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Berger and Colmez (2008) formulated a theory of families of overconvergent
étale .'; �/-modules associated to families of p-adic Galois representations over
p-adic Banach algebras. In contrast with the classical theory of .'; �/-modules,
the functor they obtain is not an equivalence of categories. In this paper, we
prove that when the base is an affinoid space, every family of (overconvergent)
étale .'; �/-modules can locally be converted into a family of p-adic represen-
tations in a unique manner, providing the “local” equivalence. There is a global
mod p obstruction related to the moduli of residual representations.

Introduction

Berger and Colmez [2008] introduced a theory of families of overconvergent étale
.'; �/-modules associated to families of p-adic Galois representations over p-adic
Banach algebras. The p-adic families of local Galois representations emerging
from number theory are usually over rigid analytic spaces. So we are mainly inter-
ested in the case where the bases are reduced affinoid spaces. However, even in this
case, the functor of Berger and Colmez is far from an equivalence of categories,
in contrast with the classical theory of .'; �/-modules. This was first noticed by
Chenevier [Berger and Colmez 2008, remarque 4.2.10]: if the base is the p-adic
unit circle M.QhX;Y i=.XY �1//, then it is easy to see that the free rank-1 over-
convergent étale .'; �/-module D with a basis e such that '.e/DY e and  .e/D e

for  2 � does not come from a family of p-adic representations over the same
base.

On the other hand, in his proof of the density of crystalline representations,
Colmez [2008, proposition 5.2] proved that for certain families of rank-2 triangu-
lar étale .'; �/-modules, one can locally convert such a family into a family of
p-adic representations using his theory of Espaces Vectoriels de dimension finie (it
is clear that we can also convert Chenevier’s example locally). Moreover, Colmez
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remarked [2008, remarque 5.3(2)]: On aurait pu aussi utiliser une version «en
famille» des théorèmes à la Dieudonné–Manin de Kedlaya. Il y a d’ailleurs une
concordance assez frappante entre ce que permettent de démontrer ces théorèmes
de Kedlaya et la théorie des Espaces Vectoriels de dimension finie.

Unfortunately, as noted in [Liu 2008], there is no family version of Kedlaya’s
slope filtrations theorem in general, because the slope polygons of families of
Frobenius modules are not necessarily locally constant. Nonetheless, one may
still ask to what extent one can convert a globally étale family of .'; �/-modules
back into a Galois representation. As Chenevier’s example shows, this cannot be
done in general over an affinoid base. The best one can hope for in general is
the following theorem, which extends a result of Dee [2001]. (In the statement,
the distinction between a .'; �/-module and a family of .'; �/-modules is that
the former is defined as a module over a ring, whereas the latter is defined as a
coherent sheaf over a rigid analytic space.)

Theorem 0.1. Let S be a Banach algebra over Qp of the form R˝Zp
Qp, where

R is a complete noetherian local domain of characteristic 0 whose residue field is
finite over Fp. Then for any finite extension K of Qp, the categories of S -linear
representations of GK , of étale .'; �/-modules over B|

K
y̋Qp

S , and of families of
étale .'; �/-modules over B|

rig;K
y̋Qp

S are all equivalent.

For instance, if S is an affinoid algebra and we are given an étale .'; �/-module
over B|

K
y̋Qp

S , we recover a linear representation over each residue disc of S (and
every affinoid subdomain of such a disc), but these representations may not glue.
This is what happens in Chenevier’s example, because the mod p representations
cannot be uniformly trivialized. In fact, the obstruction to converting a .'; �/-
module back into a representation exists purely at the residual level; it suggests a
concrete realization of the somewhat murky notion of “moduli of residual (local)
representations”.

By combining Theorem 0.1 with the results of [Liu 2008], we obtain a result that
applies when only one fiber of the .'; �/-module is known to be étale. (Beware
that the natural analogue of this statement in which the rigid analytic point x is
replaced by a Berkovich point is trivially false.)

Theorem 0.2. Let S be an affinoid algebra over Q, and let MS be a family of
.'; �/-modules over B|

rig;K
y̋Qp

S . If Mx is étale for some x 2M.S/, then there
exists an affinoid neighborhood M.B/ of x and a B-linear representation VB of
GK whose associated .'; �/-module is isomorphic to MS y̋ S B. Moreover, VB is
unique for this property.

To prove the Fontaine–Colmez theorem, Berger [2008] constructed a morphism
from the category of filtered .';N /-modules to the category of .'; �/-modules. It
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should be possible to generalize Berger’s construction to families of filtered .';N /-
modules; upon doing so, one would get a family version of the Fontaine–Colmez
theorem by Theorem 0.2. That is, one would know that a weakly admissible family
of filtered .';N /-modules over an affinoid base (with trivial '-action on the base)
becomes admissible in a neighborhood of each rigid analytic point.

1. Rings of p-adic Hodge theory

We begin by introducing some of the rings used in p-adic Hodge theory. This
is solely to fix notation; we do not attempt to expose the constructions in any
detail. For that, see for instance [Berger 2004]. Here, whenever a ring is defined
whose notation includes a boldface A, the same notation with A replaced by B will
indicate the result of inverting p.

Let Cp be a completed algebraic closure of Q, with valuation subring OCp
and

p-adic valuation vp normalized with vp.p/D1. Let vp WOCp
=.p/! Œ0; 1/[fC1g

be the semivaluation obtained by truncation. Define zEC to be the ring of sequences
.xn/

1
nD0

in OCp
=.p/ such that x

p
nC1
D xn for all n. Define a function

vE W zEC! Œ0;C1�

by sending the zero sequence to C1, and sending each nonzero sequence .xn/ to
the common value of pnvp.xn/ for all n with xn¤ 0. This gives a valuation under
which zEC is complete. Moreover, if we put zED Frac.zEC/, and let �D .�n/ be an
element of zEC with �0 D 1 and �1 ¤ 1, then zE is a completed algebraic closure of
Fp..�� 1//.

Let zA be the p-typical Witt ring W .zE/, which is the unique complete discrete
valuation ring with maximal ideal .p/ and residue field zE. For each positive integer
n, W .zE/=pnW .zE/ inherits a topology from the valuation topology on zE, under
which it is complete. We call the inverse limit of these the weak topology on zA.
We similarly obtain a weak topology on zB.

For any n � 0, we let �pn denote the set of pn-th roots of unity in Qp, and let
�p1 D

S
n�0 �pn . For K a finite extension of Q, let

K1DK.�p1/; HK DGal.K=K1/; �D�K DGal.K1=K/; K00DQur
p \K1:

Put � D Œ���1, where brackets denote the Teichmüller lift. Using the complete-
ness of zA for the weak topology, we may embed Zp..�// into zA. Let A be the
p-adic completion of the integral closure of Zp..�// in zA, and put AK D AHK .
These rings carry actions of GK that are continuous for the weak topology on the
rings and the profinite topology on GK . They also carry endomorphisms ' (which
are weakly and p-adically continuous) induced by the Witt vector Frobenius on zA.
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For s > 0, the subset

zA|;s
D

n
x2 zA

ˇ̌
xD

P
k2Z

pk Œxk �; vzE.xk/C
psk

p�1
�0; lim

k!C1
vzE.xk/C

psk

p�1
DC1

o
is a subring of zA that is complete for the valuation

ws.x/D inf
k

n
vzE.xk/C

psk

p�1

o
:

Put
zB| D

S
s>0

zB|;s; B|;s
K
D BK \

zB|;s; B|
K
D
S

s>0

B|;s
K
;

A|;s
K
D AK \

zA|;s; A|
K
D A\B|

K
:

(This last ring is strictly larger than
S

s>0 A|;s
K

.) These rings carry an action of '.
with the proviso that ' gtakes a ring with a superscript of s to the corresponding
ring with s replaced by ps. For n a positive integer, write

A|;s
K ;n
D '�n.A|;pns

K
/:

Let zB|;s
rig be the Fréchet completion of zB|;s0 under the valuations ws0 for all s0 � s,

and put zB|
rig D

S
s>0
zB|;s

rig . Similarly, let B|;s
rig;K

be the Fréchet completion of B|;s0

K

under the valuations ws0 for all s0 � s, and put B|
rig;K
D
S

s>0 B|;s
rig;K

. It turns out
that .B|;s

rig /
HK D B|;s

rig;K
.

