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We compute the Hochschild cohomology and homology for arbitrary finite-
dimensional quantum complete intersections. It turns out that their behavior
varies widely, depending on the choice of commutation parameters, and we give
precise criteria for when to expect what behavior.

1. Introduction

Quantum complete intersections were first discussed by Avramov, Gasharov, and
Peeva [Avramov et al. 1997]. Based on the introduction of quantized versions of
polynomial rings in [Manin 1987], they introduced the notion of quantum regular
sequences.

In this paper we restrict to finite-dimensional quantum complete intersections,
that is, algebras of the form k〈x1, . . . , xc〉/I , where I is an ideal generated by xni

i
for some ni ∈N≥2, and x j xi −qi j xi x j for some commutation parameters qi j from
the multiplicative group of the field.

In particular, in the case of two variables it is known that the homological behav-
ior of finite-dimensional quantum complete intersections varies greatly, depending
on the commutation parameters.

Buchweitz, Green, Madsen, and Solberg [Buchweitz et al. 2005] gave a finite-
dimensional quantum complete intersection as the first example of an algebra of
infinite global dimension which has finite Hochschild cohomology. This result was
generalized in [Bergh and Erdmann 2008], which showed that a finite-dimensional
quantum complete intersection of codimension 2 (c = 2 in the description above)
has an infinite Hochschild cohomology if and only if the commutation parameter
is a root of unity.

On the other hand, in [Bergh and Oppermann 2008a] we showed that in the situa-
tion that all commutation parameters are roots of unity, the Hochschild cohomology
of a quantum complete intersection is as well behaved as in the commutative case:
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It is a finitely generated k algebra, and any Ext∗(M, N ) for any finite-dimensional
modules M and N over the quantum complete intersection is finitely generated as
a module over the Hochschild cohomology ring.

This paper gives a general description of the Hochschild cohomology and ho-
mology of finite-dimensional quantum complete intersections. Here is an outline:

In Theorems 3.4 and 7.4 we explicitly determine a k-basis for the Hochschild
cohomology and homology, respectively.

Using these results we study the size of the Hochschild cohomology and homol-
ogy in the following sense: Let N be the set of nonnegative integers (i.e., 0 ∈ N).
We denote by

γ(HH∗(3))= inf
{

t ∈ N

∣∣∣∣ lim sup
dimk HHn(3)

nt−1 <∞

}
the rate of growth of the Hochschild cohomology (and similarly for the Hochschild
homology). In Theorems 4.5 and 8.2, we obtain explicit combinatorial formulas
for γ(HH∗(3)) and γ(HH∗(3)). In particular it will be shown (Corollary 4.6) that
whenever not all commutation parameters are roots of unity we have γ(HH∗(3))≤
c−2. For c= 2 that means that the Hochschild cohomology is finite. This explains
why there are essentially only two cases for c = 2, while we obtain additional
behaviors for larger c.

We will also generalize the result of [Bergh and Erdmann 2008] in another way:
It will be shown that whenever the commutation parameters are sufficiently generic
the Hochschild cohomology of the quantum complete intersection is finite (see
Example 6.2).

Finally we will study the multiplicative structure of the Hochschild cohomology
ring. It will turn out (Theorem 5.5) that it always contains a subring S which is
finitely generated over k, and isomorphic to the quotient of the Hochschild coho-
mology modulo its nilpotent elements. We will give a criterion for when the entire
Hochschild cohomology ring is finitely generated over this subring (Theorem 5.9).
We will give examples (Examples 6.4 and 6.5) that all the following behaviors
occur (for c ≥ 3):

• S= k, but γ(HH∗(3))= c− 2.

• γ(S)= γ(HH∗(3))= c− 2, and HH∗(3) is finitely generated over S.

• γ(S)= γ(HH∗(3))= c− 2, but HH∗(3) is not finitely generated over S.

2. Notation and background

Throughout this paper we assume k to be field.

Quantum complete intersections. (See also [Bergh and Erdmann 2008; Bergh and
Oppermann 2008a; 2008b].) A finite-dimensional quantum complete intersection
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of codimension c is a k-algebra of the form

3n
q =

k〈x1, . . . , xc〉(
xni

i for 1≤ i ≤ c
x j xi − qi j xi x j for 1≤ i < j ≤ c

)
with n= (n1, . . . , nc)∈Nc

≥2 and q= (qi j | i < j)∈ (k×)n(n−1)/2, where k× denotes
the multiplicative group k \ {0}. For convenience of notation we also define qi j for
i ≥ j : We set qi i = 1 for any i ∈ {1, . . . , c} and qi j = q−1

j i for 1 ≤ j < i ≤ c. The
relations x j xi − qi j xi x j for 1≤ j ≤ i ≤ c are automatically satisfied in 3n

q .
Note that 3n

q is a Zc-graded algebra by |xi | = degree xi = ei , the i-th unit
vector. We will denote by ≤ the partial order on Zc defined by comparing vectors
componentwise, and by 1=

∑
ei the vector with 1 in every component. With this

notation, the dimensions of the graded component of degree d (with d ∈ Zc) are

dim(3n
q)d =

{
1 if 0≤ d ≤ n− 1,
0 otherwise.

For a ∈ Nc we will write xa
= xa1

1 . . . xac
c . Note that the multiplication yields

something different if we multiply in another order. In particular we do not have
xa xb

= xa+b. By setting

q〈a | b〉 =
∏

i, j∈{1...c}
i< j

qa j bi
i j

we obtain the multiplication formula xa xb
= q〈a | b〉xa+b.

