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We develop a patching machinery over the field E = K ((X, Y )) of formal power
series in two variables over an infinite field K . We apply this machinery to
prove that if K is separably closed and G is a finite group of order not divisible
by char E , then there exists a G-crossed product algebra with center E if and
only if the Sylow subgroups of G are abelian of rank at most 2.

Introduction

Complete local domains play an important role in commutative algebra and alge-
braic geometry, and their algebraic properties were already described in 1946 by
Cohen’s structure theorem. The Galois theoretic properties of their quotient fields
were extensively studied over the past two decades. The pioneering work in this
line of research is due to Harbater [1987], who introduced the method of patching
to prove that if R is a complete local domain with quotient field K , then every
finite group occurs as a Galois group over K(x). This result was strengthened by
Pop [1996] and, in a different language, by Haran and Jarden [1998], who showed
that if moreover R is of dimension 1, then every finite split embedding problem
over K(x) is solvable.

The first step towards higher dimension was made by Harbater and Stevenson
[2005], who essentially showed that if R is a complete local domain of dimension
2, then every finite split embedding problem over Quot R has |R| independent
solutions. That is, the absolute Galois group of Quot R is semifree of rank |R| (see
[Bary-Soroker et al. 2008] for details on this notion). This result was generalized
in [Pop 2010; Paran 2010], where it is shown that if K is the quotient field of a
complete local domain of dimension exceeding 1, then GalK is semifree.

Despite the major progress made in the study of Galois theory over these fields,
little is known about the structure of division algebras over them. A step in that

MSC2000: primary 12E30; secondary 16S35.
Keywords: patching, admissible groups, division algebras, complete local domains.
The second author was partially supported by the Israel Science Foundation (grant No. 343/07), and
by an ERC grant.

743



744 Danny Neftin and Elad Paran

direction was recently made by Harbater et al. [2009], who consider a question re-
lating Galois theory and Brauer theory over a field E : Which groups are admissible
over E? That is, which finite groups occur as a Galois group of an adequate Galois
extension F/E (recall that an extension F/E is called adequate if F is a maximal
subfield in an E-central division algebra). Equivalently, for which groups G there
is a G-crossed product division algebra with center E . Note that for E as above
and a finite extension F/E , the above maximality requirement can be omitted since
any F which is a subfield of an E-division algebra is also a maximal subfield of
some E-division algebra (see Remark 3.9).

This question was first considered by Schacher [1968] over global fields. He
proved that any Q-admissible group has metacyclic Sylow subgroups and conjec-
tured the converse. Admissibility has been studied extensively over global fields
[Stern 1982; Sonn 1983; Schacher and Sonn 1992; Liedahl 1996; Feit 2004; Neftin
2009], function fields, and fields of Laurent series [Fein et al. 1992; Fein and
Schacher 1995a; 1995b].

The main theorem of [Harbater et al. 2009] asserts that if E is a function field
in one variable over a complete discretely valued field with an algebraically closed
residue field, then a finite group G of order not divisible by char E is admissible
over E if and only if each of the Sylow subgroups of G is abelian of rank at most
2 (i.e., generated by two elements).

In this work, we take the next natural step, and determine the admissible groups
over quotient fields of equicharacteristic (that is, having the same characteristic
as their residue field) two-dimensional complete local domains, with a separa-
bly closed residue field. In particular, we determine the admissible groups over
C((X, Y )), whenever C is a separably closed field. This problem was posed to the
first author by David Harbater. We show that the result of [Harbater et al. 2009]
holds over these fields as well.

Main Theorem. Let R be an equicharacteristic complete local domain of dimen-
sion 2, with a separably closed residue field. Let G be a finite group of order not
divisible by char R. Then G is admissible over Quot R if and only if each of its
Sylow subgroups is abelian of rank at most 2.

The “only if” part of this result is essentially proven in [Harbater et al. 2009],
using results of [Colliot-Thélène et al. 2002].

The “if” part actually holds in greater generality — the residue field need not
be separably closed, it suffices that it contains a primitive root of unity of order k,
for each k ∈ N not divisible by char R (Proposition 3.7). Our proof strategy for
the backward direction is as follows. We first use Cohen’s structure theorem to
reduce the problem from Quot R to a field E of the form K((X, Y )). We then
apply a patching argument as in [Harbater et al. 2009]; we explicitly realize each
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Sylow subgroup of G by a Galois extension of E which is a maximal subfield in
some E-central division algebra. We then patch these realizations into a Galois
extension F/E with group G, in a way that also patches the division algebras into
an E-central division algebra D containing F as a maximal subfield.

A key ingredient in our proof is a patching machinery over fields of the form
K((X, Y )), where K may be an arbitrary infinite field. In [Pop 2010; Paran 2010],
problems over K((X, Y )) are lifted to K((X, Y ))(Z), solved there (via different
methods), and then the solutions are specialized into solutions over K((X, Y )) using
Hilbertianity. This approach seems inapplicable to our current goal, since ade-
quate extensions usually do not remain adequate under specialization. Instead we
patch groups directly over K((X, Y )). To this end we define “analytic fields” over
K((X, Y )), satisfying the axioms of algebraic patching (i.e., matrix factorization
and intersection), as presented in [Haran and Jarden 1998] (a slightly different ax-
iomatization from the “field patching” axiomatization of [Harbater and Hartmann
2007]). The construction of these analytic rings is of a rigid-geometric nature. In
recent communication with David Harbater, we learned that a formal-geometric
analogue of this form of patching was carried out by him in [2003, Theorem 5.3.9]
in order to solve split embedding problems over the field C((X, Y )) of formal power
series in two variables over the complex numbers. The core patching arguments
in the proof of [Harbater 2003, Theorem 5.3.9] can be extended to replace C by
an arbitrary field and used to study admissible groups, in a similar fashion to our
development here.

1. Analytic fields

In this section we establish our patching machinery. Fix an infinite field K , and let
E = K((X, Y )) = Quot(K [[X, Y ]]) be the field of formal power series over K in
the variables X and Y . Denote by v the order function of the maximal ideal 〈X, Y 〉
in K [[X, Y ]]. Then v extends uniquely to a discrete rank-1 valuation of E . Note
that K [[X, Y ]] is strictly contained in the valuation ring of v in E .

Construction 1.1 (analytic rings over E). Let I be a finite set. For each i ∈ I let
ci ∈ K , such that ci 6= c j for i 6= j (such a choice is possible since K is infinite).
For each i ∈ I denote zi = Y/(X − ci Y ) ∈ E . For each J ⊆ I , consider the
subring K [z j | j ∈ J ][X, Y ] of E , and let DJ be the completion of this ring with
respect to v. Note that for each J ⊆ I , DJ ⊆ DI , and that D∅ = K [[X, Y ]], since
K [[X, Y ]] is complete. Let Q = Quot DI , and for each i ∈ I let Qi = E · DIr{i}
and Q′i =

⋂
j 6=i Q j .

