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Joseph Gubeladze San Francisco State University, USA

Ehud Hrushovski Hebrew University, Israel

Craig Huneke University of Kansas, USA

Mikhail Kapranov Yale University, USA

Yujiro Kawamata University of Tokyo, Japan

János Kollár Princeton University, USA

Hendrik W. Lenstra Universiteit Leiden, The Netherlands

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Andrei Okounkov Princeton University, USA

Raman Parimala Emory University, USA

Victor Reiner University of Minnesota, USA

Karl Rubin University of California, Irvine, USA

Peter Sarnak Princeton University, USA

Michael Singer North Carolina State University, USA

Ronald Solomon Ohio State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Bernd Sturmfels University of California, Berkeley, USA

Richard Taylor Harvard University, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium
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ALGEBRA AND NUMBER THEORY 4:8(2010)

On ramification filtrations
and p-adic differential modules
I: the equal characteristic case

Liang Xiao

Let k be a complete discretely valued field of equal characteristic p > 0 with
possibly imperfect residue field, and let Gk be its Galois group. We prove that the
conductors computed by the arithmetic ramification filtrations on Gk defined by
Abbes and Saito (Amer. J. Math 124:5, 879–920) coincide with the differential
Artin conductors and Swan conductors of Galois representations of Gk defined
by Kedlaya (Algebra Number Theory 1:3, 269–300). As a consequence, we
obtain a Hasse–Arf theorem for arithmetic ramification filtrations in this case.
As applications, we obtain a Hasse–Arf theorem for finite flat group schemes;
we also give a comparison theorem between the differential Artin conductors
and Borger’s conductors (Math. Ann. 329:1, 1–30).
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Introduction

Let k be a complete discretely valued field and let Gk be the Galois group of a fixed
separable closure ksep over k. When the residue field κk of k is perfect, classical
ramification theory gives Artin conductors and Swan conductors, which measure
the ramification of representations of Gk of finite local monodromy (i.e., the image
of the inertia group being finite). A fundamental result, the Hasse–Arf theorem,
states that Artin and Swan conductors are nonnegative integers. However, when the
residue field κk is not perfect, classical ramification theory is no longer applicable.

MSC2000: primary 11S15; secondary 14G22, 12H25.
Keywords: ramification, p-adic differential equation, Swan conductors, Artin conductors,

Hasse–Arf theorem.
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For one thing, the transition functions φ and ψ in [Serre 1979, §IV.3] fail the basic
properties; for another, the extension of the rings of integers may not be generated
by a single element (compare [Serre 1979, §III.6, Proposition 12]).

Kato [1989] defined Swan conductors for one-dimensional representations when
the residue field is not perfect. Later, Abbes and Saito [2002; 2003] defined an
arithmetic (nonlogarithmic) filtration and a logarithmic variant on Gk by counting
geometric connected components of certain rigid spaces asa

l/k and asa
l/k,log over k,

which we refer to as Abbes–Saito spaces. The filtrations give the arithmetic Artin
conductors and Swan conductors naturally.

Abbes and Saito [2009] showed that their definition of Swan conductors coin-
cides with Kato’s when k is of equal characteristic p > 0. Moreover, they proved
that the subquotients of both filtrations are abelian groups [Abbes and Saito 2003].
(See also Saito’s proof [2009] that the subquotients of the logarithmic filtration
on wild inertia are elementary abelian p-groups.) However, they were not able to
establish an integrality result analogous to the classical Hasse–Arf theorem.

Through a completely different path, when k is of equal characteristic p > 0
and has perfect residue field, Christol, Cook, Matsuda, Mebkhout, and Tsuzuki
(see [Matsuda 2002]) gave a completely new interpretation of the classical Swan
conductors using the theory of p-adic differential modules. Given a p-adic Galois
representation of finite local monodromy, they associated a p-adic differential mod-
ule over the Robba ring and proved that the Swan conductor of the representation
can be retrieved from the irregularity of the differential module, or equivalently,
the spectral norms of the differential operator.

Partly inspired by [Matsuda 2004], Kedlaya generalized this framework to the
case when the residue field κk is not perfect. In [Kedlaya 2007], he adopted the
same construction and counted in the effects of other differential operators corre-
sponding to elements in a p-basis of κk . He defined the differential Swan conductor
to be, vaguely speaking, the maximum of the numbers computed by each of the
differential operators, under certain normalization; he was aware of a definition for
differential Artin conductors using a slightly different normalization. Most impor-
tantly, he was able to prove a Hasse–Arf theorem for differential Swan conductors
[Kedlaya 2007, Theorem 3.5.8]; his argument can easily be adapted to prove a
Hasse–Arf theorem for differential Artin conductors. For a precise statement, see
Theorem 2.4.1.

Kedlaya [2007] asked, as Matsuda suggested, whether the differential conduc-
tors are the same as the arithmetic ones, in which case the Hasse–Arf theorem for
the arithmetic filtrations in the equal characteristic case would follow from that
for the differential conductors. Chiarellotto and Pulita [2009] gave an affirmative
answer to this question when the representations are one-dimensional, using the
setting of Kato’s conductors [Kato 1989].
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There is a third story of defining conductors. Borger [2004] introduced the
notation of generic perfection of a complete discretely valued field and defined the
Artin conductors to be the ones obtained by base change to the generic residual
perfection of k, which is a complete discretely valued field with perfect residue field
satisfying certain universal properties. The Hasse–Arf theorem of these conductors
will follow immediately from that of the classical ones. Kedlaya [2007, p. 297]
asked if this also coincides with the two definitions above.

This paper answers these questions in the affirmative for all representations of
finite local monodromy. Our precise result is the following.

Theorem. Let k be a complete discretely valued field of equal characteristic p> 0
and let Gk be its absolute Galois group.

(1) (Hasse–Arf Theorem) Let ρ : Gk → GL(Vρ) be a p-adic representation of
finite local monodromy. Then the arithmetic Artin conductor Artar(ρ), the
differential Artin conductor Artdif(ρ), and the Borger’s conductor ArtB(ρ)

are the same. Similarly, the arithmetic Swan conductor Swanar(ρ) is the same
as the differential Swan conductor Swandif(ρ). As a consequence, they are all
nonnegative integers.

(2) The subquotients Fila Gk/Fila+ Gk of the arithmetic ramification filtrations
are trivial if a /∈ Q and are elementary p-abelian groups if a ∈ Q>1; the
subquotients Filalog Gk/Fila+log Gk of the arithmetic logarithmic ramification fil-
trations are trivial if a /∈Q and are elementary p-abelian groups if a ∈Q>0.

This theorem consists of Theorems 4.4.1 and 5.4.3 and Corollary 4.4.3.

We now explain the main idea of the proof, which shows that arithmetic con-
ductors and differential conductors coincide in a natural way. (We will use the
comparison of Artin conductors as an example; that of Swan conductors is proved
similarly.)

Let k be a complete discretely valued field of equal characteristic p, with residue
field κk . Let l be a finite Galois extension of k with residue field κl . One imme-
diately reduces the comparison to proving that the arithmetic highest ramification
break of l/k is the same as the differential one. There are three main ingredients.

(a) A useful way of visualizing spectral norms is to consider the convergence
loci or radii at a generic point; see for example [Kedlaya 2005, §5]. However,
the convergence loci cannot be defined on the rigid annulus because one cannot
separate m+1 differential operators on a one-dimensional space. Matsuda [2004]
made a pioneering attempt to obtain an (m + 1)-dimensional space on which we
may discuss convergence loci. Our approach, which is independently developed
and looks very similar to Matsuda’s work, uses a thickening technique. (Alas, we
do not know how to relate the two methods.) If the field k can be realized as



972 Liang Xiao

the field of rational functions on a smooth variety over certain perfect field, the
thickening space is just a subspace of the generic fiber of the tube corresponding
to the diagonal embedding in a formal lifting (see Section 3.1). This thickening
space, after a certain base change, “looks the same” as the Abbes–Saito space
asa

l/k , whose geometric connected components give the ramification information.
However, we have the following technical issue.

(b) The thickening space is a rigid space over K , the fraction field of a Cohen
ring of κk , which in particular is a field of characteristic zero. In contrast, the
Abbes–Saito space asa

l/k is a rigid space over k, which is of characteristic p. In
order to relate the two spaces, we need a lifting technique (see Section 1) to lift
the Abbes–Saito space to characteristic zero and compare the geometric connected
components before and after the lifting process. A similar idea is also alluded to
as a conjecture in [Matsuda 2004]. (Again, we do not know whether our result
answers Matsuda’s conjecture.)

(c) The lifted Abbes–Saito space is isomorphic to the thickening space after a cer-
tain base change (Theorem 4.3.6), but not in the naı̈ve way. Very vaguely speaking,
if the extension l/k is generated by a series of equations, then the Abbes–Saito
space consists of the points which are close to the solutions to those equations;
in contrast, the (base change of the) thickening space consists of points which are
solutions to some equations whose coefficients are close to the original equations.
These two types of points coincide when l/k is totally and wildly ramified.

Combining these three ingredients, we can prove the comparison between the
arithmetic conductors and the differential ones. The following diagram may be
helpful to illustrate the process:

Y = A1
L [η

1/e
0 , 1)

��

TSa
×π̃ ,Z Y

��

(c)
/o/o/o/o/o/o/o/o/ooo ASa

l/k asa
l/k

(b)oo o/ o/

Z = A1
K [η0, 1) TSa

= “
⋃
η∈[η0,1) A1

K [η, 1)× Am+1
K [0, ηa).”

(a)

π̃oo

Here K and L are the fraction fields of Cohen rings of κk and κl , respectively;
A1

K [η0, 1) is the half-open annulus over K (centered at the origin) with inner radius
η0 and outer radius 1, for some η0 ∈ (0, 1); Am+1

K [0, ηa) is the open polydisc
(centered at the origin) of dimension m + 1 and radius ηa for some a ∈ Q>1 (for
the quotation marks on

⋃
η∈[η0,1) A1

K [η, 1)× Am+1
K [0, ηa), see Caution 3.2.4); TSa

denotes the space obtained by the thickening process (a); asa
l/k is the rigid analytic

space over k defined by Abbes and Saito with respect to a set of distinguished
generators; and ASa

l/k is the lifting space given by lifting process (b); the argument
in (c) links the two spaces as shown in the diagram.
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Part (a) is carried out throughout Section 3 (see Theorem 3.4.12). Part (b) is
developed in Section 1 (see Corollary 1.2.12 and Example 1.3.4). Part (c) occupies
Section 4 (see Theorem 4.3.6). We finally wrap up the proof in Theorem 4.4.1.

We also obtain a comparison theorem between Borger’s Artin conductors and
the differential Artin conductors, or equivalently the arithmetic Artin conductors.
The key is to show that the differential Artin conductors are invariant under the
operation of adding generic p∞-th roots (see Definition 5.2.2). This fact follows
easily from the study of differential operators.

Plan of the paper. In Section 1, we make a construction to lift a rigid space over k
to a rigid space over an annulus over K . We prove that the connected components
of the original rigid space are in one-to-one correspondence with the connected
components of the lifting space, when the annulus is “thin” enough. This part is
written in a relatively independent and self-contained manner, since we feel that it
is interesting on its own.

In Section 2, we discuss how to associate a differential module Eρ on the Robba
ring over K with a representation ρ of Gk of finite local monodromy. Then we
review the definition of differential Swan conductors following [Kedlaya 2007].
We also introduce differential Artin conductors and discuss their properties.

Section 3 introduces a thickening construction. In Section 3.1, as an intuitive ex-
ample, we construct the thickening space when k can be realized geometrically. In
Section 3.2, we define thickening spaces for general k and discuss spectral proper-
ties of the differential module obtained by pulling back Eρ to the thickening spaces.
In Sections 3.3 and 3.4, we link the (highest) differential breaks and spectral norms
with the connected components of a certain base change of the thickening spaces.

In Section 4, we first quickly review the definition of arithmetic ramification
filtrations, following [Abbes and Saito 2002]. Then, in Section 4.2, we define the
standard Abbes–Saito spaces asa

l/k and their lifts ASa
l/k . Next, we prove in Section

4.3 that the lifted Abbes–Saito spaces and (the base change of) the thickening
spaces are isomorphic (Theorem 4.3.6). From this, in Section 4.4, we deduce
our main result, Theorem 4.4.1: differential conductors coincide with arithmetic
conductors.

Section 5 gives two applications. In Section 5.1 we deduce a Hasse–Arf theorem
for finite flat group schemes; in Sections 5.2–5.4 we compare the arithmetic and
differential Artin conductors with Borger’s Artin conductors [Borger 2004].

1. Lifting rigid spaces

In this section, which is largely self-contained, we introduce a construction to lift
a rigid space over a field of characteristic p > 0 to a rigid space over an annulus
over a field of characteristic zero. The notation will not be carried over to later
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sections unless explicitly noted.1

Remark 1.0.1. For most of this paper, we implicitly use rigid analytic spaces in the
sense of Berkovich spaces [1990] by allowing discs or annuli with irrational radii.
This is mostly for notational convenience. Only in two places (see Remarks 1.2.13
and 4.2.5) will we have to shift back to the classical rigid analytic setting to talk
about connected components by assuming some rationality on the radii of discs or
annuli.

1.1. A Gröbner basis argument. In this subsection, we introduce a division al-
gorithm using a Gröbner basis, which enables us to find a representative in the
quotient ring achieving the quotient norm.

Notation 1.1.1. Let K be a complete discretely valued field of mixed characteristic
(0, p), with ring of integers OK and residue field κ . Fix a uniformizer πK and
normalize the valuation vK ( · ) on K so that vK (πK) = 1. We also normalize the
norm on K so that |p| = p−1.

Notation 1.1.2. For a nonarchimedean ring R, we use R〈u1, . . . , un〉 to denote the
Tate algebra, consisting of formal power series

∑
i1,...,in∈Z≥0

fi1,...,in ui1
1 · · · u

in
n with

fi1,...,in ∈ R and | fi1,...,in | → 0 as i1+· · ·+ in→+∞. For η1, . . . , ηn ∈ (0, 1], the
ring admits a (η1, . . . , ηn)-Gauss norm given by∣∣∣ ∑

i1,...,in∈Z≥0

fi1,...,in ui1
1 · · · u

in
n

∣∣∣
η1,...,ηn

= max
i1,...,in

{| fi1,...,in |η
i1
1 . . . η

in
n }.

Notation 1.1.3. Fix a positive integer n, and put

Rint
= OK 〈u1, . . . , un〉((S)), R = Rint

⊗OK K ,

Rκ = Rint
⊗OK κ

∼= κ[u1, . . . , un]((S))= κ((S))〈u1, . . . , un〉.

For η ∈ (0, 1], let | · |η (for short) denote the (1, . . . , 1, η)-Gauss norm on R.

Notation 1.1.4. The lexicographic order on Zn is: for (i1, . . . , in) and (i ′1, . . . , i ′n)
both in Zn , we have (i1, . . . , in) � (i ′1, . . . , i ′n) if there exists some j ∈ {1, . . . , n}
such that i1 = i ′1, . . . , i j−1 = i ′j−1 and i j > i ′j .

Definition 1.1.5. We equip Rκ with the lexicographic term ordering induced by
the correspondence ui1

1 · · · u
in
n S j
7→ (− j, i1, . . . , in), i.e., we write ᾱui1

1 · · · u
in
n S j
�

β̄ui ′1
1 · · · u

i ′nn S j ′ if (− j, i1, . . . , in)� (− j ′, i ′1, . . . , i ′n) under the lexicographic order,
where ᾱ, β̄ ∈ κ×.

Using this ordering, we define the leading term lead( f̄ ) of a nonzero element
f̄ ∈ Rκ to be its largest term under the ordering. In particular, for f̄ , ḡ ∈ Rκ\{0},
lead( f̄ ḡ)= lead( f̄ ) lead(ḡ).

1Most of the proofs in this section should be credited to Kedlaya, to whom I am thankful for
allowing their inclusion.
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For an ideal Iκ of Rκ , a Gröbner basis of Iκ is a finite subset {r̄1, . . . , r̄m} ⊂ Iκ
such that no leading term of an r̄i has exponents in S and such that the ideal consist-
ing of the leading terms of all elements of Iκ is generated by lead(r̄1), . . . , lead(r̄m).
Such a basis exists because Rκ is Noetherian. By [Eisenbud 1995, Lemma 15.5],
r̄1, . . . , r̄m also generate Iκ .

Proposition 1.1.6. For any f̄ ∈ Rκ , there exists ḡ1, . . . , ḡm, f̄ ′ ∈ Rκ such that

f̄ = ḡ1r̄1+ · · ·+ ḡm r̄m + f̄ ′, (1.1.7)

where any term of f̄ ′ is not divisible by any lead(r̄h), and lead( f̄ )� lead(ḡh r̄h) for
all h.

Proof. Let j be the exponent of S in lead( f̄ ) and let S j f̄( j) be the sum of terms
in f̄ for which the exponents of S are j . Applying [Eisenbud 1995, Proposition-
Definition 15.6] to f̄( j), we can write

f̄( j) ≡ ḡ1,( j)r̄1+ · · ·+ ḡm,( j)r̄m + f̄ ′( j) (mod S · κ[u1, . . . , um][[S]]),

where ḡh,( j) ∈ κ[u1, . . . , um] and lead(ḡh,( j)r̄h)� lead( f̄( j)) for h = 1, . . . ,m and
any term in f̄ ′( j) ∈ κ[u1, . . . , um] is not divisible by any lead(r̄h).

If we repeat the above argument for f̄( j)− S j (ḡ1,( j)r̄1+· · ·+ ḡm,( j)r̄m+ f̄ ′( j)) ∈

S j+1
· κ[u1, . . . , um][[S]] in place of f̄ , we will obtain f̄ ′( j ′) and ḡh,( j ′) for h =

1, . . . ,m and for some j ′ ≥ j + 1. We can then iterate this process.
For h = 1, . . . ,m, put ḡh = S j ḡh,( j) + S j+1ḡh,( j+1) + · · · and f̄ ′ = S j f̄ ′( j) +

S j+1 f̄ ′( j+1)+ · · · ; the power series converge to the elements in Rκ we seek. �

Definition 1.1.8. For f ∈ R, write

f =
∑

i1,...,in, j

fi1,...,in, j u
i1
1 · · · u

in
n S j . (1.1.9)

Of the monomials for which | fi1,...,in, j | = | f |1, there must be one which is lex-
icographically largest; we call the corresponding term fi1,...,in, j u

i1
1 · · · u

in
n S j the

1-leading term of f , denoted by Lead( f ).

Hypothesis 1.1.10. Let I int be an ideal of Rint such that Rint/I int is flat over oK .

Notation 1.1.11. Define I = I int
⊗OK K and Iκ = I int

⊗OK κ; the latter is an ideal
in Rκ by the flatness hypothesis above. Choose r1, . . . , rm ∈ I int which project to
elements of a Gröbner basis r̄1, . . . , r̄m of Iκ .

For f ∈ R, let j f denote the minimal exponents of S in the expression (1.1.9)
of f . Set jI =min{ jrh ; h = 1, . . . ,m}; it is a nonpositive integer.

Notation 1.1.12. In this subsection, fix η0 ∈ (|πK|
−1/ jI ,1). We have |πK|η

jI
0 < 1.
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Notation 1.1.13. Let Rη0 be the Fréchet completion of R for | · |η for η ∈ [η0, 1).
Let Rint

η0
denote { f ∈Rη0 | | f |1 ≤ 1} and put Rη0 = Rint

η0
⊗OK K and Iη0 = I ⊗R Rη0 .

Notation 1.1.14. For an element f ∈Rη0 written as in (1.1.9) and l ∈Z, let π l
K f(l)

be the sum of all terms fi1,...,in, j ui1
1 · · · u

in
n S j for which vK ( fi1,...,in, j ) = l. Thus,

f(l) ∈ Rint
η0

; we use f̄(l) denote its reduction in Rκ .

Lemma 1.1.15. For h = 1, . . . ,m and η ∈ [η0, 1],

|rh|η = 1, |rh,(l)|η ≤ η
jI for l ∈ Z≥0.

Proof. The equality follows from the choice of η0 in Notation 1.1.12. The rest
follows from the definition of jI in Notation 1.1.11. �

Construction 1.1.16. For f ∈ Rη0 with | f |1 = |πK|
l0 , the division algorithm is the

following procedure. Put fl0 = f . Given fl for l ≥ l0, we apply Proposition 1.1.6
to write

f̄l,(l) = ḡl,1r̄1+ · · ·+ ḡl,m r̄m + f̄ ′l,(l),

where ḡl,h ∈ Rκ and lead(ḡl,h r̄h) � lead( f̄l,(l)) for h = 1, . . . ,m and any term of
f̄ ′l,(l) ∈ Rκ is not divisible by any lead(r̄h). For each h, pick lifts gl,h of ḡl,h in Rint

so that gl,h = gl,h,(0), that is, we only lift nonzero terms. Put

fl+1 = fl −π
l
K(gl,1r1+ · · ·+ gl,mrm).

Remark 1.1.17. The division algorithm depends on many choices, but we prove
in Proposition 1.1.21 that the outcome liml→+∞ fl is uniquely determined by f .

Lemma 1.1.18. At each step of the division algorithm, for η∈[η0, 1], h=1, . . . ,m,
we have

|gl,h|η ≤ | fl,(l)|η, | fl+1,(l ′)− fl,(l ′)|η


≤ η jI | fl,(l)|η if l ′ > l,

≤ | fl,(l)|η if l ′ = l,

= 0 if l ′ < l.

(1.1.19)

Proof. The inequality on the left holds because lead(ḡl,h r̄h)� lead( f̄l,(l)). The rest
follows using Lemma 1.1.15. �

Corollary 1.1.20. For h = 1, . . . ,m, the series gh = π
l0
K gl0,h +π

l0+1
K gl0+1,h + · · ·

converges under | · |η for η ∈ [η0, 1). Consequently, gh ∈ Rη0 for h = 1, . . . ,m.

Proof. By Lemma 1.1.18,

|π l
K gl,h|η ≤ |π

l
K fl,(l)|η ≤ |πK|

l max{η jI | fl−1,(l−1)|η, | fl−1,(l)|η}

≤ |πK|
l max{η2 jI | fl−2,(l−2)|η, η

jI | fl−2,(l−1)|η, η
jI | fl−2,(l−2)|η, | fl−2,(l)|η}

≤ . . .

≤ |πK|
l max

l ′<l
{η(l−l ′) jI | f(l ′)|η} ≤max

l ′<l
{(|πK|η

jI
0 )

l−l ′
|π l ′

K f(l ′)|η}.

This goes to zero as l→+∞. �
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Proposition 1.1.21. Keep the notation as above. The quantity f−g1r1−· · ·−gmrm

is the unique element of f + Iη0 for which none of its terms is divisible by any
Lead(rh).

