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ALGEBRA AND NUMBER THEORY 4:2(2010)

Canonical extensions of Néron models
of Jacobians

Bryden Cais

Let A be the Néron model of an abelian variety AK over the fraction field K of
a discrete valuation ring R. By work of Mazur and Messing, there is a functorial
way to prolong the universal extension of AK by a vector group to a smooth
and separated group scheme over R, called the canonical extension of A. Here
we study the canonical extension when AK = JK is the Jacobian of a smooth,
proper and geometrically connected curve XK over K . Assuming that XK admits
a proper flat regular model X over R that has generically smooth closed fiber, our
main result identifies the identity component of the canonical extension with a
certain functor Pic\,0X/R classifying line bundles on X that have partial degree zero
on all components of geometric fibers and are equipped with a regular connec-
tion. This result is a natural extension of a theorem of Raynaud, which identifies
the identity component of the Néron model J of JK with the functor Pic0

X/R . As
an application of our result, we prove a comparison isomorphism between two
canonical integral structures on the de Rham cohomology of XK .

1. Introduction

Fix a discrete valuation ring R with field of fractions K and residue field k. Let
AK be an abelian variety over K and consider the universal extension E( Â K ) of
the dual abelian variety Â K . This commutative algebraic K-group is an extension
of Â K by the vector group of invariant differentials on AK

0 // ωAK
// E( Â K ) // Â K // 0 (1-1)

and is universal among extensions of Â K by a vector group: for any vector group
V over K , the natural homomorphism Hom(ωAK , V )→ Ext( Â K , V ) arising by
pushout from (1-1) is an isomorphism. The theory of the universal extension was
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112 Bryden Cais

initiated by Rosenlicht [1958], who defined the notion and showed its existence
for abelian varieties, and was subsequently taken up in [Tate 1958; Murre 1962;
Grothendieck 1974; Messing 1972; 1973; Mazur and Messing 1974]. It is central to
the definition of the Mazur–Tate p-adic height pairing [Mazur and Tate 1983; Cole-
man 1991], to Deligne’s definition of the duality on the de Rham cohomology of
AK [Deligne 1974, Section 10.2.7.3] (see also [Coleman 1991; 1998]), and to cer-
tain proofs of the comparison isomorphism between the p-adic étale and de Rham
cohomologies of AK [Coleman 1984, Note added in proof; Wintenberger 1994].

As is well known, the Néron model Â of Â K over R provides a functorial exten-
sion of Â K to a smooth commutative group scheme over R, and it is natural to ask if
(1-1) can be functorially extended to a short exact sequence of smooth commutative
R-groups as well. Such an extension is provided by the “canonical extension” E( Â)
of Â , introduced by Mazur and Messing [1974, I, Section 5]. When Â K has good
reduction, E( Â) coincides with the universal extension of (the abelian scheme) Â
by a vector group, but in general, as an example of Breen and Raynaud shows (see
Remarks 2.5), Néron models need not have universal extensions, and E( Â) seems
to be the best substitute in such cases. Although they seem to be of fundamental
importance, canonical extensions of Néron models have been little studied, and as
far as we know, do not appear anywhere in the literature beyond their introduction
in [Mazur and Messing 1974] and [Gross 1990, Section 15].

In this paper, we study the canonical extension E( Â) when AK = JK is the
Jacobian of a smooth proper and geometrically connected curve XK over K . In
this situation, a famous theorem of Raynaud [Bosch et al. 1990, Section 9.7, The-
orem 1] relates the identity component Ĵ 0 of Ĵ to the relative Picard functor of
any proper flat and normal model X of XK that is “sufficiently nice”.

Theorem 1.1 (Raynaud). Let S = Spec R and fix a proper flat and normal model
X of XK over S. Denote by X1, . . . , Xn the (reduced) irreducible components of
the closed fiber Xk . Suppose that the greatest common divisor of the geometric
multiplicities of the X i in Xk is equal to 1, and assume either that k is perfect
or that X admits an étale quasisection. Then Pic0

X/S is a smooth and separated
S-group scheme and JK admits a Néron model J of finite type. Moreover, the
canonical morphism

Pic0
X/S

// Ĵ 0 (1-2)

arising via the Néron mapping property from the canonical principal polarization
of JK is an isomorphism if and only if X has rational singularities.1

Our main result enhances Raynaud’s theorem by providing a similar description
of the identity component E( Ĵ )0 of the canonical extension E( Ĵ ) of Ĵ .

1 Recall that X is said to have rational singularities if it admits a resolution of singularities
ρ : X ′→ X with R1ρ∗OX ′ = 0. Trivially, any regular X has rational singularities.
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Theorem 1.2. Let X be a proper flat and normal model of XK over S = Spec R.
Suppose that the closed fiber of X is geometrically reduced and that either X is
regular or that k is perfect. Then there is a canonical homomorphism of short
exact sequences of smooth group schemes over S

0 // ωJ //

��

E( Ĵ )0 //

��

Ĵ 0 //

��

0

0 // f∗ωX/S // Pic\,0X/S
// Pic0

X/S
// 0

(1-3)

which is an isomorphism of exact sequences if and only if X has rational singular-
ities.

Here, ωX/S is the relative dualizing sheaf of X over S; it is a coherent sheaf of
OX -modules that is flat over S and coincides with the sheaf of relative differentials
over the smooth locus of f in X . We write f∗ωX/S for the vector group attached to
this locally free OS-module, and Pic\,0X/S is the fppf sheaf associated to the functor
on S-schemes that assigns to each S-scheme ϕ : T → S the set of isomorphism
classes of pairs (L,∇), where L is a line bundle on XT whose restriction to all
components of each geometric fiber of XT has degree zero and∇:L→L⊗ϕ∗ωX/S

is a regular connection on L over T (Definition 3.5). We will show in Theorem
3.9 that under the hypotheses of Raynaud’s Theorem, Pic\,0X/S is indeed a smooth
and separated S-scheme, and that there is a short exact sequence of smooth groups
over S as in the lower row of (1-3).

We note that when f : X → S is smooth, our notion of regular connection
coincides with the familiar notion of connection, and we recover from Theorem
1.2 the “well known” description of the universal extension of a Jacobian of a
smooth and proper curve as the representing object of the functor classifying degree
zero line bundles on the curve that are equipped with connection.2 Let us also
point out that the hypotheses of Theorem 1.2 include not only all regular curves
over K with semistable reduction but many regular curves which are quite far3

from having semistable reduction, such as the modular curves X (N ) and X1(N )
over K := Qp(ζN ) for arbitrary N (see [Katz and Mazur 1985, Theorems 13.7.6
and 13.11.4], which describe proper flat and regular models of X (N ) and X1(N ),
respectively, over R = Zp[ζN ] that have geometrically reduced closed fibers).

It is well known that the exact sequence of Lie algebras arising from (1-1) is nat-
urally isomorphic to the 3-term Hodge filtration exact sequence of the first de Rham

2Certainly this result appears in the literature — see for example [Coleman 1990, Section 2] — but
we have been unable to find any proof of it. See, however [Mazur and Messing 1974, I, Section 4],
which proves a result in a similar spirit.

3They achieve semistable reduction only after a large and wildly ramified extension of K .
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cohomology of AK (Proposition 5.1). Thus, the Lie algebra of the smooth R-group
E( Â) provides a canonical R-lattice in the K -vector space H 1

dR(AK /K ) which is
functorial in K-morphisms of AK (due to the Néron mapping property of A and
the functorial dependence of E( Â) on A). When A is an abelian scheme and the
maximal ideal of R has divided powers, Mazur and Messing proved [1974, II, Sec-
tion 15] Grothendieck’s conjecture [1974, V Section 5] that this R-lattice is nat-
urally isomorphic to the Dieudonné module of the associated Barsotti–Tate group
Ak[p∞]. Thus, Lie(E(A)) provides a natural generalization of the Dieudonné mod-
ule when A is not an abelian scheme. In [Cais 2009], for a proper flat and normal
R-curve X , we studied a canonical integral structure H 1(X/R) on H 1

dR(XK /K )
(that is, an R-lattice that is functorial in K-morphisms of XK ) defined in terms of
relative dualizing sheaves. It is natural to ask how H 1(X/R) compares with the
lattice Lie(E( Ĵ )) under the canonical identification H 1

dR(XK /K ) ' H 1
dR(JK /K ).

We will prove in Corollary 5.6 that these two lattices coincide when X verifies the
hypotheses of Theorem 1.2.

We briefly explain the main ideas underlying the proof of Theorem 1.2. Our first
task is to reinterpret E( Ĵ )0 as the representing object of the functor ExtrigS(J,Gm)

on smooth S-schemes, à la Mazur and Messing [1974]. To do this, we must first
show that the functor ExtS(J,Gm) is represented by Ĵ 0 on smooth S-schemes, and
by [Bosch 1997, Proposition 5.1] this holds if and only if Grothendieck’s pairing on
component groups is perfect. It follows from results of Bosch and Lorenzini [2002,
Corollary 4.7] (see also Proposition 2.8) that the hypotheses of Theorem 1.2 imply
the perfectness of Grothendieck’s pairing. However, we note that Grothendieck’s
pairing is not generally perfect (see Remark 2.9).

In Section 3, we construct the exact sequence of smooth S-group schemes oc-
curring in the bottom row of (1-3). This is accomplished by Theorem 3.9, whose
proof employs Čech-theoretical techniques to interpret the hypercohomology of
the two-term complex d log : O×X → ωX/S in terms of line bundles with regular
connection, and makes essential use of the good cohomological properties of the
relative dualizing sheaf and of Grothendieck duality. A key insight here is that the
traditional notion of a connection on a line bundle on a scheme X over a base S
is not well behaved when X is not S-smooth and must be suitably modified as in
Definition 3.5. With these preliminaries in place, we turn to the proof of Theorem
1.2 in Section 4. We must first construct a morphism of short exact sequences of
smooth group schemes (1-3). Our strategy for doing this is as follows. Passing to an
unramified extension of K if need be, we suppose that XK has a rational point and
use it to define an Albanese morphism jK : XK→ JK . The Néron mapping property
of J allows us to extend jK to a morphism j : X sm

→ J on the smooth locus of
f in X . By (functorially) pulling back rigidified extensions of J by Gm along j ,
we get line bundles on X sm with connection. Via a careful analysis of the relative
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dualizing sheaf, we show in Lemma 4.1 that a line bundle with connection on X sm

is equivalent to a line bundle with regular connection on X ; this critically uses
our hypothesis that the closed fiber of X is geometrically reduced (equivalently,4

that X sm is fiber-wise dense in X ). From this, we deduce the desired map (1-3).
To complete the proof of Theorem 1.2, we then “bootstrap” Raynaud’s Theorem
1.1 using duality. Here, it is essential to know that the canonical evaluation du-
ality between the Lie algebra of J and the sheaf of invariant differentials on J is
compatible via j with the (Grothendieck) duality of f∗ωX/S and R1 f∗OX . Such
compatibility may be checked on generic fibers, where it is well known [Coleman
1998, Theorem 5.1].

We remark that when k is perfect, both the short exact sequences of group
schemes in the rows of (1-3) exist under the less restrictive hypotheses of Theorem
1.1; this follows immediately from Propositions 2.6 and 2.8 for the top row of
(1-3), and from Theorem 3.9 for the bottom row. It is natural to ask if Theorem
1.2 holds in this generality as well. We do not know the answer to this question,
as our construction of the map of short exact sequences of smooth groups in (1-3)
seems to require the closed fiber of X to be generically smooth. Indeed, our con-
struction of (1-3) relies on extending an Albanese morphism XK → JK to some
open subscheme U of X with the property that line bundles with connection on U
uniquely extend to line bundles with regular connection on X . On the one hand,
this extension property seems to require U to be fiber-wise dense in X (see Lemma
4.1 and Remark 4.2), while on the other hand one only expects to be able to extend
the morphism XK → JK to U = X sm. Thus, we are forced to require that U = X sm

be fiber-wise dense in X , that is, that Xk be generically smooth (equivalently geo-
metrically reduced). We note, however, that it is just our construction of the map
(1-3) that requires X to have generically smooth closed fiber; the proof that this
map is an isomorphism of exact sequences of group schemes relies only on the
weaker hypotheses of Raynaud’s Theorem 1.1.

Conventions and notation. Fix a base scheme S. If Y is any S-scheme and S′→ S
is any morphism, we will often write YS′ := Y ×S S′ for the base change. When
S′=Spec(F) is the spectrum of a field, we will sometimes abuse notation and write
YF in place of YS′ . We will work with the fppf topology on the categories of S-
schemes and of smooth S-schemes (see [SGA3-1 1970, Exposé IV, Section 6.3] or
[Bosch et al. 1990, Section 8.1]); if F is any representable functor on one of these
categories, we will also write F for the representing object. By an S-group scheme

4 Indeed, if Xk is geometrically reduced, it is clearly generically smooth. Conversely, as X is
normal by hypothesis, it must be S2 by Serre’s criterion for normality, whence Xk is S1. Since Xk is
also R0 and “R0+S1” is equivalent to being reduced, we conclude that Xk is reduced and generically
smooth, whence it must be geometrically reduced.
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G we will always mean a finitely presented flat and separated commutative group
scheme over S. As usual, we write Ga and Gm for the additive and multiplicative
group schemes over S. A vector group on S is any S-group that is Zariski-locally
isomorphic to a product of copies of Ga . Associated to any quasicoherent OS-
module M is a sheaf for the fppf topology on S-schemes ϕ : T → S given by
M(T ) := 0(T, ϕ∗M). When M is locally free of finite rank, this fppf sheaf is
represented by the vector group Spec

(
SymOS

(M∗)
)
, where M∗ is the OS-linear dual

of M; we will frequently abuse notation and write M for both the locally free OS-
module and the associated vector group on S. For any S-group G with identity
section e : S→ G, we put ωG := e∗�1

G/S . As usual, for any S-scheme T we put
T [ε] := T ×Z Spec(Z[ε]/ε2), considered as a T -scheme via the first projection,
and for any fppf sheaf G we write Lie(G) for the fppf sheaf of OS-modules defined
(as in [Liu et al. 2004, Section 1]) by Lie(G)(T ) := ker(G(T [ε])→G(T )). When
G is a smooth group, this agrees with the traditional notion of relative Lie algebra
(as a sheaf of OS-modules). We set Lie(G) := Lie(G)(S).

2. Canonical extensions of Néron models

In this section, following [Mazur and Messing 1974], we recall the construction
and basic properties of the canonical extension of a Néron model, and we explain
how to interpret its identity component via rigidified extensions.

Let S be any base scheme, and fix commutative S-group schemes F and G. A
rigidified extension of F by G over S is a pair (E, σ ) consisting of an extension E
(of fppf sheaves of abelian groups over S) of F by G

0 // G
ι // E // F // 0 (2-1)

and a section σ of S-pointed sheaves along the first infinitesimal neighborhood of
the identity of F

Inf1
S(F)

σ // E (2-2)

that projects to the canonical closed immersion Inf1
S(F) → F . Two rigidified

extensions (E, σ ) and (E ′, σ ′) of F by G are called equivalent if there is a ho-
momorphism (necessarily an isomorphism) ϕ : E → E ′ that carries σ to σ ′ and
makes the diagram (2-3) commute:

0 // G
ι // E //

ϕ

��

F // 0

0 // G
ι′

// E ′ // F // 0

(2-3)
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We denote by ExtrigS(F,G) the set of equivalence classes of rigidified exten-
sions of F by G over S. This set is equipped with a natural group structure via
Baer sum of rigidified extensions [Mazur and Messing 1974, I, Section 2.1]) which
makes the functor on S-schemes T  ExtrigT (FT ,GT ) a group functor that is
contravariant in the first variable via pullback (fibered product) and covariant in
the second variable via pushout (fibered coproduct). We will write ExtrigS(F,G)
for the fppf sheaf of abelian groups associated to this functor.

We will exclusively be concerned with the special case that G = Gm is the
multiplicative group over S. Note that (by fppf descent) any extension of F by Gm

is automatically representable as Gm is affine (compare the proof of [Oort 1966,
III, Proposition 17.4]). In this context, there is an alternate and more concrete
functorial description of the group ExtrigS(F,Gm) that we will need for later use.
Fix a choice of generator τ for the free rank-one Z-module of invariant differentials
ωGm of Gm over Z. Note that τ is canonically determined up to multiplication by
±1. For any scheme S, we will denote the pullback of τ to a generator of ωGm

simply by τ . Write Eτ (F)(S) for the set of equivalence classes of pairs (E, η)
consisting of an extension E of F by Gm over S and a global invariant differential
η ∈0(S, ωE) which pulls back via the given morphism ι :Gm→ E (realizing E as
an extension of F by Gm) to τ on Gm . Two pairs (E, η) and (E ′, η′) are declared
to be equivalent if there is a morphism ϕ : E→ E ′ inducing a diagram as in (2-3)
and having the property that ϕ∗η′ = η. We make Eτ (F)(S) into an abelian group
as follows. Let (E, η) and (E ′, η′) be two pairs as above, and denote by E ′′ the
Baer sum of E and E ′. Writing pr, pr′ for the projections from E ×F E ′ to E and
E ′, and denoting by q : E ×F E ′→ E ′′ the quotient map, we claim that there is a
unique invariant differential η′′ on E ′′ satisfying

q∗η′′ = pr∗ η+ pr′∗η′.

Indeed, by definition, E ′′ is the cokernel of the skew-diagonal (ι,−ι′) : Gm →

E ×F E ′ under which pr∗ η+ pr′∗η′ pulls back to zero. Thus, via the short exact
sequence

0 // ωE ′′ // ωE×F E ′ // ωGm
// 0

(which is left exact since E ×F E ′ → E ′′ is smooth due to [SGA3-1 1970, Ex-
posé VIB, Proposition 9.2 vii]), we obtain a unique invariant differential η′′ on E ′′

as claimed. One easily checks that under the map Gm → E ′′ induced by either
one of the inclusions (ι, 0), (0, ι′) :Gm⇒ E×F E ′ (whose composites with q both
coincide with the inclusion Gm → E ′′ realizing E ′′ as an extension of F by Gm)
the differential η′′ pulls back to τ . We define the sum of the classes represented
by (E, η) and (E ′, η′) to be the class represented by (E ′′, η′′). It is straightforward
to verify that this definition does not depend on the choice of representatives, and
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makes Eτ (F)(S) into an abelian group. This construction is obviously contravari-
antly functorial in S via pullback of extensions and of invariant differentials.

Lemma 2.1. For any choice of basis τ of ωGm , there is a functorial isomorphism
of abelian groups

ExtrigS(F,Gm)
' // Eτ (F)(S) .

Proof. Associated to the extension (2-1) with G =Gm is the short exact sequence
of Lie algebras

0 // Lie(Gm) // Lie(E) // Lie(F) // 0 (2-4)

(note that the map Lie(E) → Lie(F) is surjective by [Liu et al. 2004, Propo-
sition 1.1 (c)], as E → F is smooth). We claim that the data of a rigidifica-
tion on (2-1) is equivalent to a choice of a splitting of (2-4). Indeed, any map
σ : Inf1

S(F)→ E necessarily factors through Inf1
S(E), so using the natural isomor-

phism Inf1
S(H)'Spec(OS[ωH ]) for any smooth group scheme H over S we obtain

a bijection between rigidifications of (2-1) and sections ωE → ωF to the pullback
map ωF→ ωE . By the usual duality of the OS-modules Lie(H) and ωH [SGA3-1
1970, Exposé 2, Section 4.11], this is equivalent to a section s as claimed.

Using τ to identify the free rank one OS-module Lie(Gm) with OS and thinking
of a splitting of (2-4) as a map Lie(E)→ Lie(Gm) restricting to the identity on
Lie(Gm), we see that any such splitting is by duality equivalent to a global section
η ∈ 0(S, ωE) pulling back to τ in 0(S, ωGm ). One checks that the equivalence
(E, σ ) ↔ (E, η) induces an isomorphism of abelian groups ExtrigS(F,Gm)→

Eτ (F)(S) that is functorial in S, as claimed. �

The following key result shows that the functor Extrig allows one to realize the
universal extension of an abelian scheme.

Proposition 2.2 (Mazur–Messing). Let A be an abelian scheme over an arbitrary
base scheme S and denote by Â the dual abelian scheme. Then the fppf sheaf
ExtrigS(A,Gm) is a smooth and separated S-group scheme. It sits in a natural
short exact sequence of smooth S-group schemes

0 // ωA // ExtrigS(A,Gm) // Â // 0 . (2-5)

Moreover, (2-5) is the universal extension of Â by a vector group.

Proof. See [Mazur and Messing 1974], especially I, Section 2.6 and Proposition
2.6.7. �

We now specialize to the case that S = Spec R is the spectrum of a discrete
valuation ring R with field of fractions K . Fix an abelian variety AK over K
and denote by A the Néron model of AK over S and by A0 the relative identity
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component of A. Let Â be the Néron model of the dual abelian variety Â K . We
have the following analogue of Proposition 2.2:

Proposition 2.3 [Mazur and Messing 1974, I, Corollary 5.2]. As a functor on
smooth S-schemes, the fppf abelian sheaf ExtrigS(A

0,Gm) is represented by a
smooth and separated S-group scheme. Moreover, there is a natural short exact
sequence of smooth groups over S

0 // ωA // ExtrigS(A
0,Gm) // Â // 0 . (2-6)

Definition 2.4 (Mazur–Messing). The canonical extension of Â is the smooth and
separated S-group scheme

E( Â) := ExtrigS(A
0,Gm).

Remarks 2.5. When A is an abelian scheme, the canonical extension E( Â) co-
incides with the universal extension of Â by a vector group by Proposition 2.2.
When A is not an abelian scheme, an example of Breen and Raynaud [Mazur and
Messing 1974, I, 5.6] shows that A need not have a universal extension.

Note, however, that since the functor ExtrigS(A
0,Gm) commutes with fppf base

change, the smooth group scheme ExtrigS(A
0,Gm) representing it on the category

of smooth group schemes over S is of formation compatible with base change
to a smooth S-scheme. In particular, the K -fiber of the canonical extension ex-
act sequence (2-6) is the universal extension of Â K by a vector group, thanks to
Proposition 2.2.

In this paper, we work with ExtrigS(A,Gm) instead of ExtrigS(A
0,Gm), as the

former has better functorial properties due to the Néron mapping property of A
(which is not enjoyed by A0). Following the method of [Mazur and Messing
1974, I, Corollary 5.2], we wish to show that ExtrigS(A,Gm) is representable,
at least as a functor on smooth test objects. This is somewhat more subtle than
the corresponding problem for ExtrigS(A

0,Gm); in particular, denoting by8A and
8 Â the component groups of A and Â , we will need to know that Grothendieck’s
pairing for AK (see [SGA7-1 1972, Exposés 7–9] or [Bosch 1997, Section 4])

8A×8 Â
// Q/Z (2-7)

is right nondegenerate.

Proposition 2.6. Suppose that Grothendieck’s pairing on component groups is
right nondegenerate. Then the fppf abelian sheaf ExtrigS(A,Gm) on the category
of smooth S-schemes is represented by a smooth and separated S-group scheme.
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Moreover, there is a natural short exact sequence of smooth group schemes over S

0 // ωA // ExtrigS(A,Gm) // Â0 // 0 . (2-8)

Proof. We follow the proof of [Mazur and Messing 1974, I, Corollary 5.2]. Let T
be any smooth S-scheme and consider the natural map of abelian groups

ExtrigT (A,Gm) // ExtT (A,Gm) . (2-9)

By Lemma 2.1, we see that when T is affine any extension E of AT by Gm admits
a rigidification so (2-9) is surjective. By definition, the kernel of (2-9) consists
of rigidifications on the trivial extension of AT by Gm , up to isomorphism. To
give a rigidification Inf1

T (AT )→ AT ×T Gm of the trivial extension is obviously
equivalent to giving a map of T -pointed T -schemes Inf1

T (AT )→ Gm , which in
turn is equivalent to giving a global section of ωAT (see [Mazur and Messing 1974,
I, 1.2] or the proof of Lemma 2.1). If two sections η1 and η2 ofωAT give isomorphic
rigidified extensions of the trivial extension, then there is an automorphism of the
trivial extension, necessarily induced by a group map ϕ : AT → Gm , with the
property that η1 and η2 differ by

dϕ ∈ 0(T, ωAT ) (with d : HomT (AT ,Gm)→ Hom(Inf1
T (AT ),Gm),

the natural map induced by the canonical closed immersion Inf1
T (AT ) → AT ).

Since A is flat with proper generic fiber and T is S-smooth, we have

HomT (AT ,Gm)= 0,

so by passing to the associated fppf abelian sheaves, we thus obtain the short exact
sequence of fppf sheaves

0 // ωA // ExtrigS(A,Gm) // ExtS(A,Gm) // 0 .

By [Bosch 1997, Proposition 5.1] (or [Milne 1986a, III, Proposition C.14]), the
canonical duality of abelian varieties extends to a natural map Â0

→ ExtS(A,Gm)

which is an isomorphism of fppf abelian sheaves on the category of smooth S-
schemes if and only if Grothendieck’s pairing on component groups (2-7) is right
nondegenerate. Thus, our hypotheses ensure that ExtS(A,Gm) is represented on the
category of smooth S-schemes by the smooth and separated S-group scheme Â0.
Since ωA is a vector group, it is clearly smooth and affine over S. Thus, the proof
of [Oort 1966, III, Proposition 17.4], which is easily adapted from the situation
considered there (fpqc topology on all S-schemes) to our situation (fppf topology
on smooth S-schemes) since ωA and Â0 are smooth, shows via fppf descent that
ExtrigS(A,Gm) is represented (on smooth S-schemes) by a smooth and separated
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S-group scheme, and that there is a short exact sequence of smooth S-schemes
(2-8). �

Remark 2.7. We note that Mazur and Messing [1974, I, Corollary 5.2] prove that
the canonical map

Â // ExtS(A0,Gm)

is an isomorphism of fppf abelian sheaves on smooth test objects for any Néron
model A over any connected Dedekind scheme S by showing that ExtS(A0,Gm)

satisfies the Néron mapping property. In our situation, this method fails to gen-
eralize as Â0 does not satisfy any good mapping property on smooth S-schemes
which do not have connected closed fiber.

In our applications, we will wish to apply Proposition 2.6 when AK is the Jaco-
bian of a smooth and proper curve over K . In this situation, it follows easily from
the autoduality of JK and the functoriality of the morphism Ĵ 0

→ExtS(J,Gm) that
Grothendieck’s pairing is right nondegenerate if and only if it is left nondegenerate
if and only if it is perfect. In order to apply Proposition 2.6, we will need the
following criterion for the perfectness of Grothendieck’s pairing.

Proposition 2.8. Let XK be a smooth and proper curve over K with Jacobian
JK over K . Fix a proper flat and normal model X of XK over R, and denote by
X1, . . . , Xn the (reduced) irreducible components of the closed fiber Xk . Suppose
that the greatest common divisor of the geometric multiplicities of the X i in Xk

is 1, and assume one of the following hypotheses holds:

(1) The residue field k of R is perfect.

(2) X is regular, each X i is geometrically reduced and X admits an étale quasi-
section.

Then Grothendieck’s pairing (2-7) for JK is perfect.

Proof. As our hypotheses are preserved by and our conclusion may be checked
after étale base change, we may replace R with a strict henselization of R and may
thus assume that R is strictly henselian. In case (2), our hypotheses ensure that
XK has a K-rational point and admits a proper flat and regular model X over R all
of whose (reduced) irreducible components are geometrically reduced. These are
exactly the hypotheses of [Bosch and Lorenzini 2002, Corollary 4.7], which then
ensures that Grothendieck’s pairing for JK is perfect.

In case (1), we first claim that our hypothesis on the gcd of the geometric multi-
plicities of the X i in Xk imply the existence of a tamely ramified Galois extension
K ′ of K (necessarily with trivial residue field extension) such that X K ′ has a K ′-
rational point. Indeed, by resolution of singularities for excellent surfaces [Deligne
and Mumford 1969, Section 2; Lipman 1978] and descent arguments from the
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completion of R (see [Conrad et al. 2003, Theorem 2.2.2]) there exists a proper
birational morphism of proper and flat S-models X̃ → X of XK with X̃ regular.
Due to [Liu 2002, Corollary 9.2.30], we may assume that the closed fiber X̃k is a
normal crossings divisor on X̃ . Observe that the proper and birational morphism
X̃ → X is an isomorphism over any point ξ ∈ X of codimension 1; this may be
checked after the base change Spec(OX,ξ )→ X , where it follows from the valuative
criterion for properness applied to the discrete valuation ring OX,ξ (recall that X is
normal). In particular, X̃ → X is an isomorphism over the generic points of Xk

and we deduce that our hypothesis on the gcd of the geometric multiplicities of the
irreducible components of Xk is inherited by X̃ . Thus, there exists an irreducible
component 00 of X̃k whose multiplicity e in X̃k is not divisible by char(k). The
proof of [Liu 2002, Theorem 10.4.6] (see also [Liu 2002, Corollary 10.4.7]) then
shows that there is a Galois extension K ′ of K with ramification index e having
the following property: letting R′ denote the integral closure of R in K ′, (which is
again a discrete valuation ring, as R is henselian) and writing X ′ for the normaliza-
tion of X̃ ×S Spec(R′), the closed fiber X ′k has an irreducible component 0′0 over
00 whose geometric multiplicity in X ′k is 1; that is, 0′0 is generically smooth. As
R′ is strictly henselian, we conclude that there exists an R′-point of X ′ and hence
a K ′-point of X ′K ′ = X K ′ , as claimed.

Now since k is perfect, X K ′ admits a proper flat and regular model over R′

with the property that every (reduced) irreducible component of the closed fiber
is geometrically reduced (any proper flat and regular model will do). We may
therefore apply [Bosch and Lorenzini 2002, Corollary 4.7] to X K ′ to deduce that
Grothendieck’s pairing for JK ′ is perfect. As K ′/K is tamely ramified, it now
follows from [Bertapelle and Bosch 2000] that Grothendieck’s pairing for JK is
perfect, as desired. �

Remark 2.9. Assuming k to be perfect, it follows from work of Pépin [2008]
(using the results of Bosch and Lorenzini [2002]) that Grothendieck’s pairing for
JK is perfect whenever the index of XK is not divisible by the characteristic of k.

Already in the case of Jacobians, Grothendieck’s pairing may fail to be per-
fect. Indeed, working over R with imperfect residue fields, Bosch and Lorenzini
give an explicit example of a Jacobian JK for which Grothendieck’s pairing is not
perfect [Bosch and Lorenzini 2002, Example 6.2]. The first examples of abelian
varieties for which Grothendieck’s pairing is not perfect were given by [Bertapelle
and Bosch 2000].

For an arbitrary abelian variety AK over K , Grothendieck’s pairing on compo-
nent groups (2-7) is in addition known to be perfect under any of the following
hypotheses:

(1) R is of mixed characteristic (0, p) and k is perfect.
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(2) k is finite.

(3) k is perfect and AK has potentially multiplicative reduction.

(4) There exists a tamely ramified Galois extension K ′ of K having trivial residue
field extension such that Grothendieck’s pairing for the base change AK ′ is
perfect.

For the proofs of these facts, see [Bégueri 1980] in the case of (1), [McCallum
1986] in case (2), [Bosch 1997] in case (3), and [Bertapelle and Bosch 2000]
in the case of (4). See also [Milne 1986a, 3, Theorem 2.5] when R has mixed
characteristic and finite residue field.

We end this section by relating the group ExtrigS(A,Gm) to the identity com-
ponent of the canonical extension E( Â) := ExtrigS(A

0,Gm) of Â .

Lemma 2.10. Let AK be an abelian variety over K and A its Néron model over
R. Suppose that Grothendieck’s pairing (2-7) for AK is right nondegenerate, so
ExtrigS(A,Gm) is a smooth S-group. The canonical map of short exact sequences
of S-groups

0 // ωA //

��

ExtrigS(A,Gm) //

��

Â0 //

��

0

0 // ωA // ExtrigS(A
0,Gm) // Â // 0

(2-10)

furnished from the functoriality of ExtrigS(·,Gm) by the inclusion A0 ↪→ A identi-
fies ExtrigS(A,Gm) with the identity component of ExtrigS(A

0,Gm).

Proof. We first observe that ExtrigS(A,Gm) has connected fibers. More generally,
we claim that any extension of (not necessarily commutative) finite type connected
group schemes over a field must be connected. Indeed, suppose that

1 // G // E // F // 1

is such an extension. Since connectedness of any scheme with a rational point is
preserved by ground field extension, the fibers of E → F are connected as they
become isomorphic to G after passing to an extension field and G is connected.
Thus, any separation {U, V } of E is a union of fibers of E→ F . Since the quotient
map E→ F is faithfully flat and of finite type, it is open, so {U, V } is the pullback
of a separation of F ; by the connectedness of F we conclude that {U, V } is trivial
and E is connected.

To conclude, since ExtrigS(A,Gm) has connected fibers it suffices to show
that any homomorphism from a commutative S-group H with connected fibers to
ExtrigS(A

0,Gm) necessarily factors through ExtrigS(A,Gm). By the functoriality
of ExtrigS(·,Gm), the top row of (2-10) is identified with the pullback of the bottom
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row along the inclusion Â0
→ Â; that is, we have a canonical isomorphism of

smooth groups

ExtrigS(A,Gm)= ExtrigS(A
0,Gm)× Â Â0.

Thus, since the composition of H → ExtrigS(A
0,Gm) with the projection to Â

necessarily factors through the inclusion of Â0 into Â as H has connected fibers,
we conclude that H → ExtrigS(A

0,Gm) indeed factors through the fiber product
ExtrigS(A,Gm), as desired. �

3. An enhancement of the relative Picard functor

We continue to suppose that S = Spec R with R a discrete valuation ring having
field of fractions K . By a relative curve X over S we mean a flat finite type
and separated S-scheme f : X → S of pure relative dimension 1 that is normal
with smooth and geometrically connected generic fiber. In this section, we will
introduce the functor Pic\,0X/S and prove that it is representable whenever Pic0

X/S is
representable.

