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Following Shokurov’s ideas, we give a short proof of the following klt version
of his result: termination of terminal log flips in dimension d implies that any
klt pair of dimension d has a log minimal model or a Mori fibre space. Thus, in
particular, any klt pair of dimension 4 has a log minimal model or a Mori fibre
space.

1. Introduction

All the varieties in this paper are assumed to be over an algebraically closed field k
of characteristic zero. We refer the reader to Section 2 for notation and terminology.

The following conjecture is perhaps the most important problem in birational
geometry.

Conjecture 1.1 (Minimal model). Let (X/Z , B) be a Kawamata log terminal (klt)
pair. Then it has a log minimal model or a Mori fibre space.

The 2-dimensional case of this conjecture is considered to be classical. The
3-dimensional case was settled in the 80’s and 90’s by the efforts of many math-
ematicians, in particular Mori, Shokurov and Kawamata. The higher-dimensional
case has seen considerable progress in recent years, thanks primarily to Shokurov’s
work on the existence of log flips, which paved the way for further progress. The
conjecture is also settled for pairs of general type [Birkar et al. 2006], and inductive
arguments have been proposed for pairs of nonnegative Kodaira dimension [Birkar
2007]. For a more detailed account of the known cases of this conjecture, see the
introduction to [Birkar 2007].

Shokurov [2006] proved that the log minimal model program (LMMP) in dimen-
sion d − 1 and termination of terminal log flips in dimension d imply Conjecture
1.1 in dimension d even for log canonical (lc) pairs. (In this paper, by termination
of terminal log flips in dimension d, we will mean termination of any sequence
X i 99K X i+1/Zi of log flips/Z starting with a d-dimensional klt pair (X/Z , B)
which is terminal in codimension ≥ 2; see Section 2 for a more precise formula-
tion.)
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Following Shokurov’s method and using results of [Birkar et al. 2006], we give
a short proof of:

Theorem 1.2. Termination of terminal log flips in dimension d implies Conjecture
1.1 in dimension d; more precisely, for a klt pair (X/Z , B) of dimension d one
constructs a log minimal model or a Mori fibre space by running the LMMP/Z on
K X + B with scaling of a suitable big/Z R-divisor and proving that it terminates.

As in [Shokurov 2006], one immediately derives the following:

Corollary 1.3. Conjecture 1.1 holds in dimension 4.

Note that when (X/Z , B) is effective (for example if it is of nonnegative Kodaira
dimension), log minimal models are constructed in [Birkar 2007], using different
methods, in dimension ≤ 5.

2. Basics

Let k be an algebraically closed field of characteristic zero. For an R-divisor D
on a variety X over k, we use D∼ to denote the birational transform of D on a
specified birational model of X .

Definition 2.1. A pair (X/Z , B) consists of normal quasiprojective varieties X, Z
over k, an R-divisor B on X with coefficients in [0, 1] such that K X + B is R-
Cartier, and a projective morphism X→ Z . (X/Z , B) is called log smooth if X is
smooth and Supp B has simple normal crossing singularities.

For a prime divisor D on some birational model of X with a nonempty centre on
X , a(D, X, B) denotes the log discrepancy. (X/Z , B) is terminal in codimension
≥ 2 if a(D, X, B) > 1 whenever D is exceptional/X . Log flips preserve this
condition but divisorial contractions may not.

Let (X/Z , B) be a klt pair. By a log flip/Z we mean the flip of a K X + B-
negative extremal flipping contraction/Z . A sequence of log flips/Z starting with
(X/Z , B) is a sequence X i 99K X i+1/Zi in which X i→ Zi← X i+1 is a K X i +Bi -
flip/Z and Bi is the birational transform of B1 on X1, and (X1/Z , B1)= (X/Z , B).
By termination of terminal log flips in dimension d we mean termination of such
a sequence in which (X1/Z , B1) is a d-dimensional klt pair which is terminal in
codimension ≥ 2. Now assume that G is an R-Cartier divisor on X . A sequence
of G-flops/Z with respect to (X/Z , B) is a sequence X i 99K X i+1/Zi in which
X i → Zi ← X i+1 is a Gi -flip/Z such that K X i + Bi ≡ 0/Zi where Gi is the
birational transform of G on X = X1.

Definition 2.2 ([Birkar 2007, §2]). Let (X/Z , B) be a klt pair, (Y/Z , BY ) a Q-
factorial klt pair, φ : X 99K Y/Z a birational map such that φ−1 does not contract
divisors, and BY be the birational transform of B (Note that since X → Z and
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Y → Z are both projective, by the definition of a pair, X and Y have the same
image on Z ). Moreover, assume that

a(D, X, B)≤ a(D, Y, BY )

for any prime divisor D on birational models of X and assume that the strict in-
equality holds for any prime divisor D on X which is exceptional/Y .

