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We consider group orders and right-orders which are discrete, meaning there is
a least element which is greater than the identity. We note that nonabelian free
groups cannot be given discrete orders, although they do have right-orders which
are discrete. More generally, we give necessary and sufficient conditions that a
given orderable group can be endowed with a discrete order. In particular, every
orderable group G embeds in a discretely orderable group. We also consider
conditions on right-orderable groups to be discretely right-orderable. Finally, we
discuss a number of illustrative examples involving discrete orderability, includ-
ing the Artin braid groups and Bergman’s nonlocally-indicable right orderable
groups.

1. Introduction

Let G be a group and suppose < is a strict total order relation on the set of its
elements. Then (G, <) is a right-ordered group if f < g implies that f h < gh for
all f, g, h ∈ G. If in addition f < g implies that h f < hg, then we say (G, <) is
an ordered group. If such an order exists for a given group G, we say that G is
right-orderable or orderable, respectively. We call the order < discrete if there is
an element a ∈ G such that 1< a, where 1 denotes the identity element of G, and
there is no element of G strictly between these.

For a right-ordered group, the positive cone P := {g ∈ G | 1< g} satisfies

(1) P is closed under multiplication and

(2) for every g ∈ G, exactly one of g = 1, g ∈ P or g−1
∈ P holds.

Conversely, if a group G has a subset P with properties (1) and (2), it is routine
to verify that the order defined by g < h if and only if hg−1

∈ P makes (G, <)
a right-ordered group. Similarly, a group G is orderable if and only if it admits a
subset P satisfying (1), (2) and

(3) g Pg−1
= P for all g ∈ G.
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A subset X of a (right-) ordered group G is convex if x < y < z and x, z ∈ X
imply y ∈ X . We recall that the set of all convex subgroups of a (right-) ordered
group is linearly ordered by inclusion. A convex jump C � D is a pair of distinct
convex subgroups such that C ⊂ D and there are no convex subgroups strictly
between them. In particular, the convex jump determined by a nonidentity element
g of G is defined by C = the union of all convex subgroups not containing g and
D = the intersection of all convex subgroups which do contain g. If the group is
orderable, then for any convex jump C � D, C is normal in D and the quotient
D/C embeds in R, the additive reals, by an order-preserving isomorphism.

Lemma 1.1. If < is a discrete right-order on G and a is the least positive element
under <, then 〈a〉 is convex. Moreover, for any g ∈ G, we have a−1g < g < ag
and there is no element strictly between these elements of G. If the right-order <
is not discrete, then it is dense in the sense that for any f, g ∈ G with f < g, there
exists h ∈ G with f < h < g.

Proof. Since a−1 < 1 < a, we see that a−1g < g < ag. If g < x < ag, then
1 < xg−1 < a, a contradiction. Hence there is no element strictly between g and
ag. Similarly there is no element between a−1g and g. In particular, for any
integers n <m, an < g< am implies g ∈ 〈a〉 and thus 〈a〉 is convex. If there exists
f < g with no element strictly between, a routine calculation shows g f −1 is the
least positive element for the order. �

Note that according to our definitions, the trivial group 1 has exactly one right
order, and this order is dense but not discrete.

Situated strictly between the class of right-orderable groups and the class of
orderable groups is the class of locally indicable groups. Recall that a group G is
locally indicable if every finitely generated nontrivial subgroup of G has an infinite
cyclic quotient. Such groups are right-orderable, as was shown by Burns and Hale
[1972]. On the other hand, a right-orderable group need not be locally indicable as
was shown by Bergman [1991]. However for a large class of groups the class of
right-orderable groups coincides with the class of locally indicable groups. Further
results on this topic are contained in [Linnell 2001], [Longobardi et al. 2000], and
especially in [Morris 2006].

Our interest in considering locally indicable groups G is due to the fact that such
groups have a series (defined below) with torsion-free abelian factors as shown in
[Brodskiı̆ 1984]. They possess a right-order in which the set of convex subgroups
form a series with factors which are order isomorphic to subgroups of the additive
group of reals; we shall refer to such orders as lexicographic. (Such orders are
also called Conrad orders and are characterized by the condition that if g > 1 and
h > 1, then there exists a positive integer n such that (gh)n > hg; see [Botto Mura
and Rhemtulla 1977, §7.4] for further details.) Note that for such an ordering, any
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nontrivial element g ∈ G is positive if and only if the cosets satisfy Cg > C in the
factor group D/C determined by g.

