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This paper is dedicated to Siegfried Bosch, whose foundational work in rigid analysis was
invaluable in our development of the theory of semistable coverings.

We determine the stable models of the modular curves X0(p3) for primes p≥13.
An essential ingredient is the close relationship between the deformation theories
of elliptic curves and formal groups, which was established in the Woods Hole
notes of 1964. This enables us to apply results of Hopkins and Gross in our
analysis of the supersingular locus.

1. Introduction

Let n be an integer and p a prime. It is known that if n ≥ 3 and p ≥ 5, or if n ≥ 1
and p≥ 11, the modular curve X0(pn) does not have a model with good reduction
over the ring of integers of any complete subfield of Cp. By a model for a scheme
C over a complete local field K , we mean a scheme S over the ring of integers OK

of K such that C ∼= S⊗OK K . When a curve C over K does not have a model with
good reduction over OK , it may have the “next best thing”, that is, a stable model.
The stable model is unique up to isomorphism if it exists, which it does over the
ring of integers in some finite extension of K , as long as the genus of the curve is
at least 2. Moreover, if C is a stable model for C over OK , and K ⊆ L ⊆ Cp, then
C⊗OK OL is a stable model for C ⊗K L over OL . The special fiber of any stable
model for C is called the stable reduction.

Here is a brief summary of prior results regarding the stable models of modular
curves at prime power levels. Deligne and Rapoport [1973, §VI.6] found models
for X0(p) and X1(p) over Zp and Zp[µp] that become stable over the quadratic
unramified extension. Edixhoven [1990, Theorem 2.1.2] found stable models for
X0(p2) over the ring of integers, R, in the Galois extension of Qunr

p of degree
(p2
− 1)/2. Bouw and Wewers [2004, Theorem 4.1 and Corollary 3.4] found

stable models of X0(p) and X (p) over Zp and R by completely different means.
Krir [1996, Théorème 1] proved that the Jacobian of X0(pn) has a semistable
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model over the ring of integers of an explicit Galois extension Ln of Qunr
p of degree

p2(n−2)(p2
− 1) for n ≥ 2, which implies that X0(pn) has a stable model over the

ring of integers of Ln by [Deligne and Mumford 1969, Theorem 2.4]. Also, stable
models for X0(125) and X0(81) were computed explicitly in [McMurdy 2004, §2;
2008, §3], and [2008, §5] gave a conjectural stable reduction of X0(p4). The main
result of this paper is the construction of a stable model for X0(p3), when p ≥ 13,
over the ring of integers of some finite extension of Qp that is made explicit in
[CM 2006].

We introduce the notion of a semistable covering of a smooth complete curve
over a complete nonarchimedean field in Section 2C. We prove that any curve over
a complete stable subfield of Cp has a semistable covering if and only if it has
a semistable model, and moreover we can determine the corresponding reduction
from the covering (see Theorem 2.36). Finding a semistable covering is often
easier in practice than finding a semistable model directly, and this is what we do
for X0(p3) in Sections 6–9.

Overview. Our approach is rigid analytic, in that we construct a stable model of
X0(p3) by actually constructing a stable covering by wide opens (an equivalent
rigid analytic notion which was introduced in [Coleman and McCallum 1988, §1]).
A covering Co of the ordinary locus can be obtained by extending the ordinary
affinoids X±a b defined in [Coleman 2005, §1] to wide open neighborhoods W±a b.
The supersingular locus essentially breaks up into the union of finitely many de-
formation spaces of height 2 formal groups with level structure [Lubin et al. 1964].
We use results from [Hopkins and Gross 1994] and [de Shalit 1994] to produce a
covering Cs of this region. Finally, we show that the genus of the covering Co

∪Cs

is at least the genus of X0(p3), and therefore that the overall covering is stable.
This argument is laid out as follows.

First, in Section 2, we recall or prove the general rigid analytic results that are
necessary for a stable covering argument. These results are proved not only over
complete subfields of Cp, but over more general complete nonarchimedean-valued
fields. For example, Proposition 2.34 is the aforementioned result that the genus
of any stable covering must equal the genus of the curve. We also revise and
extend results of Bosch, and of Bosch and Lütkebohmert, on the rigid geometry
of algebraic curves. A rigid analytic version of the Riemann existence theorem is
proved in Appendix A.

In Section 3, we recall and fix notation for some results specifically pertaining
to X0(pn) and its rigid subspaces. This is done from the moduli-theoretic point
of view, which is that points of X0(pn) correspond to pairs (E,C), where E is a
generalized elliptic curve and C is a cyclic subgroup of order pn . There is a detailed
discussion in Section 3A of the theory of the canonical subgroup of an elliptic curve
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and its connection with the geometry of X0(p) [Buzzard 2003, §3]. Section 3B is
where we define wide open neighborhoods, W±a b⊇X±a b, of the irreducible affinoids
that make up the ordinary locus of X0(pn).

All of the necessary results regarding deformations of formal groups are given
in Section 4. First we precisely state the relationship between deformations of
elliptic curves and formal groups, which we call Woods Hole theory [Lubin et al.
1964, §6]. This is then used in Section 4A (along with the result of Howe in
Appendix B) to prove that all of the connected components of the supersingular
locus of X0(pn) are (nearly) isomorphic. Because of this fact, we are able to focus
on those regions WA(pn) that correspond to a supersingular elliptic curve A/Fp

for which j (A) 6= 0, 1728. Specifically, this enables us to directly apply results
of de Shalit [1994, §3] for the forgetful map from X0(p) to the j-line. The other
important consequence of Woods Hole theory is that it gives us a natural action of

Aut( Â)∼= (End(A)⊗Zp)
∗

on WA(pn). In Section 4B we recall results from [Hopkins and Gross 1994] that
describe this action in great detail, and we derive the specific consequences that
we need for our analysis of X0(p3).

Once the groundwork has been laid, the remaining sections are devoted to con-
structing stable coverings of X0(p2) and X0(p3). In Section 5 we construct a stable
covering for X0(p2) over an explicit Galois extension of Qp of degree 12(p2

−1),
essentially showing that the wide open subspaces defined in Section 3 are sufficient.
To be more precise, the stable covering consists of

{W20,W+11,W−11,W02} ∪ {WA(p2) : A is supersingular}.

This reproves Edixhoven’s [1990] result from the point of view of this paper. It also
gives a moduli-theoretic interpretation to the wide opens and underlying affinoids
in the stable covering.

As in the stable covering of X0(p2), the ordinary region of X0(p3) is covered by
six wide opens: W30, W±21, W±12, and W03. Unlike WA(p2), however, WA(p3)must
itself be covered by smaller wide opens, since its reduction contains multiple irre-
ducible components. First of all, the reduction of WA(p3) contains two isomorphic
lifts of some supersingular component of X0(p2), with each meeting exactly three
of the ordinary components. These two “old” components are connected through a
central genus-0 component that we call the bridging component. To complete the
picture, the bridging component then meets (in distinct points) a certain number of
isomorphic copies of the curve y2

= x p
−x . A partial picture of the stable reduction

of X0(p3), including one complete supersingular region (corresponding to a fixed
supersingular curve A) and the six ordinary components, is given in Figure 1. The
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Figure 1. Partial picture of the stable reduction of X0(p3).

number and genera of the components, as marked on the graph, are as follows:

(a, b, c)=


(
(p− 1)/2, 2(p+ 1)/3, (p− 5)/6

)
if j (A)= 0,(

(p− 1)/2, p+ 1, (p− 3)/4
)

if j (A)= 1728,(
(p− 1)/2, 2(p+ 1), (p− 1)/2

)
otherwise.

Complete graphs with intersection multiplicities are given in Section 9A. As a
consequence of these results, it follows that the new part of J0(p3) has potential
good reduction isogenous to the product of (p2

− 1)/6 copies of the Jacobian of
y2
= x p

− x .
It should be noted that the field of definition of our stable covering ultimately

depends on the field of definition of certain elliptic curves that have “fake CM”.
In [CM 2006] we proved results about these fake CM curves that then made it
possible for us to define the stable model over the ring of integers of an explicit
finite extension of Qp and compute the associated Weil group action, assuming the
results of this paper. In [CM 2006] we also dealt with the p ≤ 11 cases explicitly
and computed the stable reduction of X0(N p3) for (N , p) = 1. We expect that
our methods will extend to X0(N pn), and will have applications to modular forms
as in [CM 2006, Remark 6.10]. We understand that Wewers also has a different
approach with applications to local Langlands.

2. Rigid analytic foundation

We fix some notation for the p-adic analysis and more general nonarchimedean
analysis. Throughout this section, unless otherwise stated, we let K be a complete
nonarchimedean valued field with absolute value | · |. We denote the ring of integers
of K by RK , its maximal ideal by mK , and the residue field by FK . Let p be the
characteristic of FK (which we allow to be 0). Let C be the completion of an
algebraic closure of K , and denote its ring of integers, maximal ideal, and residue
field by R, mR, and F. Note that F is then an algebraic closure of FK . Whenever
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FK is perfect and has positive characteristic, we let W (F) ⊆ R denote the ring of
Witt vectors for any field F ⊆ F. The value group of K will be denoted |K ∗|, and
we let

R :=RK = {x ∈ R : xn
∈ |K ∗| for some n ∈ N}

(equivalently, R := |C∗|). Then if S ⊆ R, we let RS =R∩ S.
Occasionally, for technical reasons, we will need to assume that K is a stable

field [Bosch et al. 1984, Definition 3.6.1/1]. By [1984, Proposition 3.6.2/6], this
is the case if and only if e(L/K ) f (L/K )= [L : K ] for all finite extensions L/K ,
where e(L/K )= |L∗|/|K ∗| and f (L/K )=[FL : FK ] are the ramification index and
residue degree of L over K . There are also two special cases that we will consider
for certain results. First, for a fixed prime p, let Cp be the completion of a fixed
algebraic closure of Qp, let Rp ⊆ Cp be its ring of integers, and let mRp be the
maximal ideal of Rp. Let v denote the unique valuation on Cp with v(p)= 1, and
| · | the absolute value given by |0| = 0 and |x | = p−v(x) for x 6= 0. In this case
R = |C∗p| = pQ. Also Cp is stable, as is the completion of any tamely ramified
extension of a finite extension of Qp. The second specific nonarchimedean valued
field that will be considered is Fp((T )), for which the corresponding field C will be
denoted �p. Both Fp((T )) and �p are stable, and in this case we have R= |T |Q.

Hypothesis T. The field C is isomorphic to either Cp or �p.

In fact, for our purposes, this hypothesis can be relaxed to “C is an immediate
extension1 of Cp or �p”.

Remark 2.1. Suppose K satisfies Hypothesis T. Then if A is an Abelian variety
over K and P ∈ A(C), then 0 is in the closure of {n P : n ∈ N}; see the proof of
Lemma 2.19.

Now, for r ∈R, we let Bd
K [r ] and Bd

K (r) denote the closed and open d-dimen-
sional polydisks over K of radius r around 0, that is, the rigid spaces over K whose
C-valued points are {(x1, . . . , xd)∈Cd

: |xi | ≤ r} and {(x1, . . . , xd)∈Cd
: |xi |< r},

respectively. In particular, let BK [r ] := B1
K [r ] and BK (r) := B1

K (r) denote the
closed disk and open disk of radius r around 0. If r, s ∈R and r ≤ s, let AK [r, s] and
AK (r, s) be the rigid spaces over K whose C-valued points are {x ∈C : r ≤ |x | ≤ s}
and {x ∈ C : r < |x | < s}, which we call closed annuli and open annuli. The
semiopen annuli, AK [r, s) and AK (r, s], are similarly defined. The width of such
an annulus is defined to be logp(s/r) or ln(s/r) if p = 0. Note that all closed
or open disks over K , and all closed or open annuli over K of the same width,
are potentially isomorphic. Here and throughout the paper, we use the adverb
“potentially” in various contexts to mean “after finite base extension.” A closed

1In the classical theory, an extension of valued fields is said to be immediate if the corresponding
value groups and residue fields are isomorphic. This notion was introduced by Krull.
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annulus of width 0 will be called a circle, and we will also denote the circle,
AK [s, s], by CK [s].

If X is a rigid space over K and f ∈ A(X) := OX (X), let | f |sup denote the sup
of | f (x)| over all x ∈ X (C). Then set

Ao(X)= { f ∈ A(X) : | f |sup ≤ 1},

A+(X)= cl { f ∈ A(X) : | f |sup < 1}, and

A(X)= Ao(X)/A+(X),

where cl is the closure in Ao(X). We define the reduction X of X to be the affine
scheme Spec A(X). Suppose now that X =Sp (A) is an affinoid. Then | f |sup is just
the usual spectral seminorm of f , which we also denote by ‖ f ‖X when X is re-
duced and | · |sup is a norm. There is a canonical reduction map Red : X (C)→ X(F),
which we denote by x 7→ x̄ . If X is reduced and Ỹ is any subscheme of X , then
Y := Red−1 Ỹ is the rigid space admissibly covered by affinoid subdomains Z of
X such that Z maps into Ỹ . As a special case, when Ỹ ⊆ X is an open affine, Y is
the unique subaffinoid of X such that Y (C)= {x ∈ X (C) : x̄ ∈ Ỹ (F)}, and we call
Y a Zariski subaffinoid of X . When X is a reduced affine curve, we let X c denote
the unique complete curve that contains X as an affine open and is nonsingular at
all other points (which we call the points at infinity).

If X is a rigid space over K , and L ⊇ K is a complete subfield of C, we write
P ∈ X (L) to mean that P is an L-valued point of X . An unspecified P ∈ X should
be read as P ∈ X (C). We use the notations X L and XFL for the extensions of X
and X by scalars.

2A. Annuli.

Proposition 2.2. Let f : A1→ A2 be a degree d unramified surjection of annuli
over K (open or closed). Then the width of A1 is 1/d times the width of A2.

Proof. Extend scalars to C, and choose isomorphismsψi :Ai→ AC(ri , 1) for some
ri ∈ R with ri < 1. Let T be the natural parameter on AC(r1, 1). Then viewing
f̃ :=ψ2 ◦ f ◦ψ−1

1 as an invertible function on AC(r1, 1), we may write f̃ as either
cT d(1+g(T )) or cT−d(1+g(T )), where g(T ) ∈ A+(AC(r1, 1)). In the first case,
for any t ∈ AC(r1, 1), we clearly have | f̃ (t)| = |c| · |t |d . So by surjectivity of f ,
this implies that |c| = 1 and rd

1 = r2. Thus, logp(1/r1) = (1/d) logp(1/r2). The
second case is very similar. �

Definition 2.3. For any r ∈ R∗
+
\R, we let

Kr =
{∑

n∈Z anT n
: an ∈ K , lim|n|→∞|an|rn

= 0
}
.
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Then Kr is a field, and f 7→ max {|an|rn
} is a valuation2 if f (T ) =

∑
n∈Z anT n .

If r1, . . . , rn ∈ R∗
+

have linearly independent images in the Q-vector space R∗
+
/R,

we let Kr1,...,rn := (Kr1,...,rn−1)rn and K∅ = K .

Then Kr1,...,rn
∼= Kr1⊗̂K . . . ⊗̂K Krn , and its value group is generated by R and

{r1, . . . , rn} [Berkovich 1990, pp. 21–22]. If m is a positive integer, the map
f (T ) 7→ f (T m) gives an injection from Krm into Kr for any r .

Lemma 2.4. The group Autcont(Kr1,...,rn/K ) contains a subgroup H , for which
h 7→ hd is a bijection whenever p - d, and whose fixed field is K .

Proof. It suffices to do the case n= 1. Let r = r1. Suppose α ∈ K such that |α|< r .
If f ∈ Kr and f (T )=

∑
n∈Z anT n , we set

f σα (T )=
∑
n>0

a−n

(
T−1

1−αT−1

)n
+

∑
n≥0

an(T −α)n.

Then σα ∈ Autcont(Kr/K ), and if an = 0 for large |n|, then f σα (T ) is the image
of the rational function f (T − α) in Kr . It follows, by continuity, that the map
α 7→ σα is an injective homomorphism from the subgroup Br := {α ∈ K : |α|< r}
of K+ into Autcont(Kr/K ). Since p - d , α 7→ dα is a bijection on Br .

Now, if f σα (T )=
∑

n∈Z bnT n , then

bn =
∑
m≥n

(
(−1)m−n

(m
n

)
+

(
−n−1
−m−1

))
amα

m−n,

where we set
(a

b

)
= 0 if a < 0 or b < 0. Suppose f σα = f for all α ∈ Br . Then in

the formula above, we must have bn = an for all α ∈ Br . This can only happen if
an = 0 for all n 6= 0. Therefore f ∈ K , and we may take H to be the image of Br

in Autcont(Kr/K ). �

Lemma 2.5. Let X be a reduced affinoid over K , and let f : X → AK [a, b] be
finite, flat, and of degree d , where p - d and a, b ∈ R with a < 1 < b. Let T be
the natural parameter on AK [a, b]. Suppose there exists a function G on X [1] :=
f −1CK [1] such that ‖Gd

− f ∗T ‖X [1] < 1. Then there exist a1, b1 ∈ R[a, b] with
a1 < 1< b1, and a function S on f −1 AK [a1, b1], such that Sd

= f ∗T .

Proof. Setting s = G and t = T , we have O(X [1]) = FK [s, s−1
] and O(C[1]) =

FK [t, t−1
], and f̄ : X [1] → C[1] is given by t = sd . Let V = AK [a, 1] and

U = f −1(V ). Then CK [1] is an affine open in V . Therefore, identifying O(U )
with its image in O(X [1]), we have

O(X [1])= O(U )⊗O(V ) O(CK [1]).

2Some authors call this an absolute value.
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Thus s is in the image of O(U ). So we may lift s to a function S0 ∈ Ao(U ) such
that

‖Sd
0 − f ∗T ‖X [1] < 1.

Now, choose a1∈R[a, 1) such that |Sd
0− f ∗T |< | f ∗T | on U1 := f −1 AK [a1, 1].

Let p(x)= xd
−( f ∗T/Sd

0 ), considered as a polynomial over Ao(U1). Then x0 := 1
satisfies |p(x0)|<1 and |p′(x0)|=1 over all of U1. Therefore, by the usual Hensel’s
lemma argument, there exists a unique x ∈ Ao(U1)with p(x)=0 and ‖x−1‖U1 <1.
Letting S1 = S0x , we have an S1 ∈ A(U1) whose restriction to X [1] is a lift of s,
and for which Sd

1 = f ∗T .
By precisely the same argument, there is a function S2 ∈ A(U2) that reduces to s

on X [1] and satisfies Sd
2 = f ∗T , where U2= f −1 AK [1, b1] for some b1 ∈R(1, b].

Also, since X is reduced, (S1/S2)
d
= 1 on X [1] (with p - d), and ‖Si−G‖X [1]< 1,

we must have S1 = S2 on X [1]. Therefore, S1 and S2 patch to a function S on
f −1 AK [a1, b1] with Sd

= f ∗T . �

Theorem 2.6. Suppose a < b ∈R. Any finite connected étale cover over K of the
annulus AK [a, b] (respectively AK (a, b)) of degree d, where d < p if p 6= 0, is an
annulus isomorphic over K to AK [a1/dc, b1/dc] (respectively AK (a1/dc, b1/dc))
for some c ∈ |K ∗|1/d .

Proof. We will first prove the statement for closed annuli.
Let W be a connected rigid space over K , and let f : W → AK [a, b] be finite

and étale of degree d < p (if p 6= 0). Initially, we also assume that a, b ∈ |K ∗|.
For each r ∈ |K ∗| ∩ [a, b], let Wr be the inverse image in W of the circle CK [r ].
Then the connected components of Wr , which we denote by {Vr 1, . . . , Vr mr }, are
affinoids over K , with each Vr i finite and étale of degree dr i over CK [r ], such that∑

dr i = d. As d < p or p= 0, each V r i must be finite and étale of degree dr i over
CK [r ] ∼= Gm . Thus, there must exist an isomorphism σr i : Vr i → CK [r1/dr i ] such
that f ◦σ−1

r i reduces to x 7→ xdr i on Gm (with respect to the standard parameters).
Moreover, this implies by Lemma 2.5 that for each r ∈ |K ∗| ∩ (a, b) there exist
αr , βr ∈R[a, b] with αr < r < βr , and an embedding

Fr :

mr∐
i=1

AK (α
1/dr i
r , β1/dr i

r ) ↪→W

such that Im(Fr ) = f −1 AK (αr , βr ). In fact, F−1
r can be defined on the i-th com-

ponent of f −1 AK (αr , βr ) by a parameter Sr i such that Sdr i
r i = f ∗T (where T is

the natural parameter on AK (αr , βr )). Similarly, we have embeddings Fa and Fb,
each of a disjoint union of semiopen annuli into W , with images f −1 AK [a, βa)

and f −1 AK (αb, b].
Suppose further that [a, b] = [a, βa)∪ (αb, b] ∪

⋃
r∈|K ∗|∩(a,b)(αr , βr ). Then by

compactness of [a, b], we may choose a finite set {r1, . . . , rn} ⊂ |K ∗|∩(a, b) such
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that [a, b] is covered by [a, βa), (αb, b] and the intervals (αri , βri ) for 1 ≤ i ≤ n.
Whenever two of these intervals overlap, it is clear from the properties of Fr that
the inverse images in W of the corresponding subannuli of AK [a, b] must have
the same number of connected components. Therefore, as W is connected, it
follows that mr = 1 for all r ∈ |K ∗| ∩ [a, b]. Thus, Fr is an isomorphism of
AK (α

1/d
r , β

1/d
r ) onto f −1 AK (αr , βr ), given by a parameter Sr with Sd

r = f ∗T
(for r ∈ |K ∗| ∩ (a, b), and similarly for r = a or b). We claim that Fa , Fb,
and the Fri can be used to construct an isomorphism of AK [a1/d , b1/d

] onto W .
Indeed, whenever (αri , βri ) ∩ (αr j , βr j ) = (αr j , βri ), we have a parameter Sri on
f −1 AK (αri , βri ) such that Sd

ri
= f ∗T , and likewise for r j . After adjusting by a d-th

root of unity in K if necessary, Sri and Sr j agree on f −1 AK (αr j , βri ). Therefore
the two parameters patch to a parameter Si j that identifies f −1 AK (αri , βr j ) with
AK (α

1/d
ri , β

1/d
r j ). After finitely many such patching steps, we have constructed a

parameter S on W over K such that Sd equals f ∗T and thus defines an isomorphism
from W onto AK [a1/d , b1/d

].
More generally, without making the above two suppositions, for each r ∈ [a, b]

take Mr to be a finite Galois extension of K such that r ∈ |M∗r | if r ∈ R and Kr

(defined as above) otherwise. Then we may choose αr , βr ∈ RMr [a, b] and an
embedding Fr that is defined over Mr , precisely as was done over K . Now, we
know that [a, b] is covered by [a, βa), (αb, b], and {(αr , βr ) : r ∈ (a, b)}. So by
compactness, there exists a finite set t1, . . . , tm ∈ (a, b) such that [a, b] is covered
by [a, βa), (αb, b], and {(αti , βti ) : 1≤ i ≤m}. Choose a finite Galois extension L
of K so that the images of the ti in R∗

+
/|L∗| generate a torsion-free abelian group.