We say that (Y/Z , BY ) is a log minimal model of (X/Z , B) if KY+BY is nef/Z .
On the other hand, we say that (Y/Z , BY ) is a Mori fibre space of (X/Z , B) if there
is a KY + BY -negative extremal contraction Y → Y ′/Z such that dim Y ′ < dim Y .

Typically, one obtains a log minimal model or a Mori fibre space by a finite
sequence of divisorial contractions and log flips.

Remark 2.3. Let (X/Z , B) be a klt pair and W → X a log resolution. Let BW =

B∼+ (1− ε)
∑

Ei where 0< ε� 1 and Ei are the exceptional/X divisors on W .
Remember that B∼ is the birational transform of B. If (Y/X, BY ) is a log minimal
model of (W/X, BW ), which exists by [Birkar et al. 2006], then by the negativity
lemma Y → X is a small Q-factorialisation of X . To find a log minimal model or
a Mori fibre space of (X/Z , B), it is enough to find one for (Y/Z , BY ). So, one
could assume that X is Q-factorial by replacing it with Y .

We recall a variant of the LMMP with scaling which we use in this paper. Let
(X/Z , B+C) be a Q-factorial klt pair such that K X+B+C is nef/Z and B,C ≥0.
By [Birkar 2007, Lemma 2.7], either K X + B is nef/Z or there is an extremal ray
R/Z such that

(K X + B) · R < 0 and (K X + B+ λ1C) · R = 0,

where
λ1 := inf{t ≥ 0 | K X + B+ tC is nef/Z}

and K X + B + λ1C is nef/Z . Now assume that R defines a divisorial contraction
or a log flip X 99K X ′. We can consider (X ′/Z , B ′ + λ1C ′), where B ′ + λ1C ′ is
the birational transform of B + λ1C and continue the argument. That is, either
K X ′ + B ′ is nef/Z or there is an extremal ray R′/Z such that (K X ′ + B ′) · R′ < 0
and (K X ′ + B ′+ λ2C ′) · R′ = 0, where

λ2 := inf{t ≥ 0 | K X ′ + B ′+ tC ′ is nef/Z}

and K X ′ + B ′ + λ2C ′ is nef/Z . By continuing this process, we obtain a special
kind of LMMP on K X + B which we refer to as the LMMP with scaling of C . If
it terminates, then we obviously get a log minimal model or a Mori fibre space for
(X/Z , B). Note that the required log flips exist by [Birkar et al. 2006].
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3. Extremal rays

In this section, for convenience of the reader, we give the proofs of some results
about extremal rays [Shokurov 2006, Corollary 9, Addendum 4]. The norm ‖G‖
of an R-divisor G denotes the maximum of the absolute value of its coeffecients.

Let X → Z be a projective morphism of normal quasiprojective varieties. A
curve 0 on X is called extremal/Z if it generates an extremal ray R/Z which
defines a contraction X → S/Z , and if for some ample/Z divisor H we have
H · 0 = min{H ·6}, where 6 ranges over curves generating R. If (X/Z , B) is
divisorial log terminal (dlt) and (K X + B) · R < 0, then by [Kawamata 1991] there
is a curve 6 generating R such that (K X + B) ·6 ≥−2 dim X . On the other hand,
since 0 and 6 both generate R we have

(K X + B) ·0
H ·0

=
(K X + B) ·6

H ·6
,

hence
(K X + B) ·0 = (K X + B) ·6

H ·0
H ·6

≥−2 dim X.

Remark 3.1. Let (X/Z , B) be a Q-factorial klt pair, F be a reduced divisor on X
whose support contains that of B, and V be the R-vector space of divisors generated
by the components of F .

(i) By [Shokurov 1992, Property 1.3.2; 1996, First Main Theorem 6.2 and Re-
mark 6.4], the sets

L= {1 ∈ V | (X/Z ,1) is lc} and N= {1 ∈ L | K X +1 is nef/Z}

are rational polytopes in V . Since B ∈ L, there are rational boundaries
B1, . . . , Br

∈ L and nonnegative real numbers a1, . . . , ar such that B =∑
a j B j ,

∑
a j = 1, and each (X/Z , B j ) is klt. In particular, there is m ∈ N

such that m(K X + B j ) are Cartier, and for any curve 0 on X the intersection
number (K X + B) · 0 can be written as

∑
a j

n j
m for certain n1, . . . , nr ∈ Z.

Moreover, if 0 is extremal/Z , then the n j satisfy n j ≥−2m dim X .

(ii) If K X+B is nef/Z , then B ∈N and so one can choose the B j so that K X+B j

are nef/Z .