Hochschild (co)homology. Let 3 be a finite-dimensional algebra. We denote by
3en
= 3⊗k 3

op the enveloping algebra. Then 3en-modules are 3-3 bimodules
on which k acts centrally. In particular 3 has a natural structure of a 3en-module.
Then

HH∗(3)= Ext∗3en(3,3) and HH∗(3)= Tor3
en

∗
(3,3)

are the Hochschild cohomology and Hochschild homology of3, respectively. With
the Yoneda multiplication of extensions HH∗ becomes a Z-graded k-algebra, which
is graded commutative [Yoneda 1958].

If 3 is graded then so is 3en, and 3 is a graded 3en-module. It follows that for
any i ∈N the Hochschild homology and cohomology groups HHi (3) and HHi (3)

are also graded.

Projective resolutions. In order to determine the Hochschild homology and co-
homology of a quantum complete intersection 3 = 3n

q we need to find a projec-
tive resolution of 3 as a 3en-module. Moreover we want to keep track of the
Zc-grading, so we will need a graded projective resolution.
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We have shown in [Bergh and Oppermann 2008a, Lemma 4.5] that such a graded
projective resolution can be found by tensoring together the projective resolu-
tions of k[xi ]/(x

ni
i ) as (k[xi ]/(x

ni
i ))

en modules. To simplify the notation we set
3i = k[xi ]/(x

ni
i ). Then the graded projective resolution of 3i as a bimodule is

Pi :3
en
i 3en

i 〈1〉
xi⊗1−1⊗xioo 3en

i 〈ni 〉

∑ni−1
k=0 xk

i ⊗x
ni−1−k
ioo 3en

i 〈ni+1〉
xi⊗1−1⊗xioo . . . ,oo

where 3en
i 〈s〉 is the graded module obtained from 3en

i by increasing the degree of
all homogeneous elements by s. Note that here all the bimodules are shifted into
place in such a way that all the morphisms have degree 0.

With this notation, the total complex

Tot(P1⊗k P2⊗k · · · ⊗k Pc)

is a graded projective resolution of 3.
The term in position p ∈ Nc of the c-tuple complex P1⊗k P2⊗k · · · ⊗k Pc is

3en
1 〈s( p)1〉⊗ · · ·⊗3en

c 〈s( p)c〉,

where for notational compactness we have defined a function s : Zc
→ Zc by

s( p)i =

{
1
2 pi ni if pi is even,
1
2(pi−1)ni + 1 if pi is odd.

We will also need a left inverse p : Zc
→ Zc of s given by

p(s)=min{ p ∈ Zc
| s( p)≥ s}.

In the c-tuple complex P1⊗k P2⊗k · · · ⊗k Pc all terms are of the form

3en
1 〈s1〉⊗k · · · ⊗k 3

en
c 〈sc〉

for some s∈Nc. We recall how these are identified with 3en
〈s〉.

Lemma 2.1 [Bergh and Oppermann 2008a, Lemma 4.3]. For s ∈Zc we choose an
identification

3en
1 〈s1〉⊗k · · · ⊗k 3

en
c 〈sc〉 =3

en
〈s〉

such that (1⊗1)⊗ · · ·⊗ (1⊗1) maps to 1⊗1. Under such an identification,

(xa1
1 ⊗ xb1

1 )⊗ · · ·⊗ (x
ac
c ⊗ xbc

c ) maps to
q〈s | s〉

q〈a+s | b+s〉 x
a
⊗ xb.

Remark 2.2. The differentials occurring in the various directions of the c-tuple
complex being of particular interest, we note that the identification of Lemma 2.1
maps (1⊗1)⊗ · · ·⊗ (1⊗1)⊗ (xi⊗1− 1⊗ xi )⊗ (1⊗1)⊗ · · ·⊗ (1⊗1) to

1
q〈ei | s〉

xi ⊗ 1−
1

q〈s | ei 〉
1⊗ xi
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and (1⊗1)⊗ · · ·⊗ (1⊗1)⊗
(∑ni−1

j=0 x j
i ⊗ xni−1− j

i

)
⊗ (1⊗1)⊗ · · ·⊗ (1⊗1) to

ni−1∑
j=0

1
q〈 jei |s〉q〈s|(ni−1− j)ei 〉

x j
i ⊗xni−1− j

i =

ni−1∑
j=0

( 1
q〈ei |s〉

) j( 1
q〈s|ei 〉

)ni−1− j
x j

i ⊗xni−1− j
i .

Technical notation. We need some definitions to keep the notation short in the
rest of the paper.

I. We set Q = (qi j )i j , and think of Q as a (skew symmetric) matrix with entries
in the abelian group k×. That is, Q represents the morphism of abelian groups

Q : Zc
→ (k×)c, (di )i 7→

( c∏
j=1

qd j
i j

)
i
.

As usual for matrices we will denote the image of d ∈ Zc under this map by
Qd, and its i-th component by (Qd)i .

For A, B ⊆ {1, . . . , c}, denote by Q A×B the submatrix containing only
the rows indexed by A and the columns indexed by B: that is, the matrix
representing the composition

ZB � � // Zc Q // (k×)c // // (k×)A.

II. We set Ri =

{
{ζ | ζ ni = 1} if char k divides ni ,

{ζ | ζ ni = 1 and ζ 6= 1} otherwise.

