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For every involution w of the symmetric group Sn we establish, in terms of a
special canonical quotient of the dominant Verma module associated with w,
an effective criterion to verify whether the universal enveloping algebra U (sln)
surjects onto the space of all ad-finite linear transformations of the simple highest
weight module L(w). An easy sufficient condition derived from this criterion
admits a straightforward computational check (using a computer, for example).
All this is applied to get some old and many new results, which answer the
classical question of Kostant in special cases; in particular we give a complete
answer for simple highest weight modules in the regular block of sln , n ≤ 5.

1. Introduction

Let g be a complex semisimple finite-dimensional Lie algebra with a fixed trian-
gular decomposition,

g= n−⊕ h⊕ n+,

and U (g) be its universal enveloping algebra. Then for every two g-modules M and
N the space HomC(M, N ) may be viewed as a U (g)-bimodule in the natural way,
and, furthermore, also as a g-module under the adjoint action of g. The bimodule
HomC(M, N ) has a sub-bimodule, usually denoted by L(M, N ), which consists of
all elements on which the adjoint action of U (g) is locally finite (see for example
[Jantzen 1983, Kapitel 6]). Since U (g) itself consists of locally finite elements
under the adjoint action, it naturally maps to L(M,M) for every g-module M , and
the kernel of this map is obviously the annihilator Ann(M) of M in U (g). The
classical problem of Kostant (see for example [Joseph 1980]) is formulated in the
following way:

For which g-modules M is the natural injection U (g)/Ann(M) ↪→L(M,M)
surjective?
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A (positive) answer to Kostant’s problem is an important tool in the study of
Goldie rank ratios [Joseph 1980] and in the study of induced modules, particularly
generalized Verma modules, [Borho and Brylinski 1982; Miličić and Soergel 1997;
Khomenko and Mazorchuk 2004; Mazorchuk and Stroppel 2008a].1 A positive
answer to Kostant’s problem for certain highest weight modules allows one, for
example, to give a unified irreducibility criterion for the structure of generalized
Verma modules [Miličić and Soergel 1997; Khomenko and Mazorchuk 2004; MS
2008a]. A negative answer to Kostant’s problem in the situation of [Borho and
Brylinski 1982] results in the filtration of the appropriate quotient of the universal
enveloping algebra not coinciding with that given by its embedding into differential
operators.

Unfortunately, the complete answer to this problem is not even known for (sim-
ple) highest weight modules. The answer is known to be positive for Verma mod-
ules [Joseph 1980, Corollary 6.4] and for certain classes of simple highest weight
modules [Gabber and Joseph 1981a, Theorem 4.4; Conze-Berline and Duflo 1977;
McGovern 1994; Mazorchuk 2005, Theorem 1]. For simple highest weight mod-
ules in type A the answer is even known to be an invariant of a left cell; see [MS
2008a, Theorem 60]. However, already in [Joseph 1980, 9.5] it was shown that
for some simple highest weight modules in type B the answer is negative (another
example can be found in [Conze-Berline and Duflo 1977, 6.5]). Contrary to the
popular belief that the answer is positive for simple highest weight modules in type
A, it was recently shown in [MS 2008b, Theorem 13] that for the simple highest
weight sl4-module L(r t), where r and t are two commuting simple reflections, the
answer is negative.

The present paper is strongly inspired by this counterexample and is an attempt
to analyze and generalize it. As for highest weight modules in type A the answer
to Kostant’s problem is an invariant of a left cell, and since every left cell of the
symmetric group Sn contains a unique involution [Sagan 2001, Chapter III], it is
enough to solve Kostant’s problem for all modules of the form L(w), where w∈ Sn

is an involution. The counterexample in [MS 2008b, Theorem 13] was constructed
relating the module L(w) to a special quotient of the dominant Verma module,
which in the following will be denoted by D R̂. This module is a canonical object
of the category OR̂

0 , which was used in [MS 2008a] to categorify Kazhdan–Lusztig
cell modules. Furthermore, it is the unique quotient of the dominant Verma module,
whose annihilator (in U (g)) coincides with the annihilator of L(w). The module
L(w) is the simple socle of D R̂ and thus both L(w) and D R̂ are submodules of
the indecomposable injective module P R̂(w) in OR̂

0 , which also turns out to be
projective.

1Henceforth we will abreviate “Mazorchuk and Stroppel” by MS.
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The main result of the present paper relates the solution of Kostant’s problem
for L(w) to the structure of D R̂ as follows:

Theorem 1. Kostant’s problem has a positive answer for L(w) if and only if every
simple submodule of the cokernel of the canonical inclusion D R̂

⊂ P R̂(w) has the
form L(x), where x is some element from the right cell of w.

We will show that Theorem 1 can be used to answer Kostant’s problem in many
cases, in particular, to obtain many new results and reprove some old results. To
prove this result we further develop the functorial approach to Kostant’s problem
from [Mazorchuk 2005; MS 2008a; 2008b]. The most interesting application of
this theorem seems to be that it implies a sufficient condition for a negative an-
swer to Kostant’s problem, which is purely computational and can be realized as
a relatively short and efficient program on a computer. Some further progress on
Kostant’s problem was recently made in [Mazorchuk 2009].

In Section 2 we collect all necessary preliminaries. The main results, including
Theorem 1, are formulated in detail and proved in Section 3. In Section 4 we
collect many applications, both theoretical and computational.

2. Notation and preliminaries

From now on we assume that g = sln and the triangular decomposition is just
the usual decomposition into the upper triangular, diagonal and lower triangular
matrices. The symmetric group Sn is the Weyl group W for g and hence Sn acts
on h∗ in the usual way wλ, and via the dot action w · λ = w(λ+ ρ)− ρ, where ρ
is half the sum of all positive (with respect to the above triangular decomposition)
roots of the algebra g.

Let O denote the BGG category O [Bernstein et al. 1976] associated with the
triangular decomposition above. For w ∈ W we let 1(w) denote the Verma mod-
ule with highest weight w · 0, L(w) denote the simple head of 1(w), and P(w)
denote the indecomposable projective cover of L(w). The principal block O0 is the
indecomposable direct summand of O, which contains all L(w), w ∈ Sn .

For w ∈ W we denote by θw the indecomposable projective functor on O0 as-
sociated with w. This functor is the unique (up to isomorphism) indecomposable
direct summand of all possible functors that have the form V ⊗C − : O→ O, where
V is a finite-dimensional g-module that satisfies θw1(e) = P(w), where e is the
identity element of W [Bernstein and Gel’fand 1980, Section 3].