Proof. It follows from the definition of g1, . . . , gm that no term of f −
∑m

i=1 giri

is divisible by any Lead(rh).
Assume that f ∈ Rη0 does not contain any term divisible by any of Lead(rh),

then we need to show that for any nonzero g ∈ Iη0 , there is a term in f +g divisible
by some of Lead(rh). Assume the contrary. Let n= log|πK|

|g|1. Then ḡ(n) ∈ Iκ does
not contain any term which divides any of lead(r̄h). This forces ḡ(n) = 0 because
the leading term of any nonzero element in Iκ is divisible by some lead(r̄h). This
is a contradiction. The lemma follows. �

Lemma 1.1.22. For η ∈ [η0, 1],
∣∣ f −

∑m
i=1 giri

∣∣
η

equals the minimum η-norm of
any element of f + Iη0 . Moreover, this continues to hold if we pass from Rη0 to its
completion R∧,ηη0 under | · |η.

Proof. For η∈[η0, 1], by Lemma 1.1.18, | fl+1|η≤| fl |η, so
∣∣ f−

∑m
i=1 giri

∣∣
η
≤| f |η.

By Proposition 1.1.21, starting with any element in f + Iη0 , the division algorithm
will eventually lead to a unique element f −

∑m
i=1 giri ; hence the first statement

follows.
The second statement follows from the fact that any element in f + Iη0 R∧,ηη0 is

a limit of elements in f + Iη0 . �

Proposition 1.1.23. Let f be a rigid analytic function on the space

Xη0 =
{
(u1, . . . , un, S) ∈ An+1

K

∣∣ η0 ≤ |S|< 1; |u1|, . . . , |un| ≤ 1; r1, . . . , rm = 0
}
.

Then the following are equivalent:

(a) f is induced by an element of Rint
η0

.

(b) There exists a function r : [η0, 1)→ R with limη→1− r(η) ≤ 1, such that for
each η ∈ [η0, 1), f lifts to an element of the | · |η-completion of Rη0 having
η-norm less than or equal to r(η).

Proof. It is clear that (a) implies (b), so assume (b). We can write f as a Fréchet
limit of the projections of some sequence of elements f1, f2, . . . of R, under the
quotient norms associated with | · |η for η ∈ [η0, 1). Use the division algorithm to
write fl = gl,1r1 + · · · + gl,mrm + hl with gl,1, . . . , gl,m, hl ∈ Rη0 . Moreover, as
fl − fl+1 tends to zero under the Fréchet topology, so does hl − hl+1 since it can
be obtained from the division algorithm of fl − fl+1 and Lemma 1.1.18 ensures
that | fl− fl+1|η ≥ |hl−hl+1|η. Hence, the hl form a Fréchet convergent sequence;
denote the limit by h, which is a lift of f . Note that for a fixed η, |hl |η equals the
η-quotient norm of fl , which in turn equals the η-quotient norm of f when l is
large enough. Thus, |h|η ≤ r(η) for all η ∈ [η0, 1). Hence it lies in Rint

η0
. �
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Notation 1.1.24. Define

Aint
= Rint/I int, A = R/I, Aη0 = Rη0/Iη0, Aκ = Aint

⊗oK κ
∼= Rκ/Iκ .

We may view Aκ as an affinoid algebra over κ((S)), whose corresponding rigid
analytic space is denoted by X .

1.2. Quotient norms versus spectral norms. In this subsection, we compare spec-
tral norms with the quotient norms discussed in previous section. As an application,
we deduce that the connected components of Xη0 when η0→ 1− as a rigid space
over K are the same as the connected components of X as a rigid space over κ((S)).

Hypothesis 1.2.1. In this subsection, we assume that Aκ is reduced.

Notation 1.2.2. Let | · |κ,quot denote the quotient norm on Aκ induced by the Gauss
norm on Rκ . Let | · |κ,sp = limn→+∞| ·

n
|
1/n
κ,quot be the spectral norm; it is a norm

because Aκ is reduced. By [Bosch et al. 1984, Theorem 6.2.4/1], there exists c> 0
such that | · |κ,sp ≤ | · |κ,quot ≤ |S|−c

κ | · |κ,sp, where |S|κ is the norm of S in κ((S)).

Notation 1.2.3. In this subsection, we fix η0 in the interval (|πK|
1/(− jI+pc), 1). In

particular, |πK|η
jI

0 < η
pc
0 and η0 > p−1/pc.

Notation 1.2.4. For η ∈ [η0, 1], let | · |η,quot denote the quotient norm on Aη0 or
A induced by the η-Gauss norm on Rη0 or R. Similarly, we have the η-spectral
seminorm | · |η,sp = limn→+∞| ·

n
|
1/n
η,quot; we will see in Lemma 1.2.6 that it is a

norm.

Proposition 1.2.5. The quotient norm | · |1,quot on A is the same as the spectral
(semi)norm | · |1,sp. As a consequence, the map Aint

→ Aκ induces an isomorphism
A◦/A◦◦ ∼= Aκ , where A◦ = { f ∈ A | | f |1,sp ≤ 1} and A◦◦ = { f ∈ A | | f |1,sp < 1}.

Proof. Since Aint/mK Aint
= Aκ is reduced, by [Bosch et al. 1984, 6.2.1/4(iii)], the

quotient norm on A is equal to the spectral seminorm, A◦= Aint, and A◦◦=mK Aint.
This proves the claim. �

Lemma 1.2.6. For η ∈ [η0, 1), we have | · |η,sp ≤ | · |η,quot ≤ η
−pc/(p−1)

| · |η,sp on
Aη0 . The same is true when extending both norms to the completion of Aη0 with
respect to | · |η,quot (which is the same as the completion with respect to the spectral
norm). In particular, this shows that | · |η,sp is a norm on Aη0 .

Proof. It suffices to show that for any f ∈ Aη0 , | f p
|η,quot ≥ η

pc
| f |pη,quot; then it

would follow that | f pn
|η,quot ≥ η

(pn
−1)pc/(p−1)

| f |p
n

η,quot for all n ∈ N by iteration,
and hence the statement follows by taking the limit.

Pick a representative f̃ of f in Rη0 containing no terms divisible by any Lead(rh)

(hence by Proposition 1.1.21, | f̃ |η = | f |η,quot). Fixing η ∈ [η0, 1), we will show
that

| f̃ p
|η,quot =

∣∣∣∑
l

(π l
K f̃(l))p

∣∣∣
η,quot

≥ ηpc
| f̃ |pη = η

pc
| f |pη,quot. (1.2.7)
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First, we remark that, given the middle inequality, the former equality follows; this
is because f̃ p

−
∑

l(π
l
K f̃(l))p consists of products of π l

K f̃(l) with an extra factor p
from the multinomial coefficients. Then∣∣∣ f̃ p

−

∑
l

(π l
K f̃(l))p

∣∣∣
η,quot

≤

∣∣∣ f̃ p
−

∑
l

(π l
K f̃(l))p

∣∣∣
η
≤ p−1

| f̃ |pη < η
pc
| f̃ |pη ,

for η ∈ [η0, 1). So it suffices to prove the middle inequality in (1.2.7). For any l,
we have

|( f̃ (l))p
|κ,quot ≥ |( f̃ (l))p

|κ,sp = | f̃ (l)|pκ,sp ≥ |S|
pc
κ · | f̃ (l)|

p
κ,quot.

Let ( f̃(l))p
= gl,1r1+· · ·+gl,mrm+hl be the result of the first step of applying the

division algorithm to ( f̃(l))p. Then logη|hl,(0)|η = log|S|κ |( f̃ (l))p
|κ,quot and hence

|hl,(0)|η ≥ η
pc
| f̃(l)|

p
η . Moreover, by Lemma 1.1.18, |hl−hl,(0)|η ≤ η

jI |πK|| f̃(l)|
p
η <

ηpc
|πK|

−pl
| f̃ |pη ; this implies that |hl,(0)|η,quot = |hl,(0)|η.

Now, we can write∑
l

(π l
K f̃(l))p

=

∑
l

π
pl

K hl,(0)+
∑

l

π
pl

K (hl − hl,(0)) (1.2.8)

in the quotient ring. The first term on the right-hand side of (1.2.8) has (quotient)
norm at least ηpc

| f̃ |pη because none of the summands is divisible by any Lead(rh).
In contrast, the latter term on the right-hand side of (1.2.8) has norm strictly less
than ηpc

| f̃ |pη . Thus, the inequality in (1.2.7) holds. �

Remark 1.2.9. It is attractive to think that | · |η,sp ≤ | · |η,quot ≤ η
−c
| · |η,sp when

η→ 1−. However, the best we know is that for any c′> c, we have an ε depending
on c′, for which | · |η,sp ≤ | · |η,quot ≤ η

−c′
| · |η,sp for all η ∈ [ε, 1).

Corollary 1.2.10. For a rigid analytic function f on Xη0 , the following are equiv-
alent.

(a) f is an element in Aint
η0

.

(b) There exists a function r : [η0, 1)→ R with limη→1 r(η) ≤ 1, such that for
each η ∈ [η0, 1), | f |η,sp ≤ r(η).

Proof. It follows from combining Lemma 1.2.6 with Proposition 1.1.23. �

Theorem 1.2.11. There are one-to-one correspondences among the following sets:
(a) the idempotent elements of Aκ ; (b) the idempotent elements of Aint

η0
; (c) the

idempotent elements of Aη0 ; and (d) the idempotent elements on Xη0 .
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Proof. By Corollary 1.2.10, the sets (b), (c), and (d) are the same because idempo-
tent elements have spectral norms 1. It suffices to match up (a) and (b). We have a
map from the set of idempotent elements of Aint

η0
to the set of idempotent elements

of Aκ by reducing modulo πK . We first show the injectivity. Let f, g ∈ Rint
η0

be
idempotents whose reductions modulo πK are the same, i.e., f̄ = ḡ ∈ Aκ . This
implies that f̄ p−1

+ f̄ p−2ḡ + · · · + ḡ p−1
= 0 in Aκ . Since f − g = f p

− g p
=

( f − g)( f p−1
+ f p−2g+ · · ·+ g p−1), we have

| f −g|1,quot = |( f −g)( f p−1
+ f p−2g+· · ·+g p−1)|1,quot

≤ | f −g|1,quot | f p−1
+ f p−2g+· · ·+g p−1

|1,quot ≤ | f −g|1,quot |πK|.

This forces | f − g|1,quot = 0 and hence f = g.
To prove surjectivity, we start with an idempotent f̄ ∈ Aκ , viewed as an element

in Rκ with none of its terms divisible by any of Lead(r̄h); pick a lift f̃0 ∈ Rint of f̄
which only contains terms present in f̄ , and let f0 ∈ Aint denote its image in Aint. If
we set h̃0 to the result of applying the division algorithm to f̃ 2

0− f̃0 and h0= f 2
0− f0,

then |h0|1,quot = |h̃0|1,quot ≤ |πK| and |h0|η,quot = |h̃0|η,quot ≤ p−1η−2c < 1 for
all η ∈ [η0, 1), where the latter inequality holds because all terms in f̃0 come
from terms in f̄ having norms at most | f̄ |κ,quot ≤ |S|−c

κ | f̄ |κ,sp = |S|−c
κ . As in the

proof of Hensel’s lemma, we iteratively modify f0 as follows. For α ≥ 0, we set
fα+1 = fα + hα − 2hα fα and

hα+1 := f 2
α+1− fα+1 = ( fα + hα − 2hα fα)2− ( fα + hα − 2hα fα)= h2

α(4hα − 3).

Hence, |hα+1|η,quot≤ |hα|2η,quot for all η∈ [η0, 1]. Thus |hα|η,quot→ 0 as α→+∞;
hence fα converges to an element f ∈ Aint

η0
which is idempotent. It is clear from

the construction that the reduction of f modulo πK is the same as f̄ . This proves
the surjectivity. �

Corollary 1.2.12. When η0 ∈ pQ, there is a one-to-one correspondence between
the connected components of X and those of Xη0 .

Remark 1.2.13. This is the first place where we need the rationality of logp η0

to ensure that we are in the classical rigid analytic space setting to talk about
connected components [Bosch et al. 1984, 9.1.4/8].

1.3. Lifting construction. In order to apply the results from the previous two sub-
sections later in the paper, we, reversing the picture, start with a rigid analytic space
X and try to construct Xη0 from it.

Let κ and K be as before.

Definition 1.3.1. Let X be a reduced affinoid rigid space over κ((S)) with ring
of analytic functions Aκ = Rκ/Iκ where Rκ = κ((S))〈u1, . . . , un〉 and Iκ is some
ideal. The lifting construction refers to the following.
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(1) Find an ideal I int in Rint
= K 〈u1, . . . , un〉((S)) so that Rint/I int is flat over OK

and I int
⊗OK κ = Iκ .

(2) Choose a Gröbner basis of Iκ , lift its elements to r1, . . . , rm ∈ I int as in Nota-
tion 1.1.11, and define η0 as in Notation 1.2.3.

(3) We call the rigid analytic space

Xη0 =
{
(u1, . . . , un, S) ∈ An+1

K

∣∣ η0 ≤ |S|< 1; |u1|, . . . , |un| ≤ 1; r1, . . . , rm = 0
}

the lifting space of X ; it depends only on the choice of I int and η0.

Remark 1.3.2. We do not know if such a lifting space exists in general. The only
obstruction is finding an ideal I int lifting Iκ such that Rint/I int is flat over OK .

Question 1.3.3. It would be interesting to know if this lifting construction can be
globalized for arbitrary rigid spaces over κ((S)). In particular, given a morphism
between two rigid spaces over κ((S)), can we lift the morphism (noncanonically)
to a morphism between (some strict neighborhood of) their lifting spaces? Can
we “glue” the lifting spaces up to homotopy? This situation is very similar to
Berthelot’s construction [1996] of rigid cohomology.

For an affinoid subdomain of a polydisc, we explicate this lifting process.

Example 1.3.4. Let p1, . . . , pm∈κ[[S]][u1, . . . , un] be polynomials and take a1,

. . . , am ∈ N. Consider the following affinoid subdomain of the unit polydisc:

X =
{
(u1, . . . , un) ∈ An

κ((S))

∣∣ |u1|, . . . , |un| ≤ 1; |p1| ≤ |S|a1, . . . , |pm | ≤ |S|am
}
.

The ring of analytic functions on X is

κ((S))〈u1, . . . , un, v1, . . . , vm〉
/
(v1Sa1 − p1, . . . , vm Sam − pm).

For each i , let Pi be a lift of pi in OK [[S]][u1, . . . , un] (here we allow Pi to have
new terms other than the terms of pi ). We claim that the ring

OK 〈u1, . . . , un, v1, . . . , vm〉((S))
/
(v1Sa1 − P1, . . . , vm Sam − Pm) (1.3.5)

is flat over OK . This is because the ring

OK ((S))[u1, . . . , un, v1, . . . , vm]
/
(v1Sa1 − P1, . . . , vm Sam − Pm),

being isomorphic to OK ((S))[u1, . . . , un], is flat and hence torsion-free over OK ,
and (1.3.5) is its completion with respect to the topology induced by the various
(p, S)r OK [[S]][u1, . . . , un, v1, . . . , vm], for r ∈ N. Therefore, by Definition 1.3.1,

Xη0 =
{
(u1, . . . , un, S) ∈ An+1

K

∣∣ η0 ≤ |S|< 1, |u1|, . . . , |un| ≤ 1,

|P1| ≤ |S|a1, . . . , |Pm | ≤ |S|am
}

is a lifting space for X , for some η0 ∈ (0, 1).
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2. Differential conductors

In this section, we recall the definition of differential Swan conductors following
[Kedlaya 2007]. Along the way, we define the differential Artin conductors using
a slightly different normalization.

2.1. Setup. Recall that we do not use any notation from the previous section.

Convention 2.1.1. Let J be an index set. We write eJ for a tuple (e j ) j∈J . For
an element x , we use xeJ to denote (xe j ) j∈J . For another tuple bJ , we set beJ

J =∏
j∈J be j

j if only a finite number of e j are nonzero. We also use
∑n

eJ=0 to mean the
sum over e j ∈ {0, 1, . . . , n} for each j ∈ J , only allowing finitely many summands
to be nonzero.

Definition 2.1.2. For a finite field extension l/k of characteristic p > 0, a p-basis
of l over k is a set (c j ) j∈J ⊂ l such that ceJ

J , where e j ∈ {0, 1, . . . , p− 1} for all
j ∈ J and e j = 0 for all but a finite number of j , form a basis of the vector space l
over kl p. By a p-basis of l we mean a p-basis of l over l p; it is an empty set if and
only if l is perfect. (For more details, see [Eisenbud 1995, p. 565] or [Grothendieck
1964, Ch. 0, §21].)

Remark 2.1.3. For a p-basis cJ ⊂ l, the dcJ form a basis for the differentials �1
l

as an l-vector space.

Convention 2.1.4. Throughout this paper, all differentials are p-adically contin-
uous. In other words, for a continuous homomorphism A→ B of p-adic rings,
�1

B/A is the relative p-adically continuous differentials. Sometimes, we may use in
the notation the corresponding geometric objects, such as the rigid space Max(B),
instead of A or B. When A = Zp, we may suppress it from the notation, writing
simply �1

B .
For a homomorphism A→ B between rings, a∇-module or a differential module

over B relative to A is a finite projective B-module M equipped with an integrable
connection ∇ : M → M ⊗ �1

B/A. Sometimes, we may use the corresponding
geometric objects instead of A or B in the notation. When A = Zp, we may omit
the reference to the base ring.

Notation 2.1.5. Let k be a complete discretely valued field of equal characteristic
p> 0. Denote its ring of integers, maximal ideal, and residue field by Ok , mk , and
κk , respectively. Fix a uniformizer s and a noncanonical isomorphism

κk((s))' k. (2.1.6)

Let vk( · ) denote the valuation, normalized so that vk(s) = 1. Let (b̄ j ) j∈J be a
p-basis of κk , where J is an index set. Let b j be the image of b̄ j in k under the
isomorphism (2.1.6). Hence, (db j ) j∈J and ds form a basis of �1

Ok/Fp
. We set

κ0 =
⋂

n>0 k pn ∼=
⋂

n>0 κ
pn

k ; it is a perfect field.
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Notation 2.1.7. Let OK denote the Cohen ring of κk with respect to (b̄ j ) j∈J and let
(B j ) j∈J ⊂ OK be the canonical lifts of the p-basis. (For more about Cohen rings,
see [Kedlaya 2007, §3.1] or [Whitney 2002].) Let K = Frac OK . We use OK0 to
denote the ring of Witt vectors W (κ0) of κ0, as a subring of OK . Let K0=Frac OK0 .

We insert here a proposition discussing the functoriality of Cohen rings. For a
more detailed study of functoriality of Cohen rings, see [Whitney 2002].

Proposition 2.1.8. Keep the notation as above and let R be a complete Noetherian
local ring with the maximal ideal m containing p. Assume that we have a homo-
morphism ψ : κk ↪→ R/m. Then, for any B ′J ⊆ R lifting ψ(b̄J ), there exists a
unique continuous homomorphism ψ : OK → R lifting ψ and sending B j to B ′j for
all j ∈ J .

Proof. For any n ∈N, a level-n expression of an element g ∈OK is a (noncanonical)
way of writing g as

g =
∑

i,i ′≥0

pn
−1∑

eJ=0

pi Apn

i,i ′,eJ
BeJ

J (2.1.9)

for some Ai,i ′,eJ ∈ OK and for a fixed i , Ai,i ′,eJ = 0 when i ′ � 0 for all eJ . Then
we set

ψn(g)=
∑

i,i ′≥0

pn
−1∑

eJ=0

pi Ãpn

i,i ′,eJ
B ′eJ

J

where Ãi,i ′,eJ is some lift of ψ(ai,i ′,eJ ) in R with ai,i ′,eJ being the reduction of
Ai,i ′,eJ in κk . Different choices of lifts Ãi,i ′,eJ may change the definition of ψn(g)
by an element in mn; a different level-n expression as in (2.1.9) may also vary
ψn(g) by some element in mn . If n ≥ 1, we can rewrite a level-n expression of g
as in (2.1.9) in the form

g =
∑

i,i ′≥0

p−1∑
e′J=0

pn−1
−1∑

eJ=0

pi (Ap
i,i ′,eJ+pn−1e′J

B
e′J
J )

pn−1
BeJ

J ,

lowering the level by 1. From this we conclude that ψn(g)≡ ψn−1(g) mod mn−1.
Taking n →∞, we get our map ψ(g) = limn→∞ ψn(g). It is not hard to check
that ψ is actually a homomorphism; this is because for g, h ∈ OK , the formal sum
and product of level-n expressions of g and h are level-n expressions of g+h and
gh, respectively.

To prove the uniqueness, take another continuous homomorphism ψ ′ : OK → R
satisfying all the conditions. Then, for a level-n expression of g as in (2.1.9),

ψ ′
(∑

i,i ′≥0

pn
−1∑

eJ=0

pi Apn

i,i ′,eJ
BeJ

J

)
=

∑
i,i ′≥0

pn
−1∑

eJ=0

piψ ′(Ai,i ′,eJ )
pn

B ′eJ
J
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is exactly one possible definition for ψn . As we proved above, ψ ′(g) ≡ ψn(g) ≡
ψ(g) mod mn . Let n→∞ and we have ψ = ψ ′. �

Corollary 2.1.10. Suppose J = {1, . . . ,m}. There exists a unique continuous
homomorphism ψ : OK → OK [[δ1, . . . , δm]] such that for all j∈J , ψ(B j )=B j+δ j

and for any g∈OK , ψ(g)− g lies in the ideal generated by δ1, . . . , δm . Moreover,
ψ is an OK0-homomorphism.

Proof. The first statement follows from previous proposition. By the functoriality
of Witt vectors, ψ has to be identity when restricted to OK0 because κ0 is perfect.
Hence, ψ is an OK0-homomorphism. �

Corollary 2.1.11. Assume that κk has a finite p-basis bJ . Fix j ∈ J and let b′j ∈Ok

be an element such that b′j ≡ b j (mod mk). Then there exists an automorphism
g∗ : k→ k such that g∗(s)= s, g∗(b j )= b′j , and g∗(bJ\ j )= bJ\ j .

Proof. Applying Proposition 2.1.8 to R = κk[[s]] and m= (s) gives us a homomor-
phism g∗ : OK /(p)= κk→ k[[s]] such that g∗(b j )= b′j , and g∗(bJ\ j )= bJ\ j . One
can extend this to an automorphism g∗ : k→ k by setting g∗(s)= s. �

2.2. Construction of differential modules. In this subsection we review Tsuzuki’s
construction [2002] of differential modules over the Robba ring associated with
p-adic Galois representations. For a systematic treatment, one may consult, for
example, [Kedlaya 2007, §3].

Notation 2.2.1. Keep the notation as in the previous subsection. Fix a separable
closure ksep of k and let Gk = Gal(ksep/k) be the absolute Galois group of k.

For a (not necessarily algebraic) separable extension l/k of complete discretely
valued fields, the naı̈ve ramification degree e is the index of the valuation group of
k in that of l; note that this might not be the same as the usual ramification degree
because the inseparable part of the residue field extension κl/κk is not counted in.
We say l/k is tamely ramified if p - e and the residue field extension is algebraic
and separable. Moreover, if e = 1, we say that l/k is unramified.

