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We show that the algebraic invariants multiplicity and depth of the quotient ring
S/I of a polynomial ring S and a graded ideal I ⊂ S are closely connected to
the fan structure of the generic tropical variety of I in the constant coefficient
case. Generically the multiplicity of S/I is shown to correspond directly to a
natural definition of multiplicity of cones of tropical varieties. Moreover, we can
recover information on the depth of S/I from the fan structure of the generic
tropical variety of I if the depth is known to be greater than 0. In particular,
in this case we can see if S/I is Cohen–Macaulay or almost-Cohen–Macaulay
from the generic tropical variety of I .

1. Introduction

As a very new area of mathematics, tropical geometry has received a lot of atten-
tion, from various points of view, in the last few years; see [Develin and Sturmfels
2004; Katz et al. 2008; Mikhalkin 2006; Speyer and Sturmfels 2004; Gathmann
2006; Itenberg et al. 2007] for review articles. One approach to tropical geometry,
which provides an effective tool for studying questions in algebraic geometry, is
to associate a combinatorial object to a projective algebraic variety; see for exam-
ple [Draisma 2008; Gathmann and Markwig 2008]. More precisely, the tropical
variety T(X) of an algebraic variety X is the real-valued image of X under some
valuation map [Draisma 2008; Jensen et al. 2008; Speyer and Sturmfels 2004]. In
certain settings, T(X) has the structure of a polyhedral complex [Bieri and Groves
1984; Jensen 2007], and there is a practical characterization in terms of initial
ideals given in [Speyer and Sturmfels 2004; Draisma 2008, Theorem 4.2]. If the
valuation on the ground field is trivial, T(X) is a subfan of the Gröbner fan of the
ideal I defining X . We only consider this constant coefficient case, and we define
the tropical variety as a fan associated to I instead of X . In this situation the ideal
I need not be a radical ideal. So let K be an infinite field and K [x1, . . . , xn] be the
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polynomial ring in n variables over K . In this setting, the tropical variety T(I ) of a
graded ideal I ⊂ K [x1, . . . , xn] is defined to be the subfan of the Gröbner fan of I
that consists of all cones such that the corresponding initial ideal does not contain
a monomial.

The tropical variety of an ideal depends on the choice of coordinates in the
following sense. For g ∈ GLn(K ), the image g(I ) of a graded ideal I ⊂ S =
K [x1, . . . , xn] is also a graded ideal, and all important algebraic invariants of S/I ,
such as the dimension, multiplicity and depth, are preserved under g. In fact, g(I )
can be considered as the ideal I given in different coordinates. In general, for
I ⊂ K [x1, . . . , xn] and g ∈ GLn(K ), we have

T(I ) 6= T(g(I )).

We can, however, find a nonempty Zariski-open set U ⊂GLn(K ) such that T(g(I ))
is the same fan gT(I ) for every g ∈ U [Römer and Schmitz 2009, Corollary 6.7].
The fact that U is dense in GLn(K ) justifies the name generic tropical variety of I
for this fan. In Corollary 7.4 of the same reference it was shown that gT(I ) as a set
depends only on the dimension of S/I . More precisely, if S/I is m-dimensional,
the underlying set of gT(I ) is always the m-skeleton of a particular complete fan Wn

in Rn . We show that under certain conditions, we can recover information on the
depth of S/I in addition to the dimension from the fan structure of gT(I ) induced
by the Gröbner fan. As one of the main results, we can completely describe generic
tropical varieties as fans if S/I is Cohen–Macaulay or almost-Cohen–Macaulay.
With this we can determine if S/I is Cohen–Macaulay or almost-Cohen–Macaulay
from the fan structure of the generic tropical variety of I if we know the depth of
S/I to be greater than 0. Moreover, we show that the multiplicities associated
with the maximal cones of gT(I ) as done in [Dickenstein et al. 2007] correspond
directly to the multiplicity of S/I .

Our paper is organized as follows. In Section 2 we introduce basic results and
necessary notation. In Section 3 we show that for an m-dimensional ring S/I for a
graded ideal I , the generic tropical variety is always a subfan of the m-skeleton of
Wn by showing that the fan structure induced by Wn is the coarsest possible on the
underlying set. This will be important in all following sections. Sections 4 and 5
are devoted to the depth of S/I . In Section 4 we show that gT(I ) is equal to the m-
skeleton of Wn if and only if S/I is Cohen–Macaulay or almost-Cohen–Macaulay,
where dim(S/I )=m. In Section 5 we show that we can recover the depth of S/I
from gT(I ) if we know it to be greater than 0 and less than dim(S/I )− 1. We
also give more structural results depending on depth(S/I ) on gT(I ) as a fan for a
special class of ideals. We show in Section 6 that the multiplicities defined on the
maximal cones of T(I ) as in [Dickenstein et al. 2007] generically behave in a nice
way. These multiplicities coincide with the multiplicity of S/I .
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2. Preliminaries

Let K be an algebraically closed field of characteristic 0 and let S= K [x1, . . . , xn]

be the polynomial ring in n variables over K . The ω-weight wtω(cxν) of some
term cxν = cxν1

1 · · · x
νn
n ∈ S is defined as wtω(cxν) = ω · ν for any ω ∈ Rn . For

a homogeneous polynomial f ∈ S with f =
∑

ν∈Nn aνxν and ω ∈ Rn , the initial
polynomial inω( f ) of f consists of all terms of f whose ω-weight ω ·ν is minimal.
We use multiplicative term orders � on the monomials of S and define in�( f ) to
be the term cxν of f for which cxν � dxµ for every other term dxµ of f . For
ω ∈ Rn and a term order � we can consider the refinement �ω. This is the term
order that first compares terms by their ω-weight and uses � to break ties. Note
that while initial polynomials with respect to ω are defined by taking terms of
minimal ω-weight, the symbol � suggests that in�( f ) is the “largest” term of
f . The reason for considering this counterintuitive setup is that in Gröbner basis
theory one usually considers the largest terms as initial terms, while in tropical
geometry it is convenient to work with the minimal ω-weight.

In particular, we will repeatedly need a (degree) reverse lexicographic term
order. With respect to an ordering x j1 � x j2 � · · · � x jn of the variables, this
monomial order is defined as follows. For ν, µ ∈ (N0)

n we have xν � xµ if either∑
i νi >

∑
i µi or

∑
i νi =

∑
i µi and there exists k ∈ {1, . . . , n} such that ν ji =µ ji

for i > k and ν jk <µ jk . Since we only consider graded ideals, we will simply call
this order a reverse lexicographic order. If no ordering of the variables is specified,
we mean the reverse lexicographic order with respect to x1 � x2 � · · · � xn .

We consider graded ideals I ⊂ S and always assume I 6= (0) if not stated oth-
erwise. The dimension dim(S/I ) refers to the Krull dimension of the ring S/I .
Since we assume I 6= (0), we always have dim(S/I )< n. The initial ideal of I ⊂ S
with respect to ω ∈ Rn is defined as

inω(I )= (inω( f ) : f ∈ I ).

For I ⊂ S = K [x1, . . . , xn], we define the tropical variety of I by

T(I )= {ω ∈ Rn
: inω(I ) does not contain a monomial}.

This is a special case, called the constant coefficient case, of the usual definition of
a tropical variety as the image of a projective variety under a valuation map; see for
example [Draisma 2008; Speyer and Sturmfels 2004]. In this case, K is considered
to have a trivial valuation [Draisma 2008, Theorem 4.2]. Then the tropical variety
T(I ) is a subfan of the Gröbner fan GF(I ) of I as observed in [Bogart et al. 2007].
Recall that the Gröbner fan is a complete fan in Rn , where ω,ω′ ∈ Rn are in the
same relatively open cone if inω(I )= inω′(I ); see for example [Mora and Robbiano
1988; Sturmfels 1996]. Sometimes we denote the ideal inω(I ) for a relatively open
cone C̊ of GF(I ) and ω ∈ C̊ by inC(I ).
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We study the structure of the tropical variety under a generic coordinate trans-
formation in the following sense. For g ∈ GLn(K ), we regard the K -algebra
automorphism induced by

K [x1, . . . , xn] → K [x1, . . . , xn],

xi 7→
n∑

j=1
g j i x j .

