ = 0. Using the moves above we can capture {S′, T ′}
with S and we can capture S \ {S, T } using S′ \ {S′, T ′}, and finally we capture
S′ \ {S′, T ′} using {S, T }. �

Lemma 10.3. Let X be a del Pezzo surface of degree four. Any ample divisor is
capturable.

Proof. Let D be an ample divisor and write D =−K X + N , with N a nef divisor.
The criterion to capture curves is that ({E, F},C) is a capture move if C /∈ {E, F},
E · F = 0 and C · E +C · F > 0: if C · E > 0, then the divisor

L E F = (−K X −C − E)+ (−K X − F)+ N

is the sum of a conic, a twisted cubic and a nef divisor and hence it is big and nef.
We refer to Table 1. Use E3, E4 to capture L − Ei − E j for all 3 ≤ i < j < 5.

Use L− E1− E3, L− E1− E4, L− E1− E5 to capture E3, E4, E5 and finally use
E1, E2 to capture all the remaining curves. �

Lemma 10.4. Let X be a del Pezzo surface of degree five. Any ample divisor is
capturable.

Proof. Same criterion and strategy as in Lemma 10.3, ignoring any reference to
the index 5. �

Lemma 10.5. Let X be a del Pezzo surface of degree six. Any ample divisor is
capturable.
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Proof. Same criterion as in Lemma 10.3. Capture L − E1− E2 using E1, E2 and
then capture the remaining curves using L − E1− E3, L − E2− E3. �

11. Quadratic generation

Main result. We collect all the information gathered in the previous sections to
prove the main result of this paper: the ideal IX is generated by its degree two part.

Proof of the Batyrev–Popov Conjecture. Let n be an integer; by induction on rX :=

9− deg(X) and by induction on n we show that (JX )n = (IX )n . By definition, the
statement is true if n ≤ 2, for all del Pezzo surfaces X ; if rX ≤ 4, then the result is
well known for all n.

Suppose that rX > 4, n ≥ 3, that for all del Pezzo surfaces Y such that rY < rX

we have that JY = IY , and that (JX )n−1 = (IX )n−1. Let D be a divisor on X of
anticanonical degree n; if there is an exceptional curve E such that D · E ≤ 0, then
the result follows by Lemma 9.2 or by Lemma 9.1. Otherwise D is ample and the
result follows from Corollary 8.5 if deg(X)= 1, or from the lemmas of Section 10
if deg(X)≥ 2. �

Quadratic generators. Let X be a del Pezzo surface of degree d . We briefly ex-
plain how all generators of IX arise. The nef divisors D with anticanonical degree
two on X are:

(1) the conics Q,

(2) −K X if d = 2,

(3) −K X + E if d = 1, where E is an exceptional curve on X ,

(4) −2K X if d = 1.

These divisors are precisely sums of pairs of intersecting exceptional curves on X .
We count the relations coming from conics as follows. Every conic Q has 8−d

reducible sections and h0
(
X,OX (Q)

)
= 2; thus each conic gives rise to 6 − d

quadratic relations. If there are B conics on X then there are (6− d)B generators
of IX induced by conic bundles. For example, when d = 1 we obtain 5× 2,160=
10,800 relations.

When d = 2, we also have relations in degree −K X . There are 28 monomials in
k[G]−K X , and h0

(
X,OX (−K X )

)
= 3, giving 25 linear dependence relations among

these quadratic monomials. These relations yield the remaining generators of IX .
When d = 1, there are 30 monomials in k[G]−K X+E : k1e, k2e and the 28 mono-

mials coming from the anticanonical divisor of the del Pezzo surface of degree two
obtained by contracting E . This gives (30− 3)× 240 = 6,480 generators in IX .
Finally, we also have relations coming from −2K X . There are 123 monomials in
k[G]−2K X : k2

1, k1k2, k2
2 and the 120 monomials of the form ee′, where E, E ′∈C and
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deg(X) D
Number of
monomials
in k[G]D

h0
(
X,OX (D)

)
b1,D(Cox(X))

Number of
divisors

of type D

1

Q 7 2 5 2160
−K X + E 28+ 2 3 27 240
−2K X 120+ 3 4 119 1
(Total) 22443 17399 2401

2
Q 6 2 4 126
−K X 28 3 25 1

(Total) 784 529 127

3 Q 5 2 3 27
(Total) 135 81 27

4 Q 4 2 2 10
(Total) 40 20 10

5 Q 3 2 1 5
(Total) 15 5 5

Table 2. First Betti numbers b1,D(Cox(X)) for del Pezzo surfaces.

E+ E ′ =−2K X . Since h0
(
X,OX (−2K X )

)
= 4, we obtain 119 linear dependence

relations among these quadratic monomials. These relations yield the remaining
generators of IX . This information is summarized in Table 2.
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Hilbert schemes of 8 points
Dustin A. Cartwright, Daniel Erman, Mauricio Velasco and Bianca Viray

The Hilbert scheme H d
n of n points in Ad contains an irreducible component Rd

n
which generically represents n distinct points in Ad . We show that when n is at
most 8, the Hilbert scheme H d

n is reducible if and only if n = 8 and d ≥ 4. In
the simplest case of reducibility, the component R4

8 ⊂ H 4
8 is defined by a single

explicit equation, which serves as a criterion for deciding whether a given ideal
is a limit of distinct points.

To understand the components of the Hilbert scheme, we study the closed
subschemes of H d

n which parametrize those ideals which are homogeneous and
have a fixed Hilbert function. These subschemes are a special case of multi-
graded Hilbert schemes, and we describe their components when the colength is
at most 8. In particular, we show that the scheme corresponding to the Hilbert
function (1, 3, 2, 1) is the minimal reducible example.

1. Introduction

The Hilbert scheme H d
n of n points in affine d-space parametrizes 0-dimensional,

degree n subschemes of Ad . Equivalently, the k-valued points of H d
n parametrize

ideals I ⊂ S= k[x1, . . . , xd ] such that S/I is an n-dimensional vector space over k.
The smoothable component Rd

n ⊂ H d
n is the closure of the set of ideals of distinct

points. The motivating problem of this paper is characterizing the ideals which
lie in the smoothable component, that is, the 0-dimensional subschemes which are
limits of distinct points. We determine the components of the schemes H d

n for
n ≤ 8, and find explicit equations defining R4

8 ⊂ H 4
8 .

We assume that k is a field of characteristic not 2 or 3.

Theorem 1.1. Suppose n is at most 8 and d is any positive integer. Then the Hilbert
scheme H d

n is reducible if and only if n = 8 and d ≥ 4, in which case it consists
of exactly two irreducible components: the smoothable component, of dimension
8d, and a component denoted Gd

8 , of dimension 8d − 7, which consists of local
algebras isomorphic to homogeneous algebras with Hilbert function (1, 4, 3).

MSC2000: primary 14C05; secondary 13E10.
Keywords: Hilbert scheme, zero-dimensional ideal, smoothable.
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fellowship. Velasco is partially supported by NSF grant DMS-0802851. Viray was supported by a
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It is known that for d at least 3 and n sufficiently large the Hilbert scheme of
points is always reducible [Iarrobino 1972]. The fact that the Hilbert scheme H 4

8
has at least two components appears in [Iarrobino and Emsalem 1978]. In contrast,
for the Hilbert scheme of points in the plane (d = 2), the smoothable component
is the only component [Fogarty 1968].

To show that the Hilbert scheme of n points is irreducible, it suffices to show that
each isomorphism type of local algebras of rank at most n is smoothable, and for n
at most 6 there are finitely many isomorphism types of local algebras. In contrast,
there are infinitely many nonisomorphic local algebras of degree 7. Relying on a
classification of the finitely many isomorphism types in degree 6, Mazzola [1980]
proves the irreducibility of H d

n for n = 7.
In our approach, a coarser geometric decomposition replaces most of the need

for classification. We divide the local algebras in H d
n into sets H d

h by their Hilbert
function h, and we determine which components of these sets are smoothable.
The main advantage to this approach is that there are fewer Hilbert functions than
isomorphism classes, and this enables us to extend the smoothability results of
[Mazzola 1980] up to degree 8.

In order to determine the components of H d
h , we first determine the components

of the standard graded Hilbert scheme Hd
h, which parametrizes homogeneous ideals

with Hilbert function h. By considering the map πh :H d
h→Hd

h which sends a local
algebra to its associated graded ring, we relate the components of Hd

h to those of
H d

h . The study of standard graded Hilbert schemes leads to the following analogue
of Theorem 1.1:

Theorem 1.2. Let Hd
h be the standard graded Hilbert scheme for Hilbert function

h, where
∑

hi ≤ 8. Then Hd
h is reducible if and only if

h = (1, 3, 2, 1) or h = (1, 4, 2, 1),

in which case it has exactly two irreducible components. In particular, H3
(1,3,2,1) is

the minimal example of a reducible standard graded Hilbert scheme.

As in the ungraded case, all standard graded Hilbert schemes in the plane are
smooth and irreducible [Evain 2004].

In the case when d = 4 and n = 8, we describe the intersection of the two
components of H 4

8 explicitly. Let S = k[x, y, z, w] and S1 be the vector space
of linear forms in S. Let S∗2 denote the space of symmetric bilinear forms on S1.
Then, the component G4

8 is isomorphic to A4
×Gr(3, S∗2 ), where Gr(3, S∗2 ) denotes

the Grassmannian of 3-dimensional subspaces of S∗2 .

Theorem 1.3. The intersection R4
8 ∩ G4

8 is a prime divisor on G4
8. We have the

following equivalent descriptions of R4
8 ∩G4

8 ⊂ G4
8:
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Set-theoretic: For a point I ∈ G4
8
∼= A4

×Gr(3, S∗2 ) ∼= A4
×Gr(7, S2) let V be

the corresponding 7-dimensional subspace of S2. Then I ∈ G4
8 belongs to the

intersection if and only if the skew-symmetric bilinear form

〈 , 〉I : (S1⊗ S2/V )⊗2
→

3∧
(S2/V )∼= k

given by

〈l1⊗ q1, l2⊗ q2〉I = (l1l2)∧ q1 ∧ q2

is degenerate.

Local equations: Around any I ∈ G4
8, choose an open neighborhood UI ⊂ G4

8
such that the universal Grassmannian bundle over the UI is generated by
three sections. Since these sections are bilinear forms we may represent them
as symmetric 4× 4 matrices A1, A2, and A3 with entries in 0(UI ,OG4

8
). The

local equation for R4
8 ∩UI is then the Pfaffian of the 12× 12 matrix: 0 A1 −A2

−A1 0 A3

A2 −A3 0

 .
Note that specializing this equation to I gives the Pfaffian of 〈 , 〉I .

The local equation from the previous theorem gives an effective criterion for de-
ciding whether an algebra of colength 8 belongs to the smoothable component.
Moreover, it can be lifted to equations which cut out R4

8 ⊂ H 4
8 . Recall that H 4

8 can
be covered by open affines corresponding to monomial ideals in k[x, y, z, w] of
colength 8.

Theorem 1.4. On these monomial coordinate charts, R4
8 ⊂ H 4

8 is cut out set-
theoretically by

(1) the zero ideal on charts corresponding to monomial ideals with Hilbert func-
tions other than (1, 4, 3), and

(2) the pullback of the equations in Theorem 1.3 along the projection to homoge-
neous ideals in charts corresponding to monomial ideals with Hilbert function
(1, 4, 3).

Remark 1.5. It is not known whether H 4
8 is reduced. If it is, then the equations in

Theorem 1.4 cut out the smoothable component scheme-theoretically.

Remark 1.6. Every point of the Hilbert scheme of n points in Pd has an open
neighborhood isomorphic to H d

n . Therefore, analogues of Theorems 1.1, 1.3,
and 1.4 hold for the Hilbert scheme of n points in Pd . However, the most natural
setting for our methods is the affine case and the language of multigraded Hilbert
schemes.



766 Dustin A. Cartwright, Daniel Erman, Mauricio Velasco and Bianca Viray

The material in this paper is organized as follows: Section 2 contains back-
ground and definitions. Section 3 describes the geometry of standard graded Hilbert
schemes of degree at most 8. Section 4 contains proofs of the smoothability of
families of algebras and its main steps are collected in Table 4.1. Section 5 is
devoted to the study of the components of H 4

8 and their intersection. Section 6
ties together these results to give proofs of all theorems mentioned above. Finally,
Section 7 proposes some open questions.

2. Background

In this section, let k be a field and S = k[x1, . . . , xd ].

Multigraded Hilbert schemes. A grading of S by an abelian group A is a semi-
group homomorphism deg : Nd

→ A which assigns to each monomial in S a
degree in A. Let h : A → N be an arbitrary function, which we will think of
as a vector h, with values ha indexed by a in A. We say that a homogeneous
ideal I in S has Hilbert function h if Sa/Ia has k-dimension ha for all a ∈ A.
Multigraded Hilbert schemes, introduced in [Haiman and Sturmfels 2004], param-
etrize homogeneous ideals with a fixed Hilbert function. More precisely these are
quasiprojective schemes over k which represent the following functors [Haiman
and Sturmfels 2004, Theorem 1.1]:

Definition 2.1. For a fixed integer d, grading deg, and Hilbert function h, the
multigraded Hilbert functor Hh : k -Alg→ Set assigns to each k-algebra T , the
set of homogeneous ideals J in S⊗T such that the graded component (S⊗T/J )a is
a locally free T -module of rank ha for all a in A. The multigraded Hilbert scheme
is the scheme which represents the multigraded Hilbert functor.

In particular, we will be interested in the following two special kinds of multi-
graded Hilbert scheme:

• Let deg : Nd
→ 0 be the constant function to the trivial group and define

h0 = n. In this case the multigraded Hilbert scheme is the Hilbert scheme of
n points in Ad and will be denoted H d

n .

• Let deg : Nd
→ Z be the summation function, which induces the standard

grading deg(xi ) = 1. We call the corresponding multigraded Hilbert scheme
the standard graded Hilbert scheme for Hilbert function h and denote it with
Hd

h.

If n=
∑

j∈N h j there is a closed immersion Hd
h→H d

n by [Haiman and Sturmfels
2004, Proposition 1.5].

Coordinates for the Hilbert scheme of points. In this section we briefly discuss
some coordinate systems on H d

n . The reader should refer to [Miller and Sturmfels
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2005, Chapter 18] for an extended treatment. For a monomial ideal M of colength
n with standard monomials λ, let Uλ ⊂ H d

n be the set of ideals I such that the
monomials in λ are a basis for S/I . Note that the Uλ form an open cover of H d

n .
An ideal I ∈ Uλ has generators of the form m −

∑
m′∈λ cm

m′m
′. The cm

m′ are local
coordinates for Uλ which define a closed immersion into affine space.

Suppose V (I ) consists of n distinct points q(1), . . . , q(n) with coordinates q( j)
i

for 1≤ i ≤ d . Fix an order λ= (m1, . . . ,mn) on the set of monomials λ and define
1λ = det

(
[mi (q( j))]i, j

)
. For example, if λ = (1, x1, . . . , xn−1

1 ), then 1λ is the
determinant of the Vandermonde matrix on the q( j)

1 . If I ∈Uλ, we can express the
cm

m′ in terms of the q( j)
i , using Cramer’s rule, as

cm
m′ =

1λ−m′+m

1λ
,

where λ−m′ +m is the ordered set of monomials obtained from λ by replacing
m′ with m. Note that the right-hand side of this equality is only defined for ideals
of distinct points. The quotient or product of two 1λ’s is Sn-invariant. Thus the
formula does not depend on the order of λ. Gluing over the various Uλ, these
quotients determine a birational map

(Ad)n�Sn 99K Rd
n

that is regular when the points q( j) are all distinct. The rational functions1η1/1η2

are elements of the quotient field of either (Ad)n�Sn or Rd
n . The expressions 1λ

and their relationship to the local equations cm
m′ were introduced in [Haiman 1998,

Proposition 2.6].

Duality. First let us suppose that k has characteristic 0, and let S∗ be the ring
k[y1, . . . , yd ], with the structure of an S-module via formal partial differentiation
xi · f = ∂ f/∂yi . If we look at homogeneous polynomials of a fixed degree j in each
of the two rings, we have a pairing S j×S∗j→ S∗0 =k. Any vector subspace of S j has
an orthogonal subspace in S∗j of complementary dimension. In particular, if I is a
homogeneous ideal in S, we have subspaces I⊥j ⊂ S∗j and we set I⊥=⊕I⊥j , which
is often called the Macaulay inverse system of I . The subspace I⊥ is closed under
differentiation, that is, ∂

∂yi
I⊥j ⊂ I⊥j−1 for all i and j . Conversely, any graded vector

subspace I⊥ ⊂ S∗ which is closed under differentiation determines an orthogonal
ideal I ⊂ S with Hilbert function h j = dimk I⊥j . Also, note that any linear change
of variables in S induces a linear change of variables in S∗.

If k has positive characteristic p, then the same theory works for sufficiently
small degree. Formal partial differentiation gives a perfect pairing S j × S∗j → k
if and only if j is less than p. Thus, we can associate orthogonal subspaces I⊥j
to a homogeneous ideal I so long as Ip contains all of Sp. In this case, we define
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I⊥j = 0 for all degrees j at least p, and I =⊕I j as before. Conversely, for a graded
vector subspace I⊥ ⊂ S∗ which is closed under differentiation and with I⊥j = 0
for j at least p, the orthogonal space is a homogeneous ideal I ⊂ S with Hilbert
function h j = dimk I⊥j .

3. Components of the standard graded Hilbert schemes

In this section, k will denote an algebraically closed field of characteristic not 2
or 3.

We will study the components of the standard graded Hilbert schemes Hd
h with

Hilbert function h where
∑

hi ≤ 8. These results will be important for the proofs
of smoothability in the following section. From [Evain 2004, Theorem 1], we have
that for d = 2, the standard graded Hilbert schemes are irreducible. Thus, we will
only work with d at least 3. For the purposes of classifying irreducible components
of Hd

h, it is convenient to work with homogeneous ideals which contain no linear
forms, and thus we assume that h1 = d . The following lemma allows us to restrict
our attention to this case:

Proposition 3.1. The standard graded Hilbert scheme Hd
h with d ≥ h1 is a Hh1

h -
bundle over Gr(d−h1, S1). In particular, if Hh1

h is irreducible of dimension D then
Hd

h is irreducible of dimension D+ (d − h1)d.

Proof. The degree 1 summand of the universal ideal sheaf of OHd
h
[x1, . . . , xd ] is

locally free of rank d− h1 and thus defines a morphism φ :Hd
h→Gr(d− h1, S1).

Over an open affine U ∼= A(d−h1)h1 in Gr(d − h1, S1), we have an isomorphism
φ−1(U )∼=U × H h1

h by taking a change of variables in OU [x1, . . . , xd ]. �

Lemma 3.2. Let be m a positive integer such that m! is not divisible by the charac-
teristic of k. Let f (y1, . . . , yd) be a homogeneous polynomial in S∗m whose partial
derivatives form an r-dimensional vector subspace of S∗m−1. Then f can be written
as a polynomial in terms of some r-dimensional subspace of S∗1 .

Proof. There exists a linear map from S1→ S∗m−1 which sends xi 7→
∂ f
∂yi

. After a
change of variables, we can assume that xr+1, . . . , xd annihilate f . Thus, any term
of f contains only the variables y1, . . . , yr . �

Throughout this section, N will denote dimk S2 =
(d+1

2

)
, the dimension of the

vector space of quadrics.

Proposition 3.3. Let 0 ≤ e ≤ N. The standard graded Hilbert scheme for Hilbert
function (1, d, e) is isomorphic to the Grassmannian Gr(N − e, S2), and it is thus
irreducible of dimension (N − e)N.

Proof. We build the isomorphism via the functors of points of these schemes. For a
k-algebra T let φ(T ) :Hh(T )→Gr(N −e, S2)(T ) be the morphism of sets which
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maps a homogeneous ideal I ⊂T⊗k S to I2. Letψ(T ) :Gr(N−e, S2)(T )→Hh(T )
be the map which sends a k-submodule L of T ⊗ S2 to L⊕

⊕
j≥3(T ⊗k S j ), which

is an ideal of T ⊗ S. The natural transformations φ and ψ are inverses of one
another and the isomorphism follows from Yoneda’s Lemma. �

Proposition 3.4. Let h = (1, d, 1, . . . , 1) and let m ≥ 3 be the largest index such
that hm is nonzero. Then the standard graded Hilbert scheme for h is irreducible
of dimension d − 1.

Proof. We claim that the scheme Hd
h is parametrized by Gr(1, S∗1 ) by sending a

vector space generated by ` ∈ S∗1 to the ideal generated by the quadrics orthogonal
to `2 and all degree m + 1 polynomials. This ideal has the right Hilbert function
and the parametrization is clearly surjective. �

Theorem 3.5. If d is at least 3, the standard graded Hilbert scheme for Hilbert
function (1, d, 2, 1) is reducible and consists of the following two components:

(1) The homogeneous ideals orthogonal to `3, `2, and q where ` is a linear form
and q is a quadric linearly independent of `2. We denote this component by
Qd , and dim(Qd)= (d2

+ 3d − 6)/2.

(2) The closure of the homogeneous ideals orthogonal to a cubic c and its partial
derivatives, where the degree 1 derivatives of c have rank 2. We denote this
component by Pd , and dim(Pd)= 2d − 1.

Proof. We compute the dimension of the first component. It is parametrized by the
1-dimensional subspace of S∗1 generated by ` and a 2-dimensional subspace of S∗2
which contains `2. These have dimensions d−1 and N −1−1 respectively, for a
total of (d2

+ 3d − 6)/2.
Note also that an open subset of the second component, Pd , is parametrized

by a 2-dimensional subspace V of S∗1 and a cubic c ∈ Sym3(V ) which is not a
perfect cube. The parametrization is by taking the ideal whose components of
degrees 3 and 2 are orthogonal to c and to its derivatives respectively. The space
of derivatives is 2-dimensional by our construction of c. The dimension of Pd is
3+ 2(d − 2)= 2d − 1.

We claim that any homogeneous ideal with Hilbert function (1, d, 2, 1) lies in
one of these two components. Any such ideal is orthogonal to a cubic c, and the
derivatives of c are at most 2-dimensional. If the derivatives are 1-dimensional,
then c must be a perfect cube, so the ideal is in Qd . Otherwise, the ideal is in Pd .

Finally, we will show that Pd has a point that does not lie on Qd . Let I be the
ideal orthogonal to y1 y2

2 , and its partial derivatives, 2y1 y2, y2
2 . Then I is generated

by x3
2 and all degree 2 monomials other than x2

2 and x1x2. We will study the
homomorphisms φ : I→ S/I of degree 0, as these correspond to the tangent space
of Hd

h at I . For any quadric generator q , we can write φ(q)= aq x2
2+bq x1x2. Note
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that x1φ(q) = aq x1x2
2 and x2φ(q) = bq x1x2

2 . For any i, j > 2, φ must satisfy the
conditions

x1φ(xi x j )= x jφ(xi x1)= 0, x2φ(xi x j )= x jφ(xi x2)= 0,

x1φ(x1xi )= xiφ(x2
1)= 0, x2φ(x1xi )= x1φ(x2xi ).

In matrix form, we see that φ must be in the form


x2

1 x1xi x2xi xi x j x3
2

x2
2 ∗ ci ∗ 0 0

x1x2 ∗ 0 ci 0 0
x1x2

2 0 0 0 0 ∗

,
where i and j range over all integers greater than 2. Thus there are at most
2(d − 2) + 3 = 2d − 1 tangent directions, but since Pd has dimension 2d − 1,
there are exactly 2d − 1 tangent directions. On the other hand, Qd has dimension
(d2
+ 3d − 6)/2, which is greater than 2d − 1 for d at most 3, so I cannot belong

to Qd and thus Pd is a component. �

Proposition 3.6. The standard graded Hilbert scheme for Hilbert function h =
(1, d, 2, 2) is irreducible of dimension 2d − 2.