For the rest of this section, we fix the notation of Construction 1.1. A geometric
interpretation of the rings defined in Construction 1.1 appears in Remark 1.12. In
order to present this interpretation, we need several lemmas.
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Lemma 1.2. Let i ∈ I . Then v is trivial on K(zi ).

Proof. It suffices to prove that v is trivial on K [zi ]. Let 0 6= f =
∑d

n=0 anzn
i ∈K [zi ],

with a0, . . . , ad ∈ K . Without loss of generality, a0 6= 0. We have

d∑
n=0

anzn
i =

∑d
n=0 anY n(X − ci Y )d−n

(X − ci Y )d
.

By opening parentheses, the numerator in this expression can be written as a sum
of monomials of degree d . For n = 0 we get the summand a0 Xd , while all other
monomials in this presentation have a positive power of Y , so they do not cancel
a0 Xd . Thus the numerator has value d , and clearly so does the denominator, so
v( f )= 0. �

Corollary 1.3. The valuation v is trivial on K [zi | i ∈ I ].

Proof. Note that for each i, j ∈ I we have K(zi ) = K(z j ). Thus by the preceding
lemma, v is trivial on K(zi ) = K(z j | j ∈ I ), and in particular v is trivial on the
subring K [zi | i ∈ I ]. �

Lemma 1.4. Let J ⊆ I and j ∈ J . Then the ring K [zl | l ∈ J ][X − c j Y ] is
isomorphic to the ring of polynomials in one variable over K [zl | l ∈ J ].

Proof. To prove the claim we show that if
∑d

n=0 an(X−c j Y )n=0, for a0, . . . , ad ∈

K [zl | l ∈ J ], then a0 = · · · = ad = 0. If not, suppose (without loss of generality)
that a0 6= 0. By Corollary 1.3, v(a0)= 0 while v(ak(X−c j Y )k)= v(ak)+k= k> 0
for each k> 0. Hence∞= v(0)= v

(∑d
n=0 an(X−c j Y )n

)
= 0, a contradiction. �

By Lemma 1.4, for each J ⊆ I, j ∈ J , each element of K [zl | l ∈ J ][X− c j Y ]
has a unique presentation as a polynomial in X − c j Y . Thus we have a natural
valuation on this ring, given by v′

(∑d
n=0 an(X−c j Y )n

)
=min(n | an 6= 0), and we

may form the completion K [zl | l ∈ J ][[X − c j Y ]] of this ring with respect to v′.

Proposition 1.5. Let J ⊆ I and j ∈ J . Then DJ = K [zl | l ∈ J ][[X − c j Y ]], and v
is given on DJ by v

(∑
∞

n=0 an(X − c j Y )n
)
=min(n | an 6= 0).

Proof. By Lemma 1.4, v coincides with v′ (given in the paragraph preceding this
proposition) on K [zl | l ∈ J ][X − c j Y ]; hence K [zl | l ∈ J ][[X − c j Y ]] is the
completion of K [zl | l ∈ J ][X − c j Y ] with respect to v, and v coincides with v′

on the completion. Note that K [zl | l ∈ J ][X − c j Y ] = K [zl | l ∈ J ][X, Y ] (since
Y = z j (X − c j Y ) and X = (1+ c j z j )(X − c j Y )); hence by the definition of DJ

we are done. �
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Lemma 1.6. Let J ⊆ I . Then K [z j | j ∈ J ] =
∑

j∈J K [z j ].

Proof. For each i 6= j ∈ J we have

zi · z j =
Y 2

(X − ci Y ) · (X − c j Y )
=

1
ci−c j

· zi +
1

c j−ci
z j .

The claim now follows by induction on |I |. �

Proposition 1.7. Let J, J ′ ⊆ I . Then for each f ∈ DJ∪J ′ there exist f1 ∈ DJ and
f2 ∈ DJ ′ with v( f1), v( f2)≥ v( f ), such that f = f1+ f2.

Proof. Replace J with J r (J ∩ J ′) to assume that J ∩ J ′ =∅. Moreover, without
loss of generality J, J ′ are nonempty. Choose j ∈ J and j ′ ∈ J ′, and let

AJ = K [zl | l ∈ J ], AJ ′ = K [zl | l ∈ J ′], A = K [zl | l ∈ J ∪ J ′].

By Proposition 1.5, DJ = AJ [[X − c j Y ]], DJ ′ = AJ [[X − c j ′Y ]], and DJ∪J ′ =

A[[X−c j Y ]]. Let f =
∑
∞

n=m an(X−c j Y )n ∈ DJ∪J ′ , with am 6= 0. Then v( f )=m
by Proposition 1.5. By Lemma 1.6, A = AJ + AJ ′ . For each n ≥ m, let bn ∈

AJ , b′n ∈ AJ ′ such that an = bn + b′n . Let f1 =
∑
∞

n=m bn(X − c j Y )n and f2 =

f − f1 =
∑
∞

n=m b′n(X − c j Y )n . Then f1 ∈ DJ and v( f1)≥m. It remains to prove
that f2 ∈ DJ ′ and that v( f2)≥ m. This follows by the equality:

f2 =

∞∑
n=m

b′n(X − c j Y )n =
∞∑

n=m

b′n((X − c j ′Y )+ (c j ′ − c j )Y )n

=

∞∑
n=m

(b′n(1+ (c j ′ − c j )z j ′)
n)(X − c j ′Y )n. �

The next lemma is a variant of [Harbater and Hartmann 2007, Lemma 3.3],
allowing nonprincipal ideals.

Lemma 1.8. Let R ⊆ R1 and R2 ⊆ R0 be domains such that R0 = R1+ R2. Let w
be a nontrivial discrete valuation on Quot R0 such that R is complete with respect
to w and w(x) ≥ 0 for all x ∈ R0. Let p, p1, p2, and p0 be the centers of w in R,
R1, R2, and R0, respectively. Suppose that pR0 = p0 and R/p = R1/p1 ∩ R2/p2

(inside R0/p0). Then R1 ∩ R2 = R.

Proof. First, note that p0 = p1 + p2. Indeed, suppose x ∈ p0 = pR0. Then x =∑n
i=1 ai xi for some a1, . . . , an ∈ R0 and x1, . . . , xn ∈ p. For each 1≤ i ≤ n, write

ai = bi + b′i with bi ∈ R1 and b′i ∈ R2. Then
∑

ai xi =
∑

bi xi +
∑

b′i xi ∈ p1+ p2,
since p⊆ p1, p2.

Let S = R1 ∩ R2 and q be the center of w at S. Then the sequence 0→ S→
R1 × R2→ R0→ 0 is exact (where the second map is the diagonal map and the
third map is substraction). This sequence induces an exact sequence 0→ S/q→
(R1/p1)× (R2/p2)→ R0/p0→ 0. Indeed, the only nontrivial part in showing this
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is to check that the kernel of the substraction map is contained in the image of the
diagonal map. Suppose (x1+p1, x2+p2)∈ (R1/p1)×(R2/p2) satisfies x1−x2 ∈p0.
Since p0 = p1 + p2 we may choose y1 ∈ p1, y2 ∈ p2 such that x1 − y1 = x2 − y2.
Then (x1+ p1, x2+ p2)= (x1− y1+ p1, x2− y2+ p2) belongs to the image of the
diagonal map. Thus the sequence is exact.