Denote by ≤L and ≤R the left and the right (pre)orders on W respectively
[Björner and Brenti 2005, Section 3]. For x, y ∈W we will write x <L y provided
that x ≤L y and y 6≤L x . We will use similar notation for ≤R. The left preorder
coincides with the natural inclusion order on the set of annihilators of L(w), w∈ Sn

[Jantzen 1983, 14.15]. The right one is obtained applying the involution x 7→ x−1.
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For a fixed right cell R set

R̂ = {x ∈W : x ≤R w for some w ∈ R}

(this is simply the principal ideal (or cone) of (Sn,≤R), generated by the equiva-
lence class R), and denote by OR̂

0 the smallest full subcategory of O0 that contains
all L(w), w ∈ R̂, and is closed under isomorphisms and extensions. The natural
inclusion functor OR̂

0 → O0 is obviously exact and hence has both a left adjoint
ZR̂

0 : O0→ OR̂
0 and a right adjoint ẐR̂

0 : O0→ OR̂
0 [MS 2008a, 5.1]. The functor ZR̂

0
is just the functor of taking the maximal possible quotient that lies in OR̂

0 ; and the
functor ẐR̂

0 is just the functor of taking the maximal possible submodule that lies
in OR̂

0 . All projective functors on O0 preserve OR̂
0 , and both ZR̂

0 and ẐR̂
0 commute

with θw for all w ∈W [MS 2008a, Lemma 19].
For w ∈ R̂ set P R̂(w)= ZR̂

0 P(w) and 1R̂(w)= ZR̂
0 1(w). Then the modules

P R̂(w), w ∈ R̂, are exactly the indecomposable projective modules in OR̂
0 . The

module P R̂(w) is injective if and only if w ∈ R [MS 2008a, Section 5]. Let
w ∈ R be the unique involution in R. Then P R̂(w)= θwL(w) for any w ∈ R;
see [MS 2008b, Key statement]. By [MS 2008b, Lemma 8] we have the equality
dim Homg(P R̂(e), P R̂(w)) = 1. Denote by D R̂ the image of the unique (up to a
scalar) nonzero homomorphism from P R̂(e) to P R̂(w).

Conjecture 2. D R̂
= P R̂(e) .

Define the following full subcategories in OR̂
0 :

C1 = {M ∈ OR̂
0 : [M : L(x)]> 0 implies x <R w},

C2 = {M ∈ OR̂
0 : Homg(L(x),M) 6= 0 implies x ∈ R},

C3 = {M ∈ OR̂
0 : Homg(M, L(x)) 6= 0 implies x ∈ R}.

Let M ∈ C1, N ∈ C2 and K ∈ C3. Then none of the composition subquotients
of M occurs in the socle of N . Hence Homg(M, N ) = 0. Similarly, none of the
composition subquotients of M occurs in the top of K . Hence Homg(K ,M)= 0.
The following result is based on a statement from [Joseph 1979].

Lemma 3. For allw ∈W and i = 1, 2, 3, the functor θw preserves the category Ci .

Proof. Let x <R w and X be the right cell of x . Then L(x) ∈ OX̂
0 and hence

θwL(x) ∈ OX̂
0 (because, as mentioned above, θw preserves OX̂

0 ). Now for the cate-
gory C1, the statement follows from the exactness of the functor θw.

As noted before, in [MS 2008a, 5.1] it is shown that P R̂(w) is injective for any
w ∈ R. Since the socle of every X ∈ C2 consists, by definition, of L(w), w ∈ R,
it follows that the injective envelope of X is projective. Since θw is both left and
right adjoint to θw−1 , it preserves the category of projective-injective modules in OR̂

0 .
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This and exactness of θw imply the statement for the category C2. For the category
C3 the statement follows by duality. �

Let P=
⊕

w∈R P R̂(w). For every M ∈ OR̂
0 let IM be some (minimal) injective

envelope of M and set

M1 =
⋂

f ∈Homg(IM ,P)
f (M)=0

Ker( f ), M ′1 =
⋂

f ∈Homg(M1,P)

Ker( f ),

and M2 = M1/M ′1. Thus the module M1 is the “maximal possible” nonsplit ex-
tension from a module from C1 to M , which does not affect the socle of M . The
module M ′1 is the maximal submodule of M1 that belongs to C1. The correspon-
dence M 7→ M2 is functorial and M2 is called the partial approximation of M
with respect to the injective module P [Khomenko and Mazorchuk 2005, 2.5].
We denote by A : OR̂

0 → OR̂
0 the corresponding functor of partial approximation.

This functor is inspired by the realization of (Joseph’s version of) Enright’s functor
obtained in [Khomenko and Mazorchuk 2005, Section 4]. However, one should
mention that Enright’s functor does not preserve OR̂

0 and hence is not suitable for
our purposes. The functor A has the following properties:

Proposition 4. (i) A is left exact.

(ii) AM = 0 for any M ∈ C1.

(iii) A maps OR̂
0 to C2; in particular, A preserves the category C2.

(iv) The quotient map from M to M/(M ∩ M ′1) gives the natural transformation
nat from the identity functor to A.

(v) The kernel of nat coincides with the maximal submodule of M that belongs
to C1.

(vi) If M ∈ C2 and IM is the injective envelope of M , then AM is the maximal
submodule of IM that contains M and such that AM/M ∈ C1.

(vii) If M ∈ C2, then AM ∼= AAM.

Proof. Statement (i) is a part of [Khomenko and Mazorchuk 2005, Corollary 2]. If
M ∈ C1, then M ′1 = M and hence AM = 0, proving (ii). As the module M ′1 is the
largest submodule of M1 that belongs to C1, we get M1/M ′1 ∈ C2, which proves
(iii). For statement (iv) we refer to [Khomenko and Mazorchuk 2005, 2.5] and
statement (v) follows from the definition of nat and the fact that M ′1 is the largest
submodule of M1, which belongs to C1. If M ∈ C2, then M ′1 = 0 and (vi) follows
directly from the definition of A. Finally, (vii) follows from (vi). �
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3. The main results

3.1. A criterion for testing Kostant’s problem. According to Theorem 60 of [MS
2008a], the answer to Kostant’s problem for L(w), w ∈ W , is an invariant of a
left cell. Since every left cell has a unique involution, it is thus enough to study
Kostant’s problem for involutions in W . The main result of the paper is this:

Theorem 5. Let w ∈ W be an involution and R be the right cell of W , containing
w. Then the following conditions are equivalent:

(a) Kostant’s problem has a positive solution for L(w), that is, the inclusion

U (g)/Ann(M) ↪→ L(M,M)

is surjective for g= sln and M = L(w).