In the sequel, we identify g with this automorphism and call both of them g. Note
that this definition differs from [Römer and Schmitz 2009, Definition 2.4] by a
transposition of the matrix g. However, this does not affect the results proved in
that paper. We consider GLn(K ) equipped with the Zariski-topology. If S/I is
0-dimensional, then for every g ∈ GLn(K ), the tropical variety T(g(I )) is empty
[Römer and Schmitz 2009, Lemma 2.5]. We will therefore always assume that
dim(S/I ) > 0. In Corollary 6.9 of the same work it was shown that for a graded
ideal I ⊂ S = K [x1, . . . , xn] with dim(S/I ) > 0, there exists a Zariski-open set
∅ 6= U ⊂ GLn(K ) such that T(g(I )) is the same fan for every g ∈ U . This fan
is denoted by gT(I ) and called the generic tropical variety of I . If g ∈ U , then
g(I ) is called a generic coordinate transformation of I . Moreover, by [Römer and
Schmitz 2009, Theorem 3.1] we know that there is also a generic Gröbner fan
gGF(I ) such that GF(g(I )) = gGF(I ) as a fan for every g ∈ U . The monomial
initial ideal in�(g(I )) with respect to a term order � is exactly the generic initial
ideal gin�(I ) for g ∈ U . These generic initial ideals correspond to the maximal
cones of gGF(I ). In the following, we will fix a nonempty Zariski-open subset
U ⊂ GLn(K ) such that

GF(g(I ))= gGF(I ) and T(g(I ))= gT(I ) for every g ∈U, (2-1)

and refer to it simply as U .
The generic tropical variety as a set is always equal to some skeleton of a partic-

ular complete fan Wn in Rn . We recall that this fan is defined by the maximal cones
Ci = {ω ∈ Rn

: ωi = mink{ωk}} for i = 1, . . . , n. Note that to define a fan in Rn

or to show that two fans in Rn are the same, it suffices to do this for the maximal
cones. This is because every cone in a fan is a face of a maximal cone, so all cones
in a fan are determined by the maximal cones. Every m-dimensional cone CA in
Wn for m ∈ {1, . . . , n} has the form CA = {ω ∈ Rn

: ωi = mink{ωk} for i ∈ A},
where A ⊂ {1, . . . , n} with |A| = n−m + 1. On the other hand, every nonempty
A⊂ {1, . . . , n} defines a cone of Wn in this way, which we will denote by CA. We
let Wm

n be the m-skeleton of Wn , that is, the fan consisting of all cones of Wn of
dimension less than or equal to m. In [Römer and Schmitz 2009, Corollary 7.4], it
was shown that for a graded ideal I ⊂ S = K [x1, . . . , xn] with dim(S/I )=m, the
generic tropical variety gT(I ) coincides with Wm

n as a set.
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For a fan F in Rn , we denote by |F| the set
⋃

C∈F C (without its fan structure),
where the union is taken over all cones of F. The notation C for a cone of F always
refers to a closed cone. By C̊ we denote the relative interior of C . We say that a
fan E in Rn refines a fan F in Rn if |E| = |F| and for every relatively open cone C̊
of E there exists a relatively open cone D̊ of F with C̊ ⊂ D̊. In Proposition 3.5 we
show that it suffices to check this condition for the maximal cones of E.

3. Fan structures on the set |Wm
n |

In this section we assume 0<m<n. The aim is to show that Wm
n is the coarsest fan

structure on the set |Wm
n |. By this we mean that every fan F in Rn with |F| = |Wm

n |

refines Wm
n as a fan. We first prove that any fan on |Wm

n | is pure, by proving this
statement for any subset of Rn that permits a pure fan structure of dimension at
most n− 1. We repeatedly need the following lemma.

Lemma 3.1. Let F be a fan in Rn and C a cone of F. Let ω ∈ C̊ and (ωi )i∈N be a
sequence such that ωi ∈ |F|\C and limi→∞ ωi = ω. Then there exists a cone D in
F containing a subsequence of (ωi )i∈N such that C is a proper face of D.

Proof. Since ωi ∈ F, there exists some other cone Ci 6= C such that ωi ∈ C̊i . But
F has only finitely many cones, so there exists a subsequence (ω ji ) ji∈N of (ωi )i∈N

such that ω ji ∈ D for one particular cone D of F. By the choice of ωi , we have
D 6=C . Now limi→∞ ω ji =ω and D is closed, so ω ∈ D. Because C̊ ∩ D̊=∅, we
have ω ∈ ∂D. By assumption, C and D intersect in a face of both of them. Since
ω ∈ C̊ is in this intersection, this face is C . Hence, C ( D as a face. �

With this we can show in the following proposition that any fan structure on
|Wm

n | is pure.

Proposition 3.2. Let E be a pure m-dimensional fan in Rn and F an arbitrary fan
in Rn with |F| = |E|. Then F is also a pure m-dimensional fan.

Proof. Let C be any cone in F. Assume that dim C < m and let ω ∈ C̊ . Since for
any open neighborhood W (ω)⊂Rn of ω we have dim W (ω)∩C <m, there always
exists v ∈ (W (ω)∩ |F|)\C . So if we choose a sequence (εn)n∈N with εn > 0 for
every n ∈ N and limn→∞ εn = 0, there exists vn ∈ |F|\C with |vn −ω| < εn . By
Lemma 3.1, we obtain a cone D of F such that C ( D. Since dim D > dim C ,
either the proof is complete if dim D = m, or we can apply the same procedure to
D instead of C . Either way, we obtain an m-dimensional cone of which C is a face
after finitely many steps. �

This immediately implies the following corollary, which is a generalization of
the fact that the tropical variety of a prime ideal P with dim(S/P) = m that does
not contain a monomial is a pure m-dimensional fan [Bieri and Groves 1984].



470 Tim Römer and Kirsten Schmitz

Corollary 3.3. Let I ⊂ S = K [x1, . . . , xn] be a graded ideal with dim(S/I )= m.
Then gT(I ) is a pure m-dimensional fan.

To prove that a fan E ⊂ Rn refines another fan F ⊂ Rn , it suffices to consider
the maximal cones of E. This will be the result of the next two statements.

Lemma 3.4. Let D,C be cones in Rn such that D ⊂ C and D ∩ C̊ 6= ∅. Then
D̊ ⊂ C̊.

Proof. Let p ∈ D̊, and for some ε > 0 let W = {u ∈ D̊ : |u − p| < ε} ⊂ D̊ be a
relatively open neighborhood of p in D̊. If p ∈ ∂C , then there exists a face F of
C with p ∈ F . Let H = {ω ∈ Rn

: a · ω = 0} be a defining hyperplane of F , so
F = H ∩C , and let C ⊂ H− = {ω ∈ Rn

: a ·ω ≤ 0}. Since W ⊂ D̊ ⊂ C , we know
that a · u ≤ 0 for every u ∈ W . In addition, we have a · p = 0, because p ∈ F .
Assume there exists u ∈W such that a ·u < 0. Then we can choose 0<λ< 1 very
small such that p+λ(p−u)∈ D̊. Moreover, |(p+λ(p−u))− p| = |λ(p−u)|<ε,
so p+λ(p−u)∈W . But (p+λ(p−u)) ·a=−λu ·a> 0, which is a contradiction
to p+ λ(p− u) ∈ C . Hence, a · u = 0 for every u ∈ W . Thus W ⊂ H , and since
W is relatively open in D, we also have aff(D)⊂ H . But then

D ⊂ aff(D)∩C ⊂ H ∩C = F,

which is a contradiction to D∩ C̊ 6=∅. Hence, p /∈ ∂C and we get that D̊ ⊂ C̊ . �

Proposition 3.5. Let E,F⊂ Rn be two fans. Then E refines F as a fan if and only
if |E| = |F| and for every maximal cone C ⊂E there exists a cone D⊂F such that
C̊ ⊂ D̊.

Proof. One implication follows directly from the definition of refinement. For the
other one, we have to show that for any cone K ⊂ E, there exists a cone L ⊂ F

such that K̊ ⊂ L̊ . If K is maximal, this is true by assumption. Let K ⊂ E be not
maximal. Then there exists a maximal cone C ⊂ E such that K is a face of C .
Moreover, we know that C̊ ⊂ D̊ for some cone D ∈ F. So K ⊂ D. Assume that
such a cone L does not exist. If K ∩ D̊ 6=∅, this would imply K̊ ⊂ D̊ by Lemma
3.4 and we could set L = D. Hence, K ∩ D̊ = ∅. Then K ⊂ ∂D and by [Bruns
and Gubeladze 2009, Lemma 1.5], it follows that K ⊂ E for a proper face E of
D. Since dim E < dim D, we can use a suitable induction to obtain a sequence
of cones in F of strictly decreasing dimension such that K does not intersect the
relative interior of each cone. The last cone in this sequence has to be the lineality
space A of F. So by this induction, we get K ⊂ ∂A, which is a contradiction to
∂A =∅. Hence, there has to exist a cone L ⊂ F such that K̊ ⊂ L̊ . �

The proof of the next auxiliary result is elementary, so we omit it.
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Lemma 3.6. Let C ⊂Rn be a cone and let dim C =m. Also, let D1, . . . , Ds ⊂Rn

be cones such that

C ⊂
s⋃

i=1

Di ,

where dim D1 = m and dim D2, . . . , dim Ds < m. Then C ⊂ D1.

With these prerequisites, we can show that for m < n, the fan structure of Wm
n is

actually the coarsest possible on the set |Wm
n | in the sense that every other fan F⊂

Rn with |F| = |Wm
n | refines Wm

n as a fan. In particular, this will imply that gT(I )
refines Wm

n as a fan for a graded ideal I ⊂ S = K [x1, . . . , xn] with dim(S/I )=m.

Proposition 3.7. Let m < n and F⊂ Rn be a fan with |F| = |Wm
n |. Then for every

relatively open cone C̊ of F, there exists a relatively open cone C̊A of Wm
n such

that C̊ ⊂ C̊A.