Proof. The Hilbert scheme is parametrized by a 2-dimensional subspace L of S∗1
and a subspace of S2 of dimension N −2, and containing the (N −3)-dimensional
subspace orthogonal to the square of L . The parametrization is by sending the
subspace of S2 to the ideal generated by that subspace, together with all degree 4
polynomials. The dimension of this parametrization is 2(d − 2)+ 2= 2d − 2. �

Proposition 3.7. The standard graded Hilbert scheme for Hilbert function h =
(1, 3, 3, 1) is irreducible of dimension 9.

Proof. This Hilbert scheme embeds as a closed subscheme of the smooth 18-
dimensional variety Gr(3, S2)×Gr(9, S3) by mapping an ideal to its degree 2 and
3 graded components. Furthermore, H3

h is defined by 9 = 3 · 3 equations, corre-
sponding to the restrictions that the products of each of the 3 variables and each
of the 3 quadrics in I2 are in I3. In particular, the dimension of each irreducible
component is at least 9.

Now we will look at the projection of H3
h onto the Grassmannian Gr(9, S3),

which is isomorphic to Gr(1, S∗3 ). The orthogonal cubic in S∗3 can be classified
according to the vector space dimension of its derivatives. For a generic cubic,
its three derivatives will be linearly independent and therefore the cubic will com-
pletely determine the orthogonal space. Thus, the projection from H3

h is a bijection
over this open set, so the preimage is 9-dimensional. In the case where the deriva-
tives of the cubic are 2-dimensional, we have that, after a change of coordinates, the
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cubic is written in terms of two variables. Thus, the parameter space of the cubic
consists of a 2-dimensional choice of a subspace of S1 and then a 3-dimensional
choice of a cubic written in terms of this subspace. The fiber over any fixed cubic is
isomorphic to the Grassmannian of 3-dimensional subspaces of the 4-dimensional
subspace of S2 orthogonal to the derivatives of the cubic. The dimension of the
locus in H3

h is therefore 2+ 3+ 3 = 8. By a similar logic, the locus where the
cubic has a 1-dimensional space of derivatives is 2+ 2 · 3 = 8. Therefore, H3

h is
the disjoint union of three irreducible sets, of dimensions 9, 8, and 8. We conclude
that H3

h is an irreducible complete intersection of dimension 9. �

Proposition 3.8. Let 1 ≤ e ≤ N. The standard graded Hilbert scheme for Hilbert
function (1, d, e, 1, 1) is irreducible of dimension d − 1+ (N − e)(e− 1).

Proof. This Hilbert scheme is parametrized by a 1-dimensional subspace L of S∗1 ,
together with an e-dimensional subspace V of S∗2 which contains Sym2(L). The
parametrization is by mapping (L , V ) to the ideal whose summands of degrees
2, 3, and 4 are orthogonal to V , L3, and L4, respectively. Note that this has the
desired dimension (d − 1)+

(
(N − 1)− (e− 1)

)
(e− 1). �

Theorem 3.9. With the exception of Hilbert functions (1, 3, 2, 1) and (1, 4, 2, 1),
the standard graded Hilbert schemes with

∑
hi ≤ 8 are irreducible.

Proof. The cases when d = 2 follow from [Evain 2004, Theorem 1]. The cases
when d is at least 3 are summarized in Table 4.1. �

4. Smoothable 0-schemes of degree at most 8

In this section k will denote an algebraically closed field of characteristic not 2
or 3.

Recall that a point I in H d
n is smoothable if I belongs to the smoothable com-

ponent Rd
n . In this section, we first reduce the question of smoothability to ideals

I in H d
n where S/I is a local k-algebra and I has embedding dimension d. Then

we define the schemes H d
h which parametrize local algebras, and we use these to

show that each 0-dimensional algebra of degree at most 8 is either smoothable or
is isomorphic to a homogeneous local algebra with Hilbert function (1, 4, 3).

We use two different methods to show that a subscheme H d
h belongs to the

smoothable component.

(1) For each irreducible component of H d
h , consider a generic ideal I from that

component. Apply suitable isomorphisms to put I into a nice form. Then
show I is smoothable. Since the set of ideals isomorphic to I are dense in the
component and smoothable, the entire component of H d

h containing I must
belong to Rd

n .
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(2) Within each irreducible component of H d
h , find an ideal I such that I is a

smooth point in H d
n and I belongs to Rd

n . Then the whole component of H d
h

containing I must belong to Rd
n .

In each method we need to show that a particular ideal I is smoothable. We
do this by showing I = in J with respect to some nonnegative weight vector for a
smoothable ideal J . The corresponding Gröbner deformation induces a morphism
A1
→ Rd

n which maps 0 to I .
For d= 2, the Hilbert scheme H 2

n is smooth and irreducible [Fogarty 1968, The-
orem 2.4]. Thus, we will limit our analysis to algebras with embedding dimension
at least 3.

For a finite rank k-algebra A0, we say that A0 is smoothable if there exists a flat
family k[[t]] → A such that the special fiber of A is isomorphic to A0 and such
that the generic fiber of A is smooth. This terminology is justified by the following
result:

Lemma 4.1. Let I ⊆ S an ideal of colength n. Then I is smoothable if and only if
S/I is smoothable (as a k-algebra).

Proof. Let I ⊆ S be a smoothable ideal, and let U ⊆ Rd
n be the open set parametriz-

ing smooth 0-schemes. Since I ∈ Rd
n , there exists a smooth curve C and a map

f : C→ Rd
n such that f (P)= I for some point P ∈ C and such that f (C) meets

U . By considering the completion of C at the point P , we obtain an induced map
f̂ : Spec(k[[t]])→ Rd

n which sends the closed point to I and the generic point into
U . The flat family over Spec(k[[t]]) which corresponds to the map f̂ induces an
abstract smoothing of S/I .

Conversely, let’s assume that A0 := S/I admits an abstract smoothing k[[t]]→ A.
Let φ : k[[t]][x1, . . . , xd ] → A be defined by sending each xi to any lift of xi from
S/I = A0. Since A is a finitely generated k[[t]]-module, the cokernel of φ is finitely
generated, and so we can apply Nakayama’s Lemma to show that φ is surjective.
The map φ thus induces a morphism of schemes f :Spec(k[[t]])→ H d

n which sends
the closed point to I and the generic point into U . It follows that I ∈U = Rd

n . �

If I is supported at multiple points, then S/I is the product of local Artin alge-
bras and a smoothing of each factor over k[[t]] yields a smoothing of S/I . Because
of this observation and Lemma 4.1, we will now only consider ideals I in H d

n
which define local algebras with embedding dimension d .

The schemes H d
h . If (A,m) is a local algebra, its Hilbert function is defined by

hi = dimk mi/mi+1, which is equivalently the Hilbert function of the associated
graded ring of A. When A is both local and graded, the two notions of Hilbert
function coincide. We now define the schemes H d

h and explore their irreducible
components for each Hilbert function h with

∑
hi ≤ 8.
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For each h such that
∑

hi=n, the subscheme H d
h ⊂H d

n consists set-theoretically
of the ideals I defining a local algebra S/I with maximal ideal (x1, . . . , xd) whose
Hilbert function equals h. More precisely, let A= OHd

n
[x1, . . . , xd ]/I be the uni-

versal sheaf of algebras on H d
n and let M be the ideal (x1, . . . , xd)A. The fiber

at an ideal I of the quotient sheaf A/Mi is isomorphic to S/(I + (x1, . . . , xd)
i ).

For any fixed h, there is a locally closed subset of H d
n consisting of those points

such that the fiber of A/Mi has dimension h0 + · · · + hi−1 for all i ≥ 0. Let H d
h

be the reduced subscheme on this subset, and then the restriction of each A/Mi to
H d

h is locally free. Define B to be the sheaf of graded algebras on H d
h whose i-th

component is

ker
(
(A/Mi+1)|Hd

h
→ (A/Mi )|Hd

h

)
,

which is locally free of rank hi because it is the kernel of a surjection of locally free
sheaves. Note that the fiber of B at I is the associated graded ring of S/I . There
is a canonical surjection of graded algebras OHd

h
[x1, . . . , xd ]→B which defines a

morphism πh : H d
h →Hd

h to the standard graded Hilbert scheme. The ideal I gets
mapped to its initial ideal with respect to the weight vector (−1, . . . ,−1).

With the exception h= (1, 3, 2, 1, 1), we will show that the irreducible compo-
nents of H d

h and Hd
h are in bijection via the map πh.

Proposition 4.2. Each subscheme H d
(1,d,e) is irreducible.

Proof. Since H d
(1,d,e)

∼=Hd
(1,d,e), this follows from Proposition 3.3. �

Proposition 4.3. Fix h= (1, d, e, f ). Let m = (d+1)d/2−e= dimk S2/I2. Then
every fiber of πh is irreducible of dimension m f . In particular, the irreducible
components of H d

h are exactly the preimages of the irreducible components of Hd
h.

Proof. Fix a point in Hd
h, which corresponds to a homogeneous ideal I . Let

q1, . . . , qm be quadratic generators of I , and let c1, . . . , c f be cubics which form
a vector space basis for S3/I3. Define a map φ : Am f

→ H d
n via the ideal〈

qi −
∑ f

j=1 ti j c j | 1≤ i ≤ m
〉
+ I≥3,

where the ti j are the coordinate functions of Am f . Because a product of any variable
x` with any of these generators is in I , this ideal has the right Hilbert function and
maps to the fiber of πh over I . Furthermore, φ is bijective on field-valued points,
so the fiber is irreducible of dimension m f .

For the last statement, we have that for any irreducible component of Hd
h, the

restriction of πh has irreducible equidimensional fibers over an irreducible base,
so the preimage is irreducible. These closed sets cover H d

h and because each lies
over a distinct component of Hd

h, they are distinct irreducible components. �
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Combining Theorem 3.5 with the above proposition, we see H d
(1,d,2,1) has ex-

actly two components: Pd :=π
−1(Pd) and Qd :=π

−1(Qd). In addition, by Propo-
sitions 3.6, 3.7, and 4.3, H d

(1,d,2,2) and H 3
(1,3,3,1) are irreducible.

Proposition 4.4. Let h = (1, d, 1, . . . , 1) and let m ≥ 3 be the largest index such
that hm is nonzero. Then H d

h is irreducible of dimension (d + 2m − 2)(d − 1)/2.
At a generic point, after a change of coordinates, we can take the ideal to be

〈xm+1
d , x2

i − xm
d , x j xk | 1≤ i < d, 1≤ j < k ≤ d〉.

Proof. Fix an ideal I ∈Hd
h, and after a change of coordinates, we can assume

I = 〈xm+1
d , xi x j | 1≤ i ≤ d − 1, 1≤ j ≤ d〉.

Let J be an ideal in the fiber above I . By assumption J contains an element of the
form

xi xd − bi3x3
d − · · ·− bim xm

d ,

for 1≤ i < d . Let J ′ be the image of J after the change of coordinates

xi 7→ xi + bi3x2
d + · · · bim xm−1

d , (4-1)

and note that J ′ contains xi xd for 1 ≤ i < d and also lies over I . Thus, for each
1≤ i ≤ j < d , J ′ contains an element of the form f = xi x j −ai j xk

d−· · · for some
k. However, J ′ must also contain x j (xi xd)− xd f = ai j xk+1

d + · · · , so in order to
have I as the initial ideal, k must equal m. Therefore, J ′ is of the form

J ′ = 〈xm+1
d , xi x j − ai j xm

d , xk xd | 1≤ i ≤ j ≤ d, 1≤ k < d〉.

Conversely, for any choice of ai j and bi j , applying the change of variables in
(4-1) to the ideal J ′ gives a unique ideal J with I as an initial ideal. Thus, the fiber
is irreducible of dimension (m−2)(d−1)+ (d−1)d/2= (d−1)(d+2m−4)/2,
which, together with Proposition 3.4 proves the first statement.

For the second statement, note that the coefficients ai j define a symmetric bi-
linear form. By taking the form to be generic and choosing a change of variables,
we get the desired presentation of the quotient algebra. �

The above propositions cover all Hilbert functions of length at most 8 except for
h= (1, 3, 2, 1, 1). In this case the fibers of π(1,3,2,1,1) are not equidimensional. The
dimension of the fiber depends on whether or not the homogeneous ideal requires
a cubic generator.

Lemma 4.5. No ideal in H3
(1,3,2,1,1) requires a quartic generator.

Proof. If I were such an ideal, then leaving out the quartic generator would yield
an ideal with Hilbert function (1, 3, 2, 1, 2). No such ideal exists, because no such
monomial ideal exists. �



Hilbert schemes of 8 points 775

Lemma 4.6. There exists a 4-dimensional irreducible closed subset Z of H =

H3
(1,3,2,1,1) where the corresponding homogeneous ideal requires a single cubic

generator. On U=H\Z, the ideal does not require any cubic generators.

Proof. Let S j denote the j-th graded component of OH[x, y, z] and I j ⊂S j the j-
th graded component of the universal family of ideals on H. Consider the cokernel
Q of the multiplication map on the coherent sheaves I2⊗OH S1→ I3 on H. The
dimension of Q is upper semicontinuous. Furthermore, since it is not possible to
have an algebra with Hilbert function (1, 3, 2, 3), the dimension is at most 1. The
set Z is exactly the support of Q.

We claim that Z is parametrized by the data of a complete flag V1 ⊂ V2 ⊂ S∗1 ,
and a 2-dimensional subspace Q of V 2

2 which contains V 2
1 . The dimension of this

parametrization is 2+ 1+ 1 = 4. An ideal is formed by taking the ideal which
is orthogonal to Q in degree 2 and to the powers V 3

1 and V 4
1 in degrees 3 and 4

respectively. After a change of variables, we can assume that the flag is orthogonal
to 〈x〉 ⊂ 〈x, y〉 ⊂ S2. Then the degree 2 generators of I are x2, xy, xz and another
quadric. It is easy to see that these only generate a codimension 2 subspace of
S3. Conversely, for any ideal with this property, the orthogonal cubic has a 1-
dimensional space of derivatives. Furthermore, there exists a homogeneous ideal
with Hilbert function (1, 3, 2, 2, 1) contained in the original ideal. The cubics
orthogonal to these have a 2-dimensional space of derivatives, so we can write
them in terms of a 2-dimensional space of the dual variables. These two vector
spaces determine the flag, and the parametrization is bijective on closed points. In
particular, Z is irreducible of dimension 4. �

Lemma 4.7. The preimage Z := π−1(Z) is irreducible of dimension 11.

Proof. By Lemma 4.6, it suffices to prove that the fibers of π over Z are irreducible
and 7-dimensional. Let I be a point in Z. As in the proof of Lemma 4.6, we can
assume that the ideal corresponding to a point of Z is generated by x2, xy, xz, q, c,
where q and c are a homogeneous quadric and cubic respectively. A point J in the
fiber must be generated by m5 and

g1 := x2
+ a1z3

+ b1z4, g2 := xy+ a2z3
+ b2z4,

g3 := xz+ a3z3
+ b3z4, g4 := q + a4z3

+ b4z4, g5 := c+ b5z4.

The ai , bi are not necessarily free. We must impose additional conditions to
ensure the initial ideal for the weight vector (−1,−1,−1) is no larger than I . In
particular, we must have

zg1− xg3 = a1z4
+ b1z5

− a3xz3
− b3xz4

∈ J,

zg2− yg3 = a2z4
+ b2z5

− a3 yz3
− b3 yz4

∈ J.
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This implies a1 = a2 = 0, because the final three terms of each expression are
already in J . By Buchberger’s criterion, it is also sufficient for these conditions to
be satisfied. Therefore the fibers are 7-dimensional. �

Lemma 4.8. The preimage U := π−1(U) is irreducible of dimension 12.

Proof. By Proposition 3.8, it suffices to show that the fibers of π over U are
irreducible of dimension 6. Let I be an ideal in U. Let V be the 1-dimensional
subspace of S∗1 such that I3 is orthogonal to Sym3(V ) and let q1, . . . , q4 be the
degree 2 generators of I . Choose a basis x, y, z of S1 such that x, y is a basis for
V⊥. Then any J in φ−1(I ) is of the form

〈qi + ai z3
+ bi z4

| 1≤ i ≤ 4〉+m5.

We claim that forcing in(−1,−1,−1)(J )= I imposes two linear conditions on the
ai s. Using the table of isomorphism classes of (1, 3, 2) algebras in [Poonen 2008],
one can check that for any 4-dimensional subspace 〈q1, q2, q3, q4〉 of Sym2(V ), the
intersection of 〈zqi | 1≤ i ≤ 4〉3 and 〈xq j , yq j | 1≤ j ≤ 4〉3 is 2-dimensional. After
choosing a different basis for Q, we may assume zq1, zq2 ∈ 〈xq j , yq j | 1≤ j ≤ 4〉.
By using a similar argument to the one in Lemma 4.7, we see a1 = a2 = 0. Since
the only other linear syzygies among the q ′i s have no z coefficients and xz3, yz3

and m5 are in the ideal, these are the only conditions imposed. Therefore, the fiber
is 6-dimensional. �

Therefore, it suffices to show the following irreducible sets are contained in the
smoothable component.

H d
(1,d,1,...,1), H d

(1,d,2), Pd , Qd , H d
(1,d,2,2), H 3

(1,3,4), H 3
(1,3,3), H 3

(1,3,3,1),U, Z .

Smoothable algebras. In this section we prove that the irreducible sets

H d
(1,d,1,...,1), H d

(1,d,2), Pd , Qd , H d
(1,d,2,2), H 3

(1,3,4),

are in the smoothable component by showing that a generic algebra in each is
smoothable. We then show that the remaining irreducible sets,

H 3
(1,3,3), H 3

(1,3,3,1),U, Z ,

are in the smoothable component by finding a point in each which is smoothable
and a smooth point on the Hilbert scheme.

Proposition 4.9. All algebras in H d
(1,d,1,...,1) are smoothable.

Proof. We prove this by induction on d . Note the d = 1 case is trivial. Let m be
the greatest integer such that hm is nonzero. Then, by Proposition 4.4 we can take
a generic ideal to be

I = 〈x2
1 − xm

d , . . . , x2
d−1− xm

d , xm+1
d 〉+ 〈xi x j | i 6= j〉.
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We define J to be

J = 〈x2
1 + x1− xm

d , . . . , x2
d−1− xm

d , xm+1
d 〉+ 〈xi x j | i 6= j〉.

Note that J admits a decomposition as J = J1∩J2 where J1=〈x1+1, x2, x3, . . . xd〉

and
J2 = 〈x1− xm

d , x2
2 − xm

d , . . . , x2
d−1− xm

d , xm+1
d 〉+ 〈xi x j | i 6= j〉.

As the Hilbert function of J2 equals (1, d − 1, 1, . . . , 1), the inductive hypothesis
implies that J2 is smoothable. Thus J itself is also smoothable. Next note that
I ⊂ in(m,...,m,2)(J ). Since both I and J have the same colength, we obtain the
equality I = in(m,...,m,2)(J ). The corresponding Gröbner degeneration induces a
map A1

→ Rd
n which sends 0 to I . Thus I is smoothable. �

Proposition 4.10. All algebras in H d
(1,d,2) are smoothable.

Proof. The proof is by induction on d . The case d = 2 follows from Theorem 2.4
of [Fogarty 1968].

Assume d is at least 3. Note that I⊥2 defines a pencils of quadrics in d-variables.
It then follows from [Harris 1992, Lemma 22.42] that, up to isomorphism, a generic
ideal in H d

(1,d,2) is of the form

I = 〈xi x j | i 6= j〉+ 〈x2
i − ai x2

d−1− bi x2
d | 1≤ i ≤ d − 2〉,

with ai and bi elements of k.
Define

J1 = 〈xi x j | i 6= j〉+ 〈x1+ a1x2
n−1+ b1x2

d , x2
i − ai x2

d−1− bi x2
d | 2≤ i ≤ d − 2〉,

J2 = 〈x1− 1, x2, . . . , xd〉.

Since J1 has Hilbert function (1, d − 1, 2), it is thus smoothable by the induction
hypothesis. One can check that I = in(1,...,1) (J1 ∩ J2). Therefore I is smoothable.

�

Proposition 4.11. All algebras in Pd are smoothable.

Proof. Let I be a generic ideal in Pd . After a change of variables we may assume

I = 〈xi x j , x2
` + x3

1 , x3
1 − x3

2 | 1≤ i < j ≤ d, 2< `≤ d〉.

One can check

I = in(2,2,3,...,3)
(
〈x1+ 1, x j | j > 1〉 ∩

〈xi x j , x2
` + x2

1 , x2
1 − x3

2 | 1≤ i < j ≤ d, 2< `≤ d〉
)
.

The second ideal in the intersection has Hilbert function (1, d, 1, 1), hence is
smoothable by Proposition 4.9. It follows that I is smoothable. �
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Proposition 4.12. All algebras in Qd are smoothable.

Proof. Let I be a generic ideal in Qd . After a change of variables, we may assume

I = 〈x1x`, xi x j + b(i, j)x3
1 , x2

k − x2
k+1+ bk x3

1 | ` 6= 1, 1< i < j ≤ d, 1< k < d〉.

Define

J1 = 〈x1x`, xi x j + b(i, j)x2
1 , x2

k − x2
k+1+ bk x2

1 | ` 6= 1, 1< i < j ≤ d, 1< k < d〉,

J2 = 〈x1+ 1, x2, . . . , xd〉.

Then J1 has Hilbert function (1, d, 2) so is smoothable by Proposition 4.10. One
can check that I = in(2,3,...,3) (J1 ∩ J2), and thus I is smoothable. �

Proposition 4.13. All algebras in H d
(1,d,2,2) are smoothable.

Proof. Let I be a generic ideal with Hilbert function (1, d, 2, 2). After a change
of variable, we may assume (π(I ))⊥2 = 〈y

2
1 , y2

2〉. Thus I must be of the form

〈x2
` − a``x3

1 − b``x3
2 , xi x j − ai j x3

1 − bi j x3
2 | i < j, 2< `〉+m4.

Note I determines a symmetric bilinear map

φ : (m :m3)/m2
× (m :m3)/m2

→ m3 ∼= k2,

(xi , x j ) 7→ ai j x3
1 + bi j x3

2 .

By composing φ with projections onto the two coordinates, we get a pair of sym-
metric bilinear forms. For a generic φ, these are linearly independent and their span
is invariant under a change of basis on m3. By [Harris 1992, Lemma 22.42], there
exists a basis for (m :m3)/m2 and m3 such that these bilinear forms are represented
by diagonal matrices. Thus I has the following form

〈x2
` − a`x3

1 − b`x3
2 , xi x j − ai j x3

1 − bi j x3
2 | i < j, 2< `〉+m4,

where ai j = bi j = 0 if i and j are both greater than 2 and a`, b` are nonzero for all
` > 2. After suitable changes of variable, we may assume bi j = ai j = 0 for all i, j .
This gives the ideal

I = 〈x2
` − a`x3

1 − b`x3
2 , xi x j , x4

1 , x4
2 | i < j, 2< `〉.

Now consider the following ideals:

J1 := 〈x2
` − a`x2

1 − b`x3
2 , xi x j , x3

1 , x4
2 | i < j, 2< `〉,

J2 := 〈x1+ 1, x2, . . . , xd〉.

Note J1 is a (1, d, 2, 1) ideal and in fact lies in the component Qd , and therefore
is smoothable by Proposition 4.12. One can check that I = in(2,2,3,...,3) (J1 ∩ J2),
and therefore I is smoothable. �
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Proposition 4.14. All algebras in H 3
(1,3,4) are smoothable.

Proof. Such algebras are given by a 2-dimensional subspace of the space of
quadratic forms, with isomorphisms given by the action of GL3. Arguing as in
Proposition 4.10, we conclude that, up to isomorphism, a generic 2-dimensional
space of quadrics is spanned by x2

+ z2 and y2
+ z2. Adding the necessary cubic

generators, we conclude that I = 〈y2
+ z2, x2

+ z2, z3, yz2, xz2, xyz〉 is a generic
point of H 3

(1,3,4).
Consider

J = 〈y2
+ z2, x + x2

+ z2, z3, yz2, xz2, xyz〉.