(b) Every simple module occurring in the socle of the cokernel Coker of the natu-
ral inclusion D R̂ ↪→ P R̂(w), has the form L(x), where x ∈ R (that is, Coker
belongs to C2).

The idea of the proof is to compare Kostant’s problem for the modules L(w) and
D R̂. The former is exactly the module for which we would like to solve Kostant’s
problem, while the latter is, by definition, a quotient of 1(e), and hence Kostant’s
problem for it has a positive solution by [Jantzen 1983, 6.9(10)]. The relation
between these two modules is again given by definition: L(w) is the simple socle
of D R̂. So, to compare L(L(w), L(w)) and L(D R̂, D R̂) one might first try to
show that the modules L(w) and D R̂ have the same annihilators, and then try to
show that

Homg(L(w), θwL(w))= Homg(D R̂, θwD R̂) (1)

for all w ∈W . This would be enough to conclude that

L(L(w), L(w))= L(D R̂, D R̂)

by [Jantzen 1983, 6.8(3)], thus solving positively Kostant’s problem for L(w). The
first step can be easily found in the literature.

Lemma 6. We have AnnU (g)(L(w))= AnnU (g)(D R̂).

Proof. By [MS 2008b, Lemmata 6 and 8] and definitions, the module L(w) is the
simple socle of D R̂, and all other simple subquotients of D R̂ have the form L(x)
for some x <R w; in particular, they all have Gel’fand–Kirillov dimension which is
strictly smaller than that of L(w) [Jantzen 1983, 10.11]. Hence D R̂ is quasisimple
in the sense of [Joseph 1980, 6.2], and thus the claim follows from [Joseph 1980,
Proposition 6.2]. �
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The best way to prove (1) would be to construct a functor that commutes with
all θw and sends L(w) to D R̂. It turns out that the functor A defined above is
the best possible candidate. We will now show that A commutes with θw, and
later on we will see that the answer to Kostant’s problem is positive if and only if
AL(w)∼= D R̂. So now let’s do the work.

Lemma 7. For all w ∈W there is an isomorphism of functors

Aθw ∼= θwA.

Proof. As A is left exact and θw is exact, both Aθw and θwA are left exact.
Let I ∈ OR̂

0 be injective. Consider the short exact sequence

0→ K → I
natI
−→ AI → 0, (2)

where K is just the kernel of natI . Since the socle of P coincides with
⊕

w∈R L(w),
from the definition of A we have that K ∈ C1, while AI ∈ C2.

Applying θw to (2) and using Lemma 3, we obtain that θwK ∈C1 and θwAI ∈C2.
In particular, θwK is the maximal submodule of θw I that belongs to C1. Further-
more, the morphism θw(natI ) is surjective.

At the same time, the module θw I is injective as θw is right adjoint to the exact
functor θw−1 . From the definition of A we have that the morphism natθw I is surjec-
tive and that its kernel coincides with the maximal submodule of θw I that belongs
to C1. In other words, the kernels of natθw I and θw(natI ) coincide.

Now the statement of the lemma follows from [Khomenko and Mazorchuk 2005,
Lemma 1], applied to the situation F= Aθw, G= θwA and H= θw. �

Set D R̂
= AL(w).

Lemma 8. (i) D R̂ is isomorphic to the maximal submodule of the module P R̂(w)

that contains the socle of P R̂(w) and such that all other composition subquo-
tients of D R̂ have the form L(x), where x <R w.

(ii) We have D R̂
⊂ D R̂, and the condition (b) of Theorem 5 is equivalent to the

equality D R̂
= D R̂.

Proof. As P R̂(w) is the injective envelope of L(w), statement (i) follows from
Proposition 4(vi). Claim (ii) follows from (i) and [MS 2008b, Lemmata 5 and 7].

�

To proceed we will need the following standard lemma:

Lemma 9. Let X, Y ∈ O be such that L(X, X)⊂ L(Y, Y ) and

dim Homg(X, θX)= dim Homg(Y, θY )

for any (indecomposable) projective functor θ . Then L(X, X)∼= L(Y, Y ).
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Proof. Both L(X, X) and L(Y, Y ) are Harish-Chandra bimodules for g in the
sense of [Jantzen 1983, Kapitel 6]. In particular, with respect to the adjoint action
of g, these modules are direct sums of simple finite-dimensional g-modules, each
occurring with a finite multiplicity [Jantzen 1983, Kapitel 6]. For every simple
finite-dimensional module V we compare the multiplicities of V in L(X, X) and
L(Y, Y ) considered as g-modules with the adjoint action of g. By [Jantzen 1983,
6.8(3)] we have

Homg(V,L(X, X))∼= Homg(X ⊗ V, X))∼= Homg(X, X ⊗ V ∗). (3)

First note that Homg(X, X ⊗V ∗) is finite-dimensional for X ∈ O. Since V ∗⊗− is
a projective functor and any projective functor is a unique direct sum of indecom-
posable projective functors, the claim follows from (3) and the assumptions. �

We now state and show the key property of the functor A.

Lemma 10. For any w ∈W we have

dim Homg(L(w), θwL(w))= dim Homg(D R̂, θwD R̂).

Proof. Since L(w)∈C2, we have θwL(w)∈C2 by Lemma 3. Hence, by Proposition
4(v), we have that A does not annihilate L(w), that A does not annihilate any
simple submodule of θwL(w), and that A does not annihilate any homomorphism
ϕ : L(w)→ θwL(w). Therefore, applying A we obtain an inclusion

Homg(L(w), θwL(w))⊂ Homg(AL(w),AθwL(w)).