Since p is the center ofw on R and p1 the center ofw on R1, we have R∩p1= p.
In particular, the diagonal map R/p→ (R1/p1)× (R2/p2) is injective. Since R0 =

R1+R2, the substraction map (R1/p1)×(R2/p2)→ R0/p0 is surjective. Thus, since
R/p= R1/p1∩R2/p2, the sequence 0→ R/p→ (R1/p1)×(R2/p2)→ R0/p0→ 0
is also exact. It follows that the natural map R/p→ S/q is an isomorphism. In
particular, S = R+ pS. By induction we have S = R+ pk S for each k ∈ N. Since
p0 = pR0, p 6= 0. Since w is discrete, there exists an integer m such that v(x)≥m
for each x ∈ p. Thus v(x) ≥ mk for each x ∈ pk ; hence R is w-dense in S and
therefore the completion of R with respect to w contains S. By our assumptions,
R is complete; hence R = S. �

Lemma 1.9. The set {zn
i | i ∈ I, n ∈ N∪ {0}} is K-linearly independent.

Proof. Suppose a0 +
∑

i∈I
∑di

n=1 ai,nzn
i = 0, where di ∈ N and a0, ai,n ∈ K for

each i and n. We wish to show that a0 = ai,n = 0 for each i and n. Suppose
there exist i ∈ I and n ∈ N such that ai,n 6= 0. Without loss of generality, n = di .
Since X − ci Y is a prime element of K [X, Y ], it defines a discrete valuation on
K(X, Y ), which we denote by w. We have w(Y )=w(Y −c j X)= 0 for each j 6= i
in I . Thus w

(
a0 +

∑
j 6=i
∑d j

n=1 a j,nzn
j

)
≥ 0, while w

(∑di
n=1 ai,nzn

i

)
= −di . Thus

w(0)= w
(
a0+

∑
j∈I
∑d j

n=1 a j,nzn
j

)
=−di , a contradiction. �

Proposition 1.10. Suppose J, J ′ ⊆ I . Then DJ ∩ DJ ′ = DJ∩J ′ .

Proof. Clearly, DJ∩J ′ ⊆ DJ ∩ DJ ′ . For the converse inclusion, we distinguish
between two cases. First suppose that J ∩ J ′ 6= ∅, and fix j ∈ J ∩ J ′. Then
DJ = K [zk | k ∈ J ][[X − c j Y ]] and DJ ′ = K [zk | k ∈ J ′][[X − c j Y ]]; hence
DJ ∩DJ ′ = (K [zk | k ∈ J ]∩K [zk | k ∈ J ′])[[X−c j Y ]]. By Lemma 1.9 K [zk | k ∈ J ]
∩K [zk | k ∈ J ′] = K [zk | k ∈ J ∩ J ′]; hence y ∈ DJ∩J ′ .

Now suppose that J ∩ J ′=∅ and let R= K [[X, Y ]] = D∅, R1= DJ , R2= DJ ′ ,
and R0=DJ∪J ′ . Since v( f )≥0 for each f ∈K [z j | j ∈ J∪ J ′][X, Y ], we also have
v( f ) ≥ 0 for each f in the completion R0. The ring R is complete with respect
to v, and R = R1+ R2 by Proposition 1.7. Let p, p1, p2, and p0 be the centers of
v at R, R1, R2, and R0, respectively. Then p is generated by X and Y , and p0 is
generated by X − c j Y for any j ∈ J , by Proposition 1.5. It follows that pR0 = p0.
In order to apply Lemma 1.8, it remains to check that R1/p1 ∩ R2/p2 = R/p in
R0/p0. Indeed, we have R1/p1 = K [z j | j ∈ J ], R2/p2 = K [z j | j ∈ J ′], and
R0/p0 = K . By Lemma 1.9, we are done. �
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Proposition 1.11. For each i ∈ I , Q′i ∩ Qi = E.

Proof. Since Q′i =
⋂

j 6=i Q j , the assertion is that
⋂

j∈I Q j = E . Indeed, let
y ∈

⋂
j∈I Q j . For each j ∈ J write y = f j/q j with f j ∈ DIr{ j}, q j ∈ K [[X, Y ]].

Taking a common denominator we may assume that q j is independent of j , and
denote q = q j (for all j ∈ J ). It suffices to prove that qy ∈ K [[X, Y ]] ⊆ E . But
qy = q j y = f j ∈ DIr{ j} for all j ∈ I ; hence, by Proposition 1.10,

qy ∈
⋂
j∈I

DIr{ j} = D∅ = K [[X, Y ]]. �

The next remark gives a rigid-geometric and a formal-geometric interpretation
of the rings DJ .

Remark 1.12. Let J ⊆ I , j ∈ J , and t = X − c j Y . By Proposition 1.5, DJ =

K [zl | l∈ J ][[t]] is the t-adic completion of K [zl | l∈ J ][t]; thus DJ [t−1
] is the t-adic

completion of K [zl | l ∈ J ][t, t−1
]. We have K [zl | l ∈ J ][t, t−1

]⊆ K((t))[zl | l ∈ J ]
⊆ DJ [t−1

]; hence DJ [t−1
] is the t-adic completion of A := K((t))[zl | l ∈ J ]. Let

T = K [[t]], F = K((t)), and s = X/Y . Then s is a free variable over F . Let
vt be the t-adic valuation on F , and extend it to F(s) by vt(s) = 0. Note that
zk = 1/(s− ck) and vt(cl − ck)= 0 for all distinct l, k ∈ J . By [Haran and Jarden
1998, Lemma 3.1(c)] (with wk , K , and x there replaced by zk , F , and s here), each
element 0 6= f ∈ A can be uniquely written as

f = f0+
∑
k∈J

∞∑
n=1

fknzn
k , (1)

where f0, fkn ∈ F are almost all zero. Uniqueness in the presentation (1) implies
that vt( f )=minkn{vt( f0), vt( fkn)}.

By [Haran and Jarden 1998, Lemma 3.3] the completion DJ [t−1
] of A is the

ring of holomorphic functions on the affinoid U = P r
(⋃

l∈J B(cl)
)
, where P is

the projective s-line and B(cl) is a disc of radius 1 with center cl for each l ∈ J
[Fresnel and van der Put 2004, §2.2]. Moreover, each element f ∈ DJ [t−1

] can
be uniquely presented as in (1), where f0 ∈ F and { fln}

∞

n=1 is a null sequence in
F (with respect to vt ) for each l ∈ J . Thus, in the rigid-geometric language, DJ

is the ring of holomorphic functions on U having no pole at t . Its elements are of
the form (1), where the coefficients are now in T (and { fkn}

∞

n=1 is a null sequence
for each k ∈ J ). In particular, T [zl | l ∈ J ] is dense in DJ .

Let X̂ be the projective s-line over T , and let X be its closed fibre. Put

U = X r {cl | l ∈ J }.