Some of these rings admit more explicit descriptions, as follows. It turns out
that BK is isomorphic to the p-adic local field

EK 0
0
D

n
f D

C1P
iD�1

aiT
i
ˇ̌
ai 2K00; inf

i
fvp.ai/g> �1; lim

i!�1
vp.ai/DC1

o
with valuation w.f /D mini2Z vp.ai/ and imperfect residue field k 0..T //, where
k 0 is the residue field of K0

0
. There is no distinguished such isomorphism in general

(except for K D Qp, where one may take T D �), but suppose we fix a choice.
Then B corresponds to the completion of the maximal unramified extension of BK .
For s� 0 (depending on K and the choice of the isomorphism BK Š EK 0

0
), B|;s

K

corresponds to the subring Es
K 0

0

of EK 0
0

defined as

Es
K 0

0

D

n
f D

C1P
iD�1

aiT
i
ˇ̌
ai 2K00; inf

i
fvp.ai/g>�1; lim

i!�1
iC

ps

p�1
vp.ai/DC1

o
;

that is, the bounded Laurent series in T convergent on the annulus 0<vp.T /�1=s.
Meanwhile, B|;s

rig;K
corresponds to the ring

Rs
K 0

0

D

n
f D

C1P
iD�1

aiT
i
ˇ̌
ai 2K00; lim

i!C1
i C rvp.ai/DC1 for all r > 0;

lim
i!�1

i C
ps

p�1
vp.ai/DC1

o
;
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that is, the unbounded Laurent series in T convergent on 0 < vp.T / � 1=s. The
union RK 0

0
D
S

s>0 Rs
K 0

0

is commonly called the Robba ring over K0
0
.

2. p-adic representations and .'; �/-modules

We next introduce p-adic representations and the objects of semilinear algebra used
to describe them. Fix a finite extension K of Qp. For R a topological ring, we will
mean by an R-linear representation a finite R-module equipped with a continuous
linear action of GK . (We will apply additional adjectives like “free”, which are
to be passed through to the underlying R-module.) Fontaine [1990] constructed a
functor giving an equivalence of categories between Q-linear representations and
certain linear (or rather semilinear) algebraic data, as follows. (We may extend to
L-linear representations for finite extensions L of Q by restricting the coefficient
field to Q and then keeping track of the L-action separately.)

An étale '-module over AK is a finite module N over AK equipped with a
semilinear action of ' such that the AK -linear map '�N ! N induced by the
'-action is an isomorphism. An étale '-module over BK is a finite module M

over BK , equipped with a semilinear action of ', that contains an AK -lattice N

(that is, a finite AK -submodule such that the induced map N ˝AK
BK ! M is

an isomorphism) that forms an étale '-module over AK . An étale .'; �/-module
over AK or BK is an étale '-module equipped with a semilinear action of � which
commutes with the '-action and is continuous for the profinite topology on � and
the weak topology on AK . Note that an étale .'; �/-module over BK may contain
an AK -lattice that forms an étale '-module over AK but is not stable under �;
on the other hand, the images of such a lattice under � span another lattice which
forms an étale '-module over AK .

For T a Z-linear representation, define D.T / D .A˝Zp
T /HK ; this gives an

AK -module equipped with commuting semilinear actions of ' and � . Similarly,
for V a Q-linear representation, define D.V /D .B˝Qp

V /HK .

Theorem 2.1 [Fontaine 1990]. The functor T 7! D.T / (resp. V 7! D.V /) is an
equivalence from the category of Z-linear representations (resp. Q-linear repre-
sentations) of GK to the category of étale .'; �/-modules over AK (resp. BK ); a
quasiinverse functor is given by D 7! .A˝AK

D/'D1 (resp. D 7! .B˝BK
D/'D1).

Dee [2001] extended Fontaine’s results to families of Z-representations, as follows.
Let R be a complete noetherian local ring whose residue field kR is finite over Fp,
equipped with the topology defined by its maximal ideal mR; we may then view
R as a topological Z-algebra. We form the completed tensor product R y̋ Z A by
completing the ordinary tensor product for the ideal pACmR, and similarly with
A replaced by AK .
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We define .'; �/-modules and étale .'; �/-modules over R y̋ Z AK by anal-
ogy with the definitions over AK . For TR an R-representation, define D.TR/ D

..R y̋ Z A/˝R TR/
HK .

Theorem 2.2 [Dee 2001]. The functor

TR 7! D.TR/

is an equivalence from the category of R-representations to the category of étale
.'; �/-modules over R y̋ Z AK ; a quasiinverse functor is given by

D 7! ..R y̋ Z A/˝R y̋ Z AK
D/'D1.

We next cite a refinement of Fontaine’s result. We define .'; �/-modules and
étale .'; �/-modules over A|

K
and B|

K
by analogy with the definitions over AK

and BK . For V a Qp-linear representation, define D|;r
K
.V / D .B|;r ˝Qp

V /HK

(where B|;r D B\ zB|;r ) and D|
K
.V /D

S
r>0 D|;r

K
.V /D .B|˝Qp

V /HK .

Theorem 2.3 [Cherbonnier and Colmez 1998]. For any Qp-linear representation
V , there exists r.V / > 0 such that

DK .V /D BK ˝B|;r

K

D|;r
K
.V / for all r > r.V /:

Equivalently, D|
K
.V / is an étale .'; �/-module over B|

K
of dimension dimQV .

Therefore V 7! D|
K
.V / is an equivalence from the category of p-adic representa-

tions of GK to the category of étale .'; �/-modules over B|
K

. Furthermore, D|
K
.V /

is the unique maximal étale .'; �/-submodule of DK .V / over B|
K

.

Berger and Colmez [2008] extended these results to families of p-adic repre-
sentations. However, unlike Dee’s families, the families considered by Berger and
Colmez are over Banach algebras over Q. (Berger and Colmez were forced to
make a freeness hypothesis on the representation space; we relax this hypothesis
later in the case of an affinoid algebra. See Definition 3.12.)

For S a commutative Banach algebra over Qp, let OS be the ring of elements
of S of norm at most 1, and let IS be the ideal of elements of OS of norm strictly
less than 1. Note that it makes sense to form a completed tensor product with S

or OS when the other tensorand carries a norm under which it is complete — for
example, for the rings zA|;s;A|;s

L;n
; zB|;s;B|;s

L
using the norm corresponding to the

valuation ws .

Proposition 2.4 [Berger and Colmez 2008, proposition 4.2.8]. Let S be a com-
mutative Banach algebra over Qp. Let TS be a free OS -linear representation of
rank d . Let L be a finite Galois extension of K such that GL acts trivially on
TS=12pTS . Then there exists n.L;TS /� 0 such that for n� n.L;TS /,

.OS y̋ Zp
QA|;.p�1/=p/˝OS

TS
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has a unique sub-.OS y̋ Zp
A|;.p�1/=p

L;n
/-module D|;.p�1/=p

L;n
.TS / that is free of rank

d , is fixed by HL, has a basis almost invariant under �L (that is, for each  2 �L,
the matrix of action of  � 1 on the basis has positive valuation), and satisfies

.OS y̋ Zp
QA|;.p�1/=p/˝

OS
y̋ Zp A|;.p�1/=p

L;n

D|;.p�1/=p
L;n

.TS /

D .OS y̋
QA|;.p�1/=p/˝OS

TS :

Theorem 2.5 [Berger and Colmez 2008, théorème 4.2.9]. Let S be a commutative
Banach algebra over Qp. Let VS be an S -linear representation admitting a free
Galois-stable OS -lattice TS . There exists an s.VS /�0 such that for any s� s.VS /,
we may define

D|;s
K
.VS /D ..S y̋Qp

B|;s
L
/˝

OS
y̋ Zp A|;s.VS /

L

'n.D|;p�1=p
L;n

.TS ///
HK

for some L and n, so that the construction does not depend on the choices of TS ,
L, and n, and the following statements hold.