Notation 2.2.2. By a representation of Gk , we mean a continuous homomorphism
ρ : Gk → GL(Vρ), where Vρ is a vector space over a (topological) field F of
characteristic zero. We say that ρ is a p-adic representation if F is a finite extension
of Qp.

Let F be a finite extension of Qp. Let O and Fq denote its ring of integers and
residue field, respectively, where q is a power of p. Write Zq for the Witt vectors
W (Fq) and Qq for its fraction field. By an O-representation of Gk , we mean a
continuous homomorphism ρ : Gk→ GL(Vρ) with Vρ a finite free O-module.

We always assume that Fq ⊆ κ0 (see Remark 2.4.2). Let K ′= K F . Since F/Qq

is totally ramified, we have the ring of integers OK ′ ∼= OK ⊗Zq O. Let vK ′ denote
the valuation on K ′ normalized so that vK ′(p)= 1.
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Notation 2.2.3. Let Ck be the Cohen ring of k relative to the p-basis {(b j ) j∈J , s}.
By the functoriality of Cohen rings (Proposition 2.1.8), Ck has a natural structure
as an OK -algebra, via the isomorphism (2.1.6). In particular, the (canonical) lifts
of (b j ) j∈J in Ck are (B j ) j∈J . We denote the canonical lift of s in Ck by S.

Put 0 = Ck ⊗Zq O; it is a complete discrete valuation ring since O is totally
ramified over Zq . It carries a Frobenius structure φ lifting the q-th power Frobenius
on k which acts trivially on O.

Definition 2.2.4. Let σ : R→ R be an endomorphism. A (σ,∇)-module over R
is a ∇-module over R (relative to Zp) equipped with an isomorphism σ ∗M→ M
of ∇-modules.

Definition 2.2.5. For every O-representation ρ : Gk → GL(Vρ), define its associ-
ated (φ,∇)-module over 0 by

D(ρ)= (Vρ ⊗O 0̂unr)Gk ,

where 0̂unr is the p-adic completion of the maximal unramified extension of 0. All
∇-modules we encounter in this section are relative to Zp, so we omit the reference
to the base ring Zp in the notation.

Proposition 2.2.6. For any Frobenius lift φ on 0, the functor D from O-represen-
tations of Gk to (φ,∇)-modules over 0 is an equivalence of categories.

Proof. For the convenience of the reader, we briefly describe the functor here; for
more details, one may consult [Kedlaya 2007, Propositions 3.2.7 and 3.2.8]. It is
well-known that D establishes an equivalence between the category of representa-
tions and the category of φ-modules over 0 (finite free 0-modules with semilinear
φ-actions), with V (M)= (M⊗0 0̂unr)φ=1 as the inverse. The nontrivial part is that
every φ-module over 0 admits a unique structure of (φ,∇)-module; this involves
a standard approximation argument. �

Definition 2.2.7. Let Ik =Gal(ksep/kunr) be the inertia subgroup of Gk , where kunr

is the maximal unramified extension of k in ksep. We say that an (O-)representation
ρ has finite local monodromy if the image ρ(Ik) is finite.

For an O-representation ρ of finite monodromy, one can refine the (φ,∇)-
module associated with ρ as follows.

Construction 2.2.8. Since Ck has an OK -algebra structure, any element x ∈0 can
be uniquely written in the form of

∑
i∈Z xi Si for xi ∈ OK ⊗Zq O = OK ′ such that

the indices i for which vK ′(xi )≤ n are bounded below.
For r > 0, put 0r

= {x ∈ 0 | limn→−∞ vK ′(xn)+ rn =∞} and 0†
=
⋃

r>0 0
r ;

the latter is commonly known as the integral Robba ring over K ′. It is not hard to
show that the Frobenius φ preserves 0† and that �1

0†/O =
⊕

j∈J 0
†d B j ⊕ 0

†d S.
Also, 0† is a Henselian discrete valuation ring as cited in Lemma 2.2.10.
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Since OK ′ ↪→ 0†, we can identify Ounr
K ′ ↪→ (0†)unr, where the superscript unr

means taking the maximal unramified extensions of discrete valuation rings. Put

0̃†
= Ôunr

K ⊗Ounr
K
(0†)unr

⊂ 0̂unr,

where we take the p-adic completion. For a p-adic representation ρ with finite
local monodromy, define

D†(ρ)= D(ρ)∩ (Vρ ⊗O 0̃
†)= (Vρ ⊗O 0̃

†)Gk . (2.2.9)

Lemma 2.2.10 [Kedlaya 2005, Proposition 3.20]. The integral Robba ring 0† is a
henselian discrete valuation ring.

Theorem 2.2.11 [Kedlaya 2007, Theorem 3.3.6]. Let φ be a Frobenius lift on 0
acting on 0†. Then D† induces an equivalence between the category of O-repre-
sentations with finite local monodromy and the category of (φ,∇)-modules over0†.

Notation 2.2.12. For I ⊂ [0,+∞) an interval, let A1
K (I ) denote the annulus (cen-

tered at the origin) with radii in I . We do not impose any rationality condition on
the endpoints of I , so this space should be viewed as an analytic space in the sense
of [Berkovich 1990]. If I = [α, β], we write A1

K [α, β] for A1
K ([α, β]).

For 0 ≤ α ≤ β < ∞, let K 〈α/t, t/β〉 denote the ring of analytic functions
on A1

K [α, β]. (If α = 0, we write K 〈t/β〉 instead.) For η ∈ [α, β]\{0}, the ring
K 〈α/t, t/β〉 admits an η-Gauss norm: for f =

∑
i∈Z ai x i

∈ K 〈α/t, t/β〉,

| f |η =max
i∈Z
{|ai |η

i
}.

Notation 2.2.13. For η0∈ (0, 1), we use Z≥η0
k as a shorthand for A1

K [η0, 1). Denote
the ring of analytic functions on it by R

η0
K . We define the Robba ring over K to be

RK =
⋃
η∈[η0,1) R

η

K . Also let R
η0
K ′ = R

η0
K ⊗Qq F and RK ′ = RK ⊗Qq F . We will

only be interested in the behavior when η0 is close to 1.

Remark 2.2.14. We use k in the subscript of Z≥η0
k because the space is functorial

in k but not in K , as we made a noncanonical choice in (2.1.6).

Now, we restrict the (φ,∇)-module D†(ρ) to the Robba ring over K as follows.

Construction 2.2.15. Consider the natural injection 0† ↪→ RK ′ . Note that the
Frobenius φ extends by continuity to RK ′ . Thus, from an O-representation ρ with
finite local monodromy, we obtain a differential module Eρ = D†(ρ) ⊗0† RK ′

over RK ′ .
Moreover, if we start with a p-adic representation ρ : Gk → GL(Vρ) of finite

local monodromy, we can choose an O-lattice V int
ρ of Vρ stable under the action of

Gk . Then we associate a differential module Eρ with the O-representation given
by V int

ρ . It is clear that Eρ does not depend on the choice of the lattice V int
ρ . We

call Eρ the differential module associated to ρ.
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Proposition 2.2.16 [Kedlaya 2007, Proposition 3.5.1]. The (φ,∇)-module Eρ over
RK ′ does not depend on the choice of the p-basis (up to a canonical isomorphism).

Proposition 2.2.17. The differential module Eρ descends to a differential module
over R

η0
K ′ for some η0 ∈ (0, 1).

Proof. Defining a differential module requires only a finite amount of data. So, we
can realize it on a certain annulus. See [Kedlaya 2007, Remark 3.4.1]. �

Remark 2.2.18. We will often make η0 closer to 1− in proving the main theorems.
We will see later that all we care about is the asymptotic behavior of Eρ as η0→1−.

Remark 2.2.19. The current construction of associating a differential module with
a representation (Constructions 2.2.8 and 2.2.15) is not functorial with respect to
the base field F of the representation. If F ′ is a finite extension of F , for a p-adic
representation ρ over F of finite local monodromy, one can naturally obtain ρ⊗F F ′

as a p-adic representation over F ′. Assume that κk contains the residue field Fq ′

of F ′. Then the differential modules associated with ρ and ρ ⊗F F ′ are the same
if F ′/F is unramified and Eρ ⊗F F ′ = Eρ⊗F F ′ if F ′/F is totally ramified.

There are two reasons for keeping this nonfunctoriality flaw. For one, the dif-
ferential conductors we define later will be the same if we change ρ to ρ ⊗F F ′.
For the other, if we define Eρ using the tensor over Zp instead of Zq in Notation
2.2.3, in which case we do have the functoriality, we will get the direct sum of
[Fq : Fp] copies of Eρ as differential modules. When proving the integrality of
Swan conductors, we have to come back to study Eρ because K⊗Zp O' K ′⊕[Fq :Fp]

is not a field if q > p.

2.3. Differential conductors. Given a p-adic representation ρ of finite local mon-
odromy, Kedlaya [2007, §3.5] showed that one can define a differential Swan
conductor for ρ, using the p-adic differential module associated with ρ. In this
subsection, we review this definition and give an analogous definition for the dif-
ferential Artin conductor.

Remark 2.3.1. Starting from this subsection, the Frobenius φ plays almost no
role in our theory; most of the arguments work for solvable differential modules
[Kedlaya 2007, Definition 2.5.1], and since all the decompositions for differen-
tial modules we encounter are canonical, they automatically respect the Frobenius
structure. The only place we need Frobenius is to link back with representations;
see Proposition 2.3.22.

Hypothesis 2.3.2. In this subsection, we make an auxiliary hypothesis that k ad-
mits a finite p-basis {b1, . . . , bm, s}.

Notation 2.3.3. Let J ={1, . . . ,m} for notational convenience. We save the letters
j and m for indexing the p-basis, except in Section 4.1 (see Notation 4.1.2). We
also use J+ to denote J ∪ {0}, where 0 refers to the uniformizer s in the p-basis.
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Definition 2.3.4. Let E be a differential field of order 1 and characteristic zero,
i.e., a field of characteristic zero equipped with a derivation ∂ . Assume that E is
complete for a nonarchimedean norm | · |. Let M be a finite differential module
over E , i.e., a finite dimensional E-vector space equipped with an action of ∂
satisfying the Leibniz rule. The spectral norm of ∂ on M is defined to be

|∂|M,sp = lim
n→∞
|∂n
|
1/n
M

for any norm | · |M on M ; it does not depend on the choice of | · |M . One can prove
that |∂|M,sp ≥ |∂|E,sp [Kedlaya 2010, Lemma 6.2.4].

Remark 2.3.5. For a complete extension E ′ of E , to which the derivation ∂ ex-
tends, M⊗E E ′ can be viewed as a differential module over E ′ with spectral norm
|∂|M⊗E E ′,sp =max{|∂|M,sp, |∂|E ′,sp}.

Notation 2.3.6. Let ∂0= ∂/∂S, ∂1= ∂/∂B1, . . . , ∂m = ∂/∂Bm denote the elements
of a dual basis of �1

OK [[S]]/OK0
with respect to d S, d B1, . . . , d Bm ; they also give a

dual basis of �1
R
η0
K ′/K0

for all η0 ∈ (0, 1). For a (φ,∇)-module E over R
η0
K ′ , these

differential operators act on E, commuting with each other and commuting with
the Frobenius action.

Notation 2.3.7. For η ∈ [α, β] ⊂ (0,+∞), we denote by F ′η the completion of
Frac(K ′〈α/t, t/β〉) with respect to the η-Gauss norm; this does not depend on the
choices of α and β.

Example 2.3.8. For η ∈R>0, the operator norms of ∂J+ and spectral norms on F ′η
are as follows.

|∂ j |F ′η =

{
η−1 for j = 0,
1 for j ∈ J ;

|∂ j |F ′η,sp =

{
p−1/(p−1)η−1 for j = 0,
p−1/(p−1) for j ∈ J.

Definition 2.3.9. Let E be a ∇-module over R
η0
K ′ . For η ∈ [η0, 1), we set Eη =

E⊗R
η0
K ′

F ′η, which inherits differential operators ∂J+ . Define the (nonlogarithmic)
generic radius (of convergence) T (E, η) of Eη to be

min
{

p−1/(p−1)

|∂ j |Eη,sp
; j ∈ J+

}
. (2.3.10)

If Eη,i (i = 1, . . . , n) are the Jordan–Hölder factors of Eη as a ∇-module over F ′η,
we define the (nonlogarithmic) radius multiset S(E, η) to be the set consisting of
the generic radius of Eη,i with multiplicity dimF ′η Eη,i for each i .

We define the logarithmic generic radius (of convergence) Tlog(E, η) to be

min
{

p−1/(p−1)η−1

|∂0|Eη,sp
,

p−1/(p−1)

|∂ j |Eη,sp
; j ∈ J

}
. (2.3.11)

Similarly, we define the logarithmic radius multiset Slog(E, η) of E.



On ramification filtrations and p-adic differential modules, I 989

Remark 2.3.12. We have T (E, η) ≤ η; more generally, every element in S(E, η)
is less than or equal to η.

Remark 2.3.13. The logarithmic generic radius and logarithmic radius multiset are
the same as the notions of the generic radius of convergence and radius multiset
in [Kedlaya 2007].

Definition 2.3.14. For j ∈ J+, we call ∂ j dominant for Eη if the minimum of
T (E, η) in (2.3.10) is achieved by the term involving the spectral norm of ∂ j . The
term log-dominant is defined likewise, with reference to Tlog(E, η) in (2.3.11).

Lemma 2.3.15. For a (φ,∇)-module E over R
η0
K ′ and j ∈ J+, there exists η′0 ∈

(0, 1) such that one of the following two statements is true:

• For all η ∈ [η′0, 1), ∂ j is (log-)dominant for Eη.

• For all η ∈ [η′0, 1), ∂ j is not (log-)dominant for Eη.

Proof. The logarithmic case is proved in [Kedlaya 2007, Lemma 2.7.5]. The proof
for nonlogarithmic case is very similar. �

Definition 2.3.16. Keep the notation as in previous lemma. For j ∈ J+, ∂ j is called
eventually (log-)dominant for E if it is (log-)dominant for Eη for η→ 1−.

Lemma 2.3.17. Keep the notation as in Lemma 2.3.15. Assume that ∂0 is not even-
tually dominant and ∂ j is. Consider the rotation g∗ : B j 7→ B j + S, BJ\ j 7→ BJ\ j ,
and S 7→ S given by Proposition 2.1.8. Then ∂0 = ∂/∂S is eventually dominant
in g∗E.

Proof. Use the fact that the action of ∂0 on g∗E is the pull-back of the action of
∂0+ ∂ j on E. For details, see the proof of [Kedlaya 2007, Lemma 2.7.9]. �

Remark 2.3.18. The rotation g in the lemma corresponds to changing the iso-
morphism (2.1.6) so that b̄ j is sent to b j + s instead; such an isomorphism can
be obtained by Corollary 2.1.11. In particular, if Eρ comes from a p-adic rep-
resentation ρ of finite local monodromy by Constructions 2.2.8 and 2.2.15, g∗Eρ
is the differential module associated with the same ρ using the aforementioned
alternative isomorphism in place of (2.1.6).

Proposition 2.3.19. The functions

f (r)= log T (E, e−r ) and flog(r)= log Tlog(E, e−r )

on (0,− log η0] are piecewise linear, concave functions with slopes in 1
(rank E)!

Z.
They are linear in a neighborhood of 0.

Proof. The logarithmic case is proved in [Kedlaya 2007, §2.5]. For the nonlog-
arithmic case, the only difference is a factor η−1 in the spectral norm of ∂0, which
gives an extra linear term r . �
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Definition 2.3.20. As a consequence of the previous proposition, there exists bdif(E)

∈ Q≥0 and η0 ∈ (0, 1) such that T (E, η) = ηbdif(E) for all η ∈ [η0, 1). This bdif(E)

is called the (nonlogarithmic) differential ramification break of E. We say that E

has uniform slope b if the radius multiset S(E, η) consists only of ηb when η→ 1.
The notions of logarithmic differential ramification break bdif,log(E) and uniform
log-slope b are defined likewise, with reference to Tlog(E, η) and Slog(E, η).

The ramification breaks give rise to the break decomposition.

Theorem 2.3.21. Let E be a (φ,∇)-module over R
η0
K ′ , for some η0 ∈ (0, 1). Then

after making η0 sufficiently close to 1−, there exists a unique decomposition of
(φ,∇)-modules E=

⊕
b∈Q≥1

Eb (resp. E=
⊕

b∈Q≥0
Eb,log) over R

η0
K ′ , where each

of Eb (resp. Eb,log) has uniform slope (resp. log-slope) b.

Proof. Since the differential operators act trivially on O and commute with φ,
It suffices to obtain the decomposition of E as a ∇-module over A1

K ′[η0, 1); the
uniqueness of the decomposition of E follows from the uniqueness of that over F ′η
for η ∈ [η0, 1). The logarithmic part of this theorem is proved in [Kedlaya 2007,
Theorem 2.7.2]. We will give the proof of the nonlogarithmic decomposition by
applying several lemmas from the same paper.

We need to show that if E does not have uniform slope at least 1, then E is
decomposable when η0 is taken sufficiently close to 1. (See Remark 2.3.12 for
the reason for having 1 instead of 0.) If ∂0 is eventually dominant, the decompo-
sition theorem of Christol and Mebkhout [Kedlaya 2007, Lemma 2.7.3] gives the
decomposition. If ∂0 is not eventually dominant, Lemma 2.3.15 implies that ∂ j is
eventually dominant for some j ∈ J . By Lemma 2.3.17, ∂0 is eventually dominant
for g∗E. Applying the decomposition theorem [Kedlaya 2007, Lemma 2.7.3] to
g∗E and pulling back the decomposition along g−1, we obtain a nontrivial decom-
position of E on R

η0
K ′ for some η0 ∈ (0, 1). �

Proposition 2.3.22. In Theorem 2.3.21, if the (φ,∇)-module Eρ is associated with
a p-adic representation ρ of finite local monodromy, then the decomposition of
(φ,∇)-modules induces a direct sum decomposition of the representation ρ so
that each direct summand of Eρ is the differential module associated with a direct
summand of ρ.

Proof. By slope filtration [Kedlaya 2007, Theorem 3.4.6], the Frobenius action on
each direct summand of E is of unit-root; the decomposition of the representation
follows by [Kedlaya 2007, Proposition 3.4.4]. �

Definition 2.3.23. Let ρ : Gk → GL(Vρ) be a p-adic representation with finite
local monodromy. Let E be the differential module corresponding to Vρ/V Ik

ρ by
Constructions 2.2.8 and 2.2.15, where V Ik

ρ is the unramified piece of Vρ consisting
of the elements in Vρ which are fixed by Ik . By Theorem 2.3.21 above, there
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exists a multiset {a1, . . . , ad} such that for all η sufficiently close to 1, S(E, η) =
{ηa1, . . . , ηad }. Define the differential Artin conductor of E (or ρ) by

Artdif(E)= Artdif(ρ)= a1+ · · ·+ ad .

The differential Swan conductor of E (or ρ), denoted by Swandif(E) or Swandif(ρ),
is defined similarly, by adding the subscript log everywhere.

Remark 2.3.24. In this definition, we split off the unramified part, because it has
both conductors 0. We need to do so because the convergence radius multiset
cannot distinguish between the unramified and the tame parts, which give different
contributions to the Artin conductor. This does not matter for Swan conductors,
and we may define the Swan conductor without first taking out the unramified
piece.

Remark 2.3.25. By [Kedlaya 2007, Proposition 2.6.6], the definition of differ-
ential Swan conductors does not depend on the choice of a uniformizer s and a
p-basis {b1, . . . , bm, s}. We are also free to remove Hypothesis 2.3.2 and define
the differential Swan conductors for arbitrary complete discretely valued fields of
equal characteristic p [Kedlaya 2007, Corollary 3.5.7]. A similar statement holds
for differential Artin conductors; the proof is the same as for Swan conductors.

2.4. Basic properties. We do not impose any hypothesis on k.

Theorem 2.4.1. Differential conductors satisfy the following properties:

(0) When the residue field κk is perfect, the differential Artin and Swan conductors
are the same as the classical ones defined in [Serre 1979].

(1) For any representation ρ of finite local monodromy, Swandif(ρ) ∈ Z≥0 and
Artdif(ρ) ∈ Z≥0.

(2) Let k ′/k be a tamely ramified extension of ramification degree e′. Let ρ be a
representation of Gk of finite local monodromy and let ρ ′ denote the restriction of
ρ to Gk′ . Then Swandif(ρ

′)= e′ ·Swandif(ρ). If e′= 1, i.e., k ′/k is unramified, then
Artdif(ρ

′)= Artdif(ρ).

(3) Let ρ be a faithful p-adic representation of the Galois group of a Galois ex-
tension l/k. If l/k is tamely ramified and not unramified, then bdif(ρ) = 1 and
bdif,log(ρ)= 0. If l/k is unramified, bdif(ρ)= bdif,log(ρ)= 0.

(4) Put G0
k = Gk and Ga

k = Ik for a ∈ (0, 1]. For a > 1, let Ra be the set of finite
image representations ρ with differential ramification breaks less than a. Define
Ga

k =
⋂
ρ∈Ra

(Ik ∩ker ρ) and write Ga+
k for the closure of

⋃
b>a Gb

k . This defines a
differential filtration on Gk such that for all finite image representations ρ, ρ(Ga

k )

is trivial if and only if ρ ∈ Ra .
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Similarly, put G0
k,log = Gk . For a > 0, let Ra,log be the set of finite image

representations ρ with logarithmic differential ramification breaks less than a. De-
fine Ga

k,log =
⋂
ρ∈Ra,log

(Ik ∩ ker ρ) and write Ga+
k,log for the closure of

⋃
b>a Gb

k,log.
This defines a differential logarithmic filtration on Gk such that for all finite image
representations ρ, ρ(Ga

k,log) is trivial if and only if ρ ∈ Ra,log.
For a > 0, the group Ga

k/Ga+
k is abelian and killed by p (and trivial if a /∈Q).

For a > 1, the group Ga
k,log/Ga+

k,log is abelian and killed by p (and trivial if
a /∈Q).

Proof. For (0), see [Kedlaya 2005, Theorem 5.23]. For the rest of the statements,
the proof for Swan conductors can be found in [Kedlaya 2007, §3.5]; we will
only prove the corresponding properties for differential Artin conductors. As in
the proof for differential Swan conductors, we may first reduce to the case where
Hypothesis 2.3.2 holds.

(1) We can follow the proof of [Kedlaya 2007, Theorem 2.8.2], because of the
decomposition Theorem 2.3.21. An alternative proof is to apply Lemma 2.3.17,
and reduce to the case where ∂0 is dominant (see also Remark 2.3.18); then one can
forget about ∂1, . . . , ∂m and hence reduce to the perfect residue field case, which
is statement (0) of the theorem.

