
Algebra &
Number
Theory

mathematical sciences publishers

Volume 4

2010
No. 5

Transverse quiver Grassmannians and bases in affine
cluster algebras

Grégoire Dupont



ALGEBRA AND NUMBER THEORY 4:5(2010)

Transverse quiver Grassmannians and
bases in affine cluster algebras

Grégoire Dupont

Sherman, Zelevinsky and Cerulli constructed canonically positive bases in clus-
ter algebras associated to affine quivers having at most three vertices. Their con-
structions involve cluster monomials and normalized Chebyshev polynomials of
the first kind evaluated at a certain “imaginary” element in the cluster algebra.
Using this combinatorial description, it is possible to define for any affine quiver
Q a set B(Q), which is conjectured to be the canonically positive basis of the
acyclic cluster algebra A(Q).

In this article, we provide a geometric realization of the elements in B(Q) in
terms of the representation theory of Q. This is done by introducing an analogue
of the Caldero–Chapoton cluster character, where the usual quiver Grassmannian
is replaced by a constructible subset called the transverse quiver Grassmannian.

1. Introduction 599
2. Background, notation and terminology 602
3. Difference properties of higher orders 608
4. Integrable bundles on repk(Q) and their characters 615
5. A geometrization of B(Q) 617
6. Examples 620
Acknowledgements 623
References 623

1. Introduction

Cluster algebras were introduced by Fomin and Zelevinsky [2002; 2003; 2007;
Berenstein et al. 2005] in order to define a combinatorial framework for studying
positivity in algebraic groups and canonical bases in quantum groups. Since then,
cluster algebras have found applications in various areas of mathematics, such
as Lie theory, combinatorics, Teichmüller theory, Poisson geometry and quiver
representations.
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A (coefficient-free) cluster algebra A is a commutative Z-algebra equipped with
a distinguished set of generators, called cluster variables, gathered into possibly
overlapping sets of fixed cardinality, called clusters. Monomials in variables be-
longing all to the same cluster are called cluster monomials. According to the
Laurent phenomenon [Fomin and Zelevinsky 2002], it is known that A is a subal-
gebra of Z[c±1

] for any cluster c in A. A nonzero element y ∈A is called positive
if y belongs to Z≥0[c±1

] for any cluster c in A. Following [Cerulli 2009], a Z-
basis B ⊂ A is called canonically positive if the semiring of positive elements in
A coincides with the set of Z≥0-linear combinations of elements of B. Note that
if such a basis exists, it is unique.

The problems of existence and description of a canonically positive basis in an
arbitrary cluster algebra are still wide open. Both problems were first solved in the
particular case of cluster algebras of finite type A2 and affine type Ã1,1 by Sherman
and Zelevinsky [2004]. It was later extended by Cerulli [2009] for cluster algebras
of affine type Ã2,1. To the best of the author’s knowledge, these are the only known
constructions of canonically positive bases in cluster algebras.

Using categorifications of acyclic cluster algebras with cluster categories and
cluster characters, it is possible to rephrase Sherman–Zelevinsky and Cerulli con-
structions in order to place them in the more general context of acyclic cluster
algebras associated to arbitrary affine quivers.

If Q is an acyclic quiver and u is a Q0-tuple of indeterminates over Z, we
denote by A(Q) the acyclic cluster algebra with initial seed (Q, u). We denote
by CQ the associated cluster category (over the field k of complex numbers) and
by X? : Ob(CQ) → Z[u±1

] the Caldero–Chapoton map on CQ , also called the
(canonical) cluster character (see Section 2 for details). When Q is an affine
quiver with positive minimal imaginary root δ, we set

B(Q)=M(Q)t {Fn(Xδ)X R | n ≥ 1 and R is a regular rigid kQ-module},

where M(Q) denotes the set of cluster monomials in A(Q), Fn denotes the n-th
normalized Chebyshev polynomial of the first kind and Xδ is the evaluation of X?

at any quasisimple module in a homogeneous tube of the Auslander–Reiten quiver
0(kQ-mod) of kQ-mod.

If Q is of type Ã1,1 or Ã2,1, the set B(Q) coincides with the canonically positive
basis constructed in [Sherman and Zelevinsky 2004] and [Cerulli 2009], respec-
tively. It was conjectured in [Dupont 2010, Conjecture 7.10] that, for any affine
quiver Q, the set B(Q) is the canonically positive basis of A(Q). Using the generic
basis, it is possible to prove that, for any affine quiver Q, the set B(Q) is a Z-basis
in A(Q) [Dupont 2008; Ding et al. 2009]. Nevertheless, it is not known if this
basis is the canonically positive basis in general.
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An essential problem in investigating this question is that the elements of the
form Fn(Xδ)X R are defined combinatorially, and as yet have no representation-
theoretic or geometric interpretation. The aim of this article is to provide such an
interpretation.

Extending the idea of Caldero and Chapoton [2006], for any integrable bundle F

on repk(Q) (see Section 4 for definitions), we define a map θF, called the character
associated to F, from the set of objects in CQ to the ring Z[u±1

]. With this termi-
nology, the Caldero–Chapoton map X? is the character θGr, where Gr :M 7→Gr(M)
denotes the integrable bundle of quiver Grassmannians.

For any indecomposable kQ-module M , we introduce a constructible subset
Tr(M) ⊂ Gr(M), called the transverse quiver Grassmannian. We prove that the
bundle Tr : M 7→ Tr(M) is integrable on repk(Q) and that the elements in B(Q)
can be described using the associated character θTr. More precisely, we prove that
for any l ≥ 1,

Fl(Xδ)= θTr(M),

where M is any indecomposable kQ-module with dimension vector lδ. It turns out
that θTr, unlike θGr, is independent of the tube containing M . In particular, it takes
the same values if M belongs to a homogeneous or to an exceptional tube. This is
surprising since the usual quiver Grassmannians of two indecomposable modules
of dimension lδ belonging to tubes of different ranks are in general completely
different.

Moreover, if R is an indecomposable regular rigid kQ-module, then

Fl(Xδ)X R = θTr(M),

where M is the unique indecomposable kQ-module of dimension lδ+dim R.
As a consequence, we obtain the following description of the set B(Q):

B(Q)=
{
θTr(M⊕ R)

∣∣∣ M is an indecomposable (or zero) regular kQ-module,
R is any rigid object in CQ such that Ext1CQ

(M, R)= 0

}
.

This paper is organized as follows. In Section 2, we start by recalling several
results concerning Chebyshev and generalized Chebyshev polynomials. Then we
recall necessary background on cluster categories and cluster characters associ-
ated to acyclic and especially affine quivers. Finally, we recall the known results
concerning constructions of bases in affine cluster algebras.

In Section 3, we use the combinatorics of generalized Chebyshev polynomials to
prove relations for cluster characters associated to regular kQ-modules when Q is
an affine quiver with minimal imaginary root δ. These relations are generalizations
of the difference property [Dupont 2008], used to compute the difference between
cluster characters evaluated at indecomposable modules of dimension vector δ in
different tubes.
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Section 4 introduces the notions of integrable bundles on repk(Q) and associated
characters for any acyclic quiver. With this terminology, the Caldero–Chapoton
map is the character associated to the quiver Grassmannian bundle. For affine
quivers, we introduce the integrable bundle Tr of the Grassmannian of transverse
submodules and see that it coincides with the Caldero–Chapoton map on rigid
objects in the cluster category.