Proof. Wm
n =

⋃̇
|A|≥n−m+1C̊A is the disjoint union of all relatively open cones

of Wn whose defining set A ⊂ {1, . . . , n} has at least n − m + 1 elements. By
Proposition 3.5 it suffices to prove the condition for the maximal cones of F. Let
C be a maximal cone of F. Then dim C = m, as F is pure by Proposition 3.2.
Since dim

⋃
|A|>n−m+1 C̊A = m − 1 < m, there exists an ω ∈ C̊ that is contained

in the interior of some maximal cone C̊A1 of Wm
n with |A1| = n−m+ 1. Assume

there exists v ∈ C̊ such that v ∈ C̊A2 for a different maximal cone C̊A2 of Wm
n . Then

|A1 ∩ A2|< n−m+ 1. We have to consider two cases:

• If A1 ∩ A2 6= ∅, the minimal coordinates of ω+ v are attained exactly at the
indices in A1 ∩ A2. But |A1 ∩ A2| < n −m + 1, so ω+ v /∈ |Wm

n |. This is a
contradiction to ω+ v ∈ C̊ ⊂ |Wm

n |.

• Assume that A1 ∩ A2 =∅. Since dim C = m, we can change the coordinates
of ω that are not contained in A1 independently from each other by adding or
subtracting small real numbers without leaving C̊ . The same is true for the
coordinates of v that are not in A2. Hence, we can change every coordinate
of ω+ v by a small amount without leaving C̊ , since A1 ∩ A2 =∅. But then
we can assume that the minimum of the coordinates of ω+ v is attained only
once. Again we have ω+ v /∈ |Wm

n |, contradicting ω+ v ∈ C̊ ⊂ |Wm
n |.

Hence, no element of C̊ can be contained in the relative interior of any maximal
cone of Wm

n other than CA1 . But then

C̊ ⊂ C̊A1 ∪

( ⋃
|A|>n−m+1

C̊A

)
.

Taking the topological closure, this implies C ⊂ CA1 by Lemma 3.6. Since both
cones have the same dimension, we also have C̊ ⊂ C̊A1 by Lemma 3.4. �
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Proposition 3.7 implies as a corollary that the generic tropical variety always
refines Wm

n as a fan.

Corollary 3.8. Let I ⊂ S= K [x1, . . . , xn] be a graded ideal with dim(S/I )=m>
0. Then for every relatively open cone C̊ of gT(I ), there exists a relatively open
cone D̊ of Wm

n such that C̊ ⊂ D̊.

Proof. Since | gT(I )| = |Wm
n | by [Römer and Schmitz 2009, Corollary 7.4] and

Wm
n is pure m-dimensional, it follows from Proposition 3.2 that gT(I ) is a pure

m-dimensional fan. The claim now is a consequence of Proposition 3.7. �

4. Generic tropical varieties of Cohen–Macaulay and
almost-Cohen–Macaulay rings

In addition to the dimension of S/I , it is also possible to recover information on
the depth of S/I from the generic tropical variety of I . We will show that for an
ideal I with dim(S/I )=m and depth(S/I ) > 0, the generic tropical variety is Wm

n
as a fan if and only if depth(S/I )= dim(S/I ) or depth(S/I )= dim(S/I )−1. Thus
we can read off whether S/I is Cohen–Macaulay or almost-Cohen–Macaulay from
the fan gT(I ).

To define the depth of S/I , recall that a system of linear forms l1, . . . , lt ∈ S/I is
called a regular sequence for S/I if li is not a zero-divisor on (S/I )/(l1, . . . , li−1)

for i = 1, . . . , t .

Definition 4.1. For a graded ideal I ⊂ S = K [x1, . . . , xn], we define the depth of
S/I to be

depth(S/I )=max
{ t ∈ N : there is a regular sequence

of linear forms l1, . . . , lt ∈ S/I

}
.

The depth is bounded from above by the dimension of S/I ; see for example
[Bruns and Herzog 1993, Proposition 1.2.12]. Also, we know that depth(S/I ) ≥
depth(S/ gin�(I )) for any term order �. Equality holds if � is a reverse lexico-
graphic order with respect to some ordering of the variables. These two statements
follow from [Bruns and Conca 2004, Corollary 3.5 and Remark 3.6] together with
the Auslander–Buchsbaum formula.

In general it is not possible to see the depth of S/I in the fan T(I ), as the
following example shows.

Example 4.2. For 1≤ k ≤ n, consider the ideal

I = (x1(x1+ x2), x2(x1+ x2), . . . , xk(x1+ x2))⊂ S = K [x1, . . . , xn].

Then dim(S/I ) = n − 1 and depth(S/I ) = n − k. But the tropical variety T(I )
always consists of only one cone T(I )= {ω ∈Rn

: ω1 = ω2} which is independent



Algebraic properties of generic tropical varieties 473

of k. So we have obtained a collection of ideals of every possible depth from 0 to
n− 1 such that the tropical variety is always the same.

The connection of depth(S/I ) with gT(I ) is established by the following propo-
sition, taken as a reformulation of [Herzog and Srinivasan 1998, Lemma 3.1] and
relying on [Eliahou and Kervaire 1990]. Since a generic initial ideal J is a mono-
mial ideal, there exists a system of monomial generators of J . The unique smallest
system of monomial generators with respect to inclusion will be called a minimal
system of generators, and its elements are minimal generators of J .

Proposition 4.3. Let I ⊂ S= K [x1, . . . , xn] be a graded ideal with dim(S/I )=m,
and � be any term order with x1 � · · · � xn . Let depth(S/ gin�(I ))= t . Then:

• Every minimal generator of gin�(I ) is divisible by one of x1, . . . , xn−m .

• xd
n−m is one of the minimal generators of gin�(I ) for some d ∈ N.

• The minimal generators of gin�(I ) are elements of K [x1, . . . , xn−t ].

• There exists a minimal generator of gin�(I ) that is divisible by xn−t .

In particular, if � is the reverse lexicographic order, these statements are true for
t = depth(S/I ), since then depth(S/I )= depth(S/ gin�(I )).

Recall that by [Römer and Schmitz 2009, Corollary 7.4], the condition for ω ∈
Rn to be in gT(I ) is that the minimum of its coordinates be attained at least n−m+1
times. So Proposition 4.3 already shows that the cases where depth(S/I )=m and
depth(S/I )= m− 1 are special. We use the following standard definition.

Definition 4.4. Let I ⊂ S = K [x1, . . . , xn] be a graded ideal. If depth(S/I ) =
dim(S/I ), then S/I will be called Cohen–Macaulay. If depth(S/I )= dim(S/I )−
1, then S/I is called almost-Cohen–Macaulay. In what follows, we say I is Cohen–
Macaulay or almost-Cohen–Macaulay if S/I has the corresponding property.

In this case, the refinement�ω of every ω∈ gT(I ) with respect to an appropriate
reverse lexicographic order � yields the same generic initial ideal as with respect
to �. In the following statement, the set U denotes the Zariski-open subset of
GLn(K ) as defined in (2-1).

Lemma 4.5. Let I ⊂ S = K [x1, . . . , xn] be a graded Cohen–Macaulay or almost-
Cohen–Macaulay ideal, � be the reverse lexicographic order, and ω ∈ Wm

n ⊂

Rn with ω1 = ω2 = · · · = ωn−m+1 ≤ ωn−m+2, . . . , ωn . Moreover, let �ω be the
refinement of ω with respect to �. Then the reduced Gröbner bases of g(I ) with
respect to � and �ω are the same for g ∈U. In particular, gin�ω(I )= gin�(I ).

Proof. Since for a given degree t any term containing none of xn−m+2, . . . , xn is
smaller than any term divisible by one of them with respect to�ω, the term orders�
and�ω coincide up to the term x t

n−m+1. By Proposition 4.3, the minimal generators
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of gin�(I ) are monomials in K [x1, . . . , xn−m+1]. Then for g∈U , the leading terms
of the reduced Gröbner basis G(g) of g(I ) are terms in K [x1, . . . , xn−m+1]. Since
the leading terms of two elements of G(g) are the same with respect to � and �ω,
every S-pair with respect to �ω is the same as with respect to �. As G(g) is a
Gröbner basis with respect to �, every such S-pair reduces to 0. So the set G(g) is
a Gröbner basis with respect to �ω as well. Hence, gin�ω(I )= gin�(I ). �

We can now formulate the reverse statement of Proposition 3.7 for Cohen–
Macaulay and almost-Cohen–Macaulay ideals.

Proposition 4.6. Let I ⊂ S = K [x1, . . . , xn] be a graded Cohen–Macaulay or
almost-Cohen–Macaulay ideal with dim(S/I )=m. Then for every relatively open
cone C̊A ⊂Wm

n there exists a relatively open cone C̊ of gT(I ) with C̊A ⊂ C̊.

Proof. Let A ⊂ {1, . . . , n} with |A| ≥ n −m + 1, so C̊A is an open cone of Wm
n .

We need to show that for ω,ω′ ∈ C̊A, we have inω(g(I )) = inω′(g(I )) for every
g ∈U . Without loss of generality, we may assume {1, . . . , n−m+1} ⊂ A. Let �
denote the reverse lexicographic order. By Lemma 4.5, the reduced Gröbner basis
G(g) = {h1(g), . . . , hs(g)} of g(I ) with respect to � is also a reduced Gröbner
basis with respect to �ω and �ω′ for g ∈ U . So {inω(h1(g)), . . . , inω(hs(g))}
and {inω′(h1(g)), . . . , inω′(hs(g))} are Gröbner bases of inω(g(I )) and inω′(g(I )).
However, all the leading terms of the hi (g) are elements of K [x1, . . . , xn−m+1].
Hence, inω(hi (g)) and inω′(hi (g)) exactly consist of those terms of hi (g) that con-
tain only variables x j for which ω j and ω′j respectively are minimal. But these
variables are the same for ω and ω′ by assumption, so we obtain inω(g(I )) =
inω′(g(I )). This shows that all ω ∈ C̊A are contained in the same open cone C̊ of
T(g(I ))= gT(I ) for g ∈U . �

In the case of a Cohen–Macaulay or almost-Cohen–Macaulay ideal I such that
dim(S/I )=m, the generic tropical variety is equal to Wm

n as a fan. This generalizes
the result [Römer and Schmitz 2009, Corollary 7.4] for this class of ideals.