(a) The .S y̋Qp
B|;s

K
/-module D|;s

K
.VS / is locally free of rank d .

(b) The natural map D|;s
K
.VS /˝S y̋Qp B|;s

K

.S y̋Qp
zB|;s/! VS ˝S .S y̋Qp

zB|;s/

is an isomorphism.

(c) For any maximal ideal mx of S , for Vx D VS ˝S .S=mx/, the natural map
D|;s

K
.VS /˝S .S=mx/! D|;s

K
.Vx/ is an isomorphism.

We write S y̋Qp
B|

K
D
S

s>0.S y̋Qp
B|;s

K
/ and S y̋Qp

zB| D
S

s>0.S y̋Qp
zB|;s/.

(Note that S y̋Qp
B|

K
does not necessarily embed into S y̋Qp

BK , due to the in-
compatibility between the topologies used for the completed tensor products.) We
then put

D|
K
.VS /D D|;s

K
.VS /˝S y̋Qp B|;s

K

.S y̋Qp
B|

K
/:

We may recover VS from D|
K
.VS / as follows.

Lemma 2.6. .S y̋Qp
zB|/'D1 D S .

Proof. We reduce at once to the case where S is countably topologically generated
over Qp. In this case, by [Bosch et al. 1984, Proposition 2.7.2/3], we can find a
Schauder basis of S over Q; in other words, there exists an index set I such that
S is isomorphic as a topological Q-vector space to the Banach space

l1
0
.I;Q/D f.ai/i2I j ai 2Q; ai! 0g.

(The supremum norm need only be equivalent to the Banach norm on S ; the two
need not be equal.) We can then write S y̋Qp

zB|, as a topological Q-vector space,
as

l10 .I; zB|/D f.ai/i2I j ai 2
zB|; ai! 0g:
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In this presentation, the '-action carries .ai/i2I to .'.ai//i2I . It is then clear that
.S y̋Qp

zB|/'D1 D .l1
0
.I; zB|//'D1 D l1

0
.I;Q/D S . �

Proposition 2.7. .D|
K
.VS /˝S y̋Qp B|

K

.S y̋Qp
zB|//'D1 D VS .

Proof. From Theorem 2.5(b) we get

D|
K
.VS /˝S y̋Qp B|

K

.S y̋Qp
zB|/D VS ˝S .S y̋Qp

zB|/:

By Lemma 2.6, it follows that

.D|
K
.VS /˝S y̋Qp B|

K

.S y̋Qp
zB|//'D1

D VS ˝S .S y̋Qp
zB|/'D1

D VS : �

This suggests that the object D|
K
.VS / merits the following definition.

Definition 2.8. Define a .'; �/-module over S y̋Qp
B|

K
to be a finite locally free

module over S y̋Qp
B|

K
, equipped with commuting continuous .'; �/-actions such

that '�DS!DS is an isomorphism. We say a .'; �/-module MS over S y̋Qp
B|

K

is étale if it admits a finite .'; �/-stable .OS y̋ Zp
A|

K
/-submodule NS such that

'�NS !NS is an isomorphism and the induced map

NS ˝OS
y̋ Zp A|

K

S y̋Qp
B|

K
!MS

is an isomorphism. In this language, Theorem 2.5 implies that D|
K
.VS / is an étale

.'; �/-module over S y̋Qp
B|

K
.

3. Gluing on affinoid spaces

Throughout this section, let S denote an affinoid algebra over Qp. We explain
how to perform gluing for finite modules over S y̋Qp

B|
K

. We start with some
basic notions from [Bosch et al. 1984].

Definition 3.1. Let M.S/ be the set of maximal ideals of S , that is, the affinoid
space associated to S . For X a subset of M.S/, an affinoid subdomain of X is a
subset U of X for which there exists a morphism S!S 0 of affinoid algebras such
that the induced map M.S 0/!M.S/ is universal for maps from an affinoid space
to M.S/ landing in U . The algebra S 0 is then unique up to unique isomorphism,
and the resulting map M.S/! U is a bijection.

The set M.S/ carries two canonical G-topologies, defined as follows. In the
weak G-topology, the admissible open sets are the affinoid subdomains, and the
admissible coverings are the finite coverings. In the strong G-topology, the ad-
missible open sets are the subsets U of M.S/ admitting a covering by affinoid
subdomains such that the induced covering of any affinoid subdomain of U can
be refined to a finite cover by affinoid subdomains, and the admissible coverings
are the ones whose restriction to any affinoid subdomain can be refined to a finite
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cover by affinoid subdomains. The categories of sheaves on these two topologies
are equivalent, because the strong G-topology is slightly finer than the weak one
[Bosch et al. 1984, §9.1].

We need a generalization of the Tate and Kiehl theorems on coherent sheaves
on affinoid spaces.

Definition 3.2. For A a commutative Banach algebra over Qp, define the presheaf
A on the weak G-topology of M.S/ by declaring that

A.M.S 0//D S 0 y̋Qp
A:

Lemma 3.3. For A a commutative Banach algebra over Qp, the presheaf A is a
sheaf for the weak G-topology of M.S/, and hence extends uniquely to the strong
G-topology.

Proof. Since every finite covering of an affinoid space by affinoid subdomains
can be refined to a Laurent covering, it is enough to check the sheaf condition
for Laurent coverings [Bosch et al. 1984, Proposition 8.2.2/5]. This reduces to
checking for coverings of the form

M.S/DM.Shf i/[M.Shf �1
i/

for f 2 S . The claim then is that the sequence

0! S y̋Qp
A! .Shf i y̋Qp

A/� .Shf �1
i y̋Qp

A/
d0

! Shf; f �1
i y̋Qp

A! 0

is exact; this follows from the corresponding assertion for ADQp, for which see
[Bosch et al. 1984, §8.2.3]. �

From now on, we consider only the strong G-topology on M.S/.

Definition 3.4. For A a commutative Banach algebra over Qp, an A-module N

on M.S/ is coherent if there exists an admissible covering fM.Si/gi2I of M.S/

by affinoid subdomains such that for each i 2 I , we have

N jM.Si / D coker.' WAm
jM.Si /!An

jM.Si //

for some morphism ' of A-modules. By Lemma 3.3, this is equivalent to requiring
N jM.Si / to be the sheaf associated to some finitely presented .Si y̋Qp

A/-module.

Lemma 3.5. Let A be a commutative Banach algebra over Qp such that for each
Tate algebra Tn over Qp, Tn y̋Qp

A is noetherian. Then for any coherent A-
module N on M.S/, the first Čech cohomology LH 1.N / vanishes.

Proof. As in Lemma 3.3, it suffices to check vanishing of the first Čech cohomology
computed on a cover of M.S/ of the form

M.S/DM.Shf i/[M.Shf �1
i/
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for some f 2 S , such that N is represented on each of the two covering sub-
sets by a finite module. For this, we may follow the proof of [Bosch et al. 1984,
Lemma 9.4.3/5] verbatim. (The noetherian condition is needed so that the invoca-
tion of [Bosch et al. 1984, Proposition 3.7.3/3] within the proof of [Bosch et al.
1984, Lemma 9.4.3/5] remains valid.) �

To recover an analogue of Kiehl’s theorem, however, we need an extra condition.

Proposition 3.6. Let A be a commutative Banach algebra over Qp such that for
each Tate algebra Tn over Qp, Tn y̋Qp

A is noetherian and the map

Spec.Tn y̋Qp
A/! Spec.Tn/

carries M.Tn y̋Qp
A/ to M.Tn/. Then any coherent A-module N on M.S/ is

associated to a finite .S y̋Qp
A/-module.