In Section 5, we prove that the elements in B(Q) can be expressed as values of
the character θTr associated to the integrable bundle Tr of repk(Q). This provides
a geometrization of the set B(Q).

In Section 6, we illustrate some of our results for quivers of affine types Ã1,1

and Ã2,1, putting [Sherman and Zelevinsky 2004; Cerulli 2009] into context.

2. Background, notation and terminology

Given a quiver Q, we denote by Q0 its set of arrows and by Q1 its set of vertices.
We always assume that Q0, Q1 are finite sets and that the underlying unoriented
graph of Q is connected. A quiver is called acyclic if it does not contain any
oriented cycles.

We now fix an acyclic quiver Q and a Q0-tuple u=(ui | i ∈Q0) of indeterminates
over Z. We denote by A(Q) the coefficient-free cluster algebra with initial seed
(Q, u).

Chebyshev polynomials and their generalizations. Chebyshev (respectively gen-
eralized Chebyshev) polynomials are orthogonal polynomials in one variable (re-
spectively several variables) playing an important role in the context of cluster al-
gebras associated to representation-infinite quivers [Sherman and Zelevinsky 2004;
Caldero and Zelevinsky 2006] (respectively [Dupont 2009; 2010]). We recall some
basic results concerning these polynomials.

For any l ≥ 0, the l-th (normalized) Chebyshev polynomial of the first kind is
the polynomial Fl in Z[x] defined inductively by

F0(x)= 2, F1(x)= x, and Fl(x)= x Fl−1(x)− Fl−2(x) for any l ≥ 2.

Fl is characterized by the following identity in Z[t, t−1
]:

Fl(t + t−1)= t l
+ t−l .

These polynomials first appeared in the context of cluster algebras in [Sherman
and Zelevinsky 2004].

For any l ≥ 0, the l-th (normalized) Chebyshev polynomial of the second kind is
the polynomial Sl in Z[x] defined inductively by

S0(x)= 1, S1(x)= x, and Sl(x)= x Sl−1(x)− Sl−2(x) for any l ≥ 2.
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Sl is characterized by the following identity in Z[t, t−1
]:

Sl(t + t−1)=

n∑
k=0

tn−2k .

Chebyshev polynomials of the Second kind first appeared in the context of cluster
algebras in [Caldero and Zelevinsky 2006]. For any l ≥ 1, Sl(x) is the polynomial
given by

Sl(x)= det



x 1 (0)

1 x
. . .

. . .
. . .

. . .
. . .

. . . 1
(0) 1 x


,

where the matrix is tridiagonal in Ml(Z[x]). The two kinds of Chebyshev polyno-
mials are related by

Fl(x)= Sl(x)− Sl−2(x)

for any l ≥ 1, with the convention that S−1(x)= 0.
Fix a family {xi | i ≥ 1} of indeterminates over Z. For any l≥0, the l-th general-

ized Chebyshev polynomial is the polynomial in Z[x1, . . . , xl] defined inductively
by P0 = 1, P1(x1)= x1, and

Pl(x1, . . . , xl)= xl Pl−1(x1, . . . , xl−1)− Pl−2(x1, . . . , xl−2) for any l ≥ 2.

Equivalently,

Pl(x1, . . . , xl)= det



xl 1 (0)

1 xl−1
. . .

. . .
. . .

. . .
. . .

. . . 1
(0) 1 x1


,

where the matrix is tridiagonal in Ml(Z[x1, . . . , xl]). These polynomials first ap-
peared in the context of cluster algebras in [Dupont 2009] under the name of gener-
alized Chebyshev polynomials of infinite rank, and similar polynomials also arose
in the context of cluster algebras in [Yang and Zelevinsky 2008; Dupont 2010].

Cluster categories and cluster characters. Let kQ-mod be the category of finitely
generated left-modules over the path algebra kQ of Q. As usual, this category will
be identified with the category repk(Q) of finite-dimensional representations of Q
over k.

For any vertex i ∈ Q0, we denote by Si the simple module associated to i ,
by Pi its projective cover, and by Ii its injective hull. We denote by 〈− ,−〉 the
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homological Euler form defined on kQ-mod by

〈M, N 〉 = dim HomkQ(M, N )− dim Ext1kQ(M, N )

for any two kQ-modules M, N . Since Q is acyclic, kQ is a finite-dimensional
hereditary algebra, and therefore 〈− ,−〉 is well-defined on the Grothendieck group
K0(kQ-mod).

For any kQ-module M , the dimension vector of M is

dim M = (dim HomkQ(Pi ,M))i∈Q0 ∈ NQ0 .

Viewed as a representation of Q, dim M = (dim M(i))i∈Q0 where M(i) is the k-
vector space at vertex i in the representation M of Q. The dimension vector map
dim induces an isomorphism of abelian groups

dim : K0(kQ-mod)
∼
−→ ZQ0

sending the class of the simple Si to the i-th vector of the canonical basis of ZQ0 .
The cluster category was introduced in [Buan et al. 2006] (see also [Caldero

et al. 2006] for Dynkin type A) in order to define a categorical framework for study-
ing the cluster algebra A(Q). Let Db(kQ-mod) be the bounded derived category
of kQ-mod with shift functor [1] and Auslander–Reiten translation τ . The cluster
category is the orbit category CQ of the auto-functor τ−1

[1] in Db(kQ-mod). It
is a 2-Calabi–Yau triangulated category. The set of isoclasses of indecomposable
objects in CQ can be identified with the union of the set of isoclasses of inde-
composable kQ-modules and the set of isoclasses of shifts of indecomposable
projective kQ-modules [Keller 2005; Buan et al. 2006]. In particular, every object
M in CQ can be uniquely (up to isomorphism) decomposed into

M = M0⊕ PM [1],

where M0 is a kQ-module and PM is a projective kQ-module.
Given a representation M of Q, the quiver Grassmannian of M is the set Gr(M)

of all subrepresentations of M . For any element e ∈ ZQ0 , the set

Gre(M)= {N submodule of M | dim N = e}

is a projective variety. We denote by χ(Gre(M)) its Euler characteristic with re-
spect to the singular cohomology with rational coefficients.

Definition 2.1 [Caldero and Chapoton 2006]. The Caldero–Chapoton map is the
map

X? : Ob(CQ)→ Z[u±1
]

defined by:
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• For any i ∈ Q0,
X Pi [1] = ui .

• If M is an indecomposable kQ-module, then

X M =
∑

e∈NQ0

χ(Gre(M))
∏

i∈Q0

u−〈e,Si 〉−〈Si ,dim M−e〉
i . (2-1)

• For any two objects M, N in CQ ,

X M⊕N = X M X N .

Note that (2-1) also holds for decomposable modules.
Caldero and Keller [2006, Theorem 4] proved that X? induces a 1-1 correspon-

dence between the set of isoclasses of indecomposable rigid objects (that is, with-
out self-extensions) in CQ and the set of cluster variables in A(Q). Moreover,
X? induces a 1-1 correspondence between the set of isoclasses of cluster-tilting
objects in CQ and the set of clusters in A(Q). In particular, we have the following
description of cluster monomials in A(Q):

M(Q)= {X M | M is rigid in CQ}.