Corollary 4.7. Let I⊂ S=K [x1, . . . , xn] be a graded Cohen–Macaulay or almost-
Cohen–Macaulay ideal with dim(S/I )= m. Then gT(I )=Wm

n as a fan.

Proof. Let C̊ be a relatively open cone of gT(I ). By Corollary 3.8, there exists a
cone D of Wm

n such that C̊ ⊂ D̊. On the other hand, by Proposition 4.6 there exists
a cone E of gT(I ) with D̊ ⊂ E̊ . But then C̊ ⊂ E̊ are two cones of gT(I ) with
C̊ ∩ E̊ 6=∅. This implies C̊ = E̊ and thus C̊ = D̊. This shows that every maximal
cone of gT(I ) is equal to some maximal cone of Wm

n . By the same argument,
it follows that every maximal cone from Wm

n is equal to some maximal cone of
gT(I ), so the two fans are the same. �

To show that Corollary 4.7 is wrong for every ideal that is not Cohen–Macaulay
or almost-Cohen–Macaulay, we need the following auxiliary result.
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Lemma 4.8. Let c ∈ N and ω ∈ Rn be such that 0 = ω1 = · · · = ωn−m+1 and
cωi <ωi+1 for i = n−m+1, . . . , n−1. Let � be the reverse lexicographic order.
Then � and �ω are the same term orders for the monomials of any degree up to c.

Proof. Let t ≤ c and xν, xµ be two monomials of degree t . We write xν = y1z1 and
xµ = y2z2, where y1, y2 ∈ K [x1, . . . , xn−m+1] and z1, z2 ∈ K [xn−m+2, . . . , xn].
If z1 = z2, it is clear from the definition that xν � xµ if and only if xν �ω xµ.
Otherwise, let k ≥ n−m+2 be the largest index such that νk 6=µk . Without loss of
generality, we may assume that no variable x j divides xν or xµ for j > k and that
νk < µk , so xν � xµ. For the ω-weight of xν and xµ we obtain the upper bound

wtω(xν)≤ wtω(x
t−νk
k−1 xνk

k )= ωk−1(t − νk)+ωkνk

and the lower bound

wtω(xµ)≥ wtω(x
t−µk
1 xµk

k )= ωkµk .

So it is enough to show that ωk−1(t − νk)+ωkνk < ωkµk . We have

c(ωkµk − (ωk−1(t − νk)+ωkνk))= cωk(µk − νk)− cωk−1(t − νk)

> cωk(µk − νk)−ωk(t − νk)

= ωk(c(µk − νk)− (t − νk))≥ 0.

The last inequality is true, since t−νk ≤ c and c(µk−νk)> c, as we know µk >νk .
It follows that wtω(xν) <wtω(xµ), so xν �ω xµ. Hence, � and �ω coincide up to
degree c. �

We can now completely characterize when gT(I ) is equal to a skeleton of the
generic tropical fan for ideals of depth(S/I ) > 0. If dim(S/I ) = 0, we know that
gT(I ) is empty, since every graded ideal with dim(S/I )= 0 contains a monomial.
In the cases dim(S/I ) = 1 and dim(S/I ) = 2, the fan gT(I ) is equal to W1

n and
W2

n respectively by [Römer and Schmitz 2009, Examples 8.3 and 8.4]. Note that in
these cases, every ideal of depth(S/I ) > 0 is Cohen–Macaulay or almost Cohen–
Macaulay. For ideals with arbitrary dimension dim(S/I ) > 0, we have:

Theorem 4.9. Let I ⊂ S=K [x1, . . . , xn] be a graded ideal with dim(S/I )=m>0
and depth(S/I ) > 0. Then S/I is Cohen–Macaulay or almost-Cohen–Macaulay if
and only if gT(I )=Wm

n as a fan.

Proof. We show that if t =depth(S/I )<m−1, then gT(I ) 6=Wm
n as a fan. For this,

let� be the reverse lexicographic order with x1�· · ·� xn−t � xn−t+1�· · ·� xn and
�
′ be the reverse lexicographic order with x1 �

′
· · · �

′ xn−t+1 �
′ xn−t �

′
· · · �

′ xn .
Let c be the maximal degree of the minimal generators of gin�(I ) and gin�′(I ).
For the purpose of this proof, for a, b ∈ R+ we write a� b if ac < b.
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Choose ω, v ∈Rn such that 0=ω1 = · · · =ωn−m+1�ωn−m+2�· · ·�ωn and

0= v1 = · · · = vn−m+1� vn−m+2� · · · � vn−t+1� vn−t � · · · � vn.

By Lemma 4.8, we know that � and �ω are the same term orders up to degree c.
Since gin�(I ) is generated by monomials of degree at most c, for a fixed g ∈U (as
defined in (2-1)), all elements of the reduced Gröbner basis G of g(I ) with respect
to � have degree at most c. The leading term of every element of G is the same
with respect to � and �ω. Thus every S-pair of elements of G reduces to zero
with respect to �ω as well. So G is also a Gröbner basis of gin�ω(I ). This implies
gin�ω(I )= gin�(I ).

By Lemma 4.8 and the same argument as before, we can show that gin�v (I )=
gin�′(I ). Since depth(S/ gin�(I )) = depth(S/ gin�′(I )) = t , we know that xn−t

divides one of the minimal generators of gin�(I ) but does not divide one of the
minimal generators of gin�′(I ) by Proposition 4.3. So gin�ω(I ) = gin�(I ) 6=
gin�′(I ) = gin�v (I ), and it follows that inω(g(I )) 6= inv(g(I )) for g ∈ U . Hence,
ω and v are not in the same relatively open cone of gT(I ), but they are in the same
relatively open cone of Wm

n . This implies gT(I ) 6=Wm
n as a fan.

The converse of this statement, that depth(S/I ) ≥ m − 1 implies gT(I ) =Wm
n

as a fan, has already been proved in Corollary 4.7. �

In particular, this theorem gives a negative answer to the question posed in the
introduction of [Römer and Schmitz 2009] of whether the generic tropical variety
of I as a fan only depends on the dimension of S/I . If depth(S/I ) = 0, it is not
possible to obtain a statement like Theorem 4.9; see Remark 5.12.

5. Generic tropical varieties and depth

In this section we will consider a certain class of ideals I such that dim(S/I )−1>
depth(S/I ) > 0 for which we can recover the depth from the generic tropical
varieties. These ideals have the property that the rings S/ gin�(I ) for all generic
initial ideals of I have the same depth as S/I itself. This makes it possible to use
Proposition 4.3 on all of these. We express this property by considering the generic
depth of S/I .

Definition 5.1. For a graded ideal I ⊂ S = K [x1, . . . , xn], we call

gdepth(S/I )=min{depth(S/ gin�(I ))},

where the minimum is taken over all possible generic initial ideals of I , the generic
depth of S/I . If depth(S/I ) = gdepth(S/I ), then I is called a maximal-gdepth
ideal.

Note that since depth(S/ gin�(I ))≤depth(S/I ) for any generic initial ideal of I ,
the ideal I is a maximal-gdepth ideal if and only if depth(S/I )=depth(S/ gin�(I ))
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for every generic initial ideal of I . A trivial example of a maximal-gdepth ideal is
a principal ideal like I = (xd

1 +· · ·+xd
n ) in S= K [x1, . . . , xn] for an integer d ≥ 1,

because every gin is also a principal ideal generated by a polynomial of degree d.
Next we describe two interesting classes of maximal-gdepth ideals.

Example 5.2. The first example is the class of strongly stable ideals I . These are
by definition monomial ideals, so the tropical variety T(I ) is of course empty. We
are, however, interested in the generic tropical variety gT(I ). This fan is not empty
if dim(S/I ) > 0, and it contains algebraic information on I , as we show.

Recall that a monomial ideal I ⊂ K [x1, . . . , xn] is called strongly stable with
respect to some ordering xi1 > · · · > xin of the variables x1, . . . , xn if for every
monomial u ∈ I we also have xi j ux−1

ik
∈ I for every xik that divides u and every

j < k. Every ideal gin�(I ) is a strongly stable ideal with respect to the ordering of
the variables given by �, since char(K )= 0. Moreover, if I is strongly stable with
respect to xi1 > · · ·> xin and� is a term order with xi1�· · ·� xin , then gin�(I )= I .
We now explain that strongly stable ideals are maximal-gdepth ideals.