Then choose r1, . . . , rn ∈R∗
+

so that their images form a basis for this group. Then
the argument above can be applied to produce a parameter S on W , which is defined
over Lr1,...,rn such that Sd

= f ∗T .
Now, if σ ∈Autcont(Lr1,...,rn/L), the map σ 7→ ζ(σ ) := Sσ/S is a 1-cocycle with

values in µd(A(WLr1,...,rn
)). Since W is connected, this equals µd(Lr1,...,rn ), which

is µd(L). It follows from Lemma 2.4 that ζ(σ )= 1 for all σ in a subgroup whose
fixed field is L . Thus S is defined over L . Then, for σ ∈ Gal(L/K ), Sσ = h(σ )S,
where h is a 1-cocycle. So by Hilbert’s Theorem 90 there exists γ ∈ L∗ such
that h(σ ) = γ σ/γ . Then H := S/γ is defined over K and H d

= αT for some
α ∈ K ∗. Therefore H defines an isomorphism of W onto AK [a1/dc, b1/dc], where
c = |α|1/d .

To deal with open annuli AK (a, b), choose sequences {an} and {bn} in RK (a, b)
such that an < bn , an → a and bn → b. For large n, W[an,bn] := f −1 AK [an, bn]

is connected, and it is finite étale over AK [an, bn] of degree d . Therefore, it is
isomorphic to AK [a

1/d
n cn, b1/d

n cn] by what we have proven. The theorem follows
when we let n go to infinity. �
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Remark 2.7. (i) When K is algebraically closed, there exists a = c0 < · · · <

cn+1 = b in R such that f −1 A(ci , ci+1) is a disjoint union of open annuli
[Lütkebohmert 1993, Lemma 2.3]. One could then use Hilbert’s Theorem 90
and Lemma 2.5, as in the proof above, to give another proof of the theorem.

(ii) One can obtain the same conclusion about W , for any finite étale surjection
f whose Galois closure has degree prime to p when p 6= 0.

If X is a reduced affinoid over K and P ∈ X(FK ), we let RX (P) denote the
residue class of P . When the context makes it clear, we will drop the subscript X .
This is the open rigid subspace of X whose C-valued points reduce to P , or equiv-
alently, the subspace Red−1 P , where P is naturally identified with a subscheme
of X . Alternatively, suppose f1, . . . , fm ∈ Ao(X) are such that f̄1, . . . , f̄m gener-
ate the maximal ideal of P . Then R(P) is admissibly covered by the increasing
sequence of affinoids whose C valued points are

{x ∈ X (C) : | fi (x)| ≤ rn, 1≤ i ≤ m},

where rn ∈R, rn < rn+1 and limn→∞ rn = 1. If x is a point of X such that x̄ = P
(which always exists by [Tate 1971, Theorem 6.4]), this is naturally isomorphic to
the formal fiber X+(x) of Bosch (by [1977a, Satz 6.1]).

Proposition 2.8. Let K be a stable field. Suppose X is a reduced pure d-dimen-
sional affinoid over K , ‖A(X)‖ = |K | (equivalently, Ao(X)⊗RK FK is reduced),
and P ∈ X(FK ). Then A(R(P))∼= ÔX ,P .

Proof. Let I (P) be the closure of mK Ao(R(P)) in Ao(R(P)). Bosch [1977a,
p. 44] proved that Ao(R(P))/I (P) ∼= ÔX ,P when there exists a surjective map
φ : Tn→ A(X) such that φ̊ is surjective.3 That such a map exists when K is stable
and ‖A(X)‖X = |K | follows from [Bosch et al. 1984, Corollary 6.4.3/6]. It is clear
that I (P) ⊆ A+(R(P)) ⊆ rad(I (P)). Since X is reduced, so is ÔX ,P , and hence
I (P)= A+(R(P)). The proposition follows. �

Definition 2.9. Let P be a point on a curve C over a field k. We say that P is an
ordinary double point over k if ÔC,P ∼= k[[u, v]]/(uv).

Hypothesis B. RK contains a bald subring [Bosch et al. 1984, Definition 1.7.2/1]
with the same residue field.

K satisfies Hypothesis B if it is discretely valued, if its residue field is perfect,
or if its residue field lifts to a subfield. In particular, this is the case if K satisfies
Hypothesis T. We do not know if all complete, nonarchimedean-valued fields K
satisfy Hypothesis B.

3As the example at the end of [Bosch et al. 1984, §6.4] implies, φ need not be distinguished; see
[Bosch et al. 1984, Definition 6.4.3/2].
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Proposition 2.10. Let X be a reduced, irreducible affinoid over a stable field K
satisfying Hypothesis B. Suppose that X is a reduced curve and P ∈ X(FK ). Then
P is an ordinary double point over FK if and only if the residue class R(P) is
isomorphic to AK (r, 1) for some r ∈ |K ∗|.

This was proven in [BL 1985, Proposition 2.3] when K is algebraically closed,
and we adapt their proof to our case here.

Lemma 2.11. Let I be a bald subring of RK , and {r1, r2, . . . } a zero sequence
in RK . Then there exists a bald subring of RK containing I and rn for all n ≥ 1.

Proof. The proof is almost identical to that of [Bosch et al. 1984, Corollary 1.7.2/5];
just replace the I in the proof of 1.7.2/4 with this I . �

Lemma 2.12. Let X be a reduced, one-dimensional affinoid, with reduced reduc-
tion, over a stable field K satisfying Hypothesis B. Suppose that f, g ∈ C := A(X)
generate a maximal ideal M= ( f, g), such that C/M∼= FK and f g ∈M3. Let

U =
{

X if f g = 0,
{x ∈ X : f (x̄)= g(x̄)= 0} otherwise.

Then there exist F,G ∈ Ao(U ) and c ∈ RK such that

F − f ∈M2 A(U ), G− g ∈M2 A(U ), and FG = c,

where we use Proposition 2.8 to identify A(U ) with ÔX ,U .

Proof. Suppose that f1, g1 ∈ Ao(X) are such that f = f̄1 and g = ḡ1, and that
α : X → BK [1] is a finite morphism. That X is reduced implies ‖A(X)‖X = |K |.
So by [Bosch et al. 1984, Corollary 6.4.1/4], α∗ : Ao(BK [1])→ Ao(X) is finite.
Now suppose α∗(Ao(BK [1])) = RK 〈T 〉. As C is torsion-free (because X is flat
over A1) and finitely generated over FK [T ], it is free. Choose h1, . . . , hn ∈ Ao(X)
so that h̄1, . . . , h̄n is a basis for C over FK [T ]. Then h1, . . . , hn is a basis for Ao(X)
over RK 〈T 〉. Thus B := {hi T j

: 1 ≤ i ≤ n, j ∈ N0} is an orthonormal Schauder
basis [ibid., Definition 2.7.2/1] for A(X). As C =M⊕ FK , the ring C has a basis
over FK of the form {1, ᾱi f, β̄ j g : i, j ∈N} for some αi , β j in a subring of Ao(X)
finitely generated over a bald subring of RK with residue field FK . It follows from
Lemma 2.11 that the change of basis matrix from B to {1, αi f1, β j g1 : i, j ∈ N}

has entries in a bald subring of RK [ibid., Definition 1.7.2/1]. Hence by the lifting
theorem of [ibid., Theorem 2.7.3/2], this is also an orthonormal Schauder basis.
Hence Ao(X)= RK +M , where M = ( f1, f2).

We have
f1g1 = πc1+ f1(πa1+ b1)+ g1(πa2+ b2),

with c1 ∈ RK , ai ∈ Ao(X), bi ∈ M2 (and bi = 0 if f g = 0) for some π ∈ RK ,
|π |< 1. Let I =πRK+ f1 Ao(X)+g1 Ao(X)=π Ao(X)+M , and let J =π Ao(X)
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if f g = 0 and I otherwise. Let f2 = f1− (πa2+ b2), and g2 = g1− (πa1+ b1).
Then

f2g2 = πc1+ (πa1+ b1)(πa2+ b2)

≡ πc1+π
2c′2 mod (π Ao(X)+M)3

≡ πc1+π
2c′2 mod π2 M if f g = 0,

for some c′2 ∈ RK . Now I n
= πn RK + f1 I n−1

+ g1 I n−1, so this implies

f2g2 = πc1+π
2c2+ f1r2,1+ g1r2,2,

where c2 ∈ RK , r2,i ∈ J 2. Let kn = 2n−2
+ 1 for n ≥ 2 and k1 = 1. Suppose

fngn = πc1+π
2c2+π

4c3+ · · ·+π
2kn−1cn + f1rn,1+ g1rn,2

for some rn,i ∈ J kn . Set fn+1 = fn − rn,2 and gn+1 = gn − rn,1. Then

fn+1gn+1 = πc1+π
2c2+π

4c3+· · ·+π
2kn−1cn+rn,1rn,2

= πc1+π
2c2+π

4c3+· · ·+π
2kn−1cn+π

2kn cn+1+ f1rn+1,1+g1rn+1,2,

where rn+1,i ∈ J kn+1 .
Finally, let r1,1 = πa1 + b1 and r1,2 = πa2 + b2. Set F = f1 −

∑
n≥1 rn,2 and

G = g1−
∑

n≥1 rn,1. Then these are elements of Ao(U ) that satisfy

FG = c := πc1+π
2c2+

∑
n≥3 π

2n−2
+2cn. �

Proof of Proposition 2.10. Suppose P ∈ X(FK ) is an ordinary double point. We can
apply Lemma 2.12 to conclude that there exist F,G ∈ Ao(R(P)) and c ∈ RK such
that (F,G) = MP and FG = c. Thus we have a morphism R(P)→ AK (|c|, 1).
That this is an isomorphism follows, as in the proof of [BL 1985, Proposition 2.3].

Conversely, suppose that R(P) is isomorphic to the annulus AK (r, 1) for some
r ∈ |K ∗| with r < 1. Then Ao(R(P))∼= RK [[T, cT−1

]], where c ∈ K with |c| = r .
So applying Proposition 2.8 we have

ÔX ,P
∼= A(R(P))∼= FK [[x, y]]/(xy),

and hence P is an ordinary double point of X . �

For a rigid space W over K , set

Di (W/K )= Ker(d :�i
W/K (W )→�i+1

W/K (W ))/d�i−1
W/K (W ),

where if A(W ) is the ring of rigid functions on W , then �i
W/K (W ) is the A(W )

module of rigid i-forms on W .
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Lemma 2.13. Suppose W = AK (r, s) or BK (r) \ {0}, where r, s ∈ |L∗| for some
finite extension L/K . Then

D0(W/K )∼= D1(W/K )∼= K .

Proof. If r, s ∈ |K ∗|, the lemma is clear. For in this case, we may choose a, b ∈ K
with |a| = r and |b| = s, and let x = T/b and y = a/T , where T is the natural
parameter on A1

K . Then AK (W ) is equal to the set of functions represented by

∞∑
n=0

anxn
+

∞∑
n=1

bn yn,

where an, bn ∈ K , antn
→ 0 and bntn

→ 0 as n→∞, for |t |< 1. There is a natural
continuous linear map ρK from �1

W/K (W ) onto K such that ρK (dv/v)= 1 for any
parameter v on WK such that |v(u)|> |v(w)| if |u|> |w| and u, w ∈ AK (r, s)(C).
Moreover, for any ω ∈�1

W/K (W ), ω ∈ dAK (W ) if and only if ρK (ω)= 0.
More generally, suppose L is a finite Galois extension of K with Galois group G,

and that r, s ∈ |L∗|. Then G acts on �1(AL(r, s)) such that �1(AL(r, s))G =
�1(AK (r, s)) and ρL(ω

σ ) = ρL(ω)
σ . Also, if r, s ∈ |K ∗|, then ρL |�1(AK ) = ρK .

Suppose ω ∈ �1(AK (r, s)) and ρL(ω) = 0. Then Hilbert’s additive Theorem 90
gives ω ∈ dA(AK (r, s)). Thus we have an injective K -linear map D1(W/K )→
LG
=K . If ω∈�1(AL(r, s)), ρL(ω)=1 and ν=

∑
σ∈G ω

σ , then ν ∈�1(AK (r, s))
and ρLν = [L : K ]. So this map is an isomorphism. �

From the proof we see that for any open annulus W over K , there are two residue
maps from �1

W onto K . In particular, they are resr,s ◦ f ∗ and − resr,s ◦ f ∗, where
f : AL(r, s)→ WL is an isomorphism and resr,s = ρL |�1(AK ) for any extension L
of K such that r, s ∈ |L∗|. By an oriented annulus over K , we mean a pair (W, ρ),
where W is an open annulus and ρ is a choice of one of the residue maps.

An end of a rigid space W over K is an element of the inverse limit of the set of
connected components of W \Z , where Z ranges over finite unions of subaffinoids
of W defined over K (ordered by containment). We let E(W ) denote the set of
ends of W , and we let e(W ) = |E(W )| (which may be infinite). For example,
e(W ) = 2 whenever W is an open annulus. If W is admissibly covered by a
countable number of affinoids, and f is a real-valued function of W (C), it makes
sense to compute the limit of f at an end e ∈ E(W ). In particular, we define
limx→e f (x)= limn→∞ f (xn), where {xn} is any sequence in W (C) such that for
any Z as above, xn is contained in a connected component of W \ Z that maps
to e for sufficiently large n (provided this limit exists and is independent of the
sequence).

The following result is used in the proof of [CM 2006, Theorem 5.2].
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Proposition 2.14. Suppose K is discretely valued and U is a rigid space over K
with two ends such that for some finite extension L of K , UL is isomorphic to the
open annulus AL(|u|, 1), where u ∈ K ∗ and |u|< 1. Then U ∼= AK (|u|, 1).

Proof. We may suppose that e(L/K ) > 1 and L is a Galois extension of K with
Galois group G. Let M = A(UL). Then G naturally acts on M , and MG

= A(U ).
Let R = RL , and let FL and FK denote the residue fields of L and K . Let π be a
uniformizing parameter on L .

Let a and b denote the ends of U , and suppose F ∈ M is an isomorphism from
UL onto AL(|u|, 1) such that limx→a|F(x)| = 1. Then we may use F to identify
M with L{{T, u/T }}, and the group Ma of orientation-preserving automorphisms
of AL(|u|, 1) with (under composition){

T
( ∞∑

i=0

ai T i
+

∞∑
i=1

bi (u/T )i
)
: ai , bi ∈ R and a0 ∈ R∗

}
.

The group G preserves Ma . For σ ∈ G, set σ(T )= Gσ (T ). For

h(T )=
∞∑

i=0

ai T i
+

∞∑
i=1

bi (u/T )i ∈ L{{T, u/T }},

set
hσ (T )=

∞∑
i=0

aσi T i
+

∞∑
i=1

bσi (u/T )i .

Then
Gσ
τ ◦Gσ = Gστ . (1)

We will show that there exists F ∈ Ma such that

Fσ ◦ F−1
= Gσ . (2)

This will imply that F−1(T ) ∈ A(U ), and as F−1(T ) is a parameter on U , it will
then follow that U is an annulus over K .

So first let I be the ideal in C := R[[T, u/T ]] generated by π , T and u/T , and
suppose that

Gσ (T )≡ a(σ )T mod TI, where a(σ ) ∈ R∗.

Then, from (1), we have a(σ )τa(τ )≡ a(στ) mod π . Using Hilbert’s Theorem 90
applied to FL/FK , one can show there exists a c∈ R∗ such that cσ/c≡ a(σ ) mod π .
Let h(T )= cT . Then we have

(h−σ ◦Gσ ◦ h)(T )≡ T mod TI.

Now, suppose Gσ (T )= T (1+ hσ (T )), where hσ (T ) ∈ I k .
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Lemma 2.15. Suppose h(T ) :=
∑
∞

i=1 B−i (u/T )i +
∑
∞

i=0 Bi T i is in C. Then
h(T ) ∈ I k if and only if Bi ≡ 0 mod π k−|i |R.

Proof. Let Sk be the R-module of series whose coefficients satisfy the bounds
above. The lemma is clearly true for k = 0. Suppose it is true for k. Let T be the
continuous involution of the R-algebra C that takes T to u/T . Then I and Sk are
preserved by T. As π k−i T i

∈ I k for 0≤ i ≤ k, and T k+1 R[[T ]] ⊆ I k+1, it follows
that Sk+1 ⊆ I k+1. We have

π(π k−i T i )= π k+1−i T i and T (π k−i T i )= π k+1−(i+1)T i+1,

and because v(u)≥ 2v(π),

T (π k−i (u/T )i )= uπ k−i (u/T )i−1
∈

{
π k+1−(i−1)(u/T )i−1 R if i > 0,
π k+1−1T R if i = 0.

Thus I k+1
⊆ Sk+1. �

Now suppose

hσ (T )=
∞∑

i=1

B−i (σ )(u/T )i +
∞∑

i=0

Bi (σ )T i .

Then, since

T (1+ hτ (T ))
(
1+ hτσ (T (1+ hτ (T )))

)
≡ T (1+ hτσ (T )+ hτ (T )) mod TI2k,

it follows that

Gτ
σ ◦Gτ (T )≡

T
(

1+
2k∑

i=1

(B−i (τ )+ B−i (σ )
τ )(u/T )i +

2k∑
i=0

(Bi (τ )+ Bi (σ )
τ )T i

)
mod TI2k .

Therefore, by Lemma 2.15 we have

Bi (στ)≡ Bi (τ )+ Bi (σ )
τ mod π2k−|i |.

Finally, using Hilbert’s Theorem 90 again, we can find Ci ∈ π
k−|i |R∩ R such that

Cτ
i −Ci ≡ Bi (τ ) mod π2k−|i | for −2k ≤ i ≤ 2k.

So let

H(T )= T
(

1+
2k∑

i=1

C−i (u/T )i +
k2
−1∑

i=0

Ci T i
)
.

Then H ∈ TIk and Hσ
◦ H−1

≡ Gσ mod TI2k . Thus we can find a convergent
sequence Fk ∈ Ma such that Fσk ◦ F−1

k → Gσ in Ma . The limit, F ∈ Ma , must
satisfy (2). �
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Remark 2.16. Suppose K is discretely valued and U is a rigid space with one
end over K , such that UL is isomorphic to the open disk BL(1) for some finite
extension L of K . Then it follows from a similar argument that U ∼= BK (1).

2B. Wide open spaces. In [Coleman 1989, §III] we defined wide open spaces
over Cp. Now we need to use them over more general fields. Suppose W is a
one-dimensional smooth rigid space over K . Then W is a wide open space, or
wide open, over K if it contains affinoid subdomains X and Y such that

(i) W \ X is a disjoint union of finitely many open annuli,

(ii) X is relatively compact in Y , and

(iii) Y ∩ V is a semiopen annulus for all connected components V of W \ X .

We call X an underlying affinoid of W . From the definition, it is immediate that
there is a natural bijection between E(W ), the set of ends of W , and CC(W \ X),
the set of connected components of W \ X . And X is connected to each element
of CC(W \ X). So e(W ) is finite in this case. We call the connected component of
W \ X that corresponds to an element e of E(W ) an annulus at e.

Remark 2.17. It is not immediate that the intrinsic definition of a wide open space
given above is equivalent to the one given in [Coleman 1989, §III] when K = Cp.
However, this will follow in one direction from Theorem 2.18 and in the other from
Theorem 2.40.

Theorem 2.18. Let W be a wide open over K with underlying affinoid X. Then W
may be completed to a proper algebraic curve C over K by gluing open disks onto
the connected components of W \ X.

Proof. More specifically, let S be the set of connected components of W \ X . For
each open annulus V ∈ S, let αV : V → BV be an embedding of V into an open
disk over K such that BV \αV (V ′) is connected for any concentric annulus V ′⊆ V
that is connected to X . We will show that

C :=
(

W ∪
∐
V∈S

BV

) /
{αV (V )= V }V∈S

is isomorphic to a complete algebraic curve.
It is clear that C is smooth of dimension one. Therefore, to establish the claim,

by the Riemann existence theorem (Theorem A.2), we need only show that C is
proper [Bosch et al. 1984, Definition 9.6.2/2]. The number of connected compo-
nents of W is finite and equals the number of connected components of X , and so
we may assume without loss of generality that W is connected. In this case X is
contained in a residue class R(P) of Y (where P is the image of X in Y ). Choose
an f ∈ Ao(Y ) such that P is an isolated zero of f̄ . This can be done by first passing
to a finite extension L of K so that Y L is reduced and so that there is such a function
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g∈ Ao(YL). Then let f be the norm of g. Now by [BL 1985, Lemma 2.4], if α∈R,
and α is less than and sufficiently close to 1, then {x ∈ R(P) : | f (x)| ≥ α} is the
set of C-valued points in a subdomain Uα of W which, after a finite extension (the
field in that lemma is algebraically closed), becomes isomorphic to a finite union
of semiopen annuli. In fact, for α sufficiently close to 1, Uα must decompose
as
∐

V∈S Aα,V , where each Aα,V is a concentric semiopen annulus in V . Thus
B1,V := BV \ αV (V ∩ Y ) and Bα,V := B1,V ∪ αV (Aα,V ) are closed disks. Also,
we may define Xα to be the rigid subdomain of W whose C-valued points are
{x ∈ R(P) : | f (x)| ≤ α}.

Then, U := {Xβ, Bβ,V : V ∈S} and V := {Y, Bα,V : V ∈S}, for any β ∈R with
α <β < 1, are two finite admissible affinoid coverings of C such that each element
of U is relatively compact in an element of V. So C is proper if it is separated. To
verify that C is separated, we must show that the diagonal map 1 : C→ C ×K C
is a closed immersion. This can be checked locally using the admissible affinoid
cover of C ×K C given by {Z ×K Z ′ : Z , Z ′ ∈ U}. Indeed, for every Z , Z ′ ∈ U,
1−1(Z ×K Z ′) = Z ∩ Z ′ is an affinoid and 1∗ : A(Z ×K Z ′) → A(Z ∩ Z ′) is
surjective. This is obvious when Z = Z ′. Otherwise, when Z ∩ Z ′ 6= ∅ we must
have {Z , Z ′} = {Xβ, Bβ,V } for some V ∈ S. So in this case, Z ∩ Z ′ is a circle
over K , and in particular the concentric circle in V ∩ Y defined by | f (x)| = β.
To obtain surjectivity, first make a finite base extension L of K so that (Xβ)L and
(Bβ,V )L are reduced. Then O((Xβ)L) is isomorphic to a subring of

FL [t1, . . . , tN ]/(ti t j )i 6= j

that contains a power of the ideal (t1, . . . , tN ). Also, if ti is the particular parameter
corresponding to V , then O((Bβ,V )L) can be identified via the gluing map with
FL [t−1

i ]. So 1∗ is surjective, as O(Z ∩ Z ′)= FL [ti , t−1
i ]. Thus, C is separated over

K [Bosch et al. 1984, Definition 9.6.1/1], and hence proper [Bosch et al. 1984,
Definition 9.6.2/2]. Therefore, C is an algebraic curve by the Riemann existence
theorem. �

When a wide open W is completed to a curve C as above, the underlying affinoid
X is the complement in C of a finite union of open disks. As we will now show,
this results in a close connection between the reductions of C and the canonical
reduction of X . Of particular interest will be the case when (W, X) is basic (defined
below), in which case, provided K is stable and assuming Hypothesis T, we show
that X is the minimal underlying affinoid and C has a model that reduces to X c.

Lemma 2.19. Assume Hypothesis T. Let C be a smooth complete curve over K ,
and let Z be a nonempty subset of C(K ) that is Galois stable over K and open in
the canonical topology [Bosch et al. 1984, §7.2.1]. If Q is a point in C(K ), there
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exists a function f on C , defined over K , with a pole only at Q and zeroes only
in Z.