We begin by recalling some general facts about relative dualizing sheaves and
Grothendieck duality that will be needed in what follows. Let X and Y be locally
noetherian schemes and f : X→ Y a Cohen–Macaulay morphism of pure relative
dimension n. By [Conrad 2000, Theorem 3.5.1], the complex f !OY has a unique
nonzero cohomology sheaf, which is in degree−n, and the relative dualizing sheaf
of X over Y is

ωX/Y := H−n( f !OY ).

It is flat over Y by [Conrad 2000, Theorem 3.5.1], and locally free if and only if the
Cohen–Macaulay fibers of f are Gorenstein [Hartshorne 1966, V, Proposition 9.3,
Theorem 9.1]. Furthermore, the formation of ωX/Y is compatible with étale lo-
calization on X (see the discussion preceding [Conrad 2000, Corollary 4.4.5])
and with any base change Y ′→ Y where Y ′ is locally noetherian [Conrad 2000,
Theorem 3.6.1]. When f is in addition proper, there is a natural OY -linear trace
map

γ f : Rn f∗ωX/Y → OY , (3-1)

which is compatible with any base change Y ′ → Y with Y ′ locally noetherian
[Conrad 2000, Corollary 3.6.6]. By Grothendieck–Serre duality [Conrad 2000,
Theorem 4.3.1] the canonical map

R f∗RHom•X (F
•, ωX/Y [n]) // RHom•Y (R f∗F•,OY ) , (3-2)

induced by (3-1) is a quasi-isomorphism for any complex F• in the derived cat-
egory of sheaves of OX -modules whose cohomology is coherent and vanishes in
sufficiently negative and positive degrees.
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For arbitrary base schemes Y and Cohen–Macaulay morphisms f : X → Y
of pure relative dimension, one defines ωX/Y (and γ f when f is proper) via di-
rect limits and base change from the locally noetherian case (see [Conrad 2000,
page 174]); this makes sense due to the aforementioned base-change compatibility
in the locally noetherian context and yields a coherent sheaf of OX -modules ωX/Y

and a trace map γ f when f is proper that are compatible with arbitrary base change
on Y .

Let us apply these considerations to the case of a relative curve f : X→ S. Since
X is normal and of pure relative dimension one, it is Cohen–Macaulay by Serre’s
criterion for normality. Theorem 23.3 in [Matsumura 1989]. Thus, the complex
f !OS is a coherent sheaf ωX/S concentrated in degree −1. By our discussion, ωX/S

is S-flat, and of formation compatible with étale localization on X and arbitrary
base change on S. When f is S-smooth, the theory of the dualizing sheaf provides
a canonical identification of the relative dualizing sheaf with the sheaf of relative
differential 1-forms on X over S. It is natural to ask how these two sheaves are
related in general.

Proposition 3.1. There is a canonical OX -linear morphism

cX/S :�
1
X/S

// ωX/S, (3-3)

whose restriction to any S-smooth open subset of X is the canonical isomorphism.

Proof. See [Cais 2009, Proposition 5.1]. �

In fact, we can realize ωX/S as a subsheaf of differentials on X which are regular
on the generic fiber. Precisely, if i :U ↪→ X is any open subscheme of X containing
the generic fiber then the canonical map ωX/S → i∗i∗ωX/S is injective as it is an
isomorphism over XK andωX/S is S-flat. Since the formation ofωX/S is compatible
with étale localization on X , we thus obtain a natural injective map

ωX/S
� � // i∗ωU/S . (3-4)

In particular, taking U = XK we have ωU/S '�
1
XK /K by the general theory of the

dualizing sheaf (or by Proposition 3.1), so ωX/S is a subsheaf of i∗�1
XK /K . When

U is large enough, the map (3-4) is also surjective.

Lemma 3.2. Suppose that the complement of U in X consists of finitely many
closed points of codimension 2 (necessarily in the closed fiber). Then the canonical
injective map (3-4) is an isomorphism.

Proof. We follow the proof given right after (5.2.7) in [Conrad 2000]. By stan-
dard arguments, it suffices to show that the local cohomology groups H 1

x (X, ωX/S)
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vanish for all x ∈ X −U . Due to [SGA2 1968, Exposé III, Example 3.4], such
vanishing is equivalent to

depthOX,x
(ωX/S,x)≥ 2.

If x ∈ X −U is a regular point, this inequality is trivially verified, since ωX,x is
a free OX,x -module of rank 1 for such x (regular local rings are Gorenstein) and
OX,x is two-dimensional and normal (whence it has depth 2 by Serre’s criterion for
normality).

In general, by [SGA2 1968, Exposé III, Corollary 2.5] it is enough to show that
for each nonregular point x of the closed fiber Xk of X we have

depthOXk ,x
(ωXk/k,x)≥ 1. (3-5)

If this is not the case, then the maximal ideal mx of OXk ,x consists entirely of zero-
divisors for the finite OXk ,x -module ωXk/k,x , so it must be an associated prime of
ωXk/k,x . We would then have mx = Ann(s) for some nonzero s ∈ ωXk/k,x whence
HomXk (k(x), ωXk/k) 6= 0. However,

HomXk (k(x), ωXk/k)= H 1(Xk, k(x))∨ (3-6)

by Grothendieck duality for the k-scheme Xk (see Corollary 5.1.3 and the bottom
half of page 224 in [Conrad 2000]), and we know that the right side of (3-6) is zero
(since k(x) is a skyscraper sheaf supported at the point x), which is a contradiction.
Thus, mx contains an ωXk/k,x -regular element, so (3-5) holds, as desired. �

When f : X → S is in addition proper, so we have a trace map (3-1), we may
apply the machinery of Grothendieck duality. For our purposes, we need only the
following.

Proposition 3.3. If f : X → S is a proper relative curve then the canonical map
of flat OS-modules

f∗ωX/S // (R1 f∗OX )
∨ (3-7)

induced by cup product and the trace map (3-1) is an isomorphism. Furthermore,
there is a natural short exact sequence of OS-modules

0 // Ext1
S(R

1 f∗OX ,OS) // R1 f∗ωX/S // ( f∗OX )
∨ // 0 . (3-8)

In particular, if f is cohomologically flat (in dimension 0) then R1 f∗ωX/S is a
locally free OS-module.

Proof. Since HomX (OX , ·) is naturally isomorphic to the identity functor, (3-2) with
F• = OX (thought of as a complex in degree zero) yields a quasi-isomorphism

R f∗ωX/S[1] ' RHom•S(R f∗OX ,OS). (3-9)
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Applying H−1 to (3-9) and using the spectral sequence

Em,n
2 = Extm

S (H
−n(R f∗OX ),OS) H⇒ H m+n(RHom•S(R f∗OX ,OS)) (3-10)

(whose only nonzero terms occur when m = 0, 1 and n = 0,−1) to calculate the
right side, we obtain a natural isomorphism f∗ωX/S ' (R1 f∗OX )

∨. To know that
this map coincides with the map (3-7) induced by cup product and the trace map γ f ,
one proceeds as in the proof of [Conrad 2000, Theorem 5.1.2]. Similarly, applying
H 0 to (3-9) and using (3-10), we arrive at the short exact sequence (3-8). For the
final statement of the proposition, recall that by definition f is cohomologically
flat in dimension 0 if f∗OX commutes with arbitrary base change, which holds
if and only if R1 f∗OX is locally free. Thus, when f is cohomologically flat, the
sheaf Ext1

S(R
1 f∗OX ,OS) vanishes and it follows easily from (3-8) that R1 f∗ωX/S is

locally free over S. �

We record here a corollary showing that the relative dualizing sheaf is in general
much better behaved than the sheaf of relative differential 1-forms:

Corollary 3.4. Let f : X → S be a proper relative curve, and assume that f is
cohomologically flat in dimension 0. Then for all i ≥ 0, the OS-module Ri f∗ωX/S

is locally free and commutes with arbitrary base change on S.

Proof. By standard arguments on base change, it is enough to show that Ri f∗ωX/S

is locally free for i ≥ 0. This holds for i ≥ 2 by the theorem on formal functions
(as then Ri f∗ωX/S = 0), and for i = 0 since ωX/S is S-flat. For i = 1, it follows
immediately from Proposition 3.3. �

For a relative curve f : X → S, we now wish to apply the preceding con-
siderations to define a natural enhancement Pic\X/S of the relative Picard functor
classifying invertible sheaves with the additional data of a “regular connection”.

Let T be any S-scheme. Since both the sheaf of relative differential 1-forms and
the relative dualizing sheaf are compatible with base change, via pullback along
T → S we obtain from (3-3) a natural morphism �1

XT /T → ωXT /T , and hence an
OT -linear derivation

dT : OT // ωXT /T .

Fix a line bundle L on XT . Recall that a connection on L over T is an OT -linear
homomorphism ∇ : L→L⊗OT �

1
XT /T satisfying the usual Leibnitz rule. When X

is not S-smooth, this notion is not generally well behaved, and it is often desirable
to allow connections to have certain types of poles along the singularities of X .
For our purposes, the right notion of a connection is:

Definition 3.5. A regular connection on L over T is an OT -linear homomorphism

∇ : L // L⊗OXT
ωXT /T
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satisfying the Leibnitz rule: ∇(hη)= η⊗ dT (h)+ h∇η for any sections h of OXT

and η of L. A morphism of line bundles with regular connection over T is an OXT -
linear morphism of the underlying line bundles that is compatible with the given
connections.

Remark 3.6. Observe that any connection ∇ :L→L⊗�1
XT /T on L over T gives

rise to a regular connection on L over T via composition with the map induced by
�1

XT /T → ωXT /T .

If L and L′ are two line bundles on XT equipped with regular connections ∇
and ∇ ′ over T, the tensor product L⊗OXT

L′ is naturally equipped with the tensor
product regular connection ∇ ⊗∇ ′ induced by decreeing

(∇ ⊗∇ ′)(η⊗ η′) := η⊗∇ ′(η′)+ η′⊗∇(η),

for any sections η of L and η′ of L′. Observe that with respect to this operation, the
pair (OXT , dT ) serves as an identity element. Thus, the set of isomorphism classes
of line bundles on XT with a regular connection over T has a natural abelian group
structure which is obviously compatible with our definition of a morphism of line
bundles with connection. Furthermore, if T ′→ T is any morphism of S-schemes,
then since the formation of ωX/S is compatible with base change, any line bundle
on XT with regular connection over T pulls back to a line bundle on XT ′ with
regular connection over T ′.

Definition 3.7. Denote by P\X/S the contravariant functor from the category of S-
schemes to the category of abelian groups given on an S-scheme T by

P\X/S(T ) :=
{Isomorphism classes of pairs (L,∇) consisting of a line bundle

L on XT equipped with a regular connection ∇ over T

}
,

and write Pic\X/S for the fppf sheaf associated to P\X/S .

As is customary, we will denote by PX/S the contravariant functor on the cat-
egory of S-schemes which associates to an S-scheme T the set of isomorphism
classes of line bundles on XT , and by PicX/S the fppf sheaf on the category of
S-schemes associated to PX/S . For any S-scheme T , there is an obvious homomor-
phism of abelian groups P\X/S(T )→ PX/S(T ) given by “forgetting the connection”,
and hence a map of fppf abelian sheaves

Pic\X/S
// PicX/S . (3-11)

We wish to define a certain subfunctor of Pic\X/S which will play the role of “iden-
tity component” and which will enjoy good representability properties. We adopt
the following definition:
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Definition 3.8. Let Pic\,0X/S be the fppf abelian sheaf on the category of S-schemes
given by

Pic\,0X/S := Pic\X/S ×PicX/S Pic0
X/S .

Here, Pic0
X/S denotes the identity component of the group functor PicX/S (whose

fibers are representable; see [Liu et al. 2004, page 459] and compare [Bosch et al.
1990, page 233]). Alternately, Pic0

X/S the open subfunctor of PicX/S classifying line
bundles of partial degree zero on each irreducible component of every geometric
fiber [Bosch et al. 1990, Section 9.2, Corollary 13].

Theorem 3.9. Let f : X→ S be a proper relative curve and suppose that the great-
est common divisor of the geometric multiplicities of the irreducible components
of the closed fiber Xk of X is 1. Then Pic\,0X/S is a smooth S-scheme and there is a
short exact sequence of smooth group schemes over S

0 // f∗ωX/S // Pic\,0X/S
// Pic0

X/S
// 0 . (3-12)

To prove Theorem 3.9, we will first construct (3-12) as an exact sequence of
fppf abelian sheaves. By work of Raynaud [1970, Theorem 8.2.1] (or [Bosch
et al. 1990, Section 9.4, Theorem 2]), the hypotheses on X imply that Pic0

X/S is
a separated S-group scheme which is smooth by [Bosch et al. 1990, Section 8.4,
Proposition 2]. On the other hand, our hypotheses ensure that X is cohomologically
flat in dimension zero, whence f∗ωX/S is a vector group (in particular, it is smooth
and separated) by Corollary 3.4. A straightforward descent argument will complete
the proof.

We will begin by constructing the exact sequence (3-12). Fix an S-scheme T and
consider the natural map (3-11). The kernel of this map consists of all isomorphism
classes represented by pairs of the form (OXT ,∇), where ∇ is a regular connec-
tion on OXT over T . By the Leibnitz rule, ∇ is determined up to isomorphism
by the value ∇(1) ∈ 0(XT , ωXT /T ). Since two pairs (OXT ,∇) and (OXT ,∇

′) are
isomorphic precisely when there is a unit u ∈ 0(XT ,O×XT

) satisfying

∇(1)=∇ ′(1)+ u−1
· dT u

we see that the kernel of (3-11) is naturally identified with H 0(XT , ωXT /T )modulo
the image of the map

dT log : H 0(XT ,O×XT
) // H 0(XT , ωXT /T ) (3-13)

that sends a global section u of OXT to u−1
· dT u. Since pushforward by the base

change fT ∗ of f is left exact, we know that fT ∗O
×

XT
is a subsheaf of fT ∗OXT . By
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[Raynaud 1970, Théorème 7.2.1], the hypotheses on X ensure that f is cohomo-
logically flat, so fT ∗OXT ' OT . Since dT annihilates 0(T,OT ), we conclude that
the map (3-13) is zero.

We thus arrive at a short exact sequence of abelian groups

0 // H 0(XT , ωXT /T ) // P\X/S(T ) // PX/S(T ) (3-14)

that is easily seen to be functorial in T . In order to construct the exact sequence
of fppf abelian sheaves (3-12), we need to extend (3-14). To do this, we use Čech
theory to interpret (3-14) as part of a long exact sequence of cohomology groups.

Consider the two-term complex (in degrees 0 and 1) dT log : O×XT
→ ωXT /T

given by sending a section u of O×XT
to u−1

· dT u; we will denote this complex by
ω×,•XT /T . The evident short exact sequence of complexes

0 // ωXT /T [−1] // ω×,•XT /T
// O×XT

// 0

yields (since dT log : H 0(XT ,O×XT
) → H 0(XT , ωXT /T ) is the zero map) a long

exact sequence in hypercohomology that is clearly functorial in T :

0 // H 0(XT , ωXT /T ) // H1(XT , ω
×,•
XT /T )

// H 1(XT ,O×XT
)

dT log// H 1(XT , ωXT /T ). (3-15)

Lemma 3.10. For affine T , the exact sequence (3-14) is identified with the first
three terms of (3-15) in a manner that is functorial in T .

Proof. By [EGA III 1961, Section 12.4, pp. 406–407], there is a natural identifica-
tion of derived-functor (hyper)cohomology with Čech (hyper)cohomology which
is δ-functorial in degrees 0 and 1. We thus have a natural identification of (3-15)
with the corresponding exact sequence of Čech (hyper)cohomology groups, so it
suffices to interpret (3-14) Čech-theoretically in a manner that is natural in T .

For (L,∇) representing a class in P\X/S(T ), let {Ui } be a Zariski open cover of
XT that trivializes L, and denote by fi j ∈0(Ui ∩U j ,O×XT

) the transition functions.
Because of the Leibnitz rule, ∇

∣∣
Ui

is determined by a unique “connection form”
ωi ∈ 0(Ui , ωXT /T ), and the relation

ωi −ω j = f −1
i j · dT fi j

holds on Ui ∩U j . We thus obtain a Čech 1-hypercocycle for the complex ω×,•XT /T :

({ fi j }, {ωi }) ∈ C1({Ui }, ω
×,•
XT /T ) := C1({Ui ∩U j },O×XT

)⊕C0({Ui }, ωXT /T ).
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It is straightforward to check that any two such trivializations over open covers {Ui }

and {V j } yield hyper 1-cocycles which differ by a hyper coboundary when viewed
as hyper 1-cocycles for the common refining open cover {Ui∩V j }, and likewise that
two different representatives of the same isomorphism class in P\X/S(T ) yield hyper
1-cocycles that differ by a hyper-coboundary (after passing to a common refining
cover of the associated cocycles). We therefore obtain a well defined Čech hyper-
cohomology class. This procedure is easily reversed, and so we have a bijection

P\X/S(T )' Ȟ1(XT , ω
×,•
XT /T ).

To check that this is in fact a homomorphism of abelian groups that is functorial
in T is straightforward (albeit tedious).

We identify PX/S(T ) with Ȟ 1(XT ,O×XT
) in the usual way, by sending a class

represented by L to the 1-cocycle { fi j } given by the transition functions associated
to a trivializing open cover {Ui } and choice of trivializations of L

∣∣
Ui

. Similarly,
we use the natural isomorphism of H 0(XT , ωXT /T ) with Ȟ 0(XT , ωXT /T ), and we
thus obtain a functorial diagram of homomorphisms of abelian groups

0 // H 0(XT , ωXT /T ) //

'

��

P\X/S(T ) //

'

��

PX/S(T )

'

��

0 // Ȟ 0(XT , ωXT /T ) // Ȟ1(XT , ω
×,•
XT /T )

// Ȟ 1(XT ,O×XT
)

That this diagram commutes is easily verified by appealing to the explicit descrip-
tions of the maps involved. �

By Raynaud’s critère de platitude cohomologique [Raynaud 1970, Théorème
7.2.1], our hypotheses X ensure that f is cohomologically flat in dimension zero.
Thus, due to Corollary 3.4 and the fact that the formation of ωX/S commutes with
any base change on S, for each i ≥ 0 the fppf sheaf associated to functor on S-
schemes

T  H i (XT , ωXT /T )

is represented by the vector group Ri f∗ωX/S . By Lemma 3.10, we therefore have
an exact sequence of fppf sheaves of abelian groups on the category of S-schemes
whose first and last (nonzero) terms are smooth affine S-groups:

0 // f∗ωX/S // Pic\X/S
// PicX/S // R1 f∗ωX/S. (3-16)

With (3-16) at hand, we can now prove Theorem 3.9.

Proof of Theorem 3.9. Consider the identity component Pic0
X/S and the composi-

tion of its inclusion into PicX/S with the map of fppf sheaves PicX/S→ R1 f∗ωX/S .
We claim that this composite is the zero map. Indeed, by [Raynaud 1970, Exemples
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6.1.6 and Théorème 8.2.1] (or [Bosch et al. 1990, Section 9.4, Theorem 2]) and
[Bosch et al. 1990, Section 8.4, Proposition 2], our hypotheses on X ensure that
Pic0

X/S is a smooth and separated S-scheme, so the composite map

Pic0
X/S

// R1 f∗ωX/S (3-17)

is a map of S-group schemes. Since the generic fiber of Pic0
X/S is an abelian variety

and R1 f∗ωX/S is affine over S, the closed kernel of (3-17) contains the generic fiber,
and hence (3-17) is the zero map. Thus, the inclusion Pic0

X/S → PicX/S factors
through the image of (3-11). By pullback, we obtain a short exact sequence (3-12)
of fppf abelian sheaves on the category of S-schemes. As we have observed, the
leftmost term in (3-12) is a vector group (in particular it is a smooth and affine
S-group), and the rightmost term is a smooth and separated S-group scheme. It
follows from this by fppf descent, as in the proof of Proposition 2.6, that Pic\,0X/S is
a smooth and separated S-group scheme, and that we have a short exact sequence
(3-12) of smooth and separated group schemes over S. �

4. Proof of the main theorem

In this section, we prove Theorem 1.2, following the outline sketched in the intro-
duction (in particular, we will keep our notation from that section). Throughout
this section, we fix a proper relative curve f : X → S over S = Spec R which we
suppose satisfies the hypotheses of Theorem 1.2. Note that these hypotheses ensure
that Grothendieck’s pairing on component groups for JK is perfect, by Proposition
2.8. In particular, there is a natural short exact sequence of smooth S-groups:

0 // ωJ // ExtrigS(J,Gm) // Ĵ 0 // 0 .

We begin our proof of Theorem 1.2 by constructing a canonical map of short
exact sequences of smooth S-group schemes

0 // ωJ

��

// ExtrigS(J,Gm) //

��

Ĵ 0 //

��

0

0 // f∗ωX/S // Pic\,0X/S
// Pic0

X/S
// 0

(4-1)

which we do in three steps.

Step 1. We initially suppose there exists a rational point x ∈ XK (K ) and will later
explain how to reduce the general case to this one. Associated to x is the usual
Albanese mapping jx,K : XK → JK given by the functorial recipe

y 7→ O(y)⊗O(x)−1.
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Letting i : X sm ↪→ X denote the S-smooth locus of f : X→ S in X , we denote by
jx : X sm

→ J the morphism obtained from jx,K by the Néron mapping property
of J . By abuse of notation, we will also write jx for any base change of jx . For
each smooth and affine S-scheme T , we will show that “pullback along jx” yields
a commutative diagram of exact sequences of abelian groups

0 // 0(T, ωJT )
//

��

ExtrigT (JT ,Gm) //

��

ExtT (JT ,Gm) //

��

0

0 // 0(XT , ωXT /T ) // P\X/S(T ) // PX/S(T )

(4-2)

that is functorial in T . To do this, we will need to apply the following lemma with
U = X sm; that this choice of U satisfies the hypotheses of the lemma crucially uses
our hypothesis that the closed fiber of X is generically smooth.

Lemma 4.1. Let U be any open subscheme of X whose complement in X consists
of points of codimension at least 2. For each smooth S-scheme T , pushforward
along iT : UT → XT yields a natural isomorphism of short exact sequences of
abelian groups

0 // 0(UT , �
1
UT /T )

//

'

��

P\U/S(T ) //

'

��

PU/S(T )

'

��
0 // 0(XT , ωXT /T ) // P\X/S(T ) // PX/S(T )

.

Proof. To minimize notation, we will simply write i for iT . Since the dualizing
sheaf is compatible with étale localization, it suffices to show that for any pair
(L,∇) consisting of a line bundle L on XT with regular connection ∇ over T , the
canonical commutative diagram

L

∇

��

// i∗i∗L

i∗i∗(∇)
��

L⊗ωXT /T // i∗i∗L⊗ i∗i∗ωXT /T

(4-3)

has horizontal arrows that are isomorphisms. By hypothesis, X is normal and
the complement of U in X consists of points of codimension at least two. Since
T → S is smooth, the base change XT is also normal and the complement of UT

in XT has codimension at least 2 (see part (ii) of the corollary to Theorem 23.9
and Theorem 15.1 in [Matsumura 1989]). As L is locally free, it follows that the
top horizontal map of (4-3) is an isomorphism. By Lemma 3.2 the canonical map
ωX/S → i∗i∗ωX/S is an isomorphism; since this map and the sheaves in question
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are compatible with base change, we conclude that the bottom horizontal arrow in
(4-3) is also an isomorphism. �

Remark 4.2. Note that Lemma 4.1 is generally false if the complement of U in X
has codimension strictly less than 2.

We deduce from Lemma 4.1 applied to U := X sm that it suffices to construct (4-2)
with X replaced by U in the bottom row. Note that since UT is T -smooth, the
notions of regular connection and connection coincide (see Proposition 3.1). Thus,
we wish to associate to any element of Extrig(JT ,Gm) an invertible sheaf on UT

with connection over T in a manner that is Zariski-local on (and functorial in) T ,
and so globalizes from the case of affine T . To do this, we proceed as follows.

Fix a choice τ of generator for ωGm and (functorially) identify ExtrigT (JT ,Gm)

with Eτ (JT )(T ) via Lemma 2.1. Let (E, η) be a representative of a class in
Eτ (JT )(T ). Viewing E as a Gm-torsor over JT , we choose a Zariski open cover
{Vi } of JT and local sections si : Vi → E to the projection E→ JT that trivialize
E over Vi . Set ωi := s∗i η ∈ 0(Vi , �

1
JT /T ) and let L be the invertible sheaf on

JT corresponding to the Gm-torsor E . There are two canonical ways to associate
transition functions to L and the sections si depending on whether we consider the
section si−s j : Vi∩V j→Gm or its inverse s j−si . However, since any two choices
of τ differ by multiplication by ±1, there is a unique choice fi j : Vi ∩ V j → Gm

with the property that f ∗i jτ = f −1
i j d fi j (interpreting fi j as a section of Gm over

Vi ∩ V j ), and we consistently make this choice of transition function.
Define

∇i : L
∣∣
Vi

// L
∣∣
Vi
⊗OVi

�1
Vi/T

by ∇i (tsi ) := tsi ⊗ωi + si ⊗dt for any section t of OVi . Using the definition of ωi

and the fact that η pulls back to τ on Gm , it is straightforward to check that

ωi −ω j = f ∗i jτ = f −1
i j d fi j

(by our choice of fi j ) in 0(Vi ∩V j , �
1
JT /T ) and hence that the ∇i uniquely glue to

give a connection∇ on L over T . By passing to a common refining open cover, one
checks that any other choice of trivialization (V ′i ′, s ′i ′) yields the same connection on
L, so the pair (L,∇) is independent of our choices of cover {Vi } and sections {si }.

By pullback along jx : UT → JT , we thus obtain a line bundle on UT with
a connection. If (E ′, η′) is another choice of representative for the same class in
Eτ (JT )(T ) then by definition there is an isomorphism of extensions ϕ :E→E ′ with
the property that ϕ∗η′= η. One easily checks that ϕ induces an isomorphism of the
invertible sheaves on JT with connection corresponding to (E, η) and to (E ′, η′),
and hence that we have a well defined map of sets Eτ (JT )(T )→ P\U/S(T ) which
is readily seen to be functorial in T . That this map is in fact a homomorphism of
abelian groups follows easily from the definition using the description of the group
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law on Eτ (JT )(T ) as in Section 2. By Lemma 2.1, we thus obtain a homomorphism
of abelian groups

ExtrigT (JT ,Gm) // P\U/S(T ) (4-4)

that is functorial in T . It is straightforward to check that this map is moreover
independent of our initial choice of τ (but may a priori depend on our choice of
rational point x) and so provides the desired functorial map.

We similarly define ExtT (JT ,Gm)→ PU/S(T ) by associating to an extension E
of JT by Gm the pull back along jx :UT → JT of the line bundle L on JT obtained
by viewing E as a Gm-torsor over JT . This is readily seen to be a homomorphism
of abelian groups (using Baer sum on ExtT (JT ,Gm)) and is obviously functorial
in T .

Finally, we define 0(T, ωJT ) → 0(UT , �
1
UT /T ) as follows. By [Bosch et al.

1990, Section 4.1, Proposition 1], any global section ω0 of ωJT = e∗T�
1
JT /T can be

uniquely propagated to an invariant differential form ω on JT over T satisfying
e∗Tω=ω0. Pulling ω back along jx :UT → JT , we obtain a section of �1

UT /T over
UT . This association is clearly a homomorphism and functorial in T .

We thus obtain (via Lemma 4.1) a diagram (4-2) with all maps homomorphisms
of abelian groups, functorially in smooth affine S-schemes T . That this diagram
commutes follows immediately from the explicit definition of all the maps involved
(morally, each vertical map is simply “pullback by jx ”).

Step 2. Passing from (4-2) to the corresponding diagram of associated fppf sheaves
and recalling the construction of the exact sequence of fppf sheaves (3-16) in Sec-
tion 3, we obtain a commutative diagram of fppf sheaves of abelian groups

0 // ωJ //

��

ExtrigS(J,Gm) //

��

ExtS(J,Gm) //

��

0

0 // f∗ωX/S // Pic\X/S
// PicX/S

From Proposition 2.8, we thus deduce the following commutative diagram of fppf
abelian sheaves on smooth S-schemes with each term in the top row a smooth
S-group:

0 // ωJ //

��

ExtrigS(J,Gm) //

��

Ĵ 0 //

��

0

0 // f∗ωX/S // Pic\X/S
// PicX/S

Since the map Ĵ 0
→ PicX/S is homomorphism of group functors (on smooth S-

schemes) and Ĵ 0 has connected fibers, for topological reasons this map necessarily
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factors through the open subfunctor Pic0
X/S (thinking of Pic0

X/S as the union of all
identity components of the fibers of PicX/S [EGA IV3 1966, Corollaire 15.6.5,
p. 238] and arguing fiber-by-fiber). By the definition of Pic\,0X/S (Definition 3.8) as
a fiber product, we thus have a commutative diagram of fppf abelian sheaves on
smooth S-schemes

0 // ωJ //

��

ExtrigS(J,Gm) //

��

Ĵ 0 //

��

0

0 // f∗ωX/S // Pic\,0X/S
// Pic0

X/S
// 0

(4-5)

Step 3. By Proposition 2.6 and Theorem 3.9, both rows of (4-5) are short exact
sequences of smooth S-group schemes, and we claim that the commutative diagram
(4-5) of fppf sheaves on smooth S-schemes can be enhanced to a corresponding
commutative diagram of maps between smooth group schemes over S. Indeed,
this follows from Yoneda’s lemma, which ensures that the natural “restriction to
the smooth site” map

HomS(F,G)→ HomSsm(F,G)

is bijective for any fppf abelian sheaves F, G on S-schemes with F represented by
a smooth S-group scheme.

We have therefore constructed (4-1) using our initial choice of rational point
x ∈ XK (K ). If x ′ is any other choice of rational point, we claim that the resulting
maps (4-1) obtained from x and x ′ coincide. Since jx,K , jx ′,K : XK → JK differ
by a translation on JK , it is enough to show that for any translation τ : JK → JK ,
the induced map

0 // ωJ //

ϕ1

��

ExtrigS(J,Gm) //

ϕ2

��

Ĵ 0 //

ϕ3

��

0

0 // ωJ // ExtrigS(J,Gm) // Ĵ 0 // 0

(4-6)

(using the Néron mapping property) is the identity map. Since each term in the
bottom row is separated and each term in the top row is flat, whether or not
(4-6) coincides with the identity map may be checked on generic fibers. Now
τ ∗ : ωJK → ωJK is the identity map as ωJK is identified with the sheaf of (trans-
lation) invariant differentials [Bosch et al. 1990, Section 4.2 Proposition 1]. That
τ ∗ : ĴK → ĴK is the identity is well known, and follows from the fact that the
line-bundles classified by ĴK := Pic0

JK /K are translation invariant (or equivalently



Canonical extensions of Néron models of Jacobians 137

that the classes in ExtK (JK ,Gm) are primitive).5 Thus ϕ1=ϕ3= id so on K-fibers,
ϕ3− id uniquely factors through a map ĴK → ωJK which takes the identity to the
identity. As any map from an abelian variety to a vector group is constant, we
conclude that ϕ3 − id is identically zero on K-fibers, and hence that ϕ3 = id as
well. Thus, the map (4-1) which we have constructed is independent of the choice
of rational point x ∈ XK (K ).

In the general case when XK (K ) may be empty, we proceed as follows. Denote
by Y any one of the three schemes occurring in the top row of (4-1) and by Z the
corresponding scheme in the bottom row. We first claim that we have a canonical
map YK→ Z K . Indeed, XK has a K ′-rational point for some finite Galois extension
K ′ of K , and we may use this point to define a K ′-map YK ′ → Z K ′ as we have
explained. Since this map is independent of the choice of K ′-rational point by what
we have said above, via Galois descent we have a canonical K -map ϕK :YK→ Z K

as claimed.
We now appeal to the following general lemma.

Lemma 4.3. Fix an integral scheme T with generic point η and let Y → T and
Z → T be any flat T -schemes, with Z separated over T . Suppose given a map
ϕη : Yη→ Zη. Then there is at most one extension of ϕη to a T -map ϕ : Y → Z ,
and ϕ exists if and only if the schematic closure in Y ×T Z of the graph of ϕη maps
isomorphically onto Y by the first projection. In particular, ϕ exists if and only if
there is an fpqc morphism T ′→ T and a map ϕ′ : YT ′→ ZT ′ with ϕ′η′ = ϕη′ where
η′ = T ′×T η.

