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Our previous theorems on exponential sums often did not apply or did not give
sharp results when certain powers of a variable appearing in the polynomial were
divisible by p. We remedy that defect in this paper by systematically applying p-
power reduction, making it possible to strengthen and extend our earlier results.

1. Introduction

In the papers [AS 1987a; 1987b; 1989; 1990a; 1990b] we established properties
of the L-functions of exponential sums on affine space An and the torus Tn . The
purpose of this article is to prove a general result that leads to a sharpening of the
theorems of those papers.

Let p be a prime, let q = pr , and let Fq be the field of q elements. Let f ∈
Fq [x±1

1 , . . . , x±1
n ] be a Laurent polynomial, say,

f =
∑
j∈J

a j x j , (1.1)

where a j ∈ F×q and J is a finite subset of Zn . Let Z〈J 〉 be the subgroup of Zn

generated by the elements of J . By the basic theory of abelian groups, there exists
a basis u1, . . . , un for Zn and integers d1, . . . , dk such that d1u1, . . . , dk uk is a
basis for Z〈J 〉. After a coordinate change on Tn , we may assume that u1, . . . , un

is the standard basis. The Laurent polynomial f may then be written in the form

f = g(xd1
1 , . . . , xdk

k ),

for some g ∈ Fq [x±1
1 , . . . , x±1

k ]. Write di = pbi ei for each i , where bi ≥ 0 and
(ei , p) = 1. Since raising to the p-th power is an automorphism of Fq , the ex-
ponential sums associated to the polynomials f and g(xe1

1 , . . . , xek
k ) are identical.

Furthermore, the theorems in the aforementioned papers generally produce sharper
results when applied to g(xe1

1 , . . . , xek
k ) than when applied to f . (Thus there is no
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improvement over our earlier work if p - [Zk
: Z〈J 〉].) We refer to g(xe1

1 , . . . , xek
k )

as the p-power reduction of f .
Over An , the technique of p-power reduction is less versatile because one cannot

make the same sorts of coordinate changes. One has a standard toric decomposition
An
=
⋃

A⊆{1,...,n} TA, where TA denotes the |A|-dimensional torus with coordinates
{xi }i∈A. Given f ∈ Fq [x1, . . . , xn], one can try to analyze the corresponding expo-
nential sum on An by analyzing its restriction to each of these tori, but the picture
is complicated by the fact that p-power reduction may require different coordinate
changes on different tori. It thus seems worthwhile to generalize our previous
results to apply directly to the polynomial as given, to avoid the task of performing
p-power reduction on a case-by-case basis.

Let MJ be the prime-to-p saturation of Z〈J 〉,

MJ = {u ∈ Zn
| ku ∈ Z〈J 〉 for some k ∈ Z satisfying (k, p)= 1},

and let R〈J 〉 denote the subspace of Rn spanned by the elements of J . We will get
a strengthening of our earlier results when MJ is a proper subset of Zn

∩R〈J 〉. Let

[Zn
∩R〈J 〉 : Z〈J 〉] = pae,

where a ≥ 0 and (e, p)= 1. Then

[Zn
∩R〈J 〉 : MJ ] = pa, (1.2)

so MJ 6= Zn
∩R〈J 〉 if and only if a > 0.

Part of the motivation for this work was a desire to understand Theorems 3.6.5
and 3.6.7 from [Katz 2005] from our point of view. Suppose that f ∈Fq [x1, . . . , xn]

is a homogeneous polynomial of degree d = pke, (e, p)= 1, k ≥ 1. Katz showed
that if f = 0 defines a smooth hypersurface in Pn−1, then the L-function asso-
ciated to the exponential sum defined by f (see Section 2 for the definition) is a
polynomial (n odd) or the reciprocal of a polynomial (n even) of degree

1
pk ((d − 1)n + (−1)n(pk

− 1)),

all of whose reciprocal roots have absolute value qn/2. Note that in this situation
[Zn
: MJ ] = pk . Our results in [AS 1989] do not apply to polynomials of degree

divisible by p. However, we show here that when MJ is a proper subset of Zn one
can weaken the definition of nondegeneracy used in that article and still deduce
analogous conclusions. In particular, we show that the above theorem of Katz is
true as well for nonhomogeneous polynomials, provided that the homogeneous
part of highest degree defines a smooth hypersurface in Pn−1 and [Zn

: MJ ] = pk .
In other words, the conclusion remains true when one perturbs the smooth homo-
geneous polynomial by adding arbitrary terms of degrees pke′, e′ < e. (In earlier
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work, analogous results for exponential sums involving polynomials of degree di-
visible by p were proved under the additional assumption that the homogeneous
form of second highest degree “behaved nicely” relative to the leading form: see
[AS 2000; 2009; Rojas-León 2006].)

This generalization of Katz’s theorem (Proposition 5.1 below) will be derived
as a consequence of Theorem 4.17. Another consequence of that theorem is the
following result. Consider the Dwork family of hypersurfaces

xn
1 + · · ·+ xn

n + λx1 . . . xn = 0

in Pn−1. If n = pke, where k ≥ 1 and (p, e) = 1, and λ 6= 0, this hypersurface is
singular (except for n=2, 3). We show (Corollary 5.9 below) that the zeta function
of this hypersurface has the form

Z(t)=
R(t)(−1)n−1

(1− t)(1− qt) . . . (1− qn−2t)
,

where R(t) is a polynomial of degree

(pk
− 1)en−1

+ e−1((e− 1)n + (−1)n(e− 1)),

all of whose reciprocal roots have absolute value q(n−2)/2. (Zeta functions of the
Dwork family have also been studied recently in [Rojas-León and Wan 2007] and
[Katz 2007].)

As another example, we strengthen the classical theorem of Chevalley–Warning.
Let f =

∑
j∈J a j x j

∈ Fq [x1, . . . , xn] and let N ( f ) denote the number of solutions
of f = 0 with coordinates in Fq . Let N denote the nonnegative integers, let N+

denote the positive integers, and let J ′ = {( j, 1)∈Nn+1
| j ∈ J }. Let 1(J ′) denote

the convex hull of J ′ ∪ {(0, . . . , 0)} in Rn+1.

Theorem 1.3. Let µ be the smallest positive integer such that µ1(J ′), the dilation
of 1(J ′) by the factor µ, contains a point of MJ ′ ∩ (N+)

n+1. Then ordq N ( f ) ≥
µ− 1, where ordq denotes the p-adic valuation normalized by ordq q = 1.

For example, the equation
∑n

i=1 x pki

i = 0 has qn−1 solutions: since raising
to the p-th power is an automorphism of Fq , one can assign arbitrary values to
x1, . . . , xn−1 and there will be a unique value of xn satisfying the equation. Since
MJ ′ = Z〈J ′〉 is the lattice generated by the {(0, . . . , 0, pki , 0, . . . , 0, 1)}ni=1, µ= n
and Theorem 1.3 gives the precise divisibility by q.

For a more subtle example, let p = 3, n = 3, and consider the polynomial

f = x1x2
2 + x2x2

3 + x2
1 x3.