III. For a Z-submodule K of Za , denote by pos.rk K the rank of the Z-submodule
K ′ of K generated by K ∩Na . For example,

pos.rk

〈(
1
0
0

)
,

(
0
1
−1

)〉
= 1.

3. Hochschild cohomology

For d ∈ Zc, we will calculate the degree-d part of the Hochschild cohomology.
Then we will obtain the entire Hochschild cohomology by adding up these parts.

To find the degree-d part of the cohomology we first have to understand the set

Homd
3en(3

en
〈s〉,3)

of degree-d morphisms from the terms of the projective resolution to 3.

Lemma 3.1. The set Homd
3en(3en

〈s〉,3) is nonzero if and only if 0≤ s+d≤n−1,
and then it is the one-dimensional k-vector space generated by

ϕs,d
:3en
〈s〉 →3, xa

⊗ xb
7→ q〈a+s+d | b+s+d〉xa+s+d+b.
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Proof. Clearly any 3en-homomorphism from 3en
〈s〉 to any other module is uni-

quely determined by the image of 1⊗1. If the morphism is to be of degree d, this
image can only be a scalar multiple of xs+d . We choose the image of 1⊗1 to be
q〈s+d | s+d〉xs+d and obtain the formula of the lemma by extending3en-linearly. �

Corollary 3.2. dim Homd
3en

(
3en
〈s( p)〉,3

)
=

{
1 if p(−d)≤ p ≤ p(−d)+ 1,
0 otherwise.

This means that for d ≤ n− 1 the c-tuple complex Homd
3en(P1⊗ · · · ⊗Pc,3)

is concentrated in a cube of sides 1 or 0 (the latter case occurring in directions i
with p(−d)i = −1, i.e., di = ni − 1), where there is a one-dimensional space in
each corner of the cube.

Since by Remark 2.2 these are the terms occurring in the projective resolution,
we are in particular interested in what the maps ϕs,d of Lemma 3.1 do to terms of
the form

1
q〈ei | s〉

xi ⊗ 1−
1

q〈s | ei 〉
1⊗ xi and

ni−1∑
j=0

( 1
q〈ei | s〉

) j( 1
q〈s | ei 〉

)ni−1− j
x j

i ⊗xni−1− j
i .

Lemma 3.3. Let s and d be such that 0≤ s+ d ≤ n− 1, and let i ∈ {1 . . . c}.

(1) Assume that si + di + 1< ni . Then

ϕs,d
(

1
q〈ei | s〉

xi ⊗ 1−
1

q〈s | ei 〉
1⊗ xi

)
= 0

if and only if (Qd)i = 1. (For the definition of Q see Technical notation I.)

(2) Assume that si + di = 0. Then

ϕs,d
(ni−1∑

j=0

(
1

q〈ei | s〉

) j( 1
q〈s | ei 〉

)ni−1− j

x j
i ⊗ xni−1− j

i

)
= 0

if and only if (Qd)i ∈ Ri . (For the definition of Q see Technical notation II.)

Proof. We only prove (2). The proof of (1) is a similar and simpler calculation
using Lemma 3.1. By that lemma we have

ϕs,d
(ni−1∑

j=0

(
1

q〈ei | s〉

) j( 1
q〈s | ei 〉

)ni−1− j

x j
i ⊗ xni−1− j

i

)

=

ni−1∑
j=0

(
1

q〈ei | s〉

) j( 1
q〈s | ei 〉

)ni−1− j

q〈 jei+s+d | (ni−1− j)ei+s+d〉xs+d+(ni−1)ei .
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Upon rearrangement of the right-hand side this becomes

q〈s+d | s+d〉
ni−1∑
j=0

(q〈ei | d〉) j (q〈d | ei 〉)ni−1− j xs+d+(ni−1)ei

= q〈s+d | s+d〉︸ ︷︷ ︸
6=0

xs+d+(ni−1)ei ·


ni

6=0︷ ︸︸ ︷
(q〈ei | d〉)ni−1 if q〈ei | d〉 = q〈d | ei 〉,

(q〈ei | d〉)ni − (q〈d | ei 〉)ni

q〈ei | d〉− q〈d | ei 〉
otherwise.

Now the claim follows from the fact that
q〈d | ei 〉

q〈ei | d〉
=
∏c

j=1 qd j
i j = (Qd)i . �

We have shown that the vanishing of the maps on the edges in direction i of
the cube Homd

3en(P1 ⊗ · · · ⊗ Pc,3) does not depend on s, that is, if one edge
in direction i vanishes, then all vanish. Also, if all the edges in one direction are
isomorphisms, the total complex is acyclic. Hence, if we partition the set {1, . . . , c}
into subsets

Imax =
{
i ∈ {1, . . . , c} : ni = di + 1

}
,

I1 =
{
i ∈ {1, . . . , c} : ni | di + 1

}
\ Imax,

I2 =
{
i ∈ {1, . . . , c} : ni - di + 1

}
,

we have shown the following:

Theorem 3.4. Let 3=3n
q be a quantum complete intersection, and let d ≤ n−1.

Then HH∗,d(3) 6= 0 if and only if

• (Qd)i ∈ Ri for all i ∈ I1, and

• (Qd)i = 1 for all i ∈ I2.