Proof. The proof of Lemma 4.3 proceeds via standard arguments with schematic
closures of graphs; due to lack of a reference, we sketch how this goes. The unique-
ness of an extension is clear, as T is integral, Z is separated over T , and Y is T -flat.
For existence, we proceed as follows. Let 0 ⊆ Y ×T Z be the schematic closure
in Y ×T Z of the graph 0ϕη ⊆ Yη ×η Zη of ϕη, and note that 0η = 0ϕη as Z is
T -separated. Now if the first projection 0→ Y is an isomorphism then it is clear
that ϕη extends to a T -morphism. Conversely, given ϕ : Y → Z extending ϕη
and denoting by 0ϕ the graph of ϕ, we claim that necessarily 0 = 0ϕ . Indeed,

5More precisely, for any abelian variety A over K we have a homomorphism of group functors

φ : PicA/K →Hom(A,Pic0
A/K )

given functorially on K-schemes T by sending a line bundle L on AT to the map x 7→ τ∗x L ⊗

L−1 with τx translation by a T -point x of AT . Since A and Pic0
A/K are projective, Grothendieck’s

theory of Hom-schemes ensures that Hom(A,Pic0
A/K ) is a finite-type K-scheme which we claim is

étale. Working over K , our claim follows from the fact that there are no nonzero liftings to K [ε]
of the zero map A→ Pic0

A/K (due to [Mumford et al. 1994, Theorem 6.1]), so the tangent space of
Hom(A,Pic0

A/K ) at the origin is zero. Again passing to K , we conclude that the group map φ maps
connected components of PicA/K to individual points, so in particular restricts to the zero map on
the connected component of the identity Pic0

X/K .
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the canonical closed immersion 0→ Y ×T Z factors through a closed immersion
0 → 0ϕ as 0ϕ is closed in Y ×T Z (due to T -separatedness of Z ) and contains
0ϕη . Since the closed immersion 0 → 0ϕ is an isomorphism over η (using that
0η ' 0ϕη ) it must be an isomorphism, since 0ϕη is dense in 0ϕ as 0ϕ is T -flat and
T is integral. We conclude that 0 = 0ϕ maps isomorphically onto Y via the first
projection. Finally, whether or not the first projection 0→ Y is an isomorphism is
insensitive to fpqc base change; since the formation of 0 commutes with such base
change (as η→ T is quasicompact and separated), we deduce the last statement
of the lemma. �

Applying the lemma with T = S=Spec(R), Y , Z as above, and T ′=Spec(Rsh)

for Rsh a strict henselization of R, we see that it remains to construct a T ′-morphism
YT ′ → ZT ′ recovering the base change of ϕK to K sh

:= Frac(Rsh) on generic
fibers. Now X has generically smooth closed fiber, so XK has a K sh-point. As
our hypotheses on X are unaltered by base change along local-étale extensions of
discrete valuation rings (such as R→ Rsh) and the formation of the top and bottom
rows of (4-1) commute with such base change we may use this K sh-point as in the
construction of (4-1) to define the desired T ′-map YT ′ → ZT ′ . We conclude that
ϕK uniquely extends to an S-map, and thus we obtain (4-1) over S, as desired.

Now that we have constructed the canonical map of short exact sequences of
smooth S-groups (4-1), we can show that it is an isomorphism. We reiterate here
that only the construction of this map uses the hypothesis that the closed fiber of X
is generically smooth; as we will see below, the proof that (4-1) is an isomorphism
requires only the weaker hypotheses of Raynaud’s Theorem 1.1.

Proof of Theorem 1.2. By passing to a finite étale extension if necessary, we may
assume that XK (K ) is nonempty, and we select x ∈ XK (K ) and use it to define
(4-1). Note that since X is normal with generically smooth closed fiber, X satisfies
the hypotheses of Theorem 1.1.

Consider the composite mapping

Pic0
X/S

// J 0 ' // Ĵ 0, (4-7)

where the first map is deduced via the Néron mapping property from the canonical
identification JK = Pic0

XK /K and the second map is similarly obtained from the
canonical principal polarization JK→ ĴK induced by the2-divisor [Milne 1986b,
Section 6]. We claim that the composite Ĵ 0

→ Ĵ 0 of (4-7) with the right vertical
map of (4-1) coincides with negation on Ĵ 0. Since Ĵ 0 is flat and separated, it
suffices to check this claim on generic fibers, so we wish to show that the map
Pic0( jx,K ) : ĴK → JK is the negative of the inverse of the canonical principal
polarization JK → ĴK . This is the content of [Milne 1986b, Lemma 6.9]. It
follows from Theorem 1.1 that the right vertical map of (4-1) is an isomorphism



Canonical extensions of Néron models of Jacobians 139

if and only if X has rational singularities; in particular, this settles the “only if”
direction of Theorem 1.2.

We henceforth suppose that X has rational singularities and we wish to show
that (4-1) is an isomorphism of exact sequences of smooth group schemes over S.
By Theorem 1.1 and our discussion, we know that the right vertical map of (4-1) is
an isomorphism, and we will “bootstrap” Raynaud’s theorem using duality; more
precisely, we will show that the left vertical map in (4-1) is dual to the map on
Lie algebras obtained from (1-2) and must therefore be an isomorphism as well.
Indeed, consider the dual of the map on Lie algebras obtained from (1-2):

Lie(J 0)∨
' // Lie(Pic0

X/S)
∨ .

For any commutative group functor G over S with representable fibers, the canon-
ical inclusion G0 ↪→ G induces an isomorphism on Lie algebras [Liu et al. 2004,
Proposition 1.1(d)], so we obtain a natural isomorphism of OS-modules Lie(J )∨'
Lie(PicX/S)

∨. The canonical identification R1 f∗OX ' Lie(PicX/S) ([Bosch et al.
1990, Section 8.4, Theorem 1] or [Liu et al. 2004, Proposition 1.3(b)]) then gives
a natural isomorphism

Lie(J )∨ ' // (R1 f∗OX )
∨ . (4-8)

Using the canonical duality ωJ 'Lie(J )∨ (see [SGA3-1 1970, II, Section 4.11] or
[Liu et al. 2004, Proposition 1.1(b)]) and Grothendieck duality (Proposition 3.3)
yields a natural isomorphism of OS-modules

ωJ
' // Lie(J )∨ '

(4-8)
// (R1 f∗OX )

∨ f∗ωX/S
'

(3-7)
oo (4-9)

and hence an isomorphism of the corresponding vector groups over S. We claim
that the left vertical map in (4-1) coincides with the negative of (4-9). Since the
source of both maps is flat and the target is separated over S, it suffices to check
such agreement on generic fibers.

To do this, we consider the following diagram, in which we simply write j for
jx,K and ϕ : JK → ĴK for the canonical principal polarization:

0(Spec K , ωJK )

can '

��

Pic0( j)∗
// 0(Spec K , ω ĴK

)

can '

��

ev
' // Lie( ĴK )

∨

θ∨JK '

��

Lie(−ϕ)∨
' // Lie(JK )

∨

θ∨XK '

��
H 0(JK , �

1
JK /K ) H 0( ĴK , �

1
ĴK /K

)
−ϕ∗

'oo
ψ0

JK

' // H 1(JK ,OJK ) H 1(XK ,OXK )
∨

H1( j)∨
oo

H 0(XK , �
1
XK
)

(3-7)

'

<<

..j∗

(4-10)
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Here, ψ0
JK

is the usual duality (defined using the Künneth formula and the first
Chern class of the Poincaré bundle [Berthelot et al. 1982, 5.1.3 and Lemme 5.1.4];
the map ev is the canonical evaluation pairing, and can is the canonical map ob-
tained by extending sections of ωJK to invariant differential forms on JK [Bosch
et al. 1990, Section 4.2, Propositions 1 and 2]. We claim that each of the three small
squares in (4-10) commute, and that the bottom “sector” anticommutes. For the first
square, this follows from the fact that the composite Pic0( j)◦ (−ϕ) : J→ J is the
identity map [Milne 1986b, Lemma 6.9], together with the fact that the canonical
map can is functorial. The same reasoning shows that the third square commutes,
using the functoriality of the identification θK [Liu et al. 2004, Proposition 1.3(c)].
The commutativity of the middle square follows immediately from 5.1.1 and the
proof of Théorème 5.1.6 in [Berthelot et al. 1982]. That the bottom sector region
anticommutes is the content of [Coleman 1998, Theorem 5.1]. Note, as a particular
consequence of these commutativity statements, that every map occurring in (4-10)
is an isomorphism.

Using the functoriality in JK of the canonical duality ωJK 'Lie(JK ) [Liu et al.
2004, Proposition 1.1(b)] and the agreement of −ϕ−1 with Pic0( j) : ĴK → J , as
above, we conclude that the composite isomorphism 0(Spec K , ωJK )→Lie(JK )

∨

along the top row of (4-10) is the canonical evaluation duality for JK . Thus, on
generic fibers, the map (4-9) is none other than the map induced by the top, right,
and bottom-right edges in (4-10). But by definition, the left vertical map of (4-1)
coincides with the composite of the left and bottom-left edges of (4-10) on generic
fibers, and is thus the negative of (4-9), as claimed.

Now that we know that the left and right vertical maps in (4-1) are isomorphisms
when X has rational singularities, it follows that the same is true of all three vertical
maps, as desired. �

Remark 4.4. That (4-9) coincides with the left vertical map in (4-1) over generic
fibers is essentially Theorem B.4.1 of [Conrad 2000]. We have chosen here to
present a different proof because [Conrad 2000, Theorem B.4.1] rests upon know-
ing a priori that the natural pullback map �1

JK /K → j∗�1
XK /K is an isomorphism,

while we prefer to deduce this fact as a corollary of our main result.

5. Comparison of integral structures

In this section, we use Theorem 1.2 to prove a comparison result for integral struc-
tures in de Rham cohomology. As usual, we fix a discrete valuation ring R with
field of fractions K .

Let AK be an abelian variety over K . It is well known that the Lie algebra of the
universal extension E( Â K ) of the dual abelian variety Â K is naturally isomorphic
to the first de Rham cohomology of AK over K , compatibly with Hodge filtrations.
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Proposition 5.1. There is a canonical isomorphism of short exact sequences of
finite dimensional K -vector spaces

0 // Lie(ωAK )
//

'

��

Lie(E( Â K )) //

'

��

Lie( Â K ) //

'

��

0

0 // H 0(AK , �
1
AK /K )

// H 1
dR(AK /K ) // H 1(A,OA) // 0

Proof. See [Mazur and Messing 1974, I, Section 4]. �

Note that since ωAK is a vector group, we have a canonical identification of
Lie(ωAK ) with the global sections of ωAK . We deduce from Proposition 5.1 and
Proposition 2.3 the following corollary, which equips the de Rham cohomology of
AK with a canonical integral structure.

Corollary 5.2. Let A and Â be the Néron models over R of AK and Â K , respec-
tively, and let E( Â) be the canonical extension of Â (Definition 2.4). The sequence
of Lie algebras

0 // Lie(ωA) // Lie(E( Â)) // Lie( Â) // 0 (5-1)

associated to the canonical extension (2-6) of Â over R is a short exact sequence of
finite free R-modules that is contravariantly functorial in K-morphisms of abelian
varieties AK→ BK over K and recovers the 3-term Hodge filtration of H 1

dR(AK/K )
after extending scalars to K . That is, (5-1) provides a canonical integral structure
on the 3-term Hodge filtration of H 1

dR(AK /K ).

Proof. Each term in (2-6) is a smooth S-scheme; in particular the map

ExtrigS(A
0,Gm)→ Â

is smooth [SGA3-1 1970, Exposé VIB, Proposition 9.2 vii]. Thus, by [Liu et al.
2004, Proposition 1.1(c)], applying the left exact functor Lie to (2-6) yields a short
exact sequence of finite R-modules which are free by smoothness. Since any ho-
momorphism of Néron models A → B induces a map on identity components
A0
→ B0, it follows from the Néron mapping property and the functoriality of the

canonical extension (2-6) that (5-1) is contravariantly functorial in K-morphisms of
abelian varieties AK→ BK over K . Since the formation of Lie algebras commutes
with the scalar extension R→ K , we deduce from Proposition 5.1 and the fact that
K-fiber of (2-6) is the universal extension of Â K by a vector group (see Remarks
2.5) that (5-1) recovers the Hodge filtration of H 1

dR(AK /K ) after extending scalars
to K . �

Remark 5.3. Supposing that Grothendieck’s pairing (2-7) is right nondegenerate,
so ExtrigS(A,Gm) is a smooth and separated S-scheme by Proposition 2.6, the
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natural map of short exact sequences (2-10) induces an isomorphism on associated
exact sequences of Lie algebras by Lemma 2.10 and [Liu et al. 2004, Proposi-
tion 1.1(d)].

For the remainder of this section, we suppose that AK = JK is the Jacobian of
a smooth proper and geometrically connected curve XK over K . Recall that the
3-term Hodge filtration

0 // H 0(XK , �
1
XK /K )

// H 1
dR(XK /K ) // H 1(XK ,OXK )

// 0 (5-2)

is autodual with respect to the cup product pairing on H 1
dR(XK /K ) and is con-

travariantly and covariantly functorial in finite morphisms of smooth and proper
curves g : XK→ X ′K via pullback g∗ and pushforward g∗ of differentials. Attached
to any such morphism, we have associated homomorphisms of abelian varieties

Pic0(g) : J ′K → JK and Alb(g) : JK → J ′K

by Picard and Albanese functoriality (where J ′K is the Jacobian of X ′K ). The fol-
lowing proposition is well known, but we have been unable to find a proof in the
literature so we include one here for the convenience of the reader.

Proposition 5.4. There is a canonical isomorphism of short exact sequences of
K-vector spaces

0 // H 0(JK , �
1
JK /K )

//

'

��

H 1
dR(JK /K ) //

'

��

H 1(JK ,OJK )
//

'

��

0

0 // H 0(XK , �
1
XK /K )

// H 1
dR(XK /K ) // H 1(XK ,OXK )

// 0

(5-3)

This isomorphism respects the autodualities of the top and bottom rows. Further-
more, for any finite morphism g : XK → X ′K , the map (5-3) intertwines Alb(g)∗

with g∗ and Pic0(g)∗ with g∗.

Proof. We first suppose that X (K ) is nonempty and select x0 ∈ X (K ). Let
j : XK → JK be the associated Albanese morphism. By pullback along j , we
obtain a morphism on de Rham cohomology that yields a commutative diagram
(5-3). Clearly this map commutes with extension of K (using the same x0) and we
claim that it is independent of our choice x0. Each term in the Hodge filtration of
H 1

dR(JK /K ) is clearly (the global sections of) a vector group over K ; denoting any
one of them by V it suffices to show that the natural map JK → AutK (V ) given
by translations is the zero map. Since the target is affine of finite type over K and
the source is an abelian variety, this map factors through a section of the target and
must therefore be identically zero, as claimed. It follows from Galois descent that
we have a canonical map (5-3) even when X (K ) is empty.
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Let us denote by H(JK ) (respectively H(XK )) the 3-term exact sequence of
K -vector spaces given by the top (respectively bottom) row of (5-3). By passing
to an extension of K if need be, we may suppose that XK (K ) is nonempty and that
(5-3) is given by pullback along an Albanese morphism j : XK → JK associated
to some x0 ∈ XK (K ). To show that (5-3) is an isomorphism, we will exploit the
natural autodualities on H(JK ) and H(XK ). For this to be successful, it is essential
to know that these dualities are compatible.

Lemma 5.5. The canonical autodualities of the short exact sequences H(JK ) and
H(XK ) are compatible via j∗. That is, the following diagram commutes:

H(JK )

j∗

��

H(JK )
∨'oo

H(XK )
' // H(XK )

∨

( j∗)∨
OO

Proof. This is Theorem 5.1 of [Coleman 1998]. �

Continuing with the proof of Proposition 5.4, observe that the functoriality of
the canonical identification H 1(XK ,OXK ) ' Lie(Pic0

XK /K ) yields a commutative
diagram

H 1(JK ,OJK )
' //

j∗

��

Lie(Pic0
JK /K )

Lie(Pic0( j))
��

H 1(XK ,OXK )
' // Lie(Pic0

XK /K )

(see [Liu et al. 2004, Proposition 1.3(c)]). Due to [Milne 1986b, Lemma 6.9], the
map Pic0( j) : ĴK → JK is the negative of the inverse of the canonical principal
polarization JK → ĴK , so in particular it is an isomorphism. Thus, the map j∗ :
H 1(JK ,OJK )→H 1(XK ,OXK ) is an isomorphism. Taking K-linear duals and using
the autoduality of H(JK ) and H(XK ), it follows from Lemma 5.5 that the map
j∗ : H 0(JK , ωJK )→ H 0(XK , �

1
XK /K ) is also an isomorphism. We conclude that

all three vertical maps of (5-3) are isomorphisms, as desired.
It remains to check our claims concerning the functoriality of (5-3) in finite

morphisms of smooth proper and geometrically connected curves g : XK → X ′K .
Denote by J ′K the Jacobian of X ′K and by j ′ : X ′K→ J ′K the Albanese map attached
to g(x0). Albanese functoriality gives a commutative diagram

XK
g //

j
��

X ′K

j ′

��
JK Alb(g)

// J ′K

(5-4)
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from which we easily obtain the commutative diagram of short exact sequences

H(J ′K )
Alb(g)∗ //

j ′∗

��

H(JK )

j∗

��
H(X ′K ) g∗

// H(XK )

(5-5)

which shows that (5-3) intertwines the maps g∗ and Alb(g)∗. Dualizing (5-5) and
using Lemma 5.5 gives a commutative diagram

H(JK )

j∗

��

H(JK )
∨'oo (Alb(g)∗)∨// H(J ′K )

∨ ' // H(J ′K )

j ′∗

��
H(XK )

' // H(XK )
∨

( j∗)∨

OO

(g∗)∨
// H(X ′K )

∨

( j ′∗)∨

OO

H(X ′K )
'oo

(5-6)

By [Cais 2009, Theorem 5.11(3)], the maps g∗ and g∗ are adjoint with respect
to the cup-product pairing on H 1

dR(XK /K ), so the composite map on the bottom
row of (5-6) coincides with g∗. We claim that Alb(g)∗ and Pic0(g)∗ are adjoint
with respect to the pairing on H 1

dR(JK /K ), so the top row of (5-6) coincides with
Pic0(g)∗. By definition, the duality pairing on H 1

dR(JK /K ) is deduced from the
natural perfect pairing

H 1
dR(JK /K )× H 1

dR( ĴK /K ) // K (5-7)

(defined as in [Berthelot et al. 1982, Section 5]) by identifying the de Rham co-
homology of ĴK with that of JK via the principal polarization JK ' ĴK . Now if
u : J ′K → JK is any morphism with dual û : ĴK → Ĵ ′K , then the induced maps
u∗ and û∗ on de Rham cohomology are adjoint with respect to (5-7) by [Berthelot
et al. 1982, 5.1.3.3]. Applying this to u = Pic0(g), our claim that Alb(g)∗ and
Pic0(g)∗ are adjoint then follows from the assertion that the composite map

JK ϕ

' // ĴK

̂Pic0(g)// Ĵ ′K J ′K
'

ϕ′
oo

coincides with Alb(g), where ϕ and ϕ′ are the canonical principal polarizations.
But this follows by applying the functor Pic0 to the diagram (5-4) and using the
fact that Pic0( j) and Pic0( j ′) coincide with −ϕ−1 and −ϕ′−1, respectively, thanks
to [Milne 1986b, Lemma 6.9]. �

Fix a proper flat and normal model f : X → S of XK over S = Spec R, and
denote by ω•X/S the two-term OS-linear complex of OX -modules d : OX → ωX/S
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furnished by Proposition 3.1. We will say that X is an admissible model of XK if
X has rational singularities and f is cohomologically flat in dimension zero.

Define H 1(X/R) := H1(X, ω•X/S). When X is cohomologically flat, there is a
natural short exact sequence of finite free R-modules

0 // H 0(X, ωX/S) // H 1(X/R) // H 1(X,OX )
// 0 (5-8)

whose scalar extension to K is identified with the 3-term Hodge filtration exact se-
quence H(XK ). Moreover, (5-8) is self-dual with respect to the usual cup-product
autoduality of H(XK ); see Proposition 5.8 of [Cais 2009]. By Theorem 5.11 of the
same paper, when X is admissible, the integral structure provided by (5-8) is canon-
ical: this short exact sequence is independent of the choice of admissible model X
of XK and is both contravariantly and covariantly functorial via pullback and trace
in finite K-morphisms XK → X ′K of curves having admissible models over R.

Via Corollary 5.2 and the identification of Hodge filtrations (5-3), when X is
admissible we thus have two canonical integral structures on the de Rham coho-
mology of XK , and it is natural to ask how these R-lattices compare.

Corollary 5.6. With the notation and hypotheses of Theorem 1.2, when X has
rational singularities there is a canonical isomorphism of short exact sequences of
finite free R-modules

0 // Lie(ωJ ) //

'

��

Lie(E( Ĵ )) //

'

��

Lie( Ĵ ) //

'

��

0

0 // H 0(X, ωX/S) // H 1(X/R) // H 1(X,OX )
// 0

(5-9)

that recovers the identification (5-3) after extending scalars to K .

Remark 5.7. Let g : XK → X ′K be any finite map of smooth and geometrically
connected curves over K and suppose that XK and X ′K admit proper flat and normal
models over R which have rational singularities and generically smooth closed
fibers. (Such models are automatically admissible due to Raynaud’s critère de pla-
titude cohomologique [Raynaud 1970, Théorème 7.2.1]). By our discussion above,
g induces maps g∗ and g∗ on the canonical integral structure (5-8) via pullback and
trace, and induces maps Alb(g)∗ and Pic0(g)∗ on the canonical integral structure
(5-1) by Albanese and Picard functoriality via the Néron mapping property. The
R-isomorphism (5-9) necessarily intertwines Alb(g)∗ with g∗ and Pic0(g)∗ with
g∗ as such agreement of maps between free R-modules may be checked after the
flat scalar extension R→ K , where it follows from Proposition 5.4.

Question 5.8. As an interesting consequence of Corollary 5.6, the duality state-
ment of Proposition 5.4, and the fact that the integral structure (5-8) is autodual
with respect to cup-product pairing, we deduce that the autoduality of the Hodge
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filtration of H 1
dR(JK /K ) preserves the integral structure (5-1). It seems natural to

ask if this is true in greater generality, that is, if for any abelian variety AK over
K , the natural duality isomorphism

0 // H 1( Â K ,O ÂK
)∨ //

'

��

H 1
dR( Â K /K )∨ //

'

��

H 0( Â K , �
1
ÂK
) //

'

��

0

0 // H 0(AK , �
1
AK /K )

// H 1
dR(AK /K ) // H 1(A,OA) // 0

(see [Berthelot et al. 1982, Lemme 5.1.4 and Théorème 5.1.6]) identifies the cor-
responding canonical integral structures provided by (5-1). It is also natural to
wonder how such an identification might come about at the level of canonical
extensions and Néron models or more precisely if the definition of the duality for
the de Rham cohomology of an abelian scheme (or more generally a 1-motive)
in terms of its universal extension (see [Coleman 1991, page 636] for the case of
abelian schemes, [Bertapelle 2008] for 1-motives and [Deligne 1974, 10.2.7.2] for
abelian varieties over C) can be extended to the case of Néron models and their
canonical extensions.

Proof of Corollary 5.6. By Theorem 1.2, we have an isomorphism of short exact
sequences of smooth groups as in (1-3). Applying the functor Lie and using the
fact that for any group functor G over S with representable fibers, the inclusion
G0 ↪→ G of the identity component induces an isomorphism on Lie algebras [Liu
et al. 2004, Proposition 1.1 (d)], we deduce a canonical isomorphism of finite free
R-modules

0 // Lie(ωJ ) //

'

��

Lie(E( Ĵ )) //

'

��

Lie( Ĵ ) //

'

��

0

0 // Lie(ωX/S) // Lie(Pic\,0X/S)
// Lie(PicX/S) // 0

.

By Definition 3.8 we have the canonical identifications

Lie(Pic\,0X/S)= Lie(Pic\X/S ×PicX/S Pic0
X/S)

= Lie(Pic\X/S)×Lie(PicX/S) Lie(Pic0
X/S)= Lie(Pic\X/S),

so it suffices to identify the left exact sequence of Lie algebras attached to the exact
sequence of fppf abelian sheaves

0 // f∗ωX/S // Pic\X/S
// PicX/S, (5-10)

of (3-16) with the integral structure on H(XK ) provided by (5-8). As in Section 3,
let ω×,•XT /T be the two-term complex dT log : O×XT

→ ωXT /T defined by dT log(u)=
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u−1
· dT (u), and write R1 f∗ω×X/S and R1 f∗O×X , respectively, for the fppf sheaves

associated to the group functors on S-schemes

T  H1(XT , ω
×,•
XT /T ) and T  H 1(XT ,O×XT

).

By Lemma 3.10, the exact sequence (5-10) is naturally isomorphic to the exact
sequence of fppf abelian sheaves

0 // f∗ωX/S // R1 f∗ω
×,•
X/S

// R1 f∗O×X

obtained by sheafifying (3-15). Thus, the proof of Corollary 5.6 is completed by:

Lemma 5.9. There is a natural isomorphism of exact sequences of free R-modules

0 // H 0(X, ωX/S) //

'

��

H 1(X)

'

��

// H 1(X,OX ) //

'

��

0

0 // Lie( f∗ωX/S) // Lie(R1 f∗ω
×,•
X/S)

// Lie(R1 f∗O×X )

(5-11)

Proof. By construction, the exact sequence (5-8) results from the Hodge to de Rham
spectral sequence attached to the evident filtration of ω•X/S . Now the canonical
section Z→ Z[ε]/(ε2) to the quotient map ε 7→ 0 induces a canonically split exact
sequence of filtered two-term (vertical) complexes

0 // OX
h 7→1+εh //

d
��

O×X S[ε]

ε 7→0 //

d log
��

O×Xoo //

d log
��

1

0 // ωX/S ·ε
// ωX S[ε]/S[ε]

ε 7→0 // ωX/Soo // 0

so passing to cohomology yields the commutative diagram

0

��

0

��

0

��
0 // H 0(X, ωX/S) //

��

H 0(X S[ε], ωX S[ε]/S[ε]) //

��

H 0(X, ωX/S)

��

0 // H1(X, ω•X/S)
//

��

H1(X S[ε], ω
×,•
X S[ε]/S[ε])

//

��

H1(X, ω•X/S)

��
0 // H 1(X,OX ) // H 1(X S[ε],O×X S[ε]

) // H 1(X,O×X )

(5-12)

with exact rows and columns, where the zeroes in the left column result from the
splitting (that is, H1 is left exact on split short exact sequences). We conclude
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that we have an isomorphism of exact sequences of abelian groups as in (5-11). It
remains to show that this is in fact an R-linear isomorphism. Recall that for any
group functor G on S-schemes, the multiplication on Lie(G) by OS(S) is induced
by the functoriality of G from the map OS(S)→ EndS(S[ε]) sending s ∈ OS(S) to
the self-map us of S[ε] that is induced by ε 7→ s · ε. Thus, the fact that the map
(5-11) defined by (5-12) is a map of R-modules amounts to the assertion that for
any s ∈ OS(S) the diagram

0 // ω•X/S
//

·s
��

ω×,•X S[ε]/S[ε]
//

u∗s
��

ω×,•X/S
//

id
��

0

0 // ω•X/S
// ω×,•X S[ε]/S[ε]

// ω×,•X/S
// 0

(5-13)

of filtered complexes with exact rows commutes. This is easily checked. �
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Period, index and potential, III
Pete L. Clark and Shahed Sharif

We present three results on the period-index problem for genus-one curves over
global fields. Our first result implies that for every pair of positive integers (P, I )
such that I is divisible by P and divides P2, there exists a number field K and a
genus-one curve C/K with period P and index I . Second, let E/K be any elliptic
curve over a global field K , and let P > 1 be any integer indivisible by the char-
acteristic of K . We construct infinitely many genus-one curves C/K with period
P , index P2, and Jacobian E . Our third result, on the structure of Shafarevich–
Tate groups under field extension, follows as a corollary. Our main tools are
Lichtenbaum–Tate duality and the functorial properties of O’Neil’s period-index
obstruction map under change of period.

1. Introduction

1.1. Notation and conventions. Throughout the paper K shall denote a global
field — that is, a finite field extension of either Q or Fp(T )— and E shall denote
an elliptic curve defined over K .

Let P be a positive integer which is not divisible by the characteristic of K .
Define P∗ to be P if P is odd and 2P if P is even.

Let K denote a fixed separable closure of K , and let gK = Aut(K/K ) be the
absolute Galois group of K .

We abbreviate the Galois cohomology group H 1(gK , E(K )) to H 1(K , E) and
call it the Weil–Châtelet group of E over K . Recall that this is a torsion abelian
group.

Let Pic(C) be the Albanese/Picard variety of C , and Picd(C) the connected
component classifying degree d invertible sheaves on C , so that Pic0(C) is the
Jacobian. The letter η shall denote an element of H 1(K , E). Such classes η are in
canonical bijection with the set of equivalence classes of pairs (C, ι), where C/K

is a genus one curve, ι :Pic0(C)→ E is an isomorphism from the Jacobian of C to
E , and the equivalence is isomorphism over K . In other words, ι endows C with
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Keywords: period, index, Tate–Shafarevich group.
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the structure of a principal homogeneous space (or torsor) under E . It follows that
C/K itself determines, and is determined by, an orbit of Aut(E) on H 1(K , E).

The period of η∈H 1(K , E) is its order in the group. In terms of the correspond-
ing torsor C , the period is the least positive degree of a K -rational divisor class
on C . The index of η is the gcd over all degrees [L : K ] of field extensions L/K
such that the restriction of η to H 1(L , E) is trivial. In terms of C , the index is the
least positive degree of a K -rational divisor. By Riemann–Roch, it is also the least
degree of an extension L/K such that C has an L-rational point. Since the period
and index are invariant under isomorphism over K , we will refer to the period and
index of the cohomology class η and that of the curve C interchangeably.

We denote by 6K the set of all places of K (including Archimedean places
in the number field case). For a place v of K , we denote the image of a class
η ∈ H 1(K , E) under the local restriction map H 1(K , E)→ H 1(Kv, E) by ηv. In
geometric terms, ηv is just the base extension of the curve (or rather, the principal
homogeneous space) C from K to Kv. By the support of a class we mean the finite
set of v ∈6K such that ηv 6= 0. The classes η with empty support form a subgroup
X(K , E), the Shafarevich–Tate group of E/K .

1.2. Statement of the main results. Recall that K is a global field, P is a positive
integer not divisible by the characteristic of K , and P∗ is P if P is odd, and 2P if
P is even.

Theorem 1. Let E/K be an elliptic curve. Suppose #E(K )[P∗] = (P∗)2. Then,
for any positive integer D | P , there are infinitely many classes η ∈ H 1(K , E) of
period P and index P · D. These classes can be chosen so as to be locally trivial
except possibly at two places of K .

Theorem 2. Let E/K be an elliptic curve and SK ⊂6K a finite set of places of K .
There exists an infinite sequence {ηi }

∞

i=0 of elements of H 1(K , E) such that

• η0 = 0;

• for all v ∈ SK and all i ∈ N, resv ηi = 0; and

• for all i, j ∈ N with i 6= j , ηi − η j has period P and index P2.

Theorem 3. Let E/K be an elliptic curve. For any positive integer r , there exists
a degree P field extension L/K such that X(L , E) contains at least r elements of
order P.

1.3. Discussion of the results. Let C be a genus-one curve over an arbitrary field
K . It is well known (see [Lang and Tate 1958, Proposition 5], for example), that
the period P and the index I of C satisfy the divisibilities

P | I | P2. (1)
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Conversely, Lang and Tate showed [1958, p. 678] that for any pair (P, I ) of positive
integers satisfying (1), there exists a genus-one curve C defined over the iterated
Laurent series field C((t1))((t2)) with period P and index I .

This raises the question of the possible values of P and I for genus-one curves
over a local or global field. Lichtenbaum [1968] showed that P = I for every
genus-one curve over a nondiscrete, locally compact field. 1

Suppose K is a field which admits at least one degree-P cyclic extension and
such that there exists an elliptic curve E/K with full P-torsion: #E[P](K ) = P2.
Then Lang and Tate showed that there exists a class η ∈ H 1(K , E) with period and
index both equal to P .

Let us assume henceforth that K is a global field. In this case, the argument of
Lang and Tate readily yields the fact that η may be taken to have support at most
one place of K .

Conversely, Cassels [1962, Theorem 1.3] showed that I = P for classes with
empty support. Moreover I = P for classes whose support has cardinality one,
as was first shown by Olson [1970, Theorem 15] and “rediscovered” by the first
author [Clark 2006b, Proposition 6].

The first examples of genus-one curves over a global field with I > P are due
to Cassels [1963], who found examples over K = Q with P = 2, I = 4. Cassels’
examples are closely related to the theory of explicit 2-descent. More recently, the
first author constructed, for any prime number p, classes η with P = p, I = p2

in the Weil–Châtelet group of any elliptic curve E/K over a number field with full
p-torsion [Clark 2005, Theorem 3]. The method crucially employs a period-index
obstruction map due to O’Neil [2002].

Our Theorem 1 may therefore be viewed as a generalization of [Clark 2005,
Theorem 3]. In particular, we now know that any pair (P, I ) satisfying (1) arises
as the period and index of a genus-one curve defined over some number field (de-
pending on P). Moreover, the fact that we can construct such classes which are
supported at two places is, in view of the aforementioned results of Cassels and
Olson, optimal, and answers a question raised by Çiperiani.

Having established Theorem 1, we naturally wish to understand the possible
values of period and index for genus-one curves defined over a fixed global field
K , or — better yet — inside the Weil–Châtelet group H 1(K , E) of a fixed elliptic
curve E/K .

Our Theorem 2 shows that for any elliptic curve E over a global field K and
any P > 1 indivisible by the characteristic of K , there exist infinitely many genus-
one curves with period P , index P2 and Jacobian E . Of course the statement

1More precisely, Lichtenbaum proved this under the assumption that P is not divisible by the
characteristic of K — the same assumption which is in force for us — but Milne [1972] later extended
Tate’s local duality theory to this case and accordingly removed this hypothesis.
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of Theorem 2 is significantly more complicated than this, and its significance is
probably hard to appreciate. However, we need this precise statement, especially
the “difference properties” of the sequence {ηi }, in the proof of Theorem 3.

In order to place Theorem 3 into context, let us again recall some prior results,
this time on the problem of constructing “large Shafarevich–Tate groups.” More
precisely, we fix a global field K , an integer P > 1 and a positive integer r , and the
goal is prove the existence of an elliptic curve E/K whose Shafarevich–Tate group
X(K , E) contains at least r elements of order P .