Lemma 3.2. Let (X/Z , B) be a Q-factorial klt pair. There is a real number α > 0
such that:

(i) If 0 is any extremal curve/Z and if (K X + B) ·0 > 0, then (K X + B) ·0 > α.

(ii) If K X + B is nef/Z , then for any R-divisor G, any sequence X i 99K X i+1/Zi

of G-flops/Z with respect to (X/Z , B), and any extremal curve 0 on X i , if
(K X i+Bi )·0> 0, then (K X i+Bi )·0>α where Bi is the birational transform
of B.
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Proof. (i) If B is a Q-divisor, then the statement is trivially true. Let B1, . . . , Br ,
a1, . . . , ar , and m be as in Remark 3.1(i). Let 0 be an extremal curve/Z . Then,
(K X + B) ·0 =

∑
a j (K X + B j ) ·0 and since for each j we have (K X + B j ) ·0 ≥

−2 dim X , the existence of α is clear for (i).

(ii) By Remark 3.1(ii) we may also assume that K X + B j are nef/Z . Then, the se-
quence X i 99K X i+1/Zi is also a sequence of flops with respect to each (X/Z , B j ).
In particular, (X i/Z , B j

i ) is klt and m(K X i + B j
i ) is Cartier for any j, i where B j

i
is the birational transform of B j . The rest is as in (i). �

Proposition 3.3. Let (X/Z , B) be a Q-factorial klt pair, F a reduced divisor on
X whose support contains that of B, and L as in Remark 3.1. There is a rational
polytope K ⊂ L of klt boundaries and of maximal dimension containing an open
neighborhood of B in L (with respect to the topology on L induced by the norm
‖ · ‖) such that

(i) if1∈K and (K X+1)·R< 0 for an extremal ray R/Z , then (K X+B)·R≤ 0,
and

(ii) if K X + B is nef/Z , 1 ∈ K, we have a sequence X i 99K X i+1/Zi of K X +1-
flops/Z with respect to (X/Z , B), and (K X i +1i ) · R < 0 for an extremal ray
R/Z on some X i , then (K X i + Bi ) · R = 0, where 1i , Bi are the birational
transforms of 1, B respectively.

Proof. (i) Let M ⊂ L be a rational polytope of klt boundaries and of maximal
dimension containing an open neighborhood of B in L. If the statement is not true
then there is an infinite sequence of 1l ∈M and extremal rays Rl/Z such that for
each l we have

(K X +1l) · Rl < 0, (K X + B) · Rl > 0,

and ‖1l − B‖ converges to 0. Let �l be the point on the boundary of M such that
�l −1l = bl(1l − B) for some real number bl ≥ 0 and such that ‖�l − B‖ is
maximal. So, �l is the most far away point in M which is on the line determined
by B and 1l , in the direction of 1l . Since ‖1l − B‖ converges to 0, bl converges
to +∞.

By assumptions, (X/Z , �l) is klt and if 0l is an extremal curve/Z generating
Rl , then

(�l −1l) ·0l = (K X +�l) ·0l − (K X +1l) ·0l ≥−2 dim X.

This is not possible because by Lemma 3.2,

(K X +1l) ·0l + (B−1l) ·0l = (K X + B) ·0l > α,

and by the same arguments (B−1l) ·0l approaches 0.
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By definition, the sequence X i 99K X i+1/Zi is a sequence of K X +1-flips which
are numerically trivial with respect to K X + B. Let K be as in (i). Assume that R
is an extremal ray/Z on X i such that (K X i +1i ) · R < 0 but (K X i + Bi ) · R > 0.
Let 0 be an extremal curve/Z generating R. Let � be the point on the boundary
of K which is chosen for 1 similarly as in (i). By assumptions, (X i/Z ,1i ) and
(X i/Z , �i ) are klt where �i is the birational transform of �. So,

(�i −1i ) ·0 = (K X i +�i ) ·0− (K X i +1i ) ·0 ≥−2 dim X.

On the other hand, (K X i+Bi )·0>α where α is as in Lemma 3.2. By construction,
there is some b ≥ 0 such that b(1i − Bi )=�i −1i . Therefore,

(K X i +1i ) ·0 = (K X i + Bi ) ·0+ (1i − Bi ) ·0 > α−
2 dim X

b
.

which is not possible if bα > 2 dim X . In other words, if 1 is close enough to B
then the statement of (i i) also holds, that is, we only need to shrink K appropriately.

�

4. Proof of the main results

Proof of Theorem 1.2. Let (X/Z , B) be a klt pair of dimension d . By Remark 2.3,
we can assume that X is Q-factorial. Let H ≥ 0 be an R-divisor which is big/Z
so that K X + B+ H is klt and nef/Z . Run the LMMP/Z on K X + B with scaling
of H . If the LMMP terminates, then we get a log minimal model or a Mori fibre
space. Suppose that we get an infinite sequence X i 99K X i+1/Zi of log flips/Z ,
where we may also assume that (X1/Z , B1)= (X/Z , B).