In this situation HH∗,d(3) has the k-vector space basis{
E d

p | 0≤ p and p(−d)≤ p ≤ p(−d)+ 1
}
, (∗)

where E d
p is represented by the (degree-d) map from the c-tuple complex

P1⊗ · · ·⊗Pc

to 3 (shifted to position p) sending 1⊗1 to xd+s( p) in position p. In particular,

E p
d has extension degree

c∑
i=1

pi .

The assumptions on p in (∗) just ensure that 0 ≤ d + s( p) ≤ n− 1: in other
words, we are in the cube where Homd

3en(P1⊗ · · ·⊗Pc,3) does not vanish.
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Now let us compare this result to the description of Ext∗3(k, k) obtained in
[Bergh and Oppermann 2008a]. More precisely: tensoring over 3 with k yields a
map from the Hochschild cohomology to the Ext-algebra of the 3-module k. Our
aim now is to determine its image. By Theorem 5.3 of that reference, the latter
ring has the form

Ext∗3(k, k)=
k〈y1, . . . , yc, z1, . . . , zc〉
y j yi + qi j yi y j for i 6= j
y j zi − qni

i j zi y j for all i, j
z j zi − qni n j

i j zi z j for all i, j
y2

i − zi if ni = 2
y2

i if ni 6= 2



,

where |yi | = (1,−ei ) and |zi | = (2,−ni ei ), and where the quotient is by the ideal
generated by the polynomials indicated.

Corollary 3.5. The image of the map (−⊗3 k)∗ :HH∗(3)→ Ext∗3(k, k) is⊕
d∈D

Ext∗,d(k, k), (†)

where the sum runs over graded pieces where the corresponding graded piece of
the Hochschild cohomology does not vanish:

D=
{

d ∈ Zc
: (Qd)i ∈ Ri for i ∈ Imax ∪ I1, (Qd)i = 1 for i ∈ I2

}
.

Proof. By construction the image cannot be bigger than the sum in (†). To see that
any Ext∗,d(k, k) with d ∈ D is contained in the image, first note that

dimk Ext∗,d(k, k)=
{

1 if ∀i : di ≤ 0 and ni | di ∨ ni | di + 1,
0 otherwise.

The condition for Ext∗,d(k, k) not vanishing is equivalent to asking that d=−s( p)
for some p ∈ Nc. By definition, E d

p is represented by a map sending 1⊗1 to 1
in position p, and hence it does not vanish when being tensored over 3 by k.
Therefore the image is at least one-dimensional in degree d. �

4. The rate of growth of the Hochschild cohomology

In this section we study how big the Hochschild cohomology of a finite-dimensional
quantum complete intersection is. Our way to measure for measuring the size is
the rate of growth, as explained in the following definition.
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Definition 4.1. Let X =
∐
∞

i=0 X i be an N-graded k-module such that the X i have
finite k-dimension. The rate of growth of X , denoted by γ(X), is defined as

γ(X)= inf{t ∈ N | ∃a ∈ N such that ∀i : dimk X i ≤ ai t
}.

If X is a graded commutative ring that is finitely generated over k, then γ(X)=
Krull.dim X . However this assumption is not always satisfied for the Hochschild
cohomology ring of quantum complete intersections (see Sections 5 and 6).

We first decompose the Hochschild cohomology as follows:

Construction 4.2. For G ⊆ {1, . . . , c} we denote by HH∗G the k-span of the E d
p

for which d and n satisfy the condition

G =
{
i ∈ {1, . . . , c}

∣∣ di < ni − 1 or (Qd)i ∈ Ri
}
.

That is, we take all those E d
p from Theorem 3.4 such that G contains exactly the

indices not in Imax plus those in Imax that fulfill the requirements for elements of I1.
Clearly this yields a decomposition HH∗(3)=

⊕
G⊆{1,...,c}HH∗G

, and hence

γ
(
HH∗(3)

)
= max

G⊆{1,...,c}
γ(HH∗G).

Proposition 4.3. For G ⊆ {1, . . . , c} the rate of growth of HH∗G is

γ(HH∗G)=
{

0 if HH∗G = 0,
pos.rk Ker QG×G otherwise.

(For the definition of pos.rk see Technical notation III.) In particular we always
have γ(HH∗G)≤ |G|.

For the proof we will need the following observation.

Observation 4.4. Let K ≤ Za be a submodule. The k-module with basis K ∩Na

is Z-graded by |x| =
∑a

i=1 xi for x ∈ K . With this grading, its rate of growth is
γ(k(K ∩Na))= pos.rk K .

Proof of Proposition 4.3. By construction, HH∗G has the k-basis{
E d

p | p ≥ 0, d ≤ n− 1, p(−d)≤ p ≤ p(−d)+ 1, di = ni − 1 for i /∈ G,

(Qd)i 6∈ Ri for i /∈G, (Qd)i ∈ Ri for i ∈G \ I2, (Qd)i = 1 for i ∈G∩ I2
}
,

and the extension degree of E d
p is

∑c
i=1 pi .

Note that the map p is linear up to some rounding. Hence we may calculate the
rate of growth with respect to the grading given by −

∑c
i=1 di .

Since for any d there are at least one and at most 2c values of p satisfying the
conditions of the set above, we may disregard the number of different choices for
p for a given d.
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Next, since d is fixed outside G, we may restrict our attention to the G part of
the indices. Write G = {1, . . . , c} \G and define, for G ⊆ G ′ ⊆ {1, . . . , c} the set

BG ′ =

{
dG ∈ZG

| dG ≤ nG−1, Q{i}×G dG ·Q{i}×G(nG−1)
6∈ Ri for i ∈G ′ \G,
∈ Ri for i ∈G \ I2,

= 1 for i ∈ I2

}
.