Using Lemma 7 and the definition of D R̂ we thus get the inclusion

Homg(L(w), θwL(w))⊂ Homg(D R̂, θwD R̂). (4)

On the other hand, consider the short exact sequence

0→ L(w)→ D R̂
→ C→ 0, (5)

where C is the cokernel. Applying the exact functor θw yields the short exact
sequence

0→ θwL(w)→ θwD R̂
→ θwC→ 0. (6)

Applying the bifunctor Homg(− ,− ) from sequence (5) to sequence (6) yields the
following commutative diagram with exact rows and columns:
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Homg(C, θwL(w)) � � //
� _

��

Homg(C, θwD R̂)
� _

��

// Homg(C, θwC)
� _

��
Homg(D R̂, θwL(w)) � � //

��

Homg(D R̂, θwD R̂) //

��

Homg(D R̂, θwC)

��
Homg(L(w), θwL(w)) � � // Homg(L(w), θwD R̂) // Homg(L(w), θwC).

We have C, θwC ∈ C1 by definitions and Lemmata 3 and 8. We also have
L(w) ∈ C3. This yields Homg(L(w), θwC)= 0, which implies

Homg(L(w), θwL(w))= Homg(L(w), θwD R̂).

Since C ∈ C1 while D R̂, θwD R̂
∈ C2 by definitions and Lemma 3, we have

Homg(C, θwD R̂)= 0, which yields the inclusion

Homg(D R̂, θwD R̂)⊂ Homg(L(w), θwD R̂).

This, together with the equality obtained in the previous paragraph, implies the
opposite inclusion to (4); that is,

Homg(D R̂, θwD R̂)⊂ Homg(L(w), θwL(w)).

The statement of the lemma follows. �

Lemma 11. The inclusion L(w)⊂ D R̂ induces an isomorphism of g-bimodules as
follows: L(L(w), L(w))∼= L(D R̂, D R̂).

Proof. Applying the bifunctor L(− ,− ) to (5), we get the following commutative
diagram with exact rows and columns:

L(C, L(w)) � � //
� _

��

L(C, D R̂)� _

��

// L(C,C)� _

��
L(D R̂, L(w)) � � //

��

L(D R̂, D R̂) //

��

L(D R̂,C)

��
L(L(w), L(w)) � � // L(L(w), D R̂) // L(L(w),C).

(7)

Note that for any w ∈ W we have C, θwC ∈ C1 by definitions and Lemma 3,
while L(w) ∈ C3. Hence from [Jantzen 1983, 6.8(3)], as in the proof of Lemma 9
we have L(L(w),C)= 0 implying L(L(w), L(w))∼= L(L(w), D R̂).
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Since for any w ∈W we have D R̂, θwD R̂
∈C2 by the definitions and Lemma 3,

while C ∈C1, from [Jantzen 1983, 6.8(3)] it follows that L(C, D R̂)= 0, implying
L(D R̂, D R̂)⊂ L(L(w), D R̂).

Hence L(D R̂, D R̂) ⊂ L(L(w), L(w)) and the proof is completed by applying
Lemmata 9 and 10. �

Proof of implication (b)⇒(a) in Theorem 5. When (b) of Theorem 5 holds, then
from Lemma 8(ii) we have D R̂

=D R̂. The module D R̂ is a quotient of the dominant
Verma module 1(e), and hence U (g) surjects onto L(D R̂, D R̂) by [Jantzen 1983,
6.9(10)]. Lemma 11 and diagram (7) now give the induced surjection of U (g) onto
L(L(w), L(w)). This completes the proof. �

To prove the reverse implication, we will need some more properties of the
functor A.

Lemma 12. (i) AD R̂ ∼= D R̂.

(ii) AD R̂ ∼= D R̂.

(iii) For any w ∈W there is an isomorphism

Homg(D R̂, θwD R̂)∼= Homg(D R̂, θwD R̂).

Proof. We have L(w) ∈ C2 and hence D R̂
= AL(w) ∈ C2 by Proposition 4(iii).

Therefore (i) follows from Proposition 4(vii).
Consider the short exact sequence

0→ D R̂
→ D R̂

→ C→ 0, (8)

where C ∈C1 is the cokernel. We have AC = 0 by Proposition 4(ii). Now applying
A to (8) and using (i) and the left exactness of A, we see that Proposition 4(i) yields
statement (ii).

Since C ∈C1 and D R̂, θwD R̂
∈C2, applying Homg(− , θwD R̂) to (8) yields the

inclusion
Homg(D R̂, θwD R̂)⊂ Homg(D R̂, θwD R̂). (9)

On the other hand, both D R̂ and θwD R̂ belong to C2. Thus the functor A does
not annihilate D R̂, does not annihilate any submodule of θwD R̂, and does not
annihilate any morphism between these two modules (Proposition 4(v)). Hence,
we have the inclusion

Homg(D R̂, θwD R̂)⊂ Homg(AD R̂,AθwD R̂).

Using (ii), Lemma 7 and (i) we obtain

Homg(AD R̂,AθwD R̂)= Homg(D R̂, θwAD R̂)= Homg(D R̂, θwD R̂),
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which implies that inclusion (9) is in fact an isomorphism. This completes the
proof. �

Proof of implication (a)⇒(b) in Theorem 5. The inclusion L(w)⊂ D R̂ induces the
inclusion AnnU (g)(D R̂)⊂ AnnU (g)(L(w)), which, in turn, induces the surjection

U (g)/AnnU (g)(D R̂)� U (g)/AnnU (g)(L(w)). (10)

Assume that (b) of Theorem 5 does not hold. As we have L(D R̂, D R̂) ∼=

U (g)/AnnU (g)(D R̂) by [Jantzen 1983, 6.9(10)], from the latter formula and (10) it
follows that the inequality

L(D R̂, D R̂)( L(L(w), L(w))∼= L(D R̂, D R̂) (11)

would imply that the algebra U (g) does not surject onto L(L(w), L(w)) (since
the image of U (g) coincides with L(D R̂, D R̂)). Hence, what’s left is to prove
inequality (11).

We apply the bifunctor L(− ,− ) to short exact sequence (8), where the cokernel
C 6= 0 by Lemma 8(ii). Since C ∈C1 and D R̂, θwD R̂, D R̂ and θwD R̂ are in C2 for
allw∈W , by [Jantzen 1983, 6.8(3)] we obtain the following commutative diagram
with exact rows and columns:

0 //

��

0

��

// L(C,C)� _

��
L(D R̂, D R̂)

� � //
� _

��

L(D R̂, D R̂) //

o

��

L(D R̂,C)

��
L(D R̂, D R̂) � � // L(D R̂, D R̂)

α // L(D R̂,C),

(12)

where the isomorphism in the second column follows from Lemma 12(iii). To
complete the proof it is thus enough to show that the map α on diagram (12) is
nonzero.