For any d= (di )i∈Q0 ∈ZQ0 , we set ud
=
∏

i∈Q0
udi

i . For any Laurent polynomial
L ∈ Z[u±1

], the denominator vector of L is the Q0-tuple den(L) ∈ ZQ0 such that
there exists a polynomial P(ui | i ∈ Q0) not divisible by any ui such that

L =
P(ui | i ∈ Q0)

uden(L) .

We define the dimension vector map dim CQ on CQ by setting dim CQ M = dim M
if M is a kQ-module and dim CQ Pi [1] = −dim Si and extending by additivity.
Note that, for any kQ-module M , we have dim M = dim CQ (M); we will abuse
notation and write dim M for any object in CQ . Caldero and Keller’s denominator
theorem [2006, Theorem 3] relates the denominator vector of the character with
the dimension vector of the corresponding object in the cluster category:

den(X M)= dim M,

for any object M in CQ .

Representation theory of affine quivers. We shall briefly recall some well-known
facts concerning the representation theory of affine quivers. We refer the reader to
[Simson and Skowroński 2007; Ringel 1984] for details.

We now fix an affine quiver Q, that is, an acyclic quiver of type Ãn, (n ≥ 1),
D̃n, (n ≥ 4), Ẽn, (n = 6, 7, 8). We will say that a quiver is of affine type Ãr,s if it
is an orientation of an affine diagram of affine type Ãr+s−1, with r arrows going
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clockwise and s arrows going counterclockwise. Let gQ denote the Kac–Moody
algebra associated to Q.

We denote by8>0 the set of positive roots of gQ , by8re
>0 the set of positive real

roots and by8im
>0 the set of positive imaginary roots. Since Q is affine, there exists

a unique δ ∈8>0 such that 8im
>0 = Z>0δ. We always identify the root lattice of gQ

with ZQ0 by sending the i-th simple root of gQ to the i-th vector of the canonical
basis of ZQ0 .

According to Kac’s theorem, for any d ∈ NQ0 , there exists an indecomposable
representation M such that dim M = d if and only if d ∈ 8>0. Moreover, this
representation is unique up to isomorphism if and only if d ∈8re

>0. A positive root
d is called a Schur root if there exists a (necessarily indecomposable) representation
M of Q such that dim M = d and EndkQ(M)' k.

We define a partial order ≤ on the root lattice by setting

e ≤ f ⇐⇒ ei ≤ di for any i ∈ Q0,

and we set
e� f if e ≤ f and e 6= f .

The Auslander–Reiten quiver 0(kQ-mod) of kQ-mod contains infinitely many
connected components. There exists a connected component containing all the
projective (resp. injective) modules, called the preprojective (resp. preinjective)
component of 0(kQ-mod) and denoted by P (resp. I). The other components are
called regular. A kQ-module M is called preprojective, preinjective, or regular if
each indecomposable direct summand of M belongs to a component with the same
property.

It is convenient to introduce the so-called defect form on ZQ0 . It is given by

∂? : Z
Q0 → Z, e 7→ ∂e = 〈δ, e〉 .

By definition, the defect ∂M of a kQ-module M is the defect ∂dim M of its dimension
vector. It is well-known that an indecomposable kQ-module M is preprojective,
preinjective, or regular depending on whether ∂M is negative, positive or zero.

The regular components in 0(kQ-mod) form a P1(k)-family of tubes. Thus,
for every tube T, there exists an integer p ≥ 1, called the rank of T, such that
T' ZA∞/(τ

p). The tubes of rank 1 are called homogeneous, while those of rank
p > 1 are called exceptional. At most three tubes are exceptional in 0(kQ-mod).
It is well-known that the full subcategory of kQ-mod formed by the objects in any
tube T is standard, that is, isomorphic to the mesh category of T. It is also known
that there are neither morphisms nor extensions between pairwise distinct tubes.

An indecomposable regular kQ-module M is called quasisimple if it is at the
mouth of the tube, or equivalently, if it does not contain any proper regular submod-
ule. For any quasisimple module R in a tube T and any integer l ≥ 1, we denote by
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R(l) the unique indecomposable kQ-module with quasisocle R and quasilength l.
For any indecomposable regular kQ-module R(l), we denote by

qsoc R(l) = R

the quasisocle of M and by

qrad R(l) = R(l−1)

the quasiradical of M with the convention that R(0) = 0.
For any indecomposable regular kQ-module M , we have

M is rigid ⇐⇒ dim M � δ; EndkQ(M)' k ⇐⇒ dim M ≤ δ.

Cluster characters associated to modules in tubes are known to be governed by
the combinatorics of generalized Chebyshev polynomials. More precisely, it is
proved in [Dupont 2009, Theorem 5.1] that for any quasisimple module M in a
tube T, we have

X M (l) = Pl(X M , Xτ−1 M , . . . , Xτ−l+1 M).

In particular, if T is homogeneous, we get X M (l) = Sl(X M), recovering a result of
[Caldero and Zelevinsky 2006].

In [Dupont 2009, Theorem 7.2], generalized Chebyshev polynomials provide
multiplication formulas for cluster characters associated to indecomposable regular
kQ-modules. The following theorem will be essential in the proofs.

Theorem 2.2 [Dupont 2009]. Let Q be an affine quiver and T be a tube of rank p
in 0(kQ-mod). Let Ri , i ∈ Z denote the quasisimple modules in T ordered such
that τ Ri ' Ri−1 and Ri+p ' Ri for any i ∈ Z. Let m, n > 0 be integers and
j ∈ [0, p−1]. Then, for every k ∈ Z such that 0< j+kp ≤ n and m ≥ n− j−kp,
we have the identity

X R(m)j
X R(n)0

= X R(m+ j+kp)
0

X R(n− j−kp)
j

+ X R( j+kp−1)
0

X R(m+ j+kp−n−1)
n+1

.

Bases in affine cluster algebras. We shall now review some results concerning
the construction of Z-bases in cluster algebras associated to affine quivers. In this
section, Q still denotes an affine quiver with positive minimal imaginary root δ.

If M, N are quasisimple modules in distinct homogeneous tubes, then X M= X N ;
see [Dupont 2008], for example. We denote this common value by Xδ, and call it
the generic variable of dimension δ, as in that earlier paper.

Theorem 2.3 [Dupont 2008; Ding et al. 2009]. Let Q be an affine quiver. Then

G(Q)=M(Q)t
{

X l
δX R | l ≥ 1, R is a regular rigid kQ-module

}
is a Z-basis of A(Q).

Moreover, den induces a 1-1 correspondence from G(Q) to ZQ0 .
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The set G(Q) is called the generic basis of A(Q).
Since Fl and Sl are monic polynomials of degree l, it follows that, for any affine

quiver Q, the sets

B(Q)=M(Q)t {Fl(Xδ)X R | l ≥ 1, R is a regular rigid kQ-module}

and
C(Q)=M(Q)t {Sl(Xδ)X R | l ≥ 1, R is a regular rigid kQ-module}

are Z-bases of the cluster algebra A(Q).
When Q is the Kronecker quiver, B(Q) coincides with the canonically positive

basis constructed in [Sherman and Zelevinsky 2004] and C(Q) coincides with the
basis constructed in [Caldero and Zelevinsky 2006]. When Q is a quiver of affine
type Ã2,1, the basis B(Q) is the canonically positive basis of A(Q) constructed in
[Cerulli 2009].