We need to understand the rate of growth of the k-module with basis B{1,...,c}.
Note that B{1,...,c} ⊆ BG (more generally, for G ′ ⊆ G ′′ we have BG ′ ⊇ BG ′′).

Now BG is invariant under adding elements of the set

−

( ∏
i∈G

ni N
)
∩Ker QG×G,

and contains only finitely many elements which are not obtained from another
element by such an addition. Hence, if BG is nonempty, the rate of growth of the
k-module with basis BG is identical to the rate of growth of the k-module with
basis NG

∩Ker QG×G , which, by Observation 4.4, is pos.rk Ker QG×G .
It follows that γ(HH∗G)≤ pos.rk Ker QG×G .
Now we let Ĝ be maximal with G⊆ Ĝ⊆{1, . . . , c} such that pos.rk Ker QĜ×G=

pos.rk Ker QG×G . It follows, as in the discussion above, that if BĜ 6= ∅ then the
rate of growth of the k-module with basis BĜ is pos.rk Ker QG×G .

Finally let i 6∈ Ĝ. Using arguments similar to the foregoing, one sees that the
rate of growth of the free module with basis BG \BG∪{i} is strictly smaller than
pos.rk Ker QG×G .

Since
B{1,...,c} =BĜ \

( ⋃
i 6∈Ĝ

(
BG \BG∪{i}

))
,

it follows that, provided B{1,...,c} 6= ∅, the rate of growth of the k-module with
basis B{1,...,c} is pos.rk Ker QG×G . �

Summing up the results for HH∗G , we have shown:

Theorem 4.5. The rate of growth of the Hochschild cohomology of a finite-dimen-
sional quantum complete intersection is the maximum of pos.rk Ker QG×G over

G =
{
i ∈ {1, . . . , c} | di < ni − 1 or (Qd)i ∈ Ri

}
,

where d ranges over elements of Zc such that d ≤ n−1, (Qd)i ∈ Ri for all i with
ni | di + 1 and di < 0, and (Qd)i = 1 for all i with ni - di + 1.

Corollary 4.6. For a finite quantum complete intersection either all qi j are roots
of unity, or the rate of growth of the Hochschild cohomology is at most c− 2.

Proof. Assume not all qi j are roots of unity. Then rk Ker Q≤ c−2, since Q is skew
symmetric. Hence pos.rk Ker Q ≤ c− 2. Now we consider G with |G| = c− 1,
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that is, G = {1, . . . , c} \ {h} for some h. If rk Ker QG×G ≤ c− 2 there is nothing
to show, so assume QG×G only contains roots of unity. Since Q does not only
contain roots of unity there is i ∈ G such that qih is not a root of unity. But then
(Qd)i cannot be a root of unity for any d ∈ Zc with dh = nh − 1 6= 0. Hence this
G is not to be considered in the maximum of Theorem 4.5. �

5. On the multiplicative structure of the Hochschild cohomology

In this section we will identify a subring S of the Hochschild cohomology ring,
which is a finitely generated commutative k-algebra without zero divisors, and
is isomorphic to the Hochschild cohomology modulo nilpotent objects. We will
completely describe S, determine its Krull dimension, and determine when the
entire Hochschild cohomology ring is finitely generated as a module over S.

By Theorem 3.4 we know that the Hochschild cohomology has a k-vector space
basis{

E d
p
∣∣ p ≥ 0, p(−d)≤ p ≤ p(−d)+ 1,

(Qd)i ∈ Ri for all i with ni | di+1> 0, (Qd)i = 1 for all i with ni - di+1.
}

For simplicity of notation we set E d
p = 0 whenever d and p do not satisfy the

conditions above. Then we always have

E d
p · E

d ′
p′ ∈ k E d+d ′

p+ p′ .

Lemma 5.1. Assume s( p) 6= −d. Then E d
p is nilpotent.

Proof. Let i be such that s( p)i >−di . Then

s(ni p)i ≥ nis( p)i ≥ ni (1− di )≥ ni − ni di ,

and hence (E d
p)

ni ∈ k Eni d
ni p = 0. �

We are particularly interested in the nonnilpotent elements of the Hochschild
cohomology ring. For simplicity of notation, we give the remaining candidates a
new name:

s p := E−s( p)
p .

Lemma 5.2. Let p ∈Nc such that there is i ∈ {1, . . . , c} with ni > 2 and pi is odd.
Then s p is nilpotent.

Proof. A straightforward calculation shows that (s p)
2 satisfies the assumption of

Lemma 5.1. �

Now we set

S= k

〈
s p | (Qs( p))i = 1 for all i with pi even,

(Qs( p))i =−1 and ni = 2 for all i with pi odd
〉
.
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By the preceding two lemmas, the composition S ↪→ HH∗(3) � HH∗(3)
(nilpotence)

is
onto.

Our next aim is to understand how the elements of S are multiplied with each
other and with the other E d

p. To do so we lift the map representing s p, with p as
in the definition of S, to a map of c-tuple complexes.

Lemma 5.3. The element s p with p as in the definition of S is represented by the
map of c-tuple complexes P1⊗ · · ·⊗Pc→ (P1⊗ · · ·⊗Pc)[ p] that sends 1⊗1 to
(1/q〈s(r) | s( p)〉) · 1⊗1 in position p+ r .