Let I ⊂K [x1, . . . , xn] be a graded strongly stable ideal with respect to x1> · · ·>

xn . Let� be any term order with xi1 �· · ·� xin for {i1, . . . , in}= {1, . . . , n}. In ad-
dition, let �′ be the reverse lexicographic order with xi1 �

′
· · · �

′ xin . Consider the
image of I under the K -algebra isomorphism φ that maps x j to xi j . Then φ(I ) is a
strongly stable ideal with respect to term orders with xi1 �· · ·� xin , so in particular
with respect to � and to �′. So we know that gin�(φ(I )) = gin�′(φ(I )) = φ(I ).
Let ∅ 6= U1 ⊂ GLn(K ) be Zariski-open such that in�(g(I )) = gin�(I ) for every
g ∈U1, and ∅ 6=U2⊂GLn(K ) Zariski-open such that in�(h(φ(I )))= gin�(φ(I ))
for every h ∈ U2. Note that also the set ∅ 6= U ′2 = {h ◦ φ ∈ GLn(K ) : h ∈ U2} is
Zariski-open, as it can be defined by the polynomials obtained by permuting the
polynomials defining U2 according to φ. Hence, U1∩U ′2 6=∅. For k ∈U1∩U ′2 we
have in�(k(I ))=gin�(I )=gin�(φ(I )). In addition, gin�′(I )=gin�′(φ(I )) by the
same argument. Hence, gin�(I ) = gin�′(I ). Since for any reverse lexicographic
order � we have depth(S/ gin�(I ))= depth(S/I ), this implies that strongly stable
ideals are maximal-gdepth ideals.

A concrete example for such an ideal is (x2
1 , x1x2, x1x3, x1x4)⊆ K [x1, . . . , x5].

Applying a K -algebra automorphism in GLn(K ) provides examples of maximal-
gdepth ideals that are not monomial ideals.

Example 5.3. The second example class is the class of ideals such that I and
every gin�(I ) is generated by polynomials of the same degree. We can see that
these ideals are also maximal-gdepth as follows. Let S = K [x1, . . . , xn] with the
standard Z-grading and note that S/I is a graded S-module. We denote by βi, j

the graded Betti number βi, j = βi, j (S/I )= dimK (TorS
i (S/I, K )) j . For d ∈ N, let

S(−d) be the graded module S with the grading given by S(−d) j = S j−d . Recall
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that for some d ∈N, we say that I has a d-linear resolution if and only if βi,i+ j = 0
for j 6= d − 1, i ≥ 1. This is equivalent to the fact that the minimal graded free
resolution of S/I has the form

0→ S(−d − p+ 1)βp → · · · → S(−d − 1)β2 → S(−d)β1 → S→ S/I → 0,

where βi = βi,i+d is the i-th total Betti number and p is the projective dimension
p= projdim(S/I ) of S/I . Let I ⊂ S be a graded ideal such that I and gin�(I ) are
generated by polynomials of degree d for every term order �. Let J = gin�(I ) be
a given generic initial ideal if I . We now show that depth(S/I )= depth(S/J ). As
J is strongly stable and generated in one degree, the minimal graded free resolu-
tion (as constructed in [Eliahou and Kervaire 1990]) is linear. Since βi, j (S/I ) ≤
βi, j (S/J ) for every i, j (see for example [Bruns and Conca 2004, Proposition 3.3]),
this implies that S/I has a linear resolution as well. So I and J have linear resolu-
tions, which in turn means that their total Betti numbers depend only on the Hilbert
series of S/I and S/J respectively. But HS/I (t) = HS/J (t), so the Betti numbers
and in particular the projective dimensions of S/I and S/J are the same. By the
Auslander–Buchsbaum formula depth(S/I ) + projdim(S/I ) = n, it follows that
depth(S/I )= depth(S/J ). This is true for every generic initial ideal of I . Hence,
I is a maximal-gdepth ideal.

Recall that the Castelnuovo–Mumford regularity reg(S/I ) of S/I is defined to
be the maximal j ∈ Z such that βi,i+ j 6= 0 for some i ≥ 0. It is well-known that
the ideal I≥t (generated by all homogeneous components Is of I with s ≥ t) has
a linear resolution if t ≥ reg(S/I )+ 1; see [Eisenbud and Goto 1984]. Observe
further that by the construction of gin, we know gin�(I )≥t = gin�(I≥t). Since
there exist only finitely many different generic initial ideals for I , we can find a t
such that all gin�(I≥t) have a linear resolution. In particular, they are generated in
degree t . Then also I≥t is generated in degree t (and has a linear resolution). So
every high truncation I≥t of an arbitrary graded ideal I is a maximal-gdepth ideal.
Unfortunately we cannot decide in general which t one has to take.

In this section we give a structural result on generic tropical varieties of maximal-
gdepth ideals. We will see that these as fans are closely related to the following
refinement of Wm

n .

Definition 5.4. Let Wm
n be the m-skeleton of the standard tropical fan in Rn , and

let 0< t < m− 1. The refinement of Wm
n containing all open cones

{ω ∈ Rn
: ωi1 = · · · = ωin−m+1 < ωin−m+2, . . . , ωin−t < ωin−t+1, . . . , ωin }

for any permutation (i1, . . . , in) of {1, . . . , n} as maximal open cones will be called
the t-refinement of Wm

n and denoted by Wm,t
n .
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Lemma 5.5. Let I ⊂ S = K [x1, . . . , xn] be a maximal-gdepth ideal such that
dim(S/I ) = m < n and depth(S/I ) = t for some 0 < t < m − 1. Let ω ∈ C̊ for
some maximal cone C of gT(I ) and let ωi1 ≤· · ·≤ωin for {i1, . . . , in}= {1, . . . , n}.
Then ωin−t < ωin−t+1 .

Proof. Without loss of generality we have

ω1 = · · · = ωn−m+1 < ωn−m+2 ≤ · · · ≤ ωn,

since ω∈ |Wm
n |. Let us assume that ωn−t =ωn−t+1. For ε > 0 we define uε ∈Rn by

uεi =


ωi − ε for i < n− t,
ωi for i = n− t,
ωi + ε for i = n− t + 1,
ωi + 2ε for i > n− t + 1.

In the same way we define vεi ∈ Rn by

vεi =


ωi − ε for i < n− t,
ωi for i = n− t + 1,
ωi + ε for i = n− t,
ωi + 2ε for i > n− t + 1.

Note that uε and vε are contained in gT(I ) for every choice of ε. Let � be any
term order. Then xi �uε xn−t �uε xn−t+1 �uε x j and xi �vε xn−t+1 �vε xn−t �vε x j

for i < n− t , j > n− t + 1. Since

depth(S/I )= depth(S/ gin�uε
(I ))= depth(S/ gin�vε (I )),

by Proposition 4.3 the monomial ideal gin�uε
(I ) contains a minimal monomial

generator divisible by xn−t , but none that is divisible by xn−t+1. On the other
hand, gin�vε (I ) contains a minimal generator divisible by xn−t+1, but none that is
divisible by xn−t . Hence, the reduced Gröbner bases of inuε(g(I )) and invε(g(I ))
are different with respect to the same term order�. Since the reduced Gröbner basis
of an ideal is unique with respect to a given term order, this implies inuε(g(I )) 6=
invε(g(I )), so uε and vε are in different cones of gT(I ). So in every neighborhood
of ω in gT(I ), there are elements that are in different cones of gT(I ). This is a
contradiction to the fact that ω ∈ C̊ and C is maximal. �

We can now show that for maximal-gdepth ideals, gT(I ) refines Wm,t
n as a fan.

Proposition 5.6. Let I ⊂ S = K [x1, . . . , xn] be a maximal-gdepth ideal with
dim(S/I )= m < n and 0< depth(S/I )= t < m− 1. Let C be a maximal cone of
gT(I ). Then there exists a cone D ⊂Wm,t

n such that C̊ ⊂ D̊.
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Proof. By Lemma 5.5, we know that C̊ does not intersect the (m− 1)-skeleton X
of Wm,t

n . So C̊ must be contained in the union Wm,t
n \X of the open maximal cones

of Wm,t
n . Since it is convex, C̊ is connected and thus contained in one connected

component of Wm,t
n \X . But the connected components of Wm,t

n \X are the open
maximal cones themselves, so C̊ must be contained in some maximal open cone
D̊ of Wm,t

n . �

This shows that the fan gT(I ) is always finer than the fan Wm,t
n for maximal-

gdepth ideals. We can now give a complementary result by showing that every
maximal cone contains a t-dimensional orthant of Rn . For this we will need the
following basic observation from Gröbner basis theory.

Lemma 5.7. Let I ⊂ [x1, . . . , xn] be a graded ideal and let ω,ω′ ∈ Rn . Let �
be a term order and G be the reduced Gröbner basis of I with respect to �ω. If
inω( f )= inω′( f ) for every f ∈ G, then inω(I )= inω′(I ).

Proof. Since {inω( f ) : f ∈ G} is a reduced Gröbner basis for inω(I ) with respect
to � (see for example [Maclagan and Thomas 2007, Lemma 2.4.2]), it follows
that inω(I ) = (inω′( f ) : f ∈ G) ⊂ inω′(I ). This implies that in�ω(I ) ⊂ in�ω′ (I ).
As there cannot be a proper inclusion of two initial ideals (see [Maclagan and
Thomas 2007, Corollary 2.2.3]), this means in�ω(I ) = in�ω′ (I ). Therefore we
have inω(I )= inω′(I ), because {inω( f ) : f ∈ G} is also a reduced Gröbner basis of
g(I ) with respect to �ω′ . �

Proposition 5.8. Let I ⊂ S = K [x1, . . . , xn] be a maximal-gdepth ideal with
dim(S/I ) = m, let 0 < depth(S/I ) = t < m − 1, and let c be the maximal total
degree of a minimal generator of a generic initial ideal of I . Let ω ∈ gT(I ) with

0= ω1 = · · · = ωn−m+1 < ωn−m+2 ≤ · · · ≤ ωn−t < ωn−t+1, . . . , ωn

such that ωn−t c<ω j for j > n− t and ω ∈ C̊ for some maximal cone C of gT(I ).
Then

ω+ cone(en−t+1, . . . , en)⊂ C̊,

where ei denotes the i-th standard basis vector of Rn .