(2) Since an unramified extension l/k only changes the field K but not the uni-
formizer s, we can use the same s as the uniformizer of l. The corresponding
differential module Eρ′ of ρ ′ is just a simple extension of scalars. Since the cal-
culation of spectral norms does not depend on the base field (see Remark 2.3.5),
we compute the same result on spectral norms and hence have the same Artin
conductor.

(3) is an immediate consequence of the Swan case. Attention: differential ramifi-
cation breaks cannot distinguish unramified extensions from tamely ramified ones.
(See also Remark 2.3.24.)

(4) The proof for the nonlogarithmic differential filtration is much simpler than
the logarithmic case because of the different normalization in Definition 2.3.9. By
virtue of the proof of [Kedlaya 2007, Theorem 3.5.13], it suffices to show that we
can rotate so that ∂0 becomes dominant; this is the content of Lemma 2.3.17. �

Remark 2.4.2. The invariance of the differential conductors under unramified base
changes enables us to assume that κ0 is algebraically closed. This justifies the
assumption we made in Notation 2.2.2.

3. The thickening technique

In this section, we introduce a thickening technique. Loosely speaking, it consists
in constructing what can be thought of as a tubular neighborhood of the diagonal
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embedding of A1
K [η0, 1) into A1

K [η0, 1)×K0 A1
K [η0, 1), but note that the latter rigid

space is not really well-defined.
We start with a geometric interpretation of this construction and then move on

to the abstract definition of the thickening space.
We keep Hypothesis 2.3.2 throughout this section.

Notation 3.0.1. For α ∈ (0,+∞), denote by Am
K [0, α] and Am

K [0, α) the closed
and open polydiscs with radius α and center at the origin. Let K 〈u1/α, . . . , um/α〉

denote the ring of analytic functions on the disc Am
K [0, α].

Later, we will see many homomorphisms between rings of functions on K-rigid
spaces, which are only K0-linear. It is unfair to say that they induce morphisms
of rigid spaces; however, we prefer to keep some geometric flavor of the whole
construction. On the other hand, these rigid spaces are all quasi-Stein or affinoid;
knowing the ring of analytic functions is equivalent to knowing the rigid spaces.

Notation 3.0.2. For a continuous homomorphism f ∗ : A→ B between affinoid
or Fréchet algebras (not necessarily respecting the ground field K ), we write for-
mally f :Max(B)→Max(A), as the geometric incarnation of the homomorphism.
Pullbacks along maps and Cartesian diagrams are thought of as (completed) tensor
products. (In fact, in all cases we encounter, we do not need to take the completion
for the tensor products.) In short, whenever such a map is given, strictly speaking,
we should view it as a continuous ring homomorphism.

3.1. Geometric thickening. In this subsection, we describe the thickening tech-
nique when the residue field κk can be realized as the field of rational functions on
a smooth κ0-variety. The purpose of this subsection is solely to provide some geo-
metric intuition for the thickening construction in the next subsection; the content
in this subsection will not be used in the rest of this paper.

Hypothesis 3.1.1. Only in this subsection, we assume that the field κk is a finite
separable extension of κ0(b̄1, . . . , b̄m).

Construction 3.1.2. Let X be a smooth variety over κ0 whose field of rational
functions is κk ; such an X exists because we may realize it as an affine scheme
étale over Spec κ0[b̄1, . . . , b̄m]which induces the extension κk/κ0(b̄1, . . . , b̄m). We
may further shrink X so that it is the special fiber of an affine smooth formal
scheme X over OK0 of topological finite type, i.e., X×Spf OK0

Spec κ0= X . We may
further shrink X and X so that we have lifts B1, . . . , Bm of b̄1, . . . , b̄m on X and
d B1, . . . , d Bm form a basis of the sheaf of relative differentials �1

X/OK0
. We use

X to denote the “generic fiber” of X as a rigid space over Sp(K0), in the sense of
Raynaud; it is affinoid.
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Consider the commutative diagram

X
_�

��

// X
_�

��

X
_�

��

oo

P = X ×κ0 A1
κ0

��

// P= X×Spf OK0
Â1

OK0

��

P = X ×K0 A1
K0
[0, 1]

��

oo

Spec κ0 // Spf OK0 Sp(K0).oo

where the vertical arrows from the first row to the second are all embeddings of zero
sections and the coordinates of A1

κ0
and Â1

Ok0
are denoted by s and S, respectively.

The tube of X in P , denoted by ]X [P, is isomorphic to X×A1
K0
[0, 1). Let OX be

the ring of rigid analytic functions on X ; then K is exactly the p-adic completion
of Frac OX . If we base-change the tube ]X [P from X over to K , we get A1

K [0, 1).
We are interested in the annulus A1

K [η0, 1) for some η0 ∈ (0, 1), which can be
obtained by base-changing X × A1

K0
[η0, 1) from X to K .

Now, we consider the thickening space of this annulus A1
K [η0, 1).

Construction 3.1.3. Consider the commutative diagram

X
� � //

&&

P � � 1P //

��

P ×κ0 P � � //

vv

P×OK0
P

��

P ×K0 Poo

��
Spec κ0 // Spf OK0 Sp(K0)oo

where we use pri :P×OK0
P→P to denote the projection to the i-th factor for i =

1, 2. Then P×OK0
P has a set of local parameters given by B1=pr∗1(B1), . . . , Bm=

pr∗1(Bm), S = pr∗1(S), B ′1 = pr∗2(B1), . . . , B ′m = pr∗2(Bm), and S′ = pr∗2(S). By
Berthelot’s fibration theorem [1996, théorème 1.3.2], we have an isomorphism

]X [P×OK0
P ' ]X [P×K0 Am+1

K0
[0, 1),

where the factor ]X [P respects the projection pr1 and the coordinates for the open
polydisc on the right-hand side are given by δ0 = S − S′, δ1 = B1 − B ′1, . . . ,
δm = Bm − B ′m . The geometric thickening space is the subspace of ]X [P×OK0

P

where |δ0| = |S− S′|< |S|, or, more precisely,

X ×K0 {(S, δ0) ∈ A2
K0
[0, 1) | |δ0|< |S|} ×K0 Am

K0
[0, 1).

Thus, the thickening space, denoted by TS≥η0
k , of A1

K [η0, 1) is the space obtained
by base-changing

X ×K0 {(S, δ0) ∈ A2
K0
[0, 1) | |S| ≥ η0, |δ0|< |S|} ×K0 Am

K0
[0, 1).

from X to K .
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The projection pr1 : P ×K0 P→ P gives a K-morphism of rigid spaces

π : TS≥η0
k → A1

K [η0, 1);

the projection pr2 : P ×K0 P→ P gives a K0-morphism of rigid spaces

π̃ : TS≥η0
k → A1

K [η0, 1).

The morphism π̃ does not respect the K-rigid space structure; one should always
think of π̃ as the ring homomorphism between the corresponding ring of analytic
functions. In our earlier notation, this is just the geometric incarnation of the map
on the ring of global sections.

3.2. General thickening construction. We now introduce thickening spaces and
study basic properties of differential modules over them.

We keep Hypothesis 2.3.2 in this subsection. However, Hypothesis 3.1.1 is no
longer in force from now on.

Definition 3.2.1. For η ∈ (0, 1), we write Zηk = A1
K [η, η]. For a ∈ Q>1 and η0 ∈

(0, 1), we define the thickening space of A1
K [η0, 1) and level a to be the rigid space

over K of the form

TSa,≥η0
k =

{
(S, δJ+) ∈ Am+2

K [0, 1)
∣∣ |S| ≥ η0; |δ j | ≤ |S|a for j ∈ J+

}
. (3.2.2)

For η ∈ [η0, 1), we put

TSa,η
k = A1

K [η, η]×K Am+1
K [0, ηa

].

Similarly, for a ∈ Q>0 and η0 ∈ (0, 1), we define the log-thickening space of
A1

K [η0, 1) and level a to be

TSa,≥η0
k,log =

{
(S, δJ+) ∈ Am+2

K [0, 1)
∣∣ |S| ≥ η0; |δ0| ≤ |S|a+1

; |δ j | ≤ |S|a for j ∈ J
}
.

(3.2.3)
For η ∈ [η0, 1), we set

TSa,η
k,log = A1

K [η, η]×K A1
K [0, η

a+1
]×K Am

K [0, η
a
].

We denote by OTS
a,≥η0
k

, OTSa,η
k

, OTS
a,≥η0
k,log

, and OTSa,η
k,log

the rings of analytic func-
tions on these spaces.

Let | · |Zηk denote the η-Gauss norm on Zηk . For a ∈Q>1, let | · |TSa,η
k

denote the
Gauss norm on TSa,η

k ; for a > 0, let | · |TSa,η
k,log

denote the Gauss norm on TSa,η
k,log.

The union of all TSa,≥η0
k is the TS≥η0

k we discussed in Construction 3.1.3.

Caution 3.2.4. One may want to write TSa,≥η0
k =

⋃
η∈[η0,1)A

1
K [η, 1)×K Am+1

K [0, ηa
]

for simplicity, as in the introduction. However, this will not define the same rigid
space as in (3.2.2), because the union does not give an admissible cover of TSa,≥η0

k .
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A similar expression for log-thickening space is not valid either. Nevertheless, it
might be helpful to think the space and picture the geometry this way.

On the other hand, it is true that an element of K [[S, δ0, . . . , δm]] lies in OTS
a,≥η0
k

(resp. OTS
a,≥η0
k,log

) if and only if it has bounded norms for all | · |TSa,η
k

(resp. | · |TSa,η
k,log

)
for all η ∈ [η0, 1).

Remark 3.2.5. We need a ∈ Q in Definition 3.2.1 to make sure that (3.2.2) and
(3.2.3) actually define a (Berkovich) rigid analytic space. For individual spaces
TSa,η

k and TSa,η
k,log, one can allow a ∈ R.

Notation 3.2.6. For a ∈ Q>1 and η0 ∈ (0, 1), denote by 1 : Z≥η0
k ↪→ TSa,≥η0

k the
natural embedding of Z≥η0

k into the locus where δ j = 0 for j ∈ J+. Also, we have
the naı̈ve projection π : TSa,≥η0

k → Z≥η0
k to the first factor.

For a ∈Q>0, we define likewise 1 : Z≥η0
k ↪→ TSa,≥η0

k,log and π : TSa,≥η0
k,log → Z≥η0

k .
All these morphisms remain compatible under changes in a and η0, and under

the replacement of ≥ η0 by η for some η ∈ [η0, 1).
To simplify notation, for a and η0 as above, we identify OZ

≥η0
k

with a subring of
OTS

a,≥η0
k

and of OTS
a,≥η0
k,log

via π∗, and likewise for η instead of ≥ η0. Note that π∗ is
an isometry; hence the identification will not change any calculation on norms.

Corollary 2.1.10 has this immediate consequence:

Proposition 3.2.7. There is a unique continuous OK0-homomorphism

π̃∗ : OK [[S]] → OK [[S, δJ+]]

such that π̃∗(S) = S + δ0 and π̃∗(B j ) = B j + δ j for all j ∈ J . Moreover, for
g ∈ OK , π̃∗(g)− g ∈ (δ1, . . . , δm)(g)OK [[δ1, . . . , δm]].

Theorem 3.2.8. For a ∈Q>1 (resp. a ∈Q>0) and η0 ∈ (0, 1), the homomorphism
π̃∗ induces a K0-homomorphism π̃∗ : OZ

≥η0
k
=R

η0
K → OTS

a,≥η0
k

(resp. π̃∗ : OZ
≥η0
k
→

OTS
a,≥η0
k,log

) such that1∗◦π̃∗= id; the same if replacing≥η0 by η for some η∈[η0, 1).
For any g ∈ OZηk

and for a > 1 (resp. a > 0),

|π̃∗(g)− g|TSa,η
k
≤ ηa−1

· |g|Zηk (resp. |π̃∗(g)− g|TSa,η
k,log
≤ ηa
· |g|Zηk ). (3.2.9)

In particular, |π̃∗(g)|TSa,η
k
= |π̃∗(g)|TSa,η

k,log
= |g|Zηk . Moreover, we have the follow-

ing bound for TSa,η
k : if g ∈ OZηk

∩OK [[S]], then

|π̃∗(g)− g|TSa,η
k
≤ ηa. (3.2.10)

Proof. We need only to establish the bound on the norms. Take

g =
∑
i∈Z

ai Si
∈ K [[S]]
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such that |g|Zηk <+∞. We have

π̃∗(g)− g =
∑
i∈Z

(
π̃∗(ai )(S+ δ0)

i
− ai Si)

=

∑
i∈Z

(
(π̃∗(ai )− ai )(S+ δ0)

i
+ ai ((S+ δ0)

i
− Si )

)
. (3.2.11)

Since π̃∗(ai )− ai ∈ (δ1, . . . , δm)(ai )OK [[δ1, . . . , δm]], we have

|π̃(ai )− ai |TSa,η
k
≤ |ai |η

a, |π̃(ai )− ai |TSa,η
k,log
≤ |ai |η

a. (3.2.12)

We can bound (S+ δ0)
i
− Si by

|(S+ δ0)
i
− Si
|TSa,η

k
≤ ηa+i−1, |(S+ δ0)

i
− Si
|TSa,η

k,log
≤ ηa+i . (3.2.13)

Plugging the estimates (3.2.12) and (3.2.13) into (3.2.11), we obtain (3.2.9).
When g ∈ OK [[S]], (3.2.13) always gives |(S+ δ0)

i
− Si
|TSa,η

k
≤ ηa for i ≥ 0 (when

i = 0, we have zero). Equation (3.2.10) follows.
Finally, the equalities |π̃∗(g)|TSa,η

k
= |π̃∗(g)|TSa,η

k,log
= |g|Zηk ensure that we have

well-defined continuous homomorphisms π̃∗ : OZ
≥η0
k
→ OTS

a,≥η0
k

or OTS
a,≥η0
k,log

. �

Notation 3.2.14. We use π̃ :TSa,≥η0
k → Z≥η0

k and π̃ :TSa,≥η0
k,log → Z≥η0

k to denote the
geometric incarnations of the homomorphisms π̃∗ constructed in Theorem 3.2.8;
the same for η in place of≥η0 when η∈ [η0, 1). To emphasize again, whenever we
refer to π̃ , strictly speaking, we are referring to the corresponding homomorphism
π̃∗ on rings.

Remark 3.2.15. For a > 0, one can factor the map π̃ for a nonlog thickening
space as TSa+1,≥η0

k → T Sa,≥η0
k,log

π̃
→ Z≥η0

k , where the second map is the π̃ for the
log-thickening space. Again, this should be thought of as factorization for ring
homomorphisms.

Notation 3.2.16. For a ∇-module (E,∇E) over Z≥η0
k relative to K0, we call π̃∗E

the thickened differential module of E, denoted by F. We view F as a differential
module over TSa,≥η0

k or TSa,≥η0
k,log relative to Z≥η0

k , with respect to the differential
operators ∂/∂δ0, . . . , ∂/∂δm . In precise terms, the connection is given by

F= E⊗R
η0
K ,π̃

∗ OTS
a,≥η0
k

∇E
−→ E⊗�1

Z
≥η0
k /K0

⊗R
η0
K ,π̃

∗ OTS
a,≥η0
k

−→ E⊗R
η0
K ,π̃

∗ �
1
TS

a,≥η0
k /K0

−→ E⊗R
η0
K ,π̃

∗ �
1
TS

a,≥η0
k /Z

≥η0
k

in the nonlog case. The log case is obtained similarly, with subscript log at the
appropriate places. This construction is compatible for different a’s and η0’s.
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We next link the spectral norms on E and the spectral norms on its thickening F.

Proposition 3.2.17. Let η ∈ [η0, 1). The spectral norms of ∂J+ on Eη over Zηk
and the spectral norms of ∂/∂δJ+ on Fa,η = F ⊗ Frac(OTSa,η

k
)∧ and Fa,η,log =

F⊗Frac(OTSa,η
k,log
)∧ are related as follows:

|∂/∂δ j |Fa,η,sp =max{|∂ j |Eη,sp, p−1/(p−1)η−a
} for j ∈ J+,

|∂/∂δ0|Fa,η,log,sp =max{|∂0|Eη,sp, p−1/(p−1)η−a−1
},

|∂/∂δ j |Fa,η,log,sp =max{|∂ j |Eη,sp, p−1/(p−1)η−a
} for j ∈ J.

Proof. Note that π̃∗(d B j ) = d B j + dδ j for j ∈ J and π̃∗(d S) = d S + dδ0. The
actions of ∂/∂δ j , j ∈ J (resp. j = 0), on Fa,η and Fa,η,log are the same as the
action of ∂/∂B j (resp. ∂/∂S) on Eη. More precisely, we have π̃∗(∂/∂S(x)) =
∂/∂δ0(π̃

∗(x)) and π̃∗(∂/∂B j (x)) = ∂/∂δ j (π̃
∗(x)) for any j ∈ J and x ∈ R

η

K
or Eη.

The statement follows, because that δJ are transcendental over OZηk
and the

homomorphism π̃∗ is isometric (by Theorem 3.2.8). �

3.3. Good generators of the extension. We now show that when l/k is totally and
wildly ramified, we can choose nice generators of Ol as an Ok-algebra, so that the
corresponding extension on the Robba rings takes a simple form. Then we give
a more explicit construction of the differential module associated with a p-adic
representation.

We keep Hypothesis 2.3.2 for this subsection.

Hypothesis 3.3.1. For the rest of this section, we assume that l/k is a finite totally
and wildly ramified Galois extension.

Remark 3.3.2. This is a mild hypothesis, since both arithmetic and differential
conductors behave well under unramified extensions and the tamely ramified case
is well-known: see Theorem 2.4.1(3) and Proposition 4.1.7(6).

Notation 3.3.3. Let l be as above, and let Gl/k denote the Galois group of l/k.
Denote the ring of integers and the residue field of l by Ol and κl , respectively.
Given a uniformizer t of l, we fix a noncanonical isomorphism κl((t)) ' l. For a
p-basis c̄J of κl , we use cJ to denote the image of c̄J under this isomorphism; we
may use the same index set J because κl/κk is a finite extension.

Let OL be the Cohen ring of κl with respect to c̄J and let CJ be the canonical
lifts of c̄J . Set L = Frac OL .

Caution 3.3.4. The residue field extension κl/κk is typically not separable and
hence cannot be embedded into the extension l = κl((t)) over k = κk((s)).

The reader may skip the next construction and remark on first reading. Their
gist is to provide “good” generators and relations of Ol as an Ok-algebra.
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Construction 3.3.5. We temporarily drop the finiteness Hypothesis 2.3.2 on the
p-basis for this construction. Let k0 = κk with p-basis (b̄ j ) j∈J . By possibly rear-
ranging the indexing in b̄J , we will inductively construct a “good” p-basis (c̄ j ) j∈J

of κl and k j = κk(c̄1, . . . , c̄ j ) with p-basis {c̄1, . . . , c̄ j , b̄J\{1,..., j}} so that km = κl

for m sufficiently large.
Assume that we have constructed k j−1. Let r j be the unique integer such that

κl ⊆ kp−r j

j−1 but κl * kp−r j+1

j−1 . If r j = 0, we must have k j−1 = κl ; in this case,
we set c̄α = b̄α and rα = 0 for all α ∈ J\{1, . . . , j − 1} and stop the induction.
Otherwise we assume that r j > 0. Take c̄ j to be any element in κl\kp−r j+1

j−1 and
let k j = k j−1(c̄ j ). Then c̄prj

j ∈ k j−1 and [k j : k j−1] = pr j . There must exist one
element in b̄J\{1,..., j−1} such that the rest together with c̄1, . . . , c̄ j form a p-basis
of k j . We assume that this element is b̄ j by reindexing b̄J\{1,..., j−1}. This finishes
the induction.

From the induction, one can see that the r j form a decreasing sequence of non-
negative integers; but we do not need this fact.

Since κl/κk is finite, the construction ensures that c̄ j ∈ κ
×

k for j ∈ J\J0 with
J0 = {1, . . . ,m} a finite subset. By the functoriality of p-bases (Corollary 2.1.11),
we may change the isomorphism κl((t)) ' l so that c̄J\J0 are sent to elements in
O×k . Let cJ denote the images of c̄J under the above isomorphism.

As a consequence, c1, . . . , cm and t generate Ol over Ok . More precisely,{
ceJ

J t i
∣∣ i ∈ {0, . . . , e− 1}; e j ∈ {0, . . . , pr j − 1} for j = 1, . . . ,m

}
is a basis of Ol as a finite free Ok-module. It is also a basis of l as a k-vector space.

Remark 3.3.6. It is attractive to hope that we can find a p-basis (b̄ j ) j∈J of κk such
that κl=κk(b̄p−r j

j ) for some r j ∈Z≥0. But this is false in general, as pointed out to us
by Shun Ohkubo; a counterexample is provided by [Sweedler 1968, Example 1.1].
Sweedler called the case where such a basis can be found modular.

Let κ0 be a perfect field of characteristic p and let X, Y, Z be indeterminates.
Set κk = κ0(X p, Y p, Z p2

) and κl = κk(Z , XY + Z). Then [κl : κl ∩κ
p−1

k ] = p2 and
[κl ∩ κ

p−1

k : κk] = p. Hence, κl/κk cannot be modular.

Now we go back to assuming Hypothesis 2.3.2.

Notation 3.3.7. For a nonarchimedean ring R, we use R〈u0, . . . , um〉 to denote the
completion of R[u0, . . . , um] with respect to the natural topology induced from R.
When R = F is a complete nonarchimedean field, F〈u0, . . . , um〉 is the ring of
analytic functions on the unit polydisc Am+1

F [0, 1].

Notation 3.3.8. Let Ok〈u0, . . . , um〉/I
∼
→ Ol be the homomorphism that sends u0

to t and u j to c j , for each j ∈ J . We choose a set of generators p0, . . . , pm of I as
follows: each cpr j

j or te can be written in terms of the basis of Ol over Ok listed in
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Construction 3.3.5. This gives us an element p j in I (the index j = 0 being used
for te). Obviously, the pi generate I. Moreover,

p0 ∈ ue
0− ds+ (u0s, s2) ·Ok[u0, . . . , um],

p j ∈ u prj

j − b j + (u0, s) ·Ok[u0, . . . , um] for j = 1, . . . ,m,

where b j is a polynomial in u1, . . . , u j−1 with coefficients in Ok and with degree
on u j ′ strictly smaller than prj ′ for j ′ = 1, . . . , j − 1, and d ∈ Ok[uJ ] such that
d(c1, . . . , cm) ∈ O×L . Let b̄ j be the reduction of b j in κk[u1, . . . , u j−1].

Remark 3.3.9. The need for introducing d was pointed out to us by Shun Ohkubo:
in general, one may not be able to find uniformizers s and t of k and l, respectively,
such that te

≡ s mod te+1Ol . This is shown by the next example, provided by
Ohkubo. (We do not know if there is a counterexample for which L/K is Galois.)