The first results here are due to Cassels [1964], who solved the aforementioned
problem for K = Q and P = 3. (This was also the first proof of the weaker fact
that X(Q, E) is unbounded as E ranges over all elliptic curves E/Q.) Cassels’
examples all have j = 0 and exploit the extra structure on such curves afforded
by the existence of an order 3 automorphism. The problem has also been solved
for P = 2 by Bölling [1975], and for P = 5 by Fisher [2001]. Donnelly [2003]
established the result for P = 7. Further, the case P = 13 is proved separately by
Donnelly (unpublished) and Matsuno [2007]. Among prime values of P , this is a
transitional case: the modular curve X0(P) has genus 0 precisely for these values
of P . There are as yet no such results for larger P .

There has also been work showing that, for a prime p, either the p-Selmer group
Selp(K , E) or X(K , E)[p] can be made arbitrarily large when one varies over all
elliptic curves E defined over number fields K whose degree [K : Q] is bounded
by a certain function of p. Notably, Kloosterman and Schaefer [2003] showed
that dimFp Selp(K , E) is unbounded as K ranges over all field extensions K/Q
of degree f1(p) = O(p). Kloosterman [2005] showed that dimFp X(K , E)[p] is
unbounded as K ranges over extensions of degree f2(p)= O(p4).

In [Clark 2005, Theorem 1], it was shown that if #E(K )[p] = p2 for a prime p,
then X(L , E)[p] is unbounded as L ranges over all degree p field extensions.
The argument can be applied to any elliptic curve defined over a global field (of
characteristic not divisible by p) at the cost of first trivializing the Galois action on
the p-torsion. It follows that for every E/K , X(L , E)[p] is unbounded as L ranges
over extensions of degree at most f3(p) = p(p2

− 1)(p2
− p) ≤ p5. Moreover,

upon restricting to elliptic curves with potential complex multiplication, one gets
the bound f4(p)≤ 2p3.

In contrast, our Theorem 3 extends the bound [L : K ] = P of [Clark 2005,
Theorem 1] to all elliptic curves and all integers P > 1. An interesting question
(which we are not able to answer) is whether Theorem 3 is in fact the optimal result
of its kind.

1.4. Organization of the paper. We assume some familiarity with the literature on
the period-index problem, especially [O’Neil 2002; Clark 2005]; nevertheless, we
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begin with a brief review of the period-index obstruction map, and then go on to
discuss some new ideas and techniques. The first key point is a clarification of the
relationship between O’Neil’s obstruction map 1 and the quantity I/P . Whereas
before it had been implicit in [O’Neil 2002] (and explicit in [Clark 2005]) that one
can use1 to determine whether or not I = P , here we present a simple characteriza-
tion of I/P in terms of the obstruction to a rational divisor class being represented
by a rational divisor. We also return to the point of the explicit computation of
O’Neil’s obstruction map in the case of full-level N structure for even N . These
matters are detailed in Section 2.

In Section 3 we give the proofs of Theorems 1, 2, and 3.

2. On the period-index obstruction map

In this section K is an arbitrary field, E/K is an elliptic curve, and P is a positive
integer not divisible by the characteristic of K . These hypotheses ensure that the
finite flat K -group scheme E[P] is étale, and so may be viewed as a gK -module.

2.1. Three aspects of the period-index obstruction map. The key technical tool
in the proofs of our results is the period-index obstruction map

1P : H 1(K , E[P])→ Br(K ).

It can be defined in three different ways, which we now recall. All three charac-
terizations either explicitly appear in or are readily deducible from [O’Neil 2002].
Note that 1P is not a homomorphism; as we shall see, it is a quadratic map.

Definition 1. For any ample line bundle L on an abelian variety A/K , the functor
GL which associates to a K -scheme S the group of all isomorphisms

(x, ψ) : L/S
∼
→ τ ∗x (L/S)

between L/S and one of its translates is represented by a K -group scheme, Mum-
ford’s theta group. The subgroup of automorphisms of L gives rise to an embed-
ding Gm ↪→ GL . The quotient is canonically isomorphic to κ(L), the kernel of the
canonical homomorphism

ϕL : A→ A∨, x 7→ τ ∗x (L)⊗ L−1.

We now follow O’Neil’s construction [2002, §2]. Let A be an elliptic curve E and
L the line bundle associated to the divisor P[O] on E ; note that κ(L)= E[P]. Let
ϕL : E→PP−1 be the associated morphism into projective space (well-defined up
to a linear automorphism of PP−1).
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Proposition 4. For P ≥ 2 we have the following commutative diagram of group
schemes:

0 // Gm //

��

GL //

��

E[P] //

��

0

0 // Gm // GLP // PGLP // 0

(2)

Proof. This is [O’Neil 2002, Proposition 2.1]. For our purposes, we will only need
to know the vertical map on the right. We view E[P] as an automorphism group
of ϕL : E→ PP−1 — that is, an element of E[P] acts on the global sections of L ,
and thus induces an automorphism of PP−1. This gives an element of PGLP as
required. �

The machinery of nonabelian Galois cohomology [Serre 1962] supplies a con-
necting map from H 1(K , E[P]) → H 2(K ,Gm). Identifying H 2(K ,Gm) with
Br(K ), we obtain our first definition of 1P .

Definition 2. Let V/K be any nonsingular, complete, geometrically integral variety,
and let Pic(V ) be the Picard group of V . There is an exact sequence [Bosch et al.
1990, §9.1]

0→ Pic(V )→ Pic(V )(K ) δV
→ Br(K )

γ
→ Br(V ). (3)

In particular, given a K -rational divisor class D on V , the obstruction to V being
represented by a K -rational divisor is an element of Br(K ). A Galois descent
argument shows that H 1(K , E[P]) classifies pairs (C, D)— where C ∈ H 1(K , E)
and D ∈PicP(C)(K ) is a K -rational divisor class — modulo the relation (C, D)∼
(C ′, D′) if there exists a K -isomorphism of torsors f : C → C ′ with f ∗D′ = D.
One may then define

1P((C, D))= δC(D).

For details, including a proof of the equivalence of this definition with the previous
one, see [O’Neil 2002, Proposition 2.3] and [Clark 2005, Proposition 4].

Definition 3. On the other hand, H 1(K , E[P]) classifies K -morphisms ϕ :C→ V
which are twisted forms of ϕL : E→PP−1; these forms arise as twists of the map
associated to the complete linear system P[O]. In particular, C ∈ H 1(K , E) and V
is a twisted form of PP−1; that is, a Severi–Brauer variety [O’Neil 2002; Cremona
et al. 2008, §1.2]. We may then define 1P(ϕ : C → V ) = [V ], the class of V in
Br(K ). It follows that 1P(H 1(K , E[P])) consists of elements of Br(K ) whose
index divides P; a fortiori we have the important relation

1P(H 1(K , E[P]))⊂ Br(K )[P].
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2.2. Lichtenbaum–Tate Duality. As above, we let E be an elliptic curve defined
over an arbitrary field K , and now let n denote a positive integer indivisible by the
characteristic of K .2 We have the Kummer sequence

0→ E(K )/nE(K )
ι
→ H 1(K , E[n])→ H 1(K , E)[n] → 0. (4)

Using ι and 1, we may define a map Li : H 1(K , E[n])× E(K )→ Br(K ) by

Li(ξ, x)=1(ξ + ι(x))−1(ξ)−1(ι(x)).

Since1(ι(E(K )/nE(K )))=0, Li depends only on the image of ξ in H 1(K , E)[n]
and on the image of x in E(K )/nE(K ); that is, it descends to give a map

Li : H 1(K , E)[n]× E(K )/nE(K )→ Br(K )[n]. (5)

We also have the Tate pairing

T : H 1(K , E)[n]× E(K )/nE(K )→ Br(K )[n]. (6)

There are many definitions of the Tate pairing; see for example [Tate 1958; Licht-
enbaum 1969]. Perhaps the most straightforward is as follows. Given (ξ, x), lift ξ
to any η in H 1(K , E[n]). Consider the cup product

η∪ ι(x) ∈ H 2(K , E[n]⊗ E[n]),

and follow by the Weil pairing to obtain a class in H 2(K , µn); the latter is canoni-
cally isomorphic to Br(K )[n]. The resulting Brauer class is T (ξ, x). Note that the
pairing is independent of our choice of n, in the sense that we may replace n by
any multiple without changing the value of the pairing.

Theorem 5 [O’Neil 2002, §5]. The map Li coincides with the Tate pairing T .

Since T is bilinear, the theorem implies that so is Li, and together with the fact
that 1(dξ) = d21(ξ) [O’Neil 2002, Lemma 4.2] this means that 1 itself is a
quadratic map. This also follows from the first definition of 1 as a connecting
map in nonabelian cohomology, together with [Zarhin 1974]. Note that if K is
complete, discretely valued, and has finite residue field, then Br(K )[n] = ( 1

n Z)/Z,
and Li puts the finite abelian groups H 1(K , E)[n] and E(K )/nE(K ) in Pontrjagin
duality (“Tate local duality”).

2Thus n satisfies exactly the same requirements as our “fixed”’ positive integer P . The merit of
considering both “fixed P” and “variable n” will become clear in the next section.
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2.3. Theta functoriality. Let η be a class in H 1(K , E)[n]. The exactness of the
Kummer sequence (4) means that η has at least one lift to an element

ξ ∈ H 1(K , E[n]).

Following O’Neil and Clark, we attempt to use the obstruction maps 1 to study
the discrepancy between the period and the index of η.

Now a key point: in [Clark 2005] we only considered the case where n is equal
to the period P of η. But certainly we can also choose lifts ξn ∈ H 1(K , E[n])
whenever n is any multiple of the period of η. It turns out to be quite useful to do
so, and in particular to compare various obstruction maps 1n of differing levels.
Geometrically speaking this amounts to considering along with the theta group
GL of our fixed line bundle L = L(P[O]) the theta groups of all tensor powers
Lm of L and various natural homomorphisms between them. The study of such
homomorphisms is an integral part of Mumford’s theory.

So let m be yet another positive integer indivisible by the characteristic of K .
The natural inclusion E[P] ↪→ E[m P] of gK -modules induces a map

jm : H 1(K , E[P])→ H 1(K , E[m P]).

Under the interpretation 2 of H 1(K , E[P]) as equivalence classes of pairs (C, D),
where C ∈ H 1(K , E) and D ∈ PicP(C), jm is the map (C, D) 7→ (C,m D).

Similarly, multiplication by m induces a map

[m] : H 1(K , E[m P])→ H 1(K , E[P]).

Proposition 6. If ξ ∈ H 1(K , E[P]) and η ∈ H 1(K , E[m P]), then:

(a) 1m P jm(ξ)= m1P(ξ), and

(b) m1m Pη =1P([m]η).

Proof. Mumford [1966, pp. 309–310] shows that both jm and [m] extend to mor-
phisms of the theta group sequences:

0 // Gm

[m]
��

// GL

εm

��

// E[P] //

jm
��

0

0 // Gm // GLm // E[m P] // 0

and

0 // Gm

[m]
��

// GLm

ηm

��

// E[m P] //

[m]
��

0

0 // Gm // GL // E[P] // 0
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In each case the restriction to Gm is simply the mth power map. We remark that
the map εm : GL → GLm is relatively straightforward to define: an isomorphism
ψ : L

∼
→ τ ∗x L induces, by passage to the mth power, a canonical isomorphism

ψ⊗m
: Lm ∼
→ τ ∗x (L

m), so εm : (x, ψ) 7→ (x, ψm). These commutative ladders induce
commutative ladders in nonabelian Galois cohomology, and the commutativity of
these last two diagrams gives the desired result. �

2.4. Applications to the quantity I/P. We begin with the following result, which
was known to O’Neil:

Proposition 7 [Clark 2005, Theorem 5]. Let E/K be an elliptic curve over a
field K , and P a positive integer indivisible by the characteristic of K . Let η ∈
H 1(K , E) be of period P. The following are equivalent:

(a) η has index P.

(b) There exists some lift ξ ∈ H 1(K , E[P]) of η such that 1P(ξ)= 0.

Proof. If C is the genus-1 curve represented by η, then in light of the second
definition of 1P , both conditions express the fact that C admits a rational divisor
of degree P . �

We are therefore interested in the remaining case in which 1P(ξ) 6= 0 for every
lift ξ of η to H 1(K , E[P]).

Let C/K be a curve of any genus, of period P and index I . Referring back to
(3), we may define the relative Brauer group κ(C/K ) = Im(δC) = Ker(γ ). For
any n ∈ Z, define moreover κn(C/K )= δC(Picn(C)(K )).

Proposition 8. The quotient κ(C/K )/κ0(C/K ) is cyclic of order I/P.

This is a reasonably well-known result [Ciperiani and Krashen 2007, Theorem
2.1.1; Clark 2006a, Proposition 24], the standard proof of which employs a snake
lemma argument. But the following proof offers some additional insight.

Proof. By the definition of P we have Picn(C)(K ) = ∅ unless n is a multiple of
P , so

κ(C/K )= δC(Pic(C)(K ))= δC

( ⋃
n∈Z

PicnP(C)(K )
)

=

⋃
n∈Z

δC(PicnP(C)(K ))=
⋃
n∈Z

κnP(C/K ).

Choose a rational divisor class D of degree P; this in turn determines a rational
divisor class of each degree nP , namely DnP = nD. Put α = δC(D), so that
δC(DnP)= nα. Adding DnP induces a bijection of sets Pic0(C)(K )→ PicnP(C),
and exhibits

κnP(C/K )= nα+ κ0(C/K )
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as a coset of the subgroup κ0(C/K ) of Br(K ). This shows that κ(C/K ) is the
subgroup generated by α and κ0(C/K ). Moreover, C admits a rational divisor of
degree nP if and only if 0∈ κnP(C/K ) if and only if nα ∈ κ0(C/K ). The quantity
I/P is the least such value of n, that is, the order of

〈α+ κ0(C/K )〉/κ0(C/K )= κ(C/K )/κ0(C/K ). �

Proposition 9. Let η ∈ H 1(K , E) be a class with period P and index I , and let ξ
be any lift of η to H 1(K , E[P]). Then

I/P ≤ min
x∈E(K )/P E(K )

order(1P(ξ + ι(x))). (7)

Proof. As x runs through E(K )/P E(K ), the elements ξ+x run through all lifts of
η to H 1(K , E[P]). For any such lift ξ , let D=order(1P(ξ)). Then1P D( jD(ξ))=

D1P(ξ)= 0, so that there is a rational divisor of degree P D on the corresponding
torsor, and I ≤ P D. �

Concerning the inequality (7), Proposition 7 says that the left-hand side equals 1
if and only if the right-hand side does. When P = p is prime, we have a simple
dichotomy: either I/P = 1 or I/P = p, so equality holds in (7) when the period
is prime, a fact which was exploited in [Clark 2005]. By a primary decomposition
argument, we also have equality when P is square-free. It is not hard to see that
equality holding in (7) is equivalent to the splitting of the short exact sequence

0→ κ0(C/K )→ κ(C/K )→ Q→ 0, (8)

where the last term Q is cyclic of order I/P . It is natural to wonder whether this
sequence always splits. This innocuous-looking question lies at the heart of the
relationship between the period, the index and the period-index obstruction map,
and it turns out to be surprisingly difficult. We believe that the answer is in general
negative. However it is possible to show that equality holds for certain specially
constructed classes. In the proofs of the main theorems we use Lichtenbaum–Tate
duality to ensure equality, following [Sharif 2006].

2.5. The case of full-level P structure. In this section we assume that E[P](K )⊂
E(K ). By the theory of the Weil pairing, the Pth roots of unity µP are contained
in K . Fix a basis (S, T ) for E[P] once and for all. Note that this induces, via
the Weil pairing, a basis for µP — that is, a specific primitive Pth root of unity
ζ = eP(S, T ). After making this choice, we get an isomorphism

8 : H 1(K , µP)× H 1(K , µP)
∼
→ H 1(K , E[P]). (9)

The composition of the cup product with the map µP ⊗µP → µP given by

ζ a
⊗ ζ b
7→ ζ ab
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gives a pairing

〈 , 〉P : H 1(K , µP)× H 1(K , µP)→ H 2(K , µP)= Br(K )[P],

the level P norm-residue symbol (or Hilbert symbol) [Serre 1962, p. 207].
Via the canonical Kummer isomorphism H 1(K , µP) = K×/K×P , we may

equally well view 8 and 〈 , 〉P as maps defined on (K×/K×P)2.

Theorem 10. If E[P∗] ⊂ E(K ), then 1P ◦8= 〈 , 〉P .

As a prelude to the proof, we consider the special theta group. Recall the theta
group scheme GL , where L is the class of P[O]. We found a homomorphism from
GL to GLP . Form the fiber product

SL = GL ×GL SLP ,

where SLP ⊂ GLP is the special linear group. Then we have an exact sequence

0→ µP → SL → E[P] → 0,

where the maps are the restrictions of the maps in (2). If we identify H 2(K , µP)

with (Br K )[P], then the coboundary H 1(K , E[P])→ H 2(K , µP) is the obstruc-
tion map. Let c : H 0(K , E[P])→ H 1(K , µP) be the lower dimension coboundary.
Define

d : H 1(K , E[P])→ (Br K )[P]

to be given by dξ(σ, τ ) = c(ξ(τ ))(σ ). (Note that since E[P] is a trivial Galois
module, each cohomology class in H 1(K , E[P]) consists of a single cocycle.)

Lemma 11. 1= 〈 , 〉 ◦8−1
+ d.

Proof. As mentioned above, we have earlier shown [Clark 2005, Theorem 6] that

1−〈 , 〉 ◦8−1

is a homomorphism of groups. Therefore it suffices to prove the claim for any
subset of H 1(K , E[P]) which generates the group. We will consider the subset
given by the images of H 1(K ,Z/PZ) induced by the two maps (1 7→ S) and
(1 7→ T ). By symmetry, it suffices to consider the case (1 7→ S) only. Let a ∈
Hom(gK ,Z/PZ), and let ξ be the image of a under the map (1 7→ S). Clearly
〈8−1(ξ)〉 = 0. Map S down to PGLP(K ), then lift to an element MS in SLP(K ).
We set MaS = Ma

S . Note that since det MS = 1 and S has order P , we must have
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M P
S = I . Then

(1ξ)(σ, τ )= Ma(σ )
S (σMa(τ )

S )M−a(στ)
S

= Ma(σ )
S a(τ ) · c(S)(σ )Ma(τ )

S M−a(στ)
S

= a(τ ) · c(S)(σ )

= c(ξ(τ ))(σ )

= dξ(σ, τ ).

The second equality follows from the fact that c(S)(σ )= (σMS)M−1
S . �

Lemma 12. 2d = 0.

Proof. It suffices to show that 2c = 0. Let ι be the group inverse map on E[P].
According to [Mumford 1966, p. 308], ι extends to a map on the theta group GL

which acts as the identity on Gm . We restrict ι to SL . By the functoriality of c, if
x ∈ H 0(K , E[P]) = E[P], then c ◦ ι(x) = c(x). But c ◦ ι(x) = c(−x) = −c(x),
which proves the claim. �

Proof of Theorem 10. If P is odd, then H 1(K , µP) has trivial 2-torsion. Therefore
Lemma 12 implies that d = 0. By Lemma 11, the conclusion follows.

Now suppose P is even. According to [Mumford 1966, p. 310], there is a map
η2 : GL2 → GL which, upon restriction to the subgroup schemes SL and SL2 ,
induces the commutative diagram

H 0(K , E[2P])
c //

[2]
��

H 1(K , µ2P)

[2]
��

H 0(K , E[P])
c // H 1(K , µP)

By the proof of Lemma 12, [2] ◦ c is the zero map. Therefore c ◦ [2] is zero. The
hypothesis E[2P] ⊂ E(K ) implies that the left-hand map above is surjective, and
therefore the lower map c is zero. By Lemma 11, the result follows. �

3. Proofs of Theorems 1, 2 and 3

We first remind the reader of a standard trick: in all work on the period-index
problem it suffices to treat the case where the period P is a prime power P = pa .
Indeed, if a class η ∈ H 1(K , E) (or any other Galois cohomology group, for that
matter) has period P = pa1

1 . . . par
r , then putting ηi = (P/pai

i )η, one easily checks
that η=

∑r
i=1 ηi and that I (η)=

∏r
i=1 I (ηi ) (that is, the index of η is the product

of the indices of the classes ηi ). The advantage of reducing to the case P = pa is
that then the index I = pb for a ≤ b ≤ 2a and then for any D = pc, if the index I
is less than D P , then indeed I is a proper divisor of D P .



Period, index and potential, III 163

3.1. Conditions on prime ideals and their generators. Several times in the proofs
we will be choosing pairs of prime ideals v, v′ of OK so as to satisfy certain condi-
tions. Let us first say that a prime ideal v of K is “bad” (for E and P = pa) if v is
Archimedean, v divides p, or E has bad reduction at v, and is “good” otherwise.
All but finitely many primes are good.

The conditions we will impose on v and v′ can all be achieved by using the
Chebotarev density theorem. The conditions are:

(SC1) The primes v = (π) and v′ = (π ′) are principal, with totally positive gen-
erators π and π ′.

(SC2) All elements of E(K ) are P-divisible in E(Kv).

(SC3) The generators π and π ′ lie in K×P
w for all bad primes w.

(SC4) The order of the image of π ′ in K×v /K×P
v is P .

Lemma 13. Suppose that E[P] ⊂ E(K ). Then there exist infinitely many pairs of
primes v = (π) and v′ = (π ′) satisfying conditions (SC1)–(SC4).

Proof. In order to satisfy condition (SC4), we will need to choose v first, as v′

depends on this choice. However, the procedure for choosing the two is similar, so
the argument below is presented for both at once.

Condition (SC1) is equivalent to v and v′ splitting completely in the Hilbert
class field of K , while condition (SC2) is equivalent to v splitting completely in
K ([P]−1 E(K )), the field obtained by adjoining to K all points Q ∈ E(K ) such that
[P]Q ∈ E(K ). (Recall that under the hypothesis E[P] ⊂ E(K ), K ([P]−1 E(K ))
is a finite abelian extension of K unramified outside the bad primes [Silverman
1986, p. 194].)

Let m be the modulus given by the product of all bad primes p and P2. Then
one can find π and π ′ as in (SC3) provided v and v′ split completely in the ray
class field for K modulo m. For if v splits completely, it has trivial Frobenius and,
by class field theory, has a generator π which is congruent to 1 (mod m). The
condition follows from Hensel’s Lemma.

Therefore, to satisfy conditions (SC1)–(SC3), we need v and v′ to split com-
pletely in the abelian extension F which is the compositum of the Hilbert class
field of K , K ([P]−1 E(K )), and the ray class field Km.

Now we consider (SC4). Suppose that we have chosen v already. Let α be a unit
in Kv which has order P in K×v /K×P

v . Let F ′ be the ray class field with modulus
v. By class field theory, the Galois group of F ′/K is isomorphic to the ideal class
group with modulus v, Cv. In particular, if v′ and (α) lie in the same class in Cv,
then v′ has a generator π ′ which is congruent to α (mod v), and hence satisfies
(SC4).
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Thus, we have reduced conditions (SC1)–(SC4) to two splitting-type conditions
in the abelian extensions F and F ′. It suffices to show that these splitting condi-
tions are compatible, since then the Chebotarev density theorem shows there are
infinitely many primes satisfying the conditions.

The extension F/K is unramified at v, while F ′/K is unramified outside v.
Therefore F ∩ F ′ is contained in the Hilbert class field of K . This is enough to
choose v. Any v′ which lies in the same class as (α) in Cv must be principal, and
hence splits in F ∩ F ′. We conclude that the splitting conditions are compatible,
which proves the lemma. �

3.2. Proof of Theorem 1. We assume in this section that E has full level P∗-
structure, and maintain the setup of §2.5. In particular, we have a fixed isomor-
phism

8 : (K×/K×P)2 ∼= H 1(K , E[P]).

Let v = (π) and v′ = (π ′) satisfy conditions (SC1)–(SC4). Put

ξ :=8(π P/D, π ′) ∈ H 1(K , E[P]),

so by Theorem 10 we have

1P(ξ)= 〈π
P/D, π ′〉P ∈ Br(K ).

Observe that 1P(ξ) is locally trivial away from π and π ′. Indeed, by condition
(SC3), the norm-residue symbol is trivial at the Archimedean places and at the
places of residue characteristic dividing P . At all other places the norm residue
symbol is “tame” and hence vanishes locally at w when evaluated on a pair of
w-adic units.

Let C be the genus-one curve corresponding to the image η of ξ in H 1(K , E)[P].
Certainly the period of η divides P . Suppose that the period of η is less than P; then
(since paη = 0) it has period P ′ for some proper divisor P ′ of P: P ′ξ = ιP(x).
Then ιP(x) is unramified at π ′ [Silverman 1986, Proposition VIII.2.1], whereas
P ′ξ = (π P P ′/D, (π ′)P ′) is ramified at π ′, a contradiction. So C has period P .
Moreover, by Proposition 6,

1P D jD(ξ)= D1P(ξ)= D〈π P/D, π ′〉P = 〈π
P , π ′〉P = 0,

so there exists a rational divisor of degree P D on C and I (C) | P D.
Coming now to the heart of the matter, we suppose that the index I of C strictly

divides P D. Then, by Proposition 7 there exists some lift ν of η to H 1(K , E[I ])
(under (4) with n = I ) such that 1I (ν) = 0. On the other hand, the local-at-π
norm-residue symbol 〈π P/D, π ′〉P,π has exact order D, since, by condition (SC4),
the corresponding central simple algebra trivializes over the Brauer group of an
extension L/Kv if and only if π ′ is a norm from the extension L(π1/D)/L if and
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only if D | e(L/K ). Therefore the global norm-residue symbol 〈π P/D, π ′〉P =

1P(ξ) has order at least D; since I/P < D we must have

0 6= (I/P) ·1P(ξ)=1I ( jI/P(ξ)).

For the remainder of the proof we shall abbreviate jI/P(ξ) to j (ξ). The classes
j (ξ) and ν ∈ H 1(K , E[I ]) are both lifts of η, so there exists x ∈ E(K ) with

ιI (x)= ν− j (ξ).

Applying 1, we get

0=1I (ν)=1I ( j (ξ))+Li( j (ξ), x).

Now recall that (π) splits completely in K ([P]−1 E(K )) by condition (SC2). This
forces E(K ) to be divisible by P in E(Kv), and in particular x ∈ P E(Kv). It
follows that the (π)-component of Li( j (ξ), x) and hence also of 1I ( j (ξ)) are
trivial. Thus1I ( j (ξ))= (I/P)1P(ξ) is locally trivial at all places except possibly
at (π ′), and by the reciprocity law and Hasse principle in the Brauer group of a
local field this implies that it is globally trivial —1I ( j (ξ))= 0 — a contradiction.

Finally, we claim that the image η of ξ under H 1(K , E[P])→ H 1(K , E)[P] is
locally trivial away from v and v′. First letw be a bad prime. Then, by construction,
π, π ′ ∈ K×P

w so ξ |Kw = 0; a fortiori ηw = 0. Now suppose w 6= v, v′ is a good
prime. Let K unr

w be the maximal unramified extension of Kw. Recall that the
restriction map H 1(Kw, E)[P] → H 1(K unr

w , E)[P] is injective [Lang and Tate
1958, Corollary 1]; this follows, for instance from the triviality of WC-groups
over finite fields together with the fact that formation of the Néron model of a
genus-one curve commutes with unramified base change. Since Kw((π

′)1/P)/Kw

is unramified, ξ trivializes over K unr
w . But this implies that ζ |K unr

w
= 0 and hence

that η|Kw = 0. This completes the proof of Theorem 1.

3.3. Proof of Theorem 2: preliminaries. First, we wish to reduce to Theorem 1,
that is, to the case where E[P∗] has trivial Galois module structure. To this end we
introduce the splitting field K P = K (E[P∗]) of the P∗-torsion. We will construct
classes θn in H 1(K P , E[P]) in a similar manner as in the proof of Theorem 1,
then we will set ξn = coresK P/K θn , and let ηn be the image of ξn in H 1(K , E).
In order to prove that the ηn have the right properties, we will need to compute
resK P/K ξn = res ◦ cores θn explicitly.

In the following, let 〈 , 〉 denote the P-Hilbert symbol on (K P
×/K P

×P)2.

3.4. Proof of Theorem 2: choosing pairs of primes. In this section, we choose
pairs of primes in a similar manner as in Lemma 13. The main difference is that we
wish to choose an infinite sequence of pairs of primes vi , v

′

i in K P inductively. We
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will require conditions which are similar, and in some cases identical, to (SC1)–
(SC4). These conditions are as follows:

(SC1′) The primes vi = (πi ) and v′i = (π
′

i ) are principal, with totally positive
generators πi and π ′i .

(SC2′) Let ṽi and ṽ′i be primes of K lying below vi and v′i respectively (for fixed
i). Then all elements of E(K ) are P-divisible in E(K ṽi ) and in E(K ṽ′i

).

(SC3′) The generators πi and π ′i lie in (K P)
×P
w for all bad primes w, primes lying

above SK , and for w = v j , v′j where j < i .

(SC4′) The order of the image of π ′i in (K P)
×
vi
/(K P)

×P
vi

is P . Additionally, σπ ′i
lies in (K P)

×P
vi

for all nontrivial σ ∈ Gal(K P/K ).

(SC5′) The primes ṽi , ṽ
′

i are totally split in K P .

Lemma 14. There exist vi = (πi ), v
′

i = (π
′

i ) satisfying conditions (SC1′)–(SC5′).

Proof. We argue inductively: suppose that we have chosen v j , v′j for j < i . We let
m be the modulus given by the product of all bad primes in K , P2, and all σv j and
σv′j for j < i , σ ∈Gal(K P/K ); and let F be the compositum of K P([P]−1 E(K ))
and the m-ray class field of K P . Note that m is rational over K , so F is Galois
over K . As before, F is an abelian extension of K P . By the Chebotarev density
theorem, there exists a prime ṽi of K which splits completely in F . Let vi be any
prime of K P which lies over ṽi . Then, provided (SC5′) holds, the same reasoning
as in Lemma 13 shows that vi satisfies all the conditions. (We need (SC5′) only
for condition (SC2′), for otherwise we know only that E(K P) is P-divisible in
E((K P)vi ).)

Let β be a unit in (K P)vi which has order P in (K P)
×
vi
/(K P)

×P
vi

. By the Chinese
Remainder Theorem, there exists α ∈ K P such that

α ≡ β (mod vi ),

α ≡ 1 (mod σvi ) for all σ ∈ Gal(K P/K ), σ 6= 1. (10)

Let F ′ be the ray class field for K P with modulus m′ =
∏
σvi . Again, m′ is

rational over K , so that F ′ is Galois over K . Let Cm′ be the class group for K P with
modulus m′. The Artin reciprocity map gives an isomorphism Cm′→Gal(F ′/K P).
Let γF ′ be the image of (α) under this isomorphism. Since F ∩ F ′ is contained in
the Hilbert class field of K P and (α) is principal, there exists γ ∈ Gal(F F ′/K P)

such that γ |F ′ = γF ′ and γ |F is the identity. Since F F ′ is Galois over K , we view
Gal(F F ′/K P) as a subgroup of Gal(F F ′/K ). Let [γ ] be the conjugacy class of
γ in this larger Galois group. By Chebotarev, there exists a prime ṽ′i of K such
that any Frobenius associated to ṽ′i in the extension F F ′/K lies in [γ ]. Let v′i
be a prime of K P lying over ṽ′i . By replacing v′i by a conjugate if necessary, we
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may assume that the Frobenius of v′i in the extension F F ′/K P is precisely γ (the
extension here is abelian, so saying “the” Frobenius makes sense). By the same
arguments as in Lemma 13, v′i satisfies the first three conditions.

One sees that π ′i ≡α (mod (πi )), so that the order of π ′i in (K P)
×
vi
/(K P)

×P
vi

is P .
Also, π ′i ≡ 1 (mod (σπi )) for nontrivial σ , so that σπ ′i ≡ 1 mod (πi ). Therefore
v′i satisfies condition (SC4′).

Any Frobenius associated to ṽ′i in the extension K P/K is trivial, so that ṽ′i splits
in K P , thus satisfying (SC5′). �

3.5. Proof of Theorem 2: corestrictions. As in the proof of Theorem 1, a choice
of basis for E[P] yields an isomorphism

8 : (K P
×/K P

×P)2→ H 1(K P , E[P]).

Let θn be either8(πn, π
′
n) or8(πn, 1); that is, we will need to consider both cases.

Let cores be the corestriction map

H 1(K P , E[P])→ H 1(K , E[P]),

and write ξn = cores θn . In order to prove Theorem 2, we would like to compute
1P(ξn−ξm) as well as the period of (ξn−ξm). To do this, we will instead compute
the obstruction and period of res(ξn − ξm), where res is the restriction map

H 1(K , E[P])→ H 1(K P , E[P]).

Both res and cores are Z-linear, so it will suffice to compute res ◦ cores(8(πn, 1))
and res ◦ cores(8(1, π ′n)).

Let Nm ∈ End(H 1(K P , E[P])) be given, on the level of cocycles, by

Nm(θ)(σ )=
∑

γ∈Gal(K P/K )

γ · θ(γ−1σγ ),

where γ is a fixed lift of γ to gK . Since E[P] is rational over K P , there is a unique
cocycle in each cohomology class, so that Nm is well-defined as an endomorphism
of H 1(K P , E[P]).

Lemma 15. If θ ∈ H 1(K P , E[P]), then res ◦ cores θ = Nm θ .

Proof. The lemma follows from the definition of cores on H 0(K P , E[P]) and
dimension shifting; see for example [Serre 1962, p. 119]. �

In the remainder of this section, we drop the subscript n.
Lemma 15 shows that res ◦ cores(8(π, 1))=Nm(8(π, 1)). Unfortunately, Nm

and 8 do not commute, as the Galois actions on E[P] and µP ×µP differ. The
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representation on E[P] gives, with respect to our fixed basis, a homomorphism

Gal(K P/K )→ GL2(Z/PZ)

σ 7→ Mσ =

( i(σ ) j (σ )
k(σ ) `(σ )

)
.