Since Xδ= X M for any quasisimple module M in a homogeneous tube, it follows
that Sl(Xδ)= X M (l) for any l ≥ 0, so the set C(Q) has an interpretation in terms of
the cluster character X? . No such interpretation had been known for the set B(Q);
this paper provides one.

The map φ :G(Q)→B(Q) preserving cluster monomials and sending X l
δX R to

Fl(Xδ)X R for any l ≥ 1 and any rigid regular module R is a 1-1 correspondence.
We denote by

b? : Z
Q0 1:1
−→B(Q), d 7→ bd

the 1-1 correspondence obtained by composing the bijection above with the one
provided in Theorem 2.3.

3. Difference properties of higher orders

Here Q still denotes an affine quiver with positive minimal imaginary root δ.

The difference property. In [Dupont 2008] we introduced the difference property,
which relates the possibly different values of cluster characters evaluated at differ-
ent indecomposable representations of dimension δ. The difference property was
crucial in that article. It is also an essential ingredient in this one, since transverse
Grassmannians will arise precisely from difference properties of higher orders.

This difference property was established in [Dupont 2008] for affine type Ã and
in [Ding et al. 2009] in general. It can be expressed as follows:

Theorem 3.1 [Dupont 2008; Ding et al. 2009]. If Q is an affine quiver and M is
any indecomposable module of dimension δ, then

bδ = Xδ = X M − Xqrad M/ qsoc M ,

with the convention that Xqrad M/ qsoc M = 0 if M is quasisimple.
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Higher-difference properties. The aim of this section is to provide an analogue
of Theorem 3.1 for bd when d is any positive root with zero defect. We will first
consider the imaginary roots and then the real roots of defect zero.

We fix a tube T in 0(kQ-mod) of rank p≥1. The quasisimples of T are denoted
by Ri , with i ∈ Z/pZ, ordered so that τ Ri ' Ri−1 for any i ∈ Z/pZ. Note that for
any l ≥ 1 and 0≤ k ≤ p−1 and any i ∈ Z/pZ, we have dim R(lp)i = lδ ∈8im

>0 and
dim R(lp+k)

i ∈8re
>0 if k 6= 0.

The following technical lemma will be used in the proof of Proposition 3.3:

Lemma 3.2. With the notation above, for any l ≥ 1,

X R(lp−1)
0

X R(p−1)
1
= X R(p−1)

0
X R(lp−1)

1
.

Proof. We first notice that generalized Chebyshev polynomials are symmetric in
the sense that for every i ∈ Z and n ≥ 1,

Pn(xi , . . . , xi+n−1)= Pn(xi+n−1, . . . , xi ).

If l = 1, the result is obvious. We thus fix some l ≥ 2. For technical convenience,
we denote by Ri , i ∈Z the quasisimple modules in T and we assume that Ri ' Ri+p

for every i ∈ Z. Consider the morphism of Z-algebras

φ : Z[X R0, . . . , X Rlp−1] → Z[X R0, . . . , X Rlp−1]

X Ri 7→ X Rlp−1−i for all i = 0, . . . , lp− 1.

It is well-defined since X R0, . . . , X Rp−1 are known to be algebraically independent
over Z (see for example [Dupont 2009]).

According to Theorem 2.2, we have

X R(p−1)
1

X R(lp−1)
0
= X R(p)0

X R(lp−2)
1
− X R((l−1)p−2)

p+1
.

According to [Dupont 2009, Theorem 5.1], each of the X (k)
R j

appearing above lies
in Z[X R0, . . . , X Rlp−1]. We can thus apply φ and we get

φ(X R(p−1)
1

)φ(X R(lp−1)
0

)= φ(X R(p)0
)φ(X R(lp−2)

1
)−φ(X R((l−1)p−2)

p+1
). (3-1)

We now compute these images under φ.

φ(X R(p−1)
1

)= φ(Pp−1(X R1, . . . , X Rp−1))

= Pp−1(φ(X R1), . . . , φ(X Rp−1))= Pp−1(X Rlp−2, . . . , X R(l−1)p)

= Pp−1(X R(l−1)p , . . . , X Rlp−2)= X R(p−1)
(l−1)p
= X R(p−1)

0
;
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φ(X R(lp−1)
0

)= φ(Plp−1(X R0, . . . , X Rlp−2))

= Plp−1(φ(X R0), . . . , φ(X Rlp−2))= Plp−1(X Rlp−1, . . . , X R1)

= Plp−1(X R1, . . . , X Rlp−1)= X R(lp−1)
1
;

φ(X R(p)0
)= φ(Pp(X R0, . . . , X Rp−1))= Pp(φ(X R0), . . . , φ(X Rp−1))

= Pp(X Rlp−1, . . . , X R(l−1)p)= Pp(X R(l−1)p , . . . , X Rlp−1)

= X R(p)(l−1)p
= X R(p)0

;

φ(X R(lp−2)
1

)= φ(Plp−2(X R1, . . . , X Rlp−2))

= Plp−2(φ(X R1), . . . , φ(X Rlp−2))= Plp−2(X Rlp−2, . . . , X R1)

= Plp−2(X R1, . . . , X Rlp−2)= X R(lp−2)
1
;

φ(X R((l−1)p−2)
p+1

)= φ(P(l−1)p−2(X Rp+1, . . . , X Rlp−2))

= P(l−1)p−2(φ(X Rp+1), . . . , φ(X Rlp−2))

= P(l−1)p−2(X R(l−1)p−2, . . . , X R1)

= P(l−1)p−2(X R1, . . . , X R(l−1)p−2)= X R((l−1)p−2)
1

.

Substituting in (3-1), we get

X R(p−1)
0

X R(lp−1)
1
= X R(p)0

X R(lp−2)
1
− X R((l−1)p−2)

1

= X R(p)0
X R(lp−2)

1
− X R((l−1)p−2)

p+1
= X R(p−1)

1
X R(lp−1)

0
. �

We can now prove some higher-difference properties for imaginary roots.

Proposition 3.3. Fix l ≥ 1. Then for any indecomposable representation M in
repk(Q, lδ), we have

blδ = Fl(Xδ)= X M − Xqrad M/ qsoc M ,

with the convention that Xqrad M/ qsoc M = 0 if M is quasisimple.

Proof. We first treat the case where M is an indecomposable representation of
dimension lδ in a homogeneous tube. It is not necessary to prove it separately but
in this particular case, the proof is straightforward. We write M = R(l) for some
quasisimple module R in a homogeneous tube. If l = 1, the proposition follows
from Theorem 3.1. If l ≥ 2, qrad M/ qsoc M ' R(l−2), so that

X M − Xqrad M/ qsoc M = X R(l) − X R(l−2)

= Sl(X R)− Sl−2(X R)= Fl(X R)= Fl(Xδ).
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We now assume that M is an indecomposable representation of dimension lδ in
an exceptional tube T of rank p≥ 2. We denote by R0, . . . , Rp−1 the quasisimples
in T ordered such that τ Ri ' Ri−1 for any i ∈Z/pZ. We can thus write M ' R(lp)i
for some i ∈ Z/pZ. Without loss of generality, we assume that i = 0. In order to
simplify the notation, for any l ≥ 1, we write

1l = X R(lp)0
− X R(lp−2)

1
.