Then RU = T [1/(s− cl) | l ∈ J ] = T [zl | l ∈ J ] is the set of functions on X̂ which
are regular on U . Since RU is t-adically dense in DJ = K [1/(s− cl) | l ∈ J ][[t]],
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DJ is the t-adic completion of RU . In formal-geometric language, this means that
DJ = R̂U is the ring of regular functions on the t-adic thickening of U [Harbater
and Hartmann 2007, Notation 4.3].

Corollary 1.13. Let J ⊆ I, j ∈ J .

(a) For each 0 6= g ∈ DJ ,

DJ [(X − c j Y )−1
] = K((X − c j Y ))[zk | k ∈ J ] + gDJ [(X − c j Y )−1

].

(b) For each f ∈ DJ there are h ∈ K [[X−c j Y ]][z j ] and u ∈ D×J such that f = hu.

(c) The ring Q j is a field.

Proof. In the notation of Remark 1.12, each element f ∈ DJ [t−1
] can be written

in the form u · h with u ∈ DJ [t−1
]
× and h ∈ F[z j ], by [Haran and Jarden 1998,

Lemma 3.7]. If f ∈ DJ then we can multiply u and h by a power of t to assume
that u ∈ D×J and h ∈ K [[t]][z j ]. This proves (b). Part (a) is given by [Haran and
Jarden 1998, Corollary 3.8]. By [Harbater and Hartmann 2007, Corollary 4.8] (now
viewing the rings DJ in the formal-geometric context) Quot DJ is the compositum
of K((t))(X/Y ) and DJ . Since K((t))(X/Y ) ⊆ E , we have Quot DJ = E DJ .
Applying this argument for J r { j} instead of J we have Q j = Quot(DIr{ j}) =

E DIr{ j}; hence Quot Q j = Quot(E DIr{ j}) = E Quot(DIr{ j}) = E DIr{ j} = Q j

is a field. �

The proof of the following proposition is based on that of Corollary 4.4 of [Haran
and Jarden 1998]. (We cannot use that corollary as it is, since condition (e′) of that
claim does not hold for DI itself.)

Proposition 1.14. Let i ∈ I , n ∈ N, and b ∈ GLn(Q). There exist b1 ∈ GLn(Qi )

and b2 ∈ GLn(Q′i ) such that b = b1 · b2.

Proof. Denote by | · | the absolute value on Q that corresponds to v. Each of the
rings A = DI , A1 = DIr{i}, and A2 = D{i} is complete with respect to | · | and
Proposition 1.7 asserts that condition (d′) of Example 4.3 of [Haran and Jarden
1998] holds for these rings. We extend | · | to the maximum norm ‖ · ‖ on Mn(Q),
as in the same example. Then Mn(A), Mn(A1), and Mn(A2) are complete with
respect to ‖ · ‖ and condition (d) of [Haran and Jarden 1998, §4] holds. By Cartan’s
lemma [Haran and Jarden 1998, Lemma 4.2], for each a∈GLn(A)with ‖a−1‖<1
there exist a1 ∈ GL1(A1) and a2 ∈ GL1(A2) such that a = a1 · a2.

Let E1 = Quot A1 = Qi and E2 = Quot A2 = Q′i . In order to factor b (which
need not be in GLn(A)), let t = X − ci Y , T = k[[t]]. By Remark 1.12 (for J = I )
A0 = T [zk | k ∈ I ] is a dense subring of A, and by Corollary 1.13(b) there exists
h ∈ A0 such that hb ∈Mn(A). If hb= b1b′2 with b1 ∈GLn(E1) and b′2 ∈GLn(E2),
then b = b1b2 with b2 = b′2/h ∈ GLn(E2). So we may assume that b ∈Mn(A).
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Let 0 6= d = det(b) ∈ A. By Corollary 1.13(b) there are 0 6= g ∈ A0 and u ∈ A×

such that d = gu. Let b′′ ∈ Mn(A) be the adjoint matrix of b, so that bb′′ = d1.
Let b′ = u−1b′′. Then b′ ∈Mn(A) and bb′ = g1. Put

V = {a′ ∈Mn(A[t−1
]) | ba′ ∈ gMn(A[t−1

])}, V0 = V ∩Mn(A0[t−1
]).

V is an additive subgroup of Mn(A[t−1
]) and gMn(A[t−1

]) ≤ V . By Corollary
1.13(a), Mn(A[t−1

])=Mn(A0[t−1
])+gMn(A[t−1

]); hence V =V0+gMn(A[t−1
]).

Since A0 is dense in A, gMn(A0[t−1
]) is dense in gMn(A[t−1

]). It follows that
V0 = V0 + gMn(A0[t−1

]) is dense in V = V0 + gMn(A[t−1
]). As b′ ∈ V , there

exists a0 ∈ V0 such that ‖b′ − a0‖ < |g|/‖b‖. Put a = a0/g ∈ Mn(Q). Then
ba ∈ Mn(A[t−1

]) and ‖1−ba‖ = ‖(1/g)b(b′−a0)‖ ≤ (1/|g|)‖b‖ · ‖b′−a0‖< 1.
Hence ‖ba‖=1, so each entry in ba has a nonnegative value at v. By Remark 1.12,
v coincides with the t-adic valuation on A; hence all the entries of ba belong to A.
Thus ba ∈ Mn(A), and since ‖1−ba‖< 1 and Mn(A) is complete, ba ∈GLn(A).
In particular, det a 6= 0 and hence a ∈ GLn(Quot A0) ⊆ GLn(E2). By the first
paragraph of this proof, there exist b1 ∈ GLn(A1) ⊆ GLn(E1) and b′2 ∈ GLn(A2)

such that ba = b1b′2. Then b2 = b′2a−1
∈ GLn(E2) satisfies b = b1b2. �

Corollary 1.15. Suppose G is a finite group. For each i ∈ I let Fi be a Galois
extension of E with group Gi contained in G, such that Fi ⊆ Q′i . If G=〈Gi | i ∈ I 〉
then E = (E, Fi , Qi , Q;Gi ,G)i∈I is a patching datum [Haran and Jarden 1998,
Definition 1.1]. In particular, G occurs as a Galois group over E.

Proof. By Corollary 1.13(c), Qi is a field for each i ∈ I . Conditions (2a), (2b),
and (2d) of [Haran and Jarden 1998, Definition 1.1] are given in the hypothesis.
Conditions (2c) and (2e) are given by Propositions 1.11 and 1.14, respectively.
Thus E is a patching datum. By [Haran and Jarden 1998, Lemma 1.3(a)], there
exists a Galois extension F of E with group G. �

2. p-groups

Fix the notation of Section 1, including that of Construction 1.1, and let p denote
a prime number. In this section we realize p-groups of rank at most 2 by adequate
extensions of E , and embed these extensions into the analytic fields.

Lemma 2.1. Let J ⊆ I , j ∈ J , and t = X − c j Y .

(a) Suppose f =
∑d

l=0 fl zl
j ∈ K [[t]][z j ] is a polynomial such that v( f1) = 0 and

v( fl) > 0 for each l > 1. Then f is prime in DJ [t−1
].