Proof. We can assume g = g(C) > 0 and Q /∈ Z . Identify C with its image in its
Jacobian J by x 7→ (x)− (Q). Then U := [g]J Z = Z [+]J · · · [+]J Z is open in
J (K ). Let P 6= 0 ∈ U . We claim that there is a sequence m1,m2, . . . of positive
integers such that [mn]J P→ 0.

By [BL 1984, Theorems 5.1, 6.6, 7.4 and 7.5] (see [Cherry 1994, Theorems 2.1
and 2.2] also), there is a finite extension L of K ,4 a commutative rigid analytic
group Ĵ , and formal analytic groups J fm and B over L [Bosch 1977b, Defini-
tion 1.4] (see also [Bosch 1976, introduction] and [Cherry 1994, p. 397]), such
that B is proper and we have an injective composition (J fm)rg → Ĵ → J rg

L such
that the image of (J fm)rg in J rg

L is a maximal connected subgroup with a formal
analytic structure.5 Moreover, there is a diagram with exact rows and columns

0
��

Zt

��
0 // (Grg

m )
t // Ĵ

��

// Brg // 0

J rg
L

��
0

where t ∈ N (the toric rank) and the image of Zt is a discrete closed subgroup.
This induces an exact sequence 0→ (Gfm

m )
t
→ J fm

→ B→ 0, of formal analytic
groups6 and implies that Ĵ (L)/J fm(L) is isomorphic to (Grg

m (L)/Gfm
m (L))

t and the
reduction of J fm over the residue field of L is semiabelian.7

So J (L)/J fm(L) is isomorphic to (Grg
m (L)/Gfm

m (L))
t/0, where 0 is the injec-

tive image of Zt
→ Ĵ (L)/J fm(L)→ (Grg

m (L)/Gfm
m (L))

t . Assuming Hypothesis T
for L , Grg

m (L)/Gfm
m (L) = L∗/R∗L is isomorphic to a subgroup of Q, and hence it

follows that J (L)/J fm(L) is torsion. As all elements on a semiabelian variety over
a finite field are torsion, some multiple [k]J P of P lies in the image of the kernel
of reduction of J fm, and then [pnk]J P→ 0.

Now, since U is open and [mn]J P→ 0, there is a positive integer m such that
−[m − 1]J P = P [−]J [m]J P ∈ U . Thus 0 ∈ [mg]J Z . More specifically, there is

4While the field is assumed to be algebraically closed in [BL 1984], it is explained on [BL 1984,
p. 257] how to show that Ĵ may be defined over a finite extension.

5If Y is a scheme or formal analytic space, Y rg will denote the associated rigid space.
6Gfm

m denotes the formal completion of Gm along its reduction.
7Formal analytic spaces have canonical reductions.
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a principal divisor D of the form

(m− 1)
g∑

i=1

(Pi )+

g∑
i=1

(Ri )−mg(Q),

where Pi and Ri ∈ Z . If g is a function over L with this divisor, we can take
f =

∏
σ gσ , where σ ranges over embeddings of L/K into C/K . �

Lemma 2.20. Suppose C is a complete curve over K and U is an open disk in C.
Then Y := C \U is a nonempty open in the canonical topology.

Proof. Let P be any point in Y , which is nonempty since U is not proper and so
cannot equal C . By Riemann–Roch, we can choose a meromorphic function g on
C with a pole only at P . Then because g|U is holomorphic and finite to one, g(U )
is an open disk in A1. Let E be an open disk around infinity in P1

\ g(U ). Then
g−1(E) is an open neighborhood of P in Y , in the canonical topology. �

Proposition 2.21. Assume Hypothesis T. Suppose C is a smooth complete curve
over K . Let L be a finite Galois extension of K , and let T be a finite, nonempty,
Galois stable subset of C(L). Suppose D={Dt : t ∈T } is a Galois stable collection
of disjoint open disks over L in C , such that Dt ∩ T = {t} for all t ∈ T . Then if
U =

⋃
D, then X :=C \U is a one-dimensional affinoid over K , and the image of

the ring of algebraic functions, OC(C \ T ), is dense in A(X).

Proof. X is nonempty, since U is not proper, and X is open in the canonical
topology by Lemma 2.20. Therefore, Lemma 2.19 implies that for each Galois
orbit S ⊆ T there exists a function fS ∈ OC(C \ S), defined over K , that has a pole
at each s ∈ S and zeroes only on X . Set D0 = D, X0 = X , and U0 = U . Then for
each n ≥ 1, choose a Galois stable collection Dn of |T | open disks over L in C ,
such that Dn+1⊆Dn for all n≥0 and

⋂
n Dn= T . Set Un=

⋃
Dn and Xn=C\Un .

Let Dt n be the disk in Dn that contains any particular t ∈ T , and for any Galois
orbit S ⊆ T , set MS n = inf{| fS(x)| : x ∈

⋃
s∈S Ds n}. (Note that this infimum is

positive and does not belong to the set, since |g|sup exists and is not equal to |g(x)|
for any x ∈ D when g is a rigid function on an open disk D that vanishes at only
finitely many points.) We claim

Xn = Zn := {x ∈ C : | fS(x)| ≤ MS n for all Galois orbits S ⊆ T }.

It is clear that Zn ⊆ Xn since Zn cannot intersect Dt n for any t ∈ T . For the
other direction, note that fS is defined over K and has poles only on S, and so
fS : C → P1 has degree |S|dS where dS := − ords fS for any s ∈ S. Moreover,
since fS has no zeroes on D, fS|Ds n is a dS to 1 map onto the disk P1

\ BK [MS n].
It follows that MS n ∈R and ‖ fS‖Xn = MS n . Thus, Xn ⊆ Zn . So Xn = Zn , and in
particular Xn is an affinoid.



376 Ken McMurdy and Robert Coleman

For each n and S, we may choose eS n ∈N and aS n ∈ K ∗ such that |aS n| =MeS n
S n .

Then, using the notation of [Bosch et al. 1984, §7.2.3], we have

Zn = Zn+1( f eS n
S /aS n : S is a Galois orbit in T ).

It follows from [Bosch et al. 1984, Proposition 7.2.3/1] that the image of A(Xn+1)

is dense in A(Xn). Suppose g ∈ A(X) and ε > 0. Then there exist functions
hn ∈ A(Xn) such that ‖h1 − g‖X < ε and ‖hn+1 − hn‖Xn < ε/n for n ≥ 1. It
follows that the sequence hn converges to an element hε ∈ A(C \ T ) such that
‖hε − g‖X < ε. The proposition follows from the fact that OC(C \ T ) is dense in
A(C \ T ). �

Corollary 2.22. Assume Hypothesis T. Let W be a wide open over K . Then the
image of A(W ) is dense in A(X) for each underlying affinoid X.

Proof. Glue open disks BV to W to make a complete curve C as in the proof of
Theorem 2.18. For each V ∈S, choose a point tV ∈ BV \W defined over K . Then
let T = {tV : V ∈ S} and follow the procedure above, noting that the map from
OC(C \ T ) to A(X) factors through A(W ). �

Corollary 2.23. With the same hypotheses and notation as Proposition 2.21, set
A0 = { f ∈ OC(C \T ) : ‖ f ‖X ≤ 1}. If A0⊗FK is reduced, then Spec A0⊗FK ∼= X.

A basic wide open pair over K is a pair (W, X) where W is a connected
wide open over K and X is an underlying affinoid. In addition, we require that
‖A(X)‖X = |K |, that X have irreducible reduction with at worst ordinary double
points as singularities, and that the components of W \ X be isomorphic to annuli
of the form AK (1, s). If (W, X) is a basic wide open pair for some X , we say that
W is a basic wide open. By Proposition 2.21 and Corollary 2.23, basic wide open
pairs can be constructed by taking (W, X)= (C \

⋃n
i=1 Di ,C \

⋃n
i=1 Ui ). Here C

is a connected smooth complete curve over K that has a model C over RK whose
reduction is irreducible and has at worst ordinary double points as singularities,
{U1, . . . ,Un} is a finite collection of distinct residue classes of smooth points, and
each Di is an affinoid disk in Ui . The converse, that all basic wide open pairs can be
constructed in this manner, follows, when K is stable and assuming Hypothesis T,
from Theorem 2.27 (and thus the two notions are equivalent in this case).

Lemma 2.24. Assume Hypothesis T. Suppose f : X→ Y is a map between smooth
one-dimensional affinoids over K , and X is irreducible.

(i) If f̄ : X→ Y is a surjection, then f is a surjection.

(ii) If f̄ (X)⊆ Y is an open affine and X (C)→ Y (C) is an injection, then f̄ is an
injection.
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Proof. For both parts, we may extend scalars to C. To prove (i), suppose f̄ is a
surjection but that there exists a y ∈ Y that is not in the image of f . Let λ ∈ Ao(Y )
be a function that vanishes only at y and such that ‖λ‖Y = 1.8 On the one hand,
if we let L = f ∗(λ), the fact that f̄ is a surjection implies that ‖L‖X = 1. On the
other hand, since L does not vanish on X , L−1 exists and we may choose c ∈ C
such that |c| = ‖L−1

‖X . Now the fact that f̄ is a surjection implies that |c| > 1.
Thus, if we let M = c−1L−1, we have L,M 6= 0 but L M = 0. So X must be
reducible.

For (ii), let Y ′ ⊆ Y be the Zariski subaffinoid for which f̄ (X) = Y ′. Suppose
there are distinct points x1, x2 ∈ X for which f̄ (x1)= f̄ (x2). Let X ′ = X \ R(x2).
Then f restricts to a map f ′ : X ′→ Y ′ that reduces to a surjection. Thus, by (i),
f ′ is a surjection. But this is a contradiction since f (R(x2)) ⊆ Y ′ and f is an
injection. Therefore, f̄ must also be an injection. �

Lemma 2.25. Suppose h : B → Y is an analytic map from an open annulus or
open disk into a reduced affinoid. Then the image of B is contained in a residue
class of Y .

Proof. This is clear when Y is an affinoid disk. The general case follows. �

Remark 2.26. The same statement is true with B a connected wide open in place
of an open annulus.

Theorem 2.27. Suppose K is stable and satisfies Hypothesis T. Let (W, X) be a
basic wide open pair over K . Attach disks BV to W to obtain a complete curve C ,
as in the proof of Theorem 2.18. Then C has a model over RK whose reduction
is X c. Also, if x is a point at∞ in X c(F), then x ∈ X c(FK ) and {P ∈C(C) : P = x}
is equal to BV (C) for some V ∈ S= CC(W \ X).

Proof. Choose a finite, Galois stable set of points Y ⊂ X (L), for some finite exten-
sion L of K , that reduce to distinct smooth points in X L(FL). The set {R(ȳ) : y ∈Y }
of residue classes of X L is a Galois stable set of open disks in C over L . There-
fore, by Proposition 2.21, Z := C \

⋃
y∈Y R(ȳ) is an affinoid over K . Moreover,

X1 := X ∩ Z is a formal subdomain of X [BL 1985, p. 351], whose reduction is
X \ {ȳ : y ∈ Y }. We will show that X1 is also a formal subdomain of Z , and hence
C := {X, Z} is a formal covering of C .

To do this, let ZT := Z \
⋃

V∈T BV for any T ⊆ S. This is an affinoid over
K by Proposition 2.21. We claim that ZT has irreducible reduction, and that BV

is a residue class of ZT for each V ∈ S \ T. This is clearly true for T = S,
because ZS = X \

⋃
y∈Y R(ȳ) is a Zariski subaffinoid of X and S \ T is empty.

Suppose it holds for some T, and suppose also that V ∈ T. Let T′ = T \ {V }, so

8This can be done by embedding Y in a smooth, complete curve [Van der Put 1980, Theorem 1.1]
and applying Lemma 2.19.
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that ZT′ = ZT
∐

BV . By Lemma 2.25, applied to the inclusion of BV into ZT′ ,
BV is contained in the residue class R(t̄V ). If BV 6= R(t̄V ), the map ZT → ZT′

is a surjection. But this is impossible by Lemma 2.24 since ZT has irreducible
reduction and ZT 6= ZT′ . Therefore, BV is a residue class of ZT′ , ZT is a Zariski
subaffinoid of ZT′ , and in particular ZT′ has irreducible reduction. The claim now
follows for all T by induction. Taking T = ∅, we see that Z has irreducible
reduction, and that each disk BV is a residue class of Z . Thus, X1 is a formal
subdomain of Z , and C is a formal covering of C . Moreover, by Proposition 2.8,
the reduction of Z is the disjoint union of X1 and finitely many smooth points. Thus
C has semistable reduction with respect to C [BL 1985, Definition 1.5]. So using
the argument of [BL 1985, p. 377], it follows that C has a model with reduction X c.
Moreover, the residue classes of the points at infinity on X c are precisely the disks
BV over K . �

It may be proven that over C, all wide opens that are not disks or annuli have
minimal underlying affinoids. In fact, one can show that if W is a wide open over
K that is not a disk or an annulus, W has an affinoid subdomain that becomes
the minimal underlying affinoid of WL , where L is a finite extension of K ; see
Remark 2.41. However, this fact is not used in this paper.

Lemma 2.28. Suppose K is stable and assume Hypothesis T. If (W, Z) is a basic
wide open pair over K , and W is not a disk or annulus, then Z is a minimal
underlying affinoid of W .

Proof. Suppose there are e ends. Glue in disks, as above, to get a smooth complete
curve C , so that C\Z is the union of e open disks U1 . . .Ue. Then by Theorem 2.27,
C will have a model C with reduction isomorphic to the completion of Z .

We can and will extend scalars to C. Suppose V is any underlying affinoid of
W and A is a component of W \V . Then A∩Ui 6=∅ for some i . Set U =Ui . We
claim that A is contained in U .

Identify A with AC(r, s) so that AC(t, s) is connected to V for any t ∈R(r, s).
It follows from [BL 1985, Proposition 5.4(c)] that every circle in A that intersects
a residue class of C is contained in that class. Hence A∩U contains CC[t] for any
t ∈ R(r, s) with CC[t] ∩U 6= ∅. In fact, A ∩U ⊃ AC(r, t] for any such t . Let
q = LUB{t ∈R(r, s) : AC(r, t)⊆U }. Suppose that q < s, and let

v = LUB{t ∈R[q, s] : CC[t] ∩ Z 6=∅} = GLB{t ∈R[q, s] : CC[t] ∩ Z =∅}.

The number v exists since U is disconnected from U j for j 6= i . For u ∈R[q, v),
CC[u] ⊆ Z (again by [BL 1985, Proposition 5.4(c)]). Let w= q if q ∈R, and w ∈
R[q, u) otherwise, and set Y = AC[w, u]. We have a rigid morphism Y → Z . Since
Y is either a line or two lines crossing at a point, and Z is irreducible, not isomorphic
to A1 or Gm , with only ordinary double points as singularities, it follows that the
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map Y → Z is constant. This means A \U is contained in a residue class R of
Z . Thus {U, R} is a disjoint admissible cover of A. This is impossible as A is
connected.

From the contradiction, we know that q = s, and thus A ⊆U . Now, since each
component of W \ V is contained in W \ Z , we have shown that Z ⊆ V . �

The final two results of this section provide useful criteria for determining when
a rigid space is a wide open.

Theorem 2.29. Suppose X is a smooth, one-dimensional affinoid over a stable
field K satisfying Hypothesis B, and x is a point of degree one on X. Then, if
U = RX (x), there is a finite extension L of K such that UL is a connected wide
open over L. Moreover, the number of ends of UL equals the number of branches
of X L through x.

This is a consequence of the following lemma. Recall that FK ⊆ F.

Lemma 2.30. Suppose X is a pure, one-dimensional reduced affinoid over a stable
field K satisfying Hypothesis B, with reduced reduction, and x ∈ X(FK ) is a degree
one point. Choose any f ∈ Ao(X) such that f̄ has an isolated zero at x , that is,
such that x is the only zero in a Zariski neighborhood. For r ∈R(0, 1), let V (r) be
the subspace of X such that

V (r)(C)= {y ∈ R(x)(C) : r < | f (y)|< 1}.

Then for r sufficiently close to 1, there is a finite extension L of K such that VL(r)
is a disjoint union of m := |(n−1x)(F)| open annuli, where n : Y → XF is the
normalization of XF := X ⊗FK F.

Proof. Without loss of generality, we may assume that x is the only zero of f̄
(otherwise replace X with a suitable Zariski subaffinoid). Let Z := Zr be the
subaffinoid of X whose C-valued points are {y ∈ X (C) : | f (y)| ≥ r}. Let Xx be the
curve obtained from Y by identifying n−1(x ′) to a point for each x ′ ∈ XF(F) \ {x}
(thus, Xx is the minimal finite surjective cover of XF that is smooth at all points
above x). It is proven in the remark after [BL 1985, Lemma 2.4] that for r ∈R(0, 1)
sufficiently close to 1, the reduction of ZC is isomorphic to the union of Xx and m
lines, each crossing a single point above x normally.9

There is a finite extension M of K such that Z M is reduced, so ZC ∼= (Z M)F̄.
Thus, there is a finite extension L of K such that Z L is isomorphic to the union
of a finite surjective cover of XFL that is smooth at all points above x , and m lines
each crossing a single point above x normally. Now apply Proposition 2.10. �

9This is a minor correction of the statement in [BL 1985].
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Proposition 2.31. Assume Hypothesis T. Suppose f :U→W is a finite surjective
morphism over K of a smooth, one-dimensional rigid space onto a wide open, with
finitely many branch points all defined over K . If f has degree strictly less than p,
then U is a wide open over K .

Proof. First we claim that an underlying affinoid X ⊆ W can be chosen so that it
contains the set B of branch points of f . Indeed, let X1 be any underlying affinoid
of W . Glue disks BV onto W for each annulus V ∈ W \ X1, as in the proof of
Theorem 2.18, to obtain a complete curve C . Then for each V , choose an open
disk DV over K such that BV \ αV (V ) ⊂ DV ⊆ BV and DV ∩B = ∅. The rigid
subspace X := C \

⋃
DV is, by Proposition 2.21, an affinoid that is disjoint from

B and easily shown to be underlying in W .
Now suppose X is relatively compact in some affinoid Y ⊆ W . Then f −1(X)

and f −1(Y ) are affinoids in U . Moreover, as f is finite, and the image of X in
Y is finite, it follows that the image of f −1(X) in f −1(Y ) is finite. So f −1(X) is
relatively compact in f −1(Y ). All that remains is to check that U \ f −1(X) is the
disjoint union of open annuli, and for this Theorem 2.6 suffices. �

2C. Semistable coverings. For a wide open W over K , let

H i
DR(W/K )= Di (W/K ).

Using Lemma 2.13, the arguments in the proof of [Coleman 1989, Theorem 4.2]
generalize and allow us to conclude that H i

DR(W/K ) is finite-dimensional over K .
We define the genus of W , which we denote by g(W ), to be

1
2(dimK H 1

DR(W/K )− e(W )+ 1).

Then 2g(W ) can be interpreted as the dimension of the first compactly supported
de Rham cohomology group of W . For example, in Corollary 2.33, we show that

2g(W )= dimK (ker(H 1
DR(W/K )→ H 1

DR((W \ X)/K ))),

where X is any underlying affinoid of W . We also show in Proposition 2.32 that
if a wide open W is completed to a projective curve C by attaching disks at the
ends, as in Theorem 2.18, then g(W ) = g(C). As an immediate corollary of this
and of Theorem 2.27, if (W, X) is a basic wide open pair over a complete, stable
field K satisfying Hypothesis T, and X has good reduction X , then (X)c will also
have genus g(W ).

Proposition 2.32. Let W be a connected wide open over K . Suppose C is a
smooth, complete curve (over K ) obtained by attaching disks at the ends of W ,
as in Theorem 2.18. Then g(W )= g(C).
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Proof. The main idea is to view W and the attached disks as an admissible covering
of C , and then to apply the (generalized) Mayer–Vietoris sequence of de Rham
cohomology (over K ). So first suppose D1, . . . , Dn are the disks, and set D0=W .
Then Mayer–Vietoris gives us the exact sequence

0→ H 0
DR(C)→

⊕
i

H 0
DR(Di )→

⊕
i 6= j

H 0
DR(Di ∩ D j )→

H 1
DR(C)→

⊕
i

H 1
DR(Di )→

⊕
i 6= j

H 1
DR(Di ∩ D j )→ H 2

DR(C)→ 0.

Using Lemma 2.13, the definition above of g(W ), and the fact that H 1
DR(Di )= 0

for i > 0, we count dimensions to obtain

1− (e(W )+ 1)+ e(W )− 2g(C)+ (2g(W )+ e(W )− 1)− e(W )+ 1= 0.

From this we conclude that g(C)= g(W ). �

Corollary 2.33. Suppose W is a wide open over K , and X is an underlying affinoid
of W . Then

2g(W )= dimK (ker(H 1
DR(W/K )→ H 1

DR((W \ X)/K ))).

Proof. Suppose C is a smooth complete curve obtained by gluing disks to the ends
of W . Then arguing from Mayer–Vietoris exactly as in the above proof, we have
the exact sequence

0→ H 1
DR(C)→ H 1

DR(W )→ H 1
DR(W \ X)→ K → 0.

Now apply Proposition 2.32. �

Let C be a wide open or a smooth proper curve over K . Let C be a finite set
of basic wide open pairs (U,U u) over K such that Cw := {U, (U,U u) ∈ C} is an
admissible covering of C . Then we call C a semistable covering over K if the
following conditions hold:

(i) If U, V ∈ Cw and U 6= V , the intersection of U and V is a disjoint union of
connected components of U \U u (by definition, annuli of the form AK (1, s)).

(ii) If U , V and W are three distinct elements of Cw, their intersection is empty.

We say that a semistable covering C is stable if none of the elements of Cw are
disks or annuli. Having a semistable covering is not immediately equivalent to
having a semistable reduction in the sense of [BL 1985, Definition 1.5]. When the
context is clear, we will abuse notation by dropping the superscript w and writing
U ∈ C to mean U ∈ Cw.
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Proposition 2.34. Suppose C is a semistable covering of a smooth proper curve C
over K . Let 0C be the unoriented graph without loops whose vertices correspond
to the elements of C and whose edges with endpoints corresponding to distinct
U, V ∈ C correspond to the connected components of U ∩ V . Then

g(C)=
∑
U∈C

g(U )+Betti(0C).

Proof. Again, we begin with the Mayer–Vietoris sequence (of de Rham cohomol-
ogy over K ) associated to this covering.

· · · →

⊕
U,V∈C

H i−1
DR (U ∩ V )→ H i

DR(C)→
⊕
U∈C

H i
DR(U )→ · · ·

It is immediate that

H 0
DR(C)∼= H 2

DR(C)∼= K ,
⊕
U∈C

H 2
DR(U )= 0, and

⊕
U∈C

H 0
DR(U )∼= K #C.