Proof. There must exist a finite covering of M.S/ by affinoid subdomains M.S1/;

: : : ;M.Sn/ such that N jM.Si / is associated to a finite .Si y̋Qp
A/-module Ni . As

in [Bosch et al. 1984, Lemma 9.4.3/6], we may deduce from Lemma 3.5 that for
each m 2M.Si/, the map N.M.S//! .N=mN /.M.Si// is surjective. By the
hypothesis on A, each maximal ideal of Si y̋Qp

A lies over a maximal ideal of Si ;
we may thus deduce that N.M.S//˝S Si surjects onto N.M.Si//. Since the latter
is a finite Si b̋QA-module, we can choose finitely many elements of N.M.S// that
generate all of the N.M.Si//. That is, we have a surjection An!N for some n;
repeating the argument for the kernel of this map yields the claim. �

To use the above argument, we need to prove a variant of the Nullstellensatz; for
simplicity, we restrict to the case where K is discretely valued (the case of interest
in this paper). We first prove a finite generation result using ideas from the theory
of Gröbner bases.

Lemma 3.7. Let K be a complete discretely valued field extension of Qp. Let A

be a commutative Banach algebra over K such that A has the same set of nonzero
norms as K, and the ring OA=IA is noetherian. Then Tn y̋Qp

A is also noetherian.

Proof. Equip the monoid Zn
�0

with the componentwise partial ordering � and the
lexicographic total ordering �. That is, .x1; : : : ;xn/� .y1; : : : ;yn/ if xi � yi for
all i , whereas .x1; : : : ;xn/� .y1; : : : ;yn/ if there exists an index i 2f1; : : : ; nC1g

such that xj D yj for j < i , and either i D nC1 or xi � yi . Recall that � is a well
partial ordering and that � is a well total ordering; in particular, any sequence in
Zn
�0

has a subsequence that is weakly increasing under both orderings.
For I D .i1; : : : ; in/ 2 Zn

�0
, write tI for t

i1

1
� � � t

in
n . We represent each element

x 2 Tn y̋Qp
A as a formal sum

P
I xI tI with xI 2 A, such that for each � > 0,

there exist only finitely many indices I with jxI j � �. For x nonzero, define the
degree of x, denoted deg.x/, to be the maximal index I under � among those
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indices maximizing jxI j. Define the leading coefficient of x to be the coefficient
xdeg.x/.

Let J be any ideal of Tn y̋Qp
A. We apply a Buchberger-type algorithm to

construct a generating set m1; : : : ;mk for J , as follows. Start with the empty list
(that is, kD0). As long as possible, given m1; : : : ;mk , choose an element mkC1 of
J\OA with leading coefficient akC1, for which we cannot choose I1; : : : ; Ik 2Zn

�0

and b1; : : : ; bk 2 OA satisfying both

(a) deg.mkC1/D deg.mi t
Ii / whenever bi ¤ 0 and

(b) akC1� a1b1� � � � � akbk 2 IA.

In particular, we must have jakC1j D 1.
We claim this process must terminate. Suppose the contrary; then there must

exist a sequence of indices i1< i2< � � � such that deg.mi1
/�deg.mi2

/�� � � . Then
the sequence of ideals .ai1

/; .ai1
; ai2

/; : : : in OA=IA must be strictly increasing, but
this violates the hypothesis that OA=IA is noetherian. Hence the process terminates.

Let j � j1 denote the 1-Gauss norm on Tn y̋Qp
A. We now write each element of

J as a linear combination of m1; : : : ;mk using a form of the Buchberger division
algorithm. Start with some nonzero x 2 J and put x0 D x. Given xl 2 J , if
xl D 0, put yl;1 D � � � D yl;k D 0 and xlC1 D 0. Otherwise, choose � 2 A� with
j�xl j1D 1. By the construction of m1; : : : ;mk , there must exist I1; : : : ; Ik 2 Zn

�0

and b1; : : : ; bk 2 OA satisfying conditions (a) and (b) with mkC1 replaced by �xl .
Put yl;i D �

�1bi t
Ii and xlC1 D xl �yl;1m1� � � � �yl;kmk .

If jxlC1j1 D jxl j1, we must have deg.xlC1/ � deg.xl/. Since � is a well
ordering, we must have jxl 0 j1 < jxl j1 for some l 0 > l . Since K is discretely valued
and A has the same group of nonzero norms as K, we conclude that jxl j1! 0 as
l!1.

Since jyl;i j1 � jxl j1, we may set yi D
P1

lD0 yl;i to get elements of Tn y̋Qp
A

such that xD y1m1C� � �Cykmk . This proves that J is always finitely generated,
so Tn y̋Qp

A is noetherian. �
Next we establish an analogue of the Nullstellensatz by combining the previous

argument with an idea of Munshi [May 2003].

Lemma 3.8. Take K and A as in Lemma 3.7, but suppose also that the intersec-
tion of the nonzero prime ideals of A is zero. Then for any maximal ideal m of
Tn y̋Qp

A, the intersection m\A is nonzero.

Proof. Suppose on the contrary that m is a maximal ideal of Tn y̋Qp
A such that m\

AD 0. Since Tn y̋Qp
A is noetherian by Lemma 3.7, m is closed by [Bosch et al.

1984, Proposition 3.7.2/2]. Hence mCA is also a closed subspace of Tn y̋Qp
A.

Let  W Tn y̋Qp
A! .Tn y̋Qp

A/=A be the canonical projection; it is a bounded
surjective morphism of Banach spaces with kernel A. Put V D  .mCA/; since
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mCAD  �1.V /, the open mapping theorem [Bosch et al. 1984, §2.8.1] implies
that V is closed. Hence  induces a bounded bijective map m ! V between
two Banach spaces; by the open mapping theorem again, the inverse of  is also
bounded.

Using the power series representation of elements of Tn y̋Qp
A, let us represent

.Tn y̋Qp
A/=A as the set of series in Tn y̋Qp

A with zero constant term. We may
then represent  as the map that subtracts off the constant term. Define the non-
constant degree of x 2 Tn y̋Qp

A as deg0.x/D deg. .x//, and define the leading
nonconstant coefficient of x to be the coefficient xdeg0.x/.

We construct m1; : : : ;mk 2 m using the following modified Buchberger algo-
rithm. As long as possible, choose an element mkC1 of m \ OA with noncon-
stant leading coefficient akC1, for which we cannot choose I1; : : : ; Ik 2 Zn

�0
and

b1; : : : ; bk 2 OA satisfying both

(a) deg0.mkC1/D deg0.mi t
Ii / whenever bi ¤ 0 and

(b) akC1� a1b1� � � � � akbk 2 IA.

Again, this algorithm must terminate.
By the hypothesis on A, we can choose a nonzero prime ideal p of A not

containing the product a1 � � � ak . By our earlier hypothesis that m \ A D 0, we
have m \ p D 0. Hence m C p.Tn y̋Qp

A/ is the unit ideal, so we can find
x0 2 p.Tn y̋Qp

A/ such that 1Cx0 2m.
We now perform a modified division algorithm. Given xl 2 p.Tn y̋Qp

A/ such
that 1 C xl 2 m, we cannot have xl 2 A. We may thus choose � 2 A� with
j .�xl/j1 D 1. By the construction of m1; : : : ;mk , there must exist I1; : : : ; Ik 2

Zn
�0

and b1; : : : ; bk 2 A satisfying conditions (a) and (b) with mkC1 replaced by
�xl . Put yl;i D �

�1bi t
Ii and xlC1 D xl �yl;1m1� � � � �yl;kmk .