Then we have

Proposition 16. Let σ ∈ Gal(K P/K ) and (a, b) ∈ (K P
×/K P

×P)2. Then

8(a, b)σ =8
( Mσ

det Mσ
(σa, σb)

)
,

where Mσ (a, b) is given by the natural action of GL2(Z/PZ) on (K P
×/K P

×P)2;
that is, Mσ (a, b)= (ai(σ )b j (σ ), ak(σ )b`(σ )).

Proof. Our choice of basis for E[P] gives rise to a group isomorphism

ρ : E[P] → µP ×µP .

Define a Z[Gal(K P/K )]-module (µP ×µP)ρ which, as a Z-module, is µP ×µP ,
but which possesses a Galois structure making ρ into a Gal(K P/K )-equivariant
map. In particular, if (ζ1, ζ2) ∈ (µP ×µP)ρ and σ ∈ Gal(K P/K ), we have

ρ ◦ σ ◦ ρ−1(ζ1, ζ2)= σ(ζ1, ζ2)= Mσ (ζ1, ζ2).

On the other hand, for (ζ ′1, ζ
′

2) ∈ µP ×µP the Galois action is

σ(ζ ′1, ζ
′

2)= det Mσ · (ζ
′

1, ζ
′

2),

where the action on the right is the diagonal action of Z/PZ.
Let i : µP ×µP → (µP ×µP)ρ be the canonical group isomorphism; it does

not respect the Gal(K P/K )-action. If A is any gK P -module, write H 1(A) for
H 1(K P , A). Then i induces a map

i∗ : H 1(µP ×µP)→ H 1((µP ×µP)ρ).

Let M be either (µP × µP)ρ or µP × µP . Since in either case M is a trivial
gK P -module, the set of coboundaries B1(K P ,M) is zero, and so H 1(K P ,M) =
Z1(K P ,M), the set of 1-cocycles from gK P to M . We can therefore identify co-
homology classes with cocycles in both cases.

Consider the commutative diagram

(K P
×/K P

×P)2
ψ //

ψρ ((

H 1(µP ×µP)

i∗
��

H 1((µP ×µP)ρ)
λ

// H 1(E[P])

(11)
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The horizontal maps are Gal(K P/K )-isomorphisms. The map λ is induced by
(i ◦ ρ)−1, and ψ is the Kummer map. The diagonal map ψρ is ψ ◦ i∗. Thus,
8 = λ ◦ ψρ . Note that gK acts on all of the groups in (11) through its quotient
Gal(K P/K ). Let γ be an element of gK P and σ an element of gK . Then

[ψρ(a, b)]σ (γ )= [i∗ψ(a, b)]σ (γ )

= σ [i(ψ(a, b)(σ−1γ σ))]

= σ [i(σ−1σψ(a, b)(σ−1γ σ))]

= σ [i(σ−1ψ(σa, σb)(γ ))]

= Mσ [(i(det M−1
σ ·ψ(σa, σb)(γ ))]

=
Mσ

det Mσ
[i(ψ(σa, σb)(γ ))]

=
Mσ

det Mσ
ψρ(σa, σb)(γ ). (12)

Applying λ on both sides, we obtain the result. �

Corollary 17. We have

Nm8((a, b))=8
(∏ 1

det Mσ

(
σai(σ )σb j (σ ), σak(σ )σb`(σ )

) )
,

where the product extends over all σ ∈ Gal(K P/K ) and is taken component-wise.

Let (c, d)=8−1 Nm8(π, 1) and (c′, d ′)=8−1 Nm8(1, π ′).

Lemma 18. Let v be the place of K P corresponding to π . Either order(〈c, d〉v)=
P or order(〈cc′, dd ′〉v)= P.

Proof. If order(〈c, d〉)= P , then we are done. So suppose that order(〈c, d〉) < P .
In fact, since P is a prime power, the order strictly divides P .

Expanding out the Hilbert symbol, we get

〈cc′, dd ′〉 = 〈c, d〉+ 〈c, d ′〉+ 〈c′, d〉+ 〈c′, d ′〉.

We have 〈c′, d〉v = 〈c′, d ′〉v = 0 since all are v-adic units. By our assumption at
the start of the proof, 〈c, d〉v has order strictly dividing P . That leaves 〈c, d ′〉v. By
Corollary 17,

d ′ = π ′ ·
∏
σ 6=1

(σπ ′)eσ

for some integers eσ . Our choice of π ′ implies that π ′ ≡ α (mod (π)), where
α was chosen to have order P in K×P

v , while σπ ′ ≡ 1 (mod (π)) for nontrivial
σ (see (10)). Thus d ′ ≡ α (mod (π)). Therefore Kv(d ′1/P)/K is the unramified
extension of degree P . (Equivalently, we may appeal to condition (SC4′).)
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We now use similar reasoning as in the proof of Theorem 1 to see that 〈π, d ′〉v
has order P . Since v(c) = 1, the order of 〈c, d ′〉v is exactly P . This shows
〈cc′, dd ′〉v has exact order P . �

If 〈c, d〉 has order P , let θ =8(π, 1), so that ξ = cores θ satisfies

res ξ = Nm8(π, 1)=8(c, d);

otherwise, let θ=8(π, π ′), so that res ξ=8(cc′, dd ′). Let (a, b) denote whichever
pair we’ve chosen, (c, d) or (cc′, dd ′).

Let us now reintroduce subscripts, so that

ξn = cores θn

=

{
cores8(πn, π

′
n) or

cores8(πn, 1)

(an, bn)=8
−1 res ξn.

Lemma 19. Let 0≤ m < n. Then 1P(res(ξm − ξn)) has order P at vm .

Proof. Write v for vm . Since E[P∗] ⊂ E(K P), the obstruction map can be com-
puted using the Hilbert symbol. Thus we wish to compute the order of〈

am

an
,

bm

bn

〉
v

.

By the bilinearity of the Hilbert symbol, it suffices to compute

〈am, bm〉v −〈am, bn〉v −〈an, bm〉v +〈an, bn〉v.

By Lemma 18, the first term has order P . Since an, bm and bn are all units at v,
the last two terms are zero. That leaves the term 〈am, bn〉v. By Corollary 17, bn is
a product of σπn and σπ ′n . By condition (SC3′), these all lie in K×P

v . Therefore
the second term is also zero. The Lemma follows. �

3.6. Proof of Theorem 2: conclusion. Let C be the curve represented by the class
ξ := ξi − ξ j for some i 6= j . Clearly, P(C) | P . If we can show that I (C) = P2,
then by (1) we must have P(C)= P .

Since E[P] ⊂ E(K P) (and E[2P] ⊂ E(K P) when P is even), the obstruction
map on H 1(K P , E[P]) is given by the Hilbert symbol. In view of Lemma 19,
1P(resK P/K ξ) has order P at vi . Therefore 1P(ξ) has order P at the prime w
satisfying vi | w.

Suppose that C has index P · D for some D | P . Then there exists some η ∈
H 1(K , E[P D]) representing C such that 1P D(η)= 0. Let jD be the natural map
H 1(K , E[P]) → H 1(K , E[P D]). The classes η and jD(ξ) represent the same
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curve C , so there exists some x ∈ E(K ) such that η = jD(ξ) + ιP D(x). Since
1P D(ιP D(x))= 0, by the remarks at the start of Section 2.1,

1P D(η)=1P D( jD(ξ))+Li(η, x).

Recall that Li(η, x) is the Tate pairing. Let us consider this equality locally, at w.
The left-hand side is zero by hypothesis. By condition (SC2′), x lies in P ·E(Kw).
Since P(C) | P , the Tate pairing at w is trivial. Hence 1P D( jD(ξ)) must be zero
at w. But by Proposition 6,

1P D( jD(ξ))= D1P(ξ).

We showed earlier that 1P(ξ) has order P at w. Therefore D= P , and so I (C)=
P2.

Let ηi be the image of ξi in H 1(K , E). It remains to show that resv ηi = 0 for
v ∈ SK . Recall that ηi = cores8(πi , 1) or cores8(πi , π

′

i ). For w | v a place of
K P , the proof of Theorem 1 showed that the curves corresponding to 8(πi , 1) and
8(πi , π

′

i ) were trivial at w. But the corestriction map induces a homomorphism

⊕w|vH 1((K P)w, E)→ H 1(Kv, E)

which proves that ηi is trivial at v. This completes the proof of Theorem 2.

3.7. Proof of Theorem 3. Recall the following two “classical” instances of period
equals index.

(i) [Lang and Tate 1958] F is the completion of a global field at a place v,
E = Jac(C) has good reduction, and v does not divide the period of C .

(ii) [Cassels 1963] F is global and C ∈X(F, E).

Note that Lichtenbaum showed that P = I for all genus-one curves defined over
the completion of a global field. However, the result of Lang and Tate, apart from
being more elementary, is also more precise: they show also that a finite extension
field F ′/F splits a genus-one curve C/K if and only if the period P of C divides
the relative ramification index e(F ′/F). This will be used in the proof.

Take S to be the union of the infinite places, the finite places which divide
P and the places of bad reduction for E . Let {ηi }

∞

i=0 be the sequence of classes
constructed in Theorem 2. We will show that for any positive integer r , there exists
a degree P field extension L/K such that the restrictions of η1, . . . , ηr to L are
pairwise distinct, locally trivial, and of period P .

Indeed, let Sr =
⋃r

i=1 supp(ηi ). We have Sr ∩ S = ∅, so that each vi ∈ Sr is a
finite place of good reduction for E and residue characteristic prime to P .

For each vi ∈ Sr , let L i/Kvi be a totally ramified extension of degree P . There
exists a degree P global extension L = L(r) of K such that for all vi ∈ Sr , L ⊗K
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Kvi
∼= L i .3 By the results (i) of Lang and Tate cited above, ηi |L is locally trivial.

Moreover, since ηi = ηi − η0 has index P2 and L/K is a degree P extension,
I (ηi |L)≥ P . But on the other hand, by (ii) above, I (ηi |L)= P(ηi |L) | P(ηi )= P ,
so for all i , 1≤ i ≤ r , ηi |L has period and index equal to P .

The only worry is that their restrictions are not distinct. But suppose that ηi |L =

η j |L . Then ηi−η j would lie in the kernel resL . This would imply that I (ηi−η j ) | P ,
which we have arranged not to be the case.

3.8. Remarks about ramification. The proof of Theorem 3 differs from that of
[Clark 2005, Theorem 1] in that we explicitly make use of extensions L/K that
are ramified at many primes. Given our strategy of proof, this is unavoidable:
using (i), the number of order P elements in resL(H 1(K , E))∩X(L , E) can be
bounded in terms of the number of ramified primes of L/K . It is interesting to ask
whether this same boundedness result holds for order P elements in X(L , E),
and conversely, whether the number of order P elements of X(L , E) necessarily
approaches infinity with the number of ramified primes.

Both of these questions have affirmative answers when P = 2, according to
work of Yu [2004]. Given a quadratic extension L/K , Yu computes the order of
the kernel and cokernel of the natural map X(K , E)⊕X(K , Eχ )→X(L , E);
here Eχ is the twist of E/K by the quadratic character χ of L/K . In particular, one
can deduce Theorem 3 for P = 2 from Yu’s work, with one caveat: his analysis
is conditional on the finiteness of X(K , E). That the existence of an infinite
subgroup of X(K , E) would hamper our ability to show that X(L , E)[2] is large
is somewhat curious, but seems to be the true state of affairs.

The consistency of Theorem 3 with the results of [Yu 2004] might thus be
regarded as some confirmatory evidence for the finiteness of Shafarevich–Tate
groups. How seriously such evidence ought to be taken is, of course, up to the
reader to decide.
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On the dimension of H-strata
in quantum algebras
Jason P. Bell and Stéphane Launois

We study the topology of the prime spectrum of an algebra supporting a rational
torus action. More precisely, we study inclusions between prime ideals that are
torus-invariant using the H -stratification theory of Goodearl and Letzter on the
one hand, and the theory of deleting derivations of Cauchon on the other. We
also give a formula for the dimensions of the H -strata described by Goodearl and
Letzter. We apply the results obtained to the algebra of m × n generic quantum
matrices to show that the dimensions of the H -strata are bounded above by the
minimum of m and n, and that all values between 0 and this bound are achieved.

1. Introduction

We denote by R = Oq(Mm,n) the standard quantization of the ring of regular func-
tions on m× n matrices with entries in a field K; it is the K-algebra generated by
the m× n indeterminates Yi,α, 1≤ i ≤ m and 1≤ α ≤ n, subject to the relations

Yi,βYi,α = q−1Yi,αYi,β, α < β,

Y j,αYi,α = q−1Yi,αY j,α, i < j,

Y j,βYi,α = Yi,αY j,β, i < j, α > β,

Y j,βYi,α = Yi,αY j,β − (q − q−1)Yi,βY j,α, i < j, α < β,

where q ∈ K∗ is not a root of unity. We note that the torus (K∗)m+n acts on R by
K-algebra automorphisms via the action

(a1, . . . , am, b1, . . . , bn) · Yi,α = ai bαYi,α for 1≤ i ≤ m, 1≤ α ≤ n.

Understanding this torus action has been responsible for most of the important
advances that have been made in the study of quantum matrices. The most im-
portant object of study is the prime spectrum of R. In analogy with algebraic
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Keywords: prime spectrum, Zariski topology, stratification, quantum matrices.
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geometry, where great understanding of commutative rings comes from the study
of their prime spectra, one seeks to understand the prime spectrum of R and its
topology. The noncommutativity introduced by the parameter q in quantum matri-
ces makes the prime spectrum of R harder to understand than the prime spectrum
of the coordinate ring of the variety of m × n matrices and much work has been
done in understanding the structure of this topological object. The most important
of these advances is the stratification theory of Goodearl and Letzter [2000].

To describe the work of those authors, we give a few basic definitions. Let A
be a K-algebra with a group H acting on it by K-algebra automorphisms. A two-
sided ideal I of A is said to be H-invariant if h · I = I for all h ∈ H . An H-prime
ideal of A is a proper H -invariant ideal J of A such that whenever J contains the
product of two H -invariant ideals of A, J contains at least one of them. We denote
by H -Spec(A) the set of all H -prime ideals of A. Observe that if P is a prime
ideal of A then

(P : H) :=
⋂
h∈H

h · P (1.1)

is an H -prime ideal of A. This observation allowed Goodearl and Letzter [2000]
(see also [Brown and Goodearl 2002]) to construct a stratification of the prime
spectrum of A that is indexed by the H -spectrum. Indeed, let J be an H -prime
ideal of A. We denote by SpecJ (A) the H-stratum associated to J ; that is,

SpecJ (A)= {P ∈ Spec(A) | (P : H)= J }. (1.2)

Then the H -strata of Spec(A) form a partition of Spec(A) [Brown and Goodearl
2002, Chapter II.2]; that is,

Spec(A)=
⊔

J∈H -Spec(A)

SpecJ (A). (1.3)

This partition is the so-called H-stratification of Spec(A).
When the H -spectrum of A is finite this partition is a powerful tool in the study

of the prime spectrum of A.
As we work in the generic case where q is not a root of unity, the ring R of

m × n quantum matrices has a finite H = (K∗)m+n-spectrum. Remarkably, for
each H-prime J , the space SpecJ (R) is homeomorphic to Spec(K[z±1

1 , . . . , z±1
d ])

for some d which depends on J . This d is simply the (Krull) dimension of the
H-stratum SpecJ (R).

The work of Goodearl and Letzter spurred much research into the structure of
Spec(R) in terms of the H-spectrum. Some of the main themes in the study of the
H-spectrum have been computing its size, computing the structure of the poset of
H-primes under inclusion, and computing the dimensions of the H-strata and how
they are distributed.
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Figure 1. An example of a 4× 4 Cauchon diagram.

The question of the size of the H-spectrum of R was answered in [Cauchon
2003b]. For many years the finiteness of the H-spectrum of R was known, but
no formula for its size was known — except for small values of m and n — due to
the complicated nature of the relations in R. Cauchon used his theory of deleting
derivations to compute the size of the H-spectrum of R. In particular, the set of H-
primes is in one-to-one correspondence with a set of combinatorial objects called
Cauchon diagrams. In fact, Cauchon’s method applies to a much broader class
of algebras, the so-called CGL (Cauchon–Goodearl–Letzter) extensions, and the
term “Cauchon diagram” has now acquired a more general meaning than the one
we now describe for quantum matrices.

Definition. An m × n Cauchon diagram C is simply an m × n grid consisting of
mn boxes in which certain boxes are coloured black. We require that if a box is
black, then either every box strictly to its left is black or every box strictly above
it is black. We let Cm,n denote the collection of m× n Cauchon diagrams.

Cauchon showed that the H-primes of the ring R of m × n quantum matrices
are parameterized by the collection of m× n Cauchon diagrams, and he also gave
a closed formula for the size of this set. Moreover it is known that the poset H-
Spec(R) (under inclusion) is isomorphic to a subposet of the symmetric group
Sm+n endowed with the Bruhat order [Launois 2007].

Some of the major questions that remain are to determine the possible dimen-
sions of H-strata that can occur in R and to give a formula for the dimension of a
stratum in terms of the associated Cauchon diagram. We answer these questions.
In particular, we prove the following result.

Theorem 1.1. Let m and n be natural numbers. Then the dimensions of H-strata in
Oq(Mm,n) are all at most min(m, n); moreover, for each d ∈ {0, 1, . . . ,min(m, n)}
there exists a d-dimensional H-stratum.

Previously, the best known bound for the dimensions of H-strata in Oq(Mm,n)

was m+ n− 1, so this result represents a significant improvement.
Regarding the dimension of the stratum associated with a given Cauchon dia-

gram, we give a formula which only relies on the Cauchon diagram; see Proposition
4.2. In fact, we are able to give a formula for a much broader class of algebras,



178 Jason P. Bell and Stéphane Launois

called uniparameter CGL extensions. This class of algebras includes in particu-
lar the so-called quantum Schubert cells Uq [w] defined by De Concini, Kac and
Procesi (see Section 3C). The algebra Uq [w] supports a rational torus action and
the theory of Cauchon and Goodearl–Letzter can be applied to this algebra. The
torus-invariant primes of this algebra have been studied recently and independently
in [Cauchon and Mériaux 2009] and [Yakimov 2009]. As a consequence of our
formula, we are able to give a formula for the dimension of the (0)-stratum of
Uq [w] which only depends on the Weyl group element w.

Regarding the H-strata in Oq(Mm,n), we show even more. We say that an m×n
Cauchon diagram C contains another m × n Cauchon diagram C ′ if whenever a
square is coloured black in C ′, the corresponding square is also coloured black in
C . After additional investigations we are able to prove the following result.

Theorem 1.2. Let P be an H-prime of Oq(Mm,n) whose associated H-stratum is
d-dimensional. Then there exists a chain

P = P0 ( P1 ( · · ·( Pd

of H-primes such that the dimension of the H-stratum associated to Pi is d− i and
such that

C0 ( C1 ( · · ·( Cd ,

where Ci is the Cauchon diagram associated to Pi .

To prove this chain result, we need to understand the relation between inclusion
of Cauchon diagrams and inclusion of the corresponding H -primes. One might
naively expect these two posets to be isomorphic, but this is not the case. For
instance, consider the algebra of 2×2 quantum matrices Oq(M2) generated by four
indeterminates Y1,1, Y1,2, Y2,1, Y2,2, subject to the relations given in the beginning
of this section. It is well known that the ideal (Y1,1Y2,2− qY1,2Y2,1) generated by
the quantum determinant and (Y2,1, Y2,2) are H-invariant prime ideals in Oq(M2).
Clearly, (Y1,1Y2,2− qY1,2Y2,1) ( (Y2,1, Y2,2), but the corresponding Cauchon dia-
grams, which can be represented by the pictures in Figure 2, are not comparable.

Thus two H-primes can be comparable (for the inclusion) and yet their cor-
responding Cauchon diagrams may fail to be comparable. Interestingly, if we
consider things from the other direction, we see there is a definite relation between
these two posets.

Figure 2. Cauchon diagrams representing the ideal generated by
the quantum determinant and by Y2,1, Y2,2 respectively in Oq(M2).
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Theorem 1.3. If C and C ′ are two m×n Cauchon diagrams with C (C ′, then JC (
JC ′ , where JC and JC ′ denote respectively the H-primes of Oq(Mm,n) associated to
C and C ′.

Again, we are able to prove Theorem 1.3 for a much broader class of algebras,
called CGL extensions. This class of algebras contains quantum affine spaces, the
algebra of m×n quantum matrices, positive parts of quantized enveloping algebras,
and many other interesting families of algebras. These algebras support a rational
action by a torus H and have the property that they have only finitely many H -strata
in the Goodearl–Letzter stratification.

The deleting derivations theory of Cauchon applies to CGL extensions and this
gives new insights into the H -stratification in these cases. The H -primes are, just
as in the case of quantum matrices, in one-to-one correspondence with combina-
torial objects called Cauchon diagrams. These diagrams depend on the algebra,
and a CGL extension other than quantum matrices has a different collection of
Cauchon diagrams than the ones described earlier for m × n quantum matrices.
Cauchon’s original description [2003b] was just for quantum matrices, but other
authors have since applied his deleting derivations theory to other classes of al-
gebras. In [Launois et al. 2008] we gave a description of Cauchon diagrams for
the quantum Grassmannian. Mériaux [2010] gave a description of these diagrams
for the positive part of the quantized enveloping algebra of a simple Lie algebra,
while Cauchon and Mériaux [2009] have recently described Cauchon diagrams in
quantum Schubert cells. The set of Cauchon diagrams has a natural poset structure
under inclusion; likewise the set of H -primes can be viewed as a poset under
inclusion.

In this broader context, we are able to show the following result, of which Theo-
rem 1.3 is a special case:

Theorem 1.4. If w and w′ are two Cauchon diagrams of a CGL extension R with
w ( w′, then Jw ( Jw′ , where Jw and Jw′ denote respectively the (unique) H-
primes associated to w and w′.

The outline of this paper is as follows. In Section 2 we give the necessary
background on CGL extensions and we prove Theorem 1.4. In Section 3, we give
a formula for the dimension of a stratum in a uniparameter CGL extension. Then
we use this formula to compute the dimension of the (0)-stratum in a quantum
Schubert cell. In Section 4 we describe the results obtained in the previous sections
in the particular case of quantum matrices. Then we use these results in order to
prove Theorems 1.1 and 1.2. In Section 5, after having seen the possible values
that can occur as the dimension of an H-stratum in quantum matrices, we give a
conjecture about the number of d-dimensional H-strata in Oq(Mm,n).

Throughout this paper, we use the following conventions.



180 Jason P. Bell and Stéphane Launois

(i) If I is a finite set, |I | denotes its cardinality.

(ii) [[a, b]] := {i ∈ N | a ≤ i ≤ b}.

(iii) K denotes a field and we set K∗ := K \ {0}.

(iv) If A is a K-algebra, then Spec(A) and Prim(A) denote respectively its prime
and primitive spectra.

2. H-primes in CGL extensions

In this section, we recall the notion of CGL extensions that was introduced in
[Launois et al. 2006]. Examples include various quantum algebras in the generic
case such as quantum affine spaces, quantum matrices, the positive part of quan-
tized enveloping algebras of semisimple complex Lie algebras, etc. As we will see,
the advantage of this class of algebras is that one can use both the stratification
theory of Goodearl and Letzter and the theory of deleting derivations of Cauchon
in order to study their prime and primitive spectra. This will allow us to investigate
the topology of the H -spectrum of such algebras and prove Theorem 1.4.

2A. CGL extensions and the H-stratification theory of Goodearl and Letzter. In
this subsection, N denotes a positive integer and R is an iterated Ore extension;
that is,

R = K[X1][X2; σ2, δ2] · · · [X N ; σN , δN ], (2.4)

where σ j is an automorphism of the K-algebra

R j−1 := K[X1][X2; σ2, δ2] . . . [X j−1; σ j−1, δ j−1]

and δ j is a K-linear σ j -derivation of R j−1 for all j ∈ [[2, N ]]. In other words, R is
a skew polynomial ring whose multiplication is defined by

Xj a = σ j (a)Xj + δ j (a)

for all j ∈ [[2, N ]] and a ∈ R j−1. Thus R is a noetherian domain. Henceforth, we
assume that R is a CGL extension:

Definition [Launois et al. 2006]. An iterated Ore extension R is said to be a CGL
extension if

(1) for all j ∈ [[2, N ]], δ j is locally nilpotent;

(2) for all j ∈ [[2, N ]], there exists q j ∈ K∗ such that σ j ◦ δ j = q jδ j ◦ σ j and, for
all i ∈ [[1, j − 1]], there exists λ j,i ∈ K∗ such that σ j (X i )= λ j,i X i ;

(3) none of the q j (2≤ j ≤ N ) is a root of unity; and

(4) there exists a torus H = (K∗)d that acts rationally by K-automorphisms on R
such that
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• X1, . . . , X N are H -eigenvectors,
• the set {λ ∈ K∗ | (∃h ∈ H)(h · X1 = λX1)} is infinite, and
• for all j ∈[[2, N ]], there exists h j ∈H such that h j ·X i =λ j,i X i if 1≤ i< j

and h j · Xj = q j Xj .

It follows from [Goodearl and Letzter 2000] that every H -prime ideal of R is
completely prime, so H -Spec(R) coincides with the set of H -invariant completely
prime ideals of R. Moreover there are at most 2N H -prime ideals in R. As a
corollary, the H -stratification (1.3) breaks down the prime spectrum of R into a
finite number of parts, the H -strata. The geometric nature of the H -strata is well
known: each H -stratum is homeomorphic to the scheme of irreducible subvarieties
of a K-torus [Brown and Goodearl 2002, Theorems II.2.13 and II.6.4]. However,
the dimensions of these schemes are unknown in general.

2B. Quantum affine spaces. Let N be a positive integer and let 3 = (3i, j ) ∈

MN (K
∗) be a multiplicatively antisymmetric matrix; that is, 3i, j3 j,i = 3i,i = 1

for all i, j ∈ [[1, N ]]. The quantum affine space associated to 3 is denoted by
O3(K

N ) = K3[T1, . . . , TN ]; this is the K-algebra generated by N indeterminates
T1, . . . , TN subject to the relations T j Ti =3 j,i Ti T j for all i, j ∈ [[1, N ]]. It is well
known that O3(K

N ) is an iterated Ore extension:

O3(K
N )= K[T1][T2; σ2] · · · [TN ; σN ],

where σ j is the automorphism defined by σ j (Ti ) = 3 j,i Ti for all 1 ≤ i < j ≤ N .
Observe that the torus H = (K∗)N acts by automorphisms on O3(K

N ) via:

(a1, . . . , aN ) · Ti = ai Ti for all i ∈ [[1, N ]] and (a1, . . . , aN ) ∈ H.

Moreover, it is well known (see for instance [Launois et al. 2006, Corollary 3.8])
that O3(K

N ) is a CGL extension with this action of H . Hence O3(K
N ) has at most

2N H -prime ideals and they are all completely prime.
The H -stratification of Spec(O3(KN )) was entirely described in [Brown and

Goodearl 1996] when the group 〈3i, j 〉 is torsion-free and in [Goodearl and Letzter
1998] in the general case. We now recall these results.

Let W denote the set of subsets of [[1, N ]]. If w ∈ W , then we denote by Kw

the (two-sided) ideal of O3(K
N ) generated by the indeterminates Ti with i ∈w. It

is easy to check that Kw is an H -invariant completely prime ideal of O3(K
N ).

Proposition 2.1 [Goodearl and Letzter 1998, Proposition 2.11].

(1) The ideals Kw with w ∈W are exactly the H-prime ideals of O3(K
N ). Hence

there are exactly 2N H-prime ideals in this case.

(2) For all w ∈W , the H-stratum associated to Kw is given by

SpecKw

(
O3(K

N )
)
=
{

P ∈ Spec
(
O3(K

N )
)
| P ∩ {Ti |i ∈ [[1, N ]]} = {Ti | i ∈ w}

}
.
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2C. The canonical partition of Spec(R). Let R denote a CGL extension, as in
Section 2A. Following [Cauchon 2003a], we construct the canonical partition of
Spec(R), which gives new insight into the H -stratification of Spec(R). All refer-
ences in this subsection, through page 184, are to the article just mentioned.

To describe the prime spectrum of R, Cauchon introduced the deleting deriva-
tions algorithm (Section 3.2). This algorithm constructs, for each j ∈ [[N + 1, 2]],
a family {X ( j)

1 , . . . , X ( j)
N } of elements of the division ring of fractions Fract(R) of

R defined as follows:

(1) When j = N + 1, we set (X (N+1)
1 , . . . , X (N+1)

N )= (X1, . . . , X N ).

(2) Assume that j<N+1 and that the X ( j+1)
i (i ∈[[1, N ]]) are already constructed.

Then it follows from Cauchon’s Théorème 3.2.1 that X( j+1)
j 6= 0 and that, for

each i ∈ [[1, N ]], we have

X ( j)
i =


X ( j+1)

i if i ≥ j,
+∞∑
k=0

(1− q j )
−k

[k]!q j

δk
j ◦ σ

−k
j (X ( j+1)

i )(X( j+1)
j )−k if i < j,

where [k]!q j = [0]q j × · · · × [k]q j with [0]q j = 1 and [i]q j = 1+ q j + · · · + q i−1
j

when i ≥ 1.
Fix j ∈ [[2, N+1]]. We denote by R( j) the subalgebra of Fract(R) generated by

the X ( j)
i :

R( j)
:= K〈X ( j)

1 , . . . , X ( j)
N 〉.

The following results are Cauchon’s Théorème 3.2.1 and Lemme 4.2.1.

(1) R( j) is isomorphic to an iterated Ore extension of the form

K[Y1] . . . [Y j−1; σ j−1, δ j−1][Y j ; τ j ] · · · [YN ; τN ]

by an isomorphism that sends X ( j)
i to Yi (1≤ i ≤ N ), where τ j , . . . , τN denote

the K-linear automorphisms such that τl(Yi )= λl,i Yi (1≤ i ≤ l).

(2) Assume that j 6= N + 1 and set S j := {(X
( j+1)
j )n : n ∈ N} = {(X( j)

j )
n
: n ∈ N}.

This is a multiplicative system of regular elements of R( j) and R( j+1), that
satisfies the Ore condition in R( j) and R( j+1). Moreover

R( j)S−1
j = R( j+1)S−1

j .

It follows from these results that R( j) is a noetherian domain.

Notation. We set R := R(2) and Ti := X (2)
i for all i ∈ [[1, N ]].

It follows from Cauchon’s Proposition 3.2.1 that R is a quantum affine space in
the indeterminates T1, . . . , TN ; hence his expression “effacement des dérivations”.
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More precisely, let 3 = (µi, j ) ∈ MN (K
∗) be the multiplicatively antisymmetric

matrix whose entries are defined by

µ j,i =


λ j,i if i < j,
1 if i = j,
λ−1

i, j if i > j,

where the λ j,i with i< j come from the CGL extension structure of R (see page 180
for the definition). Then

R = K3[T1, . . . , TN ] = O3(K
N ). (2.5)

The deleting derivations algorithm is used to relate the prime spectrum of a CGL
extension R to the prime spectrum of the associated quantum affine space R. More
precisely, Cauchon used this algorithm to construct embeddings

ϕ j : Spec(R( j+1))−→ Spec(R( j)) for j ∈ [[2, N ]], (2.6)

as follows (Section 4.3; see especially his Lemme 4.3.2).
Let P ∈ Spec(R( j+1)). Then

ϕ j (P)=
{

P S−1
j ∩ R( j) if X( j+1)

j /∈ P,
g−1

j

(
P/(X( j+1)

j )
)

if X( j+1)
j ∈ P,

where g j denotes the surjective homomorphism

g j : R( j)
→ R( j+1)/(X( j+1)

j )

defined by
g j (X

( j)
i ) := X ( j+1)

i + (X( j+1)
j ).

Cauchon’s Proposition 4.3.1 states that ϕ j induces an increasing homeomorphism
from the topological space

{P ∈ Spec(R( j+1)) | X( j+1)
j /∈ P} onto {Q ∈ Spec(R( j)) | X( j)

j /∈ Q},

whose inverse is also an increasing homeomorphism; also, ϕ j induces an increasing
homeomorphism from

{P ∈ Spec(R( j+1)) | X( j+1)
j ∈ P}

onto its image by ϕ j , whose inverse similarly is an increasing homeomorphism.
Note however that, in general, ϕ j is not an homeomorphism from Spec(R( j+1))

onto its image.
Composing these embeddings, we get an embedding

ϕ := ϕ2 ◦ · · · ◦ϕN : Spec(R)−→ Spec(R), (2.7)
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which is called the canonical embedding from Spec(R) into Spec(R). This canon-
ical embedding allows the construction of a partition of Spec(R) as follows.

We keep the notation of the previous sections. In particular, W still denotes the
set of all subsets of [[1, N ]]. If w ∈W , then we set

Specw (R) := ϕ
−1 (SpecKw

(R)
)
.

Moreover, we denote by W ′ the set of those w ∈ W such that Specw (R) 6= ∅.
The elements of W ′ are called the Cauchon diagrams of the CGL extension R. It
follows from Cauchon’s Proposition 4.4.1 that

Spec(R)=
⊔
w∈W ′

Specw(R) and |W ′| ≤ |W | = 2N .

This partition is called the canonical partition of Spec(R), and it gives another
way to understand the H -stratification, since, by Cauchon’s Théorème 5.5.2, these
two partitions coincide. As a consequence, we obtain another description of the
H -prime ideals of R:

Proposition 2.2 [Cauchon 2003a, Lemme 5.5.8 and Théorème 5.5.2].

(1) Let w ∈ W ′. There exists a (unique) H-invariant (completely) prime ideal Jw
of R such that ϕ(Jw) = Kw, where Kw denotes the ideal of R generated by
the Ti with i ∈ w.

(2) H-Spec(R)= {Jw | w ∈W ′}.

(3) SpecJw(R)= Specw(R) for all w ∈W ′.