Note that J is the intersection of an ideal of colength 3 and an ideal of colength 5:

J = 〈x + 1, y2, yz, z2
〉 ∩ 〈x + z2, y2

+ z2, z3, yz2
〉.

Since both ideals in the above intersection are smoothable, J itself is smoothable.
One can check that I = in(1,1,1)(J ). Therefore I is smoothable. �

To prove that the remaining families are smoothable, we show that they contain
a smooth point which is also smoothable. For this, we use the following result,
which is well known (see for example [Miller and Sturmfels 2005, Lemma 18.10]
in characteristic 0), but we give the proof in arbitrary characteristic for the reader’s
convenience:

Proposition 4.15. All monomial ideals are smoothable.

Proof. Suppose we have a monomial ideal of colength n, written in multiindex
notation I = 〈xα(1), . . . , xα(m)〉. Since k is algebraically closed, we can pick an
arbitrarily long sequence a1, a2, . . . consisting of distinct elements in k. Define

fi =

d∏
j=1

(
(x j − a1)(x j − a2) · · · (x j − a

α
(i)
j
)
)
.

Note that in( fi ) = xα(i) with respect to any global term order. Let J be the ideal
generated by the fi for 1 ≤ i ≤ m and then in(J ) ⊃ I and so J has colength at
most n. However, for any standard monomial xβ in I , we have a distinct point
(aβ1, . . . , aβd ) in Ad , and each fi vanishes at this point. Therefore, J must be the
radical ideal vanishing at exactly these points and have initial ideal I . Thus, I is
smoothable. �

Furthermore, the tangent space of an ideal I in the Hilbert scheme is isomorphic
to HomS(I, S/I ). We use this fact to compute the dimension of the tangent space
of a point I .

Proposition 4.16. All algebras in H 3
(1,3,3) are smoothable.
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Proof. This irreducible set includes the smoothable monomial ideal I generated by
x2, y2, z2, xyz. A direct computation shows I has a 21-dimensional tangent space,
so I is a smooth point in H 3

7 . Thus, any algebra in H 3
(1,3,3) is smoothable. �

Proposition 4.17. All algebras in H 3
(1,3,3,1) are smoothable.

Proof. The ideal I = 〈x2, y2, z2
〉 in this locus is smoothable by Proposition 4.15,

and one can check that the Hilbert scheme is smooth at this point as well. Therefore
H 3
(1,3,3,1) is contained in the smoothable component of the Hilbert scheme. �

Proposition 4.18. All algebras in Z are smoothable.

Proof. Consider I = 〈x2, xy, xz, yz, z3
− y4
〉 ∈ Z and note that

I = in(1,0,0)
(
〈x + 1, y, z〉 ∩ 〈x, yz, z3

− y4
〉
)
.

The second ideal is smoothable [Fogarty 1968, Theorem 2.4], so I is smoothable.
One can also check I is smooth in the Hilbert scheme by computing the dimension
of HomS(I, S/I ). Therefore Z is contained in the smoothable component of the
Hilbert scheme. �

Proposition 4.19. All algebras in U ⊂ H 3
(1,3,2,1,1) are smoothable.

Proof. Consider the ideal I = 〈x2, xy− z4, y2
− xz, yz〉 ∈U . One can check that

I = in(7,5,3)
(
〈x, y, z− 1〉 ∩ 〈x2, xy− z3, y2

− xz, yz〉
)
.

The second ideal in the intersection is in Q3 and therefore smoothable by Propo-
sition 4.12. Therefore I is smoothable by the same argument in the proof of
Proposition 4.14. One can also check I has a 24-dimensional tangent space in the
Hilbert scheme and is thus smooth. Therefore U is contained in the smoothable
component. �

Theorem 4.20. With the exception of local algebras with Hilbert function (1, 4, 3),
every algebra with n ≤ 8 is smoothable.

Proof. The possible Hilbert functions are exactly the Hilbert functions of monomial
ideals, and for d at least 3, one can check that there are no possibilities other those
listed in Table 4.1. For d at most 2, smoothability follows from Theorem 2.4 of
[Fogarty 1968] �

In particular, this implies that there are no components other than the ones listed
in Theorem 1.1.
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degree Hilbert Hd
h c.d. reference H d

h c.d. smoothability
function h reference

4 1, 3 0 Prop. 3.3 0 Prop. 4.15

5 1, 3, 1 5 Prop. 3.3 5 Prop. 4.9
1, 4 0 Prop. 3.3 0 Prop. 4.15

6 1, 3, 1, 1 2 Prop. 3.4 7 Prop. 4.10
1, 4, 1 9 Prop. 3.3 9 Prop. 4.9
1, 5 0 Prop. 3.3 0 Prop. 4.15

7 1, 3, 1, 1, 1 2 Prop. 3.4 9 Prop. 4.9
1, 3, 2, 1 5, 6 Thm. 3.5 9, 10 Prop. 4.12, 4.11
1, 3, 3 9 Prop. 3.3 9 Prop. 4.16
1, 4, 1, 1 3 Prop. 3.4 12 Prop. 4.9
1, 4, 2 16 Prop. 3.3 16 Prop. 4.10
1, 5, 1 14 Prop. 3.3 14 Prop. 4.9
1, 6 0 Prop. 3.3 0 Prop. 4.15

8 1, 3, 1, 1, 1, 1 2 Prop. 3.4 11 Prop. 4.9
1, 3, 2, 1, 1 6 Prop. 3.8 11(?), 12 Prop. 4.19, 4.18
1, 3, 2, 2 4 Prop. 3.6 12 Prop. 4.13
1, 3, 3, 1 9 Prop. 3.7 12 Prop. 4.17
1, 3, 4 8 Prop. 3.3 8 Prop. 4.14
1, 4, 1, 1, 1 3 Prop. 3.4 15 Prop. 4.9
1, 4, 2, 1 7, 11 Thm. 3.5 15, 19 Prop. 4.12, 4.11
1, 4, 3 21 Prop. 3.3 21 *
1, 5, 2 26 Prop. 3.3 26 Prop. 4.10
1, 5, 1, 1 4 Prop. 3.4 18 Prop. 4.9
1, 6, 1 20 Prop. 3.3 20 Prop. 4.9
1, 7 0 Prop. 3.3 0 Prop. 4.15

Table 4.1. Summary of the decomposition of Hilbert schemes by
Hilbert function of the local algebra with h1 ≥ 3. Here c.d. stands
for “component dimensions”. The component dimensions of H d

h
are computed using Propositions 4.3 and 4.4. In the case of h =
(1, 3, 2, 1, 1), Lemmas 4.7 and 4.8 show that H d

h is the union of
two irreducible sets, but we don’t know whether the smaller set is
contained in the closure of the larger one.

5. Characterization of smoothable points of H4
8

In this section k will denote a field of characteristic not 2 or 3, except for Section
5D where k = C.

We show that besides the smoothable component, the Hilbert scheme H 4
8 con-

tains a second component parametrizing the local algebras with h = (1, 4, 3). We
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prove that the intersection of the two components can be described as in Theorem
1.3, and as a result we determine exactly which algebras with Hilbert function
(1, 4, 3) are smoothable. We will use G0 to denote the standard graded Hilbert
scheme H4

(1,4,3)
∼=Gr(7, S2), which we will think of as a closed subscheme of H 4

8 .
In Section 5B we introduce and investigate the Pfaffian which appears in Theo-

rem 1.3, and we prove the crucial fact that it is the unique GL4-invariant of minimal
degree. In Section 5C, we give a first approximation of the intersection locus. We
then use the uniqueness results from Section 5B to prove Theorem 1.3. We begin
by proving reducibility,

Proposition 5.1. For d at least 4, the Hilbert scheme H d
8 is reducible.

Proof. It is sufficient to find a single ideal whose tangent space dimension is less
than 8d = dim Rd

8 . Consider the ideal

J = 〈x2
1 , x1x2, x2

2 , x2
3 , x3x4, x2

4 , x1x4+ x2x3〉+ 〈xi | 4< i ≤ d〉.

The tangent space of J in H d
8 can be computed as dimk HomS(J, S/J ). A direct

computation shows that an arbitrary element of HomS(J, S/J ) can be represented
as a matrix



x2
1 x1x2 x2

2 x2
3 x3x4 x2

4 x1x4+x2x3 xi

1 0 0 0 0 0 0 0 ∗

x1 2a2 a1 0 0 0 0 a4 ∗

x2 0 a2 2a1 0 0 0 a3 ∗

x3 0 0 0 2a3 a4 0 a1 ∗

x4 0 0 0 0 a3 2a4 a2 ∗

x1x3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

x1x4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

x2x4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


,

where i again ranges over 4 < i ≤ d, the ai are any elements in k, and each ∗
represents an independent choice of an element of k. Thus, dimk Hom(J, S/J )=
4+ 21+ 8(d − 4) = 8d − 7. The computation holds in all characteristics. Since
8d − 7 < 8d = dim(Rd

8 ), we conclude that J is not smoothable and that H d
8 is

reducible. �

Remark 5.2. This proposition holds with the same proof even when char k = 2, 3.

5A. The irreducible components of H4
8 . Consider H 4

8 with its universal ideal
sheaf I and let A = OH4

8
[x1, . . . , x4]/I. On each open affine U = Spec B such

that A|U is free, define fi ∈ B to be 1
8 tr(X i ) where X i is the operator on the free

B-module A(U ) defined by multiplication by xi . We think of the fi as being the
“center of mass” functions for the subscheme of A4

B defined by I|U . Note that the
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definitions of fi commute with localization and thus they lift to define elements
fi ∈ 0(H 4

8 ,OH4
8
), which determine a morphism f : H 4

8 → A4.
Considered as an additive group, A4 acts on H 4

8 by translation. We define the
“recentering” map r to be the composition

r : H 4
8

− f×id
−−→ A4

× H 4
8 −→ H 4

8 .

By forgetting about the grading of ideals, we have a closed immersion ι of
G0 ∼= H4

(1,4,3) into H 4
8 [Haiman and Sturmfels 2004, Proposition 1.5]. We define

G to be the preimage of this closed subscheme via the “recentering” map, that is,
the fiber product

G −−−→ H 4
8y yr

G0
ι

−−−→ H 4
8

We define intersections W := G ∩ R4
8 and W0 := G0 ∩ R4

8 . We will focus on W0,
and the following lemma shows that this is sufficient for describing W .

Lemma 5.3. We have isomorphisms G ∼= G0×A4 and W ∼=W0×A4.

Proof. We have a map G → G0, and a map f : H 4
8 → A4. We claim that the

induced map φ : G→ A4
×G0 is an isomorphism.

Define ψ : A4
× G0 → H 4

8 to be the closed immersion ι followed by transla-
tion. We work with an open affine U ∼= Spec A ⊂ G0 such that the restriction ι|U
corresponds to an ideal I ⊂ A[x1, . . . , x4] whose cokernel is a graded A-module
with free components of ranks (1, 4, 3). The map ψ |A4×U corresponds to the ideal
I ′ ⊂ A[t1, . . . , t4][x ′1, . . . , x ′4] where I ′ is the image of I under the homomor-
phism of A-algebras that sends xi to x ′i + ti . Then A[t1, . . . , t4][x ′1, . . . , x ′4]/I ′ ∼=
(A[x1, . . . , x4]/I )[t1, . . . , t4] is a graded A[t1, . . . , t4]-algebra with x ′i − ti = xi

homogeneous of degree 1. The key point is that as operators on a free A[t1, . . . , t4]-
module, the xi have trace zero, so the trace of the x ′i is 8ti . Thus, r ◦ψ :A4

×G0→

H 4
8 corresponds to an ideal I ′′ ⊂ A[t1, . . . , t4][x ′′1 , . . . , x ′′4 ] which is the image of

I ′ under the homomorphism that takes x ′i to x ′′i − ti . This is of course the extension
of I ⊂ A[x1, . . . , x4] to A[t1, . . . , t4][x ′′1 , . . . , x ′′4 ] with x ′′i = xi , and so I ′′ has the
required properties such that r ◦ψ factors through the closed immersion ι. Thus, ψ
maps to G. Furthermore, we see that r ◦ψ is the projection onto the first coordinate
of A4

×G0 and f ◦ψ is projection onto the second coordinate. Thus, φ ◦ψ is the
identity.

Second, we check that the composition ψ ◦φ is the identity on G. This is clear
because ψ ◦φ amounts to translation by − f followed by translation by f .

The isomorphism for W follows by the same argument. �



784 Dustin A. Cartwright, Daniel Erman, Mauricio Velasco and Bianca Viray

Lemma 5.4. W and W0 are prime divisors in G and G0 respectively.

Proof. The point I = 〈x2
1 , x1x2, x2

2 , x2
3 , x3x4, x2

4 , x1x4〉 belongs to R4
8 and to G and

has a 33-dimensional tangent space in any characteristic. As a result, an open set U
around I in the Hilbert scheme is a closed subscheme of a smooth 33-dimensional
variety Y . By the subadditivity of codimension of intersections, as in [Harris 1992,
Theorem 17.24], it follows that every component of W through I has codimension
1 in G.

To show integrality, fix a monomial ideal Mλ ∈ G0, and let Uλ ⊂ H 4
8 be the

corresponding open set, as in our discussion of coordinates for the Hilbert scheme
of points (page 766). For any I ∈ Uλ the initial ideal in(1,1,1,1)(I ) ∈ G0 ∩Uλ and
is generated by the (1, 1, 1, 1)-leading forms of the given generating set of I and
all cubics. Thus we may define a projection morphism π : Uλ→ G0 ∩Uλ which
corresponds to taking the (1, 1, 1, 1)-initial ideal. Since R4

8 is integral, so is the
image π(R4

8 ∩Uλ)=W0 ∩Uλ. Thus W0 and W0×A4 ∼=W are integral. �

5B. A GL4-invariant of a system of three quadrics. In this section we study the
Pfaffian which appears in the statement of Theorem 1.3. Recall that any I ∈ G0

defines a 3-dimensional subspace I⊥2 ⊂ S∗2 .
Let Q1, Q2, Q3 be a basis of quadrics for I⊥2 , let A1, A2, A3 be the symmetric

4× 4 matrices which represent the Qi via Eyt Ai Ey = Qi where Ey is the vector of
formal variables (y1, y2, y3, y4).

Definition 5.5. The Salmon–Turnbull Pfaffian is the Pfaffian (that is, the square
root of the determinant) of the skew-symmetric 12× 12 matrix

MI =

 0 A1 −A2

−A1 0 A3

A2 −A3 0

 .
Lemma 5.6. The Salmon–Turnbull Pfaffian of MI coincides up to scaling with the
Pfaffian of the skew-symmetric bilinear form 〈 , 〉I : (S1⊗S2/I2)

⊗2
→
∧3 S2/I2∼= k

defined by
〈l1⊗ q1, l2⊗ q2〉I = (l1l2)∧ q1 ∧ q2.

In particular, the vanishing of the Salmon–Turnbull Pfaffian is independent of the
choice of basis of I⊥2 and invariant under the GL4 action induced by linear change
of coordinates on S.

Proof. Let m1,m2,m3 be any basis of S2/I2 and let x1, x2, x3, x4 be a basis for
S1. Let Ai be the matrix representation with respect to this basis of the symmetric
bilinear form obtained by composing multiplication S1 ⊗ S1 → S2/I2 with pro-
jection onto mi . Note that if m1,m2,m3 form a basis dual to 1

2 Q1,
1
2 Q2,

1
2 Q3

then this definition of Ai agrees with the definition of Ai above. Thus, x j x j ′ =
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i (Ai ) j j ′mi where (Ai ) j j ′ is the ( j, j ′) entry of Ai . Then we will use the basis

x1⊗m3, x2⊗m3, . . . , x4⊗m1 for S1⊗S2/I2. We compute the matrix representation
of 〈 , 〉I in this basis:

〈x j ⊗mi , x j ′ ⊗mi ′〉I = (x j x j ′)∧mi ∧mi ′

=

( ∑
1≤`≤3

(A`) j j ′m`

)
∧mi ∧m′i

If i = i ′, this quantity will be zero. Otherwise, let i ′′ be the index which is not i or
i ′ and then we get

= (Ai ′′) j j ′mi ′′ ∧mi ∧mi ′ =±(Ai ′′) j j ′m1 ∧m2 ∧m3,

where ± is the sign of the permutation which sends 1, 2, 3 to i ′′, i, i ′ respectively.
Thus, with m1 ∧m2 ∧m3 as the basis for

∧3 S2/I2, 〈 , 〉I is represented as 0 A1 −A2

−A1 0 A3

A2 −A3 0

 . �

Since the vanishing of the Salmon–Turnbull Pfaffian depends only on the vector
subspace I⊥2 ⊂ S∗2 , it defines a function P on G0 which is homogeneous of degree
2 in the Plücker coordinates. We next show that the Salmon–Turnbull Pfaffian is
irreducible and that, over the complex numbers, it is uniquely determined by its
degree and GL4-invariance.

Lemma 5.7. There are no polynomials of degree 1 in the Plücker coordinates of
G0 whose vanishing locus is invariant under the action of the algebraic group GL4.
Therefore, the Salmon–Turnbull Pfaffian is irreducible.

Proof. We may prove this lemma by passing to the algebraic closure, and we thus
assume that k is algebraically closed. Let W =

∧3 S∗2 and consider the Plücker
embedding of Gr(3, S∗2 ) in P(W )=Proj(R)where R is the polynomial ring k[pi j`]

where {i, j, `} runs over all unordered triplets of monomials in S∗2 . The Plücker
coordinate ring A is the quotient of R by a homogeneous ideal J . In each degree
e, we obtain a split exact sequence of GL4-representations:

0→ Je→ Syme(W )→ Ae→ 0.

Since J1 = 0 we have Sym1(W ) = A1, and it suffices to show that this has no
1-dimensional subrepresentations. Given a monomial i ∈ S∗2 let αi ∈ N4 be its
multiindex. For θ = (θ1, . . . , θ4), let L be the diagonal matrix with Lmm = θm . The
action of L on the Plücker coordinate pi j` is to scale it by θαi+α j+α` .
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Suppose that there exists an invariant polynomial F =
∑

ci j` pi j` in Sym1(W ).
Then L · F = λF for some λ ∈ k×. But since L · F =

∑
ci j`θ

αi+α j+α` pi j` it
follows that whenever ci j` and ci ′ j ′`′ are both nonzero, then αi + α j + α` = αi ′ +

α j ′ + α`′ . However there are no multiindices of total degree 6 which are also
symmetric in θ1, θ2, θ3, θ4. Thus each ci j` = 0 and there are no nontrivial GL4-
invariant polynomials of degree 1. In particular no product of linear polynomials
is GL4-invariant, and thus the Salmon–Turnbull Pfaffian is irreducible. �

Lemma 5.8. If k = C, then there is a polynomial of degree 2 in the Plücker coor-
dinates, unique up to scaling, whose vanishing locus is GL4-invariant. This is the
Salmon–Turnbull Pfaffian.

Proof. We take the same notation as in the proof of Lemma 5.7 and recall that we
have a split exact sequence of GL4(C)-representations:

0→ J2→ Sym2(W )→ A2→ 0.

We determine the irreducible subrepresentations of Sym2(W ) by computing the
following Schur function decomposition of its character χ :

χ = s(8,2,2)+ s(7,4,1)+ 2s(7,3,1,1)+ s(7,2,1,1)+ s(6,6)+ 3s(6,4,2)+ s(6,4,1,1)
+ 2s(6,4,1,1)+ 2s(6,3,2,1)+ s(6,2,2,2)+ 2s(5,5,1,1)+ s(5,4,3)+ s(5,4,2,1)+ s(5,3,3,1)

+ s(4,4,4)+ s(4,4,3,1)+ 2s(4,4,2,2)+ s(3,3,3,3).

We conclude that Sym2(W ) contains a unique 1-dimensional subrepresentation
with character s(3,3,3,3). It follows from this and Lemma 5.6 that, over C, the
Salmon–Turnbull Pfaffian is the only GL4-invariant of degree 2 in the Plücker
coordinates. �

Remark 5.9. Salmon gives a geometric description of the Salmon–Turnbull Pfaf-
fian [Salmon 1874, pp. 242–244], where he shows that the Pfaffian vanishes when-
ever there exists a cubic form C and three linear differential operators d1, d2, d3

such that di C = Qi . Turnbull also describes this invariant in his study of ternary
quadrics [Turnbull 1922].

5C. A first approximation to the intersection locus. Any point I in W0 is a sin-
gular point in the Hilbert scheme. In Lemma 5.11, we construct an equation that
cuts out the singular locus over an open set of G0. The local equation defines a
nonreduced divisor whose support contains W0. The following subsets of G0 will
be used in this section:

G ′0 := {I ∈ G0 | the ideal I is generated in degree 2},

Z1 := G0 \G ′0,

Z2 := {I ∈ G0 | Hom(I, S/I )−2 6= 0}.
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Note that G ′0 is open in G0 and that every ideal in G ′0 is generated by seven quadrics.
The set Z2 will be used in Lemma 5.16. If I is any ideal in G0, the tangent space
HomS(I, S/I ) is graded. The following lemma shows that if we want to determine
whether I is a singular point in the Hilbert scheme, then it suffices to compute only
the degree −1 component of the tangent space.

Lemma 5.10. For any I ∈G ′0 we have dimk HomS(I, S/I )−1≥4, and I is singular
in H 4

8 if and only if dimk HomS(I, S/I )−1 ≥ 5.

Proof. Since S/I is concentrated in degrees 0, 1 and 2, and I ∈ G ′0 is minimally
generated only in degree 2, we have that HomS(I, S/I ) is concentrated in degrees
0,−1,−2. Furthermore, since I ∈ G ′0 we have that dimk HomS(I, S/I )0 = 21,
because any k-linear map I2→ (S/I )2 will be S-linear. Next, note that the mor-
phisms ti : I2→ (S/I )1 mapping q j to the class of ∂q j/∂xi are S-linear morphisms,
and thus we have HomS(I, S/I )−1 is at least 4-dimensional.

Since the dimension of G ′0 is 25, I must be singular if dimk HomS(I, S/I )−1>4.
Conversely, assume for contradiction that there exists an I such that I is singular
and dimension of HomS(I, S/I )−1 is exactly 4. Since I is singular, we have that
HomS(I, S/I )−2 is nontrivial. Let φ ∈ HomS(I, S/I )−2 be a nonzero map. By
changing the generators of I we may assume that φ(qi ) = 0 for i = 1, . . . , 6
and φ(q7) = 1. Now the vector space 〈x1φ, x2φ, x3φ, x4φ〉 is a 4-dimensional
subspace of Hom(I, S/I )−1. Since we have assumed that dimk Hom(I, S/I )−1=4
it must be the case that the space 〈x1φ, x2φ, x3φ, x4φ〉 equals the space 〈t1, . . . , t4〉.
However, this would imply that all partial derivatives of q1 are zero, which is
impossible. �

Now we will investigate those ideals which have extra tangent vectors in degree
−1. If φ : I2→ (S/I )1 is a k-linear map then φ will be S-linear if and only if φ
satisfies the syzygies of I modulo I . In other words, φ should belong to the kernel
of

Homk(I2, (S/I )1)→ Homk(Syz(I ), (S/I )),

φ 7→
(
σ 7→ σ(φ)

)
.