As in the proof of Lemma 3.7, we see that j .xl/j1 ! 0 as l !1. Since  
has bounded inverse, we also conclude that jxl j1! 0 as l !1. However, since
m is closed, this yields the contradiction 1 2 m. We conclude that m\A ¤ 0, as
desired. �

Lemma 3.9. For any Tate algebra Tn over Qp, any rational s > 0, and any com-
plete discretely valued field extension K of Qp, Tn y̋Qp

Es
K

is noetherian and each
of its maximal ideals has residue field finite over K. In particular, every maximal
ideal of Tn y̋Qp

Es
K

lies over a maximal ideal of Tn.

Proof. The Banach norm on Es
K

is the maximum of the p-adic norm and the norm
induced by ws . By enlarging K, we may assume that the nonzero values of this
norm are all achieved by elements of K. In this case, we check that A D Es

K

satisfies the hypotheses of Lemma 3.8. First, the nonzero norms of elements of
A are all realized by units of the form �t i with � 2 K� and i 2 Z. Second, the
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residue ring OA=IA is isomorphic to a Laurent polynomial ring over a field, which
is noetherian. Third, for each nonzero element x of A, we can construct y 2 A

whose Newton polygon has no slopes in common with that of x; this implies that
x and y generate the unit ideal (see, for example, [Kedlaya 2005b, §2.6]), so any
maximal ideal containing y fails to contain x. Hence the intersection of the nonzero
prime ideals of A is zero; moreover, the quotient of A by any nonzero ideal is finite
over K. We may thus apply Lemma 3.8 to deduce the claim. �

By combining Proposition 3.6 with Lemma 3.9, we deduce the following. (The
second assertion follows from the first because for a coherent module, local free-
ness can be checked at each maximal ideal.)

Proposition 3.10. For any s > 0 and any finite extension K of Qp, for A D Es
K

,
any coherent A-module V on M.S/ is associated to a finite .S y̋Qp

A/-module V .
Moreover, V is locally free if and only if V is.

Using this, we may extend Theorem 2.5 for affinoid algebras, to eliminate the
hypothesis requiring a free Galois-stable lattice. We first handle the case where
VS is itself free.

Theorem 3.11. Let S be an affinoid algebra over Qp. Let VS be a free S -linear
representation. There exists s.VS / � 0 such that for s � s.VS /, we may construct
a .S y̋Qp

B|;s
K
/-module D|;s

K
.VS / satisfying the following conditions.

� The .S y̋Qp
B|;s

K
/-module D|;s

K
.VS / is locally free of rank d .

� The natural map D|;s
K
.VS /˝S y̋Qp B|;s

K

.S y̋Qp
zB|;s/! VS ˝S .S y̋Qp

zB|;s/

is an isomorphism.

� For any maximal ideal mx of S , for Vx D VS ˝S .S=mx/, the natural map
D|;s

K
.VS /˝S .S=mx/! D|;s

K
.Vx/ is an isomorphism.

� The construction is functorial in VS , compatible with passage from K to a
finite extension, and compatible with Theorem 2.5 in case VS admits a Galois-
stable free lattice.

Proof. Let TS be any free OS -lattice in VS . Since the Galois action is continuous,
there exists a finite Galois extension L of K such that GL carries TS into itself. For
such L, for s sufficiently large, D|;s

L
.VS / is locally free of rank d by Theorem 2.5;

moreover, it carries an action of Gal.L=K/. If we restrict scalars on this module
back to S y̋Qp

B|;s
K

, then D|;s
K
.VS / appears as a direct summand; this summand

is then finite projective, and hence locally free (since Tn y̋Qp
Es

K
is noetherian by

Lemma 3.9). Moreover, the Gal.L=K/-action on D|;s
L
.VS / allows us to extend the

�L-action on D|;s
K
.VS / to a �K -action. This yields the desired assertions. �

Definition 3.12. Let S be an affinoid algebra over Qp. Let VS be a locally free
S -linear representation; we can then choose a finite covering of M.S/ by affinoid



956 Kiran Kedlaya and Ruochuan Liu

subdomains M.S1/; : : : ;M.Sn/ such that ViDVS˝S Si is free over Si for each i .
We may then apply Theorem 3.11 to Vi to produce D|;s

K
.Vi/ for s sufficiently large.

By Proposition 3.10, these glue to form a finite .S y̋Qp
B|;s

K
/-module D|;s

K
.VS /,

which satisfies the analogues of the assertions of Theorem 3.11. We may then
define

D|
K
.VS /D D|;s.VS /˝S y̋Qp B|;s

K

.S y̋Qp
B|

K
/;

and this will be an étale .'; �/-module over S y̋Qp
B|

K
. The analogue of Proposi-

tion 2.7 will also carry over.

Remark 3.13. Chenevier has pointed out that Theorem 3.11 is also an easy con-
sequence of [Chenevier 2009, Lemme 3.18]. That lemma implies that for S an
affinoid algebra over Qp and VS a locally free S -linear representation, there exist
an affine formal scheme Spf.R/ of finite type over Z, equipped with an isomor-
phism R˝Z Qp Š S , and a locally free R-linear representation TR admitting an
isomorphism TR˝Zp

Qp ŠVS . This makes it possible to glue the Berger–Colmez
theorem by doing so on a suitable formal model of S .

4. Local coefficient algebras

Here we show that in a restricted setting, it is possible to invert the .'; �/-module
functor D

|
K

.

Definition 4.1. By a coefficient algebra, we mean a commutative Banach algebra
S over Q satisfying the following conditions.

� The norm on S restricts to the norm on Q.

� For each maximal ideal m of S , the residue field of m is finite over Q.

� The Jacobson radical of S is zero; in particular, S is reduced.

For instance, any reduced affinoid algebra over Q is a coefficient algebra.
By a local coefficient algebra, we mean a coefficient algebra S of the form

R˝Zp
Qp, where R is a complete noetherian local domain of characteristic 0 with

residue field finite over Fp. For instance, if S is a reduced affinoid algebra over
Qp equipped with the spectral norm, and R is the completion of OS at a maximal
ideal, then R˝Zp

Qp is a local coefficient algebra.

One special property of local coefficient algebras is the following. (Compare
the discussion preceding Lemma 2.6.)

Proposition 4.2. Let R be a complete noetherian local domain of characteristic 0

with residue field finite over Fp, and let S be the local coefficient algebra R˝Zp
Qp.

(1) We may naturally identify .R y̋ Zp
AK /˝Zp

Qp with the p-adic completion of
S y̋Qp

B|
K

.
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(2) We may naturally identify .R y̋ Zp
zAK /˝Zp

Qp with a subring of the p-adic
completion of S y̋Qp

zB|
K

.

Proof. Let P1;n;s;P2;n;s;P3;n;s denote the completed tensor products

.R=pnR/ y̋ Zp
.A|;s=pnA|;s/

formed using the following choices for the topologies on the two sides.

� For P1;n;s , use on the left side the discrete topology, and on the right side the
topology induced by ws .

� For P2;n;s , use on the left side the topology induced by mR, and on the right
side the topology induced by ws .

� For P3;n;s , use on the left side the topology induced by mR, and on the right
side the discrete topology.

These constructions relate to our original question as follows. If we take the inverse
limit of the P1;n;s as n!1, then invert p, then take the union over all choices of s,
we recover S y̋Qp

B|. If we take the union of the P3;n;s over all choices of s, then
take the inverse limit as n!1, and finally invert p, we recover .R y̋ Zp

A/˝Zp
Qp.

To establish (1), it thus suffices to check that the natural maps P1;n;s ! P2;n;s

and P3;n;s ! P2;n;s are both bijections. Put A D mR.R=p
nR/ and I D mRA.