We thus have to prove that for any l ≥ 1,

1l = Fl(Xδ).

The central tool in this proof is Theorem 2.2. According to Theorem 3.1, we have

Xδ = X R(p)0
− X R(p−2)

1
,

so the proposition holds for l = 1.
We now prove it for l = 2. We have

F2(Xδ)= X2
δ − 2= (X R(p)0

− X R(p−2)
1

)2− 2

= X2
R(p)0
+ X2

R(p−2)
1
− 2X R(p)0

X R(p−2)
1
− 2,

but according to the almost split multiplication formula [Caldero and Chapoton
2006, Proposition 3.10], we have

X R(p−1)
0

X R(p−1)
1
= X R(p)0

X R(p−2)
1

,

so
F2(Xδ)= X2

R(p)0
− 2X R(p−1)

0
X R(p−1)

1
+ X2

R(p−2)
1

.

But, according to Theorem 2.2, we have

X2
R(p)0
= X R(p)0

X R(p)0
= X R(2p)

0
+ X R(p−1)

0
X R(p−1)

1
,

so that finally
F2(Xδ)= X R(2p)

0
− X R(p−1)

0
X R(p−1)

1
+ X2

R(p−2)
1

.

Thus,

F2(Xδ)=12 ⇐⇒ −X R(2p−2)
1
= X2

R(p−2)
1
− X R(p−1)

0
X R(p−1)

1

⇐⇒ X R(2p−2)
1
+ X2

R(p−2)
1
− X R(p−1)

0
X R(p−1)

1
= 0.

But
X R(2p−2)

1
=−X R(p−3)

1
X R(p−1)

0
+ X R(p−2)

1
X R(p)p−1

,
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so

F2(Xδ)=12 ⇐⇒ X2
R(p−2)

1
+ X R(p−2)

1
X R(p)p−1

− X R(p−1)
0

X R(p−1)
1
− X R(p−1)

0
X R(p−3)

1
= 0

⇐⇒ X R(p−2)
1

[
X R(p−2)

1
+ X R(p)p−1

]
− X R(p−1)

0

[
X R(p−3)

1
+ X R(p−1)

1

]
= 0.

Theorem 2.2 gives

X Rp−1 X R(p−1)
0
= X R(p−2)

1
+ X R(p)p−1

and X R(p−2)
1

X Rp−1 = X R(p−3)
1
+ X R(p−1)

1
,

so
F2(Xδ)=12

and the proposition is proved for l = 2.
For l > 2, we will use the three-term relations for first kind Chebyshev polyno-

mials
Fl(x)= x Fl−1(x)− Fl−2(x).

Thus, it is enough to prove that for any l ≥ 2,

1l+1 =111l −1l−1.

In order to simplify our notation, we denote by LHS the left side of the equality
above and by RHS the right side. We thus have

RHS= (X R(p)0
− X R(p−2)

1
)(X R(lp)0

− X R(lp−2)
1

)− (X R((l−1)p)
0

− X R((l−1)p−2)
1

)

= X R(p)0
X R(lp)0

− X R(p)0
X R(lp−2)

1
− X R(p−2)

1
X R(lp)0

+ X R(p−2)
1

X R(lp−2)
1
− X R((l−1)p)

0
+ X R((l−1)p−2)

1
.

But, according to the multiplication theorem, we get

X R(p)0
X R(lp)0

= X R((l+1)p)
0

+ X R(p−1)
0

X R(lp−1)
1

,

so

LHS= RHS ⇐⇒ X R(p−1)
0

X R(lp−1)
1
− X R(p)0

X R(lp−2)
1
− X R(p−2)

1
X R(lp)0

+X R(p−2)
1

X R(lp−2)
1
− X R((l−1)p)

0
+ X R((l−1)p−2)

1
+ X R((l+1)p−2)

1
= 0.

Applying the multiplication theorem, we get

X R(lp−2)
0

X R(p)lp−2
= X R((l+1)p−2)

0
+ X R(lp−3)

0
X R(p−1)

lp−1
,

so
X R((l+1)p−2)

1
= X R(lp−2)

1
X R(p)p−1

− X R(lp−3)
1

X R(p−1)
0

,

and thus

LHS= RHS ⇐⇒ X R(p−1)
0

X R(lp−1)
1
− X R(p)0

X R(lp−2)
1
− X R(p−2)

1
X R(lp)0

+ X R(p−2)
1

X R(lp−2)
1

−X R((l−1)p)
0

+ X R((l−1)p−2)
1

+ X R(lp−2)
1

X R(p)p−1
− X R(lp−3)

1
X R(p−1)

0
= 0.
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But
X R(p)0

X R(lp−2)
1
= X R(lp−1)

0
X R(p−1)

1
+ X R((l−1)p−2)

1
;

hence,
LHS= RHS ⇐⇒ X R(p−1)

0
X R(lp−1)

1
− X R(lp−1)

0
X R(p−1)

1

− X R(p−2)
1

X R(lp)0
+ X R(p−2)

1
X R(lp−2)

1

− X R((l−1)p)
0

+ X R(lp−2)
1

X R(p)p−1
− X R(lp−3)

1
X R(p−1)

0
= 0

⇐⇒ X R(p−1)
0

X R(lp−1)
1
− X R(lp−1)

0
X R(p−1)

1

− X R(p−2)
1

X R(lp)0
− X R((l−1)p)

0
− X R(lp−3)

1
X R(p−1)

0

+ X R(lp−2)
1

(
X R(p−2)

1
+ X R(p)p−1

)
= 0.

Theorem 2.2 gives
X Rp−1 X R(p−1)

0
= X R(p−2)

1
+ X R(p)p−1

,

so

LHS= RHS ⇐⇒ X R(p−1)
0

(
X R(lp−1)

1
− X R(lp−3)

1
+ X R(lp−2)

1
X Rp−1

)
−X R((l−1)p)

0
− X R(lp−1)

0
X R(p−1)

1
− X R(p−2)

1
X R(lp)0

= 0.

The three-term relation for generalized Chebyshev polynomials gives

X R(lp−1)
1
= X Rp−1 X R(lp−2)

1
− X R(lp−3)

1
.

Thus

LHS= RHS

⇐⇒ 2X R(p−1)
0

X R(lp−1)
1
−
(
X R((l−1)p)

0
+ X R(lp−1)

0
X R(p−1)

1
+ X R(lp)0

X R(p−2)
1

)
= 0.

Theorem 2.2 gives

X R(p−1)
0

X R(lp−1)
1
= X R(lp)0

X R(p−2)
1
+ X R((l−1)p)

0
,

so we finally get

LHS= RHS ⇐⇒ X R(p−1)
0

X R(lp−1)
1
− X R(lp−1)

0
X R(p−1)

1
= 0.

The second equality holds by Lemma 3.2, so we have proved that for any l ≥ 2,

1l+1 =111l −1l−1.

Since we know that 11 = Xδ and 12 = F2(Xδ), it follows that 1l = Fl(Xδ) for
any l ≥ 1. �

We are now able to prove the general difference property:
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Theorem 3.4. Let Q be an affine quiver, T be a tube of rank p≥ 1 in 0(kQ-mod).
For any l ≥ 1 and any 0≤ k ≤ p− 1, we have

blδ+dim R(k)0
= X R(k)0

Fl(Xδ)= X R(lp+k)
0
− X R(lp−k−2)

k+1
,

with the convention that X R(−1)
0
= 0.