The lattice MJ ′ = Z〈J ′〉 is the rank-three sublattice of Z4 with basis the vectors

u1 = (1, 2, 0, 1), u2 = (0, 1, 2, 1), u3 = (2, 0, 1, 1).
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The only point of 1(J ′)∩ (N+)4 is (1, 1, 1, 1) and one has

(1, 1, 1, 1)= 1
3(u1+ u2+ u3), (1.4)

thus (1, 1, 1, 1) 6∈ MJ ′ . It follows that µ > 1, so Theorem 1.3 implies that N ( f )
is divisible by 3r . (In fact, u1+ u2 ∈ MJ ′ ∩ (N+)

4, so µ= 2.) On the other hand,
since the degree of f equals the number of variables, the classical Chevalley–
Warning Theorem does not predict the divisibility of N ( f ) by 3. If we take the
same polynomial f but assume p 6= 3, then (1.4) shows that

(1, 1, 1, 1) ∈ MJ ′,

so µ= 1 and Theorem 1.3 does not predict any divisibility by p.
Theorem 1.3 is a special case of Theorem 3.3, which we prove by the method of

[Ax 1964], as applied in [AS 1990a]. Ax expresses an exponential sum as a sum of
certain products of Gauss sums; Stickelberger’s Theorem computes the valuation
of each Gauss sum, so one must determine which of these products of Gauss sums
has minimal valuation. This minimum is in general difficult to calculate directly,
so one replaces the set of valuations by a larger set whose minimum is easier to
calculate. We used a convexity argument in [AS 1990a, Lemma 1], which is the
approach we take here. Another method for estimating this minimum is via the “p-
weight” of the polynomial: see [Moreno et al. 2004, Section 4] for a description of
this approach and references to related work. The results obtained from these two
approaches do not seem comparable, that is, neither implies the other as far as we
know.

The first main idea of this paper is that when computing the action of Dwork’s
Frobenius operator, which gives the L-function of the exponential sum on the
torus, one can ignore the action of Frobenius on power series whose exponents
lie outside of MJ since such power series contribute nothing to the spectral theory
of Frobenius. This idea is explained in Section 2. The second main idea is the
notion of nondegeneracy relative to a lattice, which is introduced in Section 4. It
guarantees that the p-power reduction of f will be nicely behaved. This leads to
precise formulas for the degree of the L-function and the number of roots of a
given archimedian weight.

2. Trace formula

Let 9 : Fq →Q(ζp) be a nontrivial additive character and define

Sm(T
n, f )=

∑
x∈Tn(Fqm )

9(TrFqm /Fq ( f (x))),
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where TrFqm /Fq denotes the trace map. In the special case where f ∈Fq [x1, . . . , xn],
we can also define

Sm(A
n, f )=

∑
x∈An(Fqm )

9(TrFqm /Fq ( f (x))).

There are corresponding L-functions

L(Tn, f ; t)= exp
( ∞∑

m=1

Sm(T
n, f )

tm

m

)
and

L(An, f ; t)= exp
( ∞∑

m=1

Sm(A
n, f )

tm

m

)
.

Let Qp denote the field of p-adic numbers and Zp the ring of p-adic integers.
Set �1 =Qp(ζp). Then �1 is a totally ramified extension of Qp of degree p− 1.
Let K denote the unramified extension of Qp of degree r and set �0 = K (ζp).
The Frobenius automorphism x 7→ x p of Gal(Fq/Fp) lifts to a generator τ of
Gal(�0/�1) by setting τ(ζp)= ζp. Let� be the completion of an algebraic closure
of �0. Let “ord” denote the additive valuation on � normalized by ord p = 1 and
let “ordq” denote the additive valuation normalized by ordq q = 1.

Let E(t)= exp(
∑
∞

i=0 t pi
/pi ) be the Artin–Hasse exponential series. Let γ ∈�1

be a solution of
∑
∞

i=0 t pi
/pi
= 0 satisfying ord γ = 1/(p− 1) and set

θ(t)= E(γ t)=
∞∑

i=0

λi t i
∈�1[[t]].

The series θ(t) is a splitting function in Dwork’s terminology and its coefficients
satisfy

ord λi ≥
i

p− 1
. (2.1)

Define the Newton polyhedron of f , written 1( f ), to be the convex hull in Rn

of the set J ∪{(0, . . . , 0)}. Let C( f ) be the cone in Rn over 1( f ), that is, C( f ) is
the union of all rays in Rn emanating from the origin and passing through 1( f ).
For any lattice point u ∈ C( f )∩ Zn , let w(u), the weight of u, be defined as the
smallest positive real number (necessarily rational) such that u ∈w(u)1( f ), where
w(u)1( f ) denotes the dilation of 1( f ) by the factor w(u). Then

w : C( f )∩Zn
→

1
N

Z
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for some positive integer N . We fix a choice γ̃ of N -th root of γ and set �̃0 =

�0(γ̃ ), �̃1 = �1(γ̃ ). We extend τ ∈ Gal(�0/�1) to a generator of Gal(�̃0/�̃1)

by setting τ(γ̃ )= γ̃ . Let Õ0 be the ring of integers of �̃0.
Let M be a lattice such that MJ ⊆ M ⊆ Zn

∩R〈J 〉, let L = HomZ(M,Z), and
let ` ∈ L . We extend ` to a function on Zn

∩R〈J 〉 as follows. For u ∈ Zn
∩R〈J 〉

we have pau ∈ M by (1.2), so we may define

`(u)= p−a`(pau).

This definition identifies L with a subgroup of HomZ(Z
n
∩R〈J 〉, p−aZ). Define

M0( f )= {u ∈ Zn
∩C( f ) | ord `(u)≥ 0 for all ` ∈ L}.

Note that M0( f )= M ∩C( f ). For i > 0 let

Mi ( f )= {u ∈ Zn
∩C( f ) | inf

`∈L
{ord `(u)} = −i}.

Note that since L has finite rank, the infimum over L always exists. Furthermore,
we have Mi ( f )=∅ for i > a and

Zn
∩C( f )=

a⋃
i=0

Mi ( f ).

We consider the following spaces of power series (where b ∈ R, b ≥ 0, c ∈ R,
and 0≤ i ≤ a):

L i (b, c)=
{ ∑

u∈Mi ( f )

Au xu
| Au ∈�0, ord Au ≥ bw(u)+ c

}
,

L i (b)=
⋃
c∈R

L i (b, c),

Bi =

{ ∑
u∈Mi ( f )

Au γ̃
Nw(u)xu

| Au ∈ Õ0, Au→ 0 as u→∞
}
,

B ′i =
{ ∑

u∈Mi ( f )

Au γ̃
Nw(u)xu

| Au ∈ �̃0, Au→ 0 as u→∞
}
.

We also define L(b, c), L(b), B, B ′ as the unions of these spaces for i = 0, . . . , a.
Note that if b> 1/(p−1), then L i (b)⊆ B ′i and for c≥ 0, L i (b, c)⊆ Bi . Similarly
L(b) ⊆ B ′ and for c ≥ 0, L(b, c) ⊆ B. Define a norm on Bi , i = 0, . . . , a, as
follows. If

ξ =
∑

u∈Mi ( f )

Au γ̃
Nw(u)xu,
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then set
‖ξ‖ = sup

u∈Mi ( f )
|Au|.

One defines a norm on B in an analogous fashion.
Let f̂ =

∑
j∈J â j x j be the Teichmüller lifting of f , that is, âq

j = â j and the
reduction of f̂ modulo p is f . Set

F(x)=
∏
j∈J

θ(â j x j ), F0(x)=
r−1∏
i=0

Fτ
i
(x pi

).