Pick some simple submodule L(x)⊂C (recall once more that C 6= 0 by Lemma
8(ii)). Using the adjointness and defining properties of projective functors, we have

C= Homg(P R̂(x), L(x))

= Homg(θx P R̂(e), L(x))

= Homg(P R̂(e), θx−1 L(x))

⊂ Homg(P R̂(e), θx−1C). (13)

Let K be the kernel of the natural projection P R̂(e) � D R̂ (note that K ∈ C1

by [MS 2008b, Lemmata 5 and 7]). Applying the bifunctor Homg(− ,− ) from the
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short exact sequence

0→ K → P R̂(e)→ D R̂
→ 0

to the short exact sequence

0→ θx−1 D R̂
→ θx−1 D R̂

→ θx−1C→ 0,

we obtain the following commutative diagram with exact rows and columns:

Homg(D R̂, θx−1 D R̂) �
� //

o

��

Homg(D R̂, θx−1 D R̂) //

o

��

β

%-

Homg(D R̂, θx−1C)� _

��
Homg(P R̂(e), θx−1 D R̂) �

� //

��

Homg(P R̂(e), θx−1 D R̂) // //

��

Homg(P R̂(e), θx−1C)

��
0 // 0 // Homg(K , θx−1C),

where the second row is exact as P R̂(e) is projective in OR̂
0 , and the zeros in the

third row follow from the fact that K ∈ C1 while θx−1 D R̂
∈ C2. From (13) it

follows that the composition β is a surjection onto a nonzero vector space, hence
is a nonzero map. The map α contains, as a direct summand, the image of the map
β under the canonical isomorphism of [Jantzen 1983, 6.8]. Hence α 6= 0. This
completes the proof. �

3.2. A sufficient condition for a negative answer. Let3 be the basic (that is, with
one-dimensional simple modules) finite-dimensional associative algebra, whose
module category is equivalent to O0. The algebra 3 is Koszul [Soergel 1990],
so we can fix the positive Koszul Z-grading on 3. Let 3-gmod denote the cate-
gory of finite-dimensional graded 3-modules. For w ∈ W let ew be the primitive
idempotent of 3, corresponding to w. Then we have the corresponding graded
indecomposable projective module 3ew (where the grading is induced from that
on 3). For x ∈ R̂, let PR̂(x) denote the maximal quotient of 3ex that belongs
to OR̂ after forgetting the grading. The module PR̂(x) is the standard graded lift
of P R̂(x) with head concentrated in degree zero (see [MS 2008a, 4.3]). Let L(x)
denote the simple quotient of PR̂(x). Then L(x) is the standard graded lift of the
corresponding simple quotient (concentrated in degree zero). Forw∈W we denote
by θ̂w the standard graded lift of the functors θw [Stroppel 2003, Section 8]. Finally,
let a :W→Z denote Lusztig’s a-function [1985], which is uniquely determined by
the properties that it is constant on the two-sided cells of W and equals the length
of the longest element w′0 (which belongs to this two-sided cell) of a parabolic
subgroup of W .
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If M is a graded module, then M =
⊕

i∈Z Mi is the decomposition of M into a
direct sum of graded components. As usual, for k∈Z we denote by 〈k〉 :3-gmod→
3-gmod the functor that shifts the grading such that M〈k〉i =Mi+k .

Lemma 13. Let w ∈W be an involution and M= θ̂wL(w). Then:

(i) Mi = 0 for all i such that |i |> a(w).

(ii) Ma(w) is the simple socle of M and is isomorphic to the module L(w)〈−a(w)〉.

Proof. Since a is an invariant of two-sided cells, by [MS 2008a, Theorem 18] we
may without loss of generality assume that w is the maximal element of some par-
abolic subgroup. For such a w, statement (i) follows immediately from [Stroppel
2003, Theorem 8.2]. Moreover, the same argument implies Ma(w) 6= 0.

As3 is positively graded and M is injective (the latter follows from [MS 2008a,
Section 5] and [MS 2008b, Key statement]), Ma(w) 6= 0 must be the simple socle
of M. On the other hand, we know that θw L(w)= P R̂(w). Hence the simple socle
of M is isomorphic (up to a shift of grading) to L(w). Claim (ii) follows and the
proof is complete. �

Theorem 14. Let w ∈ W be an involution and M = θ̂wL(w). Assume that there
exists x ∈W such that x <R w and

[M : L(x)〈1− a(w)〉]> [PR̂(e) : L(x)〈1− a(w)〉].

Then Kostant’s problem has a negative answer for L(w).

Proof. Let N be the quotient of M modulo D R̂. As D R̂ is nonzero, it must contain
the socle of M. Hence Ni = 0 for all i ≥ a(w) by Lemma 13. By our assumption,
Na(w)−1 contains at least one copy of L(x)〈1− a(w)〉.

Since 3 is positively graded and Ni = 0 for all i ≥ a(w), the space Na(w)−1

belongs to the socle of N. Thus the condition (b) of Theorem 5 is not satisfied and
the answer to Kostant’s problem for L(w) is negative by Theorem 5. �

Remark 15. As PR̂(e) is a quotient of the graded dominant Verma module 1(e),
in Theorem 14 one could use a stronger assumption

[M : L(x)〈1− a(w)〉]> [1(e) : L(x)〈1− a(w)〉]

with the same result.

Remark 16. The numerical condition of Theorem 14 is relatively easy to check
(using a computer, for example), because it can be easily formulated in terms of
Kazhdan–Lusztig combinatorics [Kazhdan and Lusztig 1979; Björner and Brenti
2005]. Via the standard categorification approach to O (see for example [MS 2008a,
3.4]), the characters of graded 3-modules can be considered as elements of the
Hecke algebra H of W (such that Verma modules correspond to the standard basis
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of H, projective modules correspond to the Kazhdan–Lusztig basis, and simple
modules correspond to the dual Kazhdan–Lusztig basis). There are effective algo-
rithms that allow one to multiply elements of H and to transform them from one
of the mentioned basis to the other. Some of the applications presented in the next
section are obtained using this approach.

Remark 17. The statement of Lemma 13 has a strong resemblance with [Ma-
zorchuk 2007, Theorem 16], and is in some sense the Koszul dual of it (see the
proof there for details).

4. Applications

In this section we present several applications of our main result, which show that
it can be effectively applied in various situations. Unfortunately, we are still quite
far from the complete answer.