Proof. The first equality follows from

den(X R(k)0
X l
δ)= dim R(k)0 + lδ,

so
blδ+dim R(k)0

= X R(k)0
Fl(Xδ).

We now prove that

X R(k)0
Fl(Xδ)= X R(lp+k)

0
− X R(lp−k−2)

k+1
,

with the convention that X R(−1)
0
= 0.

We denote by LHS the left side and by RHS the right side of this equation.

LHS= X R(k)0

(
X R(lp)k

− X R(lp−2)
k+1

)
= X R(k)0

X R(lp)k
− X R(k)0

X R(lp−2)
k+1

= X R(lp+k)
0
+ X R(k−1)

0
X R(lp−1)

k+1
− X R(k)0

X R(lp−2)
k+1

.

If l = 1 and k = p− 1, we get

LHS= X R(lp+k)
0
+ X R(p−2)

0
X R(p−1)

0
− X R(p−1)

0
X R(p−2)

0
= X R(lp+k)

0
= RHS.

Otherwise, LHS= RHS if and only if

X R(lp−k−2)
k+1

= X R(k)0
X R(lp−2)

k+1
− X R(k−1)

0
X R(lp−1)

k+1
. (3-2)

Using the three-term recurrence relations for generalized Chebyshev polynomi-
als, we have

X R(k)0
= X Rk−1 X R(k−1)

0
− X R(k−2)

0
and X R(lp−1)

k+1
= X Rlp+k−1 X R(lp−2)

k+1
− X R(lp−3)

k+1
,

so that, replacing in the right side of (3-2), we get

X R(k)0
X R(lp−2)

k+1
− X R(k−1)

0
X R(lp−1)

k+1
= X R(k−1)

0
X R(lp−3)

k+1
− X R(k−2)

0
.

Thus, by induction, we get

X R(k)0
X R(lp−2)

k+1
− X R(k−1)

0
X R(lp−1)

k+1
= X R0 X R(lp−k−1)

k+1
− X R(lp−k)

k+1
.

Now, the three-term recurrence relation gives

X R(lp−k)
k+1
= X Rk+1+lp−k−1 X R(lp−k−1)

k+1
− X R(lp−k−2)

k+1
= X R0 X R(lp−k−1)

k+1
− X R(lp−k−2)

k+1
,
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and thus
X R0 X R(lp−k−1)

k+1
− X R(lp−k)

k+1
= X R(lp−k−2)

k+1
,

proving that (3-2) holds. �

As a corollary, for any positive root d with defect zero, we obtain a description
of bd as a certain difference of cluster characters:

Corollary 3.5. Let Q be an affine quiver and d be a positive root with defect zero.
Let M be any indecomposable representation of dimension d. Then there exists a
quasisimple module R0 in a tube of rank p ≥ 1, an integer 0 ≤ k ≤ p− 1, and an
integer l ≥ 0 such that d = lδ+dim R(k)0 . Moreover, for any such R0, k, l, we have

bd = X R(k)0
Fl(Xδ)= X R(lp+k)

0
− X R(lp−k−2)

k+1
,

where Ri , with i ∈ Z/pZ, are the quasisimple modules in T ordered such that
τ Ri ' Ri−1 for every i ∈ Z/pZ.

4. Integrable bundles on repk(Q) and their characters

In the previous section, we obtained a realization of the elements bd associated to
defect zero roots as differences of cluster characters. The aim of this section is to
introduce a new map θTr such that these elements correspond precisely to values
of θTr.

Unless otherwise specified, Q denotes an arbitrary acyclic quiver in this section.

Integrable bundles. For any d ∈ NQ0 , the representation variety repk(Q, d) of
dimension d is the set of all representations M of Q with dimension vector d.
Note that

repk(Q, d)'
∏

i→ j∈Q1

Homk(kdi , kd j ),

so that repk(Q, d) is an affine irreducible variety.

Definition 4.1. Let Q be any acyclic quiver. An integrable bundle on repk(Q) is
a map

F : M 7→ F(M)⊂ Gr(M)

defined on the set of indecomposable objects in repk(Q) such that for any M ∈
repk(Q),

• for any e ∈ NQ0 , Fe(M)= F(M)∩Gre(M) is constructible, and

• if M ' N in repk(Q), then χ(Fe(M))' χ(Fe(N )) for any e ∈ NQ0 .



616 Grégoire Dupont

Remark 4.2. Note that, if F is an integrable bundle on repk(Q), then the family
(χ(Fe(M)))e∈NQ0 has finite support.

Example 4.3. The map M 7→ Gr(M) is an integrable bundle called the quiver
Grassmannian bundle.

For any kQ-module M and any submodule U ⊂ M , we set

GrU (M)= {N ∈ Gr(M) |U is a submodule of N }.

This is a constructible subset in the quiver Grassmannian Gr(M).
If Q is an affine quiver, we define another integrable bundle Tr as follows. Let

M be an indecomposable kQ-module. If M is rigid, we set Tr(M)=Gr(M). If M
is not rigid, it is regular and we can thus write M = R(lp+k)

0 for some quasisimple
module R0 in a tube of rank p≥ 1, l ≥ 1 and 0≤ k ≤ p−1. There exists a nonzero
monomorphism ι : R(lp−1)

0 → R(lp)0 such that

HomkQ(R
(lp−1)
0 , R(lp)0 )' kι.

The set ι(GrR(k+1)
0 (R(lp−1)

0 )) is a constructible subset of Gr(R(lp)0 ), and since

HomkQ(R
(lp−1)
0 , R(lp)0 )' kι,

it does not depend on the choice of ι. We can thus identify GrR(k+1)
0 (R(lp−1)

0 ) with a
constructible subset of Gr(R(lp)0 ). With these notations and identifications, we set

Tr(M)= Gr(M) \GrR(k+1)
0 (R(lp−1)

0 ).

Note that if l = 0, M is rigid and we recover the equality Tr(M)= Gr(M).
For every dimension vector e ∈ NQ0 and any indecomposable kQ-module M ,

the transverse quiver Grassmannian of M (of dimension e) is the constructible
subset of Gre(M)

Tre(M)= {N ∈ Tr(M) | dim N = e} .

The map
Tr : M 7→ Tr(M)⊂ Gr(M)

is an integrable bundle on repk(Q).

Character associated to an integrable bundle. Extending an idea of Caldero and
Chapoton, we associate to any integrable bundle on repk(Q) a map from the set
of objects in CQ to the ring Z[u±1

] of Laurent polynomials in the initial cluster of
A(Q).

Definition 4.4. Let F be an integrable bundle on repk(Q). The character associ-
ated to F is the map

θF(?) : Ob(CQ)→ Z[u±1
]

given by:
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• If M ' Pi [1] for some i ∈ Q0, then θF(Pi [1])= ui .

• If M is an indecomposable kQ-module, then

θF(M)=
∑

e∈NQ0

χ(Fe(M))
∏

i∈Q0

u−〈e,Si 〉−〈Si ,dim M−e〉
i .

• θF(M ⊕ N )= θF(M)θF(N ) for any two objects M, N in CQ .

We now prove that θTr coincides with X? on the set of rigid objects in CQ . In
particular, this will allow us to realize cluster monomials in terms of θTr.