(b) The ring DJ [t−1
] is a unique factorization domain.

(c) For each a, b, c ∈ K× with a 6= −b and 2 ≤ m ∈ N, the elements 1+ az j +

tm−1zm
j , 1+ bz j − tm−1zm

j , 1+ cz j are nonassociate primes of DJ [t−1
].
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Proof. Set F= K((t)). Then DJ [t−1
]= F{zk | k ∈ J } (see Remark 1.12). Viewed as

an element of F{z j }, f is regular of pseudodegree 1; see Definition 1.4 of [Haran
and Völklein 1996]. Hence, by Corollary 1.7 of the same work, we have f = u ·q ,
where u ∈ F{z j }

×
⊆ DJ [t−1

]
× and q = q0+z j ∈ F[z j ] is a linear polynomial with

v(q0)≥0. Thus to prove (a), it suffices to show that q is prime in DJ [t−1
]. Without

loss of generality q0 6= 0, and we set c = c j − 1/q0. Then q = z j − 1/(c− c j );
hence, by [Paran 2008, Lemma 6.4(a)] (with D, r , and 1 there replaced by F , 1,
and j here), q generates the kernel of an epimorphism from DJ [t−1

] onto a domain
(actually a field here); hence q is prime. This proves (a).

Since DJ [t−1
] is a principal ideal domain by [Haran and Jarden 1998, Proposi-

tion 3.9], part (b) follows.
By part (a), r = 1+ az j + tm−1zm

j , r ′ = 1+ bz j − tm−1zm
j , and s = 1+ cz j are

primes of DJ [t−1
]. If s | r , then −1/c is a root of r , a contradiction. Thus r and s

(and similarly, r ′ and s) are nonassociates.
If r | r ′ then r | r + r ′. By the argument of the preceding paragraph, r + r ′ =

2+ (a+ b)z j is a prime, nonassociate to r , a contradiction. This proves (c). �

Lemma 2.2. Let K be a field that contains a primitive q-th root of unity, for some
q ∈ N. Let v be a discrete valuation on K which is trivial on the prime field of
K , and let a ∈ K with v(a) = 0. Suppose L = K(a1/q) is a Kummer extension
of K , and that L/K is unramified at v. Then v(xσ ) = v(x) for each x ∈ L and
σ ∈ Gal(L/K ).

Proof. Extend v arbitrarily to L , let O be the valuation ring of v in K , and O ′

the valuation ring of v in L . Since K contains a primitive q-th root of unity,
q is not divisible by p = char K . Thus d = disc(T q

− a, K ) = kaq−1, where
k ∈ Z is not divisible by p. Hence v(d) = 0, and by [Fried and Jarden 2005,
Lemma 6.1.2] we have O ′ = O[a1/q

]. Put α = a1/q and let x =
∑q−1

i=0 biα
n
∈ K ,

with b0, . . . , bq−1 ∈ K . We claim that v(x) = mini v(bi ). Indeed, since L/K is
unramified at v, we may multiply x by a power of a uniformizer of v in K , to
assume that v(x)= 0. Since O ′ = O[α], v(bi )≥ 0 for each 0≤ i ≤ q − 1. On the
other hand v(x) ≥ mini v(biα

i ) = mini v(bi ), since v(α) = (1/n)v(a) = 0. Thus
v(bi )= 0 for some 0≤ i ≤ q − 1; hence v(x)=mini v(bi ).

Now, let σ ∈Gal(L/K ) and let x =
∑q−1

i=0 biα
n
∈ K , with b0, . . . , bq−1 ∈ K , be

an arbitrary element. We have ασ = ζα, where ζ is some q-th root of unity. Then
v(xσ )= v

(∑q−1
i=0 biζ

iαi
)
=mini v(biζ

i )=mini v(bi )= v(x). �

Recall that given a field K , any K-central simple algebra A is of the form Mn(D)
for some K-division algebra D. The index of A is defined to be ind A=

√
dimK D.

So, A is a division algebra if and only if ind A =
√

dimK A. Let us denote Brauer
equivalence by ∼ and the exponent of A (its order in the Brauer group) by exp A.
A subfield F of A is a maximal subfield of A if and only if dimK A = [F : K ]2.
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Furthermore, a field F is a maximal subfield of A if and only if dimK A= [F : K ]2

and F splits A [Reiner 1975, Theorem 28.4 and Corollary 28.11].
The proof of the next proposition is partially based on that of [Harbater et al.

2009, Proposition 4.4].

Proposition 2.3. Fix i ∈ I , and let H be an abelian p-group of rank at most 2,
where p 6= char K . Suppose K contains an |H |-th primitive root of unity. Let E ′

be a finite extension of E. Then there exists an H-Galois extension Fi/E such that
Fi ⊆ Q′i , Fi is contained as a maximal subfield in an E-division algebra D′i , and
D′i ⊗E E ′Qi remains a division algebra (where E ′Qi is the compositum of E ′ and
Qi in an algebraic closure of Q).

Proof. Let us start by constructing Fi . Write H =Cq×C ′q , where q and q ′ are pow-
ers of p. For each k ∈N, the elements X−ci Y+Y k and X+ci Y−Y k are irreducible
and hence prime in the unique factorization domain K [[X, Y ]]. Only finitely many
primes of K [[X, Y ]] are ramified at E ′/E ; hence for a sufficiently large 2≤ k ∈N,
f = X − ci Y + Y k , and g = X + ci Y − Y k are unramified at E ′/E . That is,
the corresponding valuations v f and vg are unramified. Let a = f/(X − ci Y )
and b = g/(X − ci Y ). Clearly v f (X − ci Y ) = v f (g) = 0; hence v f (a) = 1
and v f (b) = 0. Similarly, vg(a) = 0 and vg(b) = 1. Consider the polynomial
h(U ) = U q

− a over D{i} = K [zi ][[X − ci Y ]]. Note that a = 1+ zk
i (X − ci Y )k−1,

hence h(1) ∈ (X − ci Y )D{i} and h′(1) = q ∈ K× ⊆ D×
{i}. By the ring version of

Hensel’s lemma (for the ideal (X − ci Y )D{i}) h(U ) has a root s ∈ D{i}. Note that
v f (s)= 1/q /∈ Z; hence s /∈ E . Since K contains a primitive |H |-th root of unity,
it contains a primitive q-th root of unity. By Kummer theory E(s)/E is a Galois
extension with group Cq . Similarly, there exists s ′ ∈ D{i} satisfying (s ′)q

′

= b, and
E(s ′)/E is Galois with group Cq ′ . Let Fi = E(s, s ′)⊆ Q′i .

Since v f (a)= 1, h(U ) is irreducible over E , by Eisenstein’s criterion. Denoting
the reduction modulo g by ·̄ , h̄(U ) = U q

− ā is separable, since ā 6= 0. Thus
by [Fried and Jarden 2005, Lemma 2.3.4], E(s)/E is unramified at vg. Clearly,
E(s ′)/E is totally ramified at vg. Thus E(s) and E(s ′) are linearly disjoint over
E ; hence Gal(Fi/E)= H .