Since I contains m3 and is generated by quadrics, it suffices to consider linear
syzygies σ and we have an exact sequence

0→ HomS(I, S/I )−1 −→ Homk(I2, (S/I )1)
ψ
−→ Homk(Syz(I )1, (S/I )2),

where Syz(I )1 is the vector space of linear syzygies. We see that the ti from the
previous lemma span a 4-dimensional subspace T of the kernel of ψ . We obtain

Homk(I, S/I )−1/T
ψ
−→ Homk(Syz(I )1, (S/I )2),



788 Dustin A. Cartwright, Daniel Erman, Mauricio Velasco and Bianca Viray

and I ∈ G ′0 will be a singular point if and only if ker(ψ) 6= 0. Since I is generated
by quadrics, it follows that Syz(I )1 has dimension 4 ·7−20= 8. Therefore ψ is a
map between 24-dimensional spaces. Thus det(ψ) vanishes if and only if I ∈ G ′0
is a singular point in H 4

8 .
The global version of this determinant will give a divisor whose support contains

W0. On G ′0 we have the OG ′0-algebra S := OG ′0[x1, x2, x3, x4], which is graded in
the standard way, S=⊕i Si . We have a graded universal ideal sheaf I=⊕Ii , and
a universal sheaf of graded algebras S/I=⊕i Si/Ii . For all i the sheaves Si , Ii

and Si/Ii are coherent locally free OG ′0-modules.
Let µ :I2⊗S1→I3 be the multiplication map. Surjectivity of this map follows

from the definition of G ′0. We define K1 to be the kernel of this map, so that we
have the exact sequence

0→ K1→ I2⊗S1
µ
→ I3→ 0. (5-1)

In other words, K1 is the sheaf of linear syzygies. Let U be an open subset of G ′0
such that I2|U is free. Denote generators of I2(U ) by q1, . . . , q7 and thus we have

K1(U )=
{( 7∑

i=1

qi ⊗ li

) ∣∣∣∣ li ∈ S1(U ),
∑

qi li = 0 ∈ I3

}
.

To simplify notation in the following lemma we write Hom to denote HomOG′0
.

Lemma 5.11. (1) On G ′0 there is a morphism of locally free sheaves of ranks 28
and 24 respectively:

h :Hom(I2,S1)→Hom(K1,S2/I2),

such that for any I ∈ G ′0, we have ker(h⊗ k(I ))= Hom(I, S/I )−1.

(2) There is a locally free subsheaf of rank four T⊂ ker(h) inducing a morphism:

h :Hom(I2,S1)/T→Hom(K1,S2/I2),

such that ker(h⊗ k(I )) 6= 0 if and only if dimk Hom(I, S/I )−1 ≥ 5.

Proof. (1) We have a map of locally free OG ′0-modules: K1 → I2 ⊗ S1. This
induces the map K1⊗ Š1→ I2. Applying Hom(−,S1) to both sides we get

Hom(I2,S1)→Hom(K1⊗ Š1,S1)∼=Hom(K1,S1⊗S1).

For the isomorphism above, we are using identities about Hom, tensor product of
sheaves, and sheaf duality from [Hartshorne 1977, p. 123]. The sequence S1 ⊗

S1 → S2 → S2/I2 gives a map from Hom(K1,S1 ⊗ S1)→ Hom(K1,S2/I2).
By composition we obtain the desired map:

h :Hom(I2,S1)→Hom(K1,S2/I2).
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Let us take a moment and consider h in concrete terms, since this will be used
for proving part (2) of the lemma. Let U ⊂ G ′0 be an open subset such that all
relevant locally free sheaves are in fact free. Let q1, . . . , q7 be the generators of
I2(U ) and let σ j :=

∑7
i=1 qi⊗li j for 1≤ j ≤8 be the generators of K1(U ). Finally,

let φ ∈ Hom(I2,S1) be a map (qi 7→ mi ). Then h(φ) is the map

σ j 7→
∑

mi li ,

where mi li is the reduction of mi li modulo I2.

(2) Over any U where I2 is free, let q1, . . . , q7 the global generators. Then we
define t1 : qi 7→

∂
∂x1

qi , and we define t2, t3, t4 similarly. This defines a locally free
subsheaf T(U ) := 〈t1, . . . , t4〉 ⊂Hom(I2,S1) of rank 4. By the proof of Lemma
5.10, the injection T→ Hom(I2,S1) remains exact under pullback to a point. It
follows that the quotient Hom(I2,S1)/T is locally free of rank 24 [Hartshorne
1977, Ex II.5.8].

It remains to show that T ⊂ ker(h) and that ker(h ⊗ k(I )) is nontrivial if and
only if dimk Hom(I, S/I )1 ≥ 5. This is immediate from the discussion preceding
this theorem. �

By the previous lemma, h is a map between locally free sheaves of rank 24, and
thus det(h) defines a divisor on G ′0. To ensure that this is the restriction of a unique
divisor on G0, we need to verify that Z1 and Z2 are not too large. For this, we
construct the rational curve τ : P1

→ G0 defined for t 6= ∞ by

It = (x2
1 , x2

2 , x2
3 , x2

4 , x1x2, x2x3+ t x3x4, x1x4+ t x3x4). (5-2)

Lemma 5.12. Z1 ∪ Z2 is a closed set of codimension at least 2 in G0.

Proof. Z1 is closed because it is the support of the cokernel of the multiplication
map I2⊗S1→ S3. The intersection Z2 ∩G ′0 is the degeneracy locus of

Hom(I2,S0)→Hom(K1,S1)⊕Hom(K2,S2/I2),

which is the analogue of Lemma 5.11 (1) for computing Hom(I2, S0). Thus Z1∪Z2

is closed in G0.
Because Pic(G0)=Z and G0 is projective, checking that the 1-cycle τ does not

intersect Z1∪ Z2 will show that Z1∪ Z2 has codimension at least 2. By passing to
the algebraic closure, we can assume that k is algebraically closed. The group k×

acts on A4 by α · (x1, x2, x3, x4)= (x1, x2, αx3, αx4), and taking α = t maps I1 to
It , for any t other than 0 or∞. Thus, it suffices to check that the following three
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ideals do not intersect Z1 ∪ Z2:

I0 = (x2
1 , x2

2 , x2
3 , x2

4 , x1x2, x2x3, x1x4),

I1 = (x2
1 , x2

2 , x2
3 , x2

4 , x1x2, x2x3+ x3x4, x1x4+ x3x4),

I∞ = (x2
1 , x2

2 , x2
3 , x2

4 , x1x2, x2x3− x1x4, x3x4).

It is obvious that these are generated in degree 2. A change of variables transforms
I∞ to the ideal J from Proposition 5.1, which is smooth, so Hom(It , S/It)−2 = 0
for t = 1,∞. One can also check that Hom(I0, S/I0)−2 = 0, which holds in all
characteristics because I0 is a monomial ideal. Therefore, Z1∪Z2 has codimension
at least 2. �

Lemma 5.13. Let D be the divisor on G0 defined locally by det(h). Then W0

belongs to the support of D.

Proof. The Hilbert scheme is singular on W0, so W0 ∩G ′0 ⊂ V (det(h)). Since W0

is a divisor, Lemma 5.12 tells us that W0 intersects G ′0, so the irreducibility of W0

means that it is contained in D. �

5D. An equation for W0. In this section, except for the last paragraph, we restrict
to the case k = C in order to use the representation theory of GL4(C).

We will use the result of Lemma 5.13 to give an upper bound on the degree of
W0 in terms of Plücker coordinates. This leads to a proof of Theorem 1.3 over C.
The restriction to C will be removed in the next section.

Let H be an effective divisor which generates Pic(G0) = Z. First we compute
the degree of D in Plücker coordinates, using the rational curve τ .

Lemma 5.14. The curve τ has intersection multiplicities

τ · H = 1 and τ · D = 16.

Proof. For the first statement, let p1 and p2 be the Plücker coordinates correspond-
ing to the (x2

1 , x2
2 , x2

3 , x2
4 , x1x2, x2x3, x3x4)- and (x2

1 , x2
2 , x2

3 , x2
4 , x1x2, x2x3, x1x4)-

minors respectively. Then L = V (p1) does not meet It at infinity. For t 6= ∞, we
see that p2(It) 6= 0, so local equations for L valid at all common points of L and τ
are given by L = p1

p2
. Since this equation pulls back to t on P1

−∞ the statement
follows.

For the second statement, note from the proof of Lemma 5.12 that I∞ is a smooth
point and τ does not intersect Z1 or Z2. Therefore, it suffices to check the degree
on the open affine defined by t 6= ∞.

For every t 6= ∞, It has the following 8 linear syzygies, where q1, . . . , q7 are
the generators of It in the order in Equation (5-2).
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σ1 = x2q1− x1q5 σ2 = x4q1− x1q7+ t x3q7− t2x4q3

σ3 = x1q2− x2q5 σ4 = x3q2− x2q6+ t x4q6− t2x3q4

σ5 = x2q3− x3q6+ t x4q3 σ6 = x1q4− x4q7+ t x3q4

σ7 = x3q5− x1q6+ t x3q7− t2x4q3 σ8 = x4q5− x2q7+ t x4q6− t2x3q4

The intersection number τ ·D equals the degree of τ ∗(det(h)), which we compute
by writing out τ ∗(h) as a matrix. Let φ ∈ Hom(I, S/I )−1 be written as φ(qi ) =

ci,1x1+ ci,2x2+ ci,3x3+ ci,4x4 and recall that, if σ j =
∑

i qi ⊗ li j then h(φ)(σ j )=∑
φ(qi )li j where the bar indicates that we are considering the image as an element

of S2/I2. The monomials x1x3, x2x4 and x1x4 are a basis of S2/I2 for t 6= ∞, so
we can explicitly express the h(φ)(σ j ) as follows:

h(φ)(σ1) −c5,3x1x3+ c1,4x2x4+ (−tc1,3+ tc5,4)x3x4

h(φ)(σ2) (tc7,1− c7,3)x1x3+ (c1,2− t2c3,2)x2x4+

(−tc1,1+ c1,3+ t3c3,1− t2c3,3− t2c7,2+ 2tc7,4)x3x4

h(φ)(σ3) c2,3x1x3− c5,4x2x4+ (−tc2,4+ tc5,3)x3x4

h(φ)(σ4) (c2,1− t2c4,1)x1x3+ (tc6,2− c6,4)x2x4+

(−tc2,2+ c2,4+ t3c4,2− t2c4,4− t2c6,1+ 2tc6z)x3x4

h(φ)(σ5) −c6,1x1x3+ (tc3,2+ c3,4)x2x4+ (−t2c3,1+ tc6,2− c6,4)x3x4

h(φ)(σ6) (tc4,1+ c4,3)x1x3− c7,2x2x4+ (−t2c4,2+ tc7,1− c7,3)x3x4

h(φ)(σ7) (c5,1− c6,3+ tc7,1)x1x3− t2c3,2x2x4+

(t3c3,1− t2c3,3− tc5,2+ c5,4+ tc6,4− t2c7,2+ tc7,4)x3x4

h(φ)(σ8) −t2c4,1x1x3+ (c5,2+ tc6,2− c7,4)x2x4+

(t3c4,2− t2c4,4− tc5,1+ c5,3− t2c6,1+ tc6,3+ tc7,3)x3x4

Each row of the above lines yields three linear equations so τ ∗(h) is represented
by a 24 × 28 matrix M as expected. Computation in Macaulay2 [Grayson and
Stillman] shows that the ideal of 24× 24 minors of M is (t16) and the statement
follows. �

Corollary 5.15. The divisor D is linearly equivalent to 16H.

The following lemma allows us to determine the degree of W0.

Lemma 5.16. The divisor D vanishes with multiplicity at least 8 on W0.

Proof. By Lemma 5.13, we know that |W0|⊆ |D|. By Lemma 5.12, a general point
of W0 does not belong to Z1 ∪ Z2. Let I be any such point. Since I is a singular
point in R4

8 , I has tangent space dimension at least dim(R4
8)+ 1 = 33, and so the

null space of h⊗ k(I ) must have dimension at least 8.
Choose 8 vectors from the null space as basis vectors, and any other 16 to

complete a basis of the source of h ⊗ k(I ). This basis in the quotient ring lifts
to a basis in the local ring OG ′0,I . When we represent the localization of the map
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(h)I as a matrix with respect to this basis we see that the first 8 columns belong
to the maximal ideal mI of OG ′0,I . Thus det(h) belongs to m8

I , and in turn D has
multiplicity at least 8 at I . �

Lemma 5.17. The ideal sheaf of D is (P8), where P is the Salmon–Turnbull Pfaf-
fian.

Proof. Since D is a divisor on G0 its defining ideal in the homogeneous coordinate
ring of the Plücker embedding of G0 is generated by a single element f of degree
16 in the Plücker coordinates. If g is the square-free part of f then Lemma 5.16
shows that g has degree at most 2. Since D is invariant under linear changes of
variables, it follows from Lemmas 5.7 and 5.8 that g = P and f = P8. �

By combining Lemmas 5.4, 5.13, and 5.17 we have now proven our descriptions
of W0 and W :

Theorem 5.18. The subscheme W0 is defined by P.

For the rest of the section, we return to the case that k is a field, not necessarily
algebraically closed, of characteristic not 2 or 3.

Recall that if Mλ is any monomial ideal in G0 then there are local coordinates
cm

m′ on Uλ∩ H 4
8 . Moreover there is a surjection π : R4

8 ∩Uλ→W0∩Uλ, and there
is a rational map φ : (A4)8�S8 99K R4

8 ∩Uλ given by cm
m′ =

1λ−m′+m
1λ

whose image
is dense in R4

8 ∩Uλ.

Lemma 5.19. With Uλ as above, the function P◦π vanishes identically on R4
8∩Uλ

over an arbitrary field k.

Proof. The composition P ◦ π ◦ φ is a rational function with integer coefficients.
Theorem 5.18 proves that P ◦π ◦φ = 0 in C[q( j)

i ][1
−1
λ ]. Therefore, P ◦π ◦φ = 0

in Z[q( j)
i ][1

−1
λ ]. �

Theorem 5.20. The following irreducible subsets of G0 coincide:

(1) W0;

(2) V (P), the vanishing of the pullback to G of the Salmon–Turnbull Pfaffian;

(3) the homogeneous ideals with Hilbert function (1, 4, 3) which are flat limits of
ideals of distinct points.

As a consequence, if we let π |G : G→ G0 be the restriction of the projection from
Lemma 5.4 then W = V (P ◦π |G).

Proof. For other fields, note that for the ideal J of Proposition 5.1 with d = 4, we
have that P ◦ π(J ) = P(J ) = 1 and thus P ◦ π does not vanish uniformly on G
in any characteristic. By the previous lemma, P ◦π vanishes uniformly on R4

8 for
any k. Thus W ⊆ V (P ◦ π |G). As both W and V (P ◦ π |G) are integral closed
subschemes of codimension 1 in G, they are equal. �



Hilbert schemes of 8 points 793

6. Proofs of main results

In this section, k denotes a field of characteristic not 2 or 3. We have used our
characteristic assumption in order to apply the theory of duality in Sections 3 and 4
and to define the trace map of Lemma 5.3.

Proof of Theorem 1.1. The irreducibility of H d
n when d is at most 3 or n is at most 7

follows for an algebraically closed field from Theorem 4.20. For a nonalgebraically
closed field, the Hilbert scheme is irreducible because it is irreducible after passing
to the algebraic closure. Proposition 3.1 and the same argument as in Lemma
5.3 show that when d is at least 4, Gd

8 is irreducible and (8d − 7)-dimensional,
and Proposition 5.1 shows that it is a separate component. Theorem 4.20 shows
that there are no other components, again, by passing to the algebraic closure if
necessary. �

Proof of Theorem 1.2. This follows from Theorem 3.9. �

Proof of Theorem 1.3. The statement that R4
8 ∩ G4

8 is a prime divisor on G4
8 is

proved in Lemma 5.4. The equivalence of the set-theoretic description and the
local equation description follows from Lemma 5.6. Theorem 5.20 proves that the
Salmon–Turnbull Pfaffian is the correct local equation. �

Proof of Theorem 1.4. Let Mλ be some monomial ideal and consider the monomial
chart Uλ. If Mλ does not have Hilbert function (1, 4, 3) then Uλ ∩G4

8 =∅ so that
the zero ideals will cut out R4

8 . If Mλ has Hilbert function (1, 4, 3), then Lemma
5.19 and Theorem 5.20 show that the zero set of the pullback of the Pfaffian is
precisely R4

8 ∩Uλ. �

7. Open questions

The motivating goal behind this work is understanding the smoothable component
of the Hilbert scheme as explicitly as possible, and not just as the closure of a cer-
tain set. This can be phrased more abstractly by asking what functor the smoothable
component represents, or, more concretely, by describing those algebras which
occur in the smoothable component. In this paper we have done the latter for n at
most 8. The following are natural further questions to ask:

• For d greater than 4, which algebras with Hilbert function (1, d, 3) are smooth-
able? Generically, such algebras are not smoothable. Computer experiments
lead us to conjecture that, for smoothable algebras, the analogue of the skew
symmetric matrix in Theorem 1.3 has rank at most 2d + 2. However, a di-
mension count shows that this rank condition alone is not sufficient for such
an algebra to be smoothable. What are the other conditions?
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• What is the smallest n such that H 3
n is reducible? We have shown H 3

8 is
irreducible and Iarrobino [1985, Example 3] has shown that H 3

78 is reducible.

• Is H d
n ever nonreduced? What is the smallest example? Does it ever have

generically nonreduced components?
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Discretely ordered groups
Peter A Linnell, Akbar Rhemtulla and Dale P. O. Rolfsen

We consider group orders and right-orders which are discrete, meaning there is
a least element which is greater than the identity. We note that nonabelian free
groups cannot be given discrete orders, although they do have right-orders which
are discrete. More generally, we give necessary and sufficient conditions that a
given orderable group can be endowed with a discrete order. In particular, every
orderable group G embeds in a discretely orderable group. We also consider
conditions on right-orderable groups to be discretely right-orderable. Finally, we
discuss a number of illustrative examples involving discrete orderability, includ-
ing the Artin braid groups and Bergman’s nonlocally-indicable right orderable
groups.

1. Introduction

Let G be a group and suppose < is a strict total order relation on the set of its
elements. Then (G, <) is a right-ordered group if f < g implies that f h < gh for
all f, g, h ∈ G. If in addition f < g implies that h f < hg, then we say (G, <) is
an ordered group. If such an order exists for a given group G, we say that G is
right-orderable or orderable, respectively. We call the order < discrete if there is
an element a ∈ G such that 1< a, where 1 denotes the identity element of G, and
there is no element of G strictly between these.

For a right-ordered group, the positive cone P := {g ∈ G | 1< g} satisfies

(1) P is closed under multiplication and

(2) for every g ∈ G, exactly one of g = 1, g ∈ P or g−1
∈ P holds.

Conversely, if a group G has a subset P with properties (1) and (2), it is routine
to verify that the order defined by g < h if and only if hg−1

∈ P makes (G, <)
a right-ordered group. Similarly, a group G is orderable if and only if it admits a
subset P satisfying (1), (2) and

(3) g Pg−1
= P for all g ∈ G.

MSC2000: primary 20F60; secondary 06F15, 20F36.
Keywords: discrete order.
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A subset X of a (right-) ordered group G is convex if x < y < z and x, z ∈ X
imply y ∈ X . We recall that the set of all convex subgroups of a (right-) ordered
group is linearly ordered by inclusion. A convex jump C � D is a pair of distinct
convex subgroups such that C ⊂ D and there are no convex subgroups strictly
between them. In particular, the convex jump determined by a nonidentity element
g of G is defined by C = the union of all convex subgroups not containing g and
D = the intersection of all convex subgroups which do contain g. If the group is
orderable, then for any convex jump C � D, C is normal in D and the quotient
D/C embeds in R, the additive reals, by an order-preserving isomorphism.

Lemma 1.1. If < is a discrete right-order on G and a is the least positive element
under <, then 〈a〉 is convex. Moreover, for any g ∈ G, we have a−1g < g < ag
and there is no element strictly between these elements of G. If the right-order <
is not discrete, then it is dense in the sense that for any f, g ∈ G with f < g, there
exists h ∈ G with f < h < g.

Proof. Since a−1 < 1 < a, we see that a−1g < g < ag. If g < x < ag, then
1 < xg−1 < a, a contradiction. Hence there is no element strictly between g and
ag. Similarly there is no element between a−1g and g. In particular, for any
integers n <m, an < g< am implies g ∈ 〈a〉 and thus 〈a〉 is convex. If there exists
f < g with no element strictly between, a routine calculation shows g f −1 is the
least positive element for the order. �

Note that according to our definitions, the trivial group 1 has exactly one right
order, and this order is dense but not discrete.

Situated strictly between the class of right-orderable groups and the class of
orderable groups is the class of locally indicable groups. Recall that a group G is
locally indicable if every finitely generated nontrivial subgroup of G has an infinite
cyclic quotient. Such groups are right-orderable, as was shown by Burns and Hale
[1972]. On the other hand, a right-orderable group need not be locally indicable as
was shown by Bergman [1991]. However for a large class of groups the class of
right-orderable groups coincides with the class of locally indicable groups. Further
results on this topic are contained in [Linnell 2001], [Longobardi et al. 2000], and
especially in [Morris 2006].

Our interest in considering locally indicable groups G is due to the fact that such
groups have a series (defined below) with torsion-free abelian factors as shown in
[Brodskiı̆ 1984]. They possess a right-order in which the set of convex subgroups
form a series with factors which are order isomorphic to subgroups of the additive
group of reals; we shall refer to such orders as lexicographic. (Such orders are
also called Conrad orders and are characterized by the condition that if g > 1 and
h > 1, then there exists a positive integer n such that (gh)n > hg; see [Botto Mura
and Rhemtulla 1977, §7.4] for further details.) Note that for such an ordering, any
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nontrivial element g ∈ G is positive if and only if the cosets satisfy Cg > C in the
factor group D/C determined by g.

By a series for G we mean a set 6 = {Hλ | λ ∈3} of subgroups of G, where 3
is a totally ordered set of indices, satisfying:

• if λ < µ then Hλ ⊂ Hµ,

• {1} and G belong to 6,

• 6 is closed under arbitrary unions and intersections,

• if µ immediately follows λ in 3, then Hλ is normal in Hµ and Hµ/Hλ is
called a factor associated to the jump Hλ � Hµ.

In the next section we characterize groups that have discrete orders. We show
that a group G has a discrete order if and only if it is an orderable group and its
center Z(G) contains an isolated infinite cyclic group. Recall that a subgroup H
of a group G is said to be isolated if g ∈ G and gn

∈ H for some n > 0 implies
g ∈ H .

In Section 3, we deal with groups possessing discrete lexicographic right-orders
and discrete right-orders. It will follow, in particular, that any nontrivial finitely
generated orderable group has discrete right-orders and if it has a central order (as
is the case for free groups, pure braid groups and wreath products or free products
of such groups), then it has discrete lexicographic right-orders. Recall that an order
< on G is called central if for every convex jump C � D, we have [D,G] ⊆ C
where [D,G] denotes the subgroup 〈d−1g−1dg | d ∈ D, g ∈ G〉.

The result is of course not true for orderable groups in general. The additive
group of rational numbers has no discrete right-order.

The final section presents examples of discretely ordered groups which have
nontrivial subgroups (for example, the commutator subgroup) upon which the re-
striction of the given order is dense. We also note that there exist finitely generated
right-orderable groups, for example, the Artin braid groups Bn , n ≥ 5, that are not
locally indicable, yet have a discrete right-order.

2. Discrete orders

Theorem 2.1. If < is a discrete order on a group G, then there exists an element
z in the center Z(G) such that 〈z〉 is convex under < and 1 � 〈z〉 is a jump.
Conversely, if G is an orderable group and Z(G) contains an isolated infinite
cyclic group, then there is a discrete order on G.

Proof. Let < be a discrete order on G with z > 1 as the minimal positive ele-
ment. Then g−1zg is positive for every g ∈ G. Moreover, z < g−1zg implies
1 < gzg−1 < z, a contradiction. Thus z ∈ Z(G). Also Lemma 1.1 shows that 〈z〉
is convex under < and 1 � 〈z〉 is a jump.
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Conversely, let 〈z〉 be an isolated subgroup in the center Z(G) of an orderable
group G. Since G is orderable, so is G/Z(G); see [Botto Mura and Rhemtulla
1977, Theorem 2.2.4]. Moreover, Z(G)/〈z〉 is orderable since 〈z〉 is isolated in
Z(G). Order 〈z〉 (with z positive), Z(G)/〈z〉 and G/Z(G). Now order G as fol-
lows. If 1 6= g ∈ G \ Z(G), then put g in the positive cone if gZ(G) is positive; if
g ∈ Z(G) \ 〈z〉, then put g in the positive cone if g〈z〉 is positive; if g = zn , then
put g in the positive cone if 0 < n. It is routine to verify that this gives a discrete
order on G with z as the minimal positive element. �

Corollary 2.2. For any orderable group G, the group Z×G has a discrete order.
In particular, every orderable group embeds in a discretely orderable group, whose
order extends the given order.