By a series for G we mean a set 6 = {Hλ | λ ∈3} of subgroups of G, where 3
is a totally ordered set of indices, satisfying:

• if λ < µ then Hλ ⊂ Hµ,

• {1} and G belong to 6,

• 6 is closed under arbitrary unions and intersections,

• if µ immediately follows λ in 3, then Hλ is normal in Hµ and Hµ/Hλ is
called a factor associated to the jump Hλ � Hµ.

In the next section we characterize groups that have discrete orders. We show
that a group G has a discrete order if and only if it is an orderable group and its
center Z(G) contains an isolated infinite cyclic group. Recall that a subgroup H
of a group G is said to be isolated if g ∈ G and gn

∈ H for some n > 0 implies
g ∈ H .

In Section 3, we deal with groups possessing discrete lexicographic right-orders
and discrete right-orders. It will follow, in particular, that any nontrivial finitely
generated orderable group has discrete right-orders and if it has a central order (as
is the case for free groups, pure braid groups and wreath products or free products
of such groups), then it has discrete lexicographic right-orders. Recall that an order
< on G is called central if for every convex jump C � D, we have [D,G] ⊆ C
where [D,G] denotes the subgroup 〈d−1g−1dg | d ∈ D, g ∈ G〉.

The result is of course not true for orderable groups in general. The additive
group of rational numbers has no discrete right-order.

The final section presents examples of discretely ordered groups which have
nontrivial subgroups (for example, the commutator subgroup) upon which the re-
striction of the given order is dense. We also note that there exist finitely generated
right-orderable groups, for example, the Artin braid groups Bn , n ≥ 5, that are not
locally indicable, yet have a discrete right-order.

2. Discrete orders

Theorem 2.1. If < is a discrete order on a group G, then there exists an element
z in the center Z(G) such that 〈z〉 is convex under < and 1 � 〈z〉 is a jump.
Conversely, if G is an orderable group and Z(G) contains an isolated infinite
cyclic group, then there is a discrete order on G.

Proof. Let < be a discrete order on G with z > 1 as the minimal positive ele-
ment. Then g−1zg is positive for every g ∈ G. Moreover, z < g−1zg implies
1 < gzg−1 < z, a contradiction. Thus z ∈ Z(G). Also Lemma 1.1 shows that 〈z〉
is convex under < and 1 � 〈z〉 is a jump.
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Conversely, let 〈z〉 be an isolated subgroup in the center Z(G) of an orderable
group G. Since G is orderable, so is G/Z(G); see [Botto Mura and Rhemtulla
1977, Theorem 2.2.4]. Moreover, Z(G)/〈z〉 is orderable since 〈z〉 is isolated in
Z(G). Order 〈z〉 (with z positive), Z(G)/〈z〉 and G/Z(G). Now order G as fol-
lows. If 1 6= g ∈ G \ Z(G), then put g in the positive cone if gZ(G) is positive; if
g ∈ Z(G) \ 〈z〉, then put g in the positive cone if g〈z〉 is positive; if g = zn , then
put g in the positive cone if 0 < n. It is routine to verify that this gives a discrete
order on G with z as the minimal positive element. �

Corollary 2.2. For any orderable group G, the group Z×G has a discrete order.
In particular, every orderable group embeds in a discretely orderable group, whose
order extends the given order.

3. Discrete right orders

We begin this section with the following result which is easy to prove. It is not
required in the proofs of the other results.

Lemma 3.1. If (G, <) is a nontrivial right-ordered group such that the order < is
a well order on the set of positive elements of G, then G is infinite cyclic.

Lemma 3.2. If < is a discrete right order on G and a the least positive element
under < then for any element 1< g ∈ G, we have 1< aga−1 and 1< a−1ga.