Example 3.3.10. Let k be a complete discretely valued field with nonperfect residue
field κk . Let b ∈ Ok be such that b̄ ∈ κk\κ

p
k . Choose α, β ∈ K as follows: let

α be a root of polynomial X p
+ s X + b ∈ k[X ] and β a root of polynomial

Y p
+ sY + sα ∈ k(α)[Y ]. Let l = k(α, β). Then l/k is a separable extension

of degree p2 with naı̈ve ramification degree p. The rings of integers of k(α) and
k(α, β) are Ok[α] and Ok[α, β], respectively. We claim that we cannot choose
uniformizers t and s so that t p/s ≡ 1 mod ml .

It is clear that β is a uniformizer of l. For any uniformizer t of l,

t p

s
=
β p

s

( t
β

)p
∈ (−α−β)(O×l )

p (mod ml ) // (−α)κ
p
l ⊂ κl .

In particular, t p/s is not congruent to 1 modulo ml .

Remark 3.3.11. Generally, the kernel of Ok[u0, . . . , um]→ Ol is not generated by
p0, . . . , pm . This will not matter since we take a> 0 and a> 1 in Definition 3.2.1.

Construction 3.3.12. For each j ∈ J , fix an element in OL [[T ]] lifting b j ∈ Ok ⊂

κl[[t]]; also fix an element in T e
+T e+1OL [[T ]] lifting s∈Ok⊂κl[[t]]. By Proposition

2.1.8, there exists a continuous homomorphism f ∗ : Ck ↪→ Cl sending BJ and S
to the elements chosen above; it naturally restricts to f ∗ : OK [[S]] ↪→ OL [[T ]].

The proof of the following lemma is not enlightening. The reader may skip it on
a first reading. The upshot is that we can turn the good generators and relations of
Ol as an Ok-algebra into good generators and relations of Rη

1/e
0L as an R

η0
K -algebra.

Lemma 3.3.13. Keep the notation as above.

(1) The homomorphism f ∗ is finite, and C1, . . . ,Cm and T generate OL [[T ]] over
OK [[S]]. Hence, f ∗ induces a surjective map OK [[S]]〈U0, . . . ,Um〉 � OL [[T ]]
sending U0 to T and U j to C j for j ∈ J . Moreover, one can choose generators
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P0, . . . , Pm of the kernel so that, modulo p, they are exactly pJ+ in Notation 3.3.8.
In particular,

P0 ∈U e
0 −DS+ (p,U0S, S2) ·OK [[S]]〈U0, . . . ,Um〉,

Pj ∈U pr j

j −B j + (p,U0, S) ·OK [[S]]〈U0, . . . ,Um〉,

where B j is a polynomial in U1, . . . ,U j−1 with coefficients in OK and with de-
gree on Uj ′ strictly smaller than prj ′ for j ′ = 1, . . . , j − 1, and D ∈ OK [UJ ]

lifts d. Moreover, {U eJ+

J+ | 0 ≤ e0 < e; 0 ≤ e j < pr j , j ∈ J } form a basis of
OK [[S]]〈U0, . . . ,Um〉/(PJ+) over OK [[S]].

(2) The map f ∗ extends to a map f ∗η : K 〈η/S, S/η〉 → L〈η1/e/T, T/η1/e
〉 for

η ∈ [0, 1). Thus f ∗ extends by continuity to a homomorphism f ∗ : Rη0
K → Rη

1/e
0L ,

or in geometric notation, f : A1
K [η0, 1)→ A1

L [η
1/e
0 , 1) for η0 ∈ (0, 1).

(3) Let 0†
K and 0†

L be the integral Robba rings over K and L , respectively, simi-
larly constructed as in Construction 2.2.8 but without tensoring with F. Let RL

be the Robba ring over L as in Notation 2.2.13. Then 0†
L is a finite étale extension

of 0†
K with Galois group Gl/k . Moreover, RL ' 0

†
L ⊗0†

K
RK .

(4) For some η0 ∈ (0, 1), A1
L [η

1/e
0 , 1) is Galois étale over η ∈ [η0, 1) via f ∗ with

Galois group Gl/k . Hence, Rη1/e
0

L becomes a regular Gl/k-representation over R
η0
K

via f ∗.

Proof. (1) is equivalent to its mod p version, which is exactly Construction 3.3.5.

(2) It suffices to prove that f ∗ is continuous with respect to the norms | · |Zηk on
Ck and | · |Zη1/e

l
on Cl , for all η ∈ [η0, 1). Since f ∗(OK ) ∈ OL [[T ]] and f ∗(S) ∈

T e
+ T e+1OL [[T ]], we have |g|Zηk = | f

∗(g)|Zη1/e
l

for any g ∈ Ck . Hence the map
f ∗ extends continuously to f ∗η : K 〈η/S, S/η〉 → L〈η1/e/T, T/η1/e

〉.

(3) The first statement follows from Lemma 2.2.10. The second statement is true
because 0†

L ⊗0† RK is complete and dense in RL .

(4) follows from (2) and (3) since RK and RL are limits of R
η0
K and R

η
1/e
0

L , respec-
tively. �

Remark 3.3.14. The homomorphism f ∗ does not respect the naı̈ve K-algebra
structure on Rη

1/e
0L ; this is precisely because of Caution 3.3.4. But it respects the

K-algebra structure on Rη1/e
0

L induced by OK ↪→ OK [[S]]
f ∗
→ OL [[T ]]. So, it might be

better not to view Z≥η
1/e
0l → Z≥η0

k as a morphism between rigid spaces, but rather
as the geometric incarnation of f ∗.

Construction 3.3.15. Keep the notation as in Construction 2.2.15. Let ρ :Gl/k→

GL(Vρ) be a p-adic representation, where Vρ is a finite dimensional vector space
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over F . We have

Eρ = D†(ρ)⊗
0

†
K

RK = (Vρ ⊗O 0̃
†)Gk ⊗

0
†
K

RK

= (Vρ ⊗Zq 0
†
L)

Gl/k ⊗
0

†
K

RK = (Vρ ⊗Zq RL)
Gl/k .

Hence, for some η0 ∈ (0, 1), the differential module Eρ descends to

Eρ =
(
Vρ ⊗Zq f∗OZ

≥η
1/e
0

l

)Gl/k
;

this is a differential module over R
η0
K ⊗Qq F=R

η0
K ′ relative to K0. This construction

respects tensor products, i.e., given another p-adic representation ρ ′ of Gl/k over
F , we have

Eρ⊗ρ′ = Eρ ⊗R
η0
K ′

Eρ′ .

Hypothesis 3.3.16. From now on, we always assume that η0 ∈ (0, 1) is close
enough to 1− that all statements in Lemma 3.3.13 hold and Eρ descends to R

η0
K ′ .

3.4. Spectral norms and connected components of thickening spaces. We now
relate the spectral norms of differential operators on E to the connected compo-
nents of certain rigid spaces. We keep Hypotheses 2.3.2, 3.3.1, and 3.3.16 in this
subsection.

Definition 3.4.1. Let a ∈Q>1. We define

OTS
a,≥η0
l/k
=R

η
1/e
0

L ⊗ f ∗,R
η0
K ,π

∗ OTS
a,≥η0
k

,

OTS
a,≥η0
k\l
= OTS

a,≥η0
k
⊗π̃∗,R

η0
K , f ∗ R

η1/e
0

L ,

OTS
a,≥η0
l/k\l
=R

η1/e
0

L ⊗ f ∗,R
η0
K ,π

∗ OTS
a,≥η0
k
⊗π̃∗,R

η0
K , f ∗ R

η
1/e
0

L .

Here we do not have to complete the tensor products because f ∗ is finite. (We in-
tentionally put the tensor products on different sides so that it is easy to distinguish
the two base changes by f ∗ through π∗ and π̃∗ respectively.) Let TSa,≥η0

l/k , TSa,≥η0
k\l ,

and TSa,≥η0
l/k\l , respectively, denote the geometric incarnations of these rings. We

have formally the following Cartesian diagram:

Z
≥η

1/e
0

l

f
��

TSa,≥η0
l/k

f×1
��

1×πoo TSa,≥η0
l/k\l

f̃oo

��

Z≥η0
k TSa,≥η0

k
πoo

π̃
��

TSa,≥η0
k\l

1× foo

��

Z≥η0
k Z

≥η
1/e
0

l .
foo

(3.4.2)

We make similar constructions for the logarithmic version of all spaces if a ∈Q>0.
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Remark 3.4.3. The morphisms π and 1× f are genuine morphisms between rigid
spaces over Z≥η0

k , and f̃ and 1× π are genuine morphisms between rigid spaces
over Z≥η

1/e
0l . This is because the rigid space structures on thickening spaces are

given by the projections π and 1 × π , respectively. In contrast, all the vertical
arrows in (3.4.2) should all be thought of as just geometric incarnations of the
corresponding ring homomorphisms.

Remark 3.4.4. The naı̈ve base change f ×1 helps to realize geometric connected
components as connected components (see Theorem 3.4.12). The base change
f̃ (and also 1× f ) encodes the ramification information, which is what we are
interested in.

Remark 3.4.5. One may want to relate TSa,≥η0
l/k\l to the thickening space of Z≥η

1/e
0l .

However, it is not clear how to compare the levels or radii of the two spaces. We
will not need this result.

Corollary 3.4.6. The space TSa,≥η0
l/k\l admits an action of Gl/k by morphisms be-

tween K-rigid spaces, obtained by pulling back the action on Z≥η
1/e
0l over Z≥η0

k via
π̃ ◦ ( f × 1). Under this action, f̃∗OTS

a,≥η0
l/k\l

is a regular representation of Gl/k over
OTS

a,≥η0
l/k

. For a p-adic representation ρ of Gl/k over F , define

F̃ρ = (Vρ ⊗Qq f̃∗OTS
a,≥η0
l/k\l

)Gl/k ;

this is a differential module over TSa,≥η0
l/k ×Qq F relative to Z≥η

1/e
0l ×Qq F. Moreover,

F̃ρ ' ( f × 1)∗π̃∗Eρ .
The same statement also holds for log-space.

Proof. The differential module structure on f̃∗OTS
a,≥η0
l/k\l

is given by the composition
of natural homomorphisms

f̃∗OTS
a,≥η0
l/k\l
−→ f̃∗

(
�1

TS
a,≥η0
l/k\l

/
Z≥η

1/e
0l

)
' f̃∗

(
f̃ ∗
(
�1

TS
a,≥η0
l/k

/
Z≥η

1/e
0l

))
' f̃∗OTS

a,≥η0
l/k\l
⊗�1

TS
a,≥η0
l/k

/
Z≥η

1/e
0l
.

(In fact this construction works for any finite étale morphisms.) The statement
of the corollary is an easy consequence of flat base change for the two Cartesian
squares on the right in (3.4.2). �

Notation 3.4.7. We may view 1×π : TSa,η0
l/k → Z

η1/e
0

l as bundles, whose fibers are
polydiscs (of different radii) with parameters δ0, . . . , δm ; again this morphism is
a genuine morphism between rigid spaces. By the zero section Z, we mean the
natural closed subspace of this bundle defined by δ0 = 0, . . . , δm = 0.

Notation 3.4.8. Let M be a differential module over a differential ring R with
derivatives ∂1, . . . , ∂n . For x ∈ M and r1, . . . , rn ∈ R, we define the Taylor series
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T(x; ∂1, . . . , ∂n; r1, . . . , rn)=
∑

α1,...,αn∈Z≥0

rα1
1 . . . rαn

n ∂
α1
1 . . . ∂

αn
n

n!
(x),

if it converges. If x ∈ R, we have T(ax; ∂1, . . . , ∂n; r1, . . . , rn)= T(a; ∂1, . . . , ∂n;

r1, . . . , rn) ·T(x; ∂1, . . . , ∂n; r1, . . . , rn) if all terms converge.

Notation 3.4.9. Let M be a differential module over a differential ring R with
derivatives ∂1, . . . , ∂n . Let H 0

∇
(R,M) = {x ∈ M | ∂i (x) = 0, i = 1, . . . , n} be the

set of horizontal sections of M over R. In particular, if r1, . . . , rn ∈ R are elements
such that ∂i (r j )= 1 if i = j and 0 otherwise, then an elementary calculation shows
that the Taylor series T(x; ∂i , . . . , ∂n; r1, . . . , rn) is an element in H 0

∇
(R,M) for

any x ∈ M such that the Taylor series converges.
We usually use the geometric counterparts in places of R and M in the notation.

For example, we write H 0
∇
(Max(R),M) if R is an affinoid algebra.

The following lemma will be frequently used in proving the theorem below. It
works in greater generality, but we content ourselves with this special case.

Lemma 3.4.10 (Dwork’s transfer theorem). Let a > 1. Let F̃ be a differential
module over TSa,≥η0

l/k relative to Z≥η
1/e
0l . Assume |∂/∂δi |F̃a,η

≤ p−1/(p−1)η−a for
all j ∈ J and η ∈ [η0, 1). Then, for any rational number c > a, the natural
homomorphism of finite Rη1/e

0L -modules

2 : H 0
∇
(TSc,≥η0

l/k , F̃)
∼
→ 0(Z, F̃|Z) (3.4.11)

is an isomorphism. In particular, F̃ is a trivial ∇-module relative to Z
≥η1/e

0
l . The

same statement is also true if we base-change everything to F over Qq . When
F̃= f∗OTS

a,≥η0
l/k\l

, 2 induces a ring homomorphism for any rational number c > a:

0
(
Z, f∗OTS

c,≥η0
l/k\l

∣∣
Z

) 2
∼
←− H 0

∇

(
TSc,≥η0

l/k , f∗OTS
c,≥η0
l/k\l

)
↪→ 0

(
TSc,≥η0

l/k\l ,OTS
c,≥η0
l/k\l

)
.

The same statements hold for the log version with a > 0, inserting the subscript
log appropriately.

Proof. We prove the lemma for the nonlog case over Qq . The proof for the log
case differs only by inserting subscript log appropriately, using the δ0 coordinate,
and increasing the exponents on η by 1. The proof for the tensor F version is also
the same, except we need to tensor F everywhere.

We may define an inverse of the map 2 using Taylor series:

2−1(x)= T(x̃; ∂/∂δ0, . . . , ∂/∂δm; δ0, . . . , δm)

for x ∈ 0(Z, F̃|Z), where x̃ is a lift of x in 0(TSc,≥η0
l/k , F̃). The Taylor series con-

verges over TSc,≥η0
l/k by the condition |∂/∂δi |F̃a,η

≤ p−1/(p−1)η−a < p−1/(p−1)η−c

for all j ∈ J and η ∈ [η0, 1). Moreover, the Taylor series converges to a horizontal
section in H 0

∇
(TSc,≥η0

l/k , F̃).
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When F̃= f∗OTS
a,≥η0
l/k\l

, 2 is a homomorphism, which can also be seen from the
fact that the Taylor series gives a ring homomorphism (see Notation 3.4.8). �

The following theorem is one of the key steps of the proof of the Hasse–Arf
theorem. This is the main ingredient (a) described in the introduction. It allows
us to compare the differential ramification breaks with the geometric connected
components of the thickening spaces; we will later identify the thickening spaces
with the lifts of the Abbes–Saito spaces (Theorem 4.3.6).

Theorem 3.4.12. Let ρ : Gl/k→ GL(Vρ) be a faithful p-adic representation over
F with l/k satisfying Hypotheses 2.3.2 and 3.3.1. Then, for b > 1, the following
conditions are equivalent:

(a) ρ has differential ramification break ≤ b.

(b) For any rational number c> b, when η0→ 1−, F̃= F̃ρ is a trivial ∇-module
over TSc,≥η0

l/k ×Qq F relative to Z≥η
1/e
0l ×Qq F.

(c) For any rational number c > b, when η0 → 1−, TSc,≥η0
l/k\l has exactly [l : k]

connected components.

(d) For any rational number c > b, when η0 → 1−, Z
≥η1/e′

0
l ′ ×Z

≥η
1/e
0

l ,π TSc,≥η0
l/k\l has

exactly [l : k] connected components for some finite extension l ′/ l, where e′ is
the naïve ramification degree of l ′/k.

For b > 0, the corresponding conditions for logarithmic spaces are equivalent.

Proof. We prove the statement for nonlogarithmic spaces; in the logarithmic case
we just need to add the subscript log and change the scales on ∂0 and ∂/∂δ0 from
ηb to ηb+1 and ηc to ηc+1.

Further, Proposition 3.2.17 is unchanged if we replace F by F̃, since the spectral
norms are invariant under scalar extensions.

We first that (a) implies (b). Assume ρ has differential ramification break at
most b. By Definition 2.3.20, for η0 sufficiently close to 1−, the generic radius of
Eρ satisfies T (Eρ, η)≥ηb for η∈[η0, 1), or equivalently |∂ j |Eρ,η,sp≤ p−1/(p−1)η−b

for any j ∈ J+ and η ∈ [η0, 1). Then Proposition 3.2.17 and Remark 2.3.5 imply
that for all η ∈ [η0, 1), |∂/∂δ j |F̃b,η,sp ≤ p−1/(p−1)η−b, and hence F̃ρ is a trivial
differential module over TSc,≥η0

l/k ×Qq F relative to Z≥η
1/e
0l ×Qq F for any rational

number c > b by Dwork’s transfer theorem (Lemma 3.4.10). This proves (b).
Now assume (b), i.e., F̃ρ is trivial over TSc,≥η0

l/k ×Qq F relative to Z≥η
1/e
0l ×Qq F

for any rational number c > b and some η0 ∈ (0, 1). It follows that

|∂/∂δ j |F̃c,η,sp = |∂/∂δ j |Frac(OTSc,η
l/k
)∧,sp = p−1/(p−1)η−c.

By Proposition 3.2.17, |∂ j |sp,Eη ≤ p−1/(p−1)η−c, for any j ∈ J+, η ∈ [η0, 1), and
c ∈Q>b. By Definition 2.3.20, this implies that the differential ramification break
is at most b, since the rationals are dense in the real numbers.
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Obviously, (c) implies (b). To see the converse, note first claim that if c > b is
rational, f∗OTS

c,≥η0
l/k\l

is a trivial differential module over TSc,≥η0
l/k relative to Z≥η

1/e
0l .

Indeed, for a rational number c′ ∈ (b, c), we know that F̃ρ is a trivial differential
module over TSc′,≥η0

l/k ×Qq F relative to Z≥η
1/e
0l ×Qq F , then for any n ∈ N, F̃⊗n

ρ

is also a trivial differential module (relative to Z≥η
1/e
0l ×Qq F), which corresponds

to V⊗n
ρ by functoriality (Construction 3.3.15). By Lemma 3.4.16 below from the

theory of representations of finite groups (or standard Tannakian arguments), the
differential module(

F[Gl/k]⊗Qq f∗OTS
c′,≥η0
l/k\l

)Gl/k '
−→ F ⊗Qq f∗OTS

c′,≥η0
l/k\l

(3.4.13)

corresponding to the regular representation is a direct summand of a direct sum of
some F̃⊗n

ρ ’s and hence is a trivial differential module (relative to Z≥η
1/e
0l ×Qq F). To

make it perfectly rigorous, here the isomorphism (3.4.13) of differential modules
is given by

∑
g∈Gl/k

f g⊗ gv 7→ f · v, where f ∈ F and v ∈ f∗OTS
c,≥η0
l/k\l

; this map
does not respect the F[Gl/k]-module structures.

We have finished the proof of the claim in the case F = Qp. If F 6= Qp, we
know that, for all j ∈ J+, the spectral norms of ∂/∂δ j at radius η on the right-hand
side of (3.4.13) are p−1/(p−1)η−c′ , which equal the spectral norms of ∂/∂δ j on
f∗OTS

c′,≥η0
l/k\l

at radius η. By Dwork’s transfer theorem (Lemma 3.4.10), the claim is
proved.

We now apply the second part of Lemma 3.4.10 and obtain, for any rational
numbers c′ > c, a ring homomorphism

0
(
Z, f∗OTS

c′,≥η0
l/k\l

∣∣
Z

) 2
∼
←− H 0

∇

(
TSc′,≥η0

l/k , f∗OTS
c′,≥η0
l/k\l

)
↪→ 0

(
TSc′,≥η0

l/k\l ,O
TS

c′,≥η0
l/k\l

)
.

(3.4.14)

The key is that the left-hand side of (3.4.14) is isomorphic to the ring functions
on Z≥η

1/e
0l ×Z

≥η0
k

Z≥η
1/e
0l because the restrictions of π̃ and π to Z are both the same

as f . Moreover, since Z≥η
1/e
0l is finite étale Galois over Z≥η0

k (Lemma 3.3.13),
Z≥η

1/e
0l ×Z

≥η0
k

Z≥η
1/e
0l =

∐
g∈Gl/k

Z≥η
1/e
0l . In particular, we have fundamental idempo-

tent elements in 0(Z, f∗OTS
c′,≥η0
l/k\l
|Z) corresponding to each connected component.

Via the composition of the homomorphisms in (3.4.14), we can “lift” the idem-
potent elements on Z≥η

1/e
0l ×Z

≥η0
k

Z≥η
1/e
0l to idempotent elements in OTS

c′,≥η0
l/k\l

. This
shows that TSc′,≥η0

l/k\l has at least [l : k] connected components. But this space is
finite and flat of degree [l : k] over an irreducible rigid space TSc′,≥η0

l/k ; it can have
at most [l : k] connected components. Therefore, (c) holds.

The equivalence between (b) and (d) can be proved similarly, using a version
of Lemma 3.4.10 over Zη

1/e′
0

l ′ . The upshot here is that we need a base change to at
least Z≥η

1/e
0l in (c) so that we can split the fiber over Z; this is why we did not state

the theorem for TSc,≥η0
k\l and F̃ themselves. �
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Remark 3.4.15. The faithfulness condition on ρ in the theorem is harmless: we
will very easily reduce to this case later in the proof of Theorem 4.4.1.

Lemma 3.4.16. Let G be a finite group and F be a field of characteristic 0. Let
ρ : G→GL(Vρ) be a faithful representation over F. Then the regular representa-
tion F[G] is a direct summand of a direct sum of some self-tensor products of Vρ .

This is an easy exercise of finite group representations but we do not know a
good reference. The author thanks Xuhua He for providing the following proof.

Proof. Let χ be the character of Vρ and let d be the dimension of Vρ . Since the
representation is injective, χ(1) = d and χ(g) 6= d for all g ∈ G nontrivial. (This
is because all the eigenvalues of ρ(g) are roots of unity and cannot all be 1.)

Therefore, for each g 6= 1 there exists a polynomial Pg in χ with integer coef-
ficients such that Pg(χ(g))= 0 but Pg(d) 6= 0. Let P =

∏
16=g∈G Pg; then P(d) 6=

0 but P(χ(g)) = 0 for all g 6= 1. Multiplying by a constant, we may assume
that #G divides P(d) and P(d) > 0. If P(X) = an Xn

+ · · · + a0 ∈ Z[X ], then
(V⊗n)⊕an ⊕ · · · ⊕ V⊕a1 ⊕ 1⊕a0

F = F[G]P(d)/#G in the Grothendieck group of the
representations of G, where 1F denotes the trivial representation. Consequently,
if we take the direct sum of the terms on the left-hand side with positive ai , the
regular representation will be a natural direct summand of it. �

4. Arithmetic ramification filtrations

4.1. Review of Abbes and Saito’s definition. We briefly review the definition of
arithmetic ramification filtrations on the Galois group of a complete discretely val-
ued field k. For more details, consult [Abbes and Saito 2002; 2003]. The filtrations
can be defined for a k of mixed characteristic; however, for the purpose of this
paper, we focus on the case where k is of equal characteristic p > 0.