3. Discrete right orders

We begin this section with the following result which is easy to prove. It is not
required in the proofs of the other results.

Lemma 3.1. If (G, <) is a nontrivial right-ordered group such that the order < is
a well order on the set of positive elements of G, then G is infinite cyclic.

Lemma 3.2. If < is a discrete right order on G and a the least positive element
under < then for any element 1< g ∈ G, we have 1< aga−1 and 1< a−1ga.

Proof. Since a ≤ g, 1 ≤ ga−1. Thus aga−1 is a product of two positive elements
and hence positive. By Lemma 1.1, there is no element of G strictly between a−1g
and g. Since 1< g, 1≤ a−1g and so a ≤ a−1ga. �

Definition 3.3. Let < be a right order on a group G, C a subgroup of G and
a ∈ G. We shall say that conjugation by a preserves order on C to mean that C is
normalized by 〈a〉 and conjugation by a and by a−1 preserves the order on (C, <).

Lemma 3.4. Suppose < is a right order on a group G, C is a subgroup of G,
1 6= a ∈ G and C ∩ 〈a〉 = 1. If conjugation by a preserves order on C , then there
is a discrete right order on the subgroup 〈C, a〉 with a as the minimal positive
element. Moreover, this right order and the given right order agree on C. Finally
if aEa−1

= E for all convex subgroups E of C , then the convex subgroups of H
under this new right order are {1} and 〈a, E〉, where E is a convex subgroup of C.

Proof. Set H = 〈a,C〉. An element g ∈ H has a unique expression as g = anc
where c ∈ C and n ∈ Z. Define the set P as follows: g ∈ P if 1 < c or c = 1 and
n > 0. Note that P ∪ P−1

= H \ {1} and P ∩ P−1
=∅. Moreover if g = anc and

h = amd are in P , then their product gh = an+m(a−mcam)d ∈ P as conjugation
by am preserves order on C . Thus the order ≺ on H given by g ≺ h if and only if
hg−1

∈ P is a right order on H . Furthermore if g = anc and h = amd are in H ,
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then g ≺ h if and only if c < d or c = d and n < m. It is now clear that a is the
least positive element under this order, and that < and ≺ agree on C . Finally we
verify that the convex subgroups are 〈a, E〉, where E is a convex subgroup of C .

Set A=〈a〉, so H = AC . If K is a nontrivial convex subgroup of H , then a ∈ K
and C∩K is a convex subgroup of C , and we have (K ∩C)A= K ∩C A= K . Thus
K = 〈a, E〉 where E = C ∩ K . On the other hand if E is a convex subgroup of C ,
we claim that AE is a convex subgroup of H . Suppose amb ≺ anc ≺ a pd ∈ E A,
where b, d ∈ E , c ∈ C , and m, n, p ∈ Z. Then b ≤ c ≤ d and hence c ∈ E , and it
follows that AE is a convex subgroup of (H,≺), as required. �

Theorem 3.5. Let (G, <) be an ordered group, 1 6= a ∈ G and C � D the convex
jump determined by a (thus a∈D\C and D/C is torsion-free abelian). If D/〈a,C〉
is torsion free, then there is a discrete right order on G with a as the minimal
positive element. Moreover, if also [a, F] ⊆ E for every jump E � F , then there
is a discrete lexicographic right order on G (with a as minimal positive element).

Proof. Set H = 〈a,C〉. The hypothesis of Lemma 3.4 applies and we right order
H as described there. Next we order the factor group D/H . This is possible since
D/H is torsion-free abelian. Define the set Q ⊂ G as follows. If g ∈ H , then
g ∈ Q if g is positive in the order on H described above. If g ∈ D \ H , then put g
in Q if gH is positive in the order on D/H given above. If g ∈ G \ D, then put g
in Q if g is positive in (G, <), the original order on G.

It is routine to verify that Q∪Q−1
= G \ {1}, Q∩Q−1

=∅ and Q Q ⊆ Q, thus
giving a right order ≺ on G with Q = {g ∈ G | 1≺ g}.

The same right order≺ is lexicographic if [a,F]⊆E for every jump E�F ⊆ C .
The convex subgroups are {1}, 〈a〉, and 〈a, E〉 for every subgroup E convex under
the original order<. This follows from Lemma 3.4: note that E =〈a, E〉 if E ≥ D
and E ∩C is a convex subgroup of C . �

Corollary 3.6. Nontrivial free groups have discrete lexicographic right orders.

Proof. This follows from the fact that the descending lower central series terminates
in {1} and the factors are free abelian groups. Thus any element may be made to
be the least positive element so long as it is a primitive element of the factor group
that is determined by the element. �

Corollary 3.6 can be generalized to free partially commutative groups. These are
described in [Duchamp and Krob 1992, §1.1], and the definition given there does
not require these groups to be finitely generated. Free partially commutative groups
are known under many other names, in particular they are also called right-angled
Artin groups [Charney 2007], at least for finitely generated groups.

Corollary 3.7. Nontrivial free partially commutative groups have discrete lexico-
graphic right orders.
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Proof. Free partially commutative groups are residually nilpotent by [Duchamp
and Krob 1992, Theorem 2.3]. Furthermore [Duchamp and Krob 1992, Theorems
1.1, 2.1] show that the quotients of the lower central series are free abelian groups.
The result now follows from Theorem 3.5. �

Note that a nonabelian free group does not have a discrete order. This follows
from Theorem 2.1.

Finally, all surface groups (orientable or not) except the Klein bottle and pro-
jective plane are residually torsion-free nilpotent, by [Baumslag 1968, Theorem
1] (we would like to thank Warren Dicks for this reference). Thus these surface
groups also have lexicographic discrete right orders. With the exception of the
torus, these groups have trivial center and therefore do not enjoy discrete orders.

The pure braid groups Pn , like free groups and surface groups, are also residually
torsion-free nilpotent. But, unlike those examples, the groups Pn do have discrete
orders. The center Z(Pn) is infinite cyclic, generated by z = the full twist braid
(often denoted 12

n). Since 〈z〉 is trivially isolated in Z(Pn), the second part of
Theorem 2.1 provides a discrete order with 12

n as least positive element. In fact
any discrete order of Pn must have 12

n (or its inverse) as least positive element.

4. Examples

A group may have a lexicographic right order and not have any discrete right order
even when the factors formed by the convex jumps are all infinite cyclic. One
example of this is the following.

Example 4.1. Let G = 〈ai | i ∈Z〉 with defining relations [ai , a j ] = 1 if |i− j |> 1
and ai+1ai a−1

i+1 = a−1
i .

Every right order on G is lexicographic with the subgroups 〈ai | i < j〉 forming
the chain of convex subgroups, and every right order is determined by the ai (that
is, whether or not ai is in the positive cone for each i ∈ Z). This construction
is just the expansion of the well known (Klein bottle) group D = 〈a, b〉 where
b−1ab = a−1. There are exactly four right orders on D, every one discrete with a
or a−1 as the minimal positive element.

We show next that any infinite cyclic extension of the group G of this example
has a discrete right order if it is finitely generated. However we can have a meta-
cyclic extension of G that is finitely generated and right orderable but without any
discrete right order. These are given as Proposition 4.2 and Example 4.3. If x, t
are elements of a group, then x t will denote t−1xt .

Proposition 4.2. Let 0 = G〈t〉 be a finitely generated infinite cyclic extension of
the group G given in Example 4.1. Then 0 has a discrete right order with t (or
t−1) as the minimal positive element.
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Proof. Every nontrivial element g ∈ G has unique expression of the form

g = ad1
r1
. . . adk

rk
,

where r1 < · · ·< rk and di 6= 0 for all i . Call adk
rk the leading term of g and denote

it by `(g). Call rk the leading suffix of g.
Note that `(gn)= (`(g))n for all n ∈ Z \ {0}. Moreover, if `(g)= a j

r , `(h)= ak
s

and r < s, then `(gh)= `(hg)= `(h). Since (at
i+1)

−1(at
i )(a

t
i+1)= (a

t
i )
−1, we see

that the leading suffix of (ai+1)
t is greater than that of (ai )

t by at least one. Thus
also the leading suffix of (ai+1)

t−1
is greater than that of (ai )

t−1
by at least one, and

we deduce that the leading suffix of (ai+1)
t is greater than that of (ai )

t by exactly
one. It follows that i > j implies that the leading suffix of (ai )

t is greater than that
of (a j )

t by exactly i − j .
Since 0 is finitely generated, the leading suffix of at

i (or that of at−1

i ) is greater
than i for at least one value of i — otherwise 〈a j | j ≤ i〉 is normal in 0 for every
i , and hence 0 can not be finitely generated. Thus if the leading suffix of at

0 is n,
then the leading suffix of at

i is i + n for every integer i , and we may assume that
n > 0.

We now right order the group G by putting a0, a1, . . . , an−1 in the positive cone
P . Next, for all n≤ r < 2n, we put ar ∈ P if the exponent of `(at

r−n) is positive and
a−1

r ∈ P otherwise. Next put ar+n or a−1
r+n in P depending on whether the exponent

of `((`(ar−n)
t)t) is positive or negative. Continue this process. For every integer

i ≥ 0 we have determined whether ai or its inverse is in P . Next, for 0> r ≥ −n
put ar ∈ P if the exponent of `(at−1

r+n) is positive. Put a−1
r ∈ P otherwise. Continue

this process. This takes care of all ai for i ∈ Z. Note that the above order on G
is 〈t〉 invariant. Hence by Lemma 3.4, 0 has a right discrete order with t as the
minimal positive element. �

Example 4.3. Let G be the group in Example 4.1. Consider the map

φ : {ai | i ∈ Z} → {a−1
i | i ∈ Z}

given by φ(ai ) = a−1
i . Then φ extends uniquely to an automorphism of G that

inverts every ai . Let 〈G, u〉 be the infinite cyclic extension of G by 〈u〉 where
u−1ai u = a−1

i for all i ∈ Z. Note that 〈G, u〉 is right orderable because it is an
infinite cyclic extension of the right orderable group G. However, it has no discrete
right order. This can be seen as follows. Suppose g ∈G and c := gu j is a minimal
positive element under some right order< on 〈G, u〉. Since G has no discrete right
order, j 6= 0 and it must be even otherwise c−1ai c= a−1

i for some i , contradicting
Lemma 3.2.

Suppose 1< u. Then ar
i < u for every i, r ∈Z, for if 1< u < ar

i , then ua−r
i < 1.

Hence ar
i = ua−r

i u−1 < 1, a contradiction. Thus h < u for all h ∈ G. Since
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1< c= gu j
= u j g, we see that j is positive, and then we have 1< u j−1, ug, which

contradicts the hypothesis that c is the minimal positive element. The argument is
similar if u < 1. We note in particular that if 1< u, then h < u for every h ∈ G.

Next extend the group 〈G, u〉 by the infinite cyclic group 〈v〉 to get the group
J =〈G, u, v〉where the action of v under conjugation is as follows: v−1aiv=ai+1,
the shift automorphism, and v−1uv=u−1. Note that 〈G, v〉=〈a0, v〉, J =〈a0, u, v〉
and J is right orderable.

We now show that J has no discrete right order. Suppose that c := gu jvk is a
minimal positive element under a right order < on J . Then k 6= 0, since otherwise
the restriction of the right order < to 〈G, u〉 would be discrete with gu j as the
minimal positive element. We have seen that this is not possible. Next note that
k must be even, otherwise assume without loss of generality that u > 1. Then
cuc−1

= gu−1g−1 < 1, which contradicts Lemma 3.2. Since vuv−1
= u−1, we see

that 1<v implies x <v for every x ∈ 〈G, u〉, in particular k > 0 and gu jvk−1 > 1.
This contradicts the hypothesis that c is the minimal positive element. Similarly
we cannot have 1 > v, which finishes the verification that J has no discrete right
order.

It is possible for a discretely (right-) ordered group to have a subgroup on which
the same order is dense. Indeed, by Corollary 2.2, any densely ordered group is
a subgroup of a discretely ordered group, whose order extends the given order.
Following is a natural example of this phenomenon for right-ordered groups.

Example 4.4. The Artin braid groups Bn have a discrete right-order, which be-
comes dense when restricted to the commutator subgroup. For each integer n ≥ 2,
Bn is the group generated by σ1, σ2, . . . , σn−1, subject to the relations

σiσ j = σ jσi if |i − j |> 1 and σiσ jσi = σ jσiσ j if |i − j | = 1.

It was shown by Dehornoy (see [Dehornoy 1994] and [Dehornoy et al. 2002])
that each Bn is right-orderable (but not orderable, for n > 2). The positive cone
consists of all elements expressible as a word in the σi such that the generator with
the lowest subscript occurs with only positive exponents. This right-order is dis-
crete, with smallest positive element σn−1. On the other hand, it is shown in [Clay
and Rolfsen 2007] that the Dehornoy order, when restricted to the commutator
subgroup B ′n = [Bn, Bn], is a dense order for n ≥ 3. For n = 3, B ′n is free (on two
generators). For n ≥ 5, B ′n is finitely-generated and perfect [Gorin and Lin 1969],
so Bn is an example of a nonlocally indicable discretely right-orderable group for
n ≥ 5.

Now consider the braid group B3 with its two generators σ1 and σ2 and let H
be the subgroup generated by σ 2

1 and σ 2
2 . Crisp and Paris [2001] showed that H

is a free group with free basis σ 2
1 and σ 2

2 . The Dehornoy order restricted to this
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subgroup has the least positive element σ 2
2 . This gives an alternative construction

of discrete right-orders on a free group.

Bergman [1991] published the first examples of groups which are right-orderable
and not locally indicable; some of his examples are finitely generated and perfect.
We shall argue that they can be given a discrete right-order.

If G is a group acting on a set and x1, . . . , xn are elements of the set, then
StabG(x1, . . . , xn)will denote the pointwise stabilizer of {x1, . . . , xn} in G, namely
{g ∈ G | gxi = xi for all i}. Also I will denote the identity matrix of SL2(R). We
have an action of SL2(R) on the one point compactification R = R ∪ {∞} ∼= S1,
the circle, given by the rule (

a b
c d

)
(x)=

ax + b
cx + d

. (4.5)

This induces a faithful action of PSL2(R) on R. Let H be a finitely generated
subgroup of SL2(R) containing the center {±I } of SL2(R), and let H̄ denote its
image in PSL2(R). Since R is the universal covering space of S1, we can lift
the action of H̄ on S1 to an action of a group G on R by orientation preserving
homeomorphisms. In this situation, G will have a central subgroup Z ∼=Z such that
G/Z ∼= H̄ and Z acts fixed point freely on R. Also if π : R→ S1 is the associated
covering map and p ∈ R, then StabH̄ (πp)= Z StabG(p)/Z ∼= StabG(p).

Proposition 4.6. Let H be a finitely generated subgroup of SL2(R) with −I ∈ H
and let G be its lift to orientation preserving homeomorphisms of R (as described
above). Suppose H contains a diagonal matrix other than ±I . Then G has a
discrete right order.

To prove this, we need an auxiliary result:

Lemma 4.7 [Linnell 2006, Lemma 2.2]. Let G be a right ordered group, let H
be a convex subgroup of G and let < be any right order on H. Then there exists
a right order on G whose restriction to H is <, and H is still a convex subgroup
under this new right order.

Proof of Proposition 4.6. Let us examine StabH (0) and StabH (0,∞) with the
action given by (4.5). The former is the lower triangular matrices, that is, the
matrices above with b = 0; we shall denote by L those lower triangular matrices
which lie in H . The latter is given by the diagonal matrices; we shall denote by D
those diagonal matrices which lie in H .

Thus we have an action of H on S1 and two points p1, p2 ∈ S1 such that
StabH (p1) = L and StabH (p1, p2) = D. Let p3 ∈ S1 be distinct from p1, p2.
Then StabH (p1, p2, p3)= {±I }.
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Now we can lift the action of H on S1 to an action of G on R by orienta-
tion preserving homeomorphisms; G will have a central subgroup Z ∼= Z such
that G/Z ∼= H/{±I }. For i = 1, 2, 3, let qi ∈ R be a lift of pi . Then Q :=
StabG(q1, q2) ∼= D/{±I }. We now define a right order on G in the usual way
when we have a group acting on R. The positive cone is the set of all g ∈ G such
that g(qi )> qi for the smallest i such that g(qi ) 6= qi . This right order will have the
property that Q is a (smallest nontrivial) convex subgroup of G. If Q ∼= Z, then it
would follow that the above defined right order will be discrete, but this is not true
in general. However since H is finitely generated, H ⊆ SL2(R) for some finitely
generated subring R of R. By [Samuel 1966, Théorème 1], the group of units of
a finitely generated integral domain is finitely generated, hence D is also finitely
generated. We deduce that D/{±I } is a finitely generated free abelian group. Thus
Q is also a finitely generated free abelian group and hence has a discrete right order
by Corollary 2.2. The result now follows from Lemma 4.7. �
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The half-twist for Uq(g) representations
Noah Snyder and Peter Tingley

We introduce the notion of a half-ribbon Hopf algebra, which is a Hopf algebra
H along with a distinguished element t ∈ H such that (H, R,C) is a ribbon
Hopf algebra, where R = (t−1

⊗ t−1)1(t) and C = t−2. The element t is closely
related to the topological “half-twist”, which twists a ribbon by 180 degrees. We
construct a functor from a topological category of ribbons with half-twists to
the category of representations of any half-ribbon Hopf algebra. We show that
Uq(g) is a (topological) half-ribbon Hopf algebra, but that t−2 is not the standard
ribbon element. For Uq(sl2), we show that there is no half-ribbon element t such
that t−2 is the standard ribbon element. We then discuss how ribbon elements
can be modified, and some consequences of these modifications.

1. Introduction 809
2. Conventions 811
3. Background 812
4. Half-ribbon Hopf algebras 816
5. Ribbon and half-ribbon elements for Uq(g) 824
6. Questions 832
Acknowledgments 833
References 833

1. Introduction

Let RIBBON (S) be the category whose morphisms consist of tangles of ori-
ented directed ribbons up to isotopy, each labeled with an element of some set S.
There is a notion of a ribbon Hopf algebra H (see [Chari and Pressley 1994], for
example), which is related to this topological category by the fact that there is a
monoidal functor F ′ from RIBBON (H-rep) to the category of representations
H-rep. This allows one to construct invariants of oriented framed links, and from
there invariants of ordinary links.
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There is a morphism inRIBBON (S)which twists a ribbon by 360 degrees, but
not one that twists a ribbon by 180 degrees (since negatively oriented objects are not
allowed). We propose that one should consider a slightly larger category, denoted
HRIB(S), where this 180 degree twist, the “half-twist,” is allowed. The half-twist
can be applied to several ribbons at once, and all morphisms in HRIB(S) can be
constructed out of half-twists, along with various caps and cups. The following
isotopy shows how the crossing in HRIB(S) is constructed out of the half-twist:

U V

V U

'

U V

V U

(1)

Recall that a ribbon Hopf algebra H is a Hopf algebra along with two extra
features:
• A universal R-matrix R ∈H⊗H. The functor F ′ takes a simple crossing of

ribbons labeled V and W to Flip ◦R acting on V ⊗W .
• A central “ribbon” element C ∈H. The functor F ′ takes a 360 degree twist

of a ribbon labeled V to C acting on V .
The elements R and C must satisfy various compatibility conditions (see Section
4A).

In the present work we define a half-ribbon Hopf algebra to be a ribbon Hopf
algebra along with a distinguished element t such that

(i) R = (t−1
⊗ t−1)1(t),

(ii) C = t−2.

We show that, if H is a half-ribbon Hopf algebra, then F ′ can be extended to a
functor F from HRIB(S) to H-rep.

Our main interest is the case where H is the quantized universal enveloping
algebra Uq(g) of a finite-dimensional complex simple Lie algebra g. In this case
Uq(g) is actually a topological ribbon Hopf algebra, meaning that R and C only
lie in some completion, not in Uq(g) itself. We define a topological half-ribbon
Hopf algebra by allowing t to lie in a completion of H, and show that Uq(g) has
this structure. The main ingredient is a formula for the R matrix of Uq(g), due
to Kirilov and Reshetikhin [1990] and Levendorskiı̆ and Soibelman [1991], of the
form

R = (X−1
⊗ X−1)1(X). (2)
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The correspondence to condition (i) above should be clear, and we show that X
is in fact a half-ribbon element for Uq(g). Interestingly, X−2 is not the standard
ribbon element, and in fact we show that in certain cases it is not possible to find
a half-ribbon element t for Uq(g) such that t−2 is the standard ribbon element.

In Section 5 we discuss the different ribbon elements for Uq(g), and in some
small cases we describe exactly which ones arise from half-ribbon elements. We
then discuss some consequences of using X−2 in place of the usual ribbon ele-
ment. In particular, it simplifies the correspondence between certain skein theoretic
constructions of link invariants and the quantum group constructions of the same
objects, essentially by explaining some annoying negative signs that appear in, for
example, [Ohtsuki 2002] or [Kuperberg 1996].

We feel it would be of considerable interest to study which ribbon Hopf algebras
can be given the structure of half-ribbon Hopf algebras. It would also be nice to
give straightforward conditions on an element t in a general Hopf algebra H, such
that H along with t is a half-ribbon Hopf algebra (that is, H is a ribbon Hopf
algebra, with R = (t−1

⊗ t−1)1(t) and C = t−2). At the end of the paper we
discuss these and other possible future directions.

2. Conventions

We first fix some notation. For the most part we follow conventions from [Chari
and Pressley 1994].
• g is a complex simple Lie algebra with Cartan algebra h, and A = (ai j )i, j∈I

is its Cartan matrix.
• 〈 · , · 〉 denotes the paring between h and h? and ( · , · ) denotes the usual sym-

metric bilinear form on either h or h?. Fix the usual bases αi for h? and Hi for h,
and recall that 〈Hi , α j 〉 = ai j .
• di = (αi , αi )/2, so that (Hi , H j )= d−1

j ai j . Let B denote the matrix (d−1
j ai j ).

• qi = qdi .
• ρ is the element of h∗ such that (αi , ρ)= di for all i .
• ρ∨ is the element of h such that 〈αi , ρ

∨
〉 = 1 for all i .

• si is the element of the Weyl group which is defined by

si (α j )= α j −〈αi , α
∨

j 〉αi . (3)

• θ is the diagram automorphism such that w0(αi ) = −αθ(i), where w0 is the
longest element in the Weyl group.
• Uq(g) is the quantized universal enveloping algebra associated to g, generated

over C(q) by Ei , Fi for all i ∈ I , and Kw for w in the coweight lattice of g. As
usual, let Ki = K Hi . We actually must adjoin a fixed kth root of q to the base field,
for some k depending on g. This causes no real difficulty, and for the most part
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we ignore it. For convenience, we recall the exact formula for the coproduct and
antipode: 

1Ei = Ei ⊗ Ki + 1⊗ Ei ,

1Fi = Fi ⊗ 1+ K−1
i ⊗ Fi ,

1Ki = Ki ⊗ Ki ,


S(Ei )=−Ei K−1

i ,

S(Fi )=−Ki Fi ,

S(Ki )= K−1
i .

(4)

• [n] = (qn
− q−n)/(q − q−1), and X (n)

= (Xn)/([n][n− 1] · · · [2]).
• Vλ is the irreducible representation of Uq(g) with highest weight λ, and vλ is

a highest weight vector.
• P is the weight lattice for g and Q is the root lattice.
• The standard ribbon element C for Uq(g) acts on Vλ as the constant

q−(λ,λ)−2(λ,ρ).

• Uq(g)-rep is the category of finite-dimensional Type 1 representations.
• (H, R) is a quasitriangular Hopf algebra over a field F , where

(i) µ :H⊗H→H is multiplication;
(ii) ι : F→H is the unit;
(iii) 1 :H→H⊗H is the comultiplication;
(iv) ε :H→ F is the counit;
(v) S :H→H is the antipode.