The estimate (2.1) implies that F(x) and F0(x) are well-defined and satisfy

F(x) ∈ L0

( 1
p− 1

, 0
)
, F0(x) ∈ L0

( p
q(p− 1)

, 0
)
.

We define the operator ψ on series by

ψ
( ∑

u∈Zn

Au xu
)
=

∑
u∈Zn

Apu xu .

Clearly, ψ(L(b, c))⊆ L(pb, c).

Lemma 2.2. For 1≤ i < a we have

ψ(L i (b, c))⊆ L i+1(b, c),

and for i = a we have
ψ(La(b, c))= 0.

Furthermore, the same assertions hold with L i (b, c) replaced by B ′i .

Proof. Let `∈ L and pu ∈Mi ( f ). Since ord `(pu)≥−i , it follows that ord `(u)≥
−i − 1. By definition of Mi ( f ) the first inequality is an equality for some ` ∈ L .
The second inequality is then an equality also for that `, hence u ∈ Mi+1( f ). �

The operator α = ψr
◦ F0 is

• an �̃0-linear endomorphism of the space B ′, and

• an �0-linear endomorphism of L(b) for 0< b ≤ p/(p− 1).

The operator α0 = τ
−1
◦ψ ◦ F0 is

• an �̃1-linear endomorphism of B ′,

• an �1-linear endomorphism of L(b) for 0< b ≤ p/(p− 1),

• an �̃0-semilinear endomorphism of B ′, and

• an �0-semilinear endomorphism of L(b) for 0< b ≤ p/(p− 1).
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It follows from [Serre 1962] that the operators αm and αm
0 acting on B ′ and L(b) for

0< b≤ p/(p−1) have well defined traces. In addition, the Fredholm determinants
det(I − tα) and det(I − tα0) are well defined and p-adically entire. The Dwork
trace formula asserts

Sm(T
n, f )= (qm

− 1)nTr(αm), (2.3)

where α acts either on B ′ or on some L(b), 0< b ≤ p/(p− 1), and the nontrivial
additive character implicit on the left-hand side is given by

9(x)= θ(1)TrFq /Fp (x).

Let δ be the operator on formal power series with constant term 1 defined by g(t)δ=
g(t)/g(qt). Using the relationship det(I − tα) = exp(−

∑
∞

m=1 Tr(αm)tm/m),
Equation (2.3) is equivalent to

L(Tn, f ; t)(−1)n−1
= det(I − tα)δ

n
. (2.4)

Let 0 be the map on power series defined by

0
( ∑

u∈Zn

Au xu
)
=

∑
u∈M0( f )

Au xu .

Define α̃ = 0◦ α, an endomorphism of B ′0 and L0(b) for 0< b ≤ p/(p− 1). The
main technical result of this paper is the following.

Theorem 2.5. If MJ ⊆M , then as operator on B ′0 and L0(b) for 0< b≤ p/(p−1)
the map α̃ satisfies

Sm(T
n, f )= (qm

− 1)nTr(α̃m).

Equivalently,

L(Tn, f ; t)(−1)n−1
= det(I − t α̃)δ

n
.

Proof. To fix ideas, we work with the space B ′. Note that if u ∈ M0( f ) and
v ∈Mi ( f ), 1≤ i ≤ a, then u+v ∈Mi ( f ). This shows that multiplication by F and
F0 are stable on B ′i for i = 1, . . . , a. Lemma 2.2 then implies that α(B ′i )⊆ B ′i+1 for
i = 1, . . . , a− 1 and α(B ′a)= 0. It follows that any power of α acting on

⋃a
i=1 B ′i

has trace 0, so on
⋃a

i=1 B ′i we have det(I−tα)= 1. From [Serre 1962, Proposition
9] we then get

det(I − tα | B ′)= det
(
I − tα | B ′/

⋃a
i=1 B ′i

)
.

Under the Banach space isomorphism B ′0 ∼= B ′/
⋃a

i=1 B ′i , the operator α̃ is identi-
fied with the operator induced by α on B ′/

⋃a
i=1 B ′i . This proves the theorem. �
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3. First applications

To improve the results of [AS 1987a], one can replace the space L(p/(p−1)) and
its associated counting function W (k) used there by the space L0(p/(p− 1)) for
the lattice MJ and its associated counting function

W0(k)= card{u ∈ MJ ∩C( f ) | w(u)= k/N }. (3.1)

But since the main results of [AS 1987a] are concerned with the n-torus Tn , it is
simpler to just replace f by its p-power reduction as described in the introduction.
For example, the first inequality of Theorem 1.8 of that paper becomes the one in
Theorem 3.2 below.

Theorem 3.2. We have 0 ≤ deg L(Tn, f ; t)(−1)n−1
≤ n! V ( f )/[Zn

: MJ ], where
V ( f ) denotes the volume of 1( f ) relative to Lebesgue measure on Rn .

The second inequality of [AS 1987a, Theorem 1.8] can be similarly improved.
Suppose that f ∈Fq [x1, . . . , xn] and letω( f ) be the smallest positive real (hence

rational) number such that ω( f )1( f ), the dilation of 1( f ) by the factor ω( f ),
contains a point of MJ ∩ (N+)

n . We prove the following strengthening of [AS
1987b, Theorem 1.2].

Theorem 3.3. If f is not a polynomial in some proper subset of {x1, . . . , xn}, then

ordq S1(A
n, f )≥ ω( f ).

As an example of Theorem 3.3, consider the polynomial

f (x1, x2)= x1x4
2 + x7

1 x3
2 + x13

1 x2
2 .

If p 6= 5, then MJ = Z2; so ω( f )= 7/25, which gives the estimate of [AS 1987b,
Theorem 1.2]. Theorem 3.3 gives an improvement when p = 5. In this case,

MJ = {(u1, u2) ∈ Z2
| u1+ 6u2 is divisible by 25}

so ω( f )= 1.

Proof of Theorem 3.3. Let 80 be the set of all functions φ : J →{0, 1, . . . , q − 1}
such that

1
q − 1

∑
j∈J

φ( j) j ∈ (N+)n.

For φ ∈80 define φ′ ∈80 by

φ′( j)=

{
0 if φ( j)= 0,

least positive residue of pφ( j) modulo q − 1 if φ( j) 6= 0.
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We denote the i-fold iteration of this operation by φ(i). Note that since q = pr ,
one has φ(r) = φ. By [AS 1990a, Equation 13] we have

ordq S1(A
n, f )≥ min

φ∈80

{
1
r

r−1∑
i=0

∑
j∈J

φ(i)( j)
q − 1

}
. (3.4)

Clearly
∑

j∈J φ
(i)( j) j ∈ Z〈J 〉 for all i , so

1
q − 1

∑
j∈J

φ(i)( j) j ∈ MJ ∩ (N+)
n.

If we define 81 to be the set of all functions φ : J → R≥0 such that

1
q − 1

∑
j∈J

φ( j) j ∈ MJ ∩ (N+)
n,

then 1
q−180 ⊆81, so Equation (3.4) implies

ordq S1(A
n, f )≥ min

φ∈81

{∑
j∈J

φ( j)
}
.