Also, by applying Lemma 2.13 and condition (i) from above, we see that⊕
U,V∈C

H 0
DR(U ∩ V )∼=

⊕
U,V∈C

H 1
DR(U ∩ V )∼= K #E,

where E is the edge set of 0C. Now to prove the proposition, we simply count di-
mensions over K and compute the dimension of H 1

DR(C) using the exact sequence.
We have

2g(C)=
∑
U∈C

(2g(U )+ e(U )− 1)− #C+ 2= 2
(∑

U∈C

g(U )+ #E− #C+ 1
)

= 2
(∑

U∈C

g(U )+Betti(0C)
)
. �

Definition 2.35. A semistable model B of a curve C over K is a flat, proper scheme
over RK whose generic fiber is C , such that all of the singular points of the special
fiber of B have degree 1 and are ordinary double points. We say that B is stable if
it is the final object in the category of semistable models over K .10

See [BL 1985] and [Van der Put 1984] for a rigid analytic treatment of the
theory of stable models of curves over complete nonarchimedean fields, and in
particular, for a rigid analytic proof of the generalization to arbitrary complete

10This weakens the definition of the semistable model in [Mumford 1977] since it allows smooth
rational components that meet the other components in only one point. Requiring the singular points
to have degree 1 means that X0(p) usually does not have a stable model over Qp , but does over
W (Fp2)⊗Qp .
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nonarchimedean fields [Van der Put 1984, Corollary 3.3] (see also [BL 1985]11) of
the existence theorem of Deligne and Mumford. Moreover, we will use the results
of [BL 1984; 1985] to prove the following theorem, which relates stable coverings
to stable models. This result generalizes [Coleman 2003, Proposition 2.1], and the
proof we give is more complete than the one given there.

Theorem 2.36. Let C be a smooth complete curve over a stable field K satisfying
Hypothesis B.

(i) If C has a semistable model over RK whose reduction has at least two com-
ponents, then C has an associated semistable covering over K .

(ii) If K satisfies Hypothesis T , and C has a semistable covering over K , then C
has an associated semistable model over RK whose reduction has at least two
components.12

Stable coverings are precisely those that correspond to stable models whose reduc-
tions have at least two components.

Proof. Suppose C is a semistable model for C over RK , and let IC be the set of
irreducible components in the reduction of C. For each 0 ∈ IC, let

0o
= 0

∖ ⋃
0′∈IC,0

′
6=0

0′.

Assume, without loss of generality, that C is connected.
For each affine open U ⊆C, there is a natural affinoid subdomain of C rg, which

we denote by Red−1 U , whose points are all the points of C rg that reduce to points
of U . To see this, let Spec S be any affine open subscheme of C that reduces to U
and Ŝ = lim

←−n
S/πn S for some π ∈ RK with 0< |π |< 1. Then Ŝ is an admissible

RK -algebra in the sense of [BL 1993, p. 293], as can be seen from [BL 1993,
Lemma 1.2]. Then Ŝ⊗RK K is an affinoid algebra over K [BL 1993, §4] that up
to canonical isomorphism does not depend on the choices. We refer to the affinoid
Sp(Ŝ⊗RK K ) as Red−1 U . Because U is reduced, Red−1 U ∼=U . More generally,
suppose V is the union of finitely many subschemes W of C, with each contained
in some affine open UW . Then we let Red−1 V be the open rigid subspace that is
the union in C rg of the subspaces Red−1 W ⊆ Red−1 UW , as was defined in the
beginning of Section 2. This subspace is independent of the choices of UW .

If 0 ∈ IC, let W0 = Red−1 0 and X0 = Red−1 0o. We claim that {(W0, X0) :
0 ∈ IC} is a semistable covering. First, W0 is a smooth, one-dimensional rigid

11Bosch and Lütkebohmert [BL 1985, p. 377], while proving the theorem of Deligne and Mum-
ford, remark that their argument does not require the field to be discretely valued.

12In fact, when K satisfies Hypothesis T we have a natural one-to-one correspondence between
semistable coverings and semistable models whose reductions have at least two components. It
would be interesting to know if this is true more generally.
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space over K , and X0 is an affinoid subdomain, such that W0 \ X0 is a disjoint
union of a finite number of annuli of the form AK (1, s) by Proposition 2.10. Also,
X0 has absolutely irreducible reduction with at worst ordinary double points as
singularities. Moreover, if 0,0′, 0′′ ∈ IC, then W0 ∩W0′ is a union of connected
components of W0 \ X0 if 0 6= 0′, and W0 ∩W0′ ∩W0′′ = ∅ if 0,0′ and 0′′ are
all distinct.

What remains to be shown for (i) is that (W0, X0) is a basic wide open pair
for each 0 ∈ IC, and for that, all we have to show is that there exists an affinoid
subdomain Y of W0 such that X0 is relatively compact in Y and Y∩V is a semiopen
annulus for each connected component of W0 \ X0. (That W0 is connected will
follow from the absolute irreducibility of X0.) For this, let S0 be the set of singular
points in C where 0 intersects some other component. Blow up C at every point in
S0 to obtain a new model C0 that is defined over K and becomes semistable over
an, at worst, quadratic extension L . Let 0̂ be the proper transform of 0 in C0, and
let IC0 be the set of irreducible components in the reduction of C0. Set

Ỹ0 = C0
∖ ⋃
0′∈IC0 ,

0′∩0̂=∅

0′,

and let Y0 = Red−1(Ỹ0). It is clear that (X0)L ⊆ Y0 ⊆ (W0)L and Y0 is naturally
defined over K . Although Ỹ0 is not an affine open in C0, Y0 is the reduction
inverse of an affine open in the model obtained from C0 by blowing down 0̂. This
affine open will consist of |S0| lines intersecting in a single singular point that
contains the reduction of X0. Thus, not only is Y0 also an affinoid subdomain
of W0, but X0 is relatively compact in Y0. Finally, by applying Proposition 2.10
again, we see that the intersection of Y0 with each component of W0 \ X0 is a
semiopen annulus. Therefore, we are done with (i).

To prove (ii), suppose C is a semistable covering of C . Then by Theorem 2.27,
there is a natural one-to-one correspondence between (U u)c \U u , CC(U \U u),
and E(U ), for each U ∈ C. If e ∈ E(U ), let x(e) denote the corresponding point
on (U u)c and let A(e) denote the corresponding connected component of U \U u

(an annulus). If e ∈ E(U ) and f ∈ E(V ) for U, V ∈ C, we say that e ∼ f when-
ever A(e) = A( f ) (equivalently, A(e) ∩ A( f ) 6= ∅). Let E denote the quotient
of
∐

U∈C E(U ) by this equivalence relation. We define C to be the curve over
FK obtained from

∐
U∈C(U u)c by identifying the points x(e) and x( f ) whenever

e ∼ f . The reduction maps from U (C)→ (U )c(F) for each U ∈ C, which are
guaranteed by Theorem 2.27, patch together to form a natural Galois equivariant
reduction map from C(C)→C(F). We will show that in fact there is a model over
RK whose reduction is C.
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Let T be a finite Galois stable set of points of C(K ) that, by the above reduction
map, injects into the smooth locus of C, and such that T ∩U 6=∅ for each U ∈C.
Since each t ∈ T lies on a unique U u , the residue class, R(t̄) := RU u (t̄), is well
defined and can be viewed as an open disk in C over K . Moreover, as C is defined
over K , R(T ) :=

⋃
t∈T R(t̄) is Galois stable over K . So by Proposition 2.21,

ZT := C \ R(T ) is an affinoid over K . We want to show that Z T = C \ T , where
T = {t̄ : t ∈ T }.

For each U ∈ C, we let UT = U u
\ R(T ), a Zariski subaffinoid of U u . Then

the affinoid ZT is the disjoint union of
∐

U∈C UT and
∐

e∈E A(e). Now fix U
and consider the natural inclusion map UT ↪→ ZT . Since the reduction of UT is
irreducible, it follows that U T maps to a point or onto an affine open of some
irreducible component 0U of Z T . As UT and ZT are both connected to R(T ), the
first case is not possible. Therefore, by Lemma 2.24(ii), U T must inject into some
such 0U . Let U ′T be the subaffinoid of ZT that lies above the image of U T . By
Lemma 2.24(i), the inclusion of UT into U ′T is surjective, and therefore an equality.
As the UT don’t intersect, and UT = U ′T for each U ∈ C, the 0U must be distinct
components.

Now suppose e ∈E. By applying Lemma 2.25 to the inclusion of A(e) into ZT ,
we see that A(e) must be contained in a residue class, R(ye) := RZT (ye), for some
point ye ∈ Z T (FK ). Thus there can be no irreducible components of Z T other than
{0U : U ∈ C}. Moreover, it is clear that

⋃
e∈E A(e) =

⋃
e∈E R(ye). So using the

fact that residue classes of an affinoid are connected,13 it follows that the ye are
distinct and hence A(e) = R(ye) for each e ∈ E. From connectivity, we also have
that ye ∈0U∩0V whenever U 6=V and A(e)⊆U∩V , and by Proposition 2.10 this
must be a normal crossing. Therefore, as claimed, we have shown that Z T =C\T ,
and we use equality here to emphasize that the canonical reduction map on the
ZT (C) is compatible with the previously defined reduction map on C(C).

To finish the proof, let T1 and T2 be two finite Galois stable sets of points of
C(K ) satisfying the above conditions on T , and such that T 1 ∩ T 2 = ∅. Then
Z := ZT1 ∩ ZT2 is equal to ZT1∪T2 . Therefore, Z is a formal subdomain of both ZT1

and ZT2 by the compatibility of reduction maps. So C has semistable reduction
Z T1 ∪ Z T2 = C with respect to the formal covering {ZT1, ZT2}; see [BL 1985,
Definition 1.5]. Then, by the same argument as used in the proof of Theorem 2.27,
C has a semistable model over RK whose reduction is isomorphic to C. �

Remark 2.37. As a consequence of Theorem 2.36 we have the result that whenever
K is stable and satisfies Hypothesis B, every semistable curve over RK can be
constructed by gluing together wide opens taken out of curves with good reduction
over RK . Crossings of distinct irreducible components are created by gluing two

13If R is a residue class, Ao(R) is a local ring.
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annuli at the ends of two distinct wide opens, while self-intersections within a
component are created by gluing two annuli at distinct ends of a single wide open.

Lemma 2.38. Suppose D is a closed disk and U is either an open disk or open
annulus in a smooth complete curve C , all defined over K , such that D ∩U 6= ∅.
Then either D ⊆U , U ⊆ D, D ∪U is an open disk, or D ∪U = C ∼= P1 and U is
an open disk.

Proof. We can assume K = C and g(C) > 0. When U is an open disk the lemma
follows from [BL 1985, Proposition 5.4(a)]. So suppose U is an open annulus, with
U 6⊆D and D 6⊆U . We first show that every concentric circle R of U that intersects
D must be contained in D. Indeed, applying [BL 1985, Proposition 5.4(c)] to the
height 1 annulus R and the disk D, and using D 6⊆ R, we can conclude that R is
contained in some closed disk E . Then by [BL 1985, Proposition 5.4(a)], we have
D ⊆ E or E ⊆ D. Either way, it follows that R ⊆ D.

Now choose a parametrization ψ : AK (r, s) '−→ U . By the preceding argument,
we can then choose t ∈ R(r, s) such that Yt := ψ(CK [t]) ⊆ D. Then C \ Yt and
U \Yt have two connected components each. Since U is connected, U \Yt 6⊆C \D.
Thus there exists u ∈ R(r, s) such that u 6= t and Yu ⊆ D. We can assume that
u< t and Yu is contained in the connected component Z of C\Yt that lies inside D.
Because AK [u, t) is connected, it follows that ψ(AK [u, t))⊆ Z .

Now choose a P ∈ Z \U , and let φ : BK [1]
'

−→ D be any parametrization such
that φ(0) = P . We may assume that φ(CK [v]) = Yv whenever Yv ⊆ D. Thus,
φ(AK (r, 1]) = U ∩ D and s > 1. Finally, we let V = D ∪U . Then V is a wide
open with one end and φ−1 BK [t] is an underlying affinoid for t ∈R(r, 1]. Hence
g(V )= 0, and so by the Riemann existence theorem, V is isomorphic to P1 minus
a closed disk (in particular, an open disk). �

If C is a semistable covering of C , we define a residue class of C to be either a
residue class of U u or a component of U \U u for some U ∈ C.

Corollary 2.39. Suppose C is a stable covering of C. Then every closed disk D in
C is contained in a residue class of C.

Proof. Extend scalars to C. The curve C is not isomorphic to P1 as P1 does not have
a stable covering. Let R be a residue class of C such that D∩ R 6=∅, and suppose
D 6⊆ R. First suppose R is an open disk. If necessary, refine C to a semistable
covering C′ for which all underlying affinoids have smooth reduction, none are
closed disks, and R is a residue class of U u for some U ∈C′. By Lemma 2.38, we
have R ⊆ D.

This latter containment implies that U u
∩ D is a nonempty affinoid with good

reduction. Every such affinoid is a Zariski subaffinoid of a closed disk E1 in D,
because D is a closed disk. Since U u has good reduction, E1 is a disk, and C 6∼=P1,
it follows that U u is a Zariski subaffinoid of E1.
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Set U1=U . Then U u
1 is not equal to E1 since none of the underlying affinoids in

C′ are disks. Therefore, there exists a residue disk R1 of E1 such that A1 := R1∩U1

is a component of U1 \U u
1 (an open annulus). Now E2 := R1 \ A1 is a closed disk.

Let U2 be the other element of C′ containing A1. By the same argument as above,
and the fact that both U u

2 and E2 are connected to A1, it follows that U u
2 must

be a Zariski subaffinoid of E2. Again (for i = 2 now), we must have U u
i 6= Ei .

Proceeding in this manner, we eventually exhaust the underlying affinoids of C′ or
find a V ∈ C′ such that V u is a closed disk. Thus, we have a contradiction.

Now suppose R is an annulus. If an annulus at one end of R is contained in D,
and U u is connected to R at that end for some U ∈ C, then D intersects every
residue class of U u . In particular, it intersects an open disk. Now apply the above
argument. �

Theorem 2.40. Suppose C is a smooth complete curve over a stable field K satis-
fying Hypothesis B, and D is a finite (possibly empty) collection of disjoint closed
disks in C all defined over K . Then there exists a semistable covering C of C over
some finite extension of K such that

(1) D =U u
D for some UD ∈ C for each D ∈ D, and

(2) C \ {(UD, D) : D ∈ D} is a semistable covering of W := C \
⋃

D∈D

D.

Proof. If D is empty, or if |D| = 1 and g(C)= 0, the theorem follows directly from
Theorem 2.36 and [Deligne and Mumford 1969; Van der Put 1984].

Otherwise, suppose we have a semistable covering C of C that is compatible
with D, in the sense that each D ∈ D is either contained in a residue class of C

or equal to U u for some U ∈ C. Then we can refine C to obtain a covering that
satisfies the conclusions of the theorem. Indeed, suppose D ∈ D and D 6= U u for
any U ∈ C. Then D is contained in a residue class R of C, and there are three
possibilities to consider. First, D could be contained in a residue disk R of U u for
some U ∈ C. In this case we refine our covering to

CD := C \ {(U,U u)} ∪ {(U \ D,U u
\ R), (R, D)}.

The second possibility is that D is contained in a residue annulus R of some U u .
Applying Lemma 2.38 from above, there must then be a concentric circle T in R,
and a residue disk S in T , such that D ⊆ S. In this case, we let

CD := C \ {(U,U u)} ∪ {(U \ T,U u
\ R), (R \ D, T \ S), (S, D)}.

Finally, the residue class R that contains D may be a connected component of U∩V
for two distinct U, V ∈ C. Again there must be a concentric circle T in R and a
residue disk S in T such that D⊆ S. Let RU and RV be the connected components
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of R \ T that are connected to U and V , respectively. Let Û = (U \ R)∪ RU and
V̂ = (V \ R)∪ RV . Then we may take as our refined cover

CD := C \ {(U,U u), (V, V u)} ∪ {(Û ,U u), (V̂ , V u), (R \ D, T \ S), (S, D)}.

After applying this procedure finitely many times, we are done.
The only issue remaining is that of finding a compatible covering as a starting

point. If C is a stable covering, then it is compatible with D by Corollary 2.39. So
when g≥ 2 we are done by Theorem 2.36. If g= 0, and D1, D2 ∈D with D1 6= D2,
then C := {(C \D1, D2), (C \D2, D1)} is compatible with D. If g(C)= 1, D ∈D,
and U is the largest open disk in C containing D, then C :={(C\D,C\D), (U, D)}
is compatible with D. So in each case we are able to construct the desired covering
of C . �

Remark 2.41. If g(C) ≥ 2, or g(C) = 0 and |D| ≥ 3, or g(C) = 1 and |D| ≥ 1,
there exists a final object CD in the category of such coverings. In these cases,
C \

⋃
D∈D UD is the minimal underlying affinoid of W := C \

⋃
D∈D D.

Corollary 2.42. Let f be a meromorphic function with finitely many zeroes and
poles on a wide open W over a stable field K satisfying Hypothesis B. Then there
is a semistable covering C of W over a finite extension of K such that for each
U ∈ C, U u has good reduction and all the zeroes and poles of f are contained in⋃

U∈C U u .

Proof. Glue in disks to get a complete curve C . Let D be the union of CC(C \W )

with a finite collection of disjoint closed disks in W that contain the support of f .
Apply the theorem to get a semistable covering C1 of C over some finite extension
of K , and then throw out those U ∈ C1 for which U u

∈ CC(C \W ). This yields a
semistable covering C2 of W such that all the zeroes and poles of f are contained
in
⋃

U∈C2
U u . Let S be the collection of singular residue classes in U u for all

U ∈C2. For each R ∈S, choose a concentric circle AR ⊂ R (such an R is an open
annulus). Then

C :=
{(

U \
⋃

R∈S

AR,U u
\
⋃

R∈S

R
)
:U ∈ C2

}
∪ {(R, AR) : R ∈ S}

satisfies the requirements of the corollary. �

Our final result of this section is a lemma that will play a key role in the proof
of our main theorem, Theorem 9.2.

Lemma 2.43. Suppose W is a connected wide open over a stable field K sat-
isfying Hypothesis B, with minimal underlying affinoid W u , and let X⊂W be
an affinoid subdomain with smooth irreducible (connected) reduction such that
g(W )= g(X

c
) > 0. If X is connected to all but at most one component of W \W u ,

then W is a basic wide open and X is a Zariski subaffinoid of W u .
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Proof. First glue disks to W to obtain a smooth connected complete curve C
over K . Then by [Coleman 2005, Theorem A1]14, there exists a semistable model
T of C over a finite extension E of K , and a subset S of the set of components of
T such that X E = X (T, S). Moreover, there exists an s ∈ S such that X (T, s) is a
Zariski subaffinoid of X E .

Let C :=CT be the semistable covering of CE associated to T by Theorem 2.36.
This implies by Proposition 2.34 that Betti(0C) = 0 and g(z) = 0 for all z ∈ S
different from s. It follows that CE has good reduction isomorphic to X

c
E , that X E

is a Zariski subaffinoid of CE , and that each affinoid disk in C \W is contained in
a residue class of CE . Furthermore, the statement that X is connected to all but at
most one end of W implies that the elements of C \W lie in distinct residue classes
of CE , and that the complement of these residue classes is the minimal underlying
affinoid of WE that equals W u

E .
We now know that Ao(W u

E)
∼= A(W u

E)∩ Ao(X E), under restriction ρ, and that
A(W u

E)
∼= A(W u) ⊗K E . Also, Ao(W u) = Ao(W u

E) ∩ A(W u) and Ao(X E) =

Ao(X)⊗RK RE because X has good reduction.
It follows that there is some nonzero element m ∈ RK with |m| < 1, such that

m Ao(W u
E) ⊂ Ao(W u)⊗RK RE . So if c ∈ Ao(W u

E), then ρ(c) =
∑

i ri bi , where
r1, . . . , rn is a basis for RE over RK and bi ∈ Ao(X). It follows that mbi =ρ(ai ) for
some ai ∈ ρ(Ao(W u)). Thus ai/m ∈ Ao(W u

E), and so ai/m ∈ Ao(W u). Therefore
Ao(W u

E) = Ao(W u) ⊗RK RE . This implies that W u has good reduction, which
completes the proof. �

2D. Riemann–Hurwitz for wide opens. For this entire section we assume that K
is a stable field satisfying Hypothesis B. Let A be an oriented annulus over K .
Suppose f is a function on A, and ω a differential, each with no zeroes or poles
in A(C). Then we define ordA f = resA (d f/ f ), which is an integer (see the proof
of [Coleman 1989, Lemma 2.1]), and ordA ω = ordA (ω/dz) for any z ∈ A(A)∗

with ordA z = 1 (which is independent of the choice of z). Using this definition,
we can also define orde at any end e of a wide open W/K . Indeed, suppose ν is
either a meromorphic function or differential on W , with finitely many zeroes and
poles in W (C). Over some finite extension L of K , WL will have an underlying
affinoid X L containing the support of ν. Let A be the component of WL \ X L

corresponding to a fixed e ∈ E(W ), and let ψ : AK (r, s)→A be an isomorphism
such that ψ(AK (t, s)) is connected to X whenever r < t < s. Then we define the
inherited orientation on A by resA = resr,s ◦ψ

∗, and we set orde ν = ordA ν.

14The proof of this result was based on [Coleman 2003, Proposition 2.1], which is now a special
case of Theorem 2.36.
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Let Div(W ) := ZW (C)∪E(W ), and for any D ∈ Div(W ) let

deg D =
∑

P∈W (C)

D(P)+
∑

e∈E(W )

D(e).

Then for ν as above, set (ν)= (ν)fin+ (ν)inf, where

(ν)fin =
∑

P∈W (C)

ordP ν and (ν)inf =
∑

e∈E(W )

orde ν.

Lemma 2.44. Suppose f is a meromorphic function and ω is a meromorphic dif-
ferential on B(1) := BC(1), each with finitely many zeroes and poles, and each
supported on B[r ] := BC[r ] for some r < 1. Let A = AC(r, 1), oriented so that
resA = resr,1 (so not the inherited orientation from B(1) as a wide open). Then

ordA f =
∑

P∈B(1)

ordP f , ordA ω =
∑

P∈B(1)

ordP ω, resA ω =
∑

P∈B(1)

resP ω.

Proof. Let z be the natural parameter on B(1). For the first equation, suppose f is
supported on {P1, . . . , Pn} with ordPi f = ei and z(Pi ) = αi . By the Weierstrass
preparation theorem, we may write f (z)=

∏n
i=1(z−αi )

ei ·u(z), where u is a unit.
Then

ordA f =
n∑

i=1

resA

( ei dz
z−αi

)
=

n∑
i=1

ei =
∑

P∈B(1)

ordP f.

The other two equations follow from essentially the same argument. �

Theorem 2.45. Let f be a rigid function and ω a differential on W , each with
finitely many poles and zeroes in W (C). Then

(i) deg( f )= 0,

(ii) deg(ω)= 2g(W )− 2, and

(iii)
∑

P∈W (C) resP ω+
∑

e∈E(W ) rese ω = 0.

Proof. Attach disks at the ends of W to obtain a smooth projective curve C . For
any rational function g on C , it follows from Lemma 2.44 that deg(g|W )= 0.

For more general f , suppose first that (W, X) is a basic wide open pair, X has
good reduction, and ( f )fin is supported on X . In this case, there exists a g ∈OC and
a Zariski subaffinoid Y of X such that f/g is regular on Y and |( f/g)− 1|Y < 1
(in particular, we could choose Y so that f and g have no poles or zeroes on Y ).
It follows that there is a wide open V , with Y ⊂ V ⊆ W , such that (V, Y ) is a
basic wide open pair and |( f/g)− 1|V < 1. Hence, ( f |V )= (g|V ). Now, we have
a natural map β : Div(W )→ Div(V ). Indeed, the elements of E(V ) are in one-
to-one correspondence with the connected components of V \Y , which in turn are
in one-to-one correspondence (by intersection) with the connected components of
W \Y = (W \X)∪(X\Y ). Thus, as e∈E(W ) corresponds to a unique component of
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W \X , it then corresponds to a unique end of V that we take to be β(e). Similarly, if
P ∈W (C), we let β(P)= P if P ∈ V (C), and the element of E(V ) corresponding
to the component of X \Y that contains P otherwise. Extend this map by linearity.
Since degβ(D)= deg D and ( f |V )= β( f ), we have

deg( f )= deg( f |V )= deg(g|V )= 0.