Let D′i be the quaternion algebra (a, b)qq ′ [Pierce 1982, Section 15.4]. Note
that D′i can be also viewed as the cyclic algebra (E(a1/qq ′)/E, σ, b), for some
generator σ of Gal(E(a1/qq ′)/E). We claim that Fi splits D′i . By [Reiner 1975,
Theorem 30.8], we have

D′i ⊗E E(s)∼ (E(s1/q ′)/E(s), σ q , b);

thus D′i ⊗E Fi ∼ (Fi (s1/q ′)/Fi , σ
q , b). The cyclic algebra (Fi (s1/q ′)/Fi , σ

q , b)
is split if and only if b is a norm from Fi (s1/q ′) (see for example [Reiner 1975,
Theorem 30.4]), i.e., if and only if b ∈ NFi (s1/q′ )/Fi (Fi (s1/q ′)). This holds since
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b= NFi (s1/q′ )/Fi (s
′). Thus Fi splits D′i . As [Fi : E] = qq ′, Fi is a maximal subfield

of the E-central simple algebra D′i . We shall show that D′i ⊗E E ′Qi is a division
algebra and from this it will follow that D′i is a division algebra.

In order to show that D′i ⊗E E ′Qi is a division algebra we construct auxiliary
valuations. Choose j ∈ I r {i}, and let

t = X − c j Y, r = 1+ (c j + ci )z j − tk−1zk
j , r ′ = 1+ (c j − ci )z j + tk−1zk

j .

By Lemma 2.1(c) r and r ′ are nonassociate prime elements in DIr{i}[t−1
], so they

define discrete valuations vr and vr ′ on Qi = Quot(DIr{i}) = Quot(DIr{i}[t−1
])

such that vr (r ′)= vr ′(r)= 0. By Lemma 2.1(c) we also have

vr ′(1+ (c j − ci )z j )= vr (1+ (c j − ci )z j )= 0.

Note that

b =
X − c j Y + (c j + ci )Y − Y k

X − c j Y + (c j − ci )Y
=

t + (c j + ci )t z j − t j zk
j

t + (c j − ci )t z j
=

r
1+ (c j − ci )z j

.

Similarly, a = r ′/(1+ (c j − ci )z j ). Thus vr (b) = 1, vr ′(b) = 0, vr (a) = 0, and
vr ′(a)=1. Then the polynomial U qq ′

−a is irreducible over DIr{i}, by Eisenstein’s
criterion (using vr ′). Thus Qi (a1/qq ′)/Qi is unramified at vr (again by [Fried and
Jarden 2005, Lemma 2.3.4]); hence so is E ′Qi (a1/qq ′)/E ′Qi .

Only finitely many primes of the unique factorization domain DIr{i}[t−1
] (see

Lemma 2.1(b)) are ramified at the finite extension E ′Qi/Qi ; hence, without loss of
generality, we may assume that E ′Qi/Qi is unramified at vr ′ (by possibly choosing
an even larger k beforehand). On the other hand, Qi (a1/qq ′)/Qi is totally ramified
at vr ′ ; hence

[E ′Qi (a1/qq ′) : E ′Qi ] = [Qi (a1/qq ′) : Qi ] = qq ′.

We can now show that D′i ⊗E E ′Qi is a division algebra. A sufficient condition
for this to hold is that exp(D′i ⊗E E ′Qi ) = qq ′. This happens if and only if for
every 1≤ m ≤ qq ′− 1 the algebra (E ′Qi (a1/qq ′)/E ′Qi , σ, bm)∼ (D′i ⊗E E ′Qi )

m

does not split. Let N denote the norm NE ′Qi (a1/qq′ )/E ′Qi . For any 1≤m ≤ qq ′−1,
the algebra (D′i ⊗E E ′Qi )

m splits if and only if bm
∈ N (E ′Qi (a1/qq ′)× ) [Reiner

1975, Theorem 30.4].
Since E ′Qi (a1/qq ′)/E ′Qi is unramified at vr , we have vr (x)= vr (xσ ) for each

x ∈ E ′Qi (a1/qq ′), by Lemma 2.2. Hence

vr (N (x))=
qq ′−1∑

l=0

vr (xσ
l
)= qq ′vr (x)

for all x ∈ E ′Qi (a1/qq ′). Since vr (b)= 1, bm
6∈ N (E ′Qi (a1/qq ′)× ) for all 1≤m ≤

qq ′− 1. Thus, exp(D′i ⊗E E ′Qi )= qq ′ and D′i ⊗E E ′Qi is a division algebra. �
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3. Patching and admissibility

We have established the patching machinery needed to prove our Main Theorem.
We first recall some general properties of induced algebras and Frobenius algebras.

Remark 3.1 (induced algebras). Let G be a finite group and H ≤ G. Let P/Q be
a finite field extension with H = Gal(P/Q). Let

N = IndG
H P =

{∑
θ∈G

aθθ | aθ ∈ P, aτθ = aθτ for all θ ∈ G, τ ∈ H
}

be a ring with respect to point-wise addition and multiplication. Then P can be
embedded as a subring of N by choosing representatives θ1=1, . . . , θk of H\G and
sending an element x ∈ P to

∑k
i=1,τ∈H xτ θiτ . Furthermore, by choosing different

representatives N can be presented as a direct sum of copies of P .
If P splits a central simple Q-algebra A then

IndG
H P ⊗Q A ∼= IndG

H P ⊗P (P ⊗Q A)∼ IndG
H P ⊗P P ∼= IndG

H P;

hence A splits over IndG
H P . For a definition of a split separable (Azumaya) algebra

over a ring, see [DeMeyer and Ingraham 1971, §5].

The next definition, remark, and proposition appear in Section 2.1 of [Jacobson
1996].

Definition 3.2 (Frobenius algebras). Let F be a field. An F-algebra A is a Frobe-
nius algebra if A contains a hyperplane that does not contain any nonzero one sided
ideal of A.

Remark 3.3. An algebra A1⊕· · ·⊕ As is Frobenius if and only if Ai is Frobenius
for each 1 ≤ i ≤ s. Any algebra F[a] (with a single generator) is Frobenius. Let
L/K be an H -extension. By Remark 3.1, IndG

H L can be decomposed into a sum
of copies of L and it follows that IndG

H L is a Frobenius algebra.

Proposition 3.4 [Jacobson 1996, Theorem 2.2.3]. Let A be an F-central simple
algebra and K a commutative Frobenius subalgebra of A such that dimF A =
[K : F]2. Then any embedding of K into A can be extended to an inner automor-
phism of A.

Lemma 3.5. Let R be an equicharacteristic complete local domain of dimension
r. Suppose that the residue field of R contains a primitive root of unity of order k,
for each k ∈N with char R6 | k. Then R is a finite module over a subring of the form
K [[X1, . . . , Xr ]], where K is a field containing a primitive root of unity of order k,
for each k ∈ N with char K 6 | k.