Lemma 4.5. Let Q be an affine quiver. Then, for any rigid object M in CQ , we
have θTr(M)= X M . In particular,

M(Q)= {θTr(M) | M is rigid in CQ}.

Proof. Let M be a rigid object in CQ . We write

M = Pi1[1]⊕ · · ·⊕ Pir [1]⊕M1⊕ · · ·⊕Ms,

where each Pi j is an indecomposable projective kQ-module and each Mi is an
indecomposable module. Also, since M is rigid, each Mi is a rigid kQ-module
and thus Tr(Mi ) = Gr(Mi ) for any i ∈ {1, . . . , s}. In particular, it follows that
θTr(Mi )= X Mi for any i ∈ {1, . . . , s}. Then

θTr(M)= θTr(Pi1[1]⊕ · · ·⊕ Pir [1]⊕M1⊕ · · ·⊕Ms)

= θTr(Pi1[1]) · · · θTr(Pir [1])θTr(M1) · · · θTr(Ms)

= ui1 · · · uir X M1 · · · X Ms

= X Pi1 [1]⊕···⊕Pir [1]⊕M1⊕···⊕Ms = X M .

The second assertion follows directly from Caldero and Keller’s realization of clus-
ter monomials:

M(Q)=
{

X M | M is rigid in CQ
}
=
{
θTr(M) | M is rigid in CQ

}
. �

5. A geometrization of B(Q)

We now relate the character θTr with the difference properties obtained in Section 3.
This will provide a realization of the elements in B(Q) in terms of θTr.

From difference properties to θTr. Using Theorem 3.4, we first deduce a realiza-
tion in terms of θTr of the elements in B(Q) corresponding to positive roots.

Theorem 5.1. Let d be any positive root. Then bd = θTr(M), where M is any
indecomposable representation of dimension d.
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Proof. If d is a positive root with nonzero defect, then d is real and there exists
a unique indecomposable representation M in repk(Q, d). Moreover, this repre-
sentation has to be preprojective or preinjective. In both cases, it is rigid and thus
bd = X M = θTr(M). We can thus assume that d ∈ NQ0 is a root with defect zero.

Let M be an indecomposable representation in repk(Q, d). It is necessarily
contained in a tube T of rank p ≥ 1. We denote by Ri , with i ∈ Z/pZ, the
quasisimple modules in T ordered such that τ Ri ' Ri−1 for any i ∈ Z/pZ. We
can write d = lδ+ n, where n is either a real Schur root or zero. If n 6= 0, there
exists a unique indecomposable representation N in repk(Q, n). In any case, if
M ' R(lp+k)

0 with l ≥ 0 and 0≤ k ≤ p−1, N is the rigid representation R(k)0 (still
with the convention that R(0)0 = 0) and

bd = X R(k)0
Fl(Xδ).

Now, according to Theorem 3.4, we have

X R(k)0
Fl(Xδ)= X R(lp+k)

0
− X R(lp−k−2)

k+1
.

For any e ∈ NQ0 , the map Gr
R(k+1)

0
e (R(lp−1)

0 )→ Gre−dim R(k+1)
0

(R(lp−k−2)
k+1 ) given by

U 7→U/R(k+1)
0

is an algebraic isomorphism, and we denote by ce ∈Z the common value of the Eu-
ler characteristics of these constructible sets. Fix now some e∈NQ0 ; the monomial
corresponding to e in X R(lp+k)

0
is

ce
∏

i

u
−〈e,Si 〉−

〈
Si ,dim R(lp+k)

0 −e
〉

i ,

and the monomial corresponding to e−dim R(k+1)
0 in X R(lp−k−2)

k+1
is

ce
∏

i

u
−

〈
e−dim R(k+1)

0 ,Si

〉
−

〈
Si ,dim R(lp−k−2)

k+1 +dim R(k+1)
0 −e

〉
i .

We now prove that these monomials are the same. For any i = 0, . . . , p− 1, we
set ri = dim Ri and we denote by c the Coxeter transformation on ZQ0 induced
by the Auslander–Reiten translation. We recall that for any β, γ ∈ ZQ0 , we have
〈γ, c(β)〉 = − 〈β, γ 〉. With this notation, we have

dim R(k+1)
0 = r0+ · · ·+ rk and dim R(lp−k−2)

k+1 = (l − 1)δ+ rk+1+ · · · rp−2,

so
dim R(k+1)

0 +dim R(lp−k−2)
k+1 = lδ− rp−1.
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We now compute the exponents:

−〈e, Si 〉−

〈
Si ,dim R(lp+k)

0 − e
〉
=−〈e, Si 〉− 〈Si , lδ+ r0+ · · ·+ rk−1− e〉

= − 〈e, Si 〉− 〈Si , lδ− e〉− 〈Si , r0+ · · ·+ rk−1〉

= − 〈e, Si 〉− 〈Si , lδ− e〉− 〈r1+ · · ·+ rk, Si 〉 ;

−

〈
e−dim R(k+1)

0 , Si

〉
−

〈
Si ,dim R(lp−k−2)

k+1 +dim R(k+1)
0 − e

〉
=−〈e, Si 〉+ 〈r0+ · · ·+ rk, Si 〉+

〈
Si , rp−1

〉
−〈Si , lδ− e〉

= − 〈e, Si 〉− 〈Si , lδ− e〉+ 〈r1+ · · ·+ rk, Si 〉 .

Thus the two monomials are the same. It follows that

X R(lp+k)
0
− X R(lp−k−2)

k+1

=

∑
e
χ(Gre(R

(lp+k)
0 ))

∏
i

u−〈e,Si 〉−〈Si ,lδ−e〉−〈r1+···+rk ,Si 〉
i

−

∑
e
χ
(

Gre−dim R(k+1)
0

(R(lp−k−2)
k+1 )

)∏
i

u−〈e,Si 〉−〈Si ,lδ−e〉−〈r1+···+rk ,Si 〉
i

=

∑
e
χ
(

Gre(R
(lp+k)
0 ) \Gr

R(k+1)
0

e (R(lp−1)
0 )

)∏
i

u−〈e,Si 〉−〈Si ,lδ−e〉−〈r1+···+rk ,Si 〉
i

=

∑
e
χ(Tre(R

(lp+k)
0 ))

∏
i

u
−〈e,Si 〉−

〈
Si ,dim R(lp+k)

0 −e
〉

i . �

Realization of B(Q) in terms of θTr. Summing up the previous results, we deduce
the following geometric description of B(Q):

Theorem 5.2. Let Q be an affine quiver. Then

B(Q)=
{
θTr(M ⊕ R)

∣∣∣ M is an indecomposable (or zero) regular kQ-module,
R is any rigid object in CQ such that Ext1CQ

(M, R)= 0

}
.

Proof. We denote by S the right side of the claimed equality. By definition,

B(Q)=M(Q)t {Fl(Xδ)X R | l ≥ 1, R is a regular rigid kQ-module}.