To complete the proof that deg( f ) = 0, let C be a semistable covering of W
such that U u has good reduction and ( f |U )fin is supported on U u for each U ∈ C

(which exists by Corollary 2.42). Then

( f )=
∑
U∈C

( f |U ),

where we regard both sides as elements of

{D ∈ ZW (C)∪
⋃

U∈C E(U )
: D(a)=−D(b) if a ∈ E(U ), b ∈ E(V ),U 6= V,Ua = Vb}.

Therefore,
deg( f )=

∑
U∈C

deg( f |U )= 0.

Statements (ii) and (iii) are clearly true whenever ω = η|W for η ∈ �1
C , by

Lemma 2.44. Moreover, the general case of (ii) then follows from (i) and the fact
that ( f ω)= ( f )+ (ω). Finally, the general case of (iii) will follow once we know
it for basic wide opens, by an argument similar to that above.

So suppose (W, X) is a basic wide open pair, with X and C as above. For a
reduced affinoid X over K and ω ∈�1

X/K , we set

|ω|X = inf{|a| : a ∈ K , ω ∈ a Ao(X)dAo(X)}.

Using Riemann–Roch, we can find η ∈�1
C such that ω−η has no poles on X and

|ω − η|X < ε. Note that ω − η extends to a regular differential on a wide open
neighborhood V of X in W . Then statement (iii) for W follows from the general
fact that if (V, X) is a basic wide open pair, ω ∈ �1

V/K , |ω|X < ε and e ∈ E(V ),
then |rese ω|< ε. Indeed, let T :U → A(1,∞) be a parameter on the component
U of V \ X corresponding to e, such that |T (x)| → 1 as x→ X . Suppose on U

ω =

∞∑
n=−∞

anT n dT .

Then |ω|X =max{|an| : −∞< n <∞}. So |rese ω| = |a−1|< ε. �

Suppose f : W → V is a finite map. As f is finite, f naturally maps E(W )

to E(V ). For a ∈ W (C)∪E(W ), let δ f (a) = orda f ∗dT , where T is a parameter
at b := f (a) such that ordb T = 1. When a and b are ends, there exist annuli A



392 Ken McMurdy and Robert Coleman

and B at a and b such that f restricts to a finite étale map from A onto B. Let
e f (a) be the degree of this map. Otherwise, at a point in W (C), let e f (a) denote
the usual ramification index.

Lemma 2.46. With notation as above, ifω is a differential with finitely many zeroes
and poles on W , then

orda f ∗ω = e f (a) ordb ω+ δ f (a).

Proof. First suppose a ∈ E(W ), and let A and B be annuli at a and b such that
ω is regular and nonvanishing on B. Choose parameters S and T on A and B

respectively, such that orda S = ordb T = 1. Then f ∗T |A = Seg(S) and ω|B =
T dh(T )dT , where g is a unit on A with orda g= 0, h is unit on B with ordb h= 0,
e = e f (a), and d = ordb ω. So

( f ∗ω)|A = (Seg(S))dh(Seg(S)) f ∗dT,

from which the lemma follows.
The proof when a ∈W (C) is very similar. Let A and B be the stalks at a and b.

Then after choosing uniformizers S and T , respectively, the map f : A→ B is
given by a homomorphism between formal power series rings over C. Thus, we
have ω = T dh(T )dT and f ∗T = Seg(S), where e = e f (a), d = ordb ω, and g
and h are formal power series with nonzero constant terms. The lemma follows
from the computation above and the fact that h(Seg(S)) will again have nonzero
constant term. �

Corollary 2.47. Suppose that |e f (a)| = 1 in K , or that e f (a) 6= 0 in K and
a ∈W (C). Then δ f (a)= e f (a)− 1.

Proof. Keeping the same notation as above, we compute δ f (a) directly from the
definition

δ f (a)= orda dT = orda d(Seg(S))= orda(eg(S)+ Sg′(S))+ e− 1.

When a ∈ W (C) and e f (a) 6= 0 in K , this equals e − 1, since the power series
eg(S)+ Sg′(S) must have nonzero constant term. On the other had, if a ∈ E(W )

and |e f (a)| = 1, it is straightforward to show that eg(S) + Sg′(S) has constant
absolute value on A. So either way we are done. �

Theorem 2.48. Let f :W → V be a finite map of wide opens of degree d. Then

2g(W )− 2= d(2g(V )− 2)+
∑

a∈W (C)∪E(W )

δ f (a).

Furthermore, under the hypotheses of Corollary 2.47, this is

d(2g(V )− 2)+
∑

a∈W (C)∪E(W )

(e f (a)− 1).
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Proof. Let ω be a nonzero meromorphic differential on V . Then the degree of f ∗ω
must be 2g(W )− 2 by Theorem 2.45. On the other hand, we obtain the right side
of the equation if we compute deg( f ∗ω) using Lemma 2.46, Corollary 2.47, and∑

x∈W (C)
f (x)=y

e f (x)=
∑

a∈E(W )
f (a)=b

e f (a)= d. �

Proposition 2.49. Suppose (W,W u) and (V, V u) are basic wide open pairs, and
f :W→ V is a finite map such that f (W u)= V u . Let X and Y be the completions
of W u and V u , and let f̄ : X→ Y be the induced map. If f̄ is separable, then

δ f (a)= length(�X/Y )a.

Proof. First, we can lift f̄ to a map g : CX → CY between complete liftings of X
and Y . There must exist wide open neighborhoods W ′ ⊆ W and V ′ ⊆ V of W u

and V u , and embeddings φX :W ′→CX and φY : V ′→CY , such that f (W ′)= V ′,
φX |W u and φY |V u are the natural inclusions, and

g ◦φX |W u = φY ◦ f |W u .

Now, Hartshorne’s version [1977, Corollary 2.4] of Hurwitz’s theorem implies
the proposition for

h := φ−1
Y ◦ g ◦φX :W ′→ V ′.

The proposition follows because δ f (a)= δ f (a′)= δg(a′′), where a′ is the compo-
nent of W ′ \W u corresponding to a and a′′ = φX (a′). �

3. X0( pn) and its subspaces

Now that the rigid analytic foundation has been laid, we turn our focus specifically
to the curve X0(pn), which we will always think of in moduli-theoretic terms.
More precisely, we think of X0(pn) as the rigid analytic curve over Qp whose
points over Cp are in a one-to-one correspondence with (isomorphism classes of)
pairs (E,C), where E/Cp is a generalized elliptic curve and C is a cyclic subgroup
of order pn . We implicitly make use of this correspondence when we speak loosely
of “the point (E,C)”. There are various natural maps from X0(pn) to X0(pm) that
can be defined by way of this moduli-theoretic interpretation of points, and we
begin this section by fixing notation for these fundamental maps.

Definition 3.1. First let

π f , πν :
∐
n≥1

X0(pn)→
∐
n≥0

X0(pn)

be the maps given by π f (E,C) = (E, pC) and πν(E,C) = (E/C[p],C/C[p]),
where C[pi

] is the kernel of multiplication by pi in C . Then by letting πa b =
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πb
f ◦π

a
ν , we get maps

πa b :
∐

n≥a+b

X0(pn)→
∐
n≥0

X0(pn).

Remark 3.2. This definition is identical to the definition in [Coleman 2005, §1].
We also note that over C, πa b corresponds to the map on the upper half plane that
takes z to paz.

Another map crucial to this paper is the Atkin–Lehner involution,

w :
∐
n≥0

X0(pn)→
∐
n≥0

X0(pn),

which is defined by the formula

wn(E,C)= (E/C, E[pn
]/C), where wn := w|X0(pn).

The Atkin–Lehner involution is compatible with the level-lowering maps in the
sense that π f ◦ w = w ◦ πν (or equivalently, w ◦ π f = πν ◦ w, since w is an
involution).

3A. Canonical subgroups and supersingular annuli. We now introduce some
natural rigid subspaces of X0(pn) over finite extensions of Qp using the theory of
the canonical subgroup, which we now review and extend [Buzzard 2003, §3].15 If
E is an elliptic curve over Cp, we let h(E) denote the minimum of 1 and the valua-
tion of a lifting of the Hasse invariant of the reduction of a nonsingular model of E
mod p, if it exists, and 0 otherwise16 (this is denoted by v(E) in [Buzzard 2003]).
Katz [1973, §3] constructed a rigid analytic section s1 of π f : X0(p)→ X (1) over
the wide open W1 whose Cp-valued points are represented by generalized elliptic
curves E such that h(E) < p/(p+ 1), when p ≥ 5. Both W1 and s1 are defined
over Qp. Changing notation slightly from [Buzzard 2003], we let K1(E) ⊆ E
denote the subgroup of order p for which s1(E)= (E, K1(E)), and we call K1(E)
the canonical subgroup of order p.

Using [Buzzard 2003, Theorem 3.3], we can also define canonical subgroups
of higher order. For n ≥ 1, we generalize W1 by taking Wn to be the wide open
in X (1) where h(E) < p2−n/(p + 1) (the complement of finitely many affinoid
disks, one in each supersingular residue class). For E ∈Wn we then define Kn(E)
inductively, as in [ibid., Definition 3.4], as the preimage of Kn−1(E/K1(E)) under
the natural projection from E→ E/K1(E). This is a cyclic subgroup when E ∈Wn

15Although Buzzard works over a complete discrete valuation ring, all of his results can be ex-
tended to complete local rings.

16As pointed out in [BL 1985, Remark 6.4], the good reduction of E is well defined if it exists.
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by [ibid., Theorem 3.3], and we call it the canonical subgroup of order pn .17 Thus,
when E has supersingular reduction, either h(E)≥ p/(p+1) (and E is too super-
singular in the language of [ibid.]), or there is a largest n ≥ 1 for which Kn(E)
can be defined. In the first case, we define the canonical subgroup of E , written
K (E), to be the trivial subgroup, and in the second we let K (E)= Kn(E) for this
largest n. Whenever E/Cp has ordinary reduction (by this we mean ordinary good
or multiplicative18) we let K (E) be the p-power torsion of E that is contained
in the kernel of reduction, which does not depend on the good or multiplicative
model.

It is important to note that s1 also generalizes, in the sense that the map defined
by sn(E)= (E, Kn(E)) is also a rigid analytic section of π0n : X0(pn)→ X (1) over
the wide open Wn . To see this, first regard X0(pn) for n> 1 as the normalization of
the fiber product of X0(pn−1) with itself over X0(pn−2) via the maps π f and πν .
More specifically, let

ψn : X0(pn)→ X0(pn−1)×π f ,πν X0(pn−1)

be the isomorphism described by ψn = (πν, π f ) (after normalization of the right
side). Now assume that sn−1 is rigid analytic. With [Buzzard 2003, Theorem 3.3],
it is straightforward to verify that over Wn , we have

π f ◦ sn−1 ◦π1n−2 ◦ sn−1 = πν ◦ sn−1.

Thus we may define a rigid analytic map from Wn to X0(pn) by

sn := ψ
−1
n ◦ (sn−1 ◦π1n−2 ◦ sn−1, sn−1).

Again by the same theorem, we see that this map does indeed take E to (E, Kn(E)).
So by induction we are done. Note that both Wn and sn are defined over Qp.

Another way to focus on rigid subspaces of X0(pn) is to fix the isomorphism
class of the reduction of E . In particular, we make the following definition.

Definition 3.3. For a fixed elliptic curve A over a finite field F, we let WA(pn)

represent the rigid subspace of X0(pn) (over Qp ⊗W (F)) whose points over Cp

are represented by pairs (E,C) with E ∼= A.

Of course, WA(1) (for any A) is just a residue disk of the j-line. When A is
a supersingular curve, it is well known that WA(p) is isomorphic, over Qp2 :=

W (Fp2)⊗Qp, to an open annulus of width i(A) := |Aut(A)|/2. This means that
one can choose a parameter xA on WA(p) over Qp2 that identifies it with the (open)

17Thinking of the kernel of reduction of E as a disk, the set of points of order pn are not always
equidistant from the identity. When E ∈ Wn , Kn(E) is the union over i ≤ n of those points of order
pi that are closest to the identity.

18Equivalently, j (E) is not congruent to a supersingular j-invariant modulo mRp .
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annulus AQp2 (p
−i(A), 1). In fact, we can and will always do this in such a way that

v(xA(E,C))= i(A)h(E) when C = K1(E), and i(A)(1−h(E/C)) otherwise (this
is justified in [Buzzard 2003, Theorem 3.3 and §4]).

Now, inside the annulus, WA(p), there are three concentric circles that will be
essential for our analysis of X0(p2) and X0(p3). First there is the too-supersingular
circle, which we denote by TSA, whose points correspond to pairs (E,C), where
the canonical subgroup of E is trivial. Equivalently, these are the points with
h(E)≥ p/(p+1). Next there is the self-dual circle, denoted by SDA, whose points
correspond to pairs (E,C), where the subscheme C of order p is potentially self-
dual, that is, isomorphic to its Cartier dual after finite base extension. Equivalently,
SDA consists of those points that satisfy h(E) = 1/2 and C = K1(E). When
A/Fp, SDA can also be described as the unique circle in WA(p) that is fixed by
the involution w1, and hence we call it the Atkin–Lehner circle. Finally, we must
also consider what might be called the anti-Atkin–Lehner circle. It is the subspace
CA ⊆ WA(p) whose points correspond to pairs (E,C ′) for which there exists a
C such that (E,C) ∈ SDA but C ′ 6= C . We let τ f : CA → SDA be the map that
corresponds to replacing the cyclic subgroup C ′ with K1(E). Then τ f is rigid
analytic since it is the restriction of s1 ◦π f .

Remark 3.4. The fact that the regions above are circles follows from Buzzard’s
discussion of rigid subspaces of X1(p) [2003, §4]. Using a parameter xA chosen as
above, the circles TSA, SDA and CA are those where v(xA)/ i(A) equals p/(p+1),
1/2, and 1− 1/(2p), respectively.

From above, whenever A/Fp is supersingular, WA(p) is an annulus preserved
by the Atkin–Lehner involution w1, and which is mapped onto the residue disk
WA(1) via π f . In our analysis of the stable models of X0(p2) and X0(p3), we will
need to work with fairly explicit approximations for the restrictions of π f and w1

to these subspaces:

Theorem 3.5. Let Zp2 := W (Fp2) and let A/Fp be a supersingular curve with
j (A) 6= 0, 1728. Then there are parameters s and t over Zp2 that identify WA(1)
with the disk BQp2 (1) and WA(p) with the annulus AQp2 (p

−1, 1), and there are
series F(T ),G(T ) ∈ T Zp2[[T ]] such that

(i) w∗1(t)= κ/t for some κ ∈ Zp2 with v(κ)= 1, and

(ii) π∗f s= F(t)+G(κ/t), where F ′(0)≡1 (modp) and G(T )≡ (F(T ))p (modp).

Proof. One only has to translate results in [de Shalit 1994, §2, §3]. Our t and κ are
de Shalit’s y and π . Then our π∗f s is de Shalit’s ψ(y)− β0. The theorem follows
from [de Shalit 1994, (4) of §2, Lemma 1 and Corollaries 2–4 of §3]. �
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Note that the parameter t from Theorem 3.5 is a suitable choice for xA. This follows
from condition (ii), which guarantees that π f has degree p+1 on the circle where
v(t)= p/(p+ 1) and has degree 1 or p on all other concentric circles.

3B. Neighborhoods of the ordinary locus. The finitely many subspaces WA(pn)

(defined above), where A runs over supersingular curves over Fp2 , cover the super-
singular locus of X0(pn) over Qp2 , that is, the subspace whose points over Cp

correspond to pairs (E,C), where E has supersingular reduction. Furthermore,
these subspaces become connected wide opens over Cp by Theorem 2.29. We
will now describe a finite collection W±a b ⊆ X0(pn) of subspaces that cover the
ordinary locus. These will, in fact, be shown to be basic wide opens when n ≤ 3,
and we do expect this to hold more generally. Essentially, we extend the irreducible
affinoids, X±a b (introduced in [Coleman 2005]19), to wide open neighborhoods, by
considering points (E,C) that are nearly ordinary in the sense that either K (E) or
K (E/C) is large.

More precisely, for a ≥ b ≥ 0 with a+ b = n, we start by letting

Wa b = {(E,C) : |K (E)| ≥ pn, |K (E)∩C | = pa
}.

For b>a≥0 with a+b=n, we then define Wa b=wn(Wba). Now we show that the
pairing on Ka(E), which was defined in [Coleman 2005] for points (E,C) ∈Wa b

where E has ordinary reduction, carries over to all points in Wa b. Let (E,C) be
a point of Wa b with a ≥ b, and let A, B ∈ Ka(E). Then by the definition of Wa b,
we can choose P ∈ C and Q ∈ Kn(E) such that pb P = A and pb Q = B. Now set
PE,C(A, B)= en(P, Q), where en( · , · ) denotes the Weil pairing on E[pn

]. This
gives a well-defined pairing of Ka(E) with itself onto µpb . Furthermore, if p> 2,
there are exactly two isomorphism classes of pairings on Z/paZ ontoµpb whenever
b > 0. Let e+( · , · ) and e−( · , · ) be representatives for these classes. Then, es-
sentially repeating the argument from [Coleman 2005] for the ordinary affinoids,
X±a b, there is a rigid subspace W±a b of X0(pn) defined over Qp(

√
(−1)(p−1)/2)

whose Cp-valued points are

{(E,C) ∈Wa b | (Ka(E),PE,C)∼= (Z/paZ, e±)}.

Set W+n 0 =W−n 0 =Wn 0, and for b > a ≥ 0, set W β
a b = wn(W

(−1
p )β

ba ).

Thus, X±a b is just the affinoid whose points are those (E,C) ∈ W±a b for which
E has ordinary or multiplicative reduction. It is not immediate that W±a b is a basic
wide open with X±a b as a minimal underlying affinoid. We will show that this is
the case, however, when n ≤ 3, and we do expect it to hold for arbitrary n as well.

19When a < b, the Xβa b here is the same as X
(−1

p )β

a b from [Coleman 2005].
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The affinoid X±a b is well understood from results of [Coleman 2005]. In particular,
we have the following result, proven but not made explicit therein.

Proposition 3.6. The affinoid X±a b with a≥b>0 is defined and has good reduction
over Qp(µpb).

Proof. It was proven in [Coleman 2005, §0] that X±a b is an affinoid defined over the
quadratic subfield of Qp(µp). For ζ ∈µpb , we can define an embedding aζ of X±a b
onto an affinoid in X1(pb)bal by taking aζ (E,C) to be the point that is represented
by the balanced 01(pb)-structure [Katz and Mazur 1985, (3.3)]

P, E
α
−→
←−
α̌

E/C, P ′.

Here we have P ∈ Kb(E), PE,C(P, P)= ζ , and P ′ = α(Q) for some Q ∈ E[pb
]

such that (P, Q) = ζ . This image affinoid reduces to Ig(pb) by (the extension to
level 1 of) [Katz and Mazur 1985, p. 450].20 �

Corollary 3.7. The affinoid X±a b with a+ b = n is defined and has good reduction
over Qp(µpbn/2c).

Proof. When a ≥ b, this follows immediately from Proposition 3.6. Otherwise,
apply wn first. �

4. Formal groups

In the previous section we defined a finite collection WA(pn) of connected wide
opens that cover the supersingular locus of X0(pn). Unfortunately, WA(pn) is
only basic when n ≤ 2. Therefore, to arrive at a stable covering of X0(pn), it is
necessary to use smaller subspaces of WA(pn). One approach is to use canonical
subgroup considerations, as in Section 3A. Another is to use the interpretation from
[Lubin et al. 1964] of an elliptic curve, over a complete local ring R with residue
characteristic p, as a lifting of some formal group in characteristic p. In particular,
this will enable us to use explicit formulas of Hopkins and Gross, which we recall
in Section 4B.

Theorem 4.1 (Woods Hole theory). Suppose R is the ring of integers in a com-
plete subfield of Cp, with residue field F. The category of elliptic curves over R is
equivalent to the category of triples (F, A, α), where F is a formal group over R,
A is an elliptic curve over F, and α : F → Â is an isomorphism. A morphism
between two triples, (F, A, α) and (F ′, A′, β), is a pair (σ, τ ), where σ : F→ F ′

20Ig(pb) is the Igusa curve in characteristic p that classifies pairs (E, ψ), where E is an elliptic
curve and ψ : µpb ↪→ E (studied in [Igusa 1968]).
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and τ : A→ A′ are homomorphisms such that the following diagram commutes.

F

α

��

σ̄ // F̄ ′

β

��

Â
τ̂

// Â′

Proof. If E is an elliptic curve over R, let FR(E) = (Ê, E, ι), where ι : Ê → ˆE
is the natural isomorphism. This is a functor, compatible with changing R, from
the first category to the second. We claim this is an equivalence of categories. The
analogous statement is proven when R is a local Artinian ring with residue field
of characteristic p in [Lubin et al. 1964, §6]. Then on [Lubin et al. 1964, p. 7], it
is explained that by “passing to the limit. . . one sees that it continues to hold over
a complete local Noetherian ring”. Thus the theorem is true when R is the ring of
integers in a complete discretely valued subfield of Cp.

To obtain it more generally, we apply [Lubin et al. 1964, Theorem 1]. This
theorem implies that given an elliptic curve A over an algebraic extension of Fp,
the collection of liftings of Â to Rp is naturally the set of points in a wide open
disk D. On the other hand, the set of liftings of A to Rp is the set of points in a
residue disk R of X (1) and F yields a degree one rigid analytic map from R to D

with dense image. Hence it is an isomorphism. �

In light of this theorem, we may think of points (E,C) ∈ WA(pn) as triples
(F,C, α), where F is a formal group, C ⊆ F is a cyclic subgroup of order pn ,
and α : F → Â is an isomorphism. We then refer to such a triple as a Woods
Hole representation of (E,C). There are two specific ways in which we apply
this theory. First of all, from the fact that all supersingular elliptic curves are p-
prime isogenous, we are able to show that all supersingular regions WA(pn) for a
fixed p and n are nearly isomorphic. Along with the result in Appendix B, this
enables us to do all of our calculations under the simplifying assumption that A/Fp

and j (A) 6= 0, 1728. Secondly, we use extensively the natural action of the p-adic
group Aut( Â) on WA(p), which was studied in detail in [Hopkins and Gross 1994].

4A. All supersingular regions are (nearly) isomorphic.
Proposition 4.2. Let A and A′/Fp2 be two supersingular elliptic curves, with j (A)
not equal to 0 or 1728. Let F/Fp2 be a finite extension over which A and A′

are p-prime isogenous (which always exists). Then the wide open WA′(pn) is
isomorphic over W (F) ⊗ Qp to the quotient of WA(pn) by a faithful action of
Aut(A′)/{±1}.

Proof. Suppose ι : A → A′ is an isogeny of degree prime to p over F. Since
(deg ι, p) = 1, the induced map ι̂ : Â→ Â′ is an isomorphism of formal groups.
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So in Woods Hole terms we may define a map ψι :WA(pn)→WA′(pn) by taking

ψι(F,C, α)= (F,C, ι̂ ◦α).