Proof. By Cohen’s structure theorem [Matsumura 1986, §29], R is finitely gener-
ated over a subring of the form B = K0[[X1, . . . , Xn]], for some field K0. Since
dim B = dim R = r , we have n = r .
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Let K be the field obtained by adjoining all primitive roots of unity of order
not divisible by char R to K0. By our assumptions, K is contained in the residue
field of R; hence K/K0 is a finite (separable) extension. By Hensel’s lemma, R
contains K . Since [K : K0] is finite, K(K0[[X1, . . . , Xr ]])= K [[X1, . . . , Xr ]]. Thus
R is finite over K [[X1, . . . , Xr ]] (since it is finite over K0[[X1, . . . , Xr ]]). �

The final ingredient we need in order to prove our Main Theorem is patching of
central simple algebras. The content of the next proposition is essentially given in
[Harbater et al. 2009], but for specific fields Qi , while here we present it for general
fields satisfying a matrix factorization property. We note that [Harbater et al. 2009,
Theorem 4.1] uses the terminology of categories and equivalence of categories.
Here we prefer a more explicit presentation, working with vector spaces and bases,
as in [Haran and Jarden 1998]. The proof of the proposition combines the proof of
[Haran and Jarden 1998, Lemma 1.2] (where a more restricted assertion is made
for specific types of algebras), and the proof of [Harbater and Hartmann 2007,
Theorem 7.1(vi)] (where the assertion is made for specific types of fields).

Proposition 3.6. Let I be a finite set. For each i ∈ I let Qi be a field contained
in a Qi -algebra Ai . Let Q be a field containing Qi for each i ∈ I , and contained
in a Q-algebra AQ which contains Ai for each i ∈ I . Moreover, suppose that
Ai Q = AQ and dimQi Ai = dimQ AQ for each i ∈ I . Finally, suppose that

(∗) for each B ∈GLn(Q) there exist Bi ∈GLn(Qi ) and B ′i ∈GLn
(⋂

j 6=i Q j
)

such
that B = Bi B ′i .

Then, letting E =
⋂

i∈I Qi , A=
⋂

i∈I Ai is an E-algebra satisfying AQi = Ai for
each i ∈ I . Moreover, if each Ai is central simple, then so is A.

Proof. For each i ∈ I , let Ci be a basis for Ai over Qi . Since Ai Q = AQ ,
SpanQ(Ci ) = AQ , and since dimQi Ai = dimQ AQ , Ci is a basis for AQ over
Q, for each i ∈ I . We now construct a basis C for AQ over Q, which is also a basis
for Ai over Qi , for all i ∈ I .

For each subset J of I we find, by induction on |J |, a basis VJ for AQ over Q
which is also a basis for A j over Q j , for each j ∈ J . Then for I = J we will get
the basis C.

If J = ∅ there is nothing to prove. Suppose that |J | ≥ 1, choose k ∈ J and
let J ′ = J r {k}. By assumption there is a basis VJ for AQ over Q which is a
basis for Ai over Qi for each i ∈ J ′. Since Ci is a common basis for AQ and Ai ,
there is a matrix B ∈ GLn(Q) such that Ck B = VJ ′ . By condition (∗) in the state-
ment of the proposition, there exist Bk ∈ GLn(Qk) and M ∈ GLn

(⋂
k 6= j∈I Q j

)
⊆⋂

j∈J ′ GLn(Q j ) such that B = Bk M . Put VJ = VJ ′M−1. Then VJ is a basis for
AQ over Q which is also a basis for A j over Q j for each j ∈ J ′. Moreover, VJ

is also a basis for Ak over Qk , since VJ = Vk B M−1
= Vk Bk . This completes the

induction.
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The existence of the common basis C implies that AQi = Ai for each i ∈ I .
As Ai is a Qi -central simple algebra for any i ∈ I (a single i suffices), A is an E-
central simple algebra. This follows, for example, from [Saltman 1999, Theorem
2.2.c]. �

Proposition 3.7. Let R be an equicharacteristic complete local domain of dimen-
sion 2, with residue field containing a primitive root of unity of order k for each
k ∈ N with char R6 | k. Let G be a finite group of order not divisible by char R,
whose Sylow subgroups are abelian of rank at most 2. Then G is admissible over
Quot R.

Proof. By Lemma 3.5, R is a finite module over a subring of the form B =
K [[X, Y ]], where K contains a primitive root of unity of order k for each k ∈N not
divisible by p = char R. Let E = Quot B = K((X, Y )) and E ′ = Quot R. Then E ′

is a finite extension of E .

Part A: A patching datum. Let (pi )i∈I be the prime factors of n=|G|, for some in-
dex set I . For each i ∈ I , let Gi be a pi -Sylow subgroup of G. Apply Construction
1.1 to obtain rings Qi , i ∈ I , contained in the common field Q. For each i ∈ I , we
may apply Proposition 2.3 to obtain a Galois extension Fi/E with group Gi , such
that Fi ⊆ Q′i and Fi is contained as a maximal subfield in a division E-algebra D′i .
Moreover, D′i ⊗E E ′Qi remains a division algebra. Thus Di := D′i ⊗E Qi is also a
division algebra. By Corollary 1.13(c), Qi is a field for each i ∈ I . Put Pi = Fi Qi .
Since Fi splits D′i , Pi splits Di , and since [Pi : Qi ] = [Fi : E] = ind(D′i )= ind(Di ),
Pi is a maximal subfield of Di . Let E = (E, Fi , Qi , Q;Gi ,G)i∈I . By Corollary
1.15, E is a patching datum.

Part B: Induced algebras [Haran and Jarden 1998, §1]. Consider the induced alge-
bra N = IndG

1 Q of dimension n over Q, and the Qi -subalgebra Ni = IndG
Gi

Pi for
each i ∈ I (see Remark 3.1). Then G acts on N by

(∑
θ∈G aθθ

)σ
=
∑

θ∈G aθσ−1θ=∑
θ∈G aσθθ for each σ ∈ G. The field Q is embedded diagonally in N , which

induces an embedding of Qi in Ni , for each i ∈ I . We view these embeddings as
containments. By Lemma 1.2 of [Haran and Jarden 1998] there is a basis for N
over Q, which is also a basis for Ni over Qi , for each i ∈ I . In particular, we have
Ni Q = N for each i ∈ I . By Lemma 1.3 of the same paper, F =

⋂
i∈I Ni is a

Galois field extension of E with group G, and there exists an E-embedding of F
into Q. Denote the image of F under this embedding by F ′.

Part C: Division algebras. It remains to prove that the extension F ′/E is adequate.
Let AQ =Mn(Q), and for each i ∈ I let ni = [G :Gi ]. As AQ is split of dimension
n2 and N is of dimension n over Q, we also have an embedding of N into AQ . We
view N as a subalgebra of AQ via this embedding.