4.1. Kostant’s problem for the socle of the dominant Verma module in a para-
bolic category. Let p⊂ g be a parabolic subalgebra containing h⊕n+, and let O

p
0

be the corresponding parabolic subcategory of O0 in the sense of [Rocha-Caridi
1980]. Let W ′ ⊂ W be the Weyl group of the Levi factor of p, w0 be the longest
element in W and w′0 be the longest element in W ′. Then

O
p
0 = OR̂

0 ,

where R is the right cell of the element w′0w0; see [MS 2008a, Remark 14]. Let w

be the involution in R. The following result is mentioned at the end of [McGovern
1994, Section 3] without proof.

Corollary 18. Kostant’s problem has a positive answer for L(w).

Proof. The category O
p
0 is known to be a highest weight category in the sense

of [Cline et al. 1988]. Thus any projective-injective module in O
p
0 is tilting in the

sense of [Ringel 1991]; in particular, it has a filtration by standard modules (that is,
generalized Verma modules, induced from simple finite-dimensional p-modules).
In particular, the dominant standard module P R̂(e) is a submodule of P R̂(w), and
the cokernel of this inclusion again has a filtration by standard modules. Since all
standard modules belong to C2 by [Irving 1985] (see also [MS 2008c, Theorem 5.1]
for a short argument), we obtain that the condition (b) of Theorem 5 is satisfied
and hence Kostant’s problem has a positive answer for L(w) by Theorem 5. �

Remark 19. The inclusion P R̂(e)⊂ P R̂(w) implies that Conjecture 2 is true if R
contains some w′0w0.

Remark 20. Corollary 18 holds for all semisimple finite-dimensional Lie algebras.
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4.2. Kostant’s problem for L(s), where s is a simple reflection.

Corollary 21 [Mazorchuk 2005]. Let s ∈W be a simple reflection. Then Kostant’s
problem has a positive answer for L(s).

Proof. The only element of W that is strictly smaller than s with respect to the
order <R is the identity element e, as, by adjointness,

dim Homg(P R̂(e), θs L(s))= dim Homg(P R̂(s), L(s))= 1,

the module L(e) occurs in θs L(s) with multiplicity one, and hence L(e) does not
occur in the cokernel of the inclusion D R̂

⊂ θs L(s) at all. Therefore the condition
(b) of Theorem 5 is obviously satisfied and hence Kostant’s problem has a positive
answer for L(s) by Theorem 5. �

4.3. Kostant’s problem for L(st), where s and t are commuting simple reflec-
tions. Here we generalize the counterexample, constructed in [MS 2008b, Sec-
tion 5]. Let si = (i, i + 1), i = 1, . . . , n − 1, be the i th simple reflection in W .
We recall that for a simple reflection s ∈ W and any x ∈ W such that xs < x with
respect to the Bruhat order, we have that the module θ̂sL(x) is self-dual with simple
head and socle, and we moreover have the following graded picture of this module
(the middle row is in degree 0, and the arrows schematically represent the action
of elements from the algebra 3):

L(x)〈1〉

����
L(xs)

��

X

��
L(x)〈−1〉,

(14)

where X is a direct sum of modules L(y) such that ys > y, and the multiplicity
of L(y) in X is µ(x, y), where µ is Kazhdan and Lusztig’s µ-function [1979].
The latter is a standard corollary of the now proved Kazhdan–Lusztig conjecture
in the equivalent form given by Vogan (see [Kazhdan and Lusztig 1979; Gabber
and Joseph 1981b; Vogan 1979]). We also refer to Remark 16 and to [Stroppel
2003, Section 8] for the appropriate graded reformulation.

Corollary 22. Let si and s j be two commuting different simple reflections in W
(that is, |i − j | > 1). Then Kostant’s problem has a positive answer for L(si s j ) if
and only if |i − j |> 2.

Proof. Without loss of generality we assume j > i . Let Re = {e}, Ri denote
the right cell of si , R j denote the right cell of s j , and R denote the right cell of
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si s j . Then the Hasse diagram of <R on the set {Re, Ri , R j , R}, where R is the
maximum element, is as follows:

R

Ri R j

Re,

and we further have

Ri = {si , si si−1, . . . , si si−1 . . . s1, si si+1, . . . , si si+1 . . . sn−1};

R j = {s j , s j s j−1, . . . , s j s j−1 . . . s1, s j s j+1, . . . , s j s j+1 . . . sn−1}.

A direct calculation gives θsi θs j = θsi s j = θs j θsi .
Assume first that j = i + 2. Since both si si+2 and si si+1si+2 are Boolean ele-

ments of W (in the sense of [Marietti 2006]), we have that the Kazhdan–Lusztig
polynomial Psi si+2,si si+1si+2(q) = 1 by [Marietti 2006, Theorem 5.4] and hence
µ(si si+2, si si+1si+2)= 1 as well by definition. This yields

Ext1O(L(si si+2), L(si si+1si+2)) 6= 0,

and thus L(si si+1si+2) occurs as a composition subquotient in θsi L(si si+2) (as a
direct summand of X in (14)). Applying (14), we get that L(si si+1si+2)〈−1〉 occurs
as a composition subquotient in θ̂si si+2L(si si+2). Note that we have

si si+1si+2 <R si si+2.

At the same time, from [Dixmier 1996, Lemma 7.2.5], it follows that PR̂(e)1 con-
tains only composition subquotients of the form L(sk)〈−1〉, k=1, . . . , n−1. Hence
the numerical assumption of Theorem 14 is satisfied and therefore the answer to
Kostant’s problem for L(si si+2) is negative by Theorem 14.

If j > i + 2, a similar application of [Marietti 2006, Theorem 5.4] yields

µ(si s j , si si+1 . . . s j−1s j )= 0 and µ(si s j , s j s j−1 . . . si+1si )= 0.