To show that the map is, in fact, well defined, suppose that the triples (F1,C1, α1)

and (F2,C2, α2) represent the same point of WA(pn). This means that there are
isomorphisms γ : F1→ F2 (mapping C1 to C2) and τ : A→ A such that α2 ◦ γ =

τ̂ ◦ α1. Because j (A) 6= 0, 1728, we know that τ = ±1. Therefore τ̂ commutes
with all isogenies. In particular, composing with ι̂ on both sides, we have

ι̂ ◦α2 ◦ γ = τ̂ ◦ ι̂ ◦α1.

Therefore (F1,C1, ι̂ ◦ α1) and (F2,C2, ι̂ ◦ α2) are Woods Hole representations of
the same point in WA′(pn), and ψι is well defined.

To show that ψι is onto, choose any point of WA′(pn) and let (F,C, β) be one
of its Woods Hole representations (so β : F → Â′ is an isomorphism). Since ι̂ is
an isomorphism, we can choose a point of WA(pn) by taking (F,C, ι̂−1

◦ β), and
this point maps onto our chosen point of WA′(pn) by definition. (Note, however,
that this does not define a map from WA′(pn) to WA(pn), since our original choice
of triple was noncanonical.)

Finally, suppose that two points of WA(pn), represented by (F1,C1, α1) and
(F2,C2, α2), have the same image in WA′(pn). Then there must be isomorphisms
γ : F1→ F2 (taking C1 to C2) and τ : A′→ A′ such that

ι̂ ◦α2 ◦ γ = τ̂ ◦ ι̂ ◦α1 and α2 ◦ γ = îd ◦ (ι̂−1
◦ τ̂ ◦ ι̂) ◦α1.

In particular, τ 7→ ((F,C, α) 7→ (F,C, ι̂−1τ ι̂ ◦ α)) gives a faithful action of
Aut(A′)/{±1} on the fibers of ψ . �

Remark 4.3. Suppose now that F ⊇ Fp2 is a field over which all supersingular
curves are p-prime isogenous. It follows, then, that all of the regions WA(pn) are
nearly isomorphic over W (F)⊗Qp. We showed in [CM 2006, Theorem 5.5] that
this F can always be taken to be Fp24 .

4B. Woods Hole action and Gross–Hopkins theory. The other way we use Woods
Hole theory is to define a continuous action of a p-adic group on WA(pn). In
particular, when A is a supersingular elliptic curve, it is well known [Tate 1966,
Main Theorem] that

B := End( Â)∼= Zp[i, j, k],

where i2 is a quadratic nonresidue, j2
= −p, and i j = − j i = k. Furthermore,

we may take j to be the Frobenius endomorphism whenever A is defined over Fp.
Then B∗ = Aut( Â) acts on WA(pn) by

ρ(F,C, α)= (F,C, ρ ◦α) for ρ ∈ B∗.
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Remark 4.4. The subgroup Z∗p ⊆ B∗ acts trivially on WA(pn). Indeed, for ρ ∈
Z∗p, just take σ = ρ−1 and τ = id in Theorem 4.1. Not only does this define an
isomorphism between (F, α) and (F, ρ ◦ α), but in fact the isomorphism leaves
invariant the subgroups of F of order pn .

Hopkins and Gross studied the analogous action for deformation spaces of finite
height formal groups, and explicitly computed the action in the height 2 case in
[1994, §25]. To better understand their results (and translate them into our setting),
we now offer a brief review of their theory under suitable simplifying assumptions.
First, let K be a finite unramified extension of Qp with residue field F⊇Fp2 , and let
F0/F be a fixed height 2 formal group. They show that there is a rigid space over K ,
denoted by X K , whose L-valued points for any finite extension L of K correspond
to liftings of F0 to a formal group over OL . Here two liftings are equivalent (say,
(G1, γ1) and (G2, γ2) with γi :Gi

∼
→ F0) if there is an isomorphism between them

that induces the identity on F0. Then Aut(F0) acts (rigid analytically) on X K in
the same manner as above, and Hopkins and Gross make this action completely
explicit with their crystalline period mapping

8 : X K → P1
K ,

which can be understood as follows. Again, it is well known that B := End(F0) is
isomorphic to the maximal order of some quaternion algebra over Qp, and hence
B ⊗ K is (noncanonically) isomorphic to M2×2(K ). Since the image of B∗ in
M2×2(K ) must take lines to lines, we thus obtain an action of B∗ on P1

K . Hopkins
and Gross define the (rigid analytic) map 8 and decompose B⊗ K in such a way
that 8(ρx)=8(x)ρ for all ρ ∈ B∗, that is, 8 is B∗-equivariant. So the beauty of
their theory is that the action of B∗ on X K can be concretely expressed in terms of
linear algebra.

Indeed, suppose A/Fp with j (A) 6= 0, 1728. Then X K and WA(1) are natu-
rally isomorphic over the unramified quadratic extension K of Qp, and we may
decompose B as R⊕ R j , where

R = Zp[i] ∼= OK

and j is the Frobenius endomorphism of A (as above). Then by [Hopkins and
Gross 1994, §25], ρ = α+ jβ ∈ B∗ (with α, β ∈ Zp[i]) acts on P1(K ) = 8(X K )

via multiplication on the right by the matrix[α −pβ̄
β ᾱ

]
. (3)

Of course, this formula only completely defines the action of B∗ on B∗-stable
subspaces of WA(1) on which 8 is an injection (for example, the canonical lift-
ings of [Gross 1986, 2.1]). Hopkins and Gross [1994, 25.12] specify an affinoid
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disk Y ⊆ WA(1) for which this is the case, and which maps via 8 onto the disk
v(t)≥ 1/p, where t is the parameter on P1 corresponding to the row vector [1, t].
This parameter is distinct from the parameter on WA(p) from Theorem 3.5. How-
ever, from the explicit action of B∗ on 8(Y ) and the fact that this t vanishes at
some canonical lifting (which is necessarily too supersingular), there is significant
compatibility between the two. In particular, it is clear that the canonical section
of π f : WA(p) → WA(1) exists over the annulus in Y ⊆ WA(1) described by
1/p < v(t) < p/(p+ 1) and preserves valuations with respect to the two param-
eters. As B∗ acts equivariantly with respect to π f , the upshot of all this is that
B∗ acts on the subannulus of WA(p) that is identified via 8 ◦π f with the annulus
1/p < v(t) < p/(p+ 1) according to

ρ(t)=
−pβ̄ + ᾱt
α+βt

, where ρ = α+ jβ. (4)

In particular, we are most interested in the action of B∗ on the Atkin–Lehner circle
(equivalently, where v(t)=1/2). The following proposition and remark summarize
the specific results (still assuming that A/Fp and j (A) 6= 0, 1728) which we will
need for our explicit analysis of X0(p3).

Definition 4.5. For ρ = α+ jβ (as above), let ρ ′ = ᾱ+ j β̄, and let B ′ be the set
of all ρ ∈ B∗ such that ρρ ′ ∈ Z∗p. Alternatively, B ′ is just the set of all ρ ∈ B∗ with
ρ = a+ bi + dk.

Proposition 4.6. Let j (A) 6= 0, 1728. For any ρ ∈ B∗, let wρ := ρ ◦w1. Then wρ
is an automorphism of SDA with two fixed points and is an involution exactly when
ρ ∈ B ′.

Proof. If (E2, K (E2)) = w1(E1, K (E1)) are two points of SDA, this means that
there is a degree p isogeny f : E1 → E2 with kernel K (E1). Since A is super-
singular with Aut(A) = ±1, f can only induce ± j in End(A) (and hence in B =
End( Â)). Now, j /∈ B∗, but the full group, (B⊗K )×, acts equivariantly on8(X K )

by [Hopkins and Gross 1994, 23.11]. So this means that on SDA we may identify
w1 with ± j (and the sign is irrelevant).

To determine when wρ is an involution, we first verify that ρ ◦ w1 = w1 ◦ ρ
′

(equivalently, ρ j = jρ ′). This shows that w2
ρ acts like ρρ ′, and only Z∗p ⊆ B∗ acts

trivially from (4). So wρ is an involution exactly when ρ ∈ B ′. In particular, wρ is
given by

wρ(t)=
−pᾱ− pβ̄t
−pβ +αt

, (5)

and the explicit formula shows that in any case wρ has two fixed points. �

Remark 4.7. To better understand how ρ ∈ B∗ and wρ act on SDA, we could
choose the parameter u= t/

√
−p that identifies SDA with C[1]. Then, by reducing
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equations (4) and (5) from above, on SDA ∼=Gm we have

ρū = ᾱα−1ū = ζ ū and wρ ū = ᾱα
−1

ū
=
ζ

ū
for some ζ ∈ µp+1 ⊆ F∗p2 .

So on SDA, the wρ reduce to p+1 distinct involutions with 2(p+1) distinct fixed
points (in a µ2(p+1) orbit). Furthermore, each of these involutions of SDA lifts to
an involution of SDA.

Another way to think of the fixed points of the automorphisms {wρ} is that they
correspond to elliptic curves whose formal groups have complex multiplication by
the ring of integers in a ramified quadratic extension of Qp (see Proposition 4.9
below). This point of view becomes crucial when we determine the field of defi-
nition of our stable model, because it ties our construction to the arithmetic theory
of CM elliptic curves. To this end, we make the following definition.

Definition 4.8. For K a complete subfield of Cp, an elliptic curve E/K has fake
CM if EndK Ê 6= Zp and potential fake CM if EndCp Ê 6= Zp.

Proposition 4.9. Let (E,C) be any point of SDA. Then the following statements
are equivalent.

(i) (E,C) is fixed by wρ for some ρ ∈ B ′.

(ii) (E,C) is fixed by wρ for some ρ ∈ B∗.

(iii) E has potential fake CM by Zp[π ], where π ∈ End(Ê) and C = kerπ .

Proof. We will show that (ii) is equivalent to both (i) and (iii) with a Woods Hole
argument. So before we begin we must reinterpret condition (ii) in the language
of Theorem 4.1. Let (F, α,C) be a Woods Hole representation of (E,C), and let
ιC : F→ F/C be the natural map. Then (E,C) is a fixed point of wρ if and only if
there is an isomorphism σ : F/C→ F that makes the following diagram commute.

F
ῑC //

α

��

F/C
id //

β

��

F/C
σ̄ //

ρ◦β

��

F

α

��

Â j
// Â ρ

// Â id
// Â

Note that the first commuting square represents the isogeny (of elliptic curves)
E→ E/C . The pair (F/C, ρ ◦β) then corresponds to the elliptic curve ρ(E/C).

Now, to show (iii) implies (ii), suppose first that we are given π ∈ End(F) with
ker(π) = C . Then π must factor as σ ◦ ιC for some isomorphism σ : F/C → F ,
and we may take ρ = α ◦ σ̄ ◦ β−1

∈ B∗ in the diagram above. Conversely, if
(E,C) is a fixed point of wρ for some ρ = a+ bi + cj + dk ∈ B∗, and hence we
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have a commutative diagram as above, End(F) must contain both π := σ ◦ ιC and
π0 := π + pc. Using the diagram to compute inside End( Â), we then have

α ◦π0 ◦α
−1
= ρ j − cj2

= (ρ− cj) j.

Note that ρ−cj ∈ B ′. So π2
0 ∈ pZ∗p, which means that Zp[π0]=Zp[π ] is already the

maximal order in a ramified quadratic extension of Qp (and hence all of End(F)).
Thus we have shown that (ii) implies (iii). We also get for free, however, that (ii)
implies (i), since (E,C) is now also fixed by wρ0 , where ρ0 := ρ− cj ∈ B ′. �

Corollary 4.10. If (E,C) ∈ SDA is fixed by wρ0 for some ρ0 ∈ B ′, then wρ fixes
(E,C) precisely when ρ = aρ0+ bj for a ∈ Z∗p and b ∈ Zp.

Remark 4.11. With notation as above, suppose that (E,C) ∈ SDA is fixed by wρ
and H is one of the noncanonical subgroups of E of order p (so (E, H) ∈ CA).
Since π2

0 ∈ pZ∗p and ker(π0) = C , we must have π0(H) = C . This implies that
a+ bπ0 ∈ (Zp[π0])

∗ ∼=Aut(F) fixes the noncanonical subgroups of order p when
p | b, and transitively permutes them otherwise.

Remark 4.12. We showed in [CM 2006, Remark 3.11] that the points that satisfy
the conditions of Proposition 4.9 are precisely the canonical liftings of Â in the
sense of [Gross 1986, 2.1], where K is one of the ramified quadratic extensions of
Qp and Â is given the structure of a formal OK -module.

5. Stable reduction of X0( p2)

At this point we have done enough groundwork to prove a rigid analytic reformula-
tion of Edixhoven’s result [1990, Theorem 2.1.2] on the stable reduction of X0(p2).
Most of the work is in computing the reduction of YA, the underlying affinoid
of WA(p2). This is done by first embedding YA into the product of two circles
(specifically TSA ×TSA) and then applying the explicit formula of Theorem 3.5.
After that, we use results from Section 2 to show that the wide opens in

{W20,W+11,W−11,W02} ∪ {WA(p2) : A is supersingular}

intersect properly and comprise a stable covering of X0(p2).

Lemma 5.1. Let YA = π
−1
ν (TSA). If A/Fp, YA is naturally isomorphic to

S := {(x, y) ∈ TSA×TSA | x 6= y, π f (x)= π f (y)}.

Proof. If (x, y)∈ S, then x= (E,C1) and y= (E,C2) for E some too supersingular
curve, and C1 and C2 are two distinct subgroups of order p. So we can define a
map ψ : S→YA by taking (x, y) to (E/C1, p−1C2/C1). It is immediate that this
takes values in YA since πν ◦ψ(x, y) is then

(E/E[p], p−1C2/E[p])∼= (E,C2).
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Also, we can define a map going the other way, say φ, by taking (E,C) ∈ YA to
the pair (x, y) ∈ S with x = (E/pC, E[p]/pC) and y = (E/pC,C/pC). This
takes values in S precisely because πν(E,C) = (E/pC,C/pC) ∈ TSA, and it is
straightforward to check that ψ ◦φ and φ ◦ψ are the respective identities. �

Proposition 5.2. Let A be as in Theorem 3.5. Then if K is any extension of
W (Fp2)⊗Qp such that (p + 1) | e(K ), YA := (YA)K is a smooth, affine curve
of genus (p− 1)/2 with 4 points at infinity (equation given below).

Proof. Let x and y be parameters on TSA that are specializations of the parameter
t on WA(p) from Theorem 3.5. Then by Lemma 5.1, YA can be described by the
equation

F(x)+G(κ/x)= F(y)+G(κ/y),

where v(x) = v(y) = p/(p+ 1). Now choose any α ∈ K with v(α) = 1/(p+ 1)
and substitute u = α p/x and v = α p/y into the above equation for YA (so that
v(u) = v(v) = 0). Dividing through by α p, we obtain an equation for YA in u
and v that has integral coefficients and satisfies the congruence

u−1
− v−1

≡ (v p
− u p)(κ/α p+1)p (mod α).

Now let b = (κ/α p+1)p (a unit), and we obtain

1≡ buv(v− u)p−1 (mod α)

as an equation for YA.
Strictly speaking, the above curve has three infinite points, with projective co-

ordinates (0 :1 :0), (1 :0 :0), and (1 :1 :0). However, while the first two are non-
singular, the third splits into two points in the normalization. The genus can easily
be computed by applying Riemann–Hurwitz to the equation

s p+1
=

b
4
(r2
− 1),

where s = 1/(v− u) and r = (v+ u)/(v− u). �

Theorem 5.3. Let p ≥ 13 be a prime, and K an extension of W (Fp24)⊗Qp(µp)

with (p+ 1) | e(K ). The following is a semistable covering of X0(p2) over K :

C0(p2) := {W20,W+11,W−11,W02} ∪ {WA(p2) : A is supersingular}.

The affinoids X±a b and YA are minimal underlying affinoids in W±a b and WA(p2).

Proof. The wide opens W±a b, which cover the ordinary locus, are disjoint from each
other, and we have

YA =WA(p2)
∖⋃

W±a b.
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By Proposition 3.6, all four ordinary affinoids have good reduction over K . There-
fore, it suffices to show that each YA has good reduction, and that WA(p2)∩W±a b
is always an annulus.

First we demonstrate that the wide open intersections are annuli over K (where
we still assume (p+1) | e). In the case of W20 this is immediate, as W20∩WA(p2)

maps isomorphically onto the annulus

x−1
A (A(p−i(A)/(p+1), 1))⊆WA(p)

over K , via π f . Similarly, W±11 ∩ WA(p2) maps onto the same annulus via π f ,
but with degree (p− 1)/2. Then Theorem 2.6 implies that this too is an annulus
over K . Finally, W02 ∩WA(p2) must be an annulus since it is isomorphic to the
region W20 ∩WAσ (p2), by the Atkin–Lehner involution w2.

Next we consider the reductions of the affinoids YA. Since p≥13, Theorem B.1
guarantees us a supersingular elliptic curve A0 for which Proposition 5.2 directly
applies. Then for any other supersingular curve A we use Proposition 4.2. In
particular, we choose a surjection ψι that maps WA0(p

2) onto WA(p2) with degree
i(A). If i(A) = 1, the two regions are isomorphic and we are done. In any case,
ψι necessarily takes YA0 to YA and is étale. Therefore YA is isomorphic to the
quotient of YA0 by an automorphism of degree i(A) (which fixes the four infinite
points). Hence YA has good reduction and we are done. �

Corollary 5.4. For any supersingular curve A, the reduction of YA must have
(with the correct choice of parameters) the equation

y(p+1)/i(A)
= x2
− 1,

and genus (p+ 1)/(2i(A))− 1.

Proof. After a change of coordinates, the reduction of YA0 has the equation y p+1
=

x2
−1, with two of the four infinite points moved to (±1, 0) and two still at infinity.

Now, any automorphism of order i(A) that acts on this curve and fixes these four
points must fix x and take y to ζ y, where ζ i(a)

= 1. �

Remark 5.5. Let K be as in Theorem 5.3, with ep(K )= (p2
−1)/2. By computing

the widths of the annuli in the stable covering (see Section 9A for more details), one
finds intersection multiplicities of i(A) where X±11 meets YA and of i(A)·(p−1)/2
where X20 and X02 meet YA.

The following implies [Coleman 2005, Theorem 3.1].

Corollary 5.6. The point (E,C) is not in S :=W20∪W+11∪W−11∪W02 if and only
if pC = K (E) and E[p]/pC = K (E/C), or equivalently K (E/pC)= 0.
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Proof. (E,C) is not in S if and only if it is in some YA, which by definition means
that E/pC has trivial canonical subgroup. This is equivalent to pC = K (E) and
E[p]/pC = K (E/C) by [Buzzard 2003, Theorem 3.3(vi)]. �

Corollary 5.7. The Hecke correspondence T` takes a divisor supported on S to a
divisor supported on S if and only if ` 6= p.

Proof. This follows from the fact that

T`(E,C)=
∑

degα=`
|αC |=|C |

(αE, αC). �

Remark 5.8. Using the fact that X (p) ∼= X0(p2)×X0(p) X1(p), Jared Weinstein
and the second author have used the results of this section to determine a stable
model of X (p).

6. Outline of X0( p3) analysis

At this point we would like to construct a stable covering for X0(p3) in much the
same way as was just done for X0(p2). By analogy, the natural starting point would
be the covering consisting of

{W30,W+21,W−21,W+12,W−12,W03} ∪ {WA(p3) : A is supersingular}.

This is not stable, however, because WA(p3) is not a basic wide open. This can
actually be seen immediately from the fact that each WA(p3) at least contains
the affinoids E1 A := π

−1
f (YA) and E2 A := π

−1
ν (YAσ ) (which are nontrivial from

Section 5). So our covering for X0(p3)must at least be refined to take these regions
into account. In fact, things are much more complicated.

For simplicity, suppose that A/Fp with j (A) 6= 0, 1728 (other WA(p3) can be
handled by Proposition 4.2). Since π11 maps WA(p3) onto the width 1 annulus,
WA(p), this gives us a convenient way to keep track of where various subspaces
are in relation to each other. For example, it follows from Section 5 that the above
affinoids, E1 A and E2 A, lie over the circles described by v(xA) = p/(p+ 1) and
v(xA) = 1/(p+ 1) respectively (with parameter xA as in Section 3). The former
is the too-supersingular circle, and the latter is what was called the nearly too-
supersingular circle in [Coleman 2005, §3]. Lying in between these two circles is
the Atkin–Lehner circle, SDA, where v(xA)=1/2. So lying “in between” E1,A and
E2,A in some sense is the affinoid ZA := π

−1
11 (SDA). It turns out that this affinoid

is where all of the new complication arises at the p3 level. We now give a brief
summary of the analysis of ZA that will follow in Sections 7 and 8.

Much of our analysis of ZA is explicit (see Section 8), and is based on an em-
bedding into the product of two circles as in Lemma 5.1. More specifically, let
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τ f : CA→ SDA be as in Section 3. Then ZA can be identified with

S := {(x, y) ∈ CA×CA | τ f (x)= w1 ◦ τ f (y)}.

Since π f ◦ τ f = π f , this identification along with de Shalit’s result (Theorem 3.5)
gives us a way to explicitly compute the reduction of ZA as

X p+1
+ X−(p+1)

= Z p.

So ZA has 2(p + 1) cuspidal singular points, and its normalization is a copy of
the affine line whose completion is what we will call a “bridging component”.
Basically, we want to show that the 2(p + 1) singular residue classes of ZA are
basic wide open subspaces, with underlying affinoids that reduce to y2

= x p
− x .

To motivate and explain this, consider the identity π11 ◦w3 =w1 ◦π11, relating
the Atkin–Lehner involutions on X0(p3) and X0(p). It follows immediately that
w3 preserves ZA, as well as D̃ := π−1

11 (D), where D is either of the residue disks
of SDA preserved by w1. Furthermore, a moduli-theoretic argument shows that w3

has 2p fixed points that lie p : 1 over the w1 fixed points in SDA. So D̃ ⊆ ZA is
a wide open with one end upon which the involution w3 acts with p fixed points.
We show that D̃ is in fact isomorphic to the complement of an affinoid disk near
infinity in a hyperelliptic curve that reduces to y2

= x p
− x (w3 is the hyperelliptic

involution). Such an argument, however, would only account for two of the singular
residue classes of ZA. To handle all of them, we use the action of B∗ = Aut( Â)
to generalize the pair (w1, w3) to a pair (wρ, w̃ρ), as was done in Proposition 4.6.
Thus we are able to handle all 2(p+ 1) residue classes because of Remark 4.7.

Once we have actually constructed all of the nontrivial components in the stable
reduction of X0(p3), the argument is reduced to showing that nothing else inter-
esting can happen. We do this in Section 9, with a total genus calculation playing
a key role. Again we first use the fact that all supersingular regions are (nearly)
isomorphic along with the result of Appendix B, so that calculations only need to
be done for a supersingular curve with A/Fp and j (A) 6= 0, 1728. The remaining
cases of p ≤ 11 were handled explicitly in [CM 2006, §6], which we hope makes
our construction more understandable, and which completes Theorem 9.2.