The assertion of Theorem 3.3 then follows from [AS 1990a, Lemma 1] by taking
the set L of that lemma equal to MJ ∩ (N+)

n . (Theorem 3.3 can also be proved by
repeating mutatis mutandis the argument of [AS 1987b, Section 4] with L(p/(p−
1)) replaced by L0(p/(p− 1)).) �

We derive a generalization of Theorem 1.3 from Theorem 3.3. Let f1, . . . , fr ∈

Fq [x1, . . . , xn] and let N ( f1, . . . , fr ) denote the number of solutions in Fq to the
system f1 = · · · = fr = 0. Let y1, . . . , yr be additional variables and set

F =
r∑

i=1

yi fi ∈ Fq [x1, . . . , xn, y1, . . . , yr ].

It is easily seen that

S1(A
n+r , F)= qr N ( f1, . . . , fr ).

Applying Theorem 3.3 to F gives the following result, of which Theorem 1.3 is
the special case r = 1.

Corollary 3.5. ordq N ( f1, . . . , fr )≥ ω(F)− r .
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4. Nondegeneracy relative to a lattice

The results of [AS 1989; 1990b] are cohomological in nature and require a more
detailed development. Suppose that Z〈J 〉 has rank k. Let M be a lattice, Z〈J 〉 ⊆
M ⊆ Zn

∩ R〈J 〉, and set L = HomZ(M,Z). For ` ∈ L we define a “differential
operator” E` on the ring Fq [xu

| u ∈ M] by linearity and the formula

E`(xu)= `(u)xu .

This definition is motivated by the fact that if we write

`(u1, . . . , un)=

n∑
j=1

a j u j ,

where u = (u1, . . . , un) ∈ M ⊆ Zn and the a j are rational numbers, and put E` =∑n
j=1 a j x j∂/∂x j , then in characteristic 0,

E`(xu)=

n∑
j=1

a j x j
∂

∂x j
(xu)= `(u)xu .

Let f be given by (1.1) and let σ be a subset of 1( f ). Define

fσ =
∑

j∈J∩σ

a j x j .

We say that f is nondegenerate relative to (1( f ),M) if for every face σ of 1( f )
that does not contain the origin, the Laurent polynomials {E`( fσ )}`∈L have no
common zero in (F̄×q )

n , where F̄q denotes an algebraic closure of Fq . Note that the
condition Z〈J 〉 ⊆ M guarantees that all fσ lie in Fq [xu

| u ∈ M], so the E`( fσ )
are defined. Note also that to check this condition, it suffices to check it on a
set of the form {E`i }

k
i=1, where {`i }

k
i=1 is any basis of L . (We remark that this

idea, to replace the differential operators xi∂/∂xi by certain linear combinations
with coefficients that are not p-integral, appears in nascent form in [Dwork 1962],
where it was needed to calculate the p-adic cohomology of smooth hypersurfaces
of degree divisible by p.)

The condition used in [AS 1989], that f be nondegenerate relative to 1( f ), is
equivalent to the condition that f be nondegenerate relative to (1( f ),Zn

∩R〈J 〉) in
the sense of the present definition. We make the relationship between this definition
and our earlier one more explicit. There is a basis e1, . . . , en for Zn and positive
integers d1, . . . , dk , k ≤ n, such that d1e1, . . . , dk ek is a basis for M . After a
coordinate change on Tn , we may take e1, . . . , en to be the standard basis for Zn .
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This implies that there exists a Laurent polynomial

g =
∑
c∈C

bcxc
∈ Fq [x±1

1 , . . . , x±1
k ],

where C is a finite subset of Zk , such that

f (x1, . . . , xn)= g(xd1
1 , . . . , xdk

k ). (4.1)

Note that (4.1) implies

[Z〈C〉 : Z〈J 〉] = d1 · · · dk (= [Z
n
∩R〈J 〉 : M]). (4.2)

Remark. When we choose M =MJ , it follows from Equation (1.2) that each di is
a power of p. In this case, the exponential sums associated to f and g are identical.

Proposition 4.3. The Laurent polynomial f is nondegenerate relative to the pair
(1( f ),M) if and only if g is nondegenerate relative to (1(g),Zk).

Proof. Equation (4.1) implies that there is a one-to-one correspondence between the
faces of 1( f ) and the faces of 1(g). Specifically, the face σ of 1( f ) corresponds
to the face σ ′ of 1(g) defined by

σ ′ = {(d−1
1 u1, . . . , d−1

k uk) ∈ Rk
| (u1, . . . , uk) ∈ σ }.

Furthermore, we have

fσ (x1, . . . , xk)= gσ ′(x
d1
1 , . . . , xdk

k ).

Using u1, . . . , uk as coordinates on Zk , we may take as basis for HomZ(Z
k,Z) the

linear forms {`′i }
k
i=1 defined by

`′i (u1, . . . , uk)= ui ,

and we may take as basis for L =HomZ(M,Z) the linear forms {`i }
k
i=1 defined by

`i (u1, . . . , uk)= d−1
i ui .

It is straightforward to check that for i = 1, . . . , k,

E`i ( fσ )(x1, . . . , xk)= E`′i (gσ ′)(x
d1
1 , . . . , xdk

k ).

This implies the proposition. �

Lemma 4.4. Put [Zn
∩ R〈J 〉 : MJ ] = pa and let M ⊆ Zn

∩ R〈J 〉 be a lattice
containing Z〈J 〉. Then M ⊆ MJ if and only if pa

| [Zn
∩R〈J 〉 : M].

Proof. Suppose that pa
| [Zn
∩R〈J 〉 : M]. Then [M : Z〈J 〉] = e′ with (e′, p)= 1.

In particular, e′m ∈ Z〈J 〉 for all m ∈ M , so M ⊆ MJ . The other direction of the
assertion is clear. �
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There are restrictions on the lattices with respect to which f can be nondegen-
erate.

Proposition 4.5. Let M be a lattice, Z〈J 〉 ⊆ M ⊆ Zn
∩R〈J 〉.

(a) If f is nondegenerate relative to (1( f ),M), then M ⊆ MJ .

(b) Suppose M ⊆MJ . Then f is nondegenerate relative to (1( f ),M) if and only
if f is nondegenerate relative to (1( f ),MJ ).

Proof. We may assume without loss of generality that Z〈J 〉 is a subgroup of Zn of
rank n. For if rank(Z〈J 〉) = k < n, then by (4.1) we may take f to be a Laurent
polynomial in x1, . . . , xk , in which case Z〈J 〉 is a subgroup of Zn

∩R〈J 〉(= Zk)

of rank k.
We suppose M is not contained in MJ and prove that f must be degenerate

relative to (1( f ),M). By (4.2) and Lemma 4.4, we have pa - [Z〈C〉 : Z〈J 〉]. But
pa
| [Zn
: Z〈J 〉], so p | [Zn

: Z〈C〉]. Arguing as in the proof of Equation (4.1) then
shows that there exists a Laurent polynomial

h =
∑
e∈E

cexe
∈ Fq [x±1

1 , . . . , x±1
n ]

such that
g(x1, . . . , xn)= h(x1, . . . , xn−1, x p

n ). (4.6)

To show f is degenerate relative to (1( f ),M), it suffices by Proposition 4.3 to
show that any Laurent polynomial g of the form (4.6) is degenerate relative to
(1(g),Zn). The weight function w of Section 2 defines an increasing filtration
on the ring Fq [xu

| u ∈ C(g) ∩ Zn
]: level i/N of the filtration is spanned by

the monomials of weight ≤ i/N . If g were nondegenerate, then {xi∂g/∂xi }
n
i=1

would be a regular sequence in the associated graded ring and would generate a
proper ideal of codimension n! V (g) (by [Kouchnirenko 1976], see also [AS 1989,
Section 2]). But, by Equation (4.6), xn∂g/∂xn = 0, and hence cannot be part of
such a regular sequence. This contradiction establishes part (a) of Proposition 4.5.