In this subsection, we do not make any of the hypothesis we have been using in
previous sections.

Notation 4.1.1. Keep the notation as in previous sections. Fix uniformizers s and
t for k and l, respectively. Let vl( · ) be the valuation on l normalized so that
vl(t)= 1. Let θ = |s|.

Notation 4.1.2. In this subsection, we temporarily free j and J from the restraint
introduced in Notation 2.3.3. But in later applications, we will specialize to the
case in which j and J actually index p-bases.

Definition 4.1.3. Take Z = (z j ) j∈J ⊂Ol to be a finite set of elements generating Ol

as an Ok-algebra, i.e., Ok[(u j ) j∈J ]/I
∼
→Ol mapping u j to z j for j ∈ J ={1, . . . ,m}

and for some appropriate ideal I. Let ( fi )i=1,...,n be a finite set of generators of I.
For a ∈Q>0, define the (nonlogarithmic) Abbes–Saito space to be

asa
l/k,Z =

{
(u1, . . . , um) ∈ Am

k [0, 1]
∣∣ | fi (uJ )| ≤ θ

a, 1≤ i ≤ n
}
. (4.1.4)
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The geometric connected components (see [Bosch et al. 1984, 9.1.4/8] for the
definition) of asa

l/k,Z are πgeom
0 (asa

l/k,Z ). The arithmetic ramification break bar(l/k)
is defined as the minimal number b such that #πgeom

0 (asa
l/k,Z )=[l : k] for any a>b.

Definition 4.1.5. Keep the notation as above. We single out a subset P ⊂ Z and
assume that P and hence Z contain the uniformizer t . For each j ∈ J , let e j =

vl(z j ). Take a lift g j ∈ Ok[(u j ) j∈J ] of ze
j/s

e j for each z j ∈ P , and take a lift
hi, j ∈ Ok[(u j ) j∈J ] of zei

j /z
e j
i for each pair (zi , z j ) ∈ P × P . For a ∈ Q>0, define

the logarithmic Abbes–Saito space to be

asa
l/k,log,Z ,P =

(uJ ) ∈ Am
k [0, 1]

∣∣∣∣∣∣∣
| fi (uJ )| ≤ θ

a, 1≤ i ≤ n,

|ue
j − se j g j | ≤ θ

a+e j , for all z j ∈ P,

|uei
j − u

e j
i hi, j | ≤ θ

a+ei e j /e, for all (zi , z j ) ∈ P×P.


Similarly, the logarithmic arithmetic ramification break bar,log(l/k) is defined

to be the minimal number b such that for any a > b, #πgeom
0 (asa

l/k,log,Z ,P)= [l : k].

Remark 4.1.6. To ease the readers who are not familiar with Abbes and Saito’s
definition, we give an intuitive way to understand the definition following [Abbes
and Saito 2002].

First, if a→∞, the conditions on f1, . . . , fn in (4.1.4) basically restrict the pos-
sible uJ to be very close to z J or other solutions to the equations f1=0, . . . , fn=0,
which are exactly Galois conjugates of z J . Thus, one may believe that asa

l/k,Z has
exactly [l : k] geometric connected components, each of which looks like a small
polydisc centered at one of the solutions. In contrast, if a → 0+, the conditions
on f1, . . . , fn are almost vacuum and asa

l/k,Z is almost the whole unit polydisc. In
particular, the space is likely to be geometrically connected. From the two extreme
cases, we know that, when we increase a, the Abbes–Saito space shrinks from a
whole unit polydisc to smaller polydiscs and, at some a, a bigger polydisc breaks
apart into several smaller polydiscs. The arithmetic ramification break captures the
last break point.

We reproduce several statements from [Abbes and Saito 2002; 2003].

Proposition 4.1.7. Abbes–Saito spaces have the following properties.

(1) For a > 0, the spaces asa
l/k,Z and asa

l/k,log,Z ,P do not depend on the choice of
generators ( fi )i=1,...,n of I and lifts g j and hi, j for i, j ∈ P [Abbes and Saito 2002,
§3].

(1′ ) If , in the definition of both spaces, we choose polynomials ( fi )i=1,...,n as a set
of generators of Ker(Ok〈(u j ) j∈J 〉 → Ol) instead of Ker(Ok[(u j ) j∈J ] → Ol), the
spaces will not change.
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(2) If we substitute in another pair of generating sets Z and P satisfying the same
properties, then we have a canonical bijection on the sets of the geometric con-
nected components πgeom

0 (asa
l/k,Z ) and πgeom

0 (asa
l/k,log,Z ,P) for different generating

sets, where a > 0. In particular, both highest arithmetic ramification breaks are
well-defined [Abbes and Saito 2002, §3].

(3) The highest arithmetic ramification break (resp. highest logarithmic arithmetic
ramification break) gives rise to a filtration on the Galois group Gk consisting
of normal subgroups Fila Gk (resp. Filalog Gk) for a > 0 such that bar(l/k) =
inf{a | Fila Gk ⊆ Gl} (resp. bar,log(l/k) = inf{a | Filalog Gk ⊆ Gl}) [Abbes and
Saito 2002, Theorems 3.3 and 3.11]. Moreover, for l/k a finite Galois extension,
both arithmetic ramification breaks are rational numbers [Abbes and Saito 2002,
Theorems 3.8 and 3.16].

(4) Let k ′/k be an algebraic extension of complete discretely valued fields or the
completion of such an extension. If k ′/k is unramified, then Fila Gk′ = Fila Gk for
a > 0 [Abbes and Saito 2002, Proposition 3.7]. If k ′/k is tamely ramified with
ramification index e′, then File

′a
log Gk′ = Filalog Gk for a > 0 [Abbes and Saito 2002,

Proposition 3.15] . More generally, for a (not necessarily algebraic) extension k ′/k
of complete discretely valued fields with the same valued group and linearly inde-
pendent from l/k such that Olk′ = Ok′ ⊗Ok Ol , we have bar(lk ′/k ′) = bar(l/k) and
bar,log(lk ′/k ′)= bar,log(l/k) [Abbes and Mokrane 2004, lemme 2.1.5].

(5) For a > 0, define Fila+ Gk =
⋃

b>a Filb Gk and Fila+log Gk =
⋃

b>a Filblog Gk .
Then, the subquotients Fila Gk/Fila+ Gk are abelian p-groups if a ∈Q>1 and are
0 if a /∈Q ([Abbes and Saito 2002, Theorem 3.8] and [Abbes and Saito 2003, The-
orem 1]); the subquotients Filalog Gk/Fila+log Gk are elementary abelian p-groups if
a ∈ Q>0 and are 0 if a /∈ Q ([Abbes and Saito 2002, Theorem 3.16] and [Saito
2009, Theorem 1.3.3]).

(6) The inertia subgroup is Fila Gk if a ∈ (0, 1] and the wild inertia subgroup is
Fil1+ Gk = Fil0+log Gk [Abbes and Saito 2002, Theorems 3.7 and 3.15].

(7) When the residue field κk is perfect, the arithmetic ramification filtrations agree
with the classical upper numbered filtrations in the following way: Fila Gk =

Fila−1
log Gk = Gala−1

k for a ≥ 1 [Abbes and Saito 2002, §6.1], where Galak is the
classical upper numbered filtration on Gk .

Proof. For the convenience of readers, we point out some ingredients of the proof.
For details, one can consult the original papers.

(1) is straightforward by matching up points.

(1′) is not in the literature. However, it can be proved identically to (1).
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(2) One can show that if we add a new (dummy) generator in Z or P , the new
Abbes–Saito space admits a fibration over the original Abbes–Saito space whose
fibers are closed discs of radius θa .

(3) The first statement is just abstract nonsense. The second is true essentially
because Abbes–Saito spaces are defined over k and the geometric connect com-
ponents can be detected over the algebraic closure kalg, which has valued group
|k×|Q. However, realizing this principle requires formal models of rigid spaces.
As we will reprove this result in Theorem 4.4.1, we refer to the original paper for
the formal model proof.

(4) When Olk′'Ol⊗Ok Ok′ , one can match up the nonlogarithmic Abbes–Saito space
for lk ′/k ′ and the extension of the scalar of that for lk ′/k ′ in a natural way. Actually,
the logarithmic ramification break is not considered in [Abbes and Mokrane 2004,
lemme 2.1.5], but the proof carries over similarly. In the tamely ramified and
logarithmic cases, one can also identify two logarithmic Abbes–Saito spaces [2002,
Proposition 9.8]; this is slightly more complicated.

(5) The proof used the formal models of the Abbes–Saito spaces and their stable
reductions, which is in an orthogonal direction from the present paper. One may
consult [Abbes and Saito 2003; Saito 2009] for a complete treatment.

(6) is an easy fact.

(7) follows from an explicit calculation in the monogenic case. �

Remark 4.1.8. In fact, in the proof of the main theorem (Theorem 4.4.1), we do
not need (5) or the second statement of (3) on the rationality of the breaks in the
proposition above. Therefore, we can obtain these properties from the properties
of differential conductors in Theorem 2.4.1 via the comparison in Theorem 4.4.1.

Definition 4.1.9. Let ρ : Gk → GL(Vρ) be a representation of finite local mon-
odromy. Define the arithmetic Artin and Swan conductors as

Artar(ρ)
def
=

∑
a∈Q≥0

a · dim(V Fila+ Gk
ρ /V Fila Gk

ρ ), (4.1.10)

Swanar(ρ)
def
=

∑
a∈Q≥0

a · dim(V
Fila+log Gk
ρ /V

Filalog Gk
ρ ). (4.1.11)

They are actually finite sums.

Conjecture 4.1.12 (Hasse–Arf Theorem). Let k be a complete discretely valued
field of equal characteristic p. For any representation ρ of Gk of finite local mon-
odromy, the arithmetic conductors are nonnegative integers, namely, Artar(ρ) ∈

Z≥0 and Swanar(ρ) ∈ Z≥0.

Proposition 4.1.13. Conjecture 4.1.12 is true if the residue field κk is perfect.
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Proof. By Proposition 4.1.7(7), we are reduced to the classical Hasse–Arf theorem
[Serre 1979, §VI.2, Theorem 1′ and §IV.2, Corollary 3]. Note that in this case,
Swanar(ρ)= Artar(ρ)− dim Vρ/V Ik

ρ . �

We will prove Conjecture 4.1.12 in Corollary 4.4.3.

4.2. Standard Abbes–Saito spaces and their lifts. In practice, we will only study
Abbes–Saito spaces that are given by some particular generators. We explicitly
write down spaces and their lifts in the sense of Section 1.

In this subsection, we retrieve Hypotheses 2.3.2 and 3.3.1, assuming that k has
finite p-basis and the extension l/k is totally and wildly ramified. Also, we retrieve
Notation 2.3.3 on indexing p-basis.

Construction 4.2.1. We take Z = {c1, . . . , cm, t} to be the set of generators of
Ol/Ok given by Construction 3.3.5. (Maybe some of them are already in the field
k, but we still keep those.) We take P = {t}. By Proposition 4.1.7(1′ ), we can take
the relations to be p0, . . . , pm from Notation 3.3.8. For a ∈ Q>0, we define the
standard Abbes–Saito spaces as

asa
l/k =

{
(u0, . . . , um) ∈ Am+1

k [0, 1]
∣∣ |p0(uJ+)| ≤ θ

a, . . . , |pm(uJ+)| ≤ θ
a},

asa
l/k,log =

{
(u0, . . . , um) ∈ Am+1

k [0, 1]
∣∣

|p0(uJ+)| ≤ θ
a+1, |p1(uJ+)| ≤ θ

a, . . . , |pm(uJ+)| ≤ θ
a}.

Let PJ+ be the lifts of pJ+ as in Lemma 3.3.13. For a ∈ Q>0 and η0 ∈ (0, 1),
we define the lifting Abbes–Saito spaces to be

ASa,≥η0
l/k =

{
(UJ+, S) ∈ Am+2

K [0, 1]

∣∣∣∣∣ η0 ≤ |S|< 1,

|P0(UJ+ , S)| ≤ |S|a, . . . , |Pm(UJ+ , S)| ≤ |S|a

}
,

ASa,≥η0
l/k,log =

{
(UJ+, S) ∈ Am+2

K [0, 1]

∣∣∣∣∣ η0 ≤ |S|< 1, |P0(UJ+ , S)| ≤ |S|a+1,

|P1(UJ+ , S)| ≤ |S|a, . . . , |Pm(UJ+ , S)| ≤ |S|a

}
;

they are viewed as rigid spaces over Z≥η0
k .

Lemma 4.2.2. Let k ′/k be a finite Galois extension of naïve ramification degree
e′. If we identify Ck as a subring of Ck′ as in Construction 3.3.12, we may view
PJ+ as polynomials in UJ+ with coefficients in OK ′[[S′]], where K ′ is the fraction
field of the Cohen ring of κk′ and S′ is a lift of the uniformizer s ′ in k ′. Then, for
η0 ∈ (0, 1) and a ∈Q>0, we have

Z
≥η

1/e′
0

k′ ×Z
≥η0
k

ASa,≥η0
l/k
∼=

{
(UJ+, S′)∈Am+2

K ′ [0, 1]

∣∣∣∣∣ η
1/e′

0 ≤ |S′|< 1,

|P0| ≤|S′|e
′a, . . . , |Pm | ≤ |S′|e

′a

}
,

Z
≥η

1/e′
0

k′ ×Z
≥η0
k

ASa,≥η0
l/k,log

∼=

{
(UJ+, S′)∈Am+2

K ′ [0, 1]

∣∣∣∣∣ η1/e′

0 ≤ |S′|< 1, |P0| ≤ |S′|e
′(a+1),

|P1| ≤ |S′|e
′a, . . . , |Pm | ≤ |S′|e

′a

}
;
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Proof. The only thing not obvious is that we replace |Pj | ≤ |S|a(+1) by |Pj | ≤

|S′|e
′a(+e′); this is because |S| = |S′|e

′

as proved in Lemma 3.3.13(2). �

Remark 4.2.3. Note that Z≥η0
k → Z

η1/e′
0

k′ is not a morphism between rigid spaces for
the reason explained in Remark 3.3.14. So, strictly speaking, Z≥η

1/e′
0

k′ ×Z
≥η0
k

ASa,≥η0
l/k

and the log counterpart should be thought of as the geometric incarnations of the
tensor products of the corresponding ring of analytic functions. The new spaces
are, however, well-defined rigid analytic spaces over Z≥η

1/e′
0

k′ .

Theorem 4.2.4. For a ∈ Q>0, there is a one-to-one correspondence between the
geometric connected components of asa

l/k,(log) and the following limit of connected
components:

lim
←−
k′/k

lim
η0→1−

π
geom
0

(
Z
≥η1/e′

0
k′ ×Z

≥η0
k

ASa,≥η0
l/k(,log)

)
,

where e′ is the naïve ramification degree of k ′/k and the second limit only takes
η0 ∈ pQ

∩ (0, 1).

Proof. By Lemma 4.2.2 and Example 1.3.4, when e′a ∈ Z, Z≥η
1/e′
0

k′ ×Z
≥η0
k

ASa,≥η0
l/k(,log)

is a lifting space of asa
l/k(,log). The theorem then follows from Corollary 1.2.12. �

Remark 4.2.5. Here, we need η0 ∈ pQ
∩ (0, 1) since Corollary 1.2.12 requires it.

Remark 4.2.6. Introducing this ramified extension k ′/k to make e′a ∈ Z may not
be essential, but it eases the proof.

4.3. Comparison of rigid spaces. In this subsection, we will prove that the lifting
Abbes–Saito spaces are isomorphic to some thickening spaces we constructed in
Section 3.4. In this subsection, we continue to assume Hypotheses 2.3.2 and 3.3.1.

Before proving the comparison theorem, we need to analyze Construction 3.3.5
closely and give a new view of π̃∗ using differentials. However, the proofs of the
following two lemmas are not so enlightening in this generality; the reader may
skip them when reading the paper for the first time, but see Remark 4.3.5.

Lemma 4.3.1. Modulo p, the homomorphism π̃∗ gives a continuous homomor-
phism π̃∗ : κk → κk[[δJ ]]. For ḡ ∈ κk , we can write dḡ = ḡ1db̄1+ · · · + ḡmdb̄m in
�1
κk/Fp

. Then π̃∗(ḡ)≡ ḡ+ ḡ1δ1+ · · ·+ ḡmδm modulo (δJ )
2
· κK [[δJ ]].

Proof. Use the p-basis to express ḡ (uniquely) as ḡ =
∑p−1

eJ=0 ā p
eJ b̄eJ

J for some
āeJ ∈ κk . Thus, dḡ =

∑p−1
eJ=0 ā p

eJ d(b̄eJ
J ). On the other hand, we have

π̃∗(ḡ)≡
p−1∑
eJ=0

ā p
eJ
(b̄J + δJ )

eJ

modulo (δJ )
p
·κK [[δJ ]]. The statement follows by comparing the two formulas. �
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Remark 4.3.2. The analogous result for π̃∗ is true. Actually, π̃∗ is the Taylor
expansion homomorphism [Kedlaya 2007, Definition 2.2.2].

Lemma 4.3.3. Keep the notation as in Section 3.3. We have

det
(
∂(π̃∗(Pi )− Pi )

∂δ j

)
i, j∈J+

∣∣∣∣
δJ+=0

∈
(
OK [[S]]〈UJ+〉/(PJ+)

)×
= (OL [[T ]])×.

In particular, the corresponding matrix is invertible.

Proof. It is enough to prove that the matrix is of full rank modulo (p, T ). First,
modulo (p, T ), the first row will be all zero except the first element which is
d(c̄1, . . . , c̄m) ∈ κ

×

l . Hence, we need only to look at(
∂(π̃∗(Pi )−Pi )

∂δ j

)
i, j∈J

mod (p, T, δJ+)=

(
∂(π̃∗(b̄i )−b̄i )

∂δ j

)
i, j∈J

mod (t, δJ+). (4.3.4)

Let ᾱi j ∈ κl denote the entries in the matrix on the right-hand side of (4.3.4), where
we identify Ok〈uJ+〉/(pJ+, u0)

∼
→ κl . Under this identification, b̄i will become c̄pri

i
for all i ∈ J . It suffices to show that the i-th row is κl-linearly independent from
the first i − 1 rows for all i . Write

b̄i =

pr0−1∑
e1=0

· · ·

pri−1−1∑
ei−1=0

λ̄e1,...,ei−1ue1
1 · · · u

ei−1
i−1 ,

where λ̄e1,...,ei−1 ∈ κk for which dλ̄e1,...,ei−1 = µ̄e1,...,ei−1,1db̄1+· · ·+µ̄e1,...,ei−1,mdb̄m .
Then, by Lemma 4.3.1, we can write

ᾱi1db̄1+ · · ·+ ᾱimdb̄m

=

pr0−1∑
e1=0

· · ·

pri−1−1∑
ei−1=0

c̄e1
1 . . . c̄

ei−1
i−1 (µ̄e1,...,ei−1,1db̄1+ · · ·+ µ̄e1,...,ei−1,mdb̄m)

≡ d(c̄pri

i ) modulo (dc̄1, . . . , dc̄i−1)

in�1
ki−1/Fp

; it is in fact nontrivial because dc̄1, . . . , dc̄m form a basis of�1
κL/Fp

and
hence there should not be any auxiliary relation among dc̄1, . . . , dc̄i in�1

ki/Fp
. But

we know that the sums ᾱi ′1db̄1+· · ·+ᾱi ′mdbm for i ′< i all lie in the submodule of
�1

ki−1/Fp
generated by dc̄1, . . . , dc̄i−1. Hence the i-th row of the matrix in (4.3.4)

is ki−1-linearly independent from the first i − 1 rows. The lemma follows. �

Remark 4.3.5. When κl/κk is modular in the sense of [Sweedler 1968], we can
choose the p-basis of κk so that c̄pr j

j = b̄ j ; in that case, the above lemma is much
easier to prove because the matrix, modulo (p, T ), is lower triangular with 1 on
the diagonal. However, this may not be the case in general; see also Remark 3.3.6.
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Theorem 4.3.6. There exists η′0 ∈ (0, 1) such that for any a ∈ Q>1 and any η0 ∈

(max{p−1/a, η′0}, 1), there exists an isomorphism of rigid spaces over Z≥η0
k :

TSa,≥η0
k\l ' ASa,≥η0

l/k . (4.3.7)

Similarly, There exists η′0 ∈ (0, 1) such that for any a ∈ Q>0 and any η0 ∈

(max{p−1/a, η′0}, 1), there exists an isomorphism of rigid spaces over Z≥η0
k :

TSa,≥η0
k\l,log ' ASa,≥η0

l/k,log. (4.3.8)

Proof. We give the proof for the case of log-spaces and indicate the changes needed
for the nonlog case. The only significant difference between the two is that when
constructing the morphism χ2, we have slightly different approximations. We will
match up the ring of functions on the two rigid spaces in (4.3.8) in the log case and
(4.3.7) in the nonlog case.

Fix an η0 ∈ (p−1/a, 1) satisfying Hypothesis 3.3.16.
Recall that OTS

a,≥η0
k,log
= R

η0
K 〈S

−a−1δ0, S−aδJ 〉 (resp. OTS
a,≥η0
k
= R

η0
K 〈S

−aδJ+〉).
For each j ∈ J+, π̃∗(Pj ) is the polynomial Pj with coefficients replaced by their
pull-backs to OTS

a,≥η0
k,log

(resp. OTS
a,≥η0
k

) via π̃∗. So the rings of functions on TSa,≥η0
k\l,log

and TSa,≥η0
k\l are, respectively,

R1,log = R
η0
K 〈S

−a−1δ0, S−aδJ 〉〈UJ+〉/π̃
∗(PJ+),

R1 = R
η0
K 〈S

−aδJ+〉〈UJ+〉/π̃
∗(PJ+).

(4.3.9)

By Lemma 3.3.13(1),

π̃∗(Pj ) ∈U pr j

j − π̃
∗(B j )+ (p,U0, S, δ0) ·OK [[δJ+, S]][UJ+],

π̃∗(P0) ∈U e
0 − π̃

∗(D)S− δ0+ (p,U0S, S2,U0δ0, Sδ0, δ
2
0) ·OK [[δJ+, S]][UJ+].