Proof. It suffices to verify that the map given in the lemma is a map of c-tuple
complexes, since then it clearly does the right thing in position p. This amounts
to checking that the various squares commute — a straightforward, if somewhat
tiresome, calculation involving four different cases, according to the parities of the
pi and ri . �

Note that when passing from c-tuple complexes to their total complexes some
maps need to be multiplied by −1. One choice for doing so is to multiply the map
in direction i from position p+ ei to p by

∏
j<i (−1)pi . With this convention we

have the following immediate consequence of Lemma 5.3.

Corollary 5.4. We have s p E d
p′ =

∏
j<i (−1)p j p′i

q〈s( p′) | s( p)〉 E d−s( p)
p+ p′ . In particular,

s ps p′ =

∏
j<i (−1)p j p′i

q〈s( p′) | s( p)〉 s p+ p′ . (‡)

From these results we obtain:

Theorem 5.5. The Hochschild cohomology ring of a quantum complete intersec-
tion has a subring S isomorphic to

k

〈
y p1n1/2

1 . . . y pcnc/2
c ∈k[y1, . . . yc]

∣∣(Qs( p))i=1 for all i with pi even,

(Qs( p))i=−1 and ni=2 for all i with pi odd
〉
.

In particular, S is a finitely generated k-algebra without zero-divisors.
Moreover the composition

S ↪→ HH∗(3)�
HH∗(3)

(nilpotence)

is an isomorphism. Hence HH∗(3)
(nilpotence)

is a split quotient of HH∗(3) and is iso-
morphic to S.

Proof. That the s p commute can be checked directly, using (‡) in Corollary 5.4.
Alternatively, note that, since (‡) implies s2

p 6= 0, either s p lies in the even part of
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the Hochschild cohomology or char k = 2. In both cases it follows from general
theory that s p lies in the center of the Hochschild cohomology ring.

Thus S has the form described in the theorem.
To see that S is finitely generated as a k-algebra we partially order the set
{y p1n1/2

1 . . . y pcnc/2
c ∈ S} by comparing the exponents componentwise. Since the

ideal in k[y1, . . . , yc] generated by this set is finitely generated, it follows there
are only finitely many minimal elements with respect to this partial order. We
claim that they generate S as a k-algebra. Assume that y p1n1/2

1 . . . y pcnc/2
c ∈ S is

not minimal. Then one easily sees that y p1n1/2
1 . . . y pcnc/2

c is the product of two
smaller elements of this form (for instance, one of them could be chosen minimal).
Iterating we see that any y p1n1/2

1 . . . y pcnc/2
c ∈ S is a product of minimal ones.

The final part of the theorem follows from the comment at the top of page 832
and from Corollary 5.4. �

We conclude this section by giving a precise criterion for when the entire Hoch-
schild cohomology ring is finitely generated over S.

Lemma 5.6. The decomposition HH∗(3) =
⊕

G⊆{1,...,c}
HH∗G of Construction 4.2

respects the S-module structure.

Proof. This follows immediately from the definition of HH∗G and the multiplication
formula in Corollary 5.4. �

Proposition 5.7. The module HH∗G is finitely generated over S if and only if it is
zero or pos.rk Ker QG×G = pos.rk Ker Q{1,...,c}×G .

Proof. Clearly we may assume HH∗G 6= 0. Note that the s p with pi 6= 0 for some
i ∈ {1, . . . , c} \ G annihilate HH∗G , and hence HH∗G 6= 0 is actually a module
over the split quotient SG := k〈s p ∈ S | ∀i : i ∈ G ∨ pi = 0〉. By Observation 4.4,
γ(SG)= pos.rk Ker Q{1,...,c}×G .

Moreover SG acts on HH∗G without zero-divisors: Since both SG and HH∗G are
Zc-graded it suffices to look at graded parts. For these, this is immediate from the
multiplication formula in Corollary 5.4. The claim follows. �

Corollary 5.8. For any finite-dimensional quantum complete intersection HH∗
{1,...,c}

is a finitely generated S-module.

Theorem 5.9. The Hochschild cohomology ring is finitely generated as a module
over S if and only if pos.rk Ker QG×G = pos.rk Ker Q{1,...,c}×G for any subset
G ⊆ {1, . . . , c} for which there exists d ∈ Zc satisfying

• d ≤ n− 1,

• di = ni − 1 for all i ∈ {1, . . . , c} \G,

• (Qd)i ∈ Ri for all i ∈ G with ni | di + 1,

• (Qd)i = 1 for all i ∈ G with ni - di + 1.
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6. Examples

Example 6.1 [Bergh and Erdmann 2008]. Let 3 = 3n1,n2
q12

be a codimension-2
quantum complete intersection such that q12 is not a root of unity. Take d =
(d1, d2) ≤ (n1−1, n2−1). Then HH∗,d(3) does not vanish if and only if for any
i ∈ {1, 2} we have di = ni − 1 or ni - di + 1 and qd3−i

12 = 1. Since q12 is not a root
of unity this means that for any i with di < ni − 1 we have d3−i = 0. Therefore
the only d that contribute to the Hochschild cohomology are (n1−1, n2−1) and
(0, 0). For d = (n1−1, n2−1) we obtain Imax = {1, 2}, I1 = ∅, I2 = ∅, and
p(−d)= (−1,−1). Hence

HH∗,d(3)=
k

〈
E (n1−1,n2−1)
(0,0)

〉
.