Now suppose that M ⊆ MJ . Choose a basis {e(i)}ni=1 for MJ and integers
d1, . . . , dn such that {di e(i)}ni=1 is a basis for M . By Lemma 4.4, p - d1 · · · dn .
Let {`i }

n
i=1 be the basis for HomZ(MJ ,Z) defined by

`i (e( j))= δi j (Kronecker’s delta).

Then {d−1
i `i }

n
i=1 is a basis for HomZ(M,Z). And since (di , p) = 1 for all i , the

{E`i ( fσ )}ni=1 have no common zero in (F̄×q )
n if and only if the same is true of the

{Ed−1
i `i

( fσ )}ni=1. This establishes part (b) of Proposition 4.5. �

By Proposition 4.5(a), we must have M ⊆ MJ if we hope to have f nondegen-
erate relative to (1( f ),M). On the other hand, we must have MJ ⊆ M in order
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for the trace formula (Theorem 2.5) to hold for M . Thus the only practical choice
for M is to take M = MJ . Recall from Section 2 that if g(t) is a power series with
constant term 1, then g(t)δ = g(t)/g(qt).

Theorem 4.7. Suppose that Z〈J 〉 has rank k and that f is nondegenerate relative
to (1( f ),MJ ). Then L(Tn, f ; t)(−1)n−1

= P(t)δ
n−k

, where P(t) is a polynomial
of degree k! VMJ ( f ) and VMJ ( f ) denotes the volume of 1( f ) relative to Lebesgue
measure on R〈J 〉 normalized so that a fundamental domain for MJ has volume 1.

Proof. One repeats the arguments of [AS 1989] with the modifications introduced
for Theorem 2.5: replace L(b) and B ′ by L0(b) and B ′0 and use α̃ in place of α.
We recall some of these details as they are needed in the proof of Theorem 4.17.

Let
�• : 0→�0

→ · · · →�n
→ 0

be the cohomological Koszul complex on B ′0 defined by the differential operators
{D̂i }

n
i=1 constructed in [AS 1989, Section 2]. The endomorphism α̃ of B ′0 con-

structed in Section 2 can be extended to an endomorphism α̃• of the complex �•

by noting that �i
= (B ′0)

(n
i) and then defining α̃i :�

i
→�i to be

(qn−i α̃)(
n
i) : (B ′0)

(n
i)→ (B ′0)

(n
i). (4.8)

Theorem 2.5 is equivalent to the assertion that

L(Tn, f ; t)=
n∏

i=0

det(I − t α̃i |�
i )(−1)i+1

,

which implies that

L(Tn, f ; t)=
n∏

i=0

det(I − t α̃i | H i (�•))(−1)i+1
. (4.9)

Put R = Fq [xu
| u ∈ M0( f )]. The ring R has an increasing filtration defined

by the weight function w of Section 2: Fi/N R is the subspace spanned by {xu
|

w(u) ≤ i/N }. Let R̄ =
⊕
∞

i=0 R̄i/N be the associated graded ring, that is, R̄i/N =

Fi/N R/F(i−1)/N . Now suppose that f is nondegenerate relative to (1( f ),MJ ), let
{`i }

k
i=1 be a basis for L = HomZ(MJ ,Z), and let E`i ( f ) ∈ R̄1 be the image in the

associated graded ring of E`i ( f ) ∈ F1 R. The nondegeneracy hypothesis implies
by the arguments in [Kouchnirenko 1976] that {E`i ( f )}ki=1 is a regular sequence
in R̄, that is, the (cohomological) Koszul complex on R̄ defined by {E`i ( f )}ki=1 has
vanishing cohomology except in top dimension. Furthermore, also by the methods
in [Kouchnirenko 1976], one can show that the single nonvanishing cohomology
group has dimension k! VMJ ( f ).
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Since MJ ⊆Zn , we may express the elements of L as linear forms in n variables.
Write

`i (u1, . . . , un)=

n∑
j=1

ai j u j , ai j ∈ p−aZ.

Put D̂`i =
∑n

j=1 ai j D̂ j and let �•` be the cohomological Koszul complex on B ′0
defined by {D̂`i }

k
i=1. The Frobenius action α̃i :�

i
`→�i

` is defined to be

(qk−i α̃)(
k
i) : (B ′0)

(k
i)→ (B ′0)

(k
i).

The “reduction mod p” [AS 1989, Lemma 2.10] of�•` is the Koszul complex on R̄
defined by {E`i ( f )}ki=1. Monsky’s cohomological lifting theorem [Monsky 1970,
Theorem 8.5; AS 1989, Theorem A.1] then implies that the cohomology of �•`
vanishes except in top dimension and that H k(�•`) has dimension k! VMJ ( f ). But
since {D̂`i }

k
i=1 are linear combinations of {D̂i }

n
i=1 and vice versa, it follows that

(as Frobenius modules)

H i (�•)∼= (H k(�•`))
(n−k

n−i),

where it is understood that the right-hand side vanishes if i < k. In particular we
have H n(�•)∼= H k(�•`), hence

det(I − t α̃i | H i (�•))= det(I − qn−i t α̃n | H n(�•))(
n−k
n−i).

From Equation (4.9) we then get

L(Tn, f ; t)=
n∏

i=k

det(I − qn−i t α̃n | H n(�•))(−1)i+1(n−k
n−i). (4.10)

If we put

P(t)= det(I − t α̃n | H n(�•)) (= det(I − t α̃k | H k(�•`))),

then P(t) is a polynomial of degree k! VMJ ( f ) and (4.10) implies that

L(Tn, f ; t)(−1)n−1
= P(t)δ

n−k
.

This completes the proof of Theorem 4.7. �

Assume the hypotheses of Theorem 4.7. The quotient ring

R̄/(E`1( f ), . . . , E`k ( f ))

is a graded ring of dimension k! VMJ ( f ) over Fq . Put

ai = dimFq (R̄/(E`1( f ), . . . , E`k ( f )))i/N .
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One can show that ai =0 for i>k N . By either repeating the argument of [AS 1989]
or replacing the polynomial f by the polynomial g(xe1

1 , . . . , xen
n ) constructed in

the introduction and applying [AS 1989, Theorem 3.10], one obtains the following
generalization of part of [AS 1989, Theorem 3.10].

Theorem 4.11. Under the hypotheses of Theorem 4.7, the Newton polygon of the
polynomial P(t) relative to the valuation ordq lies on or above the Newton polygon
relative to ordq of the polynomial

∏k N
i=0(1− q i/N t)ai .

Remark. We recall the combinatorial description of the ai . Let W0(i) be the
counting function of Equation (3.1) and form the generating series

H(t)=
∞∑

i=0

W0(i)t i/N .

Then

H(t)=
∑k N

i=0 ai t i/N

(1− t)k
.

Remark. The lower bound of Theorem 4.11 is generically sharp if, for some in-
teger D depending on 1( f ), p ≡ 1 (mod D) [Wan 1993].