Proof. Let � be any term order. Then for the refinement �ω of ω by Proposition
4.3, the generic initial ideal gin�ω(I ) is minimally generated in K [x1, . . . , xn−t ],
since I is maximal-gdepth and depth(S/ gin�ω(I )) = depth(S/I ) = t . Hence, for
g ∈ U (where U is defined as in (2-1)) there exists a reduced Gröbner basis G of
g(I ) with respect to �ω such that in�ω( f ) ∈ K [x1, . . . , xn−t ] for every f ∈ G.

We show that inω′( f )∈ K [x1, . . . , xn−t ] for every ω′∈ω+cone(en−t+1, . . . , en)

and every f ∈G. To see this, we need to show that every term of f that contains one
of the xn−t+1, . . . , xn has larger ω′-weight than any term of f in K [x1, . . . , xn−t ].
By the choice of c, the ω′-weight of a term of f in K [x1, . . . , xn−t ] is bounded
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from above by cωn−t . But any of the xn−t+1, . . . , xn has weight strictly larger
than cωn−t . Since we already know that f contains a term in K [x1, . . . , xn−t ], we
have inω′( f ) ∈ K [x1, . . . , xn−t ]. By the choice of ω′, all terms in K [x1, . . . , xn−t ]

have the same ω-weight and ω′-weight. So inω′( f ) = inω( f ) for f ∈ G. Then by
Lemma 5.7, it follows that inω(g(I )) = inω′(g(I )) for g ∈ U . Hence, ω′ ∈ C̊ for
every ω′ ∈ ω+ cone(en−t+1, . . . , en). �

For maximal-gdepth ideals I , it is therefore possible to obtain depth(S/I ) from
the generic tropical variety of I , as shown in the following theorem.

Theorem 5.9. Let I ⊂ S = K [x1, . . . , xn] be a maximal-gdepth ideal such that
dim(S/I )= m and 0< depth(S/I ) < m− 1. Then

depth(S/I )=min{t ∈ N : gT(I ) refines Wm,t
n }.

Proof. Let T = depth(S/I ). By Proposition 5.6, we already know that gT(I )
refines Wm,T

n as a fan. On the other hand let t < T . Then we can choose ω ∈ Rn

such that

ω1 = · · · = ωn−m+1 < ωn−m+2, . . . , ωn−t < ωn−t+1, . . . , ωn

with ω ∈ C̊ for some maximal cone C of gT(I ) and ωn−t c < ω j for j > n − t ,
where c is chosen as in Proposition 5.8. Define ω′i = ωi for i 6= n− t and choose
ω′n−t >ωn−t+1. Since t < T , by Proposition 5.8 we know that ω′ ∈ C̊ as well. But
by definition of Wm,t

n , we know that ω and ω′ are in different open cones of Wm,t
n .

So gT(I ) cannot refine Wm,t
n as a fan. �

Remark 5.10. Note that it is also possible to recover depth(S/I ) from gT(I ) for ar-
bitrary graded ideals I ⊂ K [x1, . . . , xn] with dim(S/I )=m and 0< depth(S/I )<
m − 1 in the following way. Let depth(S/I ) = t and let � be the reverse lexico-
graphic term order. Let c be the maximal degree of a minimal generator of any
generic initial ideal with respect to a reverse lexicographic term order. Choose
ω ∈ C̊ for some maximal cone C of gT(I ) as in Lemma 4.8. We now show that
for this particular choice of ω, we have

ω+ cone(en−t+1, . . . , en)⊂ C̊,

but
ω+ cone(en−t , . . . , en) 6⊂ C̊ .

Since � and �ω coincide up to degree c, this implies gin�ω(I ) = gin�(I ). In
particular, depth(S/ gin�ω(I ))= depth(S/I ). By the same proof as in Proposition
5.8, we obtain that ω+ cone(en−t+1, . . . , en)⊂ C̊ .

Assume that ω+ cone(en−t , . . . , en) ⊂ C̊ . Let �′ be the reverse lexicographic
term order with x1 �

′
· · · �

′ xn−t−1 �
′ xn−t+1 �

′
· · · �

′ xn �
′ xn−t . Then we define

ω′ ∈ Rn by ω′i = ωi for i 6= n− t and ω′n−t > ωnc. By assumption, we know that
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ω′ ∈ C̊ . Since �ω′ and �′ coincide up to degree c by Lemma 4.8, we know that
gin�ω′ (I )= gin�′(I ). As in the proof of Theorem 4.9, we get that

gin�ω(I )= gin�(I ) 6= gin�′(I )= gin�ω′ (I ).

This implies inω(g(I )) 6= inω′(g(I )) for g∈U , which is a contradiction toω,ω′∈ C̊ .
Hence, ω+ cone(en−t , . . . , en) 6⊂ C̊ .

To obtain depth(S/I ) from gT(I ), we can therefore determine ω as described
above. Then we have

depth(S/I )=min{t : ω+ cone(en−t+1, . . . , en)⊂ C̊}

for this particular choice of ω.

As we saw in Proposition 5.6, the generic tropical variety of a maximal-gdepth
ideal with dim(S/I ) = m and depth(S/I ) = t with 0 < t < m − 1 always refines
Wm,t

n . It is also true that any of the fans Wm,t
n is the generic tropical variety of some

ideal, which we will see by focusing on a class of strongly stable ideals generated
in degree 2.

Proposition 5.11. Let 0< m < n and 0< t < m− 1. The ideal

I = (x1, . . . , xn−m−1, x2
n−m, xn−m xn−m+1, . . . , xn−m xn−t)⊂ S = K [x1, . . . , xn]

is a maximal-gdepth ideal with dim(S/I )= m, depth(S/I )= t and gT(I )=Wm,t
n

as a fan.

Proof. We first show that dim(S/I ) = m and depth(S/I ) = t . Since I is strongly
stable with respect to the reverse lexicographic order �, we have gin�(I ) = I .
So I has only one minimal prime by [Eisenbud 1995, Corollary 15.25], which is
(x1, . . . , xn−m). Thus, dim(S/I ) = m. To see that depth(S/I ) = t , we note again
that gin�(I )= I . By Proposition 4.3, it follows that depth(S/I )= n− (n− t)= t .
In particular, I is a maximal-gdepth ideal (see Example 5.2).

By Proposition 5.6, we know that every maximal cone C̊ of gT(I ) is contained
in some maximal cone D̊ of Wm,t

n . So it remains to show that for every ω,ω′ ∈ D̊
for some maximal cone D of Wm,t

n , we have inω(g(I ))= inω′(g(I )) for g ∈U . Let
D be the maximal cone of Wm,t

n given by

D̊ = {ω ∈ Rn
: ωi1 = · · · = ωin−m+1 < ωin−m+2, . . . , ωin−t < ωin−t+1, . . . , ωin }

for some permutation (i1, . . . , in) of {1, . . . , n}. Let ω ∈ D̊ be fixed, �ω be the
refinement of ω with respect to the reverse lexicographic order � with xin−m+2 �

· · · � xin � xi1 � · · · � xin−m+1 , and G be the reduced Gröbner basis of g(I ) with
respect to �ω for a fixed g ∈U . Note that xi1 �ω · · · �ω xin−m+1 and xik �ω xi j for
k ∈{n−m+2, . . . , n−t}, j ∈{n−t+1, . . . , n}. Let (q1, . . . , qn) be the permutation
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on {1, . . . , n} such that xq1 �ω xq2 �ω · · · �ω xqn . As in Example 5.2, we know
gin�ω(I )= φ(I ) for the K -algebra isomorphism φ induced by φ(x j )= xq j . So

gin�ω(I )= (xi1, . . . , xin−m−1, x2
in−m

, xin−m xin−m+1, . . . , xin−m xin−t ).

Hence, in�ω( f ) = xi j for some j ∈ {1, . . . , n−m − 1} or in�ω( f ) = xin−m xik for
some k ∈ {n − m, . . . , n − t} for every f ∈ G. Let ω′ ∈ D̊. We now show that
inω( f )= inω′( f ) for every f ∈ G.

If in�ω( f ) = xi j for some j ∈ {1, . . . , n−m − 1}, then by comparing weights,
inω( f ) is exactly the sum of all linear terms aik xik that appear in f , with aik ∈ K ,
k ∈ {1, . . . , n−m − 1}. But the same is true for inω′( f ), since ω and ω′ have the
same minimal coordinates. So in this case inω( f )= inω′( f ).

If in�ω( f ) = xin−m xik for some k ∈ {n −m, . . . , n − t}, we have to distinguish
two subcases.

Case 1. If k = n−m or k = n−m + 1, then inω( f ) is the sum of all monomials
in K [xn−m, xn−m+1] that appear in f . The same is true for inω′( f ) by the same
argument as before, so inω( f )= inω′( f ).