• Flip : V ⊗W →W ⊗V is defined by Flip(v⊗w)=w⊗v. For longer tensor
products, define rev : V1⊗· · ·⊗Vk→ Vk⊗· · · V1 by v1⊗· · ·⊗vk 7→ vk⊗· · ·⊗v1.
• If V is a representation of a Hopf algebra H , then we define the left dual V ∗

to be the dual vector space with the action x ◦ f (v)= f (S(x)v), and the right dual
∗V to be the dual vector space with the action x ◦ f (v) = f (S−1(x)v). Note that
(∗V )∗ = V = ∗(V ∗).

3. Background

Much of the motivation for this paper comes from studying an expression for the
R-matrix

R = (X−1
⊗ X−1)1(X), (5)

where X is an element in some completion of Uq(g). This was first introduced by
Kirilov and Reshetikhin [1990] and Levendorskiı̆ and Soibelman [1991], and has
recently proven useful in studying the relationship between the braiding and crystal
bases [Kamnitzer and Tingley 2009]. In this section we review this formula, and
also recall the definition and basic properties of a ribbon Hopf algebra.
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3A. A completion of Uq(g). The element X from (5) is not actually in Uq(g), but
only in a completion. In order to be precise, we briefly review the completion of
Uq(g) that we use.

Definition 3.1. Ũq(g) is the completion of Uq(g) in the weak topology generated
by all matrix elements of all (finite-dimensional Type 1) representations. Similarly,

˜Uq(g)⊗Uq(g) is the completion of Uq(g)⊗Uq(g) in the weak topology defined
by all matrix elements of representations Vλ⊗ Vµ, for all ordered pairs (λ, µ).

Theorem 3.2 [Kamnitzer and Tingley 2009]. Ũq(g) is the direct product of the
endomorphism rings of all irreducible representations of Uq(g). That is,

Ũq(g)=
∏
λ∈3+

End(Vλ). (6)

Comment 3.3. It is straightforward to see that Ũq(g) is a topological Hopf algebra.

By Theorem 3.2, specifying an element of Ũq(g) is exactly the same as specify-
ing how it acts on each isomorphism class of irreducible representation. Similarly,
if we want to specify an element of Ũq(g)

⊗2 we just need to say how it acts on
every tensor product of any two irreducible representations.

3B. A method of constructing commutativity constraints. The next result is a
development of an idea introduced in [Henriques and Kamnitzer 2006] to study
the crystal commutor; the proof is a straightforward exercise.

Proposition 3.4 [Kamnitzer and Tingley 2009, Proposition 3.11]. Let Y be an
invertible element in Ũq(g) such that the map CY : X → Y XY−1 restricts to an
algebra automorphism of Uq(g). Then CY is a coalgebra antiautomorphism if and
only if , for every pair of representations V and W , the map

σ Y
V,W : V ⊗W →W ⊗ V

v⊗w→ Flip ◦(Y−1
⊗ Y−1)1(Y )v⊗w

(7)

is an isomorphism.

Given an element Y satisfying the conditions of Proposition 3.4, we use the
notation σ Y to denote the system of isomorphisms {σ Y

V,W }.

3C. The element X. We now explicitly describe the element X from (5). We will
need a way to specify a lowest weight vector of Vλ, depending linearly on a chosen
of highest weight vector. We do this using the action of the braid group on Vλ. We
very briefly review this theory, and refer the reader to, for example, [Chari and
Pressley 1994, Chapter 8.1.2] or [Lusztig 1993] for more details.
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Definition 3.5 [Lusztig 1993, 5.2.1]. Ti is the element of Ũq(g) that acts on a
weight vector v by:

Ti (v)=
∑

a,b,c≥0
a−b+c=(wt(v),αi )

(−1)bqac−b
i E (a)i F (b)i E (c)i v.

By [Lusztig 1993, Theorem 39.4.3], these Ti generate an action of the braid
group on each Vλ, and thus a map from the braid group to Ũq(g). This realization
of the braid group is often referred to as the quantum Weyl group. It is related to
the classical Weyl group by the fact that, for any weight vector v ∈ V , wt(Ti (v))=

si (wt(v)).

Definition 3.6. Let w0= si1si2 · · · siN be a reduced expression for the longest word
w0 in the Weyl group. Then Tw0 = Ti1 Ti2 · · · TiN .

It is clear that Tw0 is well defined because the elements Ti satisfy the braid
relations. Note that Tw0 interchanges the highest and lowest weight spaces of Vλ.

Definition 3.7. vlow
λ is the element in the lowest weight space of Vλ defined by

Tw0(v
low
λ )= vλ,

where vλ is the chosen highest weight vector.

Definition 3.8. J is the element of Ũq(g) defined by, for any weight vector v ∈ Vλ,

J (v)= q(wt(v),wt(v))/2+(wt(v),ρ)v.

Definition 3.9. X = J Tw0 .

Lemma 3.10 [Kamnitzer and Tingley 2009, Section 5.2]. The element X has the
following properties:

(i) X (vlow
λ )= q(λ,λ)/2+(λ,ρ)vλ.

(ii) X (vλ)= (−1)〈2λ,ρ
∨
〉q(λ,λ)/2+(λ,ρ)vlow

λ .

(iii) X2 is central, and acts on Vλ as multiplication by the scalar

(−1)〈2λ,ρ
∨
〉q(λ,λ)+2(λ,ρ).

(iv) CX is given by 
CX (Ei )=−Fθ(i),

CX (Fi )=−Eθ(i),

CX (Ki )= K−1
θ(i).

(8)

We next present a key result:
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Theorem 3.11 ([Kirillov and Reshetikhin 1990, Theorem 3; Levendorskiı̆ and
Soı̆bel’man 1991, Theorem 1]; see [Kamnitzer and Tingley 2009] for this exact
statement.). σ X is the standard braiding. Equivalently, the standard R-matrix for
Uq(g) can be realized as

R = (X−1
⊗ X−1)1(X). (9)

In fact, we will take (9) as the definition of the universal R-matrix.

3D. Ribbon Hopf algebras.

Definition 3.12 [Chari and Pressley 1994, Definition 4.2.8]. A ribbon Hopf algebra
(H, R, v) is a quasitriangular Hopf algebra (H, R) equipped with an invertible
central element v such that

(i) v2
= uS(u), where u = µ(S⊗ id)R21,

(ii) S(v)= v,
(iii) ε(v)= 1,
(iv) 1(v)= (v⊗ v)(R21 R12)

−1.

Proposition 3.13 [Chari and Pressley 1994]. The element g := v−1u is grouplike
(where u is as in Definition 3.12(i)). �

The following four maps are crucial to studying ribbon Hopf algebras:

Definition 3.14 [Chari and Pressley 1994, page 163]. Let (H, R, v) be a ribbon
Hopf algebra, and (V, π) a representation of H. Let f ∈ V ∗ and v ∈ V . Let ei and
ei be dual bases of V and V ∗ respectively. Then

(i) ev( f ⊗ v)= f (v);
(ii) ẽv(v⊗ f )= f (gv);
(iii) coev(1)=

∑
ei ⊗ ei ;

(iv) c̃oev(1)=
∑

ei
⊗ g−1ei .

Recall that V ⊗ V ∗ can be identified with End(V ). Under this identification ẽv
is the quantum trace of [Reshetikhin and Turaev 1991].

We will be working with Uq(g), which is not a ribbon Hopf algebra according
to the above definition, since the elements v and R actually lie in the completions
Ũq(g) and ˜Uq(g)⊗Uq(g) discussed in Section 3A. This is known as a topological
ribbon Hopf algebra. The theory goes through just as well in the topological case.

Definition 3.15. Let C be the element of Ũq(g) which acts on the representation
Vλ as multiplication by q−(λ,λ)−2(λ,ρ).

The following is well known (see [Chari and Pressley 1994, Corollary 8.3.16],
for example).

Theorem 3.16. (Uq(g), R,C) is a topological ribbon Hopf algebra. �
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3E. The Temperley–Lieb category. The unoriented Temperley–Lieb category TL
has as objects collections of points on the real line up to isotopy, and a morphism
from A to B is a formal linear combination of “planar arc diagrams” each of which
is a collection of nonintersecting segments in R× [0, 1] whose boundary consists
of A× 0 and B× 1 modulo isotopy in the plane and the following relation:

��
��

−→ −q − q−1. (10)

As discussed in, for example, [Goodman and Wenzl 2002], TL is a rigid monoi-
dal category, where composition is given by vertical stacking, tensor product is
given by disjoint union, and the dual is given by 180-degree rotation. Since the
double dual acts trivially, this is a pivotal category with the trivial pivotal structure.

4. Half-ribbon Hopf algebras

This section contains the definition of a half-ribbon Hopf algebra. It also explains
the relationship with the topological category HRIB(S).

4A. Definition and basic properties.

Definition 4.1. A half-ribbon Hopf algebra is a Hopf algebra, together with a dis-
tinguished element t ∈ H, such that (H, R, v) is a ribbon Hopf algebra, where
R = (t−1

⊗ t−1)1(t) and v = t−2.
In the case where t only exists in a completion of H, we say H is a topological

half-ribbon Hopf algebra.

Proposition 4.2. A half-ribbon element t in a half-ribbon Hopf algebra has the
following properties:

(i) The algebra automorphism Ct : H → H defined by x → t xt−1 is also a
coalgebra antiautomorphism.

(ii) ε(t)= 1. Equivalently, t acts as the identity on the trivial representation.

(iii) S(t)2 = t2.

Proof. (i) follows from R1(x)=1op(x)R.

(ii) follows from the fact that R acts as the identity on 1⊗V , where 1 is the trivial
representation.

(iii) follows because t−2 is a ribbon element so S(t−2)= t−2. �

Proposition 4.3. The various important elements in a ribbon Hopf algebra can be
written in terms of a half-ribbon elements t as follows:

R v u g

(t−1
⊗ t−1)1(t)=1op(t)(t−1

⊗ t−1) t−2 S(t−1)t−1 S(t)t−1
= S(t−1)t

(11)
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Proof. (R): The first formula is part of the definition of a half-ribbon element. The
second formula follows by Proposition 4.2(i) since this implies that, for all x ∈H,

(t−1
⊗ t−1)1(x)(t ⊗ t)=1op(t−1xt).

(v): This is part of the definition of a half-ribbon element.

(u): By definition, u = µ ◦ (S⊗ 1)R21, where µ is multiplication. Thus:

u = µ ◦ (S⊗ 1)([(1op(t)(t−1
⊗ t−1)]21) (12)

= µ[((S⊗ 1)(1(t))(t−1
⊗ t−1)] (13)

=

∑
S(t−1)S(t1)t2t−1 (14)

= S(t−1)[ι ◦ ε(t)]t−1 (15)

= S(t−1)t−1. (16)

In (14) we have used Sweedler’s notation 1(x) =
∑

x1 ⊗ x2. The equality (15)
follows from the antipode axiom of a Hopf algebra, and (16) follows by Proposition
4.2(ii).

(g): By definition, g = v−1u. Recall that v is central. To get the second equation,
apply Proposition 4.2(iii). �

Comment 4.4. For historical reasons the ribbon element v represents a negative
twist. We use t for the positive half-twist, which explains the fact that v = t−2.

4B. A topological category of ribbons with half-twists. There is a functor from a
certain topological category to the category of representations of any ribbon Hopf
algebra, which allows one to construct topological invariants. For a half-ribbon
Hopf algebra, this functor can be extended to a larger topological category. In this
section we define the two relevant categories, beginning with the large one.

Definition 4.5. The category HRIB(S) of topological half-ribbons with labels in
some set S is defined by:

• Objects in HRIB(S) consist of a finite number of disjoint closed intervals
on the real line, each labeled with an element of S, each with a choice of shading
(shaded or unshaded), and each directed (up or down). These objects are considered
up to isotopy of the real line. For example:

A B B C A D . (17)

• A morphism between two objects A, B ∈ HRIB(S) consist of a “tangle of
orientable, directed ribbons” in R2

× I , whose loose ends are exactly

(A, 0, 0)∪ (B, 0, 1)⊂ R×R× I,
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along with a choice of direction and shading of each ribbon. These must be such
that the direction (up or down) of each interval in A∪ B agrees with the direction
of the ribbon whose end lies at that interval, and the shading (light or dark) of each
interval agrees with the shading on the visible side of the ribbon near that interval.
These are considered up to isotopy.

• Composition of two morphisms is given by stacking them on top of each
other, and them shrinking the vertical axis by a factor of two. Note that we read
our diagrams bottom to top. For example:

V U

U V

◦

V U

U V

=

U V

U V

(18)

Definition 4.6. RIBBON (S) is the full subcategory of HRIB(S) consisting of
those objects all of whose intervals are unshaded.

The definition of HRIB(S) can easily be made rigorous, in the same way as
is done for the subcategory RIBBON (S); see for example [Chari and Pressley
1994]. If fact, as with RIBBON (S), HRIB(S) is a rigid monoidal category,
where tensor products and duals are shown below:

(
A B

)
⊗
(

A C C
)
= A B A C C ,

(
A B C B

)∗
= B C B A .

4C. A functor from HRIB(S) to H-rep. We will now show that the category
of representations of a half-ribbon Hopf algebra admits a natural functor from
HRIB(H-rep). This theorem is an extension of the corresponding result relating
ribbon Hopf algebras and RIBBON (H-rep), so we begin by stating this known
result.

Theorem 4.7 (see [Reshetikhin 1989], [Shum 1994], or [Chari and Pressley 1994,
Theorem 5.3.2]). Let (H, R,C) be a ribbon Hopf algebra. There is a unique
monoidal functor F ′ from RIBBON (H-rep) to H-rep satisfying the following
conditions:

(i) F ′( V ) = V and F ′( V ) = V ∗,
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(ii)

F ′


V V

 = ev, F ′

 V V
 = coev,

F ′


V V

 = ẽv, F ′

 V V
 = c̃oev.

(iii) F ′
( )

= C ,

thought of as a morphism from V to V or from V ∗ to V ∗, depending on the
orientation.

(iv) F ′
( )

= Flip ◦R

as a morphism from the tensor product of the bottom two objects to the tensor
product of the top two objects, regardless of labeling and orientation.

Comment 4.8. Warning: this functor is not a strict rigid functor. Notice that

F ′( V ∗)= F ′( V )= V , while F ′( V )∗ = (V ∗)∗ = V ∗∗.

Our main result for this section is that F ′ can be extended to a functor F :
HRIB(H-rep)→H-rep as follows.

Definition 4.9. Let V be a representation of a half-ribbon Hopf algebra H and
for each x ∈ H let πV (x) be the element of End(V ) defined by x . Define a new
representation V Ct which is equal to V as a vector space, but with the action of
x ∈H defined by πV Ct (x)= πV (t xt−1).

Definition 4.10. The topological half-twist is the morphism In in HRIB which
takes n ribbons of any shading and orientation, and twists them all together by 180
degrees: ...

...

Theorem 4.11. There is a unique monoidal functor F from HRIB(H-rep) to
H-rep satisfying:

(i) F( V )=V , F( V )=V ∗, F( V )=V Ct andF( V )= (V ∗)Ct .

(ii) On unshaded caps and cups F agrees with F ′.
(iii) The topological half-twist on n ribbons is sent to rev ◦1n(t) acting on F of

the bottom object, regardless of shading and orientation.
Furthermore, the restriction of F to RIBBON (H-rep) agrees with F ′.
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The proof of Theorem 4.11 requires several lemmas, and will occupy the rest of
this section.

Comment 4.12. Like F ′, F is not a strict rigid functor. In particular, we have

F( V )= (V ∗)Ct ,

which is not equal to (V Ct )∗ (although these two representations are isomorphic).
In fact, (V ∗)Ct is equal to the right dual ∗(V Ct ). To see why, notice that, as vector
spaces, both (V ∗)Ct and ∗(V Ct ) are equal to HomF (V, F). Each comes with a
chosen action of H, and, using the fact that Ct is a coalgebra antiautomorphism,
one can show that these two actions are identical.

Comment 4.13. A good mnemonic for remembering what F does to objects is
to think of the ribbon as always being labeled with a representation on its light
side, so that when you look at the dark side you see that label rotated 180 degrees
around the y axis. For example, instead of V Ct

i you would see iV . This works for
remembering how duals interact with half twists since when you rotate V ∗i by 180
degrees about the y axis you see i

∗V .

Comment 4.14. There is more than one extension of F ′ fromRIBBON (H-rep)
to the larger category HRIB(H-rep), but only one satisfies Theorem 4.11(iii).

We first prove the following different characterization of F . This is simpler to
prove, and is also more general than Theorem 4.11. However, this result is less
satisfying in other ways. For instance, Proposition 4.15 does not imply that all half
twists are sent to t acting on F of the bottom object.

Proposition 4.15. Let (H, R, v) be a ribbon Hopf algebra, and let t ∈ H be an
invertible element. There is a unique monoidal functor F from HRIB(H-rep) to
H-rep such that:

(i) F agrees with F ′ on the full subcategory RIBBON (H-rep).

(ii) F( V )= V Ct and F( V )= (V ∗)Ct .

(iii) F
( )

= t as a morphism from V to V Ct or from V ∗ to (V ∗)Ct depending
on orientation.

F
( )

= t−1 as a morphism from V Ct to V or from (V ∗)Ct to V ∗ depending
on orientation (notice that this is a negative half-twist, hence the use of t−1).

Proof. This is the simplest case of Reshetikhin and Turaev’s [1990] more general
extension of F ′ to ribbon graphs with coupons, where we think of the half-twists
defined above as coupons on a single ribbon. So we just sketch the proof. Every
morphism in HRIB(H-rep) is isotopic to ribbon in the following standard form:
every shaded object at the bottom has a positive half-twist next to it, then in the
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middle of the diagram there’s a ribbon tangle, then at the top of the diagram every
shaded object has a negative half-twist next to it. Furthermore two such diagrams
are isotopic if and only if the ribbon tangles in the middle of their standard diagrams
are isotopic. Hence there is at most one possible functor F . That F is in fact a
functor follows from the fact that t and t−1 are inverses of each other, so that
composition of diagrams is just given by composing their middle parts. �

The following lemma shows how F acts on those elementary morphisms not
already specified in the statement of Proposition 4.15.

Lemma 4.16. Let (H, t) be a half-ribbon Hopf algebra, and define F as in Propo-
sition 4.15.

(i) F sends any positive half-twist to t acting onF of the bottom object regardless
of orientation or shading. F sends any negative half-twist to t−1 regardless
of orientation or shading.

(ii) F takes any simple crossing to Flip ◦R acting on F of the bottom object,
regardless of orientations and shadings.

(iii) F sends shaded caps and cups to the following maps:

F


VV

= ev∗(V Ct ) : v⊗ f 7→ f (v), (19)

F


V V

= ẽv∗(V Ct ) : f ⊗ v 7→ f (πV (g)v), (20)

F

 V V
= c̃oev∗(V Ct ) : 1 7→

∑
i

πV (g)−1vi ⊗ v
i , (21)

F

 VV
= coev∗(V Ct ) : 1 7→

∑
i

vi
⊗ vi . (22)

For the explicit formulas, we have used the fact that V Ct and (V ∗)Ct are iden-
tical to V and V ∗, respectively, as vector spaces, and chosen dual basis vi

and vi for V and V ∗.

Comment 4.17. In order to apply the maps ev∗(V Ct ), etc. above, one must use the
canonical isomorphism (∗(V Ct ))∗ ∼= V Ct , and the equality (V ∗)Ct =

∗(V Ct ) from
Comment 4.12. It is a straightforward exercise to show that these maps are given
in coordinates by the above formulas.
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Proof of Lemma 4.16. We prove each of these formulas by a direct calculation.
For the half-twists and ribbon full-twists we only use that t2

= v−1. For exam-
ple, the positive half-twist going from unshaded to shaded is a composition of the
negative half-twist with the full twist. So this result follows from t−1v−1

= t .
The formulas for F applied to a crossing with one or both of the ribbons shaded

all follow from the naturality of the braiding. For example, to find F of a crossing
where one strand is shaded, consider the following isotopy:

'

Thus F of the left side must be equal to (t ⊗ 1) ◦ Flip ◦R ◦ (1 ⊗ t−1). By the
naturality of the braiding,

(t ⊗ 1) ◦Flip ◦R ◦ (1⊗ t−1)= Flip ◦R ◦ (1⊗ t) ◦ (1⊗ t−1)= Flip ◦R. (23)

This holds independently of the orientations of the ribbons. A similar argument
gives the same formula for crossings where the other ribbon is shaded, or where
both are shaded.

It remains to compute the formula for shaded cups and caps. These equations
use g = S(t)t−1

= S(t−1)t . We explicitly show two of the four cases. The other
two are similar.

By the definition of F , one has

F


VV

 (v⊗ f )= F


VV

 (v⊗ f ) (24)

= ẽv(tv⊗ t−1 f ) (25)

= t−1 f (gtv) (26)

= f (S(t−1)gtv) (27)

= f (v). (28)

Here (24) is an isotopy, (25) follows from functoriality and our computation of F
on all half-twists, (26) is the definition of ẽv, (27) is the definition of the action on
the dual space, and (28) uses the formula g = S(t)t−1.
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Now for a cup. Notice that, if ei
∈ V ∗ and e j ∈ V are dual bases and x is an

invertible element in H, then vi
= xei and vi = S(x)−1ei are also dual bases. By

the definition of F , we have:

F

 V V
 (1)= F



V V  (1) (29)

=

∑
tei ⊗ t−1ei (30)

=

∑
t S(t−1)vi ⊗ v

i (31)

=

∑
g−1vi ⊗ v

i . (32)

Here (29) is an isotopy, (30) follows from functoriality and our computation of F
on all half-twists, (31) is the change of dual bases described above with x = t , and
(31) uses the formula g = S(t)t−1. �

Note that above we used the formulas relating t to g (which was derived using
the formula relating R and t), but we did not use the formula for R directly. That
formula is used in the following proposition which computes how F acts on the
half-twist applied to many strands.

Proposition 4.18. Suppose that (H, t) is a half-ribbon Hopf algebra, let F be the
unique functor guaranteed by Proposition 4.15. Then, F(In)= rev ◦1n(t).

Proof. We proceed by induction on n, the case n = 1 being trivial. Consider the
isotopy

...

...

'

...

...

Thus, by the definition of F ,

F(In)= (t ⊗ t ⊗ · · ·⊗ t)F(T (n)
w0
), (33)

where T (n)
w0 is the braid group element corresponding to the longest element of Sn .

Let σ (n) be the braid group element
...

...
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Let s(n) be the image of σ (n) in Sn , and let rev(n) denote the longest element of Sn .
Clearly T (n)

w0 = (T
(n−1)
w0 ⊗ 1) ◦ σ (n). Hence

F(In)= (t ⊗ t ⊗ · · ·⊗ t) ◦F(T (n)
w0
) (34)

= (t ⊗ t ⊗ · · ·⊗ t) ◦ (F(T (n−1)
w0

)⊗ 1) ◦F(σ (n)) (35)

= (F(In−1)⊗ t) ◦F(σ (n)) (36)

= (rev(n−1)1n−1(t)⊗ t) ◦ s(n) ◦ (1⊗1n−1)(R) (37)

= (rev(n−1)1n−1(t)⊗ t) ◦ s(n) ◦ (1⊗1n−1)((t−1
⊗ t−1)1(t)) (38)

= rev(n)1n(t). (39)

Here (36) follows from (33) in the case n − 1, (37) follows from the inductive
assumption and the quasitriangularity of R, (38) holds because t is a half-ribbon
element, and (39) is a straightforward calculation.