7. The bridging component

Fix a supersingular elliptic curve A/Fp with j (A) 6= 0, 1728. In this section we
begin our analysis of the affinoid ZA := π

−1
11 (SDA) ⊆ WA(p3). In particular, we

show by a moduli-theoretic argument that ZA can be embedded into CA × CA.
Using the embedding, we then construct a family of involutions on ZA. These
involutions are compatible (with respect to π11) with the involutions of SDA that
were introduced in Proposition 4.6.
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Proposition 7.1. Let CA and τ f :CA→ SDA be as in Section 3. There is a natural
isomorphism ψ from

S := {(x, y) ∈ CA×CA | τ f (x)= w1 ◦ τ f (y)}

to ZA, such that w3(ψ(x, y))= ψ(y, x) and π11(ψ(x, y))= τ f (x).

Proof. Suppose (x, y) ∈ S. Then there exists an (E,C) ∈ SDA such that x =
(E, H) for some H 6= C . The p noncanonical subgroups of E/C are precisely
the subgroups D/C , where D ⊆ E is a cyclic subgroup of order p2 with pD = C
[Buzzard 2003, 3.3]. Therefore, since τ f (x) = w1(τ f (y)) = (E,C), there is a
unique D such that y= (E/C, D/C). Hence we can define a mapψ : S→WA(p3)

by

ψ(x, y)= (E/H, (p−1 D)/H).

Note that (p−1 D)/H , and henceψ , is well defined since pD=C and H span E[p].
The key fact to check is that ψ(x, y) lies in ZA, that is, π11(ψ(x, y)) ∈ SDA.

π11(E/H, (p−1 D)/H)= (E/〈H, pD〉, D/〈H, pD〉)

= (E/E[p], D/E[p])

≡ (E, pD)= (E,C) ∈ SDA.

This calculation shows that ψ(x, y) ∈ ZA, that π11(ψ(x, y)) = τ f (x), and more.
Once a point (E,C) ∈ SDA is fixed, there are p independent choices for both H
and D. Therefore we have produced p2 points of ZA that are in the image of ψ
and in the π11-fiber over that particular (E,C) ∈ SDA. Since the total degree of
π11 : X0(p3)→ X0(p) is only p2, we can conclude thatψ maps onto ZA, and hence
is an isomorphism. We now describe its inverse. For an arbitrary (E, K ) ∈ ZA, let
x(E, K ) = (E/p2K , E[p]/p2K ), y(E, K ) = (E/pK , K/pK ), and φ(E, K ) =
(x(E, K ), y(E, K )). To show that φ = ψ−1, it suffices to check that φ ◦ψ is the
identity on S. We have

x(E/H, (p−1 D)/H)= (E/〈H,C〉, p−1 H/〈H,C〉)

= (E/E[p], p−1 H/E[p])≡ (E, H)

and
y(E/H, (p−1 D)/H)= (E/〈H, D〉, p−1 D/〈H, D〉)

= (E/〈E[p], D〉, p−1 D/〈E[p], D〉)

≡ (E/pD, D/pD)= (E/C, D/C).

Now that we have determined ψ−1, we can verify the claim regarding w3 by ap-
plying ψ−1

◦w3 ◦ψ to the pair (x, y), where x = (E, H) and y = (E/C, D/C).
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We have

w3 ◦ψ(x, y)= w3(E/H, (p−1 D)/H)

= (E/〈H, p−1 D〉, p−3 H/〈H, p−1 D〉)

= (E/〈E[p], p−1 D〉, p−3 H/〈E[p], p−1 D〉)

≡ (E/D, p−2 H/D),

x(E/D, p−2 H/D)= (E/〈D, H〉, p−1 D/〈D, H〉)

= (E/〈E[p], D〉, p−1 D/〈E[p], D〉)

≡ (E/pD, D/pD)= (E/C, D/C)= y,

y(E/D, p−2 H/D)= (E/〈D, p−1 H〉, p−2 H/〈D, p−1 H〉)

= (E/E[p2
], p−2 H/E[p2

])≡ (E, H)= x . �

Proposition 7.2. For each ρ ∈ B∗, we can define an automorphism w̃ρ of ZA

(identified with S) by
w̃ρ(x, y)= (ρy, ρ ′x).

Furthermore, w̃ρ is compatible with wρ , in the sense that π11 ◦ w̃ρ =wρ ◦π11, and
is an involution of ZA whenever ρ ∈ B ′.

Proof. The action of B∗ on WA(p) preserves circles. So at least this defines a map
from CA×CA to itself. To verify that it preserves the subspace S we need to check
that

τ f (x)= w1 ◦ τ f (y)⇒ τ f (ρy)= w1 ◦ τ f (ρ
′x).

But τ f commutes with B∗. So this follows from the identity ρw1 = w1ρ
′, which

was shown in the proof of Proposition 4.6.
By Remark 4.4, the inverse of w̃ρ is given by w̃ξ for any ξ ∈ B∗ with ξρ ′ ∈ Z∗p.

In particular, w̃ρ is an involution exactly when ρ ∈ B ′. Finally, the compatibility
relation follows easily from the fact that π11(x, y)= τ f (x). �

Corollary 7.3. Every fixed point of w̃ρ lies (via π11) over a fixed point of wρ .
If Dρ ⊆ SDA is one of the two residue disks that are preserved by wρ , then
D̃ρ := π

−1
11 (Dρ) is invariant under w̃ρ .

Proof. These are immediate consequences of π11 ◦ w̃ρ = wρ ◦π11. �

Remark 7.4. Let 1B be the multiplicative identity in B. Then w1B is w1|SDA and
w̃1B is w3|ZA .

Recall from Proposition 4.9 that the fixed points of wρ correspond to pairs
(E,C), where E has fake CM by Zp[π ] and ker(π) = C . The points of ZA that
lie over such a fixed point then correspond to pairs (E/H, p−1 D/H), where H
and D are as in the proof of Proposition 7.1. In particular, H ⊆ E is a noncanonical
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subgroup of order p, and D⊆ E is cyclic of order p2 such that pD=C . Combining
these facts with Corollary 7.3 gives us a convenient way to describe (and count)
the fixed points of w̃ρ .

Proposition 7.5. Let (E,C) be a fixed point of wρ for some ρ ∈ B∗, such that
End(Ê)= Zp[π ] with ker(π)= C. If ρ ∈ B ′(1+ pj B), there are p fixed points of
w̃ρ lying over (E,C), specifically those pairs (E/H, p−1 D/H) with π(D) = H.
Otherwise, w̃ρ has no fixed points.

Proof. Fix a Woods Hole triple (F, α,C) corresponding to (E,C). Then E/C
is equivalent to some pair (F/C, β), such that the diagram from the proof of
Proposition 4.9 commutes. Note that an explicit isomorphism from ρ(E/C) to
E is then given by the pair (σ, id). To determine the w̃ρ fixed points, it will be
useful to similarly describe the isomorphism from ρ ′(E) to E/C , which exists by
ρ ◦w1 = w1 ◦ ρ

′. This can be done by replacing ρ ◦ j with j ◦ ρ ′ in the diagram,
and repeating the first isogeny, to obtain the following.

F
ῑC //

ρ′◦α

��

F/C
σ̄ //

ρ◦β

��

F
ῑC //

α

��

F/C

β

��

Â j
// Â id

// Â j
// Â

Since j2
= −p, this diagram shows that an isomorphism from ρ ′(E) to E/C is

given by the pair (γ, id), where γ =−p−1ιC ◦ σ ◦ ιC .
Now, choose a point lying over (E,C) by taking x = (E, H) = (F, α, H) and

y = (E/C, D/C)= (F/C, β, D/C). We must determine when

w̃ρ(x, y)= (ρy, ρ ′x)= (x, y).

Since an isomorphism from ρ(E/C) to E is given by (σ, id), the condition ρy= x
is equivalent to σ(D/C) = H . Similarly, the condition ρ ′x = y is equivalent to
γ (H) = D/C . Putting these in terms of π , the first condition is π(D) = H and
the second is π(D) = −(π2/p)(H). By Remark 4.11, these two conditions are
equivalent when ρ ∈ B ′(1+ pj B), and incompatible otherwise. �

Remark 7.6. If (E,C) is any point lying over a fixed point of wρ via π11, it is a
fake Heegner point in the sense that E has fake CM and End(Ê/C) is isomorphic
to End(Ê). In fact, one can show in this case that End(Ê)∼=Zp[λ] for some λ such
that ker(λ)= C .

8. Explicit analysis

In this section, we use Proposition 7.1 and Theorem 3.5 to explicitly compute the
reduction of ZA (for A/Fp and j (A) 6= 0, 1728), in much the same way that the
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reduction of YA was computed in the proof of Proposition 5.2. We obtain

X p+1
+ X−(p+1)

= Z p.

Moreover, the residue classes of ZA that have singular reduction on this model
are shown to coincide with those regions D̃ρ that were described in Corollary 7.3.
From the previous section we know that D̃ρ is acted on by the involution w̃ρ ,
with p fixed points. In addition, from the explicit equation for ZA, we are able to
deduce that D̃ρ is a connected wide open with one end, and that D̃ρ/w̃ρ is a disk.
Putting all of this information together (and a little more), we are able to show
in Section 8B that D̃ρ is a basic wide open whose underlying affinoid reduces to
y2
= x p

− x .

8A. Reduction of ZA. Recall that Proposition 7.1 identifies ZA with the subspace
of CA ×CA defined by τ f (x) = w1 ◦ τ f (y). From this embedding we can obtain
an explicit equation for ZA, provided we can derive approximation formulas for
w1 on SDA and τ f :CA→ SDA. Such formulas follow readily from Theorem 3.5.
However, while the formula in this theorem is given over Qp ⊗W (Fp2), we will
ultimately need to work over a finite base extension. This extension can be gener-
ated by fixing a square root

√
κ of κ in Cp (where κ is as in Theorem 3.5) and a

β ∈ Cp satisfying

β p2
≡ κ (mod p3/2−1/2p2

). (6)

Remark 8.1. For example, if g(x)= x p2
−
√
κx , and γ is a root of g(g(x))/g(x),

one may take β= γ 2(p2
−1). Then, by Lubin–Tate theory, applied to the Lubin–Tate

formal group over F :=Qp(
√
κ)⊗Zp W (Fp2), with endomorphism g(x), F(β) is

Galois over F with Galois group C p×C p.

Proposition 8.2. Over R := Zp[
√
κ, β] ⊗ W (Fp2), the reduction of ZA has the

equation

X p+1
+ X−(p+1)

= Z p.

Hence, over R, its reduction is a reduced, connected, affine curve of genus zero
with only one branch through each singular point.

Proof. First we derive an approximation for τ f : CA → SDA in terms of the
parameter t from Theorem 3.5. For any P1 ∈ SDA and P2 ∈ CA, we note that
P1 = τ f (P2) if and only if π f (P1) = π f (P2). Thus, an approximation for τ f

should follow from approximations for π f on SDA and CA. Now, we know from
[Buzzard 2003, 3.3] that SDA and CA are the circles described by v(t)= 1/2 and
v(t) = 1 − 1/2p. In particular, we must have v(t (P1)) = 1/2 and v(t (P2)) =
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1− 1/2p. Therefore, from Theorem 3.5 we can approximate π f on SDA and CA:

s(π f (P1))≡ t (P1) (mod p),

s(π f (P2))≡ t (P2)+ (κ/t (P2))
p (mod p).

Hence an approximation for τ f : CA→ SDA is given by

t (τ f (P))≡ t (P)+ (κ/t (P))p (mod p).

To describe the reduction of ZA via Proposition 7.1, we now choose parameters
that identify CA and SDA with the unit circle, C[1]. For such a parameter on SDA

we let U := t/
√
κ , and on CA we let X := t/α, where

α = (β(p
2
+1)/2/

√
κ)p(2p−1)

(note that v(α)= 1− 1/2p). In terms of these new parameters, the Atkin–Lehner
involution is just given by w∗1U = 1/U . Also, using the defining congruence for β,
the approximation formula above for τ f becomes

τ ∗f U ≡ αX/
√
κ + X−p (mod

√
p).

Now let Y and V be analogous parameters on copies of CA and SDA, so that the
equation τ f (P) = w1(τ f (Q)) on CA ×CA (which defined the subspace S ∼= ZA)
becomes τ ∗f U = 1/τ ∗f V . Then on S the parameters X and Y satisfy the congruence
relations

(αX/
√
κ + X−p)(αY/

√
κ + Y−p)≡ 1 (mod

√
p),

αX p+1/
√
κ +αY p+1/

√
κ + 1≡ X pY p (mod

√
p). (7)

Finally, we define a new parameter Z on CA×CA by XY = β(p−1)/2 Z + 1. Then
ZA is determined over R⊗Qp by |X | ≤ 1 and |Z | ≤ 1. The congruence

X p+1
+ X−(p+1)

≡ Z p (mod m R),

where m R is the maximal ideal of R, follows from (7). �

Proposition 8.3. The involutions w̃ρ on ZA reduce to the involutions on ZA given
by

tζ : (X, Z) 7→ (ζ/X, Z),

where ζ varies over all (p+1)-st roots of unity. The D̃i
ρ coincide with the singular

residue classes of ZA, which are described by X2p+2
≡ 1.

Proof. We use the compatibility relation in the proof of Proposition 7.2, namely
π11 ◦ w̃ρ = wρ ◦ π11. Recall from Proposition 7.1 that π11(x, y) = τ f (x) (with
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notation consistent with that of the previous proposition). So from the proof of the
previous proposition, an explicit formula for π11 as a map from ZA to SDA is

U = π11(X, Z)= X−p.

Now, we know from Remark 4.7 that on SDA the involutions wρ reduce to those
of the form U→ ζ/U (where ζ is any (p+1)-st root of unity). So fix a ρ and cor-
responding ζ . Choose any point (X0, Z0) on ZA, and let (X1, Z1) = w̃ρ(X0, Z0).
We can compute both sides of the compatibility relation above:

wρ ◦π11(X0, Z0)= wρ(X
−p
0 )= ζ X p

0 ,

π11 ◦ w̃ρ(X0, Z0)= π11(X1, Z1)= X−p
1 .

Since ζ = ζ−p, we must have X1 = ζ/X0 and subsequently Z1 = Z0. In other
words, we have shown that on ZA we have w̃ρ(X, Z)= (ζ/X, Z).

Keeping the same notation, the points of SDA that are fixed by wρ are the two
described by U 2

= ζ , and by definition D̃1
ρ and D̃2

ρ are π−1
11 of the corresponding

residue classes. Since π11 : ZA→ SDA is given by U = X−p, this is equivalent to
saying that D̃i

ρ are the classes of ZA described by X2
≡ ζ . Letting ζ vary over all

(p+1)-st roots of unity, we obtain all the residue classes described by X2p+2
≡ 1,

and these are easily verified to be the singular ones. �

Proposition 8.4. For any ρ ∈ B ′, the residue classes of the affinoid quotient
ZA/w̃ρ , which are the images of the D̃i

ρ , are disks over Zp[
√
κ, β]⊗W (Fp2).

Proof. Let ζ be the (p+1)-st root of unity such that w̃ρ reduces to tζ on ZA. Let
fζ (x) be the unique polynomial of degree p+ 1 such that

fζ (X + ζ/X)= X p+1
+ X−(p+1).

Then fζ (x)= z p is an equation for the reduction of ZA/w̃ρ . Also

f ′ζ (X + ζ/X)= X2p+2
−1

X p(X2−ζ )
,

and the right side doesn’t vanish at ε if ε2
= ζ . Thus f ′ζ (2ε) 6= 0 mod p, and the

two residue classes of ZA/w̃ρ described by X =±ε are disks. �

From Theorem 2.29 and Proposition 2.31, we now conclude that (over a suitable
field extension) D̃i

ρ is a connected wide open with one end. Furthermore, using
Theorem 2.48 and the fact that there are p branch points in the degree 2 quotient
of D̃i

ρ by w̃ρ , we compute the genus of D̃i
ρ to be (p − 1)/2. To summarize, we

have the following corollary.

Corollary 8.5. Let L be a complete stable subfield of Cp containing R, over which
the fixed points of w̃ρ are defined. Over L , the rigid spaces D̃i

ρ for i = 1 or 2 are
connected wide opens with one end of genus (p− 1)/2.
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8B. The new components. We now show that over a suitable base extension, the
2(p + 1) residue classes D̃i

ρ ⊆ ZA are basic wide opens, and we compute the
reductions of their underlying affinoids. The main idea is to construct an auto-
morphism of order p on each D̃i

ρ that transitively permutes the p fixed points of
the involution w̃ρ . This induces an automorphism on the quotient D̃i

ρ/w̃ρ , a disk
by Corollary 8.5, which then must be conjugate to a translation.

First we define automorphisms of order p on the disk τ−1
f (D) ⊆ CA, where

τ f : CA → SDA is as in Section 3, and D is either of the two residue disks of
SDA fixed by wρ . Recall that points of SDA correspond to pairs (E,C) where
h(E)=1/2 and C is canonical. One of the key facts that we use in our construction
is that over the residue disk D one can analytically choose a generator up to sign
for each of these canonical subgroups. This amounts to choosing a section σ of
the forgetful map from X1(p) to X0(p) over D, given by

σ : (E, K1(E)) 7→ (E, Pσ (E)),

where Pσ (E) is a pair consisting of a generator of K1(E) and its inverse. Such
a section exists because this map is an étale map of annuli over SDA (over any
extension of Qp whose ramification index is divisible by 2(p − 1)). In fact, the
group (Z/pZ)∗/{±1} acts simply transitively on the set of the sections over D.
Once σ is chosen, automorphisms of τ−1

f (D)/D can be constructed by looking
closely at the Weil pairing.

Lemma 8.6. For any ζ ∈ µ∗p and σ (as above), we can define an analytic auto-
morphism of τ−1

f (D)/D by Sσ,ζ (E, H) = (E, 〈R〉), where R ∈ E[p] is chosen so
that ep(P, R)= ζ and R− P ∈ H for some P ∈ Pσ (E). Also,

(i) Si
σ,ζ (E, H)= (E, 〈R+ (i − 1)P〉) for i ∈ Z;

(ii) fσ,ζ : Z/pZ→Autan(τ
−1
f (D)/D), defined by fσ,ζ (i)= Si

σ,ζ for i 6= 0 and the
identity otherwise, is an injective homomorphism;

(iii) Saσ,ζ b = Sa2/b
σ,ζ for any a, b ∈ (Z/pZ)∗;

(iv) Sτσ,ζ = Sσ τ ,ζ τ for any τ ∈ Autcont(Cp) that preserves D.

Proof. Fix σ and ζ ∈ µ∗p. For a given pair (E, H) and choice of P ∈ Pσ (E), there
is a unique R ∈ E[p] that satisfies the two conditions. Note also that reversing
the sign of P just reverses the sign of R. Since 〈R〉 = 〈−R〉 is neither H nor the
canonical subgroup, it follows that Sσ,ζ is at least a well-defined automorphism of
τ−1

f (D)/D with no fixed points.
Fix P ∈ Pσ (E). It is easy to verify (i) by induction, and then (ii) follows imme-

diately. To prove (iii), we note that by definition Saσ,ζ b(E, H) is the pair (E, 〈Q〉)
where ep(a P, Q)= ζ b and Q−a P ∈ H . A simple Weil pairing calculation shows
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that Q is just a P + (b/a)(R− P). So we verify (iii) by checking that

ep(a P + (b/a)(R− P), R+ (a2/b− 1)P)= 1.

Finally, property (iv) follows from Galois properties of the Weil pairing and the
fact that D is connected. �

Proposition 8.7. Let L be a finite extension of Qp(
√
κ, β) in Cp, with

√
κ and β

as in Equation (6), over which the fixed points of w̃ρ are defined. Then D̃i
ρ is a

basic wide open over a quadratic extension of L , whose underlying affinoid has
good reduction, which can be described by y2

= x p
− x.

Proof. As usual, let D be either of the residue disks of SDA fixed by the involution
wρ , and let D̃ be the wide open lying over D via π11. Then the embedding of
ZA = π

−1
11 (SDA) into CA × CA embeds D̃ into τ−1

f (D)× ρ ′τ−1
f (D). Therefore,

by the previous lemma, we can lift any automorphism S := Sσ,ζ on τ−1
f (D) (for a

fixed σ and ζ ) to an automorphism S̃ := S̃σ,ζ of D̃ by taking

S̃(x, y)= (S(x), ρ ′S(ρy)).

One easily checks that S̃ also has order p, since S̃i
(x, y) = (Si (x), ρ ′Si (ρy)).

Furthermore, S̃ commutes with w̃ρ :

S̃w̃ρ(x, y)= S̃(ρy, ρ ′x)

= (S(ρy), ρ ′Sρ(ρ ′x))= (S(ρy), ρ ′S(x)),

w̃ρ S̃(x, y)= w̃ρ(S(x), ρ ′S(ρy))

= (ρρ ′S(ρy), ρ ′S(x))= (S(ρy), ρ ′S(x)).

It follows that S̃ passes to an automorphism of D̃/w̃ρ with order p and no fixed
points, which acts transitively on the images of the p fixed points of w̃ρ . This is
the key idea in the proof of the proposition.

To finish the argument, recall from Corollary 8.5 that D̃ is a connected wide
open with one end. The involution w̃ρ acts on it with p fixed points, and the
quotient space, say U := D̃/w̃ρ , is a disk, by Proposition 8.4. It follows that, over
a quadratic extension of L , D̃ can be described by

y2
0 = (x0−α1) · · · (x0−αp),

where x0 is a parameter for U and the αi are the x0 coordinates of the p fixed
points. Without loss of generality, we choose x0 so that U is identified with the
disk, v(x0) > 0. Because S̃ passes to an automorphism of a disk of order p and no
fixed points, it must reduce to a translation, in the sense that there exists an a ∈ Rp

with v(a) > 0 such that for all x0 ∈U we have

v(S̃(x0)− (x0+ a)) > v(a).
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Therefore, after possible reordering, the x0 coordinates of the fixed points must
satisfy

βi :=
αi −α1

a
≡ i (mod m p).

So if we make the changes of variables x = (x0 − α1)/a and y = y0/a p/2, we
identify D̃ with the wide open

y2
= (x −β1)(x −β2) · · · (x −βp), where v(x) >−v(a),

whose minimal underlying affinoid, determined by v(x)≥ 0, reduces as claimed.
�

Remark 8.8. The results of Section 8 were proven for A/Fp with j (A) 6= 0, 1728,
but similar results now follow for any other supersingular A′, by Proposition 4.2.
Since ZA′ is an étale quotient of ZA of degree i(A), ZA′ is a genus 0 curve with
2(p + 1)/ i(A′) singular points, corresponding to basic wide opens that are iso-
morphic to those described in Proposition 8.7. Note, however, that one might need
to replace the field L from Corollary 8.5 by a finite unramified extension in order
to define the surjection from WA(p3) onto WA′(p3) and describe the underlying
affinoids. In general, the reduction of the bridging component has the equation

X (p+1)/ i(A)
+ X−(p+1)/ i(A)

= Z p.

Lemma 8.9. The Hecke correspondence T` takes a divisor supported on
⋃

A ZA

to a divisor supported on
⋃

A ZA for all primes ` 6= p.

Proof. A point (E,C) lies on some ZA if and only if C is cyclic of order p3 and
pC/p2C is self-dual. If f : E → F is an isogeny such that ker( f )∩C = 0, the
same is true for (F, f (C)). �

Remark 8.10. The analogous statement, for the union of all of the underlying
affinoids in Proposition 8.7 (corresponding to new components), follows from the
results of [CM 2006, §8].