For d= (0, 0) we obtain Imax=∅, I1=∅, I2={1, 2}, and p(−d)= (0, 0). Hence

HH∗,d(3)=
k

〈
E (0,0)(0,0), E (0,0)(0,1), E (0,0)(1,0), E (0,0)(1,1)

〉
.

Summing up we obtain

HH∗,d(3)=
k

〈
E (n1−1,n2−1)
(0,0) , E (0,0)(0,0), E (0,0)(0,1), E (0,0)(1,0), E (0,0)(1,1)

〉
,

and hence
dim HH∗(3)= (2, 2, 1, 0, . . . ).

We generalize this example to arbitrary codimensions:

Example 6.2. Let c ≥ 2 and assume the qi j are generic, meaning that (Qd)i is a
root of unity only if d j = 0 for all j 6= i . Then HH∗,d(3) 6= 0 only for d = n− 1
or d = 0. Similarly to Example 6.1 we obtain

HH∗,n−1(3)= k〈E
n−1
0 〉, HH∗,0(3)=

k
〈E0

p | 0≤ p ≤ 1〉.

In particular,

dim HH∗(3)=
(

1+
(c

0

)
,
(c

1

)
,
(c

2

)
,
(c

c

)
, . . .

)
.

Since the total dimension is finite, the rate of growth γ(HH∗(3)) is 0 and S= k.

Now let us look at the other extreme case.

Example 6.3 [Bergh and Oppermann 2008a]. Let c ≥ 2 and let all qi j be roots of
unity. Then

pos.rk Ker QG ′×G = rk Ker QG ′×G = |G|

for any G,G ′ ⊆ {1, . . . , c}. Hence HH∗(3) is finitely generated over S, and

Krull.dim S= γ
(
HH∗(3)

)
= c.

The final two examples illustrate that when γ(HH∗(3)) = c− 2 very different
kinds of behavior can occur.
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Example 6.4. Let q ∈ k× not be a root of unity and let c ∈ N≥3. Let 3 be a
quantum complete intersection of codimension c, with

qi j = 1 for i, j < c− 1, qi,c−1 = q for i < c− 1,

qic = q−1 for i < c− 1, qc−1,c = q−1.

One easily sees that S= k. A case-by-case study (according to the values of i for
which di = ni − 1) shows that the subspace HH∗

{1,...,c−2} has a finite-dimensional
complement in HH∗(3). It is nonempty if and only if nc−1 = nc, and in that case

γ
(
HH∗(3)

)
= γ

(
HH∗
{1,...,c−2}

)
= pos.rk Ker Q{1,...,c−2}×{1,...,c−2}︸ ︷︷ ︸

=0

= c− 2.

Example 6.5. Let q ∈ k× not be a root of unity, let c ∈ N≥3, and (for simplicity)
let char k 6= 2. Let 3 be a quantum complete intersection of codimension c with

qi j = 1 for i, j < c− 1, qi,c−1 = q for i < c− 1,

qic = q−1 for i < c− 1, qc−1,c = q.

Then S=
k

〈
s p

∣∣∣pi even and
(

Q
( p j n j

2

)
j

)
i
= 1 for all i

〉
=

k

〈
s p

∣∣∣pi even and
c−2∑
j=0

p j n j = pc−1nc−1 = pcnc for all i
〉
.

In particular,
Krull.dim S= c− 2,

and hence also γ(HH∗(3))= c− 2, by Corollary 4.6 .
Similarly to Example 6.4 one sees that HH∗

{1,...,c−2}+HH∗
{1,...,c} form a subspace

of HH∗(3) which has a finite-dimensional complement. Since by Corollary 5.8
HH∗
{1,...,c} is always finitely generated over S, we only have to look at HH∗

{1,...,c−2}.
As in Example 6.4, one sees that HH∗

{1,...,c−2} 6= 0 if and only if nc−1 = nc. Since

pos.rk Ker Q{1,...,c−2}×{1,...,c−2} = c− 2 6= 0= pos.rk Ker Q{1,...,c}×{1,...,c−2}

it follows that HH∗(3) is finitely generated over S if and only if nc−1 6= nc.

7. Hochschild homology

To calculate the Hochschild homology, we proceed as for the Hochschild coho-
mology. That is, we calculate for any d ∈ Zc the degree-d part of the Hochschild
homology. The actual calculations are very similar to the corresponding ones in
Section 3, and will therefore be omitted here.

Observation 7.1. The degree-d part (3en
〈s〉 ⊗3en 3)d is nonzero if and only if

s ≤ d ≤ s+ n− 1. In that case it is one-dimensional.
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As in the case of the cohomology, it follows that the c-tuple complex

(P1⊗ · · ·⊗Pc⊗3en 3)d

is concentrated in a cube (with sides of length 0 or 1), where there is a one-
dimensional space in each corner of the cube.

Next we need to understand what happens to a map f :3en
〈s〉→3en

〈s′〉 when
it is tensored over 3en with 3.

Lemma 7.2. Let f :3en
〈s〉→3en

〈s′〉. Then f ⊗3en 3 :3〈s〉→3〈s′〉 is given by

( f ⊗3en 3)(xa)=
∑

i

f i
2 xa f i

1 ,

where f (1⊗1)=
∑

i f i
1 ⊗ f i

2 .

Now we are ready to calculate what tensoring over3en with3 does to the maps
occurring in the c-tuple complex P1⊗ · · ·⊗Pc.