The only other elements of Ri and R j , comparable with si s j with respect to the
Bruhat order, are si and s j respectively. Because of (14), this means that the module
θ̂si L(si s j ) looks as follows:

L(si s j )〈1〉

����
L(s j )

��

X

��
L(si s j )〈−1〉,
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where X is a direct sum of simple modules L(y), y ∈ R. Applying now θ̂s j and us-
ing (14) again we obtain the following graded filtration for the module θ̂si s j L(si s j ):

L(si s j )〈2〉

ss �� '' ++
L(s j )〈1〉

�� '' ,,

L(si )〈1〉

��

Y 〈1〉

ww

X ′〈1〉

��ww
L(e)

��

Z

ww

L(si s j )

ss ++

L(si s j )

ww ��

U

��
L(s j )〈−1〉

++

L(si )〈−1〉

��

Y 〈−1〉

ww

X ′〈−1〉

ss
L(si s j )〈−2〉,

(15)

where Z is a direct sum of simple modules of the form L(y), y ∈ R j ; Y is a direct
sum of simples modules of the form L(y), y ∈ R; and X ′ is a direct summand of
X . Note that the arrows on (15) (which are supposed to schematically represent
the action of 3) show only the part of the action, which obviously comes from
(14), but they do not show the whole action. From [Dixmier 1996, Lemma 7.2.5]
it follows that the module DR̂ looks as follows:

L(e)

����
L(si )〈−1〉

��

L(s j )〈−1〉

��
L(si s j )〈−2〉.

Now we have to analyze (15) to determine the cokernel C of the inclusion DR̂
⊂

θ̂si s j L(si s j ). C obviously contains both Y 〈−1〉 and X ′〈−1〉, but all direct sum-
mands of these modules have the form L(y), y ∈ R, by the above. None of the
simple subquotients of U can occur as a submodule in C by (14). Similarly one
excludes L(si )〈1〉 and L(si )〈1〉. All simple submodules in Z have the form L(y),
y ∈ R j . Considering θ̂si s j L(si s j ) = θ̂si θ̂s j L(si s j ) and using the same arguments as
above, one shows that none of the simple submodules of Z belongs to C . Hence C
contains only simple modules of the form L(y), y ∈ R. Thus the condition (b) of
Theorem 5 is satisfied and therefore Kostant’s problem has a positive answer for
L(si s j ) by Theorem 5. This completes the proof. �

4.4. Kostant’s problem for sln, n ≤ 3.

Proposition 23. Assume that n ≤ 3 and w ∈ W . Then Kostant’s problem has a
positive answer for L(w).
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Proof. The statement is trivial for n = 1. In the case n = 2 for w= e the statement
follows from [Jantzen 1983, 6.9(10)] (as L(e) is a quotient of the dominant Verma
module) and for w = s1 it follows from [Joseph 1980, Corollary 6.4] (as L(s1) is
a Verma module).

Finally, in the case n=3 forw=e the statement follows, as above, from [Jantzen
1983, 6.9(10)], for w = s1, s2 it follows from Corollary 21, for w = s1s1, s2s1 it
follows from [Gabber and Joseph 1981a, Theorem 4.4], and, finally, for w= s1s2s1

it follows, as above, from [Joseph 1980, Corollary 6.4]. �

4.5. Kostant’s problem for sl4.

Proposition 24. Assume that n = 4 and w ∈ W . Then Kostant’s problem has a
positive answer for L(w) if and only if w 6= s1s3, s2s1s3.

Proof. The group S4 has 10 involutions: e, s1, s2, s3, s1s3, s1s2s1, s3s2s3, s2s1s3s2,
s1s2s3s2s1, and s2s1s2s3s2s1. The module L(e) is a quotient of the dominant Verma
module, and hence for L(e) the claim follows from [Jantzen 1983, 6.9(10)]. The
module L(s2s1s2s3s2s1) is a Verma module and hence for this module the claim
follows from [Joseph 1980, Corollary 6.4]. For L(s1), L(s2), L(s3) the claim
follows from Corollary 21. The left cell of each of the elements s1s2s1, s3s2s3,
s2s1s3s2, s1s2s3s2s1 contains an element of the form w′0w0, where w′0 is the longest
element of some parabolic subgroup. Hence for L(s1s2s1), L(s3s2s3), L(s2s1s3s2)

and L(s1s2s3s2s1) the claim follows from [Gabber and Joseph 1981a, Theorem 4.4]
and [MS 2008a, Theorem 60]. Finally, for L(s1s3) the claim follows from Corollary
22 (or [MS 2008b, Theorem 13]). Note that the answer is negative only in the case
of L(s1s3). The left cell of s1s3 contains one more element, namely s2s1s3. The
statement of the proposition now follows from [MS 2008a, Theorem 60]. �

4.6. Kostant’s problem for sl5.

Proposition 25. Assume that n = 5 and w ∈ W . Then Kostant’s problem has a
positive answer for L(w) if and only ifw does not belong to the left cells containing
one of the following involutions: s1s3, s2s4, s2s3s2, s1s2s1s4 or s1s3s4s3.

Proof. The group S5 has 26 involutions. As above, Kostant’s problem has a pos-
itive answer for L(e) since it is a quotient of the dominant Verma module. The
answers for L(s1), L(s2), L(s3) and L(s4) are also positive by Corollary 21, and for
L(s1s2s1s3s2s1s4s3s2s1) the answer is positive as this module is a Verma module.
The involutions

s1s2s1, s1s2s1s3s2s1, s1s2s3s4s3s2s1,

s3s4s3, s2s3s2s4s3s2, s2s1s3s2s1s4s3s2,

s3s2s4s3, s1s3s2s1s4s3, s1s2s3s2s4s3s2s1,

s2s1s3s2, s2s1s3s4s3s2, s1s2s1s3s4s3s2s1,
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are all in left cells containing elements of the form w′0w0 where w′0 is the longest
element of some parabolic subgroup of W . Hence Kostant’s problem has a positive
answer for the corresponding simple modules by [Gabber and Joseph 1981a, The-
orem 4.4] and [MS 2008a, Theorem 60]. The involutions s2s3s4s3s2 and s2s4s3s2s1

are both in left cells containing elements on the form sw′0w0, where w′0 is the
longest element of some parabolic subgroup, and s is a simple reflection of the same
parabolic subgroup, so Kostant’s problem has a positive answer for L(s2s4s3s2s1)

and L(s2s3s4s3s2) by [Mazorchuk 2005, Theorem 1] and [MS 2008a, Theorem 60].
Kostant’s problem has a positive answer for L(s1s4) and a negative answer for
L(s1s3) and L(s2s4), by Corollary 22.