We generalize Theorem 4.7 to the affine case. (The corresponding generalization
of Theorem 4.11 is somewhat more involved so we postpone that to a future article.)
Let

f =
∑
j∈J

a j x j
∈ Fq [x±1

1 , . . . , x±1
k , xk+1, . . . , xn].

For each subset A ⊆ {k+ 1, . . . , n}, let f A be the polynomial obtained from f by
setting xi = 0 for all i ∈ A. Then

f A =
∑
j∈JA

a j x j
∈ F[x±1

1 , . . . , x±1
k , {xi }i 6∈A], (4.12)

where JA = { j = ( j1, . . . , jn) ∈ J | ji = 0 for i ∈ A}. We call f convenient if for
each such A one has

dim1( f A)= dim1( f )− |A|.

Suppose f is convenient and nondegenerate relative to (1( f ),MJ ). The hypoth-
esis that f be convenient guarantees that f A is also convenient, and the hypothesis
that f be nondegenerate relative to (1( f ),MJ ) implies that f A is nondegener-
ate relative to (1( f A),MJ ∩ R〈JA〉). By Proposition 4.5(a), we must then have
MJ ∩R〈JA〉 ⊆ MJA . The reverse inclusion is clear, so

MJA = MJ ∩R〈JA〉, (4.13)
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and we conclude that f A is nondegenerate relative to (1( f A),MJA). Applying
Theorem 4.7, we get that

L(Tn−|A|, f A; t)(−1)n−|A|−1
= PA(t)δ

n−dim1( f )
, (4.14)

where PA(t) is a polynomial of degree

deg PA(t)= (dim1( f A))! VMJA
( f A). (4.15)

The standard toric decomposition of affine space gives

Sm(T
k
×An−k, f )=

∑
A⊆{k+1,...,n}

Sm(T
n−|A|, f A),

hence

L(Tk
×An−k, f ; t)(−1)n−1

=

∏
A⊆{k+1,...,n}

(L(Tn−|A|, f A; t)(−1)n−|A|−1
)(−1)|A| . (4.16)

Put
ν( f )=

∑
A⊆{k+1,...,n}

(−1)|A|(dim1( f A))! VMJA
( f A).

Theorem 4.17. If f ∈Fq [x±1
1 , . . . , x±1

k , xk+1, . . . , xn] is nondegenerate relative to
(1( f ),MJ ) and convenient, then

L(Tk
×An−k, f ; t)(−1)n−1

= Q(t)δ
n−dim1( f )

, (4.18)

where Q(t) is a polynomial of degree ν( f ).

Proof. It follows from Equations (4.14) and (4.16) that Equation (4.18) holds with

Q(t)=
∏

A⊆{k+1,...,n}

PA(t)(−1)|A|, (4.19)

a rational function of degree ν( f ) by Equation (4.15). It remains only to show that
Q(t) is a polynomial.

In the proof of Theorem 4.7, we constructed a complex �• satisfying

H i (�•)∼= (H n(�•))(
n−dim1( f )

n−i ) (4.20)

and L(Tn, f ; t)(−1)n−1
= P(t)δ

n−dim1( f )
, where

P(t)= det(I − t α̃n | H n(�•)). (4.21)

Since f is nondegenerate and convenient, each of the polynomials f A satisfies the
hypotheses of that theorem, so analogous assertions are true. Let

�•A : 0→�0
A→ · · · →�

n−|A|
A → 0
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be the corresponding cohomological Koszul complex with differential operators
{D̂ A

i }i 6∈A and Frobenius operators {α̃A
i }

n−|A|
i=0 . We have

H i (�•A)= (H
n−|A|(�•A))

(n−dim1( f )
n−|A|−i ) (4.22)

and L(Tn−|A|, f A; t)(−1)n−|A|−1
= PA(t)n−dim1( f ), where

PA(t)= det(I − t α̃A
n−|A| | H

n−|A|(�•A)). (4.23)

There is an exact sequence of complexes [Libgober and Sperber 1995, Equation
(4.1)]:

�•→
⊕
|A|=1

�•A[−1] →
⊕
|A|=2

�•A[−2] → · · · →�•
{k+1,...,n}[−n+ k] → 0.

Let �̄• = ker(�•→
⊕
|A|=1�

•

A[−1]), so that there is an exact sequence

0→ �̄•→�•→
⊕
|A|=1

�•A[−1] → · · · →�•
{k+1,...,n}[−n+ k] → 0. (4.24)

Equations (4.20), (4.22), (4.24), and induction on n− k show that

H i (�̄•)∼= (H n(�̄•))(
n−dim1( f )

n−i ). (4.25)

Equation (4.24) implies that

n∏
i=0

det(I − t α̃i | H i (�̄•))(−1)i+1

=

∏
A⊆{k+1,...,n}

(n−|A|∏
i=0

det(I − t α̃A
i | H

i (�•A))
(−1)i+|A|+1

)(−1)|A|

. (4.26)

The inner product on the right-hand side of (4.26) equals L(Tn−|A|, f A, t)(−1)|A| ,
hence by (4.16) the right-hand side equals L(Tk

×An−k, f ; t). By (4.25) the left-
hand side equals

n−dim1( f )∏
i=0

det(I − tq i α̃n | H n(�̄•))(−1)n−1(n−dim1( f )
i ).

We thus have

L(Tk
×An−k, f ; t)(−1)n−1

= det(I − t α̃n | H n(�̄•))δ
n−dim1( f )

.

Comparison with Equation (4.18) then shows that

Q(t)= det(I − t α̃n | H n(�̄•)),
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hence Q(t) is a polynomial. �

We explain how to compute the archimedian absolute values of the roots of the
polynomial Q(t) under the hypothesis of Theorem 4.17. Take M=MJ and let g be
the Laurent polynomial associated to f by Equation (4.1). As noted in the proof of
Proposition 4.3, the linear transformation ui 7→ d−1

i ui , i = 1, . . . , k, identifies the
faces σ of 1( f ) with the faces σ ′ of 1(g). In particular, the face 1( f A) of 1( f )
will correspond to some face σ ′A of 1(g). Let gA denote the sum of those terms
of g whose exponents lie on the face σ ′A (so that 1(gA) = σ

′

A). By the Remark
preceding Proposition 4.3, we have

L(Tn−|A|, gA; t)(−1)n−|A|−1
= L(Tn−|A|, f A; t)(−1)n−|A|−1

= PA(t)δ
n−dim1( f )

. (4.27)

The nondegeneracy of f A relative to (1( f A),MJA) implies the nondegeneracy of
gA relative to (1(gA),Zdim1(gA)). We can thus apply the results of [AS 1990b] and
[Denef and Loeser 1991] to gA to compute the number of roots of PA(t) of a given
archimedian weight. By Equation (4.19) and the fact that Q(t) is a polynomial,
we then get the number of roots of Q(t) of a given archimedian weight.