Lemma 7.3. Let s and d be such that s ≤ d ≤ s+ n− 1 and let i ∈ {1, . . . , c}.

(1) Assume that di > si . The map (3〈s+ ei 〉)d→ (3〈s〉)d obtained by tensoring
with 3 the map over 3en given by

3en
〈s+ ei 〉 →3en

〈s〉 mapping 1⊗1 7→
1

q〈ei | s〉
xi ⊗ 1−

1
q〈s | ei 〉

1⊗ xi

and then taking the part of degree d vanishes if and only if (Qd)i = 1.

(2) Assume that di = si+ni−1. The map (3〈s+(ni−1)ei 〉)d→ (3〈s〉)d obtained
by tensoring with 3 the map over 3en given by

3en
〈s+ ei 〉 →3en

〈s〉
mapping

1⊗1 7→
ni−1∑
j=0

(
1

q〈ei | s〉

) j( 1
q〈s | ei 〉

)ni−1− j

x j
i ⊗ xni−1− j

i

and then taking the part of degree d vanishes if and only if (Qd)i ∈ Ri .

As for the cohomology, it follows that if the map on one edge of the cube (P1⊗

· · ·⊗Pc⊗3en 3)d vanishes then all parallel maps also vanish.

Theorem 7.4. Let 3 = 3n
q be a quantum complete intersection, and let d ∈ Nc.

Divide the set {1 . . . c} into the three parts

I0 = {di = 0}, I1 = {ni | di } \ I0, I2 = {ni - di }.

Then HH∗,d(3) 6= 0 if and only if

• (Qd)i ∈ Ri for any i ∈ I1, and

• (Qd)i = 1 for any i ∈ I2.
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In this situation HH∗,d(3) has a k-vector space basis

{T p
d | p ≥ 0 and p(d+ 1)− 2≤ p ≤ p(d+ 1)− 1}.

Here T p
d is represented by xd−s( p) in position p. In particular, T p

d has torsion
degree

∑c
i=1 pi .

8. The rate of growth of the Hochschild homology

To study the rate of growth of the Hochschild homology, we decompose it similarly
to our decomposition of the Hochschild cohomology in Construction 4.2.

Construction 8.1. For G ⊆ {1, . . . , c} we denote by HHG
∗

the k-span of T p
d with

G =
{
i ∈ {1, . . . , c}

∣∣ di > 0 or (Qd)i ∈ Ri
}
.

This yields a decomposition HH∗(3)=
⊕

G⊆{1,...,c}HHG
∗

, and hence

γ
(
HH∗(3)

)
= max

G⊆{1,...,c}
γ(HHG

∗
).

As in the proof of Theorem 4.5, one obtains:

Theorem 8.2. the rate of growth of the Hochschild homology of a finite-dimen-
sional quantum complete intersection, is the maximum of pos.rk Ker QG×G over

G =
{
i ∈ {1, . . . , c}

∣∣ di>0 or (Qd)i ∈ Ri
}
,

where d ranges over element of Nc such that (Qd)i ∈ Ri for all i with ni | di and
di > 0, and (Qd)i = 1 for all i with ni - di .

We conclude this paper by showing that the Hochschild homology of 3 is
closely related to the Hochschild homologies of certain subalgebras.

For I ⊂ {1, . . . , c}, denote by 3I the subalgebra of 3 generated by xi with
i ∈ I . Then 3I is a split quotient of 3 (that is, we have algebra homomorphisms
3I→3→3I whose composition is the identity on3I ). It follows from the func-
toriality of Hochschild homology that HH∗(3I ) can be embedded into HH∗(3).

The following theorem shows that the Hochschild homologies of these subalge-
bras determine the Hochschild homology of 3 to a large extent.

Theorem 8.3. Let M be the maximum of the rates of growth of HH∗(3{i}), where
i ∈ {1, . . . , c} and {i} = {1, . . . , c} \ {i}. Then the rate of growth of HH∗(3) is M
if HH{1,...,c}∗ = 0, and max{M, pos.rk Ker Q} if HH{1,...,c}∗ 6= 0.

Proof. We will need to look at the sets HHG
∗

as well as their analogs for HH∗(3{i}).
To avoid confusion we write HHG

∗
(3) and HHG

∗
(3
{i}), respectively, for these

vector spaces.
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Let i0 ∈ {1, . . . , c} and G ⊆ {i0}. It follows from the explicit description of
bases in Theorem 7.4 and Construction 8.1 that HHG

∗
(3) can be identified with a

subspace of HHG
∗
(3
{i0}
), and that the set of T p

d such that

G =
{
i ∈ {i0}

∣∣ di > 0 or (Qd)i ∈Ri
}

and
G 6=

{
i ∈ {1, . . . , c}

∣∣ di > 0 or (Qd)i ∈Ri
}

is a basis of the quotient space. This clearly means that{
i ∈ {1, . . . , c}

∣∣ di > 0 or (Qd)i ∈ Ri
}
= G ∪ {i0},

so the quotient embeds naturally into HHG∪{i0}
∗ .

It follows that

γ
(
HHG
∗
(3)

)
≤ γ

(
HHG
∗
(3
{i0}
)
)
≤max

{
γ
(
HHG
∗
(3)

)
, γ
(
HHG∪{i0}
∗

(3)
)}
.

Taking the maximum over all G and i0 proves the theorem. �
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Brian D. Conrad University of Michigan, USA

Hélène Esnault Universität Duisburg-Essen, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada
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