Proof. Since a ≤ g, 1 ≤ ga−1. Thus aga−1 is a product of two positive elements
and hence positive. By Lemma 1.1, there is no element of G strictly between a−1g
and g. Since 1< g, 1≤ a−1g and so a ≤ a−1ga. �

Definition 3.3. Let < be a right order on a group G, C a subgroup of G and
a ∈ G. We shall say that conjugation by a preserves order on C to mean that C is
normalized by 〈a〉 and conjugation by a and by a−1 preserves the order on (C, <).

Lemma 3.4. Suppose < is a right order on a group G, C is a subgroup of G,
1 6= a ∈ G and C ∩ 〈a〉 = 1. If conjugation by a preserves order on C , then there
is a discrete right order on the subgroup 〈C, a〉 with a as the minimal positive
element. Moreover, this right order and the given right order agree on C. Finally
if aEa−1

= E for all convex subgroups E of C , then the convex subgroups of H
under this new right order are {1} and 〈a, E〉, where E is a convex subgroup of C.

Proof. Set H = 〈a,C〉. An element g ∈ H has a unique expression as g = anc
where c ∈ C and n ∈ Z. Define the set P as follows: g ∈ P if 1 < c or c = 1 and
n > 0. Note that P ∪ P−1

= H \ {1} and P ∩ P−1
=∅. Moreover if g = anc and

h = amd are in P , then their product gh = an+m(a−mcam)d ∈ P as conjugation
by am preserves order on C . Thus the order ≺ on H given by g ≺ h if and only if
hg−1

∈ P is a right order on H . Furthermore if g = anc and h = amd are in H ,
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then g ≺ h if and only if c < d or c = d and n < m. It is now clear that a is the
least positive element under this order, and that < and ≺ agree on C . Finally we
verify that the convex subgroups are 〈a, E〉, where E is a convex subgroup of C .

Set A=〈a〉, so H = AC . If K is a nontrivial convex subgroup of H , then a ∈ K
and C∩K is a convex subgroup of C , and we have (K ∩C)A= K ∩C A= K . Thus
K = 〈a, E〉 where E = C ∩ K . On the other hand if E is a convex subgroup of C ,
we claim that AE is a convex subgroup of H . Suppose amb ≺ anc ≺ a pd ∈ E A,
where b, d ∈ E , c ∈ C , and m, n, p ∈ Z. Then b ≤ c ≤ d and hence c ∈ E , and it
follows that AE is a convex subgroup of (H,≺), as required. �

Theorem 3.5. Let (G, <) be an ordered group, 1 6= a ∈ G and C � D the convex
jump determined by a (thus a∈D\C and D/C is torsion-free abelian). If D/〈a,C〉
is torsion free, then there is a discrete right order on G with a as the minimal
positive element. Moreover, if also [a, F] ⊆ E for every jump E � F , then there
is a discrete lexicographic right order on G (with a as minimal positive element).

Proof. Set H = 〈a,C〉. The hypothesis of Lemma 3.4 applies and we right order
H as described there. Next we order the factor group D/H . This is possible since
D/H is torsion-free abelian. Define the set Q ⊂ G as follows. If g ∈ H , then
g ∈ Q if g is positive in the order on H described above. If g ∈ D \ H , then put g
in Q if gH is positive in the order on D/H given above. If g ∈ G \ D, then put g
in Q if g is positive in (G, <), the original order on G.

It is routine to verify that Q∪Q−1
= G \ {1}, Q∩Q−1

=∅ and Q Q ⊆ Q, thus
giving a right order ≺ on G with Q = {g ∈ G | 1≺ g}.

The same right order≺ is lexicographic if [a,F]⊆E for every jump E�F ⊆ C .
The convex subgroups are {1}, 〈a〉, and 〈a, E〉 for every subgroup E convex under
the original order<. This follows from Lemma 3.4: note that E =〈a, E〉 if E ≥ D
and E ∩C is a convex subgroup of C . �

Corollary 3.6. Nontrivial free groups have discrete lexicographic right orders.

Proof. This follows from the fact that the descending lower central series terminates
in {1} and the factors are free abelian groups. Thus any element may be made to
be the least positive element so long as it is a primitive element of the factor group
that is determined by the element. �

Corollary 3.6 can be generalized to free partially commutative groups. These are
described in [Duchamp and Krob 1992, §1.1], and the definition given there does
not require these groups to be finitely generated. Free partially commutative groups
are known under many other names, in particular they are also called right-angled
Artin groups [Charney 2007], at least for finitely generated groups.