This proof works regardless of the orientations and shadings of the ribbons. �

Proof of Theorem 4.11. Using the isotopy from (1), the crossing is a composition of
the two strand topological half-twist and two copies of the inverse of the one strand
topological half-twist. Thus the conditions in the statement uniquely determine F
on all the elementary morphisms listed in the condition of Proposition 4.15. So
Proposition 4.15 shows that there is a unique candidate for F . Proposition 4.18
shows that this F satisfies the remaining condition of the theorem. �

5. Ribbon and half-ribbon elements for Uq(g)

We show that Uq(g) is always a topological half-ribbon Hopf algebra. That is,
there exists an element X in a completion of Uq(g) such that (X−1

⊗ X−1)1(X)
is the standard R-matrix, and X−2 is a ribbon element. Interestingly, X−2 is not
the standard ribbon element C . We also classify the different ribbon elements for
Uq(g), and discuss how one might decide which of these arise from half-ribbon
elements. In particular, we show that the standard ribbon element for Uq(sl2)

does not arise from a half-ribbon element. We then explain some consequences of
varying the ribbon element. It turns out the ribbon element X−2 is in some ways
particularly nice (see Lemma 5.7 and Section 5E).

5A. A half-ribbon Hopf algebra structure on Uq(g). We first need the following
result relating different ribbon elements for the same quasitriangular Hopf algebra.

Lemma 5.1. Let (H, R, v) be a ribbon Hopf algebra, and s ∈ H be a central
grouplike element that squares to 1. Then (H, R, vs) is also a ribbon Hopf algebra.
Furthermore all ribbon elements for (H, R) are of the form vs for some such s.

Proof. This is a straightforward application of the definition of a ribbon element
[Barrett and Westbury 1999, Remark 3.4]. �
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Theorem 5.2. Let X be the element from Theorem 3.11. Then (Uq(g), X) is a topo-
logical half-ribbon Hopf algebra. Furthermore (X−1

⊗ X−1)1(X) is the standard
R-matrix.

Proof. By Theorem 3.11, (Uq(g), R) is a quasitriangular Hopf algebra, where
R= (X−1

⊗X−1)1(X) is the standard R matrix. Thus it suffices to show that X−2

is a ribbon element for this quasitriangular Hopf algebra. We already know that
(Uq(g), R,C) is a ribbon Hopf algebra. Thus by Lemma 5.1 it suffices to show
that (i) X2C is central; (ii) X2C is grouplike; and (iii) (X2C)2 = 1.

(i) By Lemma 3.10(iii) and Definition 3.15, X2C acts on Vλ as multiplication by
the scalar (−1)〈2λ,ρ

∨
〉. Thus it is clearly central.

(ii) Any highest weight ν for Vλ⊗Vµ has weight λ+µ−γ for some γ in the root
lattice. Since 〈2γ, ρ∨〉 is an even integer for any γ in the root lattice, it follows
that X2C is grouplike.

(iii) (X2C)2 acts on Vλ by (−1)2·〈2λ,ρ
∨
〉
= 1. �

5B. The Frobenius–Schur indicator. We must now discuss a tool for comparing
ribbon elements. The following definition of the Frobenius–Schur indicator for a
pivotal category was given by [Ng and Schauenburg 2007] (see also [Linchenko
and Montgomery 2000] for the case of Hopf algebras and [Fuchs et al. 1999] for
C∗ sovereign categories).

Recall that a pivotal structure is a natural collection of maps pV : V → V ∗∗

which defines a natural isomorphism Id→ ∗∗ of monoidal functors [Barrett and
Westbury 1999]. The category of representations of a ribbon Hopf algebra is always
pivotal with the pivotal structure being given by the grouplike element g = v−1u
as follows: fix v ∈ V . Then pV (v) is the element of V ∗∗ defined by, for all f ∈ V ∗,
pV (v)( f )= f (gv) (see for example [Chari and Pressley 1994]).

Definition 5.3. Given an F-linear category with a chosen pivotal structure p, de-
fine the Frobenius–Schur indicator of an absolutely simple object V as follows: if
V 6∼= V ∗, then F Sp(V ) = 0. Otherwise, choose an isomorphism f : V → V ∗. By
Schur’s lemma there exists some constant, which we define to be F Sp(V ), such
that f = F Sp(V ) f ∗ ◦ p.

Comment 5.4. As shown in [Ng and Schauenburg 2007], F Sp(V ) does not depend
on the choice of f , and we have F Sp(V )=±1 (or 0).

Comment 5.5. Notice that the Frobenius–Schur indicator depends on the pivotal
structure, which in turn depends on the choice of ribbon element. As described
in [Ng and Schauenburg 2007], we use F Sv(V ) to denote the Frobenius–Schur
indicator for V , calculated with the ribbon element v.
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Comment 5.6. The reason for the term Frobenius–Schur indicator is that in the
case of groups (and indeed involutory Hopf algebras [Linchenko and Montgomery
2000]) with the trivial pivotal structure, it agrees with the usual Frobenius–Schur
indicator, which is 1 when there is an invariant orthogonal form on V ⊗ V , −1
when there is an invariant symplectic form on V ⊗ V , and 0 otherwise.

Lemma 5.7. Let Vλ be an irreducible representation of Uq(g) and assume Vλ is
self-dual. Then F SX−2(Vλ)= 1.

Proof. Let f : Vλ→ V ∗λ be an isomorphism. It suffices to show that f = f ∗ ◦ pVλ .
Since both f and f ∗ ◦ pVλ are isomorphisms, it suffices to show that their actions
on vlow

λ agree. But f (vlow
λ ) is in the lowest weight space of V ∗λ , which is one-

dimensional and pairs nondegenerately with vλ. Thus, it in fact suffices to show that

f (vlow
λ )(vλ)= f ∗ ◦ pVλ(v

low
λ )(vλ). (40)

Using the formula for g given in Proposition 4.3,

S(X)= Xg−1
= gX. (41)

Let k = (−1)〈2λ,ρ
∨
〉q(λ,λ)/2+(λ,ρ). By Lemma 3.10(ii), X (vλ) = k(vlow

λ ). Thus the
left side of (40) can be simplified as follows

f (vlow
λ )(vλ)= f (k−1 X (vλ))(vλ) (42)

= k−1(X f (vλ))(vλ) (43)

= k−1 f (vλ)(S(X)vλ) (44)

= k−1 f (vλ)(Xg−1vλ) (45)

= k−1 f (vλ)(gXvλ) (46)

= k−1 f (vλ)(kgvlow
λ ) (47)

= f (vλ)(gvlow
λ ). (48)

Here (43) follows because f is an isomorphism, (45) and (46) follow by (41) and
(47) by the above formula for the action of X on vλ.

Now consider the right side of (40). By definition, pVλ(v
low
λ ) is the element of

V ∗∗λ which takes φ ∈ V ∗λ to φ(gvlow
λ ). Thus

f ∗ ◦ pVλ(v
low
λ )(vλ)= f (vλ)(gvlow

λ ). (49)

We have shown that the two sides of (40) agree, so the result follows. �

Turaev [1994] calls the property that Lemma 5.7 holds unimodality and requires
it when defining geometric 3j and 6j symbols.
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Lemma 5.8. F SC(V ) is the usual Frobenius–Schur indicator of the corresponding
classical representation.

Proof. Since the Frobenius–Schur indicator is a discrete invariant, it doesn’t change
under continuous deformation. �

5C. Which ribbon elements for Uq(g) arise from half-ribbon elements? Here
we classify ribbon elements for Uq(g). We then prove that the standard ribbon
element for Uq(sl2) is not equal to t−2 for any half-ribbon element t .

Definition 5.9. Suppose that φ is a character of P/Q, where P is the weight lattice
of g, and Q is the root lattice. Define s(φ) ∈ Ũq(g) to act on Vλ as multiplication
by the scalar φ(λ).

Theorem 5.10. The central grouplike elements of Ũq(g) are precisely the s(φ).

Proof. Suppose that s is a central grouplike element of Ũq(g). Since it is cen-
tral, s acts by a scalar on any irreducible representation. Furthermore, since it is
grouplike, s acts by the same scalar on any two irreducible representations that
appear in the same arbitrary tensor product of irreducible representations. Thus
such an s gives a function of P/∼, where ∼ is the equivalence relation on weights
generated by λ∼ µ if Vλ and Vµ appear in the same tensor product of irreducible
representations. It suffices to show that λ∼µ if and only if λ+Q=µ+Q ∈ P/Q.
One can easily see that ∼ respects the additive structure of the weight lattice, so
it is enough to prove that Vλ appears in some tensor product also containing the
trivial representation V0 precisely when λ is in the root lattice.

Since the Littlewood–Richardson coefficients are the same in the quantum and
classical cases, this reduces to the same question in the classical case. So let G be
the simply connected Lie group attached to U (g), and let Z(G) be the center of
G. The central character map gives a pairing between Z(G) and the weight lattice
mod the root lattice. Since any tensor product of irreducible representations has a
well-defined central character, we see that Vλ is equivalent to V0 only if λ is in the
root lattice.

To see the other direction, let V be a faithful representation of the compact
adjoint form K of G.

Claim: For any λ in the root lattice, there exists N so that, for all n > N , Vλ
occurs as a subrepresentation of V⊗n .

Proof of claim: since λ is in the root lattice, Vλ descends to a representation of
K . On this compact form we can use character theory. Because K has no center,
|χV (g)|< dim V for any g 6= 1. Let

kn =

∣∣∣∣∫
K
χn

V dµ
∣∣∣∣ , (50)
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where dµ is the normalized Haar measure. Since K is compact and |χV (g)| <
χV (1) for all g 6= 1, we see that

lim
n→∞

〈χV⊗n , χVλ〉

kn
= lim

n→∞

1
kn

∫
K
χV (g)nχVλ(g

−1)dµ= χVλ(1)= dim Vλ. (51)

In particular, for n ≥ N we see that 〈χV⊗n , χVλ〉 is nonzero, so Vλ occurs in V⊗n .
Applying the above fact to 0 and an arbitrary root vector λ, we see that for a

sufficiently high power N ′=max(N0, Nλ) the tensor power V⊗N contains both V0

and Vλ, and hence 0∼ λ. �

Theorem 5.11. Ribbon elements of Ũq(g) are exactly elements of the form

s(φ)X−2,

where φ is a character of the weight lattice mod the root lattice of order ≤ 2.

Proof. This follows from Lemma 5.1 and Theorem 5.10. �

We have the following relationship between ribbon elements and the Frobenius–
Schur indicator.

Proposition 5.12. If Vλ is self dual, then F Ss(φ)X−2(Vλ)= φ(λ).

Proof. The only part of the definition of the Frobenious–Schur indicator that
changes when you change the ribbon element from X−2 to s(φ)X−2 is pVλ , and
this is multiplied by φ(λ). Hence the proposition follows from Lemma 5.7. �

We wish to understand which of these ribbon element extend to a half-ribbon
elements on Ũq(g). As we shall see, the ratio of two half-ribbon elements is grou-
plike, so to classify all of them we need to understand the grouplike elements in
Ũq(g). In general this seems to pose some technical challenges, but we can do the
case of Uq(sl2).

Proposition 5.13. Let (H, R) be a quasitriangular Hopf algebra, and assume that
t1 and t2 are two half-ribbon elements. Then t1t−1

2 is grouplike. (Note that we do
not assume here that t−2

1 = t−2
2 .)

Proof. This follows from the equality (t−1
1 ⊗ t−1

1 )1(t1)= (t−1
2 ⊗ t−1

2 )1(t2). �

Lemma 5.14. Let V be the standard representation of Uq(sl2), with basis {v+, v−}
such that E(v−) = v+, Kv+ = qv+, and Kv− = q−1v−. Then V ⊗ V contains a
copy of the trivial representation V0. Furthermore, this is spanned by the element

v+⊗ v−− q−1v−⊗ v+.

Proof. It suffices to check that 1(E)(v+ ⊗ v− − q−1v− ⊗ v+) = 0. This follows
from the definition of 1. �
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Definition 5.15. Let a ∈ C(q). Define Ka to be the element of Ũq(sl2) that acts
on any weight vector v ∈ Vλ by Ka(v)= awt(v). Note that Ka is grouplike.

Lemma 5.16. All grouplike elements in Ũq(sl2) are of the form Ka , for a ∈ C(q).

Proof. A grouplike element is determined by its action on the fundamental re-
presentation V . Suppose that σ is grouplike. Define constants a, b, c and d by
σv+ = av++bv− and σv− = cv++dv−. Since σ is grouplike it must act trivially
on the trivial subrepresentation of V ⊗ V . Thus by Lemma 5.14,

v+⊗ v−− q−1v−⊗ v+ = σ ⊗ σ(v+⊗ v−− q−1v−⊗ v+) (52)

= ac(1− q−1)v+⊗ v++ (ad − q−1bc)v+⊗ v− (53)

− q−1(ad − qbc)v−⊗ v++ (1− q−1)bdv−⊗ v−. (54)

Comparing coefficients we see that ac = bd = bc = 0 and ad = 1. Hence σ acts
on V in exactly the same way that Ka does. Since they are both grouplike and
V is a tensor generator for the category of representations of Uq(sl2), we see that
σ = Ka . �

Theorem 5.17. There is no topological half-ribbon element t for Uq(sl2) such that
t−2 is the usual ribbon element C.

Proof. By Theorem 3.16, X is a half-ribbon element for (Uq(sl2), R). By Propo-
sition 5.13, any other half-ribbon element is of the form Xα for some grouplike
element α. By Lemma 5.16, α=Ka for some a∈C(q). Since X sends the λweight
space to the −λ weight , it follows that Ka X Kav = Xv for any weight space v.
Therefore, we have that (X Ka)

−2
= X−2. Hence every half-ribbon element t for

Uq(sl2) has t−2
= X−2. But X−2 acts as −C on the standard representation, so is

not equal to C . �

5D. A summary of ribbon and half-ribbon elements for Uq(sl2), Uq(sl3) and
Uq(sl4). We now describe the possible ribbon elements of these three quantum
groups, and describe which are the squares of half-ribbon elements. Notice that
the three cases all behave differently.
• Uq(sl2). There are two ribbon elements C , and X−2. Only X−2 can be realized

using a half-ribbon element (see Theorem 5.17).
• Uq(sl3). In this case P/Q ∼= Z/3. Thus, there are no central grouplikes of

order two, so there can be only one ribbon element. This unique ribbon element
can be realized using the half-ribbon element X .
• Uq(sl4). In this case P/Q ∼= Z/4. This has two characters of order ≤ 2, so

there are two ribbon elements. In this case both come from half-ribbon elements.
A straightforward calculation on the standard representation of Uq(sl4) shows that
X−2 is not the standard ribbon element. To see the other half-ribbon element,
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consider the central element s ∈ Ũq(sl4) which acts on Vλ as multiplication by
i4(λ,λ), where i is the complex fourth root of unity. Recall that (λ, α) ∈ Z for any
root α, which implies that s is grouplike. Clearly we also have s4

= 1, and from
these two facts it follows that X ′ := s X is a half-ribbon element for (Uq(sl4), R).
One can check that s acts as multiplication by −i on the standard representation,
so X ′−2

= s2 X−2
6= X−2. Since X−2 is the nonstandard ribbon element, X ′−2 must

be the standard ribbon element.

5E. Varying the ribbon element and diagrammatic categories. Often you’ll find
a result in the literature saying that a certain diagram category “is the same as”
as certain category coming from quantum groups (for example, [Ohtsuki 2002,
Appendix H] and [Kuperberg 1996, page 11]). However, in the details of this claim
there’s an annoying sign difference between the diagram category and the quantum
group category. The reason for this is that, although the two categories match up
as braided tensor categories, they are different as pivotal categories. This can be
fixed by changing the ribbon element on the quantum group side, thus changing
the pivotal structure.

We illustrate this here by considering the case of Uq(sl2)-rep and the Temperley–
Lieb category (see Section 3E). In the correspondence discussed in [Ohtsuki 2002,
Appendix H], the standard representation of Uq(sl2) corresponds to the elementary
object (i.e. a single •) in the Temperley–Lieb category. We now use the Frobenius–
Schur indicator to show that, for any such statement to hold on the level of pivotal
categories, one must use the ribbon element X−2.

Proposition 5.18. Let • denote a single point in Temperley–Lieb (with the trivial
pivotal structure discussed in Section 3E). Then F S(•)= 1.

Proof. The single strand is an isomorphism between • and •∗ = •. The dual of the
single strand (given by rotating 180 degrees about the z axis) is again the single
strand. �

Proposition 5.19. Let V be the standard representation of Uq(sl2). Then

FSC(V )=−1 and FSX−2(V )= 1.

Proof. This is a straightforward calculation using the definitions of C (Definition
3.15) and Lemma 3.10(iii). It also follows from the discussion in Section 5C. �

If • in Temperley–Lieb is going to correspond to the standard representation,
the Frobenius–Schur indicators should agree. Clearly this can only happen if we
use the ribbon element X−2.

Comment 5.20. A similar difficulty arises in relating the type C quantum group
knot invariants with (a specialization of) the Kauffman polynomial. Once again,
one can fix the problem by switching to the ribbon element X−2.
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Comment 5.21. This difficulty can also be addressed by changing the diagram-
matic category. The Temperley–Lieb category has another pivotal structure p such
that p•=−id•. With this pivotal structure F S(•)=−1. This other pivotal structure
is given diagrammatically by the disoriented Temperley–Lieb category of [Clark,
Morrison and Walker 2009].

5F. The effect of varying the ribbon element on knot invariants. Suppose that
(H, R, v) is a ribbon Hopf algebra over a base field F . Fix a simple H-module V .
The functor from Theorem 4.7 sends a link with every component labeled with V
to an element of F , denoted by FV (L), which is an invariant of framed oriented
links. Note that FV (L) actually depends on the choice of ribbon element v, so
when we need to be clear about which ribbon element we are using we will denote
it by FV

v (L). Since V is simple the ribbon element acts by a scalar θv(V ) on V .
It follows as in, for example, [Ohtsuki 2002, Section 3.3] that θv(V )w(L)FV

v (L) is
an invariant of oriented but unframed links (where w(L) is the writhe of the link
diagram, as described in, for example, [Ohtsuki 2002, page 11] and the current
Wikipedia entry for “Writhe”).

Proposition 5.22. Suppose that H is a quasitriangular Hopf algebra with

End(1)= F,

and that V is a simple H-module. Suppose that v1 and v2 are two different ribbon
elements forH. Let θv1(V ) and θv2(V ) be the scalars by which v1 and v2 act on V .
Let FV

v1
and FV

v2
be the functors attached to these two ribbon Hopf algebras. Then

for any link L ,

θw(L)v1
FV
v1
(L)=

(
F Sv1(V )
F Sv2(V )

)#L

θw(L)v2
FV
v2
(L),

where #L is the number of components of L.

Proof. By Theorem 5.11, α := v1/v2 is central grouplike element of order 2. Let
αV be the scalar by which α acts on V . By Proposition 5.12,

αV = F Sv1(V )/F Sv2(V ).

Let gi = v
−1
i u where u is the Drinfeld́ element. It follows immediately from defi-

nitions that ẽv2 = α
−1
V ẽv1 and c̃oev2 = α

−1
V c̃oev1.

The only elementary morphisms for which FV
v1

and FV
v2

disagree are left-going
cups (corresponding to c̃oev), left-going caps (corresponding to ẽv), and full-twists.
Thus,

θw(L)v1
FV
v1
(L)= (αV )

−NL θw(L)v2
FV
v2
(L), (55)

where
NL := #{left going caps and cups}+w(L). (56)



832 Noah Snyder and Peter Tingley

It is easy to see that NL (mod 2) is an invariant of oriented links (for ex-
ample, check all the Turaev moves [Ohtsuki 2002, Section 3.2]). Furthermore,
NL (mod 2) doesn’t change when you replace a positive crossing by a negative
crossing. Since every link can be unknotted by replacing positive crossings with
negative crossings, we see that NL (mod 2) depends only on the number of com-
ponents of L . By looking at the k-component unlink we see that NL≡#L (mod 2).

�

6. Questions

Question 1. Which ribbon Hopf algebras can be endowed with a half-ribbon ele-
ment?

There are several aspects to this question. One could look for examples of half-
ribbon Hopf algebras other than Uq(g). One could also try to find nonexamples,
in the sense of finding ribbon Hopf algebras that do not contain the required ele-
ment t . Such examples exist (at least for topological ribbon Hopf algebras). For
instance we showed in Section 5C that Uq(sl2), with the standard ribbon element,
cannot be made into a half-ribbon Hopf algebra. However, it can be modified by
multiplying the ribbon element by a central grouplike element, and then it does
have the required t . One could also ask if there are examples of ribbon Hopf
algebras that cannot be made into half-ribbon Hopf algebras, even allowing this
sort of modification. More ambitiously, one could look for a general method of
determining when a ribbon Hopf algebra H contains an element t such that (H, t)
is a half-twist Hopf algebra.

In the current work we have mainly considered Uq(g), which is infinite-dimen-
sional, and only has a topological half-ribbon element in the sense that t only
belongs to a completion of Uq(g). We feel it would be interesting to look at the
case of finite-dimensional Hopf algebras as well.

Question 2. Fix a Hopf algebra H. Is there a natural set of conditions one can
impose on an element t ∈ H which guarantees that (H, t) is a half-ribbon Hopf
algebra?

We would like to be able to start with a Hopf algebra, which is not a priori
quasitriangular, and endow it with a ribbon (and half-ribbon) structure by finding
a certain t ∈ H. One can of course write down the conditions t needs to satisfy
by insisting that (t−1

⊗ t−1)1(t) is a quasitriangular structure, and t−2 is a rib-
bon element. However, these are very difficult to deal with, so the real question
is to find nicer conditions on t . This would give a new method of constructing
quasitriangular Hopf algebras.

Question 3. What happens if you weaken the conditions on t?
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Checking that (t−1
⊗ t−1)1t is a quasitriangular structure is difficult, but for

some applications one can weaken this condition by insisting only that

(i) for any representation V and W of H, the map

Flip ◦(t−1
⊗ t−1)1(t) : V ⊗W →W ⊗ V (57)

is an isomorphism; and

(ii) t−2 acts as a ribbon element, in the sense that

t−2
◦mult ◦(S⊗ 1)

(
(t−1
⊗ t−1)1(t)

)
(58)

is grouplike, and so can be used to develop a theory of quantum trace.

These conditions seem easier to check, and a Hopf algebraH with such a t already
has some nice structure. This could be used, for instance, in studying coboundary
categories [Drinfel’d 1989].
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A 2-block splitting in alternating groups
Christine Bessenrodt

In 1956, Brauer showed that there is a partitioning of the p-regular conjugacy
classes of a group according to the p-blocks of its irreducible characters with
close connections to the block theoretical invariants. In a previous paper, the
first explicit block splitting of regular classes for a family of groups was given
for the 2-regular classes of the symmetric groups. Based on this work, the cor-
responding splitting problem is investigated here for the 2-regular classes of the
alternating groups. As an application, an easy combinatorial formula for the
elementary divisors of the Cartan matrix of the alternating groups at p = 2 is
deduced.

1. Introduction

Richard Brauer [1956] introduced the idea of not only distributing characters into
p-blocks but also of associating p-regular conjugacy classes to p-blocks. He
showed that it is possible to distribute the p-regular classes into blocks in a way
that fits with the blocks of irreducible Brauer characters (and suitable subsets of
ordinary irreducible characters in the blocks); this is to say that the determinant of
the corresponding block part of the Brauer character table (or a suitable part of the
ordinary character table) is not congruent to 0 modulo p (a prime ideal over p).
Given such a splitting of p-regular classes into blocks, Brauer showed that the
elementary divisors of the Cartan matrix of a block are then exactly the p-parts in
the orders of the centralizers of elements in the classes corresponding to the block.
He also observed that in general there may be several such block splittings, and
there did not seem to be any natural choice for a given finite group.

But while it is well known how to determine the p-blocks of irreducible char-
acters, for the p-regular classes only the existence of such a block splitting is
known by Brauer’s work — concrete examples for providing such a distribution for
families of groups were not known for a long time. Only recently, such an explicit
block splitting in the sense of Brauer was exhibited for the conjugacy classes of
odd order elements and the 2-blocks of the symmetric groups [Bessenrodt 2007];

MSC2000: primary 20C15; secondary 20C20, 20C30.
Keywords: alternating groups, p-regular conjugacy classes, irreducible characters, Brauer

characters, p-blocks, Cartan matrix.