Case 2. For k > n−m+1, we need to show that certain terms cannot appear in f .
First note that no term that is divisible by any of xi1, . . . , xin−m−1 can appear in f ,
since f is part of a reduced Gröbner basis with respect to �ω, and such a term
would be divisible by a leading term of another element of G. For the same reason,
f cannot contain the monomial xin−m xis for s ∈ {n−m + 2, . . . , n− t}\{k}. Note
that x2

in−m+1
cannot appear in f either, since then wtω(x2

in−m+1
) < wtω(xin−m xik ).

Furthermore, assume that f contains the monomial xin−m+1 xis for some index s ∈
{n−m+2, . . . , n− t}\{k}. Then for v ∈Rn with vi1 = · · · = vin−m+1 <vis <vi j for
j ∈{n−m+2, . . . , n}\{k}, we know inv( f )= xin−m+1 xis is a monomial, since every
other possible term of f has greater v-weight. This is a contradiction to v ∈ gT(I ).
This that implies xin−m+1 xis for s ∈ {n−m + 2, . . . , n− t}\{k} does not appear in
f either.

With this we can determine the initial forms inω( f ) and inω′( f ). As we have
wtω(xin−m xik ) = wtω(xin−m+1 xik ), these two terms have to appear in inω( f ), if
xin−m+1 xik is a term of f . Assume there exists another term in inω( f ); then it
would have to be of the form xin−m xir or xin−m+1 xir for some r ∈ {n− t+1, . . . , n},
or of the form xia xib for some a, b∈ {n−m+2, . . . , n−t}. The former can’t occur,
since wtω(xin−m xir )=wtω(xin−m+1 xir ) >wtω(xin−m xik ). Assume that xia xib appears
in inω( f ) for some a, b ∈ {n−m + 2, . . . , n− t}; then of course wtω(xin−m xik ) =

wtω(xia xib). But we know that xia xib � xin−m xik , by the choice of �. This is a
contradiction to in�ω( f )= xin−m xik , so inω( f ) only contains the monomials xin−m xik

and xin−m+1 xik .
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The same is true for inω′( f ), as we will see. We show that in�ω′ ( f ) = xin−m xik

as well. By the same argument as above, it follows that only the terms xin−m xik and
xin−m+1 xik appear in inω′( f ), and thus inω( f ) = inω′( f ). Since wtω′(xin−m xir ) =

wtω′(xin−m+1 xir )>wtω′(xin−m xik ) for r ∈{n−t+1, . . . , n}, terms of this form cannot
occur as the leading term. Assume that in�ω′ ( f )= xia xib for some a, b∈{n−m+2,
. . . , n − t}. Then xia xib ∈ gin�ω′ (I ). But we know that dim(S/ gin�ω′ (I )) =
dim(S/I )=m and xi1 �ω′ · · · �ω′ xin−m �ω′ xi j for j > n−m. By Proposition 4.3,
this implies that gin�ω′ (I ) cannot contain a monomial that is not divisible by one
of xi1, . . . , xn−m , which is a contradiction to xia xib ∈ gin�ω′ (I ).

We have now shown that inω( f )= inω′( f ) for every f ∈ G. Hence, by Lemma
5.7, we have inω(g(I ))= inω′(g(I )) for g ∈U . Thus every maximal cone of Wm,t

n
is contained in a maximal cone of gT(I ). The claim now follows from this together
with Proposition 5.6. �

This of course raises the question of whether it is always true that gT(I )=Wm,t
n

for strongly stable ideals or even maximal-gdepth ideals I ⊂ S = K [x1, . . . , xn]

with dim(S/I ) = m and 0 < depth(S/I ) = t < m − 1. Computations with
gfan [Jensen 2009] indicate that this is not the case. For example, the ideal I =
(x2

1 , x1x2, x1x2
3 , x1x3x4) ⊂ K [x1, . . . , x5] is strongly stable with respect to x1 >

· · ·> x5 and has dimension dim(K [x1, . . . , x5]/I )=4 and depth(K [x1, . . . , x5]/I )
= 1 by Proposition 4.3. However, computing gT(I ) with gfan yields that gT(I )
has 60 maximal cones. Thus gT(I ) 6=W4,1

5 , which has only 30 maximal cones.

Remark 5.12. If depth(S/I )= 0, we cannot make a statement about the fan struc-
ture of the generic tropical variety of I . To see this, we can, for example, consider
the ideals

I = (x1, . . . , xn−m−1, x2
n−m, xn−m xn−m+1, . . . , xn−m xn)⊂ S = K [x1, . . . , xn]

for 0 < m < n, which are the ideals of Proposition 5.11 for t = 0. By the same
argument as before, we have dim(S/I ) = m and depth(S/I ) = 0. Hence, by
Corollary 3.8 we know that gT(I ) as a fan is a refinement of Wm

n . Using the
same arguments as in the proof of Proposition 5.11, we can show that inω(g(I ))=
inω′(g(I )) for ω,ω′ ∈ C̊ for any maximal cone C of Wm

n for every g∈U (as defined
in (2-1)). This shows that gT(I ) is equal to Wm

n as a fan.
On the other hand, we can find ideals with depth(S/I ) = 0 whose generic

tropical variety is a proper refinement of Wm
n . For example, for the ideal I =

(x2
1 , x1x2, x1x2

3 , x1x3x4)⊂ K [x1, . . . , x4] we have dim(K [x1, . . . , x4]/I )= 3 and
depth(K [x1, . . . , x4]/I ) = 0 by Proposition 4.3. If we compute gT(I ) with gfan,
however, we obtain a fan with 12 maximal cones that refines the fan W3

4 with only
6 maximal cones.
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6. Multiplicities

Let S = K [x1, . . . , xn] as before. For a finitely generated graded S-module M , we
denote by HM(t) the Hilbert series of M . Recall that the Hilbert series of 0 6= M
can be written as

HM(t)=
QM(t)
(1−t)d

,

where QM(t) ∈ Z[t, t−1
] is a Laurent polynomial with QM(1) 6= 0 and d is the

Krull dimension of M . It is well-known that QM(1) 6= 0, and this number is called
the multiplicity m(M) of M . As always, we set m(I ) = m(S/I ) = QS/I (1) for a
graded ideal I . We call this the multiplicity of I , although more precisely it is the
multiplicity of S/I .

To express the multiplicity of I in terms of the multiplicities of its minimal
primes, we use the following formula, known as the associativity formula for
multiplicities. Note that all minimal prime ideals of a graded ideal are graded
themselves. For a minimal prime ideal P of I , let `((S/I )P) denote the length of
the localization of the S-module S/I at P . We then have

m(I )=
∑

`((S/I )P)m(P),

with the sum taken over all minimal primes of I such that dim(S/I )= dim(S/P);
see [Vasconcelos 1998, Formula (9. 4)].

We define the multiplicity of a maximal cone in T(I ) in a slightly more general
setting than in [Dickenstein et al. 2007], where the multiplicity of a maximal cone
C in T (P) for a prime ideal P is defined as the sum of the multiplicities of all
monomial-free minimal primes of the initial ideal inC(P) corresponding to C . Note
that by [Gräbe 1993, Theorem 1], for every minimal prime Q of inC(P), we have
dim(S/Q) = dim(S/ inC(P)). For an arbitrary ideal I ⊂ S = K [x1, . . . , xn] this
is not true, and in our definition we consider only those prime ideals P of inC(I )
such that S/P has the same dimension as S/ inC(I ).

Definition 6.1. Let I ⊂ S = K [x1, . . . , xn] be a graded ideal and C be a maximal
cone of T(I ). Let J = inC(I ) be the initial ideal of I corresponding to C . Then
the intrinsic multiplicity m(C) of C is defined as m(C)=

∑
`((S/J )P), where the

sum is taken over all minimal primes P of J with dim(S/P)= dim(S/J ) that do
not contain a monomial.

Note that in general T(I ) need not be pure, so in general this definition of intrin-
sic multiplicities will not give rise to a tropical fan as defined in [Gathmann et al.
2009, Definition 2.8]. However, we only need this definition for generic tropical
varieties, and these are pure by Proposition 3.2. Even if I is a radical ideal and
T(I ) a pure fan, the multiplicity of the cones of T(I ) need not have anything to do
with the multiplicity of I , as the following example shows.
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Example 6.2. Let 0 ≤ k ≤ n and fk = x1 · · · xk(x1 + x2) ∈ K [x1, . . . , xn]. Then
m( fk)= deg( fk)= k+ 1. But we see that for I = ( fk), the tropical variety

T(I )= {ω ∈ Rn
: ω1 = ω2}

consists of only one cone. The corresponding initial ideal is ( fk). By factorization,
this has only one monomial-free minimal prime ideal, which is (x1 + x2). Since
`((S/( fk))(x1+x2)) = 1, the only cone of gT(I ) has multiplicity 1. So in general
it is impossible to obtain the multiplicity of the ideal from the multiplicity of the
maximal cones of the tropical variety, at least for ideals that are not prime.

In contrast, we can now prove that generically, the intrinsic multiplicities of the
maximal cones in the tropical variety are constant and equal to the multiplicity of
the ideal. For this, we first show that for a graded ideal I , the minimal prime ideals
of the initial ideals of I that correspond to the maximal cones in gT(I ) contain
no monomial. Recall that by U , we denote the Zariski-open subset of GLn(K ) as
defined in (2-1).