Corollary 3.7. Nontrivial free partially commutative groups have discrete lexico-
graphic right orders.
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Proof. Free partially commutative groups are residually nilpotent by [Duchamp
and Krob 1992, Theorem 2.3]. Furthermore [Duchamp and Krob 1992, Theorems
1.1, 2.1] show that the quotients of the lower central series are free abelian groups.
The result now follows from Theorem 3.5. �

Note that a nonabelian free group does not have a discrete order. This follows
from Theorem 2.1.

Finally, all surface groups (orientable or not) except the Klein bottle and pro-
jective plane are residually torsion-free nilpotent, by [Baumslag 1968, Theorem
1] (we would like to thank Warren Dicks for this reference). Thus these surface
groups also have lexicographic discrete right orders. With the exception of the
torus, these groups have trivial center and therefore do not enjoy discrete orders.

The pure braid groups Pn , like free groups and surface groups, are also residually
torsion-free nilpotent. But, unlike those examples, the groups Pn do have discrete
orders. The center Z(Pn) is infinite cyclic, generated by z = the full twist braid
(often denoted 12

n). Since 〈z〉 is trivially isolated in Z(Pn), the second part of
Theorem 2.1 provides a discrete order with 12

n as least positive element. In fact
any discrete order of Pn must have 12

n (or its inverse) as least positive element.

4. Examples

A group may have a lexicographic right order and not have any discrete right order
even when the factors formed by the convex jumps are all infinite cyclic. One
example of this is the following.

Example 4.1. Let G = 〈ai | i ∈Z〉 with defining relations [ai , a j ] = 1 if |i− j |> 1
and ai+1ai a−1

i+1 = a−1
i .

Every right order on G is lexicographic with the subgroups 〈ai | i < j〉 forming
the chain of convex subgroups, and every right order is determined by the ai (that
is, whether or not ai is in the positive cone for each i ∈ Z). This construction
is just the expansion of the well known (Klein bottle) group D = 〈a, b〉 where
b−1ab = a−1. There are exactly four right orders on D, every one discrete with a
or a−1 as the minimal positive element.

We show next that any infinite cyclic extension of the group G of this example
has a discrete right order if it is finitely generated. However we can have a meta-
cyclic extension of G that is finitely generated and right orderable but without any
discrete right order. These are given as Proposition 4.2 and Example 4.3. If x, t
are elements of a group, then x t will denote t−1xt .

Proposition 4.2. Let 0 = G〈t〉 be a finitely generated infinite cyclic extension of
the group G given in Example 4.1. Then 0 has a discrete right order with t (or
t−1) as the minimal positive element.
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Proof. Every nontrivial element g ∈ G has unique expression of the form

g = ad1
r1
. . . adk

rk
,

where r1 < · · ·< rk and di 6= 0 for all i . Call adk
rk the leading term of g and denote

it by `(g). Call rk the leading suffix of g.
Note that `(gn)= (`(g))n for all n ∈ Z \ {0}. Moreover, if `(g)= a j

r , `(h)= ak
s

and r < s, then `(gh)= `(hg)= `(h). Since (at
i+1)

−1(at
i )(a

t
i+1)= (a

t
i )
−1, we see

that the leading suffix of (ai+1)
t is greater than that of (ai )

t by at least one. Thus
also the leading suffix of (ai+1)

t−1
is greater than that of (ai )

t−1
by at least one, and

we deduce that the leading suffix of (ai+1)
t is greater than that of (ai )

t by exactly
one. It follows that i > j implies that the leading suffix of (ai )

t is greater than that
of (a j )

t by exactly i − j .
Since 0 is finitely generated, the leading suffix of at

i (or that of at−1

i ) is greater
than i for at least one value of i — otherwise 〈a j | j ≤ i〉 is normal in 0 for every
i , and hence 0 can not be finitely generated. Thus if the leading suffix of at

0 is n,
then the leading suffix of at

i is i + n for every integer i , and we may assume that
n > 0.