Fix i ∈ I . Since Pi = Fi Qi splits Di , it follows by Remark 3.1 that Ni also splits
Di . Moreover, by [DeMeyer and Ingraham 1971, Theorem 5.5] there is a central
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simple Qi -algebra Ai which is Brauer equivalent to Di , in which Ni embeds as a
maximal commutative separable Qi -subalgebra so that dimQi (Ai )=dimQi (Ni )

2
=

n2. We view Ni as contained in Ai via this embedding.
Since Pi splits Di , we have

Di ⊗Qi Q ∼= (Di ⊗Qi Pi )⊗Pi Q ∼=Mn/ni (Pi )⊗Pi Q ∼=Mn/ni (Q).

Since ind(Di )= n/ni and dimQ AQ = n2 we get that Ai ∼=Mni (Di ). Thus we have
Ai⊗Qi Q∼=Mni (Di )⊗Qi Q∼=Mn(Q)= AQ , and we denote the induced Q-algebras
isomorphism Ai ⊗Qi Q→ AQ by ψi . We cannot identify these two algebras via
this isomorphism, since it might not be compatible with the containments Ni ⊆ Ai

and N ⊆ AQ . This compatibility problem can be settled similarly to [Harbater et
al. 2009, Lemma 4.2]:

By Part B we have N = Ni Q and dimQi Ni = dimQ N = n. Thus we have
an isomorphism δi : N = Ni Q → Ni ⊗Qi Q for which the following diagram
commutes:

Ai Ai ⊗Qi Q

Ni N
δi // Ni ⊗Qi Q.

id⊗Qi Q

OO

(2)

By Remark 3.3, N = IndG
1 Q is a Frobenius (commutative) subalgebra of AQ .

By Proposition 3.4, the embedding ψi (id⊗Qi Q)δi : N → AQ extends to an inner
automorphism αi of AQ . Let ψ ′i = α

−1
i ψi . Then α−1

i ψi (id⊗Qi Q)δi is the identity
map on N = Ni Q, so we have the commutative diagram

Ai ⊗Qi Q
ψ ′i // AQ

Ni Q

(id⊗Qi Q)δi

OO

N .

OO
(3)

Combining (2) and (3), we get the following commutative diagram:

Ai Ai ⊗Qi Q
ψ ′i // AQ

Ni Ni Q

(id⊗Qi Q)δi

OO

N .

OO

This diagram gives an embedding Ai→ AQ which is compatible with the contain-
ments Ni ⊆ Ai and N ⊆ AQ , so we may now identify Ai as a subring of AQ , via this
embedding. Moreover, sinceψ ′i is an isomorphism, we have Ai⊗Qi Q= Ai Q= AQ
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by this identification. The following diagram explains the containment relations:

Ai AQ

Ni N
Di

Qi Pi Q
D′i

E Fi Q′i .

Let A=
⋂

i∈I Ai . By Proposition 3.6, A is a central simple E-algebra for which
AQi = Ai for each i ∈ I . In particular, A = Mk(D) for some division algebra D
of index n/k.

Now, D⊗E Qi is Brauer equivalent to A⊗E Qi ∼= Ai , which is Brauer equivalent
to Di . Thus, n/ni = ind(Di ) | ind D for each i ∈ I and n = lcmi (n/ni ) | ind D. It
follows that k = 1 and A is a division algebra. Naturally, F is a subfield of A and
ind A= [F : E]. It follows that F is a maximal subfield of the division algebra A.

By choosing a basis for A/F and considering the corresponding structure con-
stants one can form an E-division algebra A′ which is E-isomorphic to A such that
F ′ is a maximal subfield of A′.

We will show that A′⊗EE ′ is an E ′-division algebra, but first let us show that this
implies that F ′E ′/E ′ is an adequate G-extension (and hence G is E ′-admissible).
Indeed, if A′ ⊗E E ′ is a division algebra, then F ′ ⊗E E ′ is a field. It follows that
F ′ ⊗E E ′ ∼= F ′E ′, since F ′ ⊗E E ′ is G-Galois over E ′ [Saltman 1999, Theorem
6.3]. Thus, [F ′E ′ : E ′] = [F ′ : E] and F ′ ∩ E ′ = E . Since F ′E ′ splits A′⊗E E ′

and as ind(A′⊗E E ′) = [F ′E ′ : E ′], F ′E ′ is a maximal subfield of A′⊗E E ′ and
hence an adequate G-extension.

In order to show that A′ ⊗E E ′ is an E ′-division algebra, we first note that for
each i ∈ I , Pi = Fi Qi = F ′Qi , by [Haran and Völklein 1996, Lemma 3.6(b)].
Thus, we have the diagram

A′⊗E Qi A′⊗E ′ Qi E ′

A′ A′⊗E E ′

Pi Pi E ′

F ′ F ′E ′

Qi Qi E ′

E E ′.

As mentioned above, A′⊗E Qi is Brauer equivalent to Di = D′i ⊗E Qi . Thus
A′⊗E Qi E ′ is Brauer equivalent to D′i ⊗Qi Qi E ′, which by the choice of D′i is a
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division algebra. Then, for all i ∈ I ,

n
ni
= ind(D′i )= ind(D′i ⊗Qi Qi E ′) | ind(A′⊗E Qi E ′) | ind(A′⊗E E ′).

It follows that n = lcmi∈I (n/ni ) | ind(A′⊗E E ′). Hence n = ind(A′⊗ E ′), which
shows that A′⊗E E ′ is a division algebra. �

As a corollary, we get our Main Theorem, which we restate for convenience:

Theorem 3.8. Let R be an equicharacteristic complete local domain of dimension
2, with a separably closed residue field. Let E =Quot R and let G be a finite group
of order not divisible by char E. Then G is E-admissible if and only if all the Sylow
subgroups of G are abelian of rank at most 2.

Proof. By Proposition 3.7, if the Sylow subgroups of G are abelian of rank at most 2
then G is E-admissible. For the converse, assume G is E-admissible. For a prime v
of E , let ramv denote the ramification map ramv :Br E→H1(G Ev , Q/Z) [Saltman
1999]. Following [Harbater et al. 2009], we say that an α ∈ Br E is determined by
ramification with respect to a set of primes � if there is a prime v ∈ � for which
exp(α) = exp(ramv(α)). Let D be an E-division algebra with maximal subfield
L that has Galois group G = Gal(L/E). Let p = char E (possibly p = 0). By
[Harbater et al. 2009, Theorem 3.3], if D satisfies:

(1) the order of D is prime to p and ind D = exp D, and

(2) D is determined by ramification with respect to some set of discrete valuations
whose residue characteristic is prime to |G|,

then G has Sylow subgroups that are abelian of rank at most 2. Condition (1) is
satisfied for any α of order prime to p by Theorem 2.1 of [Colliot-Thélène et al.
2002], while condition (2) is satisfied by Corollary 1.9(c) of the same paper with
respect to the set of codimension 1 primes of R. �

Remark 3.9. Let E be as above. By [Colliot-Thélène et al. 2002, Theorem 2.1],
any Brauer class α ∈ Br E of order prime to char E has ind(α) = exp(α). Thus
by [Schacher 1968, Proposition 2.2], a subfield of an E-division algebra is also a
maximal subfield of some E-division algebra.
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