Put B D A|;s=pnA|;s and choose an ideal of definition J � B for the topology
induced by ws . In this notation, A is I -adically complete and separated, B is
J -adically complete and separated, and both A and B are flat over Z=pnZ. Put
C D A˝Z=pnZ B. The IC -adic completion of C is then the inverse limit over
m of the quotients C=ImC D .A=ImA/˝Z=pnZ B. Since B is flat over Z=pnZ

and A=ImA has finite cardinality, the completeness of B with respect to J implies
the completeness of C=ImC with respect to J.C=ImC /. It follows that C is
complete with respect to ICCJC , which means that P1;n;s!P2;n;s is a bijection.
Similarly, we may argue that P3;n;s!P2;n;s is bijective using the fact that B=J mB

is of finite cardinality.
This yields (1). The whole argument carries over in the case of (2) except for

the finiteness of B=J mB; hence in this case, we only have that P1;n;s! P2;n;s is
a bijection and P3;n;s! P2;n;s is injective. �

Theorem 4.3. Let S be a local coefficient algebra. Let MS be an étale .'; �/-
module over S y̋Qp

B|
K

, and put

VS D .MS ˝S y̋Qp B|
K

.S y̋Qp
zB|//'D1:

Then VS is an S -linear representation for which the natural map D|
K
.VS /!MS

is an isomorphism.
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Proof. By Proposition 4.2(1), we may identify the p-adic completion of S y̋Qp
B|

K

with .R y̋ Zp
A/˝Zp

Qp. This allows us to define

V 0S D
�
MS ˝S y̋Qp B|

K

..R y̋ Zp
zA/˝Zp

Qp/
�'D1

:

By Theorem 2.2, the natural map

V 0S ˝.R y̋ Zp A/˝ZpQp
..R y̋ Zp

zA/˝Zp
Qp/!MS ˝S y̋Qp B|

K

..R y̋ Zp
zA/˝Zp

Qp/

is an isomorphism.
By Proposition 4.2(2), we may identify .R y̋ Zp

zA/˝Zp
Qp with a subring of the

p-adic completion of S y̋Qp
zB|. Using this identity, we may argue as in [Kedlaya

2008, Proposition 1.2.7] to show that V 0
S
� VS , which is enough to establish the

desired result. �

5. A lifting argument

While one cannot invert the functor D|
K

for an arbitrary S , one can give a partial
result.

Lemma 5.1. For any commutative Banach algebra S over Qp, any s > 0, and any
x 2 S y̋Qp

zB|;s , the equation

y �'�1.y/D x

has a solution y 2S y̋Qp
zB|;s . More precisely, we may choose y such that vp.y/�

vp.x/ and ws.y/� ws.x/.

Proof. For S DQp, the existence of a solution y 2 zB follows from the fact that zB
is a complete discretely valued field with algebraically closed residue field. Write
x D

P
k pk Œxk � and y D

P
k pk Œyk �. We claim that y can be chosen such that for

each k,
inffvzE.y`/ W `� kg � inffvzE.x`/ W `� kg;

which yields the desired results. This choice can be made because for any x 2 zE,
the equation y �y1=p D x always has a solution y 2 zE with

vzE.y/�

�
vzE.x/ if vzE.x/� 0;

pvzE.x/ if vzE.x/� 0:

For general S , write x as a convergent sum
P

i ui˝xi with ui 2S and xi 2
zB|;s .

For each i , let yi 2
zB|;s be a solution of yi �'

�1.yi/D xi with ws.yi/�ws.xi/.
Then the sum y D

P
i ui ˝yi converges with the desired effect. �
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Theorem 5.2. Let S be a commutative Banach algebra over Qp. Let MS be a free
étale .'; �/-module over S y̋Qp

B|
K

. Suppose that there exists a basis of MS on
which ' � 1 acts via a matrix whose entries have positive p-adic valuation. Then

VS D .MS ˝S y̋Qp B|
K

.S y̋Qp
zB|//'D1

is a free S -linear representation for which the natural map D|
K
.VS /!MS is an

isomorphism.

Proof. Choose a basis of

M 0
S DMS ˝S y̋Qp B|

K

.S y̋Qp
zB|/

on which ' � 1 acts via a matrix A whose entries belong to S y̋Qp
B|;s

K
for some

s>0 and have p-adic valuation bounded below by c>0. We may apply Lemma 5.1
to choose a matrix X such that X has entries in S y̋Qp

B|;s
K

with p-adic valuation
bounded below by c, mini;j fws.Xi;j /g�mini;j fws.Ai;j /g, and X�'�1.X /DA.
We can thus change basis to get a new basis of M 0

S
on which ' � 1 acts via the

matrix
.In�'

�1.X //�1.InCA/.In�X /� In;

whose entries have valuation bounded below by 2c. If we repeat this process, we
get a sequence of matrices X1;X2; : : : such that ws.Xi/ is bounded below, and the
p-adic valuation of Xi is at least ci . It follows that ws0.Xi/ tends to infinity for
any s0 > s, so the product .InCX1/.InCX2/ � � � converges in S y̋Qp

B|;s0

K
and

defines a basis of M 0
S

fixed by '. This proves the claim. �

Remark 5.3. The hypothesis about the basis of MS is needed in Theorem 5.2 for
the following reason. For R an arbitrary Fp-algebra, if ' acts as the identity on
R and as the p-power Frobenius on zE, given an invertible square matrix A over
R˝Fp

zE, we cannot necessarily solve the matrix equation U�1A'.U /DA for an
invertible matrix U over R˝Fp

zE. For instance, in Chenevier’s example, there is
no solution of the equation '.z/D Yz.

One may wish to view the collection of isomorphism classes of .'; �/-modules
over R˝Fp

Fp..��1//, for R an Fp-algebra, as the “R-valued points of the moduli
space of mod p representations of GQp

.” To replace Qp with K, one should replace
Fp..�� 1// with the HK -invariants of its separable closure.

6. Families of .'; �/-modules and étale models

We turn from .'; �/-modules over S y̋Qp
B|

K
to those over S y̋Qp

B|
rig;K

. In the
absolute case, these have important applications to the study of de Rham represen-
tations, as shown by Berger; see for instance [2004]. In the relative case, however,
they do not form a robust enough category to be useful; it is better to pass to
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a more geometric notion. For this, we must restrict to the case where S is an
affinoid algebra.

Definition 6.1. Let K be a finite extension of Qp, and let S be an affinoid algebra
over K. Recall that Rs

K
denotes the ring of Laurent series with coefficients in K in

a variable T convergent on the annulus 0<vp.T /�1=s, and that RK D
S

s>0 Rs
K

.
By a vector bundle over S y̋K Rs

K
, we will mean a coherent locally free sheaf over

the product of this annulus with M.S˝K K/ in the category of rigid analytic spaces
over K. (In case S is disconnected, we insist that the rank be constant, not just
locally constant.) By a vector bundle over S y̋K RK , we will mean an object in
the direct limit as s!1 of the categories of vector bundles over S y̋Qp

Rs
K

.
Recall that for s sufficiently large, we can produce an isomorphism

B|;s
rig;K
ŠRs

K 0
0

:

We thus obtain the notion of a vector bundle over S y̋Qp
B|;s

rig;K
, dependent on

the choice of the isomorphism. However, the notion of a vector bundle over
S y̋Qp

B|
rig;K

does not depend on any choices.

Remark 6.2. For S DK discretely valued, every vector bundle over Rs
K

is freely
generated by global sections [Kedlaya 2005a, Theorem 3.4.1]. On the other hand,
for S an affinoid algebra over Qp, we do not know whether any vector bundle
over S y̋Qp

Rs
K

is S -locally free; this does not follow from [Lütkebohmert 1977],
which only applies to closed annuli.

Definition 6.3. Let K be a finite extension of Qp, and let S be an affinoid algebra
over Qp. By a family of .'; �/-modules over S y̋Qp

B|
rig;K , we mean a vector

bundle V over S y̋Qp
B|

rig;K equipped with an isomorphism '�V ! V , viewed as
a semilinear '-action, and a semilinear �-action commuting with the '-action. Call
a family of .'; �/-modules over S y̋Qp

B|
rig;K étale if it arises by base extension

from an étale .'; �/-module over S y̋Qp
B|

K
, called an étale model of the family.