9. Stable reduction of X0( p3)

In this section we give the stable covering of X0(p3). In particular, we give a cov-
ering by basic wide opens, whose intersections are annuli as in Proposition 2.34.
We already defined some of these wide opens, namely the W±a b, in Section 3. They
cover the ordinary locus, and will be shown to be basic with the X±a b as underlying
affinoids. From our analysis of ZA in Section 8, we now know that WA(p3) is not a
basic wide open. So our next priority is to specify some new wide open subspaces
that cover each WA(p3) and that can ultimately be shown to be basic.
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Now let A be any supersingular elliptic curve mod p (no restriction). Identify
WAσ (p), where σ is the Frobenius automorphism, with the annulus A(p−i(A), 1),
as explained in Section 3A. Then we can define three subspaces of WA(p3):

V1(A) := π−1
11 A(p−i(A), p−i(A)/2),

V2(A) := π−1
11 A(p−i(A)/2, 1),

U (A) := π−1
11 A(p−pi(A)/(p+1), p−i(A)/(p+1)).

First we want to show that these subspaces are wide opens (over Cp). Since V1(A)
is a union of residue classes of the affinoid

π−1
11 (X01 ∪ A(p−i(A), p−i(A)/2

]),

and since it is connected, it is in fact one residue class and therefore a wide open,
by Theorem 2.29. The same argument applies to V2(A) and U (A), the latter being
a residue class of

π−1
11 A[p−pi(A)/(p+1), p−i(A)/(p+1)

].

Remark 9.1. The points of A(p−pi(A)/(p+1), p−i(A)/(p+1)) are pairs (E,C), where
C is the canonical subgroup of E and E[p]/C is the canonical subgroup of E/C .

Two of these supersingular wide opens will in fact be shown to be basic. More
specifically, V1(A) is a wide open neighborhood of the affinoid

E1 A := π
−1
11 C[p−pi(A)/(p+1)

],

which will be shown to be an underlying affinoid with good reduction. Points of
E1 A are pairs (E,C), such that E/p2C is too supersingular. Alternatively, E1 A

can be described as π−1
f YA, which is a key point because it implies that E1 A is

nontrivial. Similarly, V2(A) is a neighborhood of

E2 A := π
−1
11 C[p−i(A)/(p+1)

].

Points of E2 A are pairs (E,C) with E/pC too supersingular, and E2 A maps onto
YAσ via πν . U (A) is not basic, because its underlying affinoid ZA has the D̃i

ρ as
(bad) residue classes. However, the D̃i

ρ were shown to be basic in Proposition 8.7.
So this problem can essentially be solved by removing the underlying affinoids of
the D̃i

ρ from U (A) (obtaining a basic wide open) and then including the D̃i
ρ in the

overall covering. To be more precise, let S(A) denote the set of singular residue
classes of ZA, and for each S ∈ S(A) let XS be the underlying affinoid of S. Let
Û (A) denote the wide open given by

Û (A) :=U (A)
∖ ⋃

S∈S(A)

XS.
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Theorem 9.2. Let p ≥ 13 be a prime. The covering C0(p3) of X0(p3), which is
made up of

{W±a b | a, b ≥ 0, a+ b = 3}

and the union over all supersingular curves A of

{V1(A), V2(A), Û (A)} ∪S(A),

is stable (over Cp).

Proof. We know that the elements of C0(p3) are wide opens, and that (S,XS) is a
basic wide open pair for each S ∈ S(A). It is also easy to verify that condition (ii)
of Proposition 2.34 holds, by simply listing for each wide open the other members
of the covering that intersect it nontrivially. In particular, the W±a b are disjoint from
each other, and each W±a b intersects WA(p3) only at V2(A) when a> b, and only at
V1(A) otherwise. Similarly, while V1(A), V2(A), and the residue classes S ∈S(A)
are pairwise disjoint, each of these wide opens intersects Û (A) nontrivially. This
completely describes all adjacency relations of wide opens in the covering, and it
follows immediately that every triple intersection is empty. The bulk of what we
still have to show is that whenever two wide opens in the cover do intersect, the
intersection is the disjoint union of annuli. Then we have to show that each wide
open is basic, with an underlying affinoid that has good reduction.

We start by showing that

U±a b(A) :=W±a b ∩WA(p3)

is a wide open annulus in all cases. For U30 and U±21 it suffices to consider the map
π02 from X0(p3) to X0(p). The restriction of π02 to U30 is an isomorphism onto
the annulus

B := A(p−i(A)/(p(p+1)), 1)∼= A(1, pi(A)/(p(p+1)))

(considered as a subspace of WA(p), which has been identified with A(p−i(A), 1)
as in Section 3A). So U30 is an annulus right away. U+21 and U−21 also map onto B
via π02, but each with degree (p− 1)/2. To see that U±21 is at least connected, we
look at how π02 reduces when restricted to a map between the affinoid regions X±21
and X10. The latter is an isomorphic copy of the ordinary locus of X (1), and by
[Coleman 2005, p. 5] the reduction of X±21 is isomorphic to the ordinary locus of
Ig(p). Furthermore, by these identifications, π02 reduces to the forgetful map from
Ig(p) to X (1), which is totally ramified at the supersingular points. This implies
that one of the ends of B totally ramifies in the restriction of π02 to U±21. Hence
U±21 must be connected. Now it follows directly from Theorem 2.6 that U±21 is an
annulus. Similar arguments can be made for U±12 and U03 using π20. Alternatively
one can use the fact that the Atkin–Lehner involution, w3, switches Wa b with Wba
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and WA(p3) with WAσ (p3). Note that from this argument we also deduce that each
(W±a b,X±a b) is a basic wide open pair.

Among the remaining intersections of wide opens in the covering, we also have
S ∩ Û (A) for each S ∈ S(A). It is immediate, however, that this is an annulus,
since S is a basic wide open with one end, and by definition S ∩ Û (A) is the
complement in S of its underlying affinoid XS . So all that remains to be proven
is that Vi (A) ∩ Û (A) is the disjoint union of annuli (in fact, one annulus), and
that (V1(A),E1 A), (V2(A),E2 A), and (Û (A),ZA) are basic wide open pairs. This
essentially comes down to a genus computation and Proposition 2.34.

First shrink each Û (A) to a basic wide open neighborhood Û ′(A) of ZA, and
call the resulting covering C1(p3). Although we do not know that C1 is semistable
(and in fact it isn’t), Proposition 2.34 can still be applied as the wide opens in the
covering intersect properly in the disjoint union of annuli. Moreover, we know
that the intersection of Û ′(A) with Vi (A) is just one annulus, because ZA has
only two points at infinity (see Theorem 2.29). So the Betti number of the graph
associated to C1(p3) is exactly 5(sp−1), where sp is the number of supersingular
j-invariants (mod p). To apply Proposition 2.34, we need to know the genera of
the wide opens in C1(p3). The genus of Wa b is 0 when ab = 0 and g(Ig(p))
otherwise, by [Coleman 2005, §1]. The genus of Û ′(A) is 0 and the genus of each
S ∈ S(A) is (p − 1)/2, by Proposition 8.2 and Corollary 8.5. The only genera
that aren’t immediately available are those of V1(A) and V2(A). We can, however,
provide a lower bound for these genera. Recall that E1 A maps onto YA via π f ,
and E2 A maps onto YAσ via πν . So by a Riemann–Hurwitz argument we know
that g(Vi (A))≥ g(YA) (which we know from Corollary 5.4).

We now compute a lower bound for the genus of X0(p3), using the above and
Proposition 2.34. For brevity we only discuss the case p = 12k + 5. Then sp =

k + 1 and from [Igusa 1968, p. 103] we have g(Ig(p)) = 3k2
− k. There are k

supersingular regions with j (A) 6= 0, 1728, each of which contributes two wide
opens V1(A) and V2(A) of genus at least g(YA) = 6k + 2, and 24k + 12 residue
classes S ∈S(A) with genus 6k+2. In addition, we have one supersingular region
corresponding to j (A) = 0 that contributes two wide opens V1(A) and V2(A) of
genus at least g(YA) = 2k, and 8k + 4 residue classes S ∈ S(A) of genus 6k + 2.
Summing up the Betti number and genera as in Proposition 2.34, we have

g(X0(p3))≤ 5k+ 4(3k2
− k)+ 2(2k)+ (8k+ 4)(6k+ 2)

+ k(2(6k+ 2)+ (24k+ 12)(6k+ 2))

≤ 144k3
+ 192k2

+ 73k+ 8.

This is now easily shown to be the actual genus of X0(p3) using the well-known
genus formula [Shimura 1971, Propositions 1.40 and 1.43]. Thus the inequalities
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above are actually equalities. Furthermore, since g(Vi (A)) ≥ g(Ei A) ≥ g(YA),
Lemma 2.43 implies that V1(A) and V2(A) are basic wide opens such that E1 A and
E2 A are Zariski subaffinoids of the underlying affinoids. Then, since the reductions
of these affinoids each have at least four points at infinity, and since Vi (A) has only
four ends, it follows that E1 A and E2 A are the underlying affinoids (with good
reduction). Therefore Vi (A)∩ Û (A) must be an annulus, and we have shown that
C0(p3) is a stable covering. �

Remark 9.3. Since E1 A = π−1
f (YA), and since E1 A has good reduction with

g(E1 A) = g(YA), it follows that π f : E1 A → YA is purely inseparable and fac-
tors as Frobenius followed by an isomorphism. Hence, E1 A ∼= Yσ

A, and similarly
E2 A ∼= Yσ

Aσ .

9A. Graphs and intersection data. From Theorem 9.2, it is now straightforward
to generate graphs for the stable reduction of X0(p3) according to the four classes
of p (mod 12), and we include these graphs below in Figures 2–5. To make the
graphs more understandable, a brief description of how the various components are
organized and labeled is in order. First of all, recall from Section 3B that there are
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Figure 2. Graph of X0(p3) when p = 12k+ 1.
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Figure 3. Graph of X0(p3) when p = 12k+ 5.
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Figure 4. Graph of X0(p3) when p = 12k+ 7.
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Figure 5. Graph of X0(p3) when p = 12k+ 11.

six ordinary components in every case, namely those corresponding to X30, X±21,
X±12, and X03. These are always presented as vertical components and labeled
explicitly with their genera. In addition to the six ordinary components, we have
one connected, acyclic configuration of components for each supersingular elliptic
curve A. This configuration is always presented as a horizontal chain of three com-
ponents, corresponding to E2 A, ZA, and E1 A (in that order), along with a number of
unmarked vertical components intersecting the middle component. We explicitly
label the genera of the reductions of E1 A and E2 A, but not the central “bridging
component”, as it always has genus 0. Below the central horizontal component, we
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list the number of copies of y2
= x p
−x that intersect it, as well as the genus of each

copy. Finally, we point out for clarification that the components corresponding to
X30 and X±21 meet each supersingular region in exactly one point in the reduction of
E2 A, while the same can be said for the other three ordinary components and E1 A.
In particular, one is reading the graph properly if the Betti number (equivalently the
toric rank of the Jacobian) appears to be 5(ss−1), where ss is the number of super-
singular j-invariants. This fact generalizes, as we show in the following theorem.

Theorem 9.4. The toric rank of J0(N pn) for (N , p) = 1 and n ≥ 0 is given by
(s(N )− 1)(2n− 1), where s(N ) is the number of supersingular points on X0(N )
mod p.

Proof. For N = 1 and n≤ 1 this follows from [Deligne and Rapoport 1973, §VI.6].
After inverting isogenies, we have the exact sequence

0→ J0(pn−1)→ J0(pn)× J0(pn)→ J0(pn+1)→ J0(pn+1)new
→ 0.

It follows from [Katz and Mazur 1985, Theorem 14.7.2] that J0(pn)new has poten-
tial good reduction for n>1. Thus, by induction, the theorem is true for all J0(pn).
The result for more general N follows from essentially the same argument. �

To go with the stable reduction graphs, we include the intersection multiplicities
in Table 1. These numbers have been obtained via a rigid analytic reformulation.
In particular, suppose that X and Y are components of a curve with semistable
reduction over some extension K/Qp, and that they intersect in an ordinary double
point P . Then R(P) is an annulus (by Proposition 2.10), say with width w(P). In
this case, the intersection multiplicity of X and Y at P can be found by

MK (P)= ep(K ) ·w(P).

Note that while intersection multiplicity depends on K , the width makes sense
even over Cp, which in some sense makes width a more natural invariant from the
purely geometric perspective.

P
(X30, E2 A),

(X03, E1 A)

(X±21, E2 A),

(X±12, E1 A)

(ZA, E2 A),

(ZA, E1 A)
(XS,ZA)

w(P) i(A)
p(p+1)

2·i(A)
p(p2−1)

(p−1)·i(A)
2p2(p+1)

1
4p2 ∗

MK (P) p(p− 1) · i(A) 2p · i(A) (p−1)2 ·i(A)
2

p2
−1
4
∗

Table 1. Intersection multiplicity data for X0(p3).
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For our calculations on X0(p3), we take ep(K ) = p2(p2
− 1), since this is the

ramification index over Qp for the field of Krir (see [CM 2006, §5] for details).
First we treat those singular points where Ei A meets either an ordinary component
or the bridging component. The reduction inverse of any such singular point is an
annulus in the supersingular locus that surjects via the forgetful map onto some
subannulus of WA(p). Using Hasse invariant and canonical subgroup consider-
ations, we can determine this subannulus and in particular its width. Then we
apply Proposition 2.2. For example, the ordinary component corresponding to X30

intersects the one corresponding to (each) E2 A in a unique singular point. As we
saw in the proof of Theorem 9.2, the corresponding annulus maps via π02 (the
forgetful map) onto the subannulus of WA(p) described by

0< v(xA) <
i(A)

p(p+ 1)
with degree 1.

The ordinary components corresponding to X±21 also meet the reduction of E2 A

in exactly one singular point (each). The corresponding two annuli surject onto
this same subannulus, but with degree (p− 1)/2. Using this line of reasoning, we
arrive at most of the data in Table 1. Note that any two components intersect in at
most one point, and so we may designate a singular point in the stable reduction
unambiguously by listing a pair of intersecting components.

The only intersection multiplicities that do not follow readily from the above
reasoning come from singular points where a copy of y2

= x p
− x (denoted XS for

S ∈ S(A) as in the theorem) intersects a bridging component. At such a singular
point, the corresponding annulus maps via π11 onto an annulus that is the comple-
ment of an affinoid disk inside a residue disk of SDA. Unfortunately, it is not at all
clear what the width of this image annulus is. We have some theoretical evidence
and some computational evidence [McMurdy 2004, Remark on p. 27] that suggest
that the width of the original annulus, that is, the annulus of intersection, is 1/4p2.
Therefore, we have included this in Table 1 with an asterisk to indicate that it is
our current best guess.

Appendix A: Riemann existence theorem

The p-adic Riemann existence theorem is well known, but not apparently in the
literature.21 Here we recall and adapt the proof of the existence of global mero-
morphic functions given in [Grauert and Remmert 1977, pp. 208–209], and then
use results from [Kiehl 1967] and [Köpf 1974] to deduce the final result.

21This is possibly because it follows the same lines of reasoning as those used in “the” complex
case; see [Springer 1957] for a history of the complex proofs and for a proof that has no obvious
p-adic analogue.
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Theorem A.1. Suppose X is a proper22 one-dimensional smooth rigid space over
a complete local field K or a compact Riemann surface, F 6= 0 is a locally free
sheaf on X , and D is a divisor of positive degree. Then

lim
n→∞

dimK F(nD)(X)=∞,

where K = C if X is a Riemann surface.

Proof. Let E ≤ E ′ be divisors on X , and let T= F(E ′)/F(E). Then

0→ F(E)(X)→ F(E ′)(X)→ T(X)→ H 1(X,F(E))→ H 1(X,F(E ′))→ 0

is exact. Moreover, if r is the rank of F, we have

dimK T(X)= r deg(E ′− E).

Now, for any coherent sheaf S on X , let

χ(S)= dimK H 0(X,S)− dimK H 1(X,S).

We deduce that

χ(F(D))−χ(F)= r deg D.

The theorem follows. �

Theorem A.2 (p-adic Riemann existence theorem). Let X be a smooth proper
rigid space of dimension one over a complete local field K . Then X is isomorphic
to the analytification of a complete algebraic curve over K .

Proof. By the previous theorem, there exists a nonconstant map f : X → P1
K that

must be finite since X is proper of dimension one. By Kiehl’s direct image theorem
[1967, Theorem 3.3], it follows that f∗OX is a coherent sheaf of analytic algebras
on P1

K . Then, we know from [Köpf 1974, Sätze 4.11 and 5.1] that f∗OX ∼= g∗OY ,
where g is a finite morphism from some algebraic curve Y onto P1

K .
To complete the proof, let C be an admissible open covering of P1

K by affinoids.
Then f −1(C) and g−1(C) are admissible open coverings of X and Y by affinoids.
Moreover, for each U ∈ C, we have

A( f −1U )= f∗OX (U )∼= g∗OY (U )= A(g−1U ).

Thus f −1U ∼= g−1U for each U ∈ C, and these isomorphisms are compatible,
which implies that X ∼= Y . �

22See [Bosch et al. 1984, 9.6.2] for definition.
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Appendix B: Supersingular curves
by Everett W. Howe

Theorem B.1. For p ≥ 13 there is a supersingular elliptic curve E defined over
Fp with j (E) 6= 0, 1728.

Proof. Note that there is always at least one supersingular curve over Fp, because
the number of curves of trace 0 is given by the Kronecker class number H(−4p),
which is positive [Schoof 1987]. So if p is a prime for which neither j = 0 nor
j = 1728 is supersingular, then there exists a supersingular curve over Fp with
j 6= 0, 1728.

If p is a prime for which j = 0 is supersingular, then p is inert in the field
Q(
√
−3). But then the elliptic curve over Q with j =24

·33
·53
=54000 (which has

CM by the order Z[
√
−3]) reduces to a supersingular curve over Fp. (If an elliptic

curve over Fp is not supersingular then its endomorphism ring tensored with Q is
an imaginary quadratic field in which p splits.) Note that 54000 is neither 0 nor
1728 modulo p for p > 11.

If p is a prime for which j = 1728 is supersingular, then p is inert in the field
Q(i). Then the elliptic curve over Q with j = 23

· 33
· 113
= 287496 (which has

CM by Z[2i]) reduces to a supersingular curve over Fp, and 287496 is neither 0
nor 1728 modulo p when p > 11. �

Appendix C: Concordance with [CM 2006]

Some of the references in [CM 2006] are no longer correct due to some shuffling
of the material in this paper. This problem can be resolved by noting the following:

• The reference to §2 on page 265 should be to Section 2C.
• Theorem 2.6 is referred to as Lemma 3.3 on page 295, and as Lemma 2.3 on

page 278.
• Proposition 2.14 is referred to as Proposition 3.14 on page 279.
• Proposition 2.34 is referred to as Proposition 2.5 on pages 267 and 278.
• Definition 2.35 and Theorem 2.36 are referred to as Definition 2.6 and Propo-

sition 2.7 on pages 279, 292 and 293.
• Proposition 3.6 is referred to as Lemma 3.6 on page 278.
• Proposition 4.6 is referred to as Corollary 4.6 on page 270.
• Remark 4.7 and Proposition 4.9 are referred to as Remark 4.8 and Proposi-

tion 4.10 on page 272.
• Proposition 7.5 and Remark 7.6 are referred to as Proposition 7.4 and Re-

mark 7.5 on pages 267, 275, 277 and 281.
• Theorem B.1 is cited as “results of E. Howe in §10” on page 262.
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Index of important notation

K , complete nonarchimedean-valued field Section 2
RK , ring of integers of K
FK , residue field of K
C, completion of an algebraic closure of K
R, ring of integers of C
F, residue field of C and algebraic closure of FK

W (F), Witt vectors of F for F⊆ F

RK , value group of C∗

Cp, completion of an algebraic closure of Qp

Rp, ring of integers in Cp

�p, completion of an algebraic closure of Fp((T ))
N := {n ∈ Z : n ≥ 1} and N0 := {n ∈ Z : n ≥ 0}
BK (r) and BK [r ], wide open and affinoid disks around 0
AK (r, s) and AK [r, s], wide open and affinoid annuli
CK [s], circle AK [s, s]
A(X) := OX (X)
Ao(X) and A+(X), subrings of A(X) where ‖ f ‖X ≤ 1 and ‖ f ‖X < 1

(when X is a reduced affinoid)
A(X) := Ao(X)/A+(X)
X , canonical reduction of X given by Spec(A(X))
Red : X (C)→ X(F), reduction map on C-valued points
Red−1(Ỹ ), Zariski subaffinoid of X corresponding to affine open Ỹ ⊆ X
X c, completion of X , nonsingular at infinity
R(P) := RX (P), residue class in X of P ∈ X(FK ) Section 2A
resr,s , canonical residue map on the annulus, AK (r, s)
E(W ), e(W ), set of ends, and number of ends, for a rigid space W
CC(W ), set of connected components of a rigid space W Section 2B
H i

DR(W/K ), de Rham cohomology of a wide open Section 2C
g(W ), genus of a wide open
C and Cw, semistable coverings of a wide open or curve
U u , underlying affinoid of a wide open U , in a basic wide open pair
0C, graph associated with a semistable covering
ordA ν, orde ν, ord of a function or differential at an annulus or end Section 2D
Div(W ), divisor group of a wide open
π f , πν and πa b, level lowering maps from X0(pn) to X0(pm) Section 3
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wn , Atkin–Lehner involution on X0(pn)

Kn(E), canonical subgroup of E of order pn Section 3A

K (E), (maximal) canonical subgroup of E

h(E), valuation of Hasse invariant of E (almost)

sn , rigid analytic section of π0n over Wn

WA(pn), wide open subspace of X0(pn) where E ∼= A

xA, parameter on WA(p)

i(A) := |Aut(A)|/2

TSA and SDA, too-supersingular and self-dual circles inside WA(p)

CA and τ f , special circle of WA(p) and map to SDA

X±a b, ordinary affinoids Section 3B

W±a b, wide open neighborhood of X±a b

Ig(pn), level pn Igusa curve

(F, A, α), Woods Hole representation of an elliptic curve Section 4

Â, formal group of A

B, quaternionic order over Zp isomorphic to End( Â) Section 4B

8, Gross–Hopkins period map

B ′, special subset of B∗

wρ , generalized Atkin–Lehner involution of SDA for ρ ∈ B ′

YA, nontrivial affinoid in WA(p2) Section 5

C0(p2), stable covering of X0(p2)

E1,A and E2,A, two pullbacks of YA to X0(p3) Section 6

ZA := π
−1
11 (SDA), affinoid in WA(p3) that corresponds to

the “bridging component”

w̃ρ , generalized Atkin–Lehner involution of ZA for ρ ∈ B ′ Section 7

Di
ρ and D̃i

ρ , residue classes of SDA and ZA invariant under wρ and w̃ρ
Sσ,ζ , S̃σ,ζ , order p automorphisms of τ−1

f (Di
ρ) and D̃i

ρ Section 8B

Vi (A) and U (A), wide open neighborhoods of Ei,A and ZA Section 9

S(A), singular residue classes of ZA

XS , underlying affinoid of S ∈ S(A)

Û (A), basic wide open refinement of U (A)

C0(p3), stable covering of X0(p3)

MK (P), intersection multiplicity at an ordinary double point Section 9A

w(P), width of the annulus that lifts an ordinary double point
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