For applications in the next section, we calculate the number of reciprocal roots
of largest possible archimedian absolute value q(dim1( f ))/2 of Q(t). For A 6= ∅,
all reciprocal roots of PA(t) have absolute value < q(dim1( f ))/2, so this is just the
number of reciprocal roots of P∅(t) of absolute value q(dim1( f ))/2. By Equation
(4.27), this can be obtained by applying [AS 1990b, Theorem 1.10] to g: the
number wdim1( f ) of reciprocal roots of highest weight is

wdim1( f ) =
∑

(0,...,0)⊆σ ′⊆1(g)

(−1)dim1(g)−dim σ ′(dim σ ′)! VZdim σ ′ (σ
′). (4.28)

Since 1(g) is obtained from 1( f ) by an explicit linear transformation, we can
express this in terms of invariants of 1( f ):

wdim1( f ) =
∑

(0,...,0)⊆σ⊆1( f )

(−1)dim1( f )−dim σ (dim σ)! VMJσ
(σ ), (4.29)

where Jσ = J ∩ σ .
We note an important special case of this formula. If every face of 1( f ) that

contains the origin is of the form1( f A) for some A⊆{k+1, . . . , n}, the right-hand
side of Equation (4.29) is just ν( f ). This gives the following result.

Corollary 4.30. Under the hypothesis of Theorem 4.17, if every face of 1( f ) that
contains the origin is of the form 1( f A) for some A ⊆ {k + 1, . . . , n}, then all
reciprocal roots of Q(t) have archimedian absolute value q(dim1( f ))/2.

As a special case of Corollary 4.30, we note the following result.
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Corollary 4.31. If f ∈ Fq [x1, . . . , xn] is nondegenerate relative to (1( f ),MJ )

and convenient, then L(An, f ; t)(−1)n−1
is a polynomial of degree ν( f ) all of whose

reciprocal roots have absolute value qn/2.

5. Examples

We explain how Theorem 4.17 implies a generalization of the result of Katz quoted
in the introduction.

Proposition 5.1. Let f ∈ Fq [x1, . . . , xn] have degree d = pke, (e, p) = 1, and
suppose that every monomial appearing in f has degree divisible by pk . If f (d),
the homogeneous part of f of degree d, defines a smooth hypersurface in Pn−1,
then L(An, f ; t)(−1)n−1

is a polynomial of degree

ν( f )=
1
pk ((d − 1)n + (−1)n(pk

− 1)), (5.2)

all of whose reciprocal roots have absolute value qn/2.

Proof. Let e(1), . . . , e(n) denote the standard basis for Rn . Over any sufficiently
large extension field of Fq , we can make a coordinate change on An so that f
is convenient and for any A ⊆ {1, . . . , n}, the intersection of f (d) = 0 with the
coordinate hyperplanes {xi = 0}i∈A is smooth. In particular, the equations f (d)A = 0
define smooth hypersurfaces in Pn−|A|−1. The Newton polyhedron 1( f ) is then
the simplex in Rn with vertices at the origin and the points {de(i)}ni=1. The faces of
1( f ) not containing the origin are the convex hulls of the sets {de(i)}i∈A. It will
be simpler to index these faces by their complements: let σA denote the face which
is the convex hull of {de(i)}i 6∈A.

Write f =
∑

j∈J a j x j , J a finite subset of Nn . Let M ⊆ Zn be the subgroup

M = {(u1, . . . , un) ∈ Zn
| u1+ · · ·+ un is divisible by pk

}.

Since all monomials in f have degree divisible by pk , it follows that Z〈J 〉 ⊆ M .
In fact, MJ ⊆ M . To see this, let (u1, . . . , un) ∈ MJ . By definition, there exists an
integer c prime to p such that c(u1, . . . , un) ∈ Z〈J 〉. This implies that c

∑n
i=1 ui

is divisible by pk . But since (c, p)= 1, one has
∑n

i=1 ui divisible by pk , therefore
(u1, . . . , un) ∈ M .

We claim that f is nondegenerate relative to (1( f ),M). As basis for M we
take the elements

(pk, 0, . . . , 0)∪ {(−1, 0, . . . , 0, 1, 0, . . . , 0)}ni=2,
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where the 1 occurs in the i-th position, and as basis for L =HomZ(M,Z) we take
the “dual basis”, namely, the linear forms

`1(u1, . . . , un)= p−k(u1+ · · ·+ un)

and
`i (u1, . . . , un)= ui ,

for i = 2, . . . , n. Let A⊆ {1, . . . , n} and let σA be the face of 1( f ) defined above.
Note that

fσA :=

∑
j∈J∩σA

a j x j
= f (d)A .

We must thus check that {E`i ( f (d)A )}ni=1 have no common zero in (F̄×q )
n . But

E`1( f (d)A )= e−1 f (d)A

and

E`i ( f (d)A )= xi
∂ f (d)A

∂xi

for i = 2, . . . , n, so we must show that the system

f (d)A = x2
∂ f (d)A

∂x2
= · · · = xn

∂ f (d)A

∂xn
= 0 (5.3)

has no solution in (F̄×q )
n . Since p | d , the Euler relation implies that any common

zero of {xi∂ f (d)A /∂xi }
n
i=2 is also a zero of x1∂ f (d)A /∂x1, thus the system (5.3) is

equivalent to the system

f (d)A = x1
∂ f (d)A

∂x1
= · · · = xn

∂ f (d)A

∂xn
= 0. (5.4)

Furthermore, xi does not appear in f A if i ∈ A, hence the solutions of (5.4) in (F̄×q )
n

are exactly the solutions of the set

{ f (d)A } ∪ {∂ f (d)A /∂xi }i 6∈A (5.5)

in (F̄×q )
n . However, the equation f (d)A =0 defines a smooth hypersurface in Pn−|A|−1,

so any common zero of the set (5.5) must have xi = 0 for all i 6∈ A. In particular,
(5.5) has no common zero in (F̄×q )

n . This implies that (5.4) has no solution in
(F̄×q )

n , proving the nondegeneracy of f relative to (1( f ),M).
We can now compute ν( f ). By Proposition 4.5(a) we have M = MJ , so

[Zn−|A|
: MJA ] = pk for all A 6= {1, . . . , n}
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and

(n− |A|)! V ( f A)/[Z
n−|A|
: MJA ] =

{
dn−|A|/pk if A 6= {1, . . . , n},

1 if A = {1, . . . , n}.

Then clearly

ν( f )=
1
pk ((d − 1)n + (−1)n(pk

− 1))

and the assertions of Proposition 5.1 follow from Theorem 4.17. Finally, note
that if L(An, f ; t)(−1)n−1

is a polynomial of degree (5.2) over all sufficiently large
extension fields of Fq , then the same is true over Fq itself. The assertion about the
absolute value of the roots follows immediately from Corollary 4.31. �

Remark. There are many results in the literature that, like Proposition 5.1, assert
that L(An, f ; t)(−1)n−1

is a polynomial if f (d) defines a smooth hypersurface and
some additional condition is satisfied (see [Deligne 1974, Théorème 8.4; AS 2000,
Theorem 1.11 and the following remark; Katz 2005, Theorem 3.6.5; AS 2009, The-
orem 3.1]). One might ask if any additional condition is really necessary. Consider
the three-variable polynomial

f = (z p
− z)+ x p−1 y+ y p−1z.

The homogeneous part of degree p is smooth but f has the same L-function as

g = x p−1 y+ y p−1z.