Thus, we can view R1,log and R1 as finite free modules over OTS
a,≥η0
k,log

and
OTS

a,≥η0
k

, respectively, with basis {U eJ+

J+ | 0 ≤ e0 < e; 0 ≤ e j < pr j , j ∈ J }.
For each η ∈ [η0, 1), we norm R1,log and R1 as follows: for g =

∑
λeJ+

U eJ+

J+

with λeJ+
∈ OTS

a,≥η0
k,log

or λeJ+
∈ OTS

a,≥η0
k

, summed over e0 = 0, . . . , e − 1 and
e j = 0, . . . , pr j − 1 for j ∈ J , we define

|g|R1,log,η =max
eJ+
{|λeJ+

|TSa,η
k,log
· ηe0/e} and |g|R1,η =max

eJ+
{|λeJ+

|TSa,η
k
· ηe0/e}.

It is clear that R1,log and R1 are the Fréchet completions for the norms | · |R1,log,η

and | · |R1,η, for all η ∈ [η0, 1).
On the other hand, by the definition of ASa,≥η0

l/k,log and ASa,≥η0
l/k , their respective

rings of functions are

R2,log =R
η0
K 〈S

−a−1V0, S−a VJ 〉〈UJ+〉/(PJ+−VJ+),

R2 =R
η0
K 〈S

−a VJ+〉〈UJ+〉/(PJ+−VJ+),
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which are clearly finite free modules over Wlog =R
η0
K 〈V0/η

a+1, VJ/η
a
〉 and W =

R
η0
K 〈VJ+/η

a
〉, respectively, with basis {U eJ+

J+ | 0≤ e0 < e; 0≤ e j < pr j , j ∈ J }.
Similarly, for η∈[η0, 1), we norm R2,log and R2 as follows: for g=

∑
λeJ+

U eJ+

J+

with λeJ+
∈Wlog or λeJ+

∈W , summed over e0=0, . . . , e−1 and e j=0, . . . , pr j−1
for j ∈ J , we define

|g|R2,log,η =max
eJ+
{|λeJ+

|Wlog · η
e0/e} and |g|R2,η =max

eJ+
{|λeJ+

|W · η
e0/e}.

It is clear that R2,log and R2 are the Fréchet completions for the norms | · |R2,log,η

and | · |R2,η, for all η ∈ [η0, 1).
We will identify the UJ+ in different rings, but VJ+ will not be same as δJ+ . Be

cautioned that the two norms will not be the same under the identification; but they
will give the same topology.

Now, we define a continuous K-homomorphism χ1 : R2,log → R1,log (resp.
χ1 :R2→R1) so that χ1(S)= S, χ1(U j )=U j , χ1(V j )= Pj (UJ+) for all j ∈ J+.
We need only to check that for any η ∈ [η0, 1),

|χ1(V j )|R1,log,η ≤

{
ηa+1 if j = 0,
ηa if j ∈ J,

|χ1(V j )|R1,η ≤ η
a for all j ∈ J+.

(4.3.10)

Here we need separate arguments for the logarithmic and nonlogarithmic cases. In
the former case, inequality (3.2.9) says that

|Pj − π̃
∗(Pj )|R1,log,η ≤ η

a
|Pj |R2,log,η

for j ∈ J+, which gives exactly the bound in (4.3.10) because |P0|R2,log,η ≤ η and
|Pj |R2,log,η ≤ 1 for j ∈ J by Lemma 3.3.13(1).

In the nonlogarithmic case, combining Lemma 3.3.13(1) and inequality (3.2.10),
one has |Pj − π̃

∗(Pj )|R1,η ≤ η
a for j ∈ J+; inequality (4.3.10) follows.

Conversely, we will define a continuous K-homomorphism χ2 :R1,log→R2,log

or χ2 :R1→R2 as the inverse to χ1. Obviously, we need χ2(S)= S, χ2(U j )=U j

for all j ∈ J+. The only thing not clear is χ2(δ j ) for all j ∈ J+.
By Lemma 4.3.3, let

A :=
(
∂(π̃∗(Pi )− Pi )/∂δ j

)
i, j∈J+

∣∣
δJ+=0 ∈ GLm+1(OL [[T ]])

∼= GLm+1
(
OK [[S]]〈UJ+〉/PJ+

)
.

Let B be the (m + 1) × (m + 1) matrix whose entries are in the free OK [[S]]-
module generated by the basis in Lemma 3.3.13(1) and which has image A−1 in
Mm+1(OK [[S]]〈UJ+〉/(PJ+)). Then, if I denotes the (m + 1)× (m + 1) identity
matrix, we have

B A− I ∈Matm+1
(
(δJ+) ·OK [[S]]〈UJ+〉

)
, (4.3.11)
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Now, we writeδ0
...

δm

= (I−B A)

δ0
...

δm

−B


 π̃

∗(P0)−P0
...

π̃∗(Pm)−Pm

−A

δ0
...

δm


−B

 P0
...

Pm

 , (4.3.12)

the last term being just −Bχ1(VJ+). We need to bound the first two terms.
By (4.3.11), I − B A has norm ≤ ηa . Hence, in the nonlogarithmic case, the

first term in (4.3.12) has norm ≤ η2a; in the logarithmic case the first term in
(4.3.12) has norm ≤ η2a , except for the first row, which has norm ≤ η2a+1. By the
definition of A and Theorem 3.2.8, the second term in (4.3.12) has norm ≤ η2a in
the nonlogarithmic case; it has norm ≤ η2a in the logarithmic case, except for the
first row, which has norm ≤ η2a+1.

Since we want χ2 to be the inverse of χ1, we define recursively

χ2

δ0
...

δm

=−B

V0
...

Vm

+χ2

30
...

3m

 , (4.3.13)

where3J+ denotes the sum of the first two terms in (4.3.12). Since3J+ has strictly
smaller norm than δJ+ and is in the ideal (δJ+), one can plug the image of χ2(δJ+)

back into χ2(3J+) and iterate this substitution. This iteration will converge to the
value of χ(δJ+) as an element in R2,log or R2. Moreover, from the construction,
one can see that

|χ2(δ j )|R1,η ≤ η
a for all η ∈ [η0, 1) and j ∈ J+,

|χ2(δ0)|R1,log,η ≤ η
a+1
}

for all η ∈ [η0, 1) and j ∈ J .
|χ2(δ j )|R1,log,η ≤ η

a

Hence, if we define

χ2 :R
η0
K 〈S

−a−1δ0, S−aδJ 〉〈UJ+〉 →R2,log and χ2 :R
η0
K 〈S

−aδJ+〉〈UJ+〉 →R2

by χ2(uJ+) = uJ+ , then χ2(δJ+) is the limit we obtained above; this gives a con-
tinuous homomorphism. We will check that this homomorphism factors through
R1,log or R1. Indeed, by the recursive formula (4.3.13), which is (4.3.12) after
applying χ2, we see that

−Bχ2

 π̃
∗(P0)− P0

...

π̃∗(Pm)− Pm

− B

V0
...

Vm

=
0
...

0

 .
We know that B has an invertible image in GLm+1(OK [[S]]〈UJ+/(PJ+)), and so
is invertible over R1,log or R1. We must have 0 = χ2(π̃

∗(Pj ) − Pj ) + V j =
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χ2(π̃
∗(Pj ))+ V j − Pj = χ2(π̃

∗(Pj )) for all j ∈ J+. This proves that χ2 factors
through R1,log or R1.

Finally, we claim that χ2 and χ1 are inverse to each other. One may check this
from the definition directly. Alternatively, we observe that, by our definition, they
are inverse to one another on a dense subset K [S, uJ+], the polynomial ring inside
the Fréchet algebras; therefore, they have to be inverse to one another and give an
isomorphism between the ring of functions on Abbes–Saito space and the ring of
functions on thickening space. �

Remark 4.3.14. The isomorphisms constructed in Theorem 4.3.6 are canonical
in the sense that they match up UJ+ on both sides. However, slight perturbations
of the isomorphisms will continue to be isomorphic. This point will be important
when studying the mixed characteristic case.

4.4. Comparison of conductors. In this subsection, we will prove the comparison
between the arithmetic conductors and the differential conductors. As a reminder,
we do not impose Hypotheses 2.3.2 and 3.3.1 in this subsection.

Theorem 4.4.1. Let k be a complete discretely valued field of equal characteristic
p > 0 and let Gk be its absolute Galois group. For a p-adic representation ρ :
Gk → GL(Vρ) of finite local monodromy, the arithmetic Artin conductor Artar(ρ)

of ρ coincides with the differential Artin conductor Artdif(ρ); the arithmetic Swan
conductor Swanar(ρ) coincides with the differential Swan conductor Swandif(ρ).

Proof. It suffices to prove this for irreducible representations, as all the conductors
are additive. All the conductors remain the same if we pass to the completion of the
unramified closure of k, by Proposition 4.1.7(4) and Theorem 2.4.1(2). Thus we
may assume that the residue field κk is separably closed; hence ρ factors through
the Galois group of a finite totally ramified extension l/k as ρ :Gk � Gal(l/k) ↪→
GL(Vρ) with the second map injective. Moreover, we may assume that l/k is
wildly ramified because the theorem is known when l/k is tamely ramified, by
Proposition 4.1.7(6) and Theorem 2.4.1(3). To sum up, we may assume Hypothesis
3.3.1. In particular, bar(l/k) > 1 and bar,log(l/k) > 0.

Next, we want to reduce to the case when the p-basis of k is finite. In view of
Construction 3.3.5, one can choose a p-basis of l so that all but a finite number
of elements are actually in k. Let (ci )i∈I be a subset of those elements in the p-
basis which lie in k. Set k̃ = k(c1/pn

i | i ∈ I, n ∈ N)∧ and l̃ = lk̃. We claim that
Ol̃ = Ol ⊗Ok Ok̃ . Indeed, after base change to k̃, the valued groups do not change:
|k̃×| = |k×|. Thus, [|l̃×| : |k̃×|] ≥ [|l×| : |k×|]. On the other hand, the residue field
extension of l̃/k̃ has degree at least the same as κl/κk because c̄J\I are not in the
residue field of k̃. But we know that the degree of the extension does not increase.
Therefore, we have equality on both naı̈ve ramification degrees and degrees of
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residue field extension. It is then clear that Ol̃ = Ol ⊗Ok Ok̃ , as the right-hand side
contains the uniformizer of the left-hand side and both sides are isomorphic modulo
that uniformizer. Therefore, by Proposition 4.1.7(4), bar(l̃/k̃)= bar(l/k).

On the differential conductors side, [Kedlaya 2007, Lemma 3.5.4] shows for
the log case (the nonlog case follows by a similar argument) that we can consider
only a finite number of elements in the p-basis and the differential conductors are
unchanged after taking an inseparable field extension with respect to other elements
in the p-basis.

To sum up, we can make an inseparable extension so that all conductors do not
change, and we are reduced to the case where Hypothesis 2.3.2 holds.

Now, we will prove the comparison theorem for the Swan conductors and the
proof for the Artin conductors follows verbatim, except replacing Swan by Art,
replacing a > 0 by a > 1, and dropping all the logs in the subscripts.

Since ρ is irreducible, Swanar(ρ) = bar,log(l/k) · dim Vρ . Recall from Section
2.3, we can associate with ρ a differential module Eρ over R

η0
K ⊗Qq F for some η0∈

(0, 1). As the representation ρ is irreducible, Eρ has a unique ramification break
bdif,log(Eρ). So the differential Swan conductor of ρ is Swandif(ρ) = bdif,log(Eρ) ·

dim Vρ . Therefore, to conclude, it suffices to show that bar,log(l/k)= bdif,log(Eρ).
We do this by means of a chain of equivalences. By the equivalence (a)⇐⇒ (d)

in Theorem 3.4.12, the inequality a > bdif,log(Eρ) is equivalent to this condition:

For any (or some) extension l ′/ l with naı̈ve ramification degree e′,

π
geom
0

(
Z≥η

1/ee′
0

l ′ ×Z
≥η

1/e
0

l
TSa,≥η0

l/k\l,log

)
= [l : k], when η0→ 1−. (∗)

By Theorem 4.2.4, the condition (∗) is equivalent to πgeom
0 (asa

l/k,log) = [l : k],
where a is a rational number. But this is the same as a > bar,log(l/k). �

Remark 4.4.2. In an early version of this paper, Theorem 4.4.1 is stated for repre-
sentations with finite image. Andrea Pulita pointed out that this could be extended
to the finite local monodromy case by a standard argument as in the proof.

Corollary 4.4.3. (a) (Hasse–Arf Theorem) Let k be a complete discretely valued
field of equal characteristic p> 0, let Gk be its absolute Galois group, and let
ρ :Gk→GL(Vρ) be a p-adic representation of finite local monodromy. Then
the arithmetic Artin conductor Artar(ρ) and the arithmetic Swan conductor
Swanar(ρ) are integers.

(b) Let k be a complete discretely valued field of equal characteristic p> 0. Then
the subquotients Fila Gk/Fila+ Gk (resp. Filalog Gk/Fila+log Gk) of the arith-
metic ramification filtrations are elementary p-abelian groups if a ∈ Q>1

(resp. a ∈Q>0) and are trivial if a /∈Q.

Proof. This follows from Theorems 2.4.1 and 4.4.1. �
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5. Applications

In this section, we give two applications of the comparison Theorem 4.4.1. The first
is to deduce an integrality result concerning the ramification filtration of finite flat
group schemes, introduced in [Abbes and Mokrane 2004]. The other is to compare
the arithmetic and differential Artin conductors to the Artin conductor defined by
Borger [2004].

Remark 5.0.4. All applications in this section can be carried over to the mixed
characteristic case if there is a good theory of differential conductors. For the
application to finite flat group schemes, one needs the Hasse–Arf theorem of arith-
metic Artin conductors; for the comparison with Borger’s Artin conductor, one
needs a mixed characteristic version of Proposition 5.4.1. In the absence of these
statements, we only focus on the equal characteristic p case throughout this section.

5.1. Hasse–Arf theorem for finite flat group schemes. We first recall some defi-
nitions and basic properties from [Abbes and Mokrane 2004; Hattori 2008]. Then,
we use a theorem by Raynaud [Berthelot et al. 1982, théorème 3.1.1] to reduce
the integrality result to the case of finite Galois extension of complete discretely
valued fields.

Keep the notation as in previous sections. We do not assume any hypothesis on
k (and there will be no l in this subsection).

Convention 5.1.1. All finite flat groups schemes are commutative.

The construction of the canonical filtration on a generically étale finite flat group
scheme is similar to that of the arithmetic ramification filtration.

Definition 5.1.2. Let A be a finite flat Ok-algebra. Write A = Ok[x1, . . . , xn]/I

with I an ideal generated by f1, . . . , fr . For a ∈Q>0, define the rigid space

Xa
=
{
(x1, . . . , xn) ∈ An

K [0, 1]
∣∣ | fα(x1, . . . , xn)| ≤ θ

a, α = 1, . . . , r
}
,

where θ = |s| as in Notation 4.1.1. The highest break b(A/Ok) is the smallest
number such that πgeom

0 (Xa)= rankOk A for all a > b(A/Ok). This is the same as
Definition 4.1.3 if A = Ol , except here we use the ring of integers instead of the
fields in the notation.

Notation 5.1.3. A finite flat group scheme G = Spec A is generically étale if
G ×Ok k is étale over k; it is generically trivial if G ×Ok k is a disjoint union
of copies of Spec k.

Definition 5.1.4. For a geometrically étale finite flat group scheme G = Spec A,
we have a natural map of points G(kalg) ↪→ Xa(kalg); further composing with the
map for geometric connected components, we obtain a map

σ a
: G(kalg) ↪→ Xa(kalg)→ π

geom
0 (Xa).
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Define Ga to be the closure of ker σ a . We use b(G/Ok) to denote the highest break
b(A/Ok); then for a > b(G/Ok), Ga

= Spec Ok .

Proposition 5.1.5 [Abbes and Mokrane 2004, lemme 2.3.2]. Let

0→ G ′→ G→ G ′′→ 0

be an exact sequence of finite flat group schemes. For a > 0,

0→ G ′a→ Ga
→ G ′′a→ 0

is exact.

Caution 5.1.6. For a subgroup scheme H ⊂ G and a ≥ 0, we do not know how to
link Ha with H ×G Ga .

The following question was first raised in [Hattori 2008], and the result is essen-
tially due to Hattori. The author thanks him for clarifying this and for permission
to include the proof here.

Theorem 5.1.7. Let Ok be a complete discrete valuation ring of equal character-
istic p. For any generically trivial finite flat groups scheme G over Ok , b(G/Ok) is
a nonnegative integer.

Proof. We may assume that G is connected by taking the connected component
of the identity. By a theorem of Raynaud [Berthelot et al. 1982, théorème 3.1.1],
we may realize G as the kernel of an isogeny f :B→ A of two abelian schemes
over Spec Ok . Let α and β be generic points of the special fibers of A and B,
respectively. Then by [Abbes and Mokrane 2004, lemme 2.1.6], b(O∧B,β/O

∧

A,α) =

b(G/Ok).
Since the generic fiber of G is a disjoint union of copies of Spec k, we know

that O∧B,β/O
∧

A,α is a generically étale finite Galois extension of complete discrete
valuation rings, with Galois group G(k); in particular, all irreducible representa-
tions of this Galois group over an algebraically closed field are one-dimensional.
By Hasse–Arf Theorem 4.4.1, b(O∧B,β/O

∧

A,α)= b(G/Ok) is an integer. �

5.2. Generic p∞-th roots. In this subsection, we introduce the notation of generic
p∞-th roots. This idea was first introduced in [Borger 2004] as a key ingredient of
Borger’s Artin conductor.

Keep the notation as in previous sections. We assume Hypothesis 2.3.2, that k
has a finite p-basis bJ .

Notation 5.2.1. Let x1, . . . , xm be transcendental over k. Define k ′ to be the com-
pletion of k(x1, . . . , xm) with respect to the (1, . . . , 1)-Gauss norm. Set l ′ = k ′l.
Clearly, l ′ is the completion of l(x1, . . . , xm) with respect to the (1, . . . , 1)-Gauss
norm. We call x1, . . . , xm dummy variables.
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Definition 5.2.2. We use adding generic p∞-th roots to refer to the following
procedure. Consider

k ↪→ k̃ = k ′
(
(b j + x j s)1/pn

; j ∈ J, n ∈ N
)∧
,

instead of k; namely, put all p-power roots of b j + x j s for all j ∈ J into k ′ and
then take the completion. We provide k̃ with the p-basis x J , i.e., replacing b j by
x j for all j ∈ J . For a finite field extension l/k, we replace it by the extension of
the composite l̃ = lk̃/k̃. Note that Gal(l̃/k̃)=Gal(l/k) as k̃ is linearly independent
from l.

The proof of the following proposition is essentially the same as [Kedlaya 2007,
Lemma 3.5.4]. It is also implicitly contained in Borger’s construction of Artin
conductors (Section 5.3).

Proposition 5.2.3. Let l/k be a finite Galois extension of complete discretely val-
ued fields of equal characteristic p and with finite p-basis. Then, after a finite
number of operations of adding generic p∞-th roots, the field extension has sepa-
rable residue field extension.

Proof. First, the tamely ramified part is always preserved under these operations.
So, we can assume that l/k is totally wildly ramified and hence the Galois group
Gl/k is a p-group. We can filter the extension l/k as k = k0 ⊂ · · · ⊂ kn = l, where
ki/ki−1 is a (wildly ramified) Z/pZ-Galois extension and ki/k is Galois for each
i = 1, . . . , n. Each of these subextensions

(a) either has inseparable residue field extension (and so has naı̈ve ramification
degree 1), or

(b) has separable residue field extension (and so has naı̈ve ramification degree p).

Let i0 be the maximal number such that ki/ki−1 has separable residual extension
for i = 1, . . . , i0. Obviously adding generic p∞-th roots does not decrease i0

because after adding generic p∞-th roots, the naı̈ve ramification degree of k̃i0/k̃
still equals the degree pi0 . It then suffices to show that after a finite number of
operations of adding generic p∞-th roots, ki0+1/ki0 has separable residue field
extension. Suppose the contrary.

Let g ∈ Gki0+1/ki0
' Z/pZ be a generator. We claim that

γ =minw∈Oki0+1

(
vki0+1(g(w)−w)

)
decreases by at least 1 after adding p∞-th roots. This would conclude the propo-
sition, as γ is always a nonnegative integer, which would lead to a contradiction.

Let z be a generator of Oki0+1 as an Oki0
-algebra. It satisfies an equation

z p
+ a1z p−1

+ · · ·+ ap = 0, (5.2.4)
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where a1, . . . , ap−1 ∈ mki0
and ap ∈ O×ki0

with āp ∈ κ
×

ki0
\(κ×ki0

)p
= κ×k \(κ

×

k )
p. It is

easy to see that γ = vki0
(g(z)− z).

Adding generic p∞-th roots to k gives us the field k̃. Now, the field extension
k̃ki0+1/k̃ki0 is also generated by z as above. But we can write ap = α

p
+ β for

α ∈ Ok̃ki0
and β ∈ mk̃ki0

. Hence if we substitute z′ = z + α into (5.2.4), we get
z′p + a′1z′p−1

+ · · · + a′p = 0, with a′1, . . . , a′p ∈ mk̃ki0
. Hence, vk̃ki0+1(z

′) > 0.
By assumption that the extension k̃ki0+1/k̃ki0 has naı̈ve ramification degree 1, a
uniformizer πki0

of ki0 is also a uniformizer for k̃ki0+1 and hence z′/πki0
lies in

Ok̃ki0+1
. Thus,

γ ′ =minw∈Ok̃ki0+1

(
vk̃ki0+1

(g(w)−w)
)

≤ vk̃ki0+1

(
g(z′/πki0

)− z′/πki0

)
= vki0+1(g(z)−z)− 1= γ − 1.

This proves the claim and hence the proposition. �

5.3. Borger’s Artin conductors. We start with reviewing Borger’s definition of
Artin conductors following [Borger 2004]. Then, we prove the comparison theo-
rem linking this to arithmetic and differential conductors.

Keep the notation as above. Let k be a complete discretely valued field of equal
characteristic p, with no further hypothesis added. In fact, Borger’s construction
works in the mixed characteristic case, but we only focus on the equal characteristic
case (see Remark 5.0.4).

Definition 5.3.1. An Fp-algebra R is called perfect if F : x 7→ x p is an isomor-
phism. For an Fp-algebra R, we use Rpf

=
⋃

n∈N R1/pn
to denote its perfec-

tion. Let CRPOk be the subcategory of the category of Ok-algebras consisting of
flat Ok-algebras A, complete with respect to the mk-adic topology and for which
A/mk A is perfect.

Proposition 5.3.2 [Borger 2004, Theorem 1.4]. This category CRPOk has an initial
object Ou

k , the universal residual perfection of Ok . We have an equivalence of
categories

CRPOk

∼
→ PerfAlgOu

k
, A 7→ A/mk A, (5.3.3)

where PerfAlgOu
k

is the category of perfect Ou
k/mkOu

k -algebras.

Definition 5.3.4. Let O
g
k be the inverse image of Frac(Ou

k/mkOu
k ) under (5.3.3),

called the generic residual perfection of Ok . Let

kg
= Frac(Og

k ).