We now right order the group G by putting a0, a1, . . . , an−1 in the positive cone
P . Next, for all n≤ r < 2n, we put ar ∈ P if the exponent of `(at

r−n) is positive and
a−1

r ∈ P otherwise. Next put ar+n or a−1
r+n in P depending on whether the exponent

of `((`(ar−n)
t)t) is positive or negative. Continue this process. For every integer

i ≥ 0 we have determined whether ai or its inverse is in P . Next, for 0> r ≥ −n
put ar ∈ P if the exponent of `(at−1

r+n) is positive. Put a−1
r ∈ P otherwise. Continue

this process. This takes care of all ai for i ∈ Z. Note that the above order on G
is 〈t〉 invariant. Hence by Lemma 3.4, 0 has a right discrete order with t as the
minimal positive element. �

Example 4.3. Let G be the group in Example 4.1. Consider the map

φ : {ai | i ∈ Z} → {a−1
i | i ∈ Z}

given by φ(ai ) = a−1
i . Then φ extends uniquely to an automorphism of G that

inverts every ai . Let 〈G, u〉 be the infinite cyclic extension of G by 〈u〉 where
u−1ai u = a−1

i for all i ∈ Z. Note that 〈G, u〉 is right orderable because it is an
infinite cyclic extension of the right orderable group G. However, it has no discrete
right order. This can be seen as follows. Suppose g ∈G and c := gu j is a minimal
positive element under some right order< on 〈G, u〉. Since G has no discrete right
order, j 6= 0 and it must be even otherwise c−1ai c= a−1

i for some i , contradicting
Lemma 3.2.

Suppose 1< u. Then ar
i < u for every i, r ∈Z, for if 1< u < ar

i , then ua−r
i < 1.

Hence ar
i = ua−r

i u−1 < 1, a contradiction. Thus h < u for all h ∈ G. Since
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1< c= gu j
= u j g, we see that j is positive, and then we have 1< u j−1, ug, which

contradicts the hypothesis that c is the minimal positive element. The argument is
similar if u < 1. We note in particular that if 1< u, then h < u for every h ∈ G.

Next extend the group 〈G, u〉 by the infinite cyclic group 〈v〉 to get the group
J =〈G, u, v〉where the action of v under conjugation is as follows: v−1aiv=ai+1,
the shift automorphism, and v−1uv=u−1. Note that 〈G, v〉=〈a0, v〉, J =〈a0, u, v〉
and J is right orderable.

We now show that J has no discrete right order. Suppose that c := gu jvk is a
minimal positive element under a right order < on J . Then k 6= 0, since otherwise
the restriction of the right order < to 〈G, u〉 would be discrete with gu j as the
minimal positive element. We have seen that this is not possible. Next note that
k must be even, otherwise assume without loss of generality that u > 1. Then
cuc−1

= gu−1g−1 < 1, which contradicts Lemma 3.2. Since vuv−1
= u−1, we see

that 1<v implies x <v for every x ∈ 〈G, u〉, in particular k > 0 and gu jvk−1 > 1.
This contradicts the hypothesis that c is the minimal positive element. Similarly
we cannot have 1 > v, which finishes the verification that J has no discrete right
order.

It is possible for a discretely (right-) ordered group to have a subgroup on which
the same order is dense. Indeed, by Corollary 2.2, any densely ordered group is
a subgroup of a discretely ordered group, whose order extends the given order.
Following is a natural example of this phenomenon for right-ordered groups.

Example 4.4. The Artin braid groups Bn have a discrete right-order, which be-
comes dense when restricted to the commutator subgroup. For each integer n ≥ 2,
Bn is the group generated by σ1, σ2, . . . , σn−1, subject to the relations

σiσ j = σ jσi if |i − j |> 1 and σiσ jσi = σ jσiσ j if |i − j | = 1.

It was shown by Dehornoy (see [Dehornoy 1994] and [Dehornoy et al. 2002])
that each Bn is right-orderable (but not orderable, for n > 2). The positive cone
consists of all elements expressible as a word in the σi such that the generator with
the lowest subscript occurs with only positive exponents. This right-order is dis-
crete, with smallest positive element σn−1. On the other hand, it is shown in [Clay
and Rolfsen 2007] that the Dehornoy order, when restricted to the commutator
subgroup B ′n = [Bn, Bn], is a dense order for n ≥ 3. For n = 3, B ′n is free (on two
generators). For n ≥ 5, B ′n is finitely-generated and perfect [Gorin and Lin 1969],
so Bn is an example of a nonlocally indicable discretely right-orderable group for
n ≥ 5.