Proposition 6.3. Let I ⊂ S= K [x1, . . . , xn] be a graded ideal with dim(S/I )=m.
Let C be a maximal cone of gT(I ) and ω ∈ C̊. Then no minimal prime P of
inω(g(I )) with dim(S/P)= m contains a monomial for g ∈U.

Proof. Since gT(I ) =Wm
n as a set, we can assume ω1 = · · · = ωn−m+1 < ω j for

j > n − m + 1 without loss of generality. For g ∈ U , let inω(g(I )) ⊂ P be a
minimal prime ideal with dim(S/P) = m. Assume that P contains a monomial
xν . Since P is prime, this implies that P contains a variable xk for some k. We
choose {i1, . . . , in−m} ⊂ {1, . . . , n−m+ 1}\{k} and a term order � such that

xi1 � xi2 � · · · � xin−m � x j for j /∈ {i1, . . . , in−m}.

Then
gin�ω(I )= in�(inω(g(I )))⊂ in�(P),

with dim(S/ gin�ω(I )) = dim(S/ in�(P)) = m. Let Q be a minimal prime of
in�(P). Since the dimensions coincide, Q is also a minimal prime of gin�ω(I ).
But gin�ω(I ) has only one minimal prime, which is (xi1, . . . , xin−m ) by the choice
of the term order �; see for example [Eisenbud 1995, Corollary 15.25]. Hence, Q
does not contain xk . This is a contradiction to the fact that xk ∈ P , and therefore
xk ∈ in�(P)⊂ Q. Thus, P cannot contain a monomial. �

Remark 6.4. Note that together with [Römer and Schmitz 2009, Lemma 7.2],
where gT(I ) can be replaced by T(g(I )) for every g ∈U, and [Römer and Schmitz
2009, Corollary 3.2], this gives another, simpler proof that generic tropical varieties
exist as described in [Römer and Schmitz 2009].
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To use the associativity formula for multiplicities to show that m(C)=m(I ) in
generic tropical varieties, we need to show that generically all minimal primes of
inω(g(I )) have multiplicity 1. This we do by showing that they are linear, that is,
generated by linear forms.

Lemma 6.5. Let P ⊂ K [x1, . . . , xn] be a graded prime ideal with dim(S/P)= 1.
Then P is a linear ideal.

Proof. As P 6= (x1, . . . , xn), we know that V (P) 6= {0}. Let

0 6= a = (a1, . . . , an) ∈ V (P)⊂ K n.

Then V (Q) = K (a1, . . . , an) for the linear ideal Q = (ai x j − a j xi : i < j).
Since V (Q) ⊂ V (P) and both are prime, this implies P ⊂ Q ⊂ (x1, . . . , xn).
But dim(S/P)= 1 and Q 6= (x1, . . . , xn), hence P = Q is linear. �

Lemma 6.6. For a fixed t < n, let R = K [x1, . . . , xt ]. Let J ⊂ S = K [x1, . . . , xn]

be a graded ideal and J ⊂ P ⊂ S be a minimal prime of J with dim(S/J ) =
dim(S/P)= m. If (J ∩ R)S = J , then also (P ∩ R)S = P.

Proof. It is clear that (P ∩ R)S ⊂ P . As J ⊂ P , we know that J = (J ∩ R)S ⊂
(P ∩ R)S ⊂ P . Since P is prime, so are P ∩ R and (P ∩ R)S. But P is a minimal
prime of J , and hence (P ∩ R)S = P . �

With this we can prove that for I ⊂ K [x1, . . . , xn], the minimal primes of the
initial ideals corresponding to the maximal cones of gT(I ) of the same dimension
as S/I have multiplicity 1.

Proposition 6.7. Let I ⊂ S= K [x1, . . . , xn] be a graded ideal with dim(S/I )=m
and ω∈ C̊ for some maximal cone C of gT(I ). Then for every g ∈U, every minimal
prime P of inω(g(I )) with dim(S/P) = dim(S/ inω(g(I ))) is a linear ideal. In
particular, m(P)= 1.

Proof. Without loss of generality we can assume ω1 = · · · = ωn−m+1 < ω j for
j > n − m + 1. Let g ∈ U , and let inω(g(I )) ⊂ P be a minimal prime with
dim(S/P) = m. Let G = { f1, . . . , ft } be a reduced Gröbner basis of g(I ) with
respect to �ω for a term order � with x1 � · · · � xn . Then

(in�ω( fi ) : i = 1, . . . , t)= in�(inω(g(I )))= gin�ω(I ).

Note that x1 �ω · · · �ω xn−m+1 �ω x j for j > n−m+1. Let A⊂ {1, . . . , t} be the
set of all indices i such that in�ω( fi )∈ K [x1, . . . , xn−m]. We define J̃ = (in�ω( fi ) :

i ∈ A) to be the ideal generated by all initial forms of elements in G that are not
divisible by xn−m+1, . . . , xn . Since J̃ ⊂ gin�ω(I ), we know that dim(S/ J̃ ) ≥ m.
As gin�ω(I ) is a strongly stable ideal, by Proposition 4.3 there exists 1 ≤ k ≤ t
such that in�ω( fk) = xd

n−m for some d ∈ N. Hence, xd
n−m ∈ J̃ . But J̃ is also a
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strongly stable ideal, so again by Proposition 4.3 it follows that dim(S/ J̃ ) ≤ m.
Thus, dim(S/ J̃ )= m. We set J = (inω( fi ) : i ∈ A). Then we have

m = dim(S/ inω(g(I )))≤ dim(S/J )= dim(S/ in�(J ))≤ dim(S/ J̃ )= m,

where the first inequality holds because J ⊂ inω(g(I )), and the second because
J̃ ⊂ in�(J ). So dim(S/J )=m. Since J ⊂ inω(g(I ))⊂ P and all considered rings
have the same dimension, P is also a minimal prime ideal of J .

Let R be the polynomial ring K [x1, . . . , xn−m+1], so S = R[xn−m+2, . . . , xn].
For i ∈ A, every term of fi that has minimal ω-weight has to be a term in R by the
choice of ω. So we know that J = (J ∩ R)S. From Lemma 6.6 it now follows that
P = (P ∩ R)S. Let P̃ = P ∩ R. Then we have

S/P = S/(P̃ S)∼= R/P̃[xn−m+2, . . . , xn].

Hence, dim(S/P)= dim(R/P̃)+(m−1), so R/P̃ has dimension m−(m−1)= 1
in R. By Lemma 6.5, we know that P̃ is linear. So P = P̃ S is linear as well and
in particular, m(P)= 1. �

Theorem 6.8. Let I ⊂ S = K [x1, . . . , xn] be a graded ideal with dim(S/I ) = m.
Then for g ∈ U and any maximal cone C of T(g(I )), we have m(C) = m(I ), so
the intrinsic multiplicity of every maximal cone equals the multiplicity of I .

Proof. First note that the Hilbert series and thus the multiplicity of I does not
change if one passes to any initial ideal of I ; see for example [Eisenbud 1995,
Theorem 15.26]. Moreover, the Hilbert series is of course not affected by a coor-
dinate change.

By Proposition 6.3, for g ∈ U and any maximal cone C of T(g(I )) = gT(I ),
we know that every minimal prime P of inC(g(I )) with dim(S/P) = m does not
contain a monomial. Moreover, by Proposition 6.7, every such minimal prime P
of inC(g(I )) has multiplicity m(P) = 1. Thus with the associativity formula for
multiplicities, we get

m(C)=
∑

`((S/ inC(g(I )))P)=
∑

`((S/ inC(g(I )))P)m(P)

= m(inC(g(I )))= m(I ),

as the sum is taken over all minimal primes of inC(g(I )) with dim(S/P)= m. �

Remark 6.9. The fan gT(I ) equipped with the weights m(C) for the maximal
cones C ∈ gT(I ) is a tropical fan in the sense of [Gathmann et al. 2009, Defi-
nition 2.8]. It can be shown directly by elementary methods that the balancing
condition is fulfilled for each cone of dimension dim(S/I )−1. See [Speyer 2005,
Theorem 2.5.1] for a proof in a more general case.
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We briefly explain [Dickenstein et al. 2007, Example (1)] in our case. This
example states that for an irreducible polynomial f ∈ K [x1, . . . , xn], the intrinsic
multiplicity m(C) of a given cone C of T ( f ) is exactly the lattice length of the
edge corresponding to C in the Newton polytope of f . Here, the lattice length of
an edge is defined as the number of integer points on this edge minus 1.

Example 6.10. Let 0 6= f ∈K [x1, . . . , xn] be a homogeneous polynomial of degree
t . Then every maximal cone of gT( f ) has multiplicity t , as m(g( f ))=deg g( f )= t
for every g ∈ U . Let N (g( f )) be the Newton polytope of g( f ) for g ∈ U . By
[Römer and Schmitz 2009, Lemma 8.5], for g ∈U we know that

N (g( f ))= conv(te1, . . . , ten),

where e1, . . . , en are the standard basis vectors in Rn . Now a maximal cone C of
gT( f ) is given by

C = {ω ∈ Rn
: ωi1 = ωi2 ≤ ωi j for j 6= 1, 2}

for some coordinates i1, i2. This corresponds to the edge conv(tei1, tei2) of N (g( f ))
for g ∈ U . This edge has lattice length t , that is, |{Zn

∩ conv(tei1, tei2)}| = t + 1.
So the lattice length coincides with the intrinsic multiplicity m(C).
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