2D. The map w 7→ Jw is increasing. In this section, we prove Theorem 1.4.

Theorem 2.3. Let R be a CGL extension and let w,w′ ∈ W ′ be two Cauchon
diagrams of R. If w ⊆ w′ then Jw ⊆ Jw′ .

Proof. For j ∈ [[2, N + 1]] and P ∈ Spec(R), we set P ( j)
:= ϕ j ◦ · · · ◦ϕN (P).

We prove by induction on j that

J ( j)
w ⊆ J ( j)

w′ for j ∈ [[2, N + 1]].

When j =2, we have J (2)w = Kw and J (2)w′ = Kw′ . Asw⊆w′, we have Kw⊆ Kw′ ,
so J (2)w ⊆ J (2)w′ , as desired.

We assume j ≤ N and J ( j)
w ⊆ J ( j)

w′ . We need to prove that J ( j+1)
w ⊆ J ( j+1)

w′ .
Observe first that if X( j)

j /∈ J ( j)
w′ , then

J ( j)
w , J ( j)

w′ ∈ {Q ∈ Spec(R( j)) | X( j)
j /∈ Q}.

As ϕ j induces an increasing homeomorphism, still denoted ϕ j , from

{P ∈ Spec(R( j+1)) | X( j+1)
j /∈ P}
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onto
{Q ∈ Spec(R( j)) | X( j)

j /∈ Q},

whose inverse is also an increasing homeomorphism, we obtain

J ( j+1)
w = ϕ−1

j (J
( j)
w )⊆ ϕ−1

j (J
( j)
w′ )= J ( j+1)

w′ ,

as desired.
Similarly, if X( j)

j ∈ J ( j)
w , then both J ( j)

w and J ( j)
w′ belong to

ϕ j
(
{P ∈ Spec(R( j+1)) | X( j+1)

j ∈ P}
)
.

As ϕ j induces an increasing homeomorphism, still denoted ϕ j , from

{P ∈ Spec(R( j+1)) | X( j+1)
j ∈ P}

onto its image whose inverse is also an increasing homeomorphism, we get

J ( j+1)
w = ϕ−1

j (J
( j)
w )⊆ ϕ−1

j (J
( j)
w′ )= J ( j+1)

w′ ,

as desired.
It only remains to deal with the case where X( j)

j ∈ J ( j)
w′ and X( j)

j /∈ J ( j)
w , so

J ( j)
w = J ( j+1)

w S−1
j ∩R( j), J ( j+1)

w = J ( j)
w S−1

j ∩R( j+1), J ( j)
w′ =g−1

j

(
J ( j+1)
w′ /(X( j+1)

j )
)
.

In order to simplify the notation we set

Yi := X ( j)
i and Zi := X ( j+1)

i . (2.8)

Also we let A denote the subalgebra of R( j+1) generated by the Zi with i 6= j :

A := K〈Z1, . . . , Z j−1, Z j+1, . . . , Z N 〉. (2.9)

Observe that R( j+1)
= A[Z j ; σ, δ], where σ denotes the automorphism of A defined

by σ(Zi ) = λ j,i Zi = σ j (Zi ) if i < j and σ(Zi ) = λ
−1
i, j Zi otherwise; and where δ

denotes the σ -derivation of A defined by δ(Zi ) = δ j (Zi ) if i < j and δ(Zi ) = 0
otherwise. One can easily check that this Ore extension satisfies the conditions of
[Cauchon 2003a, Section 2], so the map θ : A→ R( j+1)S−1

j = R( j)S−1
j defined by

θ(a)=
+∞∑
k=0

(1− q j )
−k

[k]!q j

δk
◦ σ−k(a)Z−k

j for a ∈ A

is an homomorphism. Observe that by the definition of the deleting derivations
algorithm we have θ(Zi ) = Yi for all i 6= j . Hence θ(A) ⊂ R( j) and R( j) is the
subalgebra of R( j+1)S−1

j generated by θ(A) and Z j = Y j .
Again to simplify the notation, we set

P := J ( j+1)
w , P ′ := J ( j)

w , Q = J ( j+1)
w′ , Q′ := J ( j)

w′ . (2.10)
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Let z ∈ P with z 6= 0. We need to prove that z ∈ Q. First we can write

z =
d∑

t=0

at Z t
j ,

where at ∈ A and ad 6= 0; moreover, this expression for z in this form is unique. If
a0 = 0, then z ∈ (Z j )⊆ Q. So we assume that a0 6= 0.

For every t , there exists kt minimal such that δkt+1(at)=0 (recall that δ is locally
nilpotent), so

θ(at)=

kt∑
k=0

(1− q j )
−k

[k]!q j

δk
◦ σ−k(at)Z−k

j .

By induction on the degree of local nilpotency we get:

at = θ(at)+

kt∑
k=1

µk,tθ(δ
k
◦ σ−k(at))Z−k

j =

kt∑
k=0

µk,tθ(δ
k
◦ σ−k(at))Z−k

j ,

where µ0,t = 1 and µk,t ∈ K. Let m be the maximum of the kt − t . Then

zZm
j =

d∑
t=0

at Z t+m
j =

d∑
t=0

kt∑
k=0

µk,tθ(δ
k
◦ σ−k(at))Z t+m−k

j ∈ R( j).

Thus zZm
j ∈ R( j)

∩ P S−1
j = P ′. Hence

zZm
j =

d∑
t=0

kt∑
k=0

µk,tθ(δ
k
◦ σ−k(at))Z t+m−k

j ∈ P ′. (2.11)

We let A′ denote the subalgebra of R( j) generated by Yi with i 6= j , or equivalently,
the image of θ . As P ′ is an H -prime ideal of

R( j)
= A′[Z j ; σ ],

it follows from [Launois et al. 2006, Corollary 2.4] that the coefficient of Z l
j in

the previous sum belongs to P ′ for every nonnegative integer l. In particular, the
coefficient of degree m is in P ′. Hence, by setting k = t in (2.11), we obtain

d∑
t=0

µt,tθ(δ
t
◦ σ−t(at)) ∈ P ′ ⊆ Q′.

As Q′ = g−1
j (Q/(Z j )) and (Z j )⊆ Q, we get that

d∑
t=0

µt,tδ
t
◦ σ−t(at) ∈ Q. (2.12)
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Since Z j ∈ Q, we see that δ(a)= Z j a− σ(a)Z j ∈ Q for every a ∈ A. Hence we
deduce from (2.12) that a0 = µ0,0a0 ∈ Q. Since (Z j )⊆ Q, we obtain, as desired,

z = a0+

( d∑
t=1

at Z t−1
j

)
Z j ∈ Q. �

3. Dimension of H-strata of uniparameter CGL extensions

In this section, we obtain a formula for the dimension of a stratum of a uniparameter
CGL extension, and apply it to compute the dimension of the (0)-stratum of a
quantum Schubert cell.

3A. Uniparameter CGL extensions. In this section, we assume that R is a uni-
parameter CGL extension, that is, R is a CGL extension such that there exist an
antisymmetric matrix (ai, j ) ∈ MN (Z) and q ∈ K∗ not a root of unity such that
λ j,i = qa j,i for all 1≤ i < j ≤ N .

3B. Dimension of H-strata of uniparameter CGL extensions. The aim of this
section is to give a formula for the dimension of the H -stratum in R associated to
a Cauchon diagram w ∈W ′. We need to introduce the following definition.

Definition. Let w ∈ W ′ be a Cauchon diagram of R. Let {l1 < · · · < ld} :=

[[1, N ]]\w be the complement ofw. We define the skew-adjacency matrix, MR(w),
of w to be the d × d matrix whose (i, j) entry is ali l j .

Theorem 3.1. Let w ∈ W ′. Then the H-stratum associated to Jw is homeomor-
phic to the prime spectrum of a commutative Laurent polynomial ring over K in
dimQ(ker(MR(w))) indeterminates.

Proof. Let w ∈ W ′ be a Cauchon diagram of R. Let {l1 < · · ·< ld} := [[1, N ]] \w
be the complement of w. From [Cauchon 2003a, Théorèmes 5.1.1 and 5.5.1] we
know that the canonical embedding induces an inclusion-preserving homeomor-
phism from the H -stratum SpecJw(R) of R associated to Jw onto the H -stratum
SpecKw

(
R
)

of R associated to Kw. Hence we deduce from Proposition 2.1 that

SpecJw(R)' SpecKw
(R)

' {P ∈ Spec(R) | P ∩ {T1, . . . , TN } = {Ti | i ∈ w}}. (3.13)

Recall that R =K3[T1, T2, . . . , TN ], where 3 denotes the N×N matrix whose
entries are defined by 3k,l = qak,l for all k, l ∈ [[1, N ]]. Let 3w denote the mul-
tiplicatively antisymmetric d × d matrix whose entries are defined by (3w)i, j =

q MR(w)i, j = qali l j .
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As Kw is the prime ideal generated by the indeterminates Ti such that i ∈ w,
the algebra R/Kw is isomorphic to the quantum affine space K3w [t1, . . . , td ] by an
isomorphism that sends Tli + Kw to ti and Tk to 0 if k 6= li .

To finish the proof, we use the same idea as in [Launois and Lenagan 2007,
Corollary 1.3].

We denote by P(3w) the quantum torus associated to K3w [t1, . . . , td ]:

P(3w) := K3w [t1, . . . , td ]6−1,

where 6 denotes the multiplicative system of K3w [t1, . . . , td ] generated by the
normal elements t1, . . . , td .

It follows from (3.13) that

SpecKw
(R)' Spec(0)

(
K3w [t1, . . . , td ]

)
' Spec(P(3w)).

Next, Spec(P(3w)) is Zariski-homeomorphic via extension and contraction to the
prime spectrum of the centre Z(P(3w)) of P(3w), by [Goodearl and Letzter 1998,
Corollary 1.5]. Further, as we shall see, Z(P(3w)) is a Laurent polynomial ring.
To make this result precise, we need to introduce the following notation.

If s = (s1, . . . , sd) ∈ Zd , then we set t s
:= t s1

1 . . . t
sd
d ∈ P(3w). As in [Goodearl

and Letzter 1998], we denote by σ : Zd
×Zd

→K∗ the antisymmetric bicharacter
defined by

σ(s, t) :=
d∏

i, j=1

(3w)
si t j
i, j = q

∑d
i, j=1 ali ,l j si t j for all s, t ∈ Zd .

Then it follows from [Goodearl and Letzter 1998, 1.3] that the centre Z(P(3w)) of
P(3w) is a Laurent polynomial ring over K in the variables (tb1)±1, . . . , (tbr )±1,
where (b1, . . . , br ) is any basis of

V := {s ∈ Zd
| σ(s,−)≡ 1}.

Since q is not a root of unity, easy computations show that s ∈ V if and only if
MR(w)

t st
= 0. Hence the centre Z(P(3w)) of P(3w) is a Laurent polynomial

ring in dimQ(ker(MR(w)
t))= dimQ(ker(MR(w))) indeterminates.

To summarize, we have

SpecJw(R)' SpecKw
(R)' Spec (P(3w))' Spec (Z(P(3w))) ,

and Z(P(3w)) is a Laurent polynomial ring in dimQ(ker(MR(w))) indeterminates,
as desired. �

3C. Application to quantum Schubert cells. We now use Theorem 3.1 to compute
the dimension of the (0)-stratum of quantum Schubert cells. We first recall the
definition of quantum Schubert cells.
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Let g be a simple Lie C-algebra of rank n. We denote by π={α1, . . . , αn} the set
of simple roots associated to a triangular decomposition g=n−⊕h⊕n+. Recall that
π is a basis of a Euclidean vector space E over R, whose inner product is denoted
by ( , ) (E is usually denoted by h∗R in Bourbaki.) We denote by W the Weyl group
of g, that is, the subgroup of the orthogonal group of E generated by the reflections
si := sαi , for i ∈ {1, . . . , n}, with reflecting hyperplanes Hi := {β ∈ E | (β, αi )= 0},
i ∈ {1, . . . , n}. The length of w ∈ W is denoted by l(w). Further, we denote by
w0 the longest element of W . Finally, we denote by A= (ai j ) ∈ Mn(Z) the Cartan
matrix associated to these data. As g is simple, ai j ∈ {0,−1,−2,−3} for all i 6= j .

Recall that the scalar product of two roots (α, β) is always an integer. We assume
that the short roots have length

√
2.

For all i ∈ {1, . . . , n}, set qi := q(αi ,αi )/2 and[
m
k

]
i
:=

(qi−q−1
i ) . . . (qm−1

i −q1−m
i )(qm

i −q−m
i )

(qi−q−1
i ) . . . (qk

i −q−k
i )(qi−q−1

i ) . . . (qm−k
i −qk−m

i )

for all integers 0≤ k ≤ m. By convention,[
m
0

]
i
:= 1.

The quantised enveloping algebra Uq(g) of g over C associated to the previous
data is the K-algebra generated by the indeterminates E1, . . . , En , F1, . . . , Fn ,
K±1

1 , . . . , K±1
n subject to the following relations:

Ki K j = K j Ki ,

Ki E j K−1
i = qai j

i E j and Ki F j K−1
i = q−ai j

i F j ,

Ei F j − F j Ei = δi j
Ki − K−1

i

qi − q−1
i

,

and the quantum Serre relations:

1−ai j∑
k=0

(−1)k
[

1−ai j

k

]
i

E1−ai j−k
i E j Ek

i = 0 (i 6= j), (3.14)

and
1−ai j∑
k=0

(−1)k
[

1−ai j

k

]
i

F1−ai j−k
i F j Fk

i = 0 (i 6= j).

We refer the reader to [Brown and Goodearl 2002; Jantzen 1996; Joseph 1995]
for more details on this (Hopf) algebra. Further, as usual, we denote by U+q (g)
(resp. U−q (g)) the subalgebra of Uq(g) generated by E1, . . . , En (resp. F1, . . . , Fn)
and by U 0 the subalgebra of Uq(g) generated by K±1

1 , . . . , K±1
n .
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To each reduced decomposition of the longest element w0 of the Weyl group
W of g, Lusztig has associated a PBW basis of U+q (g); see, for instance, [Lusztig
1993, Chapter 37; Jantzen 1996, Chapter 8; Brown and Goodearl 2002, I.6.7]. The
construction relates to a braid group action by automorphisms on U+q (g). We use
the convention of [Jantzen 1996, Chapter 8]. In particular, for any α ∈π , we define
the braid automorphism Tα of the algebra Uq(g) as in [Jantzen 1996, p. 153]. We
set Ti := Tαi . It was proved by Lusztig that the automorphisms Ti satisfy the braid
relations, that is, if si s j has order m in W , then

Ti T j Ti . . .= T j Ti T j . . . ,

where there are exactly m factors on each side of this equality.
Consider any w ∈W , and set t := l(w). Let w= si1 ◦· · ·◦sit (i j ∈ {1, . . . , n}) be

a reduced decomposition of w. It is well known that β1 = αi1 , β2 = si1(αi2), . . . ,
βt = si1 ◦ · · ·◦ sit−1(αit ) are distinct positive roots and that the set {β1, . . . , βt } does
not depend on the chosen reduced expression of w. Similarly, we define elements
Eβk of Uq(g) by

Eβk := Ti1 · · · Tik−1(Eik ).

Note that the elements Eβk depend on the reduced decomposition of w. The fol-
lowing well-known results were proved by Lusztig and Levendorskii–Soibelman.

Theorem 3.2 [Levendorskiı̆ and Soibelman 1991].

(1) For all k ∈ {1, . . . , t}, the element Eβk belongs to U+q (g).

(2) If βk = αi , then Eβk = Ei .

(3) For all 1≤ i < j ≤ t , we have

Eβ j Eβi − q−(βi ,β j )Eβi Eβ j =

∑
aki+1,...,k j−1 Eki+1

βi+1
· · · Ek j−1

β j−1
,

where each aki+1,...,k j−1 belongs to K.

We denote by Uq [w] the subalgebra of U+q (g) generated by Eβ1, . . . , Eβt . It
is well known that Uq [w] does not depend on the reduced decomposition of w.
Moreover, the monomials Ek1

β1
· · · Ekt

βt
, with k1, . . . , kt ∈ N, form a linear basis

of Uq [w]. As a consequence of this result, Uq [w] can be presented as a skew-
polynomial algebra:

Uq [w] = K[Eβ1][Eβ2; σ2, δ2] · · · [Eβt ; σt , δt ],

where each σi is a linear automorphism and each δi is a σi -derivation of the ap-
propriate subalgebra. In particular, Uq [w] is a noetherian domain and its group of
invertible elements is reduced to nonzero elements of the base-field.

The torus H := (K∗)n acts rationally by automorphisms on U+q (g) via

(h1, . . . , hn) · Ei = hi Ei for all i ∈ {1, . . . , n}.
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(It is easy to check that the quantum Serre relations are preserved by the group H.)
It is also well known that this action of H on U+q (g) restricts to a rational action of
H on Uq [w]. Observe that (0) is an H-prime in Uq [w] as this algebra is a domain.

It was proved by Cauchon [2003a, Proposition 6.1.2 and Lemme 6.2.1] that
Uq [w] is a uniparameter CGL extension with the following associated antisym-
metric matrix:

0 (β1, β2) · · · · · · (β1, βt)

–(β1, β2) 0 (β2, β3) (β2, βt)
...

. . .
. . .

. . .
...

...
. . . 0 (βt−1, βt)

–(β1, βt) . . . . . . –(βt−1, βt) 0


.

The kernel of this matrix has been described by De Concini and Procesi [1993,
Lemma 10.4 and 10.6] who proved that the kernel of this matrix identifies with
ker(idE +w). So we deduce from Theorem 3.1 the following result.

Proposition 3.3. The dimension of the stratum associated to (0) in Uq [w] is

dim ker(idE +w).

It follows from [Cauchon and Mériaux 2009, Proposition 2.2.1] that the algebra
Oq(Mm,n) of quantum matrices can be presented as a quantum Schubert cell. So
one can use the previous proposition in order to retrieve the dimension of the (0)-
stratum of Oq(Mm,n) that was first obtained in [Launois and Lenagan 2007].

4. Quantum matrices

In this section we investigate in more detail the dimensions of the strata occurring
in the Goodearl–Letzter stratification of the ring R = Oq(Mm,n) of m×n quantum
matrices, and we prove Theorems 1.1 and 1.2. Throughout this section, q denotes
a nonzero element of K that is not a root of unity. The ring R is known to be a
quantum Schubert cell by [Cauchon and Mériaux 2009, Proposition 2.2.1], so we
know (see the previous section) that Oq(Mm,n) is a uniparameter CGL extension.
Nevertheless we start by explicitly describing the results of the previous sections
in this situation.

4A. Quantum matrices as a CGL extension. This section serves to show that
quantum matrix rings give examples of CGL extensions and that we can therefore
draw upon the background given in Section 2.

It is well known that R=Oq(Mm,n) can be presented as an iterated Ore extension
over K with the generators Yi,α given in the beginning of Section 1 adjoined in
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lexicographic order. Thus the ring R is a noetherian domain; we denote by F its
skew-field of fractions. Since q is not a root of unity, it follows from [Goodearl
and Letzter 1994, Theorem 3.2] that all prime ideals of R are completely prime.

The algebras Oq(Mm,n) and Oq(Mn,m) are isomorphic. Because of this, we can
and will assume that n ≤ m.

H := (K∗)m+n acts on R by K-algebra automorphisms via

(a1, . . . , am, b1, . . . , bn) · Yi,α = ai bαYi,α for all (i, α) ∈ [[1,m]]× [[1, n]].

Moreover, since q is not a root of unity, R endowed with this action of H is a
uniparameter CGL extension (see for instance [Launois et al. 2006]). Before going
any further let us describe the antisymmetric matrix associated to the uniparameter
CGL extension Oq(Mm,n); it is given by

B = (bk,l) :=


A Im Im . . . Im

–Im A Im . . . Im
...
. . .

. . .
. . .

...

–Im . . . –Im A Im

–Im . . . . . . –Im A

 ∈ Mmn(Q),

where Im denotes the identity matrix of Mm(Q) and

A :=


0 1 1 . . . 1

–1 0 1 . . . 1
...
. . .

. . .
. . .

...

–1 . . . –1 0 1
–1 . . . . . . –1 0

 ∈ Mm(Z)⊆ Mm(Q).

That R = Oq(Mm,n) is a (uniparameter) CGL extension implies in particular
that H-Spec(R) is finite and that every H-prime is completely prime. Also, as
R = Oq(Mm,n) is a CGL extension, one can apply the results of Section 2 to this
algebra. In particular, using the theory of deleting derivations, Cauchon has given a
combinatorial description of H-Spec(R). More precisely, in the case of the algebra
R=Oq(Mm,n), he has described the set W ′ that appeared in Section 2C as follows.

First, it follows from [Cauchon 2003b, Section 2.2] that the quantum affine space
R that appears in Section 2C is in this case R = K3[T1,1, T1,2, . . . , Tm,n], where
3 denotes the mn × mn matrix whose entries are defined by 3k,l = qbk,l for all
k, l ∈ [[1,mn]]. Using the canonical embedding (see Section 2C), Cauchon [2003b]
produced a bijection between H-Spec(Oq(Mm,n)) and the collection Cm,n of m×n
Cauchon diagrams as defined on page 177. Roughly speaking, the set W ′ defined
on page 184 coincides with Cm,n .



On the dimension of H-strata in quantum algebras 193

Let us make this precise. If C is an m × n Cauchon diagram in the sense of
the definition on page 177, we denote by KC the (completely) prime ideal of R
generated by the indeterminates Ti,α such that the box in position (i, α) is a black
box of C . Then, with ϕ : Spec(R)→ Spec(R) denoting the canonical embedding,
it follows from [Cauchon 2003b, Corollaire 3.2.1] that there exists a unique H-
invariant (completely) prime ideal JC of R such that ϕ(JC)= KC ; moreover there
are no other H-primes in Oq(Mm,n); that is,

H-Spec(Oq(Mm,n))= {JC | C ∈ Cm,n}.

This last equality justifies the terminology “m × n Cauchon diagrams” for the
combinatorial objects defined on page 177.

In light of this, the containment rule for m × n Cauchon diagrams given in the
Introduction coincides exactly with set-theoretic containment for the more general
description of Cauchon diagrams in terms of sets. So, in the case of quantum
matrices, Theorem 2.3 can be rephrased as follows.

Theorem 4.1. If C and C ′ are two m×n Cauchon diagrams with C (C ′, then JC (
JC ′ , where JC and JC ′ denote respectively the H-primes of Oq(Mm,n) associated to
C and C ′.

4B. Dimension of H-strata. We now give some results about the dimension of
the H-stratum of an H-prime of Oq(Mm,n) corresponding to an m × n Cauchon
diagram C . We give two related definitions.

A Cauchon diagram C is labeled if each white box in C is labeled with a positive
integer such that: the labels are strictly increasing from left to right along rows,
and if i < j then the label of each white box in row i is strictly less than the label
of each white box in row j .

Let C be an m × n labeled Cauchon diagram with d white boxes and labels
l1 < · · · < ld . We define the skew-adjacency matrix, M(C), of C to be the d × d
matrix whose (i, j) entry is:

(1) 1 if the box labeled li is strictly to the left and in the same row as the box
labeled l j or is strictly above and in the same column as the box labeled l j ;

(2) −1 if the box labeled li is strictly to the right and in the same row as the box
labeled l j or is strictly below and in the same column as the box labeled l j ;

(3) 0 otherwise.

Observe that M(C) is independent of the set of labels which appear in C .
See, for example, Figure 3.
As a particular case of Theorem 3.1, we get the following result for the unipa-

rameter CGL extension Oq(Mm,n).
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C :

1
2

3 4 5
7→ M(C)=


0 0 1 0 0
0 0 0 1 0

–1 0 0 1 1
0 –1 –1 0 1
0 0 –1 –1 0


Figure 3. A labeled Cauchon diagram C and its corresponding
skew-adjacency matrix M(C).

Proposition 4.2. Let C be an m× n Cauchon diagram. The H-stratum associated
to JC is homeomorphic to the prime spectrum of a commutative Laurent polynomial
ring over K in dimQ(ker(M(C))) indeterminates.

We now use this result in order to prove the first part of Theorem 1.1. In order
to achieve this aim, we need the following lemma.

Lemma 4.3. Let C be an m × n labeled Cauchon diagram with n ≤ m and with
d white boxes with labels [[1, d]]. Assume that C has no all-black columns. For
1 ≤ j ≤ n, let a j denote the smallest label which appears in column j of C. Then
there is a d×d lower triangular matrix S such that the matrix obtained by deleting
columns a1, . . . , an and rows a1, . . . , an from S ·M(C) is invertible.

Proof. We let di denote the number of white boxes in the i-th row of C . Then

d = d1+ · · ·+ dm

and we can write M(C) in block form as

M(C) =


A1 J1,2 · · · J1,m

–J T
1,2 A2 · · · J2,m
...

...
. . .

...

–J T
1,m –J T

2,m · · · Am

 , (4.15)

where Ai is the di×di matrix whose diagonal entries are zero, whose entries above
the diagonal are 1, and whose entries below the diagonal are −1; and Ji, j is the
di × d j 0, 1-matrix whose (k, l) entry is 1 if the k-th white element in row i of C
(looking from left to right) is directly above the l-th white element in row j of C
(again, looking left to right) and is 0 otherwise.

We now define a d×d lower-triangular matrix S, whose diagonal entries are all
1 and for i > j , whose (i, j) entry is −1 if the white box labeled i is in the k-th
column of C and j = ak ; and whose (i, j) entry is 0 otherwise. We now consider
the product S ·M(C).

Claim. If i < j and the boxes labeled i and j are not in the same row of C and
i 6∈ {a1, . . . , an} then the (i, j) entry of S ·M(C) is zero.
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Proof of the claim. Suppose i < j and i 6∈ {a1, . . . , an}. Let l be the column in
which the box labeled i in C sits. Then

(S ·M(C))i, j =

d∑
k=1

Si,k M(C)k, j

= Si,i M(C)i, j + Si,al M(C)i, j = M(C)i, j −M(C)al , j .

By assumption, the boxes labeled i and j are not in the same row of C and hence if
M(C)i, j = 1, then j must also be in the l-th column of C . But then M(C)al , j = 1,
and so (S ·M(C))i, j = 0. Similarly, if M(C)i, j = 0, then j must be in a different
column than i and so M(C)al , j = 0 as well. The claim follows. �

Let D denote the matrix obtained from S ·M(C) by deleting the rows indexed by
a1, . . . , an and the columns indexed by a1, . . . , an . Let ei denote the number of
labels {a1, . . . , an} which appear in the i-th row of C . By the claim above, D is a
block lower-triangular matrix; that is,

D =


D1 0 · · · 0
∗ D2 · · · 0
...

...
. . .

...

∗ ∗ · · · Dm

 ,
where Di is a (di − ei )× (di − ei ) matrix.

Claim. For 1≤ i ≤m, we have Di =−Idi−ei+D′i for some skew-symmetric matrix
D′i .

Proof of the claim. We first consider the matrix S · M(C). Let {a+ 1, a+ 2, . . . ,
a+dk} be the set of labels in the k-th row of M(C). (Here a= d1+d2+· · ·+dk−1.)
Consider (S ·M(C))a+i,a+ j . Since D is obtained by deleting the rows and columns
of S · M(C) indexed by a1, . . . , ad , we may assume that a + i 6∈ {a1, . . . , an}. In
this case, the box labeled a+ i appears in the l-th column of C for some l. Then
(S · M(C))a+i,a+ j = M(C)a+i,a+ j − M(C)al ,a+ j . Observe that M(C)al ,a+ j is
nonzero if and only if a + j is also in the l-th column of C ; but by assumption,
a + i is in the l-th column and the boxes labeled a + i and a + j are in the same
row, so this is impossible unless i = j . Hence

(S ·M(C))a+i,a+ j = M(C)a+i,a+ j − δi, j ,

if a + i 6∈ {a1, . . . , an}. To obtain D, we simply delete the rows and columns
indexed by {a1, . . . , an}. In particular, if we let Ak denote the dk×dk submatrix of
A whose rows and columns are indexed by a+1, . . . , a+dk (see (4.15)), then Dk

is obtained by deleting the ei rows and columns indexed by the labels {a1, . . . , an}
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which occur in the i-th row of C and then subtracting the identity. Since each Ak

is skew-symmetric, the claim follows. �

We have seen that the matrix D is indeed a block lower-triangular matrix; thus to
finish the proof, it is enough to show that each Di is invertible. To see this, note
that it is of the form −I + D′i for some real skew-symmetric matrix D′i . Since the
nonzero eigenvalues of a real skew-symmetric matrix are purely imaginary, we see
that Di cannot have any eigenvalue equal to zero and hence is invertible. It follows
that the matrix D is invertible. �

We are now in position to prove the first part of Theorem 1.1.

Theorem 4.4. Let C be an m× n Cauchon diagram with n ≤ m. Then

dim(ker(M(C)))≤ n.

As a consequence the dimension of the H-stratum associated to JC is at most n.

Proof. Assume first that C has no all-black columns. By Lemma 4.3, there exists
an invertible matrix S such that deleting n rows and n columns from S · M(C)
gives an invertible matrix. This means that dim(ker(S · M(C))) ≤ n. Moreover
dim(ker(M(C))) = dim(ker(S · M(C))), since S is invertible. The result follows
in this case.

Assume now that C has at least one all-black column. Let Ĉ be the Cauchon
diagram obtained from C by removing every all-black column of C . Then M(C)=
M(Ĉ), and so the result follows from the previous case. �

We can now prove Theorem 1.1.

Theorem 4.5. Let m and n be natural numbers. Then the dimensions of H-strata in
Oq(Mm,n) are all at most min(m, n); moreover, for each d ∈ {0, 1, . . . ,min(m, n)}
there exists a d-dimensional H-stratum.

Proof. We assume that n ≤ m. By Theorem 4.4, the dimensions of the H-strata
are all at most n and so it is sufficient to show that each of these values can occur.
Let d ≤ n. We take P to be the H-prime corresponding to the m × n Cauchon
diagram whose (i, j) square is white if and only if i and j are both at most d .
Then Oq(Mm,n)/P is isomorphic to the ring of d×d quantum matrices. It follows
from [Launois and Lenagan 2007, Theorem 2.5] that the dimension of the stratum
associated to P is exactly d . This completes the proof. �

4C. Proof of Theorem 1.2. In this section we use Theorem 4.1 along with Theo-
rem 4.5 to prove Theorem 1.2.

We first make a remark that will be useful in proving the next proposition.

Remark. Let A be an n× n real skew-symmetric matrix. Then the dimension of
the kernel of A has the same parity as n.
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1 3 4
8 10

15 16

Figure 4. An example of a 4× 4 labeled Cauchon diagram.

Proposition 4.6. Let C be an m × n Cauchon diagram with n ≤ m. Suppose that
the kernel of M(C) has dimension e≥ 1. Then there is a Cauchon diagram C ′⊇C
obtained by adding exactly one black box to C such that M(C ′) has an (e − 1)-
dimensional kernel.

Proof. Clearly we can assume that C has no all-black columns. Let d be the number
of white boxes in C . We make C into an m × n labeled Cauchon diagram with
labels [[1, d]].

Let T = {i1, . . . , ik} denote the set of all labels of white boxes of C with the
property that if one of these labels is coloured black and the remaining boxes of C
are left unchanged then the result is still a Cauchon diagram.

For example, in Figure 4 the labels of the white boxes which can be coloured
black to obtain a Cauchon diagram are 1, 3, 4, 8 and 15.

Given i ∈ T , we let Ci denote the Cauchon diagram obtained by colouring the
white box with label i black.

If dim(ker(M(Ci ))) ≥ e for every i ∈ T , then by parity considerations (see
remark immediately above) we must have dim(ker(M(Ci )))≥ e+1, for i ∈ T . Let

{v
(i)
1 , . . . , v

(i)
e+1}

be a linearly independent set of vectors in the kernel of M(Ci ). We construct e+1
vectors as follows. For 1 ≤ j ≤ e+ 1, let w(i)j be the d × 1 column vector whose
l-th coordinate is the l-th coordinate of v(i)j if l < i , is 0 if l = i , and is the (l−1)-th
coordinate of v(i)j if l > i . By construction, every row of M(C) is orthogonal to
the linearly independent set {w(i)1 , . . . , w

(i)
e+1} except for possibly the i-th row. Let

r denote the i-th row of M(C). Then r is an 1×d row vector. We then have a map

Span({w(i)1 , . . . , w
(i)
e+1})→Q

in which a vectorw in the span is sent to r ·w∈Q. This map is surjective since oth-
erwise the dimension of the kernel of M(C) would be at least (e+1)-dimensional.
Thus the kernel of this map is an e-dimensional subspace of

Span({w(i)1 , . . . , w
(i)
e+1})

which lies in the kernel of M(C). Since the kernel of M(C) is exactly e-dimen-
sional, and every vector in Span({w(i)1 , . . . , w

(i)
e+1}) has a zero in the i-th coordinate,
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we see that every vector in ker(M(C)) has a zero in the i-th coordinate; moreover,
this is the case for every i ∈T . For 1≤ j≤n, recall that a j denotes the smallest label
which appears in column j of C . Then {a1, . . . , an}⊆T , as they are the labels of the
uppermost white boxes in each column. By Lemma 4.3 there is a lower-triangular
matrix S such that S ·M(C) has the property that if columns a1, . . . , an and rows
a1, . . . , an are deleted then the resulting matrix is invertible. Let {v1, . . . , ve} be a
basis for ker(M(C)). For each i ≤ e, let ui denote the (d − n)× 1 column vector
obtained by taking the d×1 vector vi and simply removing coordinates a1 through
an . Since the a j -th coordinate of vi is 0 for each i and j , we see that u1, . . . , ue

are linearly independent and are in the kernel of the matrix obtained by removing
columns a1, . . . , an from S · M(C). Thus these vectors are in the kernel of the
matrix obtained by deleting columns a1, . . . , an and rows a1, . . . , an of S ·M(C).
But this contradicts the fact that the matrix obtained by deleting columns a1, . . . , an

and rows a1, . . . , an of S · M(C) is invertible. It follows that there is some i ∈ T
such that the Cauchon diagram Ci has dim(ker(M(Ci ))≤ e− 1. We claim that

dim(ker(M(Ci ))= e− 1.