Finally, the fact that Kostant’s problem has a negative answer for L(s2s3s2),
L(s1s3s4s3) and L(s1s2s1s4) follows from Theorem 14 by a direct computation as
described in Remark 16. Consider first the involution s2s3s2 for which we have
a(s2s3s2) = 3. A direct calculation shows that the graded component PR̂(s2s3s2)2
has the following form after forgetting the grading:

L(s3s2)⊕ L(s3s2s4s3)⊕ L(s2s1s3s2s4s3)⊕ L(s3s2s1s4s3s2)

⊕ L(s2s3s2s1)⊕ L(s2s3)⊕ L(s2s1s3s2)⊕ L(s2s3s2s4).

Another calculation shows that the graded component 1(e)2 has the following
form after forgetting the grading:

L(s3s4)⊕ L(s2s4)⊕ L(s2s1)⊕ L(s3s2)⊕ L(s1s3)⊕ L(s1s4)

⊕ L(s4s3)⊕ L(s1s2)⊕ L(s2s3)⊕ L(s2s1s3s2)⊕ L(s3s2s4s3).

Hence the module L(s3s2s1s4s3s2) occurs in PR̂(s2s3s2)2 but not in 1(e)2. Note
that s3s2s1s4s3s2 <R s2s3s2. By Theorem 14 and Remark 15 this implies that
Kostant’s problem has a negative answer for L(s2s3s2).

For the involution s1s2s1s4 we have a(s1s2s1s4)= 4. A direct calculation shows
that the module L(s1s4s3s2s1) occurs in PR̂(s1s2s1s4)3 but not in 1(e)3. Again,
Remark 15 implies that Kostant’s problem has a negative answer for L(s1s2s1s4).
Applying the symmetry of the root system we obtain that the answer for L(s4s3s4s1)

is also negative and it remains to observe that s4s3s4s1 = s1s3s4s3. �

The Robinson–Schensted correspondence associates to each w ∈ S5 a pair

(α(x), β(x))

of standard Young tableaux of the same shape [Sagan 2001, 3.1]. The shape defines
a two-sided cell. Fixing α(x) or β(x) defines a right or a left cell inside the two-
sided cell, respectively. We show on the next page the three two-sided cells of S5

that contain left cells for elements of which Kostant’s problem has a negative an-
swer. The rows and columns in these figures are indexed by the corresponding α(x)
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1 2 3
4 5

1 2 4
3 5

1 3 4
2 5

1 3 5
2 4

1 2 5
3 4

1 2 3
4 5 3243 324 3214 32143 321432

1 2 4
3 5 243 24 214 2143 21432

1 3 4
2 5 1321 124 14 143 1432

1 3 5
2 4 13243 1324 134 13 132

1 2 5
3 4 213243 21324 2134 213 2132

↑ ↑

1 2 3
4
5

1 2 4
3
5

1 2 5
3
4

1 3 4
2
5

1 3 5
2
4

1 4 5
2
3

1 2 3
4
5

343 3432 32432 34321 324321 3214321

1 2 4
3
5

2343 23432 2432 234321 24321 214321

1 2 5
3
4

23243 2324 232 23214 2321 21321

1 3 4
2
5

12343 123432 12432 1234321 124321 14321

1 3 5
2
4

123243 12324 1232 123214 12321 1321

1 4 5
2
3

1213243 121324 12132 12134 1213 121

↑

1 2
3 4
5

1 2
3 5
4

1 3
2 4
5

1 3
2 5
4

1 4
2 5
3

1 2
3 4
5

213432 2132432 21343 21324321 2134321

1 2
3 5
4

2321432 21321432 232143 2132143 213214

1 3
2 4
5

13432 132432 1343 1324321 134321

1 3
2 5
3

12321432 1321432 1232143 132143 13214

1 4
2 5
3

1213432 121432 121343 12143 1214

↑ ↑
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and β(x), respectively. The left cells for which Kostant’s problem has a negative
answer are marked by arrows. Each element is denoted simply by the sequence of
indices in some reduced expression, that is, s1s3s2 is denoted by 132. There seems
to exist some hidden symmetry in these pictures, but we do not understand it yet.

4.7. Kostant’s problem for sl6. We are not able yet to give a complete answer to
Kostant’s problem in the case g = sl6. The group S6 has 76 involutions. For 45
involutions one can use arguments analogous to the arguments above to show that
Kostant’s problem has a positive answer; for 20 involutions one can analogously
show that Kostant’s problem has a negative answer. This leaves 11 involutions for
which the answer is still unclear.

There are 39 involutions that lie in left cells containing an element of the form
w′0w0 or sw′0w0, and hence Kostant’s problem has a positive answer for these
involutions. From Corollary 22 it follows that Kostant’s problem has a positive
answer for L(s1s4), L(s1s5) and L(s2s5).

The module θw L(w) is a quotient of an indecomposable projective module from
O. The latter module has a Verma filtration. Classical results on inclusions of Verma
modules [Dixmier 1996, Chapter 7] may be used in some cases to analyze the socle
of the cokernel of D R̂ ↪→ θw L(w). Combined with Theorem 14, these arguments
imply that Kostant’s problem has a positive answer for L(s2s1s3s2), L(s3s2s4s3)

and L(s4s3s5s4). We omit the details.
By Corollary 22, Kostant’s problem has a negative answer for L(s1s2), L(s2s4)

and L(s3s5). This, and computations as described in Remark 16, show that Kos-
tant’s problem has a negative answer for the following 17 involutions:

s1s3, s1s3s5, s1s4s3s5s4, s1s2s1s4s5s4,

s3s5, s1s2s1s4 s2s1s3s2s5, s1s2s1s3s2s1s5,

s2s4, s1s3s4s3, s1s2s3s2s1s5, s1s3s4s3s5s4s3,

s2s3s2, s2s4s5s4, s1s3s4s5s4s3, s1s3s2s1s4s5s4s3,

s3s4s3, s2s3s2s5, s2s3s2s4s3s2, s1s2s1s3s4s3s5s4s3s2s1.

The remaining 11 involutions, which are not covered by Theorem 14, are:

s1s2s1s5, s2s4s3s2s5s4, s1s3s2s4s3s2s1s5s4s3,

s1s4s5s4, s2s1s4s3s2s5s4, s2s1s3s2s1s4s5s4s3s2,

s2s3s4s3s2, s1s2s3s2s4s3s2s1, s2s1s3s2s4s3s2s1s5s4s3s2.

s2s1s3s4s3s2, s2s3s2s4s5s4s3s2.

For these involutions the answer is still unclear. Some further progress in this case
was recently made in [Kåhrström 2010].
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