It turns out that étale models are unique when they exist. To check this without
any reducedness hypothesis on S , we need a generalization of the fact that a re-
duced affinoid algebra embeds into a product of complete fields [Berkovich 1990,
Proposition 2.4.4].

Lemma 6.4. Let K be a finite extension of Qp, and let S be an affinoid algebra
over Qp. Then there exists a strict inclusion S !

Qn
iD1 Ai of topological rings,

in which each Ai is a finite connected algebra over a complete discretely valued
field.

Proof. Let T be the multiplicative subset of OS consisting of elements whose im-
ages in OS=IS are not zero divisors. For any s 2S and t 2T , we have jst jD jsjjt j,
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so the norm on S extends uniquely to the localization S ŒT �1�. The completion of
this localization has the desired form. �
Proposition 6.5. Let K be a finite extension of Qp, and let S be an affinoid algebra
over Qp. Then the natural base change functor from étale .'; �/-modules over
S y̋Qp

B|
K

to families of .'; �/-modules over S y̋Qp
B|

rig;K
is fully faithful. In

fact, this holds even without the �-action.

Proof. Note that if we replace S by a complete discretely valued field L, we may
deduce the analogous claim by [Kedlaya 2005b, Theorem 6.3.3] after translating
notations. (Families of .'; �/-modules over B|

rig;K
are finite free over B|

rig;K
, by

Remark 6.2.) In fact, if we replace S by a finite algebra over L, we may make the
same deduction by restricting scalars to L. We may thus deduce the original claim
by embedding S into a product of finite algebras over complete discretely valued
fields using Lemma 6.4. �
Corollary 6.6. Let K be a finite extension of Qp, and let S be an affinoid algebra
over Qp. Then an étale model of a family of .'; �/-modules over S y̋Qp

B|
rig;K

is
unique if it exists.

Definition 6.7. Let S be an affinoid algebra over Qp. Let VS be a locally free
S -linear representation. We define D|

K
.VS / as in Definition 3.12, then put

D|
rig;K

.VS /D D|
K
.VS /˝S y̋Qp B|

K

.S y̋Qp
B|

rig;K
/:

This is an étale .'; �/-module over S y̋Qp
B|

rig;K
, from which we may recover VS

by taking
VS D .D

|
rig;K

.VS /˝S y̋Qp B|
rig;K

.S y̋Qp
zB|

rig//
'D1:

We may now obtain Theorem 0.1 by combining Theorem 4.3 (via Definition 3.12)
with Proposition 6.5.

7. Local étaleness

We now turn to Theorem 0.2 of the introduction. Given what we already have
proven, this can be obtained by invoking some results from [Liu 2008]. For the
convenience of the reader, we recall these results in detail.

Lemma 7.1. Let K be a finite extension of Qp, and let S be an affinoid algebra
over K. For any x 2M.S/ and � > 0, there exists an affinoid subdomain M.B/

of M.S/ containing x such that if f 2 S vanishes at x, then jf .y/j � �jf jS for
any y 2M.B/.

Proof. We first prove the lemma for S D Tn DKhx1; : : : ;xni, the n-dimensional
Tate algebra over K. It is harmless to enlarge K, so we may suppose without loss
of generality that x is the origin x1 D � � � D xn D 0. Choosing a rational number
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�0 < �, the affinoid subdomain f.x1; : : : ;xn/ 2M.S/
ˇ̌
jx1j � �

0; : : : ; jxnj � �
0g

satisfies the required property.
For general S , the reduction S D OS=mK OS is a finite type scheme over the

residue field k of K. For n sufficiently large, we take a surjective k-algebra homo-
morphism ˛ WkŒx1; : : : ;xn��S . We lift ˛ to a K-affinoid algebra homomorphism
˛ WKhx1; : : : ;xni!S by mapping xi to a lift of ˛.xi/ in OS . Then it follows from
Nakayama’s lemma that ˛ maps OK hx1; : : : ;xni onto OS . Let ˛ also denote the
induced map from M.S/ to M.Khx1; : : : ;xni/. By the case of Khx1; : : : ;xni, we
can find an affinoid neighborhood M.B/ of ˛.x/ satisfying the required property
for �=p. Now for any nonzero f 2 S vanishing at x, we choose c 2 Q such
that jcj � jf jS � pjcj, yielding pf=c 2 OS . Pick f 0 2 OK hx1; : : : ;xni such
that ˛.f 0/ D pf=c. Then f 0.˛.x// D .pf=c/.x/ D 0 implies that jf 0.y/j �
.�=p/jf 0jTn

� �=p for any y 2 M.B/. Then for any y 2 ˛�1.M.B//, we
have jpf .y/j=jcj D jf 0.˛.y//j � �=p, yielding jf .y/j � �jcj � �jf jS . Hence
˛�1.M.B// is an affinoid neighborhood of x satisfying the property we need. �

Definition 7.2. For S a commutative Banach algebra over Qp and I a subinterval
of R, let RI

S
be the ring of Laurent series over S in the variable T convergent for

v.T /�1 2 I . Let vS be the valuation on S , and for s 2 I and x D
P

i xiT
i 2RI

S

put
ws.x/D inf

i
fi C svS .xi/g:

Put Rs
S
DR

Œs;C1/
S

, which we may identify with the completed tensor product
S y̋Qp

Rs
Qp

for the Fréchet topology on the right, and put RS D
S

s>0 Rs
S

. Let

Rint;s
S

be the subring of Rs
S

consisting of series with coefficients in OS .

Lemma 7.3 (based on [Kedlaya 2005b, Lemma 6.1.1]). Let K be a finite extension
of Qp, and let S be an affinoid algebra over K. Pick s0 > 0. Let ' WRs0=p

S
!Rs0

S

be a map of the form
P

i ciT
i 7!

P
i 'S .ci/W

i , where 'S W S! S is an isometry
and W 2Rs0

S
satisfiesws0

.W �T p/>ws0
.T p/. For some s� s0, suppose D is an

invertible n�n matrix over R
Œs;s�
S

, and put hD�ws.D/�ws.D
�1/; it is clear that

h�0. Let F be an n�n matrix over R
Œs;s�
S

such thatws.FD�1�In/� cCh=.p�1/

for a positive number c. Then for any positive integer k satisfying 2.p�1/sk � c,
there exists an invertible n�n matrix U over R

Œs=p;s�
S

such that U�1F'.U /D�1�

In has entries in pkRint;s
S

and ws.U
�1F'.U /D�1� In/� cC h=.p� 1/.

Proof. For i 2 R, s > 0, f D
PC1

jD�1 aj T j 2RS , we set

vi.f /Dminfj W vS .aj /� ig and vi;s.f /D vi.f /C si:

It is clear that vi;s.f /�ws.f /. (If S is a field, these quantities are similar to vnaive
i ,

vnaive
i;r in [Kedlaya 2005b, p. 458], albeit with a slightly different normalization.)
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We define a sequence of invertible matrices U0;U1; : : : over R
Œs=p;s�
S

and a se-
quence of matrices F0;F1; : : : over R

Œs;s�
S

as follows. Set U0 D In. Given Ul , put
Fl D U�1

l
F'.Ul/. Suppose

FlD
�1
� In D

1X
mD�1

VmT m;

where the Vm’s are n�n matrices over S . Let Xl D

X
vS .Vm/<k

VmT m, and put UlC1D

Ul.InCXl/. Set

cl D inf
i�k�1

fvi;s.FlD
�1
� In/� h=.p� 1/g:

We now prove by induction that cl � ..l C 1/=2/c,ws.FlD
�1�In/� cCh=.p�1/

and Ul is invertible over R
Œs=p;s�
S

for any l � 0. This is obvious for l D 0. Suppose
that the claim is true for some l � 0. Then for any t 2 Œs=p; s�, since

cl �
lC1

2
c � .p� 1/sk;

we have

wt .Xl/� ws.Xl/� .s� t/k � .cl C h=.p� 1//� .s� t/k > 0:

Hence UlC1 is also invertible over R
Œs=p;s�
S

. Furthermore, we have

ws.D'.Xl/D
�1/� ws.D/Cws.'.Xl//Cws.D

�1/D pws=p.Xl/� h

> p
�
cl C

h

p�1

�
� h� .p� 1/sk D pcl C

h

p�1
� .p� 1/sk

� cl C
1
2
cC

h

p�1
C .1

2
c � .p� 1/sk/�

lC2

2
cC

h

p�1
;

since cl �
lC1

2
c by the inductive assumption. Note that

FlC1D
�1
�In D .InCXl/

�1FlD
�1.InCD'.Xl/D

�1/�In

D ..InCXl/
�1FlD

�1
�In/C.InCXl/

�1.FlD
�1/D'.Xl/D

�1:

Since ws.FlD
�1/� 0 and ws..InCXl/

�1/� 0, we have

ws..InCXl/
�1.FlD

�1/D'.Xl/D
�1/�

lC2

2
cC

h

p�1
:

Write
.InCXl/

�1FlD
�1
� In D .InCXl/

�1.FlD
�1
� In�Xl/

D

1P
jD0

.�Xl/
j .FlD

�1
� In�Xl/:
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For j � 1, we have

ws..�Xl/
j .FlD

�1
� In�Xl//� cC cl C

2h

p�1
>

lC2

2
cC

h

p�1
:

By the definition of Xl , we also have vi.FlD
�1 � In �Xl/ D 1 for i < k and

ws.FlD
�1� In�Xl/� cC h=.p� 1/. Putting these together, we get that

vi;s.FlC1D
�1
� In/�

lC2

2
cC

h

p�1

for any i < k, that is, clC1 �
lC2

2
c, and that ws.FlC1D

�1�In/� cC
h

p�1
. The

induction step is finished.
Now sincewt .Xl/� clCh=.p�1/�.p�1/ps=k for t 2 Œs=p; s�, and cl!1 as

l!1, the sequence Ul converges to a limit U , which is an invertible n�n matrix
over R

Œs=p;s�
S

satisfying ws.U
�1F'.U /D�1� In/� cCh=.p�1/. Furthermore,

vm;s.U
�1F'.U /D�1

� In/D lim
l!1

vm;s.U
�1
l F'.Ul/D

�1
� In/

D lim
l!1

vm;s.FlC1D
�1
� In/D1;

for any m< k. Therefore U�1F'.U /D�1� In has entries in pkRint;s
S

. �

Theorem 7.4. Let S be an affinoid algebra over Qp, and let MS be a family of
.'; �/-modules over S y̋Qp

B|
rig;K

, such that for some x 2 M.S/ whose residue
field is contained in S , the fiber Mx of MS over x is étale. Then there exist an
affinoid neighborhood M.B/ of x and a finite extension L of K such that the base
extension MB of MS to B y̋Qp

B|
rig;L

has an étale model in which the entries of
the matrix of ' � 1 have positive p-adic valuation.

Proof. Because Proposition 6.5 does not require the �-action, it suffices to con-
struct an étale model just for the '-action. Choose an isomorphism

B|;s0

rig;K
ŠRs0

K 0
0

for some s0 > 0, via which ' induces a map from R
s0=p

K 0
0

to Rs0

K 0
0

satisfying

ws0
.'.T /�T p/ > ws0

.T p/:

Choose s� s0 such that MS is represented by a vector bundle VS over S y̋Qp
R

s=p

K 0
0

equipped with an isomorphism '�VS ! VS of vector bundles over S y̋Qp
Rs

K 0
0

.
By hypothesis, Mx is étale. After increasing s, we may therefore assume that

Mx admits a basis ex on which ' acts via an invertible matrix over Rint;s
S=mx

. Lift
this matrix to a matrix D over Rint;s

S
, using the inclusion S=mx ,! S which was

assumed to exist. By enlarging K, we can ensure that D � 1 has positive p-adic
valuation (by first doing so modulo mx).
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By results of Lütkebohmert [1977, Sätze 1 and 2], the restriction of VS to
S y̋Qp

R
Œs=p;s�

K 0
0

is S -locally free. By replacing M.S/ with an affinoid subdomain
containing x, we may reduce to the case where this restriction admits a basis eS .
Let A be the matrix via which ' acts on this basis; it has entries in S y̋Qp

R
Œs;s�

K 0
0

. Let
V be a matrix over S y̋Qp

R
Œs=p;s�

K 0
0

lifting (again using the inclusion S=mx ,! S )
the change-of-basis matrix from the mod-mx reduction of eS to ex .

By Lemma 7.1, we can shrink S so as to make D invertible over Rint;s
S

. We can
also force V to become invertible, and we may make V �1A'.V / �D as small
as desired. We may thus put ourselves in a position to apply Lemma 7.3 with
F D V �1A'.V /, to produce an invertible n � n matrix U over S y̋Qp

R
Œs=p;s�

K 0
0

such that
W D U�1F'.U /D�1

� In

has entries in pOS y̋ Zp
Rint;s

K 0
0

and ws.W / > 0.
Changing basis from eS via the matrix V U gives another basis e0

S
of VS over

S y̋Qp
R

Œs=p;s�

K 0
0

, on which ' acts via the matrix W C In.
We may change the basis e0

S
using .W C In/D to get a new basis of VS over

S y̋Qp
R

Œs;ps�

K 0
0

; since the matrix .W C In/D is invertible over OS y̋ Zp
Rint;s

K 0
0

, it is
also the case that the basis e0

S
also generates VS over S y̋Qp

R
Œs;ps�

K 0
0

. Repeating
the argument, we can deduce that e0

S
is actually a basis of VS generating an étale

model. This proves the claim. �
Combining Theorem 5.2 with Theorem 7.4 yields Theorem 0.2. Note that be-

fore applying Theorem 7.4, we must first extend scalars from S to S ˝Qp
L for

LD S=mx; we then use Galois descent for the action of Gal.L=Qp/ to recover a
statement about S itself.

Remark 7.5. Unfortunately, there is no natural extension of Theorem 7.4 to the
Berkovich analytic space M.S/ associated to S . For instance, take K D Qp,
S DQphyi, and let MS be free of rank 2 with the action of ' given by the matrix�

0 1

1 y=p

�
(in which T does not appear). The locus of x 2 M.S/ where Mx is étale is
precisely the disc jyj � jpj, which does not correspond to an open subset of M.

On the other hand, it may still be the case that MS is étale if and only if Mx is
étale (in an appropriate sense) for each x 2M.S/.

Remark 7.6. It should be possible to generalize Berger’s construction [2008] to
families of filtered .';N /-modules. With such a generalization, one would de-
duce immediately from Theorem 7.4 that any family of weakly admissible .';N /-
modules over an affinoid base (with trivial '-action on the base) arises from a
Galois representation in a neighborhood of any given rigid analytic point. However,



966 Kiran Kedlaya and Ruochuan Liu

in view of Remark 7.5, we cannot make the corresponding assertion for Berkovich
points.

Remark 7.7. The families of .'; �/-modules considered here are “arithmetic” in
the sense that ' acts trivially on the base S . They correspond to “arithmetic”
families of Galois representations, such as the p-adic families arising in the theory
of p-adic modular forms. There is also a theory of “geometric” families of .'; �/-
modules, in which ' acts as a Frobenius lift on the base S . These correspond
to representations of arithmetic fundamental groups via the work of Faltings, An-
dreatta, Brinon, Iovita, et al. In this theory, one does expect the étale locus to
be open, as in [Hartl 2006, Theorem 5.2]. One also expects a family of .'; �/-
modules to be globally étale if and only if it is étale over each Berkovich point
(but not if it is only étale over each rigid point, as shown by the Rapoport–Zink
spaces). We hope to consider this question in subsequent work.
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