To see this, observe that it is no loss of generality to assume that in the ba-
sis {v1, . . . , ve} of ker(M(C)) the vectors v1, . . . , ve−1 have a zero i-th coordi-
nate. Then the vectors v′1, . . . , v

′

e−1 obtained by deleting the i-th coordinate from
v1, . . . , ve−1 are in the kernel of M(Ci ) and are linearly independent. The result
follows. �

Recall that an H-prime ideal in R = Oq(Mm,n) is primitive if and only if its as-
sociated H-stratum is 0-dimensional [Brown and Goodearl 2002, Theorem II.8.4].

Theorem 4.7. Let JC be the H-prime of R = Oq(Mm,n) associated to the Cauchon
diagram C. Suppose that the dimension of the H-stratum associated to JC is equal
to e. Then there is a chain C = C0 ( C1 ( · · · ( Ce of m × n Cauchon diagrams
such that JC = JC0 ( JC1 ( · · · ( JCe and, for all i , the dimension of the H-
stratum associated to JCi is e− i . In particular, JCe is a primitive H-prime ideal
in Oq(Mm,n).

Proof. We prove this by induction on e. If e = 0, then JC is primitive and there is
nothing to prove.

Suppose now that e > 0. By Proposition 4.6, there exists a Cauchon diagram
C1 obtained by turning a single white box of C black such that ker(M(C1)) has
dimension e− 1. As C = C0 ( C1, it follows from Theorem 4.1 that JC = JC0 (
JC1 . Moreover it follows from Proposition 4.2 that the dimension of the H-stratum
associated to JC1 is equal to dim(ker(M(C1))) = e− 1. The result is obtained by
applying the induction hypothesis to JC1 . �
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5. A conjecture

Our results show that the possible dimensions of the H-strata of Oq(Mm,n) are
{0, 1, 2, . . . ,min(m, n)}; moreover, every one of these values occurs as the di-
mension of some H-stratum. What is still unresolved, however, is how exactly
the dimensions of H-strata of Oq(Mm,n) are distributed. Earlier, we investigated
the enumeration of 0-dimensional H-strata in Oq(Mm,n) [Bell et al. 2009; Bell
et al. 2010]; this is the same as enumerating the primitive H-primes of Oq(Mm,n).
We make a general conjecture about the proportion of i-dimensional H-strata in
Oq(Mm,n) with i ≤ m and n ≥ m.

Conjecture 5.1. Let m be a natural number. Then for 0≤ i ≤ m we have

lim
n→∞

#i-dimensional H-strata in Oq(Mm,n)

#H-strata in Oq(Mm,n)
= 21−δi,0

(
2m

m+ i

)
4−m .

We have shown this for (i,m) ∈ {(0, 1), (1, 1), (0, 2), (1, 2), (2, 2), (0, 3), (2, 3)};
moreover, extensive computer computations suggest this is true in general.

Acknowledgment

We thank the anonymous referee for comments that have greatly improved this
text.

References

[Bell et al. 2009] J. Bell, S. Launois, and N. Nguyen, “Dimension and enumeration of primitive
ideals in quantum algebras”, J. Algebraic Combinatorics 29:3 (2009), 269–294. MR 2496308
Zbl 05551278

[Bell et al. 2010] J. Bell, S. Launois, and J. Lutley, “An automaton-theoretic approach to the repre-
sentation theory of quantum algebras”, Adv. Math. 223:2 (2010), 476–510. Zbl 05653475

[Brown and Goodearl 1996] K. A. Brown and K. R. Goodearl, “Prime spectra of quantum semisim-
ple groups”, Trans. Amer. Math. Soc. 348:6 (1996), 2465–2502. MR 96i:17007 Zbl 0857.16026

[Brown and Goodearl 2002] K. A. Brown and K. R. Goodearl, Lectures on algebraic quantum
groups, Birkhäuser, Basel, 2002. MR 2003f:16067 Zbl 1027.17010

[Cauchon 2003a] G. Cauchon, “Effacement des dérivations et spectres premiers des algèbres quan-
tiques”, J. Algebra 260:2 (2003), 476–518. MR 2004g:16044 Zbl 1017.16017

[Cauchon 2003b] G. Cauchon, “Spectre premier de Oq (Mn(k)): image canonique et séparation
normale”, J. Algebra 260:2 (2003), 519–569. MR 2004g:16045 Zbl 1024.16001

[Cauchon and Mériaux 2009] G. Cauchon and A. Mériaux, “Admissible diagrams in Uw
q g) and

combinatoric properties of Weyl groups”, preprint, 2009. arXiv 0902.0754

[De Concini and Procesi 1993] C. De Concini and C. Procesi, “Quantum groups”, pp. 31–140 in D-
modules, representation theory, and quantum groups (Venice, 1992), edited by G. Zampieri and A.
D’Agnolo, Lecture Notes in Math. 1565, Springer, Berlin, 1993. MR 95j:17012 Zbl 0795.17005



200 Jason P. Bell and Stéphane Launois

[Goodearl and Letzter 1994] K. R. Goodearl and E. S. Letzter, “Prime factor algebras of the coordi-
nate ring of quantum matrices”, Proc. Amer. Math. Soc. 121:4 (1994), 1017–1025. MR 94j:16066
Zbl 0812.16039

[Goodearl and Letzter 1998] K. R. Goodearl and E. S. Letzter, “Prime and primitive spectra of multi-
parameter quantum affine spaces”, pp. 39–58 in Trends in ring theory (Miskolc, 1996), edited by V.
Dlab and L. Márki, CMS Conf. Proc. 22, Amer. Math. Soc., Providence, RI, 1998. MR 99h:16045
Zbl 0904.16001

[Goodearl and Letzter 2000] K. R. Goodearl and E. S. Letzter, “The Dixmier–Moeglin equivalence
in quantum coordinate rings and quantized Weyl algebras”, Trans. Amer. Math. Soc. 352:3 (2000),
1381–1403. MR 2000j:16040 Zbl 0978.16040

[Jantzen 1996] J. C. Jantzen, Lectures on quantum groups, Graduate Studies in Mathematics 6,
American Mathematical Society, Providence, RI, 1996. MR 96m:17029 Zbl 0842.17012

[Joseph 1995] A. Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik
29, Springer, Berlin, 1995. MR 96d:17015 Zbl 0808.17004

[Launois 2007] S. Launois, “Combinatorics of H-primes in quantum matrices”, J. Algebra 309:1
(2007), 139–167. MR 2007k:05221 Zbl 1172.05051

[Launois and Lenagan 2007] S. Launois and T. H. Lenagan, “Primitive ideals and automorphisms of
quantum matrices”, Algebras and Representation Theory 10:4 (2007), 339–365. MR 2008e:16043
Zbl 1124.16037

[Launois et al. 2006] S. Launois, T. H. Lenagan, and L. Rigal, “Quantum unique factorisation do-
mains”, J. London Math. Soc. (2) 74:2 (2006), 321–340. MR 2007h:16047 Zbl 1116.16040

[Launois et al. 2008] S. Launois, T. H. Lenagan, and L. Rigal, “Prime ideals in the quantum Grass-
mannian”, Selecta Math. (N.S.) 13:4 (2008), 697–725. MR 2009e:20110 Zbl 1146.16023

[Levendorskiı̆ and Soibelman 1991] S. Levendorskiı̆ and Y. Soibelman, “Algebras of functions on
compact quantum groups, Schubert cells and quantum tori”, Comm. Math. Phys. 139:1 (1991),
141–170. MR 92h:58020 Zbl 0729.17011

[Lusztig 1993] G. Lusztig, Introduction to quantum groups, Progress in Mathematics 110, Birk-
häuser, Boston, MA, 1993. MR 94m:17016 Zbl 0788.17010

[Mériaux 2010] A. Mériaux, “Cauchon diagrams for quantized enveloping algebras”, J. Algebra
323:4 (2010), 1060–1097.

[Yakimov 2009] M. Yakimov, “Invariant prime ideals in quantizations of nilpotent Lie algebras”,
preprint, 2009. arXiv 0905.0852

Communicated by Susan Montgomery
Received 2009-03-09 Revised 2009-10-14 Accepted 2009-11-26

jpb@math.sfu.ca Jason Bell, Department of Mathematics,
Simon Fraser University, Burnaby, BC V5A 1S6, Canada

s.launois@kent.ac.uk School of Mathematics, Statistics and Actuarial science, Uni-
versity of Kent, Canterbury, Kent CT2 7NF, United Kingdom



ALGEBRA AND NUMBER THEORY 4:2(2010)

Gentle algebras arising from surface
triangulations

Ibrahim Assem, Thomas Brüstle,
Gabrielle Charbonneau-Jodoin and Pierre-Guy Plamondon

We associate an algebra A(0) to a triangulation 0 of a surface S with a set
of boundary marking points. This algebra A(0) is gentle and Gorenstein of
dimension one. We also prove that A(0) is cluster-tilted if and only if it is
cluster-tilted of type A or Ã, or if and only if the surface S is a disc or an annulus.
Moreover all cluster-tilted algebras of type A or Ã are obtained in this way.

1. Introduction

Among the main recent results in the fast-growing theory of cluster algebras is the
paper of Fomin, Shapiro and Thurston [Fomin et al. 2008], relating triangulations
of oriented surfaces to cluster algebras. This approach, which existed since the
beginning of the theory [Caldero et al. 2006], was followed in [Labardini-Fragoso
2009; Schiffler 2008], among others. In the same spirit, we consider in the present
paper an unpunctured oriented surface S and a finite set of points M , lying on the
boundary of S and intersecting every boundary component of S. We then associate
to a triangulation 0 of the marked surface (S,M) a quiver Q(0), and a potential
on Q(0) (in the sense of [Derksen et al. 2008]), thus defining an algebra A(0),
namely the (noncompleted) Jacobian algebra defined by Q(0) and the associated
potential.

Such an algebra A(0) has some very nice properties: it is always Gorenstein
of dimension one, and also it is a gentle algebra in the sense of [Assem and
Skowroński 1987]. In the unpunctured case studied here, our definition coincides
with Labardini’s definition of a quiver with potential associated to a (possibly punc-
tured) surface [Labardini-Fragoso 2009]. But in the punctured case, one does not
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get gentle algebras, or even string algebras. For instance, a once-punctured disc
gives rise to cluster-tilted algebras of type D [Schiffler 2008].

Gentle algebras form a particularly nice subclass of the class of string algebras
of [Butler and Ringel 1987] and are much investigated in the representation theory
of algebras. For instance, this subclass contains the tilted algebras of type A and
Ã (see [Assem 1982] and [Assem and Skowroński 1987], respectively) and it is
closed under tilting and even under derived equivalence (see [Schröer 1999] and
[Schröer and Zimmermann 2003], respectively).

Our objective in this paper is twofold. Firstly, we ask which gentle algebras
arise in this way, that is, are induced from triangulations of an unpunctured surface
with boundary marked points. We show in Proposition 2.8 that this is the case for
every gentle algebra such that every relation lies on what we call a 3-cycle with
radical-square zero (see definition before Theorem 2.7 or [Buan and Vatne 2008]
for the definition). Secondly, we ask which gentle algebras are cluster-tilted. The
class of cluster-tilted algebras, introduced in [Buan et al. 2007], has been much
investigated and is by now well-understood (see, for instance, [Assem et al. 2008a;
Barot et al. 2008; Buan et al. 2006; Buan and Vatne 2008; Caldero et al. 2006;
Keller 2009; Keller and Reiten 2007; Schiffler 2008]). In particular, it was shown
in [Assem et al. 2008a] that every cluster-tilted algebra is the relation-extension
of a tilted algebra, that is, it is the trivial extension of a tilted algebra C by the
C-C-bimodule Ext2C(DC,C). We may now state the main result of this paper.

Theorem 1.1. Let A(0) be the algebra associated to the triangulation 0 of an
unpunctured marked surface (S,M). Then the following statements are equivalent:

(1) A(0) is cluster-tilted.

(2) A(0) is cluster-tilted of type A and Ã.

(3) A(0) is the relation-extension of a tilted algebra of type A and Ã.

(4) The surface S is a disc or an annulus.

Moreover, all cluster-tilted algebras of type A (or Ã) are of the form A(0) for some
triangulation of a disc S (or an annulus S, respectively).

Actually, we prove in Theorem 3.3 that a cluster-tilted algebra is gentle if and
only if it is of type A and Ã, or if and only if it is the relation-extension of a
gentle tilted algebra, and the latter coincide with the tilted algebras of type A or Ã,
respectively.

The case where S is a disc has already been studied in [Caldero et al. 2006], and
it is known that the bound quivers of all cluster-tilted algebras of type A arise from
triangulations of the (unpunctured) disc. These algebras have also been described
explicitly in [Buan and Vatne 2008]. Also, the potential we use for defining the
cluster-tilted algebras of type Ã is a particular case of the potential recently defined
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by Keller [2009]. However, we do not use this fact, but rather present another proof
(predating Keller’s result), which uses [Assem et al. 2008a] and properties of the
second extension group.

The paper is organised as follows: in Section 2, we define our algebras A(0)
and prove their main properties in Theorem 2.7. Section 3 is devoted to the classi-
fication of the gentle cluster-titled algebras and Section 4 to the proof of our main
theorem and some of its consequences. We conclude with an example of an algebra
A(0) that is not of polynomial growth in the sense of [Skowroński 1990].

2. Algebras arising from surface triangulations

Throughout this paper, the algebras we consider are basic connected algebras over
a fixed algebraically closed field k. Unless otherwise stated, all algebras are finite-
dimensional. Consequently, they are given in the form A = k Q/I where Q is a
quiver and I is an admissible ideal of the path algebra k Q [Assem et al. 2006].
The pair (Q, I ) is called a bound quiver, and the algebra A = k Q/I is referred to
as a bound quiver algebra.

Given a bound quiver algebra A=k Q/I , for every vertex x of Q we denote by ex

the idempotent of A associated to x . Also, Px , Ix and Sx will be the corresponding
indecomposable projective module, indecomposable injective module and simple
module, respectively.

We study in this section the algebra associated with a surface triangulation. For
background material on oriented surfaces we refer to [Massey 1991].

The medial quiver Q(0). We first recall from [Fomin et al. 2008] the construction
of a quiver for every triangulation of a marked surface. Let S be an oriented surface
with boundary ∂S, and let M be a nonempty finite set of points on ∂S intersecting
each connected component of the boundary ∂S. In this paper, we only consider
the case where there are no punctures, that is, we request that the set of marked
points M be contained in the boundary ∂S. The pair (S,M) is referred to as an
unpunctured bordered surface with marked points.

An arc in (S,M) is a curve γ in S such that:

• The endpoints of γ are marked points in M .

• γ does not intersect itself, except that its endpoints may coincide.

• γ intersects the boundary of ∂S only in its endpoints.

• γ does not cut out a monogon (that is, γ is not contractible into a point of M).

We call an arc γ a boundary arc if it cuts out a digon (that is, γ is homotopic to
a curve δ on the boundary ∂S that intersects M only in its endpoints). Otherwise,
γ is said to be an internal arc. Each arc γ is considered up to homotopy in the
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class of such curves. A triangulation of (S,M) is a maximal collection 0 of arcs
that do not intersect in the interior of S (more precisely, there are curves in their
respective homotopy classes that do not intersect in the interior of S).

Proposition 2.1 [Fomin et al. 2008, (2.10)]. In each triangulation of (S,M), the
number of internal arcs is

n = 6g+ 3b+ c− 6,

where g is the genus of S, b is the number of boundary components, and c = |M |
is the number of marked points.

This proposition also indicates that in some cases a triangulation does not exist
(for instance a disc with one marked point would give n = −2). We consider
from now on only marked surfaces (S,M) that admit a triangulation. Given a
triangulation 0, we also refer to M as the set of vertices of 0. The triangles are
the components of S\0 with the arcs of 0 as edges.

We denote by Q(0) the medial quiver of internal arcs of 0. That is, Q(0) is
the quiver whose set of points is the set of internal arcs of 0, and the arrows are
defined as follows: whenever there is a triangle T in 0 containing two internal arcs
a and b, then Q(0) contains an arrow a→ b if a is a predecessor of b with respect
to clockwise orientation at the joint vertex of a and b in T (we can talk about
clockwise orientation around each marked point because S is an oriented surface).

Example. We illustrate the construction of Q(0) when 0 is a triangulation of an
octagon:
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Lemma 2.2. The quiver Q(0) contains no oriented cycles of length ≤ 2.

Proof. We first show that Q(0) contains no loops. A loop α at the point a of Q(0)
would arise from a triangle T in 0 in the following way:
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But in this case the triangle T is homeomorphic to

r
&%
'$

r
x

a

which means that x is an internal vertex, contradicting our assumption that M is
contained in the boundary of S.

We now show that Q(0) contains no oriented cycles of length two. Indeed, such
a cycle corresponds to the following situation in 0:
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Then a neighbourhood of x is homeomorphic to

r
&%
'$

r
r

x
a

b

which again contradicts the assumption that 0 contains no internal vertices. �

Remark. Fomin et al. [2008] associate a skew-symmetric matrix B(0) to a tri-
angulation 0 of (S,M). This construction is equivalent to the construction of the
quiver Q(0) we consider here. Since Q(0) contains no oriented cycles of length
≤ 2, it is uniquely determined by a skew-symmetric matrix B (where the number
of arrows between two vertices is given by the entries of B, and the direction of
the arrows is determined by the sign of the matrix entries). It is easy to see that
B coincides with B(0). Thus all the results from [Fomin et al. 2008] apply; in
particular, mutations of the quiver Q(0) correspond to flips of the triangulation 0.

Let b be an internal arc of 0. Thus b is one diagonal of the quadrilateral formed
by the two triangles of 0 that contain b. The flip of b replaces the edge b by the
other diagonal b∗ of the same quadrilateral. Keeping all other edges unchanged,
one obtains a new triangulation µb(0).
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An essential ingredient in the definition of cluster algebras by Fomin and Zele-
vinsky [2002] is the mutation of skew-symmetric matrices. Reformulated in the
language of quivers, one obtains a mutation of quivers Q 7→µb(Q). The following
proposition shows that flips of the triangulation commute with quiver mutations.
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Proposition 2.3 [Fomin et al. 2008, Proposition 4.8]. Suppose that the triangula-
tion µb(0) is obtained from 0 by a flip replacing the diagonal labelled b. Then

Q(µb(0))= µb(Q(0))

The algebra A(0). We define in this section an algebra A(0) for each triangula-
tion 0 of the unpunctured marked surface (S,M). Our construction generalizes
the one given in [Caldero et al. 2006] for polygons. An even more general case
is considered in [Labardini-Fragoso 2009], where such an algebra A(0) is defined
for a general marked surface (allowing punctures). If there are no punctures, the
definitions coincide (although Labardini works in the equivalent framework of op-
posite medial quivers).

A triangle T in 0 is called an internal triangle if all edges of T are internal
arcs. Every internal triangle T in 0 gives rise to an oriented cycle αTβT γT in
Q(0), unique up to cyclic permutation of the factors αT , βT , γT . We define

W =
∑

T

αTβT γT ,

where the sum runs over all internal triangles T of 0. Then W is a potential on
Q(0) and we define A(0) to be the (noncompleted) Jacobian algebra of (Q,W )

[Derksen et al. 2008; Keller 2007]. Thus A(0) can be described as a quotient
A(0)= k Q(0)/I (0) of the path algebra k Q(0) by the ideal I (0) generated by all
paths αTβT , βT γT and γTαT whenever T is an internal triangle of 0. Labardini
[2009] showed that flips in the triangulation correspond to mutations of the quiver
with potential (Q(0),W ) as defined in [Derksen et al. 2008].

The following result is shown in [Labardini-Fragoso 2009, Theorem 36] for the
more general case of punctured marked surfaces.

Lemma 2.4. Let 0 be a triangulation of an unpunctured marked surface (S,M).
Then the algebra A(0) is finite-dimensional.

We show in Lemma 2.5 that the algebras A(0) belong to a class of algebras
called gentle algebras. Recall from [Assem and Skowroński 1987] that a finite-
dimensional algebra is gentle if it admits a presentation A = k Q/I satisfying the
following conditions:

(G1) At each point of Q start at most two arrows and stop at most two arrows.

(G2) The ideal I is generated by paths of length 2.

(G3) For each arrow β there is at most one arrow α and at most one arrow γ such
that αβ ∈ I and βγ ∈ I .

(G4) For each arrow β there is at most one arrow α and at most one arrow γ such
that αβ 6∈ I and βγ 6∈ I .
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If the pair (Q, I ) satisfies conditions (G1) through (G4), we call it a gentle bound
quiver, or a gentle presentation of A= k Q/I . Note that in contrast to [Assem and
Skowroński 1987], we do not assume that A = k Q/I is triangular. An algebra
A = k Q/I where I is generated by paths and (Q, I ) satisfies the two conditions
(G1) and (G4) is called a string algebra [Butler and Ringel 1987], and thus every
gentle algebra is a string algebra. The gentle algebras can be characterized by
the fact that their repetitive categories are special biserial [Assem and Skowroński
1987; Pogorzały and Skowroński 1991].

We recall here the classification of indecomposable modules over a string alge-
bra A=k Q/I which is given in [Butler and Ringel 1987] in terms of reduced walks
in the quiver Q. A string in A is by definition a reduced walk w in Q avoiding the
zero-relations, and thus w is a sequence

w = x1
α1
←→ x2

α1
←→ · · ·

αn−1
←→ xn,

where the xi are vertices of Q and each αi is an arrow between the vertices xi and
xi+1 in either direction such that w does not contain a sequence of the form

β
←−

β
−→ or

β1
−→ · · ·

βs
−→

with β1 · · ·βs ∈ I , or their duals. A string is cyclic if the first and the last vertex
coincide. A band is defined to be a cyclic string b such that each power bn is a
string, but b itself is not a proper power of some string c.

The string module M(w) is obtained from the string w by replacing each xi in
w by a copy of the field k. The action of an arrow α on M(w) is induced by the
relevant identity morphisms if α lies on w, and is zero otherwise. The dimension
vector dim M(w) of M(w) is obtained by counting how often the string w passes
through each vertex x of the quiver Q:

dim M(w)=
( ∑

1≤i≤n

δx,xi

)
x∈Q0

,

where δx,xi = 1 for x = xi and δx,xi = 0 otherwise. Similarly, each band b in A
gives rise to a family of band modules M(b, λ, n) where λ∈ k and n ∈N (we refer
to [Butler and Ringel 1987] for the precise definition). All string and band modules
are indecomposable, and in fact every indecomposable A-module is either a string
module M(w) or a band module M(b, λ, n) [Butler and Ringel 1987].

We now return to the study of algebras stemming from surface triangulations:

Lemma 2.5. Let 0 be a triangulation of an unpunctured marked surface (S,M).
Then A(0) is a gentle algebra.

Proof. By Lemma 2.4, the algebra A(0) is finite-dimensional, so we only need to
verify conditions (G1) to (G4) for the bound quiver (Q(0), I (0)) of A(0).
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(G2): By definition, the ideal I (0) is generated by paths of length two.

(G1): Let a be a point of Q(0) corresponding to an internal arc a of 0. Since 0 is
a triangulation of a surface, the arc a is contained in at most two triangles:

r rr
r
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HHH

HH
HH

b1

b2

a

Hence there are at most two arrows α1 : b1→ a and α2 : b2→ a of Q(0) ending
in a. The same holds for arrows starting in a point a.

(G3), (G4): Suppose now that Q(0) contains α1, α2, β as follows:

r rr
r
��

��*

HHH
Hj -

α1

α2

β

b1

b2

a c

We have to show that precisely one of α1β, α2β belongs to I (0). In 0, the
internal arcs a, b1, b2 belong to two triangles as considered in the proof of (G1).
The arrow β encodes that the arc c is a successor of a in one of these triangles, say
the one formed by a, b1, c. This gives rise to the relation α1β, and α2β does not
belong to I (0) since α2 and β arise from different triangles. �

From the construction of A(0) it is clear that for each αβ ∈ I (0) there is an
arrow γ in Q(0) such that βγ ∈ I (0) and γα ∈ I (0). In the following lemma we
study a homological property of all gentle algebras satisfying this condition: an
algebra A is Gorenstein of dimension one if the injective dimension of the (finitely
generated) projective A-modules is at most one, and the projective dimension of
the (finitely generated) injective A-modules is at most one. Note that all cluster-
tilted algebras are Gorenstein of dimension one, and that an algebra of Gorenstein
dimension one is either hereditary or has infinite global dimension; see [Keller and
Reiten 2007].

Lemma 2.6. Let A = k Q/I be a gentle algebra such that for each αβ ∈ I there is
an arrow γ in Q such that βγ ∈ I and γα ∈ I . Then A is Gorenstein of dimension
one.

Proof. We only compute the projective dimension of the injective modules here; the
proof of the other part in the definition of Gorenstein of dimension one is dual. It is
sufficient to show that for every vertex x of Q the corresponding indecomposable
injective A-module Ix has projective dimension at most one. To do so, we construct
explicitly a projective resolution of Ix . We write the string module Ix as Ix =

M(u1α1α
−1
2 u−1

2 ), where u1 and u2 are oriented paths. Both paths might have length
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zero, and in this case, also the arrows α1 and α2 might not be present. The following
figure is used throughout the proof:

e1
w1 ///o/o/o/o/o/o/o/o f1

a1
u1 ///o/o/o/o/o/o/o/o

γ1

??

b1

α1   

c1oo v1 ///o/o/o/o/o/o/o d1

x
β1

>>

β2

  
a2

u2 ///o/o/o/o/o/o/o/o

γ2 ��

b2

α2

>>

c2oo v2 ///o/o/o/o/o/o/o d2

e2
w2 ///o/o/o/o/o/o/o/o f2

Note that {x, c1, b1} and {x, c2, b2} form oriented cycles in Q such that the com-
position of any two consecutive arrows is zero. Let

p0 : P(0)→ Ix

be a projective cover; then

P(0)= M(w−1
1 γ−1

1 u1α1β2v2)⊕M(w−1
2 γ−1

2 u2α2β1v1)

and
Ker p0 = M(w1)⊕M(w2)⊕M(v−1

1 β−1
1 β2v2)

(note that some summands of the terms of this sequence can be zero). We show
that Ker p0 is projective, thus obtaining the desired projective resolution

0 // Ker p0 // P(0)
p0 // Ix // 0.

In order to see that the first two summands of Ker p0 are projective (namely the
indecomposable projectives Pe1 and Pe2), one has to show that there are no other ar-
rows starting at the vertices e1, e2. Suppose there is an arrow δ1 :e1→ y in Q. Since
the algebra A is gentle, the composition γ1δ1 lies in the ideal I . The assumption of
the lemma guarantees the existence of a cycle γ1δ1ε1 such that γ1δ1, δ1ε1, ε1γ1 ∈ I .
But then the simple A-module Sy would be a composition factor of Ix , contradict-
ing the assumption Ix = M(u1α1α

−1
2 u−1

2 ). This shows that M(w1) = Pe1 , and
a similar argument shows that M(w2) = Pe2 . Since M(v−1

1 β−1
1 β2v2) = Px , we

conclude that Ker p0 is projective. �

Example. We illustrate the projective resolution constructed in Lemma 2.6 when
0 is the following triangulation of a polygon with 11 vertices (where the midpoints
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of internal arcs are labeled):
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The corresponding algebra A(0) is given by the quiver

e1

a1
u1 //

γ1
>>

b1

α1 ��

c1
δ1oo

x
β1

??

β2

��
b2

α2

??

c2
δ2

oo v2 // d2

with relations α1β1= β1δ1= δ1α1= 0 and α2β2= β2δ2= δ2α2= 0. The projective
resolution of the injective module Ix is then

0 // Pe1 ⊕ Px // Pa1 ⊕ Pb2
// Ix // 0,

where Pe1 is simple and Px = M(β−1
1 β2v2), Pa1 = M(u1α1β2v2) and Pb2 =

M(α2β1).

We recall from [Gabriel 1981] the concept of Galois coverings of bound quiver
algebras: Let 3 = k Q̃/ Ĩ be a bound quiver algebra (where the quiver Q̃ is not
necessarily finite). A group G of k-linear automorphisms of 3 is acting freely
on 3 if gex 6= ex for each vertex x of Q̃ and each g 6= 1 in G. In this case the
multiplication in 3 induces a multiplication on the set 3/G of G-orbits which
turns 3/G into an algebra. The canonical projection 3 → 3/G is called the
Galois covering of 3/G with group G.

In the following theorem we call (as in [Buan and Vatne 2008]) a 3-cycle an ori-
ented cycle αβγ where α, β, γ are three distinct arrows; and by a 3-cycle with rad-
ical square zero we mean a 3-cycle αβγ in an algebra k Q/I such that αβ, βγ, γα
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all lie in I . By a simple cycle we refer to a subquiver C of Q with n distinct vertices
{x0, x1, . . . , xn−1, xn = x0} and n arrows αi : xi → xi+1, for i = 1, . . . , n− 1.

Theorem 2.7. Let 0 be a triangulation of an unpunctured marked surface (S,M).

(1) The algebra A(0) is a gentle algebra.

(2) The algebra A(0) is Gorenstein of dimension one.

(3) There is a relation in A(0) from x to y only if there is an arrow y→ x.

(4) A(0) admits a Galois covering by a bound quiver algebra k Q̃/ Ĩ satisfying:

(T1) Every simple cycle in Q̃ is a 3-cycle with radical square zero.
(T2) The only relations in Ĩ are those in the 3-cycles.

Proof. Part (1) is shown in Lemma 2.5, and part (2) is shown in Lemma 2.6 since
the condition imposed on the gentle algebra A there clearly holds for the algebra
A(0). Part (3) follows directly from the definition of A(0). Maybe the most
intuitive way to obtain the Galois covering required in part (4) is the following.
By construction, the only relations in the algebra A(0) are those in the 3-cycles.
In a first step, we identify all 3-cycles to points, replacing each 3-cycle C with
vertices {x1, x2, x3} by one single vertex x and replacing each arrow y → xi (or
xi → y, respectively) by an arrow y→ x (or x→ y, respectively). The quiver Q
thus obtained contains no relations, and we let Q̃ be its universal Galois covering,
a (maybe infinite) tree. The bound quiver (Q̃, Ĩ ) is then obtained by placing back
the 3-cycles C = {x1, x2, x3} for all contracted vertices x of Q̃. �

Note that the finite quivers satisfying conditions (T1) and (T2) from the pre-
vious theorem form precisely the class of quivers Qn considered in [Buan and
Vatne 2008], where also the same relations are imposed. It would be interesting
to relate the Galois covering (Q̃, Ĩ ) constructed above with the universal cover of
the bordered surface (S,M).

Recovering topological data from A(0). The condition (4) in Theorem 2.7 is very
strong. Combined with the fact that the algebra is gentle, it implies the remaining
conditions (2) and (3). We show in this section that a gentle algebra satisfying
condition (4) is given by an unpunctured marked surface.

First we give a different combinatorial description of the algebras studied here.
Consider the following two bound quivers, where type I is a quiver of type A2, and
type II is a 3-cycle with radical square zero:

Type I d d- Type II d d
dppp p p pppp


� JJĴ�

Using these bound quivers one can construct algebras in the following way.
Suppose we start with a collection C of disjoint blocks of types I and II. Choose
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a partial matching (that is to say a partial bijection) π of the vertices in C , where
matching a vertex to another vertex of the same block is not allowed. Identifying
(or “gluing”) the vertices within each pair of the matching we obtain an algebra
A(C, π). Note that the arrows are not identified by this procedure, so one might ob-
tain parallel arrows or two-cycles. We consider only matchings where the algebra
A(C, π) is connected.

The procedure of gluing blocks is considered in a more general situation (using
plenty of building blocks) in [Brüstle 2001], where the resulting algebras are called
kit algebras. A similar construction to glue blocks of type I, II and four more types
is described in [Fomin et al. 2008].

We show below that the gentle algebras that admit a Galois covering satisfying
conditions (T1) and (T2) from Theorem 2.7 are algebras of the form A(C, π), and
thus results from [Fomin et al. 2008] concerning these algebras can be applied.

Proposition 2.8. Let A= k Q/I be a gentle algebra where every relation lies on a
3-cycle with radical square zero. Then there exists an unpunctured marked surface
(S,M) with a triangulation 0 such that A(0)= A.

Proof. The statement follows from [Fomin et al. 2008, (14.1)] once we show that
the algebra A admits a unique block decomposition A = A(C, π) using blocks of
types I and II. We therefore define C to be the disjoint union of all 3-cycles with
radical square zero of A together with the disjoint union of all remaining arrows
from A. Denote by f the quiver morphism f :C→ Q that identifies the blocks of
C with their images in Q.

We first show that | f −1(x)|≤2 for each vertex x ∈Q. Indeed, if f −1(x) contains
three different vertices, then there are three different arrows in Q adjacent to the
vertex x . But since the algebra A is gentle, there has to be one relation between
these three arrows. However, the set C is constructed in such a way that all relations
of A belong to one of the components in C , so there are no relations between arrows
corresponding to different components of C , and so the fiber f −1(x) contains at
most two vertices.