835



836 Christine Bessenrodt

in fact, in this case the 2-block splitting of the 2-regular classes is unique. The
proof exploited detailed information on the double covers of the symmetric groups,
in particular results on the 2-powers in the spin character values of these groups
[Bessenrodt and Olsson 2000] as well as on the 2-block distribution of the spin
characters [Bessenrodt and Olsson 1997] turned out to be important ingredients.

Based on these results, the present paper investigates the corresponding problem
of constructing a 2-block splitting of the 2-regular classes for the alternating groups.
We provide a basic set of characters for the alternating groups, and find a natural
choice for a block splitting of the classes. As an application, we deduce an easy
combinatorial description of the invariants of the Cartan matrices for the 2-blocks
of the alternating groups.

Here is a brief outline of the sections. In Section 2, we recall Brauer’s results
on block splittings for finite groups which motivated the present work. Then, in
Section 3, some combinatorial notations needed in the representation theory of the
symmetric groups is introduced, and we state some results from [Bessenrodt 2007]
on the block splitting of 2-regular classes for the symmetric groups that are the
basis for the new results on alternating groups. In particular, the class labels for
the 2-block splitting of Sn are recalled. In Section 4, we first collect the necessary
information on characters of the alternating groups, and prove some preliminary
results towards the construction of a class splitting for the alternating groups. In
the main Theorem 4.7 properties of the determinants of the corresponding block
character tables are proved which imply that the construction gives indeed a block
splitting of the classes. By Brauer’s Theorem, our result then implies an easy
combinatorial description of the Cartan invariants for the 2-blocks of the alternating
groups (Corollary 4.9).

2. Brauer’s block splitting

Let G be a finite group, p a prime, (K, R, F) a p-modular splitting system for G,
and p a maximal ideal of R lying over p. Let `(G) be the cardinality of the set
Clp′(G) of p-regular conjugacy classes in G. For each K ∈ Clp′(G) we let xK

denote an element in K . A defect group of K is a Sylow p-subgroup of CG(x) for
some x ∈ K ; if this has order pd , then d is called the p-defect of K . We let IBr(G)
denote the set of modular irreducible characters of G; then

8G = (ϕ(xK )) ϕ∈IBr(G)
K∈Clp′ (G)

is the Brauer character table of G. It is well known by Brauer’s work that the
Brauer character table is nonsingular modulo p, that is,

det8G 6≡ 0 (mod p) .
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Furthermore, we let D= (dχϕ)χ∈ Irr(G), ϕ∈ IBr(G) denote the p-decomposition matrix
for G, and we let C = Dt D denote its Cartan matrix. Let Blp(G) be the set of
p-blocks of G. For B ∈Blp(G), Irr(B) is the set of ordinary irreducible characters
in B, IBr(B) is the set of modular irreducible characters in B, `(B) = | IBr(B)|,
D(B)= (dχϕ)χ∈ Irr(B), ϕ∈ IBr(B) denotes the p-decomposition matrix for B and C(B)
is the Cartan matrix for B.

Then C resp. D are the block direct sums of the matrices C(B) resp. D(B),
B ∈ Blp(G).

The following result was proved by Brauer.

Theorem 2.1. [Brauer 1956, Section 5] There exists a disjoint decomposition of
Clp′(G) into blocks of p-regular conjugacy classes

Clp′(G)=
⋃

B∈Blp(G)

Clp′(B)

and a selection of characters Irr′(B) ⊆ Irr(B) for each p-block B of G such that
the following conditions are fulfilled:

(i) |Clp′(B)| = | Irr′(B)| = `(B) for all B ∈ Blp(G);

(ii) For X B = (χ(xK )) χ∈Irr′(B)
K∈Clp′ (B)

, we have det X B 6≡ 0 (mod p);

(iii) For 8B = (ϕ(xK )) ϕ∈IBr(B)
K∈Clp′ (B)

, we have det8B 6≡ 0 (mod p);

(iv) For DB = (dχϕ)χ∈Irr′(B)
ϕ∈IBr(B)

, we have det DB 6≡ 0 (mod p).

Furthermore, the elementary divisors of the Cartan matrix C(B) are then exactly
the orders of the p-defect groups of the conjugacy classes in Clp′(B), for all B in
Blp(G).

The properties in (ii)–(iv) are not independent of each other, as X B = DB 8B .
In particular, if we have a suitable choice Irr′(B) of characters that satisfies (iv),
and a suitable choice of classes that satisfies (iii), then these together are a suitable
choice for (ii). If we have a basic set of irreducible characters, that is, a subset
Irr′(G) ⊆ Irr(G) giving a Z-basis for the character restrictions to the p-regular
classes, then the p-block decomposition of this set will give a suitable choice of
sets Irr′(B) satisfying (iv).

3. The 2-block splitting for Sn

Let n ∈N. For the symmetric groups Sn , the corresponding combinatorial notions
and their representation theory, we will follow mostly the usual notation in [James
and Kerber 1981].
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Let P be the set of partitions, P(n) the partitions of n. For a partition λ of n,
the number of its (nonzero) parts is called its length, and is denoted by l(λ). The
complex irreducible character of Sn corresponding to λ is denoted by [λ]. For any
partition µ of n, we choose an element σµ in Sn of cycle type µ.

Let µ= (1m1(µ), 2m2(µ), . . .) be written in exponential notation; then we set

aµ =
∏
i≥1

imi (µ), bµ =
∏
i≥1

mi (µ)! .

Let zµ = |CSn (σµ)|; then zµ = aµbµ.
Let p be a prime; we will soon fix this to p = 2. A partition is called p-regular

if no part is repeated p or more times, and a partition is called p-class regular if
no part is divisible by p.

Let D(n) be the set of partitions of n into distinct parts; this is thus the set
of 2-regular partitions of n. Let O(n) be the set of partitions of n into odd parts
only; this is the set of 2-class regular partitions of n. Let O =

⋃
n∈N O(n) and let

D=
⋃

n∈N D(n). It is well known that

Irr′(Sn)= {[λ], λ ∈ D(n)}

forms a 2-basic set for Sn .
Then the 2-regular character table of the symmetric group Sn is defined to be

Xn = ([λ](σα))λ∈D(n)
α∈O(n)

where the partitions are ordered in a suitable way.
As a special case of a result by Olsson [2003], we know that | det(Xn)| =∏
µ∈O(n) aµ, and thus in particular,

2 - det(Xn) .

The main result in [Bessenrodt 2007] provides a block version of this property, by
distributing not only the characters but also the 2-regular conjugacy classes into
blocks in such a way that the corresponding block parts of the character table have
odd determinants. This block distribution of conjugacy classes provided a block
splitting in the sense of Brauer as described in the previous section.

We recall this 2-block splitting for the symmetric groups below. The reader
is referred to [Bessenrodt 2007] for the full results; these involve more detailed
information on spin characters which we omit here since it would require recalling
a lot of notation on double cover groups and their characters.

For the combinatorics of the p-modular representation theory for Sn , and in
particular the p-block distribution of its characters, we refer to [James and Kerber
1981].
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Let B be a 2-block of Sn , with associated 2-core κ(B); this is then a staircase
partition ρk = (k, k − 1, . . . , 2, 1), k ∈ N0. For any partition λ, we denote by λ(2)
the 2-core of λ. Then we define

DB = {λ ∈ D(n) | λ(2) = κ(B)} .

This is the set of labels of irreducible characters in B in the basic set mentioned
above, and we set

Irr′(B)= {[λ] | λ ∈ DB} .

To define the splitting of the classes we need a few more definitions.
For a partition λ= (λ1, . . . , λm) ∈ D(n) we set

dbl(λ)=
([
λ1+ 1

2

]
,

[
λ1

2

]
,

[
λ2+ 1

2

]
,

[
λ2

2

]
, . . . ,

[
λm + 1

2

]
,

[
λm

2

])
,

the doubling of λ. For example, the staircase ρk = (k, k− 1, . . . , 2, 1) is the dou-
bling of the partition τk = (2k− 1, 2k− 5, . . .).

The most natural way of defining the blocks of classes is based on the Glaisher
map which we consider next.

J. W. L. Glaisher [1883] defined a bijection between partitions with parts not
divisible by a given number k on the one hand and partitions where no part is
repeated k times on the other hand; in particular for k = 2 this gives a bijection
between O(n) and D(n). Here, Glaisher’s map G is defined as follows. Let α =
(1m1, 3m3, · · · )∈O(n). Write each multiplicity mi as a sum of distinct powers of 2,
that is, in its 2-adic decomposition: mi =

∑
j 2ai j . Then G(α) ∈ D(n) consists of

the parts (2ai j i)i, j , sorted in order to give a partition.
Let B be a 2-block of Sn , contained in a 2-block B̃ of the double cover group S̃n

(see [Bessenrodt and Olsson 1997] for background and notation). Then we define
the set

OB = OB̃ = {α ∈ O(n) | dbl(G(α))(2) = κ(B)} .

Note that in [Bessenrodt 2007] we have used the language of 4̄-combinatorics for
the description of the 2-block distribution of spin characters, and the set OB is then
the set of partitions of type O such that the Glaisher image has as 4̄-core the one
associated to B̃.

The sets OB for the 2-blocks B of Sn give then a set partition O(n)=
⋃

B OB .
The set OB is the set of labels of the 2-regular classes we want to associate to B,

that is, we set
Cl′(B)= {σ Sn

α | α ∈ OB} .

Defining
DB̃ = {λ ∈ D(n) | dbl(λ)(2) = κ(B)} ,

the Glaisher map then induces bijections OB→ DB̃ , for all 2-blocks B of Sn .
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By [Bessenrodt and Olsson 1997], |DB | = |DB̃ | = p(w(B)). Thus the following
block parts of the character table are all square matrices:

X B = ([µ](σα))µ∈DB
α∈OB

.

Denoting the irreducible Brauer characters of Sn by ϕµ, µ∈D(n), we also consider
the corresponding block part of the Brauer character table:

8B = (ϕ
µ(σα))µ∈DB

α∈OB

.

Theorem 3.1. [Bessenrodt 2007] Let Irr′(B) and Cl′(B) for the 2-blocks B of Sn

be defined as above. Then the determinants

det8B = det X B, B ∈ Bl(Sn)

of the associated block parts of the character table and the Brauer character table
are all odd.

Thus the sets Cl′(B) define a 2-block splitting of the 2-regular classes for Sn .

Remarks 3.2. (i) More precisely, the determinant det X B is (up to sign) the odd
part of the determinant of the corresponding block part of the reduced spin character
table for the 2-block B̃ of the double cover group S̃n containing B, that is,

Zs(B̃)= (〈λ〉(σ̃α))λ∈DB̃
α∈OB

.

See [Bessenrodt 2007] for the notation used here and details on this result.

(ii) By the 2-block splitting for Sn given above and Brauer’s Theorem, the ele-
mentary divisors of the Cartan matrix CB of a 2-block B of Sn are exactly the
2-powers

2kα = |CSn (σα)|2, α ∈ OB .

Here, the 2-defect of the class of type α in Sn may easily be computed as follows
[Bessenrodt 2007]:

kα = l(α)− l(G(α)) .

This is a restatement of a formula from [Uno and Yamada 2006] which is based
on [Bessenrodt and Olsson 1997]; a corrected version of an earlier formula from
[Olsson 1986] already appeared in [Bessenrodt and Olsson 1997]. One should
note, though, that this formula was used in the confirmation of the block splitting
for Sn in [Bessenrodt 2007], so this does not give an independent proof for the
elementary divisors of the Cartan matrix.
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4. A 2-block splitting for alternating groups

We also have to introduce some notation for the alternating group An .
We let P+(n)= {λ ∈ P(n) | (−1)n−l(λ)

= 1} denote the set of even partitions in
P(n); these are the cycle types of elements in An .

The conjugacy classes in An are then of two types. The classes labeled by parti-
tionsµ∈ P+(n)\(O∩D)(n) are the nonsplit classes, that is, those conjugacy classes
of Sn which are also An-classes; we note that the corresponding An-centralizer is
then of order z′µ= zµ/2. For the partitions µ∈ (O∩D)(n), the Sn-class of σµ splits
into two conjugacy classes in An , for which we denote representatives by σ+µ and
σ−µ ; their centralizers are of order z′µ = zµ.

A set of representatives of the 2-regular classes of An is thus given by:

R(n)= {σα | α ∈ (O \O∩D)(n)} ∪ {σ±α | α ∈ (O∩D)(n)} .

Furthermore, we briefly have to recall some information on the irreducible An-
characters [James and Kerber 1981, Section 2.5].

For a partition λ of n, let λ′ denote the conjugate partition. Let

S(n)= {λ ∈ P(n) | λ= λ′}

be the set of symmetric partitions of n.
If λ is nonsymmetric, then [λ]↓An=[λ

′
]↓An is irreducible. Let {λ}={λ′} denote

this irreducible character of An .
If λ = λ′, then [λ] ↓An= {λ}+ + {λ}− is a sum of two distinct irreducible An-

characters (which are conjugate in Sn).
This gives all the irreducible complex characters of An , that is,

Irr(An)= {{λ}± | λ ∈ S(n)} ∪ {{λ} | λ ∈ (P \S)(n)} .

The characters {λ}±, for λ∈S(n), are only distinguished by their values on the cor-
responding “critical” classes of cycle type h(λ)= (hλ1, . . . , hλd), where hλ1, . . . , hλd
are the principal hook lengths in λ and d = d(λ) is the diagonal length of λ. Note
that h(λ) ∈ (O∩D)(n), so the corresponding Sn-class splits.

Then we have [λ](σh(λ))= (−1)(n−d)/2
=: ελ. We set Hλ =

∏d
i=1 hλi . Then

{λ}+(σ
±

h(λ))=
1
2

(
ελ±

√
ελHλ

)
,

{λ}−(σ
±

h(λ))=
1
2

(
ελ∓

√
ελHλ

)
.

For any other irreducible An-character the values on these two classes coincide.
We have the following easy and well known property:

Lemma 4.1. The map h : S(n) → (O ∩ D)(n) with h(λ) = (hλ1, . . . , hλd(λ)), for
λ ∈ S(n), is a bijection.
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Let B ∈Bl(Sn) with 2-core ρk = (k, k−1, . . . , 2, 1)= dbl(τk), where, as before,
τk = (2k−1, 2k−5, . . .); let DB̃ and OB =OB̃ as before in Section 3 and (O∩D)B̃ =

OB̃ ∩DB̃ .
We set SB = {λ ∈ S(n) | λ(2) = ρk}.
In our context, we need the following refinement of Lemma 4.1:

Proposition 4.2. The map h induces bijections SB→ (O∩D)B̃ .

Proof. We have to show that for any λ ∈ S(n), we have λ(2) = dbl(h(λ))(2). In
the notation of 4̄-combinatorics an easy reduction argument shows that λ(2) =
dbl(h(λ)(4̄)); simultaneously removing 2-hooks from the diagram of λ that are
symmetrically positioned in λ corresponds to removing 4-bars from h(λ), namely,
subtracting 4 from a part in h(λ), and removing an inner 2× 2 array corresponds
to removing a pair 3, 1 (which is also a 4-bar). This ends at a staircase partition
ρk = λ(2), and in parallel at the corresponding τk = h(λ)(4̄).

By [Bessenrodt and Olsson 1997, Lemma 3.6], we obtain the equation on the
2-cores. �

Remark 4.3. It is not difficult to see [Olsson 1993, 12.5] that

|SB | =

{
0 if w(B) is odd,
p(w/2) if w(B) is even.

For a character χ of G, let χo denote the restriction of χ to the 2-regular ele-
ments of G. The following useful proposition provides a good 2-basic set for the
alternating groups. Note here that the set (D ∩S)(n) labeling the third subset of
characters is nonempty only if n is a triangular number; in that case, if n =

(k+1
2

)
,

(D∩S)(n) = {ρk}, and thus both characters {ρk}± of defect 0 then belong to the
basic set.

Proposition 4.4. Set

C(n)= {{λ} | λ ∈ (D \S)(n)} ∪ {{λ}+ | λ ∈ S(n)} ∪ {{λ}− | λ ∈ (D∩S)(n)} .

Then {χo
| χ ∈ C(n)} is a basic set for An (at the prime p = 2).

Proof. If χ = {µ} = [µ] ↓An for µ∈ (P \S)(n), then, since the 2-regular partitions
label a basic set for Sn ,

χo
= [µ]o ↓An=

∑
λ∈D(n)

cµλ[λ]o ↓An=

∑
λ∈(D\S)(n)

cµλ{λ}o+
∑

λ∈(D∩S)(n)

cµλ({λ}o++{λ}
o
−
),

with integer coefficients cµλ; as explained just before the proposition, the second
sum above has at most one partition λ ∈ (D∩S)(n) giving a contribution, namely
when n is a triangular number.
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For χ ={µ}+, µ∈S(n), or χ ={µ}−, µ∈ (D∩S)(n), there is nothing to prove.
If χ = {µ}−, µ ∈ S \(D∩S)(n), then, again since the 2-regular partitions label a
basic set for Sn ,

χo
= {µ}o

−
= [µ]o ↓An −{µ}

o
+
=

( ∑
λ∈D(n)

cµλ[λ]o ↓An

)
−{µ}o

+

=

( ∑
λ∈(D\S)(n)

cµλ{λ}o+
∑

λ∈(D∩S)(n)

cµλ({λ}o++{λ}
o
−
)
)
−{µ}o

+
,

an integral linear combination as desired.
Since |C(n)| = |D(n)| + |S(n)| = |O(n)| + |(O ∩ D)(n)| = |Cl′(An)|, the set
{χo
| χ ∈ C(n)} is a Z-basis of 〈χo

| χ ∈ Irr(An)〉Z, as claimed. �

For any set Q ⊆ P(n), we set

aQ =
∏
λ∈Q

aλ .

Using the basic set above, we define the 2-regular character table for the alternating
group An to be

X A
n = (χ(σ ))χ∈C(n)

σ∈R(n)
.

Using the properties of the irreducible characters of An stated above (see also
[Bessenrodt and Olsson 2004]), as well as the formula for the 2-regular character
table for Sn from [Olsson 2003] we deduce:

Corollary 4.5. | det X A
n | = | det Xn| ·

√a(O∩D)(n) = aO(n) ·
√a(O∩D)(n) .

In the main theorem stated below, we will give a block refinement of the first
equation above.

Remark 4.6. The 2-blocks of Sn and An are closely related [Olsson 1993] . Let
B ∈ Bl(Sn). If w(B) = 0, then B covers two 2-blocks of An (of defect 0), say
B A
ε , ε ∈ {±}. This only occurs when n is a triangular number, say n =

(k+1
2

)
, and

κ(B)= ρk = (k, k− 1, . . . , 2, 1); then Irr(B A
ε )= {{ρk}ε}, ε ∈ {±}.

Note that there is then a suitable choice of signs ε̄ for ε ∈ {±} such that

{ρk}ε(σh(ρk),ε̄) 6≡ 0 mod p .

If w(B) > 0, then B covers only one 2-block B A of An , and this block B A is only
covered by B. We then have

Irr(B A)= {{λ}(±) | λ ∈ P(n), λ(2) = κ(B)} .

Here, {λ}(±) means that we take the character {λ} if λ is nonsymmetric, and both
characters {λ}± if λ is symmetric.
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Theorem 4.7. Let B ∈ Bl(Sn) with 2-core κ(B)= ρk = dbl(τk).
If w(B)= 0, then OB = {τk} and DB = {ρk}, and we set

Cl′A(B A
ε )= {σ

An
τk ,ε̄
} , Irr′(B A

ε )= {{ρk}ε} , for ε ∈ {±} .

If w(B) > 0, we set

Cl′A(B A)= {σ An
α(,±) | α ∈ OB} , Irr′(B A)= {{λ} | λ ∈ DB} ∪ {{λ}+ | λ ∈ SB} .

Let X B A = (χ(xK ))χ∈Irr′(B A), K∈Cl′A(B A). Then

| det X B A | = | det X B | ·
√

a(O∩D)B̃
.

In particular, | det X B A | 6≡ 0 mod p. Hence, the sets above, taken for all B ∈
Bl(Sn), define a 2-block splitting for An .

Proof. Using the notation above, let B A be a 2-block of An . As seen above, the
sets Cl′A(B A) and Irr′(B A) are of the same cardinality. We have to show that all
the block tables have a nonzero determinant modulo p.

For the case where w(B) = 0, we have already seen before that we can make
a suitable choice (namely the one used in the statement of the Theorem) such that
this holds for the two blocks of An covered by B.

Thus we may now assume that w(B) > 0; then we do not have an irreducible
character labeled by a partition of type D ∩ S in B, that is, DB ∩ SB = ∅. We
consider the part of the character table of An corresponding to B A, sorted such
that among the character labels we first list the nonsymmetric ones and then the
symmetric ones. The classes are ordered such that we first have the OB classes, and
among these classes the (O ∩D)B̃ classes at the end, and here first the (O∩D)+

B̃
classes (where the “+” indicates that we take the representatives σ+α ), followed by
the corresponding (O∩D)−

B̃
classes. The classes of type (O∩D)B̃ are taken in some

ordering, and the SB characters are then taken in the corresponding order, that is,
with the label µ ∈ SB corresponding to h(µ) ∈ (O∩D)B̃ .

Recall that for any λ ∈ (P \ S)(n) and α ∈ (O ∩ D)(n), we have {λ}(σ+α ) =
{λ}(σ−α )= [λ](σα). Now take µ ∈ S(n); then for α = h(µ) we have

{µ}+(σ
±

h(µ))=
1
2(εµ±

√
εµHµ)=: y±µ ,

while for β ∈ (O∩D)(n), β 6= h(µ), we have {µ}+(σ+β ) = {µ}+(σ
−

β ). Set cµ =√
εµHµ = y+µ − y−µ . Now for any α ∈ (O∩D)B̃ , subtract the column of the block

character table X B A to the class of σ+α from the one to the class of σ−α . By the
above, then the final columns to the (O∩D)−

B̃
classes are transformed into an upper

zero part, corresponding to the characters labeled by nonsymmetric partitions, and
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below this a diagonal matrix with diagonal entries −cµ, µ ∈ SB . The table

X S
B = ({λ}(σ

(+)
α ))λ∈DB

α∈OB̃

is the upper left hand block part of the table X B A . By the above and Section 3, this
is exactly the block part of the 2-regular character table of the symmetric group
corresponding to the block B of Sn , with the block splitting constructed for the
symmetric groups, that is,

X S
B = X B = ([λ](σα))λ∈DB

α∈OB

.

Thus we have det X S
B 6≡ 0 mod p. Hence

| det X B A | = | det X S
B | ·

∏
µ∈SB

|cµ| = | det X B | ·
√

a(O∩D)B̃
6≡ 0 mod p ,

and we have proved that our construction provides a 2-block splitting for An . �

Remark 4.8. In contrast to the case of symmetric groups, the block splitting of
the 2-regular classes for the alternating groups as given above is not the only block
splitting; already A6 provides a counterexample. Indeed, instead of associating
the classes to (16), (13, 3), (32) to the principal 2-block of A6, the choices (16),
(13, 3), (1, 5)+ or (16), (32), (1, 5)+ are also possible.

Recall that for α ∈ O(n) \ (O∩D)(n), the corresponding conjugacy class of σα
is nonsplit in An , so we then have |CAn (σα)|2 = 2kα−1, with kα = l(α)− l(G(α))
as before.

By Brauer’s Theorem 2.1 we can now deduce from our 2-block splitting given in
Theorem 4.7 the following result on the Cartan matrices of 2-blocks of alternating
groups, providing a combinatorial formula for the elementary divisors which is
easy to compute.

Corollary 4.9. Let B ∈ Bl(Sn) of weight w(B) > 0, covering the block B A
∈

Bl(An). Then the elementary divisors of the Cartan matrix CB A are

|CAn (σα)|2 = 2kα−1, for α ∈ OB \ (O∩D)B̃ ; 12|(O∩D)B̃ | .

In particular,
det CB = 22`(B)−`(B A) det CB A .
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