Let λi be the threshold on X i determined by the LMMP with scaling as explained
in Section 2. So, K X i + Bi + λi Hi is nef/Z ,

(K X i + Bi ) · Ri < 0 and (K X i + Bi + λi Hi ) · Ri = 0,

where Bi and Hi are the birational transforms of B and H and, Ri is the extremal
ray which defines the flipping contraction X i → Zi . Obviously, λi ≥ λi+1.

Put λ = limi→∞ λi . If the limit is attained, that is, λ = λi for some i , then the
sequence terminates by Corollary 1.4.2 of [Birkar et al. 2006]. So, we assume that
the limit is not attained. Actually, if λ > 0, again [Birkar et al. 2006] implies that
the sequence terminates. However, we do not need to use [Birkar et al. 2006] in
this case. In fact, by replacing Bi with Bi +λHi , we can assume that λ= 0 hence
limi→∞ λi = 0.

Put 3i := Bi + λi Hi . Since we are assuming that terminal log flips terminate,
or, alternatively, by Corollary 1.4.3 of [Birkar et al. 2006], we can construct a
terminal (in codimension ≥ 2) crepant model (Yi/Z ,2i ) of (X i/Z ,3i ). A slight
modification of the argument in Remark 2.3 would do this. Note that we can assume
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that all the Yi are isomorphic to Y1 in codimension one, perhaps after truncating
the sequence. Let 11 = limi→∞2

∼

i on Y1 and let 1i be its birational transform
on Yi . The limit is obtained componentwise.

Since Hi is big/Z and K X i +3i is klt and nef/Z , K X i +3i and KYi +2i are
semiample/Z by the base point freeness theorem for R-divisors. Thus, KYi+1i is a
limit of movable/Z divisors which in particular means that it is pseudo-effective/Z .
Note that if KYi+1i is not pseudo-effective/Z , we get a contradiction by Corollary
1.3.2 of [Birkar et al. 2006].

Now run the LMMP/Z on KY1 +11. No divisor will be contracted again be-
cause KY1 +11 is a limit of movable/Z divisors. Since KY1 +11 is terminal in
codimension≥2, by assumptions, the LMMP terminates with a log minimal model
(W/Z ,1). By construction, 1 on W is the birational transform of 11 on Y1, and
Gi :=2

∼

i −1 on W satisfies limi→∞ Gi = 0.
By Proposition 3.3, for each Gi with i� 0, we can run the LMMP/Z on KW +

1+Gi which will be a sequence of Gi -flops, that is, K +1 would be numerically
zero on all the extremal rays contracted in the process. No divisor will be contracted
because KW+1+Gi is movable/Z . The LMMP ends up with a log minimal model
(Wi/Z , �i ). Here, �i is the birational transform of 1+Gi and so of 2i . Let Si

be the lc model of (Wi/Z , �i ) which is the same as the lc model of (Yi/Z ,2i )

and that of (X i/Z ,3i ) because KWi +�i and KYi +2i are nef/Z with Wi and Yi

being isomorphic in codimension one, and KYi +2i is the pullback of K X i +3i .
Also note that since K X i + Bi is pseudoeffective/Z , K X i +3i is big/Z ; hence Si

is birational to X i .
By construction, KWi +1

∼ is nef/Z and it turns out that KWi +1
∼
∼R 0/Si .

Suppose that this is not the case. Then, KWi+1
∼ is not numerically zero/Si hence

there is some curve C/Si such that (KWi+1
∼
+G∼i )·C = 0 but (KWi+1

∼)·C > 0
which implies that G∼i ·C < 0. Hence, there is a KWi +1

∼
+ (1+ τ)G∼i -negative

extremal ray R/Si for any τ > 0. This contradicts Proposition 3.3 because we must
have

(KWi +1
∼
+G∼i ) · R = (KWi +1

∼) · R = 0.

Therefore, KWi +1
∼
∼R 0/Si . Now K X i +3i ∼R 0/Zi implies that Zi is over

Si and so KYi +1i ∼R 0/Si . On the other hand, K X i + Bi is the pushdown of
KYi +1i ; hence K X i + Bi ∼R 0/Si . Thus, K X i + Bi ∼R 0/Zi and this contradicts
the fact that X i → Zi is a K X i + Bi -flipping contraction. So, the sequence of flips
terminates and this completes the proof. �

Proof of Corollary 1.3. Since terminal log flips terminate in dimension 4 by [Fujino
2004; Shokurov 2004] (see also [Alexeev et al. 2007]), the result follows from
Theorem 1.2. �
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