We now define a matching π on C relating x1 to x2 whenever f −1(x)={x1, x2}.
As required in the definition of A(C, π), we do not match a vertex to itself or to
some vertex in the same block. It is clear from the construction that A= A(C, π).
Moreover, the choice of blocks of type I or II is unique since all relations have to
correspond to a block of type II. �

We would like to point out that all algebras A(0) given by a triangulation 0 of
an unpunctured marked surface are of the form A(C, π) for some C and π , but the
converse is not true: One can easily produce two-cycles in an algebra A(C, π), but
this never occurs for the algebras A(0) as we have shown in Lemma 2.2.
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3. Gentle cluster-tilted algebras

Cluster-tilted algebras. Let 1 be an acyclic quiver. In [Buan et al. 2006] the clus-
ter category C1 is studied in order to obtain a categorical interpretation of the
cluster variables of the cluster algebra associated with 1. It is shown there that
clusters correspond bijectively to tilting objects T in C1. Their endomorphism
rings EndC1(T ) are called cluster-tilted algebras of type 1. They were introduced
and studied in [Buan et al. 2007].

Here we use a different description that has been given in [Assem et al. 2008a].
Let A be the hereditary algebra k1. An A-module T is called a tilting module if
Ext1A(T, T ) = 0 and the number of isomorphism classes of indecomposable sum-
mands of T equals the number of isomorphism classes of simple A-modules. In
this case, the endomorphism ring EndA(T ) is called a tilted algebra of type 1.

Let C be an algebra of global dimension two. The trivial extension

C̃ = C n Ext2C(DC,C)

of C by the C-C-bimodule Ext2C(DC,C) is called the relation-extension of C . It
is useful to describe explicitly the operations on C̃ . As an abelian group, C̃ =
C ⊕ Ext2C(DC,C). Therefore, let (c, e) and (c′, e′) be two elements of C̃ , where
e and e′ are respectively represented by the exact sequences of C-modules

e : 0 // P // M // N // I // 0,

e′ : 0 // P ′ // M ′ // N ′ // I ′ // 0,

with P, P ′ projective and I, I ′ injective. The addition is given by

(c, e)+ (c′, e′)= (c+ c′, e+ e′),

where the sum c+ c′ is the ordinary sum inside C , while e+ e′ is the Baer sum in
Ext2C(DC,C) (for which we refer to any textbook of homological algebra). The
product in C̃ is given by the formula

(c, e)(c′, e′)= (cc′, ce′+ ec′),

where the product cc′ is the ordinary product inside C , while ce′ and e′c are defined
as follows. Viewing c∈C as an element of End CC∼=C , then e1=ce′ is represented
by the sequence obtained by pulling down the sequence e′:

e′ : 0 // P ′ //

c
��

M ′ //

��

N ′ // I ′ // 0

e1 : 0 // P1 // M1 // N ′ // I ′ // 0

Similarly, if we view c′ ∈ C as an element of End DCC ∼= C , then e2 = ec′ is
represented by the sequence obtained by lifting the sequence e:
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e2 : 0 // P // M // N2 //

��

I2 //

c′��

0

e : 0 // P // M // N // I // 0
The following theorem allows us to view cluster-tilted algebras as relation-

extensions of tilted algebras.

Theorem 3.1 [Assem et al. 2008a]. An algebra 3 is cluster-tilted of type 1 if and
only if there exists a tilted algebra C of type 1 such that 3 is isomorphic to the
relation-extension C̃ of C.

Every cluster-tilted algebra satisfies conditions (2) and (3) from Theorem 2.7
[Keller and Reiten 2007]. The bound quivers of cluster-tilted algebras of type A

are explicitly described in [Buan and Vatne 2008, Proposition 3.1]. In fact they
were already described in [Caldero et al. 2006] as the algebras A(0) arising from
a triangulation of an unpunctured polygon. The following proposition is contained
in [Buan and Vatne 2008], but it also follows from Theorem 3.3 below.

Proposition 3.2 [Buan and Vatne 2008, (3.1)]. An algebra A is cluster-tilted of
type A precisely when A is gentle and there is a presentation A = k Q/I which
satisfies conditions (T1) and (T2) from Theorem 2.7.

In particular, the cluster-tilted algebras of type A are gentle. We describe in
the following theorem, whose proof occupies the rest of the section, which of the
gentle algebras are cluster-tilted:

Theorem 3.3. Let C=k QC/IC be a tilted algebra, and C̃ be its relation-extension.
The following are equivalent.

(1) C is gentle.
(2) C is tilted of type A or Ã.
(3) C̃ is gentle.
(4) C̃ is cluster-tilted of type A or Ã.

A preliminary part of the proof follows from a result in [Schröer 1999], which
says that the class of gentle algebras is stable under tilting.

Lemma 3.4. If a tilted algebra is gentle, then it is tilted of type A or Ã.

Proof. Let 1 be a quiver such that C is tilted of type 1. Then there exists a tilting
C-module T such that End T = k1. According to [Schröer 1999], k1 is a gentle
algebra. This implies that the quiver 1 is of type A or Ã. �

Lemma 3.5. If C̃ is gentle, then so is C.

Proof. This follows from the fact that C̃ is a split extension of C and from [Assem
et al. 2008b, (2.7)]. �
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Lemma 3.6. The algebra C is tilted of type A or Ã if and only if C̃ is cluster-tilted
of type A or Ã.

Proof. Clearly, if C is tilted of type A or Ã, then C̃ is cluster-tilted of type A or
Ã. Conversely, suppose C̃ is cluster-tilted of type A or Ã. By [Assem et al. 2008a]
there exists a local slice 6′ in mod C̃ such that C ′ = C̃/Ann6′ is tilted of type A

or Ã. On the other hand, since C̃ = C n Ext2C(DC,C), then there exists a local
slice 6 in mod C̃ such that C = C̃/Ann6. Since both 6 and 6′ have the same
underlying graph, C and C ′ have the same type, so C is tilted of type A or Ã. �

The main part of the proof of Theorem 3.3 is concerned with the problem of
showing that C̃ is gentle if C is tilted of type A or Ã. This will be done next.

Relation-extensions of tilted algebras of types A and Ã . Suppose C = k QC/IC

is tilted of type A or Ã. In particular, C is gentle because of [Assem 1982] and
[Assem and Skowroński 1987]. Moreover, the quiver of C̃ is known, as are some of
its relations, namely those already in C [Assem et al. 2008a; Assem et al. 2008b].
The aim here is to study the remaining relations of C̃ .

First, the bound quiver of a tilted algebra of type A has been described in [Assem
1982], and that of a tilted algebra of type Ã in [Roldán 1983]. The criterion given
here is derived from [Huard and Liu 2000].

We recall that a double-zero in a gentle algebra is a reduced walk of the form
αβωγδ, where α, β, γ and δ are arrows such that αβ and γδ are relations, while
ω is a nonzero reduced walk (that is, a walk which does not contain any relation).
Note that ω may be trivial and that in this case β and γ may coincide.

Example. The algebra
•

β //
φ

��

•

•

α ??

γ ��

•
ψ

??

ε

��
•

δ

??

•

where αβ = φψ = δε = 0, is gentle with a double-zero (namely φψβ−1φψ).

Proposition 3.7 [Assem 1982; Assem and Skowroński 1987]. (1) An algebra is
tilted of type A if and only if it admits a bound quiver presentation k Q/I , with
(Q, I ) a gentle tree with no double-zero.

(2) An algebra is tilted of type Ã if and only if it admits a bound quiver pre-
sentation k Q/I , with (Q, I ) a gentle presentation with no double-zero and a
unique (nonoriented) cycle such that, if the cycle is a band, then all arrows
attached to the cycle either enter it or leave it.
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Example. Consider the algebras given by the bound quivers

•

α ��

• •
φ // •

β

��
•

β

??

γ ��

• •

α
??

γ ��

•

•

δ

??

•
ψ
// •

δ

??

αβ = 0 αβ = γδ = 0

Using Proposition 3.7, we see that the first one is tilted of type A, while the second
one is tilted of type Ã.

A vanishing criterion. We need a criterion to verify whether a given exact se-
quence represents the zero element in the second extension group:

Lemma 3.8 [Happel et al. 1996, (II.1.3)]. Given a morphism f : M −→ N , the
exact sequence

0 // Ker f // M
f // N // Coker f // 0

represents the zero element of Ext2(Coker f,Ker f ) if and only if there exist a
module X and morphisms g, h such that the sequence

0 // M
(p,g)t // Im f ⊕ X

( j,h) // N // 0

is exact, where p and j are the natural morphisms arising from f .

The following lemma will be used frequently.

Lemma 3.9. Let (Q, I ) be a gentle presentation of an algebra C , and let α :c−→b
and β : b −→ a be arrows in Q. Let σ and η be strings, not passing through b,
such that βσ and ηα are strings. Let f : M(βσ)−→ M(ηα) be a morphism such
that Im f = Sb.

Then the exact sequence

e : 0 // Ker f // M(βσ)
f // M(ηα) // Coker f // 0

represents a nonzero element of Ext2C(Coker f,Ker f ) if and only if αβ lies in I .

Proof. In view of Lemma 3.8, the sequence e represents a nonzero element of
Ext2C(Coker f,Ker f ) if and only if there exists no short exact sequence of the
form

0 // M(βσ)
(p,g)t // Im f ⊕ X

( j,h) // M(ηα) // 0,
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Assume such a sequence exists. Since Sb appears exactly once as a composition
factor of M(βσ) and M(ηα), then it also appears exactly once as a composition
factor of X . Therefore, there exists a unique indecomposable summand Y of X
admitting Sb as a composition factor.

We claim that g : M(βσ) −→ X is a monomorphism: let x ∈ Q0 and take
a vector v ∈ M(βσ)x such that gx(v) = 0. If x 6= b, then px(v) = 0 and so
(p, g)tx(v)= 0 which implies v = 0. If x = b, then (pa(βv), ga(M(βσ)β(v)))t =
(p, g)ta(M(βσ)β(v))= (Im f ⊕X)β(p, g)tb(v)=0 which implies M(βσ)β(v)=0.
Since (M(βσ)β is injective, then v = 0. This completes the proof of our claim.

Since the evaluation M(βσ)β of the module M(βσ) on the arrow β is nonzero,
we must have Xβ 6= 0. Now, Sb is a composition factor of Y , hence Yβ 6= 0 as well.
Similarly, h is an epimorphism and it follows that Yα 6= 0. On the other hand, Y
must be a string or a band module. The above reasoning implies that αβ must then
be a subpath of a string or a band, which implies that αβ /∈ I , as required.

Conversely, if αβ /∈ I , then we have a short exact sequence

0 // M(βσ) // Sb⊕M(ηαβσ) // M(ηα) // 0,

and hence e represents the zero element in Ext2C(Coker f,Ker f ). �

Arrows. From now on, let C be a tilted algebra of type A or Ã. We give a descrip-
tion of the elements of C̃ = C n Ext2C(DC,C) corresponding to the arrows of its
ordinary quiver. In [Assem et al. 2008a, (2.4)], it is proved that the quiver of C̃ is
obtained from that of C by adding an arrow from x to y for each relation from y
to x . The elements of C̃ corresponding to the arrows of C are of the form (α, 0),
where α is an arrow of C .

The other arrows correspond to relations in C . Let αβ be a relation from c to a
in C , and let ξαβ be the corresponding new arrow in C̃ .

Lemma 3.10. The new arrow ξαβ lies in 0⊕Ext2C(Ic, Pa).

Proof. This new arrow lies in eaC̃ec, which can be written as the direct sum of
eaCec and eaExt2C(DC,C)ec. We know from Proposition 3.7 that the quiver of C
contains no double-zero. Consequently, there are no paths from a to c, and hence
eaCec = 0. Moreover, eaExt2C(DC,C)ec = Ext2C(Ic, Pa). The element ξαβ thus
lies in 0⊕Ext2C(Ic, Pa). �

The following lemma gives the dimension and a basis of the extension space
involved in the last expression.

Lemma 3.11. Let α : c−→b and β :b−→a be two arrows of C such that αβ ∈ IC .
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(a) The dimension of the vector space Ext2C(Ic, Pa) is 1 or 2. Its dimension is 2 if
and only if the following situation occurs in the bound quiver of C :

c α // b
β // a

σ

���\
�\

�\
�\

�\

x
γ //

η

BB
B�

B�
B�

B�
B�

y δ // z

where γ and δ are arrows, η and σ are paths, possibly stationary, without
relations, and αβ, γδ are relations.

(b) If the dimension of the space is 1, then a basis is given by the sequence

e1 : 0 // Pa // M(βσ) // M(ηα) // Ic // 0,

where η and σ are paths such that Ic = M(η) and Pa = M(σ ).

(c) If the dimension of the space is 2, then a basis is given by the sequences

e1 : 0 // Pa // M(βσ) // M(ηα) // Ic // 0,

e2 : 0 // Pa // M(σδ−1) // M(γ−1η) // Ic // 0,

where γ, δ, η and σ are as in the figure in part (a).

Proof. (a) It is known from [Assem et al. 2008a] that there is a new arrow from a
to c; thus the dimension cannot be zero. On the other hand, since C is gentle and
without double-zero, the local situation of the relation αβ can be described by the
following figure, where dotted lines represent relations.

j
ψ ///o/o/o/o/o/o/o/o k

e ι ///o/o/o/o/o/o/o/o

φ
??

f

d
γ ///o/o/o/o/o/o/o/o

δ
??

99

c
α

  

++ a
η ///o/o/o/o/o/o/o i

b

β
>>

θ

  
g σ ///o/o/o/o/o/o/o h

This diagram allows us to compute a projective resolution of Ic in mod C :

0
p3 // P(2)

p2 // P(1)
p1 // P(0)

p0 // Ic // 0,
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where P(2) = M(ψ)⊕ M(η), P(1) = M(ι−1φψ)⊕ M(σ−1θ−1βη) and P(0) =
M(ι−1δ−1γαθσ). Note that some direct summands of the terms of this sequence
can be zero. Applying HomC(−, Pa), we get a complex

0 // HomC(Ic, Pa)
(p0,Pa)// HomC(P(0), Pa)

(p1,Pa)// HomC(P(1), Pa)
(p2,Pa)// HomC(P(2), Pa)

(p3,Pa)// 0.

This yields

Ext2C(Ic, Pa)=
Ker Hom(p3, Pa)

Im Hom(p2, Pa)
=

Hom(M(ψ), Pa)⊕Hom(M(η), Pa)

Im Hom(p2, Pa)
.

Since Pa = M(η), we have dim Hom(M(η), Pa)= 1, and since

Hom(M(σ−1θ−1βη), Pa)= 0,

no nonzero morphism in Hom(M(η), Pa) factors through p2.
We claim that Hom(M(ψ), Pa) is nonzero if and only if j= i . Indeed, a nonzero

morphism from M(ψ) to Pa can only exist when j coincides with a vertex on the
path η. But if j were a vertex different from i , then there would be an arrow
φ′ : j → j ′ in the path η, forcing the relation φφ′′ and creating the double-zero
δφφ′. Thus j = i . In this case, ψ has no choice but to be the trivial path in i , and
dim Hom(M(ψ), Pa)= 1. Since Hom(M(ι−1φψ, Pa)= 0, no nonzero morphism
in Hom(M(ψ), Pa) factors through p2.

Hence no nonzero morphism in Hom(M(ψ), Pa) ⊕ Hom(M(η), Pa) factors
through p2. Thus the dimension of this space is either 1 or 2, and it is 2 exactly
when i = j . In this case, and in this case only, we have

c α // b
β // a

���\
�\

�\
�\

�\

d //

BB
B�

B�
B�

B�
B�

e // j

as desired.

(b) It follows from Lemma 3.9 that e1 is nonzero. The result follows.

(c) It follows from Lemma 3.9 that e1 and e2 are nonzero. It remains to be shown
that e1 and e2 are linearly independent. Suppose there exists a nonzero scalar λ
such that e2+ λe1 = 0. Computing this sum, we get the sequence

0 // Pa // M(βσδ−1)
f // M(γ−1ηα) // Ic // 0,

where all morphisms are multiples of the natural morphisms between string mod-
ules.
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Here, applying Lemma 3.9 is not possible, since Im f = Sb⊕ Sy , but a similar
technique of proof can be used.

Suppose there exist a module X and morphisms g and h such that the sequence

0 // M(βσδ−1)
(p,g)t // (Sb⊕ Sy)⊕ X

( j,h) // M(γ−1ηα) // 0

is exact, where f = j p is the canonical factorisation. Since Sb appears exactly once
as a composition factor of M(βσδ−1) and M(γ−1ηα), it also appears exactly once
as a composition factor of X . Therefore, there exists a unique indecomposable
summand Y of X admitting Sb as a composition factor. As in the proof of Lemma
3.9, we show that Yβ 6= 0 and Yα 6= 0. Therefore, αβ must be a subpath of a string
or a band, which is a contradiction, since it is a relation.

The sequences e1 and e2 thus form a basis of the extension space. �

It remains to determine which of the basis elements are represented by arrows
of C̃ .

Lemma 3.12. Let α : c −→ b and β : b −→ a be two arrows of the quiver of C
such that αβ is a relation. Let ξαβ be the corresponding new arrow in C̃. With the
notation of Lemma 3.11, the element (0, e1) can be chosen to represent ξαβ .

Proof. The space 0⊕Ext2C(Ic, Pa) contains at least one arrow.
If its dimension is 1, the result is obvious.
If its dimension is 2, Lemma 3.11 describes the situation of αβ in the quiver of

C . Two cases arise.
First, suppose that η and σ are both trivial paths.

b
β

��
c

α
??

++33

γ ��

aks

y
δ

??

In this case, two arrows from a to c are added to the quiver. Both (0, e1) and (0, e2)

must thus represent arrows of C̃ .
Second, suppose η and σ are not both trivial. In this case, Lemma 3.11 implies

that Ext2C(Ix , Pz) is of dimension 1, and that a basis is given by

e′ : 0 // Pz // M(δ) // M(γ) // Ix // 0.

Reasoning as above, we get that (0, e′) represents the new arrow from z to x .
Moreover, a straightforward calculation yields (σ, 0)(0, e′)(η, 0)= (0, e2).
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Since one of η and σ is not trivial, one of (0, η) and (0, σ ) must lie in rad C̃ .
Therefore (0, e2) ∈ rad2C̃ , and (0, e1) ∈ rad C̃ \ rad2C̃ ; in other words, (0, e1)

represents an arrow from a to c. �

Relations. Knowing how to write arrows in C̃ allows us to compute the relations.

Lemma 3.13. Let C = k QC/IC and C̃ = k QC̃/IC̃ .

(1) Let ω1, ω2, . . . , ωn be paths from x to y in the quiver of C , and let λ1, λ2, . . . ,

λn ∈ k. Then
∑n

i=1 λi (ωi , 0)= 0 in C̃ if and only if
∑n

i=1 λiωi = 0 in C.

(2) Let α : c −→ b and β : b −→ a be two arrows in the quiver of C such
that αβ is a relation. Let (0, e1) be the element representing the correspond-
ing new arrow, where e1 is as in Lemma 3.11. Then (0, e1)(α, 0) = 0 and
(β, 0)(0, e1)= 0.

(3) The ideal IC̃ is generated by the relations of C and those described in (2).

Proof. (1) This is shown in [Assem et al. 2008b].

(2) Viewing α as an element of End DC , or more precisely as a morphism from
Ib to Ic, we can compute e1β:

e1β : 0 // Pa // M(βσ) // M(ηα)⊕M(ϕγ) // Ib // 0,

where Ib = M(ηαγ−1ϕ−1). This sequence represents the zero element, because of
Lemma 3.8 and exactness of the sequence

0 // M(βσ) // Sb⊕M(ϕγβσ)⊕M(ηα) // M(ϕγ)⊕M(ηα) // 0.

Therefore (0, e1)(α, 0)= 0.
In a dual way, we prove that (β, 0)(0, e1)= 0.

(3) It is sufficient to show that new arrows in the quiver of C̃ are not involved in
other relations than those described in (2).

First suppose that w is a monomial relation involving new arrows and rela-
tions other than those described in (2). Then it must contain exactly one new
arrow ξ , corresponding to a relation αβ; otherwise the quiver of C would contain
a double-zero. Write w = uξv, where u and v are nonzero paths consisting of
arrows of C . Let e1 be the sequence as in Lemma 3.11 corresponding to ξ . Then
(u, 0)(0, e1)(v, 0)= (0, ue1v), where ue1v is the sequence

0 // M(u−1u′) // M(βu−1u′) // M(v′v−1α) // M(v′v−1) // 0,

where u′ and v′ are paths in the quiver of C . The figure at the top of the next page
illustrates the local situation, where αβ = γ′δ′ = 0; the last arrow of u and the first
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of t form a relation, as do the last of v and v′ and the first of w′ and w, respectively.

u ///o/o/o

u′
�� �O
�O
�O

t

OO
O�
O�
O� ξ //

α

��

v ///o/o/o w ///o/o/o

w′

OO
O�
O�
O�

β
__

v′

OO
O�
O�
O� γ′ // z′ ///o/o/o

δ′

�� t ′ ///o/o/o

This yields the following commutative diagram, where the first line is a projec-
tive resolution of M(v′v−1):

0 // P(2)
p2 //

( f,0)
��

P(1)
p1 //

(0,g,0)
��

P(0)
p0 //

(h,`)
��

M(v′v−1) // 0

0 // M(u−1u′) // M(βu−1u′) // M(v′v−1α) // M(v′v−1) // 0,

where P(2)= M(t)⊕M(t ′), P(1)= M(w′w)⊕M(z−1γ−1βt)⊕M(z′−1δ′t ′) and
P(0)=M(z−1γ−1α−1vw)⊕M(z′−1γ′−1v′w′), and all nonzero morphisms are the
natural morphisms between string modules. It is then seen that ( f, 0) cannot factor
through p2, and thus the lower exact sequence is nonzero. Hence there are no other
monomial relations than those in (2).

Now suppose we have a minimal relation of the form
∑m

i=1 λiwi , where each
λi is a nonzero scalar, each wi is a path in the quiver of C̃ , and m ≥ 2. At least
one of the wi must pass through a new arrow, and since C contains no double
zero, this implies that each wi must pass through exactly one new arrow, say ξi ,
corresponding to a relation αiβi . Write wi = uiξivi , where ui and vi are paths of
the quiver of C .

Since the quiver of C contains at most one cycle, we must have m=2. Since k is
a field, we may suppose that λ1 = 1. Letting e1 and e2 be the sequences associated
to ξ1 and ξ2, respectively, we get that u1e1v1 and λ2u2e2v2 are both sequences of
the form above. Their sum is the sequence

0 // M(u−1
2 u1) // M(β2u−1

2 u1β
−1
1 )

// M(α−1
2 v2v

−1
1 α1) // M(v1v

−1
2 ) // 0.

By an argument similar to the one given in the proof of Lemma 3.11(c), this
element is not zero; a contradiction. Hence no binomial relations exist in C̃ . �

The relations described in the preceding lemma make C̃ a gentle algebra.

Lemma 3.14. If C̃ is cluster-tilted of type A or Ã, then C̃ is gentle.
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Proof. The relations of C̃ are known (see Lemma 3.13). Moreover, C is gentle.
Suppose that there are r new arrows. Let us add the new arrows and the cor-

responding new relations one by one, thus obtaining a sequence C = C0,C1, . . . ,

Cr = C̃ of algebras. We show that Ci is gentle for all i in {0, 1, 2, . . . , r}.
Since C is gentle, then so is C0. Suppose that Ci is gentle, where i is in
{0, 1, 2, . . . , r − 1}. To get Ci+1, we add one new arrow, say γ from x to y. This
arrow comes from a relation αβ from y to x in C . We must add the relations βγ
and γα to obtain Ci+1.

Since Ci is gentle, there were already at most two arrows starting from x in Ci .
Suppose that there were two, say η1 and η2. Since Ci is gentle, then β is involved
in a relation with one of the two, say η1. The arrow η1 cannot be in C , otherwise
there would be a double zero involving αβ and βη1. So the arrow η1 comes from
a relation σβ in C . Since C is gentle, we must have that σ = α, so that η1 = γ,
which is absurd because γ is not in Ci .

Therefore, in Ci , there is at most one outgoing arrow from x , and this arrow
is not involved in a relation with β. This shows that in Ci+1, there are at most
two arrows starting from x , say η and γ, and that βη is not a relation while βγ
is. Moreover, there is at most one more arrow ending in x , say δ, and since Ci is
gentle, we have that δη is a relation, while δγ is not. So the relations at x are those
found in a gentle algebra.

Using a similar argument for the vertex y, we get that Ci+1 is a gentle algebra.
By induction, C̃ is a gentle algebra. �

Example. Lemma 3.13 allows us to compute the relation-extension of any gentle
tilted algebra. As an illustration, consider the two algebras given in the example on
page 216. The relation-extension of each is given in the following diagram:

•

α
��

•
ιoo •

φ // •
β

��
•

β

CC

γ
��

• •

α
CC

γ
��

•
σ

ρks

•

δ

CC

•
ψ
// •

δ

CC

αβ = ια = βι= 0 αβ = γδ = ρα = 0

βρ = σγ = δσ = 0

Proof of the main theorem. Now the proof of Theorem 3.3, developed in separate
parts over the last several pages, can be stated properly.



224 I. Assem, T. Brüstle, G. Charbonneau-Jodoin and P.-G. Plamondon

Proof of Theorem 3.3. That (1) implies (2) is shown in Lemma 3.4, that (2) implies
(4) in Lemma 3.6, that (4) implies (3) in Lemma 3.14, and that (3) implies (1) in
Lemma 3.5. �

4. Geometry of surfaces and A(0)

We study in this section more connections between geometric properties of the
marked surface (S,M) and properties of the algebra A(0) given by a triangulation
of (S,M).

Cluster-tilted algebras arising from surfaces. We first address the question of
which of the algebras A(0) are cluster-tilted. Recall that all algebras A(0) share the
properties (2) and (3) from Theorem 2.7 with every cluster-tilted algebra. More-
over, it is shown in [Caldero et al. 2006] and [Buan and Vatne 2008] that the
cluster-tilted algebras of type A are algebras A(0) arising from a triangulation of
an unpunctured polygon. In this section, we show the following generalization:

Theorem 4.1. Let A(0) be the algebra associated to the triangulation 0 of an
unpunctured marked surface (S,M). Then the following statements are equivalent:

(1) The algebra A(0) is cluster-tilted.

(2) The algebra A(0) is cluster-tilted of type A or Ã.

(3) S is a disc or an annulus.

Moreover, all cluster-tilted algebras of type A (or Ã) are of the form A(0) for some
triangulation 0 of a disc S (or an annulus S, respectively).

Proof. It is clear that (2) implies (1). Let us show the converse: Suppose that the
algebra A(0) is cluster-tilted. Thus there is a sequence of mutations transforming
the quiver with potential defining A(0) into some quiver Q with zero potential.
This sequence of mutations corresponds to a sequence of flips, transforming the
triangulation 0 of (S,M) into a triangulation T with Q(T )= Q and zero potential.
Hence A(T ) = k Q is hereditary. Since we know from Theorem 2.7 that A(T ) is
gentle, this leaves only the possibilities that Q is of type A or Ã. Therefore the
algebra A(0) is cluster-tilted of type A or Ã.

We prove now the equivalence of (2) and (3). Since all triangulations on (S,M)
are flip-equivalent [Hatcher 1991] and flips of the triangulation correspond to mu-
tations of the corresponding quiver with potential [Labardini-Fragoso 2009], it is
sufficient to consider one particular triangulation. In the case where S is a disc, we
choose the triangulation to be in the form of a fan, giving rise to a linear oriented
quiver of type A. In the case where S is an annulus, we choose the triangulation
given by two fans in opposite direction as shown in the figure at the top of the next
page (where the left and right vertical edge should be identified).
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The corresponding quiver is of type Ã with zero potential; thus (3) implies (2).
Conversely, we know from Proposition 2.8 that the quivers Q(0) uniquely deter-
mine the topology of the unpunctured marked surface (S,M). Therefore S is a
disc or an annulus, respectively, and since all triangulations are flip-equivalent, it
is clear that all cluster-tilted algebras of the corresponding type occur. �

Curves in (S, M) and string modules. In this section we are comparing strings in
A(0) to curves in (S,M). By a curve in (S,M) we mean a curve γ in S whose
endpoints lie in M and where all points except the endpoints lie in the interior of S.
We usually consider curves up to homotopy. For instance, for two distinct curves γ
and δ in (S,M), the intersection number I0(γ, δ) is defined as the minimal number
of transversal intersections of two representatives of the homotopy classes of γ and
δ. Denote the internal arcs of the triangulation 0 by {a1, . . . , an}. Then we define
the intersection vector I0(γ) of a curve γ as

I0(γ)= (I0(γ, a1) . . . , I0(γ, an)).

Proposition 4.2. Let 0 be a triangulation of (S,M), an unpunctured marked sur-
face. Then there exists a bijection {γ} 7→ w(γ) between the homotopy classes of
curves in (S,M) not homotopic to an arc in 0 and the strings of A(0). Under
this bijection, the intersection vector corresponds to the dimension vector of the
corresponding string module, that is,

I0(γ)= dim M(w(γ)).

Proof. Let w = x1
α1
←→ x2

α2
←→ · · ·

αs−1
←→ xs be a string in A(0). We define a

curve γ(w) in (S,M) as follows: The arcs x1 and x2 belong to the same triangle
T1 since they are joined by an arrow in A(0). We connect the midpoints of x1

and x2 by a curve γ1 in the interior of T1. Proceeding in the same way with the
remaining arcs x2, . . . , xs we obtain curves γ2, . . . , γs−1 connecting the midpoints
of the respective arcs. The internal arc x1 belongs to two triangles: the triangle
T1 which we considered above and another triangle T0. Let P ∈ M be the marked
point in T0 opposite to the arc x1. We now connect P with the midpoint of x1 by
a curve γ0 in the interior of T0, and proceed in the same way on the other end of
the string w, connecting the midpoint of xs with a marked point Q by some curve
γs . The curve γ(w) is then defined as the concatenation of the curves γ0, . . . , γs .
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By construction, the points of intersection of the curve γ(w) with arcs in 0
are indexed by the vertices of the string w. The curve intersects the arcs of 0
transversally, and since the string w is reduced, none of the γi is homotopic to a
piece of an arc in 0. Thus the intersection numbers are minimal, and I0(γ(w))=
dim M(w). Since γ(w) has nontrivial intersection with arcs of 0, it is clear that it
is not homotopic to an arc in the triangulation 0.

Conversely, let γ : [0, 1]→ S be a curve in (S,M) which is not homotopic to an
arc in 0. We assume that the curve γ is chosen (in its homotopy class) such that
it intersects the arcs a of 0 transversally (if at all) and such that the intersection
numbers I0(γ, a) are minimal. Orienting γ from P = γ(0) ∈ M to Q = γ(1) ∈ M ,
we denote by x1 the first internal arc of 0 that intersects γ, by x2 the second arc, and
so on. We thus obtain a sequence x1, . . . , xs of (not necessarily different) internal
arcs in 0. Since the intersection numbers are minimal, we know that xi 6= xi+1.
Thus there are arrows, either αi : xi→ xi+1 or αi : xi+1→ xi in Q(0), and we obtain
a walk w(γ) = x1

α1
←→ x2

α1
←→ · · ·

αs−1
←→ xs in Q(0). The fact that γ intersects

the arcs of 0 transversally implies that the walk w(γ) is reduced and avoids the
zero-relations, and thus w(γ) is a string in A(0).

It follows from their construction that the two maps between strings and homo-
topy classes of curves defined above are mutually inverse. �

Remark. Recall that two string modules M(w) and M(v) are isomorphic precisely
when v=w or v=w−1. The inverse string w−1 corresponds to orienting the curve
in the opposite direction.

Proposition 4.3. Let 0 be a triangulation of (S,M), an unpunctured marked sur-
face. Then there exists a bijection between the homotopy classes of closed curves
in (S,M) and powers bn of bands b of A(0).

The proof is analogous to that of the previous proposition.

An example where A(0) is not cluster-tilted. We finally present in this section
an example of an algebra A(0) which is not cluster-tilted. Recall that an algebra
A is tame if for all d ∈ N there is a finite number nd of one-parameter families
of A-modules such that almost every d-dimensional A-module belongs to one of
these nd families. The algebra A is said to be domestic if there is a constant c such
that nd ≤ c for all d ∈ N. On the other hand, if the numbers nd grow faster than
any polynomial, then the tame algebra A is said to be of nonpolynomial growth.
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It is well-known that every string algebra A is tame, and that the one-parameter
families are given by the bands in A [Butler and Ringel 1987]. In particular, all the
algebras A(0) are tame, because they are gentle and thus string algebras. Moreover
the tame cluster-tilted algebras of the form A(0) studied here are all domestic;
in fact, they are of type A or Ã, and thus we may assume above that c = 0 or
c = 1. We construct in this section an example of an algebra A(0) which is of
nonpolynomial growth, and thus cannot be cluster-tilted. To obtain this example,
we consider a sphere S with three holes and choose one marked point in each
boundary component. We fix the following triangulation 0 of (S,M) :

Then the algebra A(0) is given by the following quiver with relations εiρi =

0, ρiσi = 0 and σiεi = 0 for i = 1 and i = 2.

b1

��

σ1

  
a1

α

��

ρ1
>>

β
��

c1ε1
oo

γ

��

b2
σ2

~~
a2 ε2

// c2

ρ2
``

The string algebra A(0) admits the two bands

ξ = b2
σ2
−→ a2

α
←− a1

ρ1
−→ b1

β
−→ b2,

η = b2
ρ2
←− c2

γ
←− c1

σ1
←− b1

β
−→ b2.

Since ξ and η can be composed arbitrarily, the number of bands of a fixed length
l grows exponentially with l, so the algebra A(0) is of nonpolynomial growth.

We would like to point out that the notion of nonpolynomial growth of tame
algebras discussed here does not coincide with the notion of nonpolynomial growth
cluster algebras discussed in [Fomin et al. 2008]: There one counts the number of
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cluster variables, that is to say, of arcs in (S,M), instead of one-parameter families,
that is to say, closed curves in (S,M). In [Fomin et al. 2008] the example we are
considering in this section is classified as being of polynomial growth, meaning
that, even if the number of curves is growing exponentially, the number of arcs is
bounded for the sphere with three holes.
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