We first prove that S ⊂ B(Q). Let R be a rigid object in CQ ; then θTr(R) is a
cluster monomial by Lemma 4.5. Fix now M to be an indecomposable regular
kQ-module in a tube T such that Ext1CQ

(M, R)= 0. If M is rigid, then M ⊕ R is
rigid in CQ , and θTr(M)θTr(R)= θTr(M⊕R) is a cluster monomial by Lemma 4.5.
Now, if M is nonrigid, then d = dim M is a positive root of defect zero, and thus
θTr(M) = bd by Theorem 5.1. Thus, there exists l ≥ 1 and N an indecomposable
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rigid (or zero) module in T such that d = lδ+dim N . According to Theorem 5.1,

θTr(M ⊕ R)= θTr(M)θTr(R)= blδ+dim NθTr(R)= Fl(Xδ)X NθTr(R)

= Fl(Xδ)θTr(N )θTr(R)= Fl(Xδ)θTr(N ⊕ R).

Since Ext1CQ
(M, R)= 0, we have Ext1kQ(M, R)= 0 and Ext1kQ(R,M)= 0. Thus,

it follows easily that Ext1kQ(N , R)= 0 and Ext1kQ(R, N )= 0, so N ⊕ R is a rigid
regular kQ-module. In particular, θTr(N ⊕ R)= X N⊕R and thus

θTr(M ⊕ R)= Fl(Xδ)X N⊕R ∈B(Q).

Conversely, fix an element in B(Q). If x is a cluster monomial, then according
to Lemma 4.5, there exists some rigid object M in CQ such that x = θTr(M). Thus,
x ∈S. Fix now some regular rigid kQ-module R and some integer l ≥ 1. Then the
direct summands of R belong to exceptional tubes. We fix an indecomposable kQ-
module M of dimension vector lδ in a homogeneous tube. Then Ext1CQ

(M, R)= 0.
According to Theorem 5.1, we have Fl(Xδ)X R = θTr(M)X R , but R is rigid, so
X R = θTr(R). Thus,

Fl(Xδ)X R = θTr(M)θTr(R)= θTr(M ⊕ R) ∈ S. �

6. Examples

We shall now study two examples corresponding to cases where it is known that
B(Q) is the canonically positive basis in A(Q).

The Ã1,1 case. Let Q be the Kronecker quiver, that is, the affine quiver of type
Ã1,1 with the orientation

Q : 1 //// 2

and minimal imaginary root δ = (11).
For any λ ∈ k, we set

Mλ : k
1 //
λ

// k

and
M∞ : k

0 //
1

// k.

It is well-known that every tube in 0(kQ-mod) is homogeneous and that the family
{Mλ | λ ∈ k t {∞}} is a complete set of representatives of pairwise nonisomorphic
quasisimple kQ-modules.

For any n≥1, the indecomposable representations of quasilength n are given by

M (n)
λ : kn

1 //
Jn(λ)

// kn
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for any λ ∈ k and

M (n)
∞ : kn

Jn(0) //
1

// kn ,

where Jn(λ)∈Mn(k) denotes the Jordan block of size n associated to the eigenvalue
λ. Quiver Grassmannians and transverse quiver Grassmannians of indecomposable
representations with quasilength 2 are described in Table 1.

Note that kQ-mod contains no regular rigid modules. It follows that in this case

B(Q)=M(Q)t {θTr(M) | M is an indecomposable regular kQ-module}.

According to [Sherman and Zelevinsky 2004], this set is the canonically positive
basis of A(Q).

From Table 1, we see that for any λ ∈ k t {∞},

θTr(M
(2)
λ )= θGr(M

(2)
λ )− 1= X M (2)

λ
− 1= S2(X Mλ)− 1= F2(X Mλ)= b2δ.

This illustrates Theorem 5.1.

The Ã2,1 case. We now consider the quiver Q of affine type Ã2,1 equipped with
the orientation

2

��
Q 1 //

@@

3

e Gre(M
(2)
λ ) Tre(M

(2)
λ ) u〈−e,Si 〉−〈Si ,2δ−e〉

(00) {0} {0} u2
1/u

2
2

(01) P1
×{S2} P1

×{S2} 1/u2
2

(02) {S2⊕ S2} {S2⊕ S2} 1/(u2
1u2

2)

(11) {Mλ} ∅ 1

(12) see caption 1/u2
1

(22) {M (2)
λ } {M (2)

λ } u2
2/u

2
1

Table 1. Grassmannians and transverse Grassmannians of in-
decomposable modules of quasilength 2 in type Ã1,1. Here λ
takes values in k ∪ {0,∞}. For e = (12), the values of both
Gr(12)(M

(2)
λ ) and Tr(12)(M

(2)
λ ) are {P1,Mλ ⊕ S2} if λ ∈ {0,∞},

and P1
×{Mλ⊕ S2} otherwise.
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The minimal imaginary root of Q is δ = (111). For any λ ∈ k, we set

k
λ

��
Mλ k

1 //

1
@@

k

and
k

1

��
M∞ k

0 //

1
@@

k

Further, 0(kQ-mod) contains exactly one exceptional tube T of rank 2, whose
quasisimples are

0

��
R0 k

1 //

0
@@

k
and

k
0

��
R1 ' S2 0 //

@@

0

The set {Mλ | λ ∈ k t {∞}}t {R(2)0 } is a complete set of representatives of pair-
wise nonisomorphic indecomposable representations in repk(Q, δ). For any λ 6=
0,∞, Mλ is a quasisimple kQ-module in a homogeneous tube. Moreover, M0 =

R(2)1 and M∞ is quasisimple in a homogeneous tube.
Quiver Grassmannians and transverse quiver Grassmannians of indecomposable

representations of dimension δ are described in Table 2. For simplicity, we only
listed the dimension vectors that lead to nonempty quiver Grassmannians.

In Table 2, we observe that X Mλ = X M0 − 1 = X M∞ − 1, illustrating Theorem
3.1. Also, we see that θTr(Mλ) = θTr(M0) = θTr(M∞) for any λ ∈ k \ {0} so that
the transverse character does not depend on the chosen tube. Moreover,

θTr(Mλ)= X Mλ = F1(Xδ),

illustrating Theorem 5.1.

Remark 6.1. Table 2 justifies the terminology transverse submodule. Indeed, we
see that, given two indecomposable regular modules M and N having the same
dimension vectors, the submodules U in Tr(M) are those having a corresponding
submodule in Gr(N ). In some sense, we can see U as a submodule “common” to
M and N . This is why we call it transverse.
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e Gre(Mλ) Tre(Mλ) Gre(R
(2)
0 ) Tre(R

(2)
0 ) u〈−e,Si 〉−〈Si ,δ−e〉

(000) {0} {0} {0} {0} u1/u3

(001) {S3} {S3} {S3} {S3} 1/(u2u3)

(010) see caption ∅ ∅ 1

(011) see caption {P2} {P2} 1/(u1u2)

(101) ∅ ∅ {R0} ∅ 1

(111) {Mλ} {Mλ} {R(2)0 } {R(2)0 } u3/u1

Table 2. Grassmannians and transverse Grassmannians for
quasilength 2 in type Ã2,1. Here λ takes values in k ∪ {0,∞}.
For e= (010), all entries are ∅ except that Gr010(M0)= {S2}. For
e = (011), all entries equal {P2}, apart from that Gr(011)(M0) and
Tr(011)(M0), which equal {S2⊕ S3}.

As suggested by Bernhard Keller, this notion of transversality should have a
more precise meaning in the context of deformation theory. Some connections are
known at this time, and this will be discussed in a forthcoming article.
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