Since
∑

z∈Fq
9(y p−1z)= 0 if y 6= 0, one calculates that

∑
x,y,z∈Fq

9(g(x, y, z))=
q2. This gives L(A3, f ; t) = (1− q2t)−1, showing that smoothness of f (d) alone
is not sufficient to guarantee that L(An, f ; t)(−1)n−1

will be a polynomial.
We apply Theorem 4.17 to compute the zeta functions of some possibly singular

hypersurfaces. Let f ∈ Fq [x1, . . . , xn] be a homogeneous polynomial and let X ⊆
Pn−1 be the hypersurface f = 0. Write the zeta function Z(X/Fq , t) of X in the
form

Z(X/Fq , t)=
R(t)(−1)n−1

(1− t)(1− qt) . . . (1− qn−2t)
, (5.6)

where R(t) is a rational function. The exponential sum associated to the poly-
nomial y f ∈ Fq [x1, . . . , xn, y±1

] can be used to count points on the projective
hypersurface X . The precise relation is given in [AS 1989, Equation (6.14)]:

L(An
×T, y f ; t)(−1)n

= R(qt)δ. (5.7)

Proposition 5.8. Suppose that y f ∈ Fq [x1, . . . , xn, y±1
] is nondegenerate relative

to (1(y f ),MJ ) and convenient. Then R(t) is a polynomial of degree ν(y f ), all of
whose reciprocal roots have absolute value q(n−2)/2.
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Proof. The assertion about the degree of R(t) follows immediately by applying
Theorem 4.17 to Equation (5.7). The assertion about the absolute values of the
roots of R(t) follows immediately from Corollary 4.30. �

As an illustration of Proposition 5.8, consider the projective hypersurface X ⊆
Pn−1 over Fq defined by the homogeneous equation

f (x1, . . . , xn)= xn
1 + · · ·+ xn

n + λx1 . . . xn = 0,

where λ ∈ Fq . If p - n, this hypersurface is smooth for all but finitely many values
of λ. If p | n, it is a singular hypersurface for all nonzero λ (except in the cases
p = n = 2 and p = n = 3). We describe the zeta function when p | n.

Corollary 5.9. Suppose that n= pke, where k ≥ 1 and (p, e)= 1, and λ 6= 0. Then
R(t) is a polynomial of degree

deg R(t)= (pk
− 1)en−1

+ e−1((e− 1)n + (−1)n(e− 1)), (5.10)

all of whose reciprocal roots have absolute value q(n−2)/2.

Remark. Note that the second summand on the right-hand side of Equation
(5.10) is the dimension of the primitive part of middle-dimensional cohomology
of a smooth hypersurface of degree e. When λ= 0, the hypersurface X0 is smooth
of degree e. (It is defined by the equation xe

1 + · · ·+ xe
n = 0.)

Proof of Corollary 5.9. The proof is a direct application of Proposition 5.8. We
sketch the details. It is straightforward to check that y f is convenient: 1(y f ) is
the n-simplex in Rn+1 with vertices at the origin and the points

(n, 0, . . . , 0, 1), (0, n, 0, . . . , 0, 1), . . . , (0, . . . , 0, n, 1),

and for each subset A ⊆ {1, . . . , n}, one has dim1(y f A)= n− |A|. We have

J ={(n,0, . . . ,0,1), (0,n,0, . . . ,0,1), . . . , (0, . . . ,0,n,1), (1, . . . ,1,1)}⊆Zn+1,

thus R〈J 〉 is the hyperplane in Rn+1 with equation u1 + · · · + un = nv and the
lattice Zn+1

∩R〈J 〉 has basis

B={(1,−1,0,. . .,0), (0,1,−1,0,. . .,0), . . ., (0,. . .,0,1,−1,0), (0,. . .,0,n,1)}.

It follows that n! Vn(y f )= nn−1. Similarly, we have

(n− |A|)! Vn−|A|(y f A)=

{
nn−1−|A| if |A| ≤ n− 1,
1 if |A| = n.

Let the first n−1 vectors in B be denoted ai , i = 1, . . . , n−1. The lattice Z〈J 〉
has basis

na1, . . . , nan−2, (n− 1,−1, . . . ,−1, 0), (1, . . . , 1, 1),
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from which it follows that MJ has basis

pk a1, . . . , pk an−2, (n− 1,−1, . . . ,−1, 0), (1, . . . , 1, 1). (5.11)

One then checks that

[Zn+1
∩R〈J 〉 : MJ ] = (pk)n−2.

If |A| ≥ 1, then JA consists of vectors (0, . . . , 0, n, 0, . . . , 0, 1) for which the n
occurs in the i-th entry for i 6∈ A (the vector (1, . . . , 1, 1) does not appear), and the
calculation is easier. One gets

[Zn+1
∩R〈JA〉 : MJA ] =


(pk)n−2 if A =∅,

(pk)n−1−|A| if 1≤ |A| ≤ n− 1,

1 if A = {1, . . . , n}.

We then have

(n− |A|)! Vn−|A|(y f A)

[Zn+1 ∩R〈JA〉 : MJA ]
=


pken−1 if A =∅,

en−1−|A| if 1≤ |A| ≤ n− 1,

1 if A = {1, . . . , n}.

It is now straightforward to check that ν(y f ) equals the expression on the right-
hand side of (5.10).

It remains to check that y f is nondegenerate relative to (1(y f ),MJ ). The dual
basis of the basis (5.11) for MJ is the set of linear forms

`i (u1, . . . , un, v)=

i∑
j=1

1
pk u j +

n− i
pk un − ev, i = 1, . . . , n− 2,

`n−1(u1, . . . , un, v)=−un + v,

`n(u1, . . . , un, v)= v.

The polynomials (y f )σ for faces σ of 1(y f ) that do not contain the origin are
exactly the polynomials y f A for A ⊂ {1, . . . , n}, |A|< n. If A =∅, we have

E`n (y f )− E`n−1(y f )= λyx1 . . . xn,

which has no zero in (F̄×q )
n+1. So suppose that 1≤ |A| ≤ n− 1. Then

y f A =
∑
i 6∈A

yxn
i .

Suppose first that n 6∈ A. If 1 ∈ A, then

E`1(y f A)+ eE`n (y f A)=−eyxn
n ,
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and if i ∈ A for some i , 2≤ i ≤ n− 2, then

E`i (y f A)− E`i−1(y f A)=−eyxn
n .

Neither of these monomials vanishes on (F̄×q )
n+1. If i 6∈ A for all i = 1, . . . , n−2,

then A = {n− 1}. In this case we have

E`1(y f A)+ eE`n (y f A)= ey(xn
1 − xn

n ),

E`i (y f A)− E`i−1(y f A)= ey(xn
i − xn

n ) for i = 2, . . . , n− 2,

E`n (y f A)= y(xn
1 + . . . + xn

n−2 + xn
n ).

If the first n−2 expressions vanish, then yxn
1 = · · · = yxn

n−2= yxn
n . The vanishing

of the last expression is then equivalent to (n − 1)yxn
n = 0, which is impossible

in (F̄×q )
n+1.

Now suppose that n ∈ A. If 1 6∈ A, then

E`1(y f A)+ eE`n (y f A)= eyxn
1 ,

and if i 6∈ A for some i , 2≤ i ≤ n− 2, then

E`i (y f A)− E`i−1(y f A)= eyxn
i .

Neither of these monomials vanishes on (F̄×q )
n+1. If i ∈ A for i = 1, . . . , n − 2,

then A contains all indices except i = n − 1 and E`n (y f A) = yxn
n−1, which does

not vanish on (F̄×q )
n+1.

Thus y f satisfies the hypotheses of Proposition 5.8. �
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