Now consider the braid group B3 with its two generators σ1 and σ2 and let H
be the subgroup generated by σ 2

1 and σ 2
2 . Crisp and Paris [2001] showed that H

is a free group with free basis σ 2
1 and σ 2

2 . The Dehornoy order restricted to this



Discretely ordered groups 805

subgroup has the least positive element σ 2
2 . This gives an alternative construction

of discrete right-orders on a free group.

Bergman [1991] published the first examples of groups which are right-orderable
and not locally indicable; some of his examples are finitely generated and perfect.
We shall argue that they can be given a discrete right-order.

If G is a group acting on a set and x1, . . . , xn are elements of the set, then
StabG(x1, . . . , xn)will denote the pointwise stabilizer of {x1, . . . , xn} in G, namely
{g ∈ G | gxi = xi for all i}. Also I will denote the identity matrix of SL2(R). We
have an action of SL2(R) on the one point compactification R = R ∪ {∞} ∼= S1,
the circle, given by the rule (

a b
c d

)
(x)=

ax + b
cx + d

. (4.5)

This induces a faithful action of PSL2(R) on R. Let H be a finitely generated
subgroup of SL2(R) containing the center {±I } of SL2(R), and let H̄ denote its
image in PSL2(R). Since R is the universal covering space of S1, we can lift
the action of H̄ on S1 to an action of a group G on R by orientation preserving
homeomorphisms. In this situation, G will have a central subgroup Z ∼=Z such that
G/Z ∼= H̄ and Z acts fixed point freely on R. Also if π : R→ S1 is the associated
covering map and p ∈ R, then StabH̄ (πp)= Z StabG(p)/Z ∼= StabG(p).

Proposition 4.6. Let H be a finitely generated subgroup of SL2(R) with −I ∈ H
and let G be its lift to orientation preserving homeomorphisms of R (as described
above). Suppose H contains a diagonal matrix other than ±I . Then G has a
discrete right order.

To prove this, we need an auxiliary result:

Lemma 4.7 [Linnell 2006, Lemma 2.2]. Let G be a right ordered group, let H
be a convex subgroup of G and let < be any right order on H. Then there exists
a right order on G whose restriction to H is <, and H is still a convex subgroup
under this new right order.

Proof of Proposition 4.6. Let us examine StabH (0) and StabH (0,∞) with the
action given by (4.5). The former is the lower triangular matrices, that is, the
matrices above with b = 0; we shall denote by L those lower triangular matrices
which lie in H . The latter is given by the diagonal matrices; we shall denote by D
those diagonal matrices which lie in H .

Thus we have an action of H on S1 and two points p1, p2 ∈ S1 such that
StabH (p1) = L and StabH (p1, p2) = D. Let p3 ∈ S1 be distinct from p1, p2.
Then StabH (p1, p2, p3)= {±I }.
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Now we can lift the action of H on S1 to an action of G on R by orienta-
tion preserving homeomorphisms; G will have a central subgroup Z ∼= Z such
that G/Z ∼= H/{±I }. For i = 1, 2, 3, let qi ∈ R be a lift of pi . Then Q :=
StabG(q1, q2) ∼= D/{±I }. We now define a right order on G in the usual way
when we have a group acting on R. The positive cone is the set of all g ∈ G such
that g(qi )> qi for the smallest i such that g(qi ) 6= qi . This right order will have the
property that Q is a (smallest nontrivial) convex subgroup of G. If Q ∼= Z, then it
would follow that the above defined right order will be discrete, but this is not true
in general. However since H is finitely generated, H ⊆ SL2(R) for some finitely
generated subring R of R. By [Samuel 1966, Théorème 1], the group of units of
a finitely generated integral domain is finitely generated, hence D is also finitely
generated. We deduce that D/{±I } is a finitely generated free abelian group. Thus
Q is also a finitely generated free abelian group and hence has a discrete right order
by Corollary 2.2. The result now follows from Lemma 4.7. �
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