By Proposition 5.3.2, O
g
k is a complete discrete valuation ring with perfect residue

field.
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We have a homomorphism of Galois groups Gkg → Gk . Given a representation
ρ of Gk with finite image, we define the Borger’s Artin conductor ArtB(ρ) to be
Art(ρGkg ), where the latter term is as in the classical definition [Serre 1979].

Remark 5.3.5. Borger [2004] only defined Artin conductors for representations of
finite image. We expect his definition can be extended to representations of finite
local monodromy. However, this additional freedom is not essential, so we stick
to the finite image case to ease the argument.

Obviously, Borger’s Artin conductors have a Hasse–Arf property naturally in-
herited from that of kg, a complete discretely valued field with perfect residue
field.

Proposition 5.3.6 [Borger 2004, Theorem A]. Borger’s Artin conductor ArtB(ρ)

is a nonnegative integer and it coincides with the classical definition when the
residue field κk is perfect.

[Borger 2004, Proposition 2.3] Furthermore, ArtB(ρ) is unchanged after a finite
unramified extension of k.

Moreover, Borger proved that his definition coincides with a variant of arith-
metic Artin conductor ArtK for characters using the definition of Kato [1989]. (As
we will not use Kato’s definition, we just mention the following proposition as a
fact.)

Proposition 5.3.7 [Borger 2004, Theorem B]. Let χ be a class in H 1(Gk,Q/Z)

and χ ′ its image in H 1(Gkg ,Q/Z). Then ArtK (χ) = ArtK (χ
′). In particular, for

a rank-one representation ρ of Gk with finite image, ArtK (ρ)= ArtB(ρ).

Borger gave the following explicit descriptions of ku and kg.

Proposition 5.3.8. We have ku
= (κk[vi, j | j ∈ J, i ∈ N])pf((πku )). The homo-

morphism k ↪→ ku is determined by s 7→ πku and b j 7→ b j +
∑

i>0 vi, jπ
i
ku . Also,

kg
= Frac(κk[vi, j ; j ∈ J, i ∈ N]pf)((πku )) and the homomorphism k→ kg is given

by composing k ↪→ ku with the natural morphism ku ↪→ kg.

5.4. Comparison with Borger’s conductors. The key to proving the comparison
between Borger’s Artin conductors and the arithmetic Artin conductors is to study
how the arithmetic Artin conductors behave under the operations of adding generic
p∞-th roots.

In this subsection, we do not impose any hypothesis on k.

Proposition 5.4.1. Assume Hypothesis 2.3.2. For representations of finite image,
the differential Artin conductor for a representation of finite image is unchanged
after adding generic p∞-th roots.
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Proof. Since the operation of adding p∞-th roots does not change the Galois group
of the finite Galois extension, we may assume that the representation is irreducible
and totally and wildly ramified. Hence it suffices to consider the differential rami-
fication break of a totally and wildly ramified finite Galois extension l/k.

Recall that we have a differential module E over Z≥η0
k = A1

K [η0, 1) for some
η0 ∈ (0, 1) with differential operators ∂BJ and ∂S , associated with the regular rep-
resentation of Gal(l/k) over Qp. The base change k ↪→ k ′ = k(x J )

∧ is translated
into the base change of E into E′, from Z≥η0

k to Z≥η0
k′ = A1

K (X J )∧
[η0, 1), where

K ′ = K (X J )
∧ is the completion of K (X J ) with respect to the (1, . . . , 1)-Gauss

norm; E′ has differential operators ∂BJ , ∂X J , and ∂S .
Consider the rotation f : Z≥η0

k′ → Z≥η0
k′ by f ∗(BJ )= BJ + X J S, f ∗(X J )= X J ,

and f ∗(S) = S; write ∂ ′BJ
, ∂ ′X J

, and ∂ ′S for the action of differential operators on
f ∗E′. Then

∂ ′BJ
= ∂BJ , ∂ ′X J

= S · ∂BJ + ∂X J , ∂ ′S =
∑
j∈J

X j · ∂B j + ∂S.

Since X J are transcendental over K , we have

max{|∂BJ |Eη,sp, |∂S|Eη,sp, |∂X J |Eη,sp} = |∂
′

S|E′η,sp

=max{|∂ ′X J
|E′η,sp, |∂

′

S|E′η,sp} (5.4.2)

for all η ∈ [η0, 1). Note that adding generic p∞-th roots to k corresponds exactly
to replacing E by f ∗E′ and forgetting the differential operators BJ . By (5.4.2), the
differential nonlogarithmic ramification break of l̃/k̃ is the same as that of l/k. �

Theorem 5.4.3. For a complete discretely valued field k of equal characteristic
p and a representation ρ of its Galois group Gk with finite image, the arithmetic
Artin conductors Artar(ρ) as well as the differential Artin conductors Artdif(ρ) are
the same as Borger’s Artin conductors ArtB(ρ).

Proof. First we may assume that ρ is irreducible and it factors exactly through the
Galois group Gl/k of a totally ramified Galois extension l/k because all conductors
are additive and remain the same under a (finite) unramified extension (Theorem
2.4.1(c) and Propositions 4.1.7(d) and 5.3.6). As kg has a perfect residue field,
ArtB(ρ) = ArtB(ρ|Gkg ) = Artdif(ρ|Gkg ) are the same as in the classical definition.
It suffices to show Artdif(ρ)= Artdif(ρ|Gkg ).

Similarly to the proof of Theorem 4.4.1, one may add the p∞-th roots of all but
a finite number of elements of the p-basis into k without changing the differential
Artin conductors. In other words, there exists k ↪→ k1= k(bp−n

j | j ∈ J\J0, n ∈N)∧

for some finite set J0 ⊂ J , such that Artdif(ρ) = Artdif(ρ|Galk1
). Since the residue

field of kg is perfect, there exists k1 ↪→ kg extending k ↪→ kg. Hence, we may
assume Hypothesis 2.3.2, i.e., k has a finite p-basis.
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By Proposition 5.2.3, we can do a finite number of operations of adding generic
p∞-th roots and make the resulting field extension k2l/k2 not fiercely ramified and
Artdif(ρ|Gk1

)=Artdif(ρ|Gk2
). In order to link k2 with kg, we need to show that we

have a homomorphism k2 ↪→ kg extending k1 ↪→ kg, for which we return to the
proof of Proposition 5.2.3 and construct the homomorphism step by step.

The r -th (1≤ r ≤ r0) step of adding generic p∞-th roots is to construct

k(r)1 =

(
k(r−1)

1 (xr,J )
(
(xr−1, j + xr, jπk)

1/pn
; j ∈ J, n ∈ N

))∧
,

where x0, j = b j for j ∈ J and k(0)1 = k1. One checks that the map given by

xr, j 7→
∑
r ′≥r

vr ′, jπ
r ′−r
kg

for all j ∈ J and r = 1, . . . , r0, gives the desired homomorphism k2 ↪→ kg.
Now, k2l/k2 has naı̈ve ramification degree [k2l : k2], so Okgl = Okg ⊗Ok2

Ok2l .
Hence we have

Artdif(ρ|Gk2
)= Artar(ρ|Gk2

)= Artar(ρ|Gkg )= Artdif(ρ|Gkg )

via Theorem 4.4.1 and Proposition 4.1.7(d). �
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Exponential generation and largeness for
compact p -adic Lie groups

Michael Larsen

Given a fixed integer n, we consider closed subgroups G of GLn(Zp), where p
is sufficiently large in terms of n. Assuming that the identity component of the
Zariski closure G of G in GLn,Qp does not admit any nontrivial torus as quotient
group, we give a condition on the (mod p) reduction of G which guarantees that
G is of bounded index in GLn(Zp)∩G(Qp).

Nori [1987] considered a special class of subgroups of GLn(Fp), namely groups
which are generated by elements of order p or, as we shall say, p-generated groups.
He showed that if p is sufficiently large in terms of n, there is a correspondence be-
tween p-generated groups and a certain class of connected algebraic groups which
he called exponentially generated. In particular, every p-generated group 0 is a
subgroup of G(Fp) for the corresponding algebraic group G, and [G(Fp) : 0] is
bounded by a constant depending only on n. The p-generated groups are admit-
tedly rather special, but on the other hand, every finite subgroup 0 ⊂ GLn(Fp)

contains a p-generated normal subgroup, 0+, of prime-to-p index, which shows
that every 0 can be related to a connected algebraic group in a weak sense. This
construction can serve in some measure as a substitute for the (identity component
of the) Zariski closure in the setting of finite linear groups, where the actual identity
component of the Zariski closure of 0 is always trivial.

In this paper we consider closed subgroups G of the compact p-adic Lie group
GLn(Zp). In this setting, of course, Zariski closure behaves well, so we do not need
a substitute. Nevertheless, it turns out that there is an interesting class of groups
G for which we can prove a bounded index result analogous to that of Nori: see
Theorem 7. We intend to give an application of this result to geometric monodromy
of nonsingular projective varieties over function fields in finite characteristic.

Throughout the paper, n will denote a positive integer and F a field. If F is
of characteristic p > 0, we assume p ≥ n, so i ! is nonzero for i < n. As every

The author was partially supported by NSF grants DMS-0354772 and DMS-0800705.
MSC2000: primary 20G25; secondary 20G40.
Keywords: exponentially generated, Nori’s theorem, p-adic Lie group.
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nilpotent element x ∈ Mn(F) satisfies xn
= 0, the truncated exponential function

exp(x) :=
n−1∑
i=0

x i

i !

satisfies exp(x + y) = exp(x) exp(y) for every pair x, y of commuting nilpotent
matrices. Moreover exp(x)− 1 is nilpotent, so exp(x) is unipotent. Conversely, if
u is unipotent, 1− u is nilpotent, so

log(u) := −
n−1∑
i=1

(1− u)i

i

is nilpotent, and log and exp set up mutually inverse bijections between the unipo-
tent and nilpotent n× n matrices over F . In the positive characteristic case, every
unipotent element u 6= 1 is of order p, and conversely, every element of order p is
unipotent (because this is true for every Jordan block of order ≤ p).

For every nilpotent element x ∈ Mn(F), there exists a morphism of algebraic
groups φx : A1

→ GLn defined by

φx(t) := exp(t x).

If x 6= 0, this morphism is injective, and its image is isomorphic to A1. If N is a
set of nilpotent elements of Mn(F), let G N denote the subgroup of GLn generated
by φx(A

1) for all x ∈ N , i.e., the intersection of all algebraic subgroups of GLn

which contain ⋃
x∈N

φx(A
1).

Following Nori we say that an algebraic subgroup of GLn over a field F is expo-
nentially generated if it is of the form G N for some N ⊂ Mn(F).

Proposition 1. Over a perfect field, every exponentially generated group is the
extension of a semisimple group by a unipotent group.

Proof. It is clear that every quotient group of an exponentially generated group G
must be generated by subgroups isomorphic to the additive group. In particular
exponentially generated groups must be connected, and every reductive exponen-
tially generated group must be semisimple since no nontrivial torus is generated
by additive groups. As long as F is perfect, the (geometric) unipotent radical N
is actually defined over F , so G is an extension of the semisimple group G/N by
the unipotent group N . �

In general, the converse of Proposition 1 is not true. For example, if F =R, GLn

contains F-anisotropic connected semisimple subgroups which have no nontrivial
unipotent elements. If F is of positive characteristic, even if it is algebraically
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closed, the image of SL2 under the 4-dimensional representation which is the direct
sum of the standard representation and its Frobenius twist fails to be exponentially
generated. In characteristic zero, we have a precise criterion for exponential gen-
eration.

Proposition 2. Let F be a field of characteristic zero. An algebraic subgroup G
of GLn defined over F is exponentially generated if and only if it has no nontrivial
finite, toric, or anisotropic quotient group.

Proof. As there is no nontrivial homomorphism from an additive group to a finite,
toric, or anisotropic group, one direction is clear. For the other, let U denote a
unipotent F-subgroup of G. Thus U has a composition series

U =U0 ⊃U1 ⊃ · · · ⊃Us = {e},

with each Ui/Ui+1 isomorphic to the additive group. By Steinberg’s theorem
[1965], H 1(F,Ui ) = 0 for all i , so for each 1 ≤ i ≤ s we have a short exact
sequence

0→Ui (F)→Ui−1(F)→ F→ 0,

and there exists ui−1 ∈Ui−1(F) \Ui (F). As F is of characteristic zero,

〈ui 〉 ⊂Ui−1(F)∩φlog(ui )(F)

is isomorphic to Z, so φlog(ui )(A
1)∩Ui−1 has dimension 1, which means φlog(ui )(A

1)

⊂Ui−1. It follows that

φlog(ui )(A
1)Ui =Ui−1.

Thus, by descending induction,

U =
s∏

i=1

φlog(ui−1)(A
1).

Let H denote the quotient of G = G◦ by its unipotent radical N . As H is
isotropic, the set P of its proper parabolic F-subgroups is nonempty. For each P ∈
P, let UP denote the inverse image in G of the unipotent radical of P . Thus each
UP is a unipotent F-subgroup of G containing N . Each is therefore exponentially
generated. Let K ⊂ G be the (exponentially generated group) generated by all
UP . Thus K is normalized by the inverse image of H(F) in G. By a theorem of
[Chevalley 1954], H(F) is Zariski-dense in H , so K is normal in G. Thus G/K is
isomorphic to a quotient H/(K/N ), which is isotropic. It follows that P contains a
proper parabolic F-subgroup not contained in K/N , contrary to assumption. Thus
K = G, and G is exponentially generated. �
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We say that a Lie algebra is nilpotently generated if it is spanned by its nilpotent
elements. By [Nori 1987, Theorem A], if F is of characteristic zero or charac-
teristic p sufficiently large in terms of n, the log and exp maps give mutually in-
verse bijections, described more explicitly below, between exponentially generated
F-subgroups of GLn and nilpotently generated F-subalgebras of the Lie algebra
Mn = gln .

The following proposition allows us to put all exponentially generated subgroups
(as well, possibly, as other subvarieties of GLn) into a family over a base of finite
type. It is convenient to work projectively, by embedding GLn into Pn2

. For any
scheme Z and any closed subvariety K of GLn,Z , we denote by K̄ the closed subset
Z ∪ (Pn2

Z \GLn,Z ) endowed with its reduced induced scheme structure.

Proposition 3. For every positive integer n there exists an integer N and a finite set
S of polynomials such that for every field F over Z[1/N ] and every exponentially
generated subgroup GF ⊂ GLn,F , the Hilbert polynomial of ḠF belongs to S.

Proof. We prove that there exists a positive integer N and a morphism Y ′→ X ′

of schemes of finite type over Z such that for all F whose characteristic does not
divide N and all exponentially generated GF ⊂GLn,F , there exists x ′ ∈ X ′(F) with
Y ′x ′ = ḠF . By [Grothendieck 1961, §2], the set of Hilbert polynomials for the ḠF

is therefore finite.
We begin by trying to parametrize nilpotently generated Lie algebras. The set of

k-tuples of nilpotent n×n matrices which span a Lie subalgebra of n×n matrices
is constructible because Lie algebra closure can be expressed as the existence of a
set of k3 structure constants for the Lie bracket. Let Nn/Z denote the scheme of
nilpotent n × n matrices and W ⊂ N n2

n the constructible set of ordered n2-tuples
of nilpotent matrices spanning a Lie algebra. Replacing W with the disjoint union
X of the strata of a suitable stratification, we get a scheme indexing n2-tuples
of nilpotent matrices which span nilpotent Lie algebras. Thus, for every field F
of characteristic zero or characteristic p sufficiently large and every nilpotently
generated Lie algebra L ⊂ gln over F , there exists x ∈ X (F) which indexes a
spanning set of L .

We choose N sufficiently divisible that outside of characteristics dividing N ,
there is a bijection between exponentially generated subgroups G of GLn and
nilpotently generated Lie subalgebras L of gln , given by the mutually inverse
maps sending G to its Lie algebra and L to the group generated by φx(A

1) for
all nilpotent x ∈ L . In particular, φxi (A

1) generates G whenever x1, . . . , xn2 is a
nilpotent spanning set of L . From the scheme X indexing all possible n2-tuples,
we would like to obtain a scheme of finite type over Z[1/N ] indexing all ḠF ,
where GF ranges over exponentially generated groups and F ranges over fields
over Z[1/N ].
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Recall (from [Borel 1991, Proposition 2.2], for example) that if V ⊂ G ⊂ GLn

is any connected generating subvariety of an algebraic group G, the image of V n2

under the multiplication map is dense in G, and the image of V 2n2
is exactly G.

This implies (
φx1(A

1) . . . φxn2 (A
1)
)2n2

� G.

Let Y := Pn2

X and

Z := (Pn2

X \GLn,X )
∐
(X ×A2n4

).

We define ξ : Z→Y by extending the obvious inclusion map on the first component
of Z by

ξ
(
(x1, . . . , xn2), (t1,1, . . . , tn2,2n2)

)
:=

(
(x1, . . . , xn2),

2n2∏
j=1

n2∏
i=1

φxi (ti, j )
)
.

For each F and each x ∈ X (F), the image of the map of fibers Zx → Yx = Pn2

F
is the union of Pn2

F \GLn,F and the exponential subgroup of GLn,F in correspon-
dence with the nilpotently generated Lie subalgebra of gln(F) associated to x . The
following lemma now implies the proposition. �

Lemma 4. Let m be a positive integer, X a scheme of finite type over Z, Y a closed
subscheme of Pm

X , and ξ : Z → Y a morphism of finite type such that ξ(Zx) is a
closed subset of Yx for all x ∈ X. There exists N ∈N, a morphism ψ : X ′→ X , and
a closed subscheme Y ′ ⊂ Pm

X ′ such that for every field F over Z[1/N ] and every
x ∈ X (F), there exists x ′ ∈ X ′x(F) such that Y ′x ′ = ξ(Zx)

red.

Proof. We use Noetherian induction on X . If the image of Z → X has Zariski
closure C ( X , we can replace X and Y by C and YC respectively. We therefore
assume without loss of generality that Z → X has dense image. Replacing Z
by Z red, without loss of generality we may assume Z is reduced. We choose N
divisible by every prime which is the characteristic of a generic point of X .

Let η denote a generic point of X . As any localization of a reduced ring is
reduced, Zη is reduced. Either η lies over a prime p dividing N or η is of char-
acteristic zero. In the former case, let U1 denote any neighborhood of η which
lies over Spec Fp. In the latter case, Zη is geometrically reduced [Grothendieck
1965, Proposition 4.6.1 on p. 68], so Zx is geometrically reduced for all x in some
neighborhood U1 of η [Grothendieck 1966, Theorem 9.7.7(iii) on p. 79]. Let W
denote the Zariski closure of ξ(Z) \ ξ(Z) in Y , endowed with its reduced induced
scheme structure. As ξ(Zη) is closed in Yη, the η-fibers of ξ(Z) and ξ(Z) are the
same, so Wη is empty. Let U2 denote a neighborhood of η which does not meet
the image of W → X . Finally, let U =U1 ∩U2, X1 = X \U , Y1 = Y ×X X1, and
Z1 = Z ×X X1.
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By the induction hypothesis, if N is sufficiently divisible, the lemma holds for
X1, Y1, and Z1. Let X ′1, Y ′1, and ψ1 be chosen suitably. Let X ′ = U

∐
X ′1 and

Y ′ =WU
∐

Y ′1, and let ψ denote the extension of ψ1 which is given on WU by the
composition of the obvious maps WU → Y → Pm

X → X . If x ∈ X (F) belongs to
X1(F), we are done already. If not, it belongs to U (F). Let x ′ denote the image
of x ∈U (F) under the inclusion U→ X ′. As U ⊂U2, at the set level, the fiber Y ′x ′
coincides with ξ(Zx). As U ⊂U1, if F is a Z[1/N ]-algebra, then Y ′x ′ is reduced. �

We now specialize to the case F = Fp, where p ≥ n. If 0 is a subgroup of
GLn(Fp), we write 0+ for the subgroup of 0 generated by all elements of order
p. Let N (0)= N (0+) denote the set {log u | u p

= 1, u ∈ 0}, and let G := G N (0).
Then 0+ ⊂ G(Fp).

Definition 5. If 0 is a subgroup of GLn(Fp) we define the Nori dimension, Ndim0,
to be dim G N (0). Likewise if G is a subgroup of GLn(Zp) its Nori dimension,
Ndim G, is the Nori dimension of its reduction (mod p).

Lemma 6. Let p ≥ 2n, let x be a nilpotent n × n matrix over Fp, and let A ∈
GLn(Zp) be a p-adic lift of exp(x). For all positive integers k,

Apk
≡ 1+ pk M (mod pk+1),

where M reduces (mod p) to x.

Proof. It suffices to prove the lemma when k = 1. Without loss of generality, we
may assume that M is nilpotent, so M p

= 0. Let N = exp(M)− 1. As N reduces
(mod p) to the nilpotent element exp(x)− 1, N n is divisible by p in Mn(Zp), and
we can write A as 1+ N + pB for some B ∈ Mn(Zp). Expanding,

Ap
= (1+ N + pB)p

=

p∑
m=0

( p
m

)
(N + pB)m

≡

p∑
m=0

( p
m

)(
N m
+ p

∑
i+ j=m−1

N i B N j
)

≡

p∑
m=0

( p
m

)
N m
= (1+ N )p

= exp(pM)≡ 1+ pM (mod p2). �

Theorem 7. For every positive integer n there exist constants An , Bn , and Cn such
that if p > An is prime, G is a closed subgroup of GLn(Zp), and G is the Zariski
closure of G in GLn,Qp , then Ndim G≤ dim G. If Ndim G= dim G, then:

(1) G is an open subgroup of G(Qp).

(2) G/G◦ is of prime-to-p order and has a normal abelian subgroup of index
≤ Bn .
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(3) If , in addition, the radical of G◦ is unipotent, then

[G(Qp)∩GLn(Zp) : G] ≤ Cn.

Proof. We fix An ≥ 2n large enough for Proposition 3 to apply.
Let H = G(Qp)∩GLn(Zp). Let FmH denote the subgroup of H consisting of

elements congruent to 1 (mod pm). We identify FmH/Fm+1H with a subspace of
Mn over the field Fp. As

(1+ pm A)p
≡ 1+ pm+1 A (mod pm+2),

we have that
FmH/Fm+1H⊂ Fm+1H/Fm+2H

for all m ≥ 1. It follows that

dim FmH/Fm+1H≤ dim G

for all m ≥ 1. Indeed, otherwise, the quotient H/FmH would grow at least as fast
as cpm(1+dim G), which is impossible [Serre 1981, Theorem 8].

As G⊂H, we have

FmG/Fm+1G⊂ FmH/Fm+1H.

By the preceding lemma the dimension of FmG/Fm+1G is at least the dimension of
the vector space spanned by the logarithms of elements of order p in the (mod p)
reduction of G. By the correspondence between exponentially generated groups
and nilpotently generated Lie algebras this dimension is the Nori dimension of G.
In summary, for all m ≥ 1,

Ndim G≤ FmG/Fm+1G≤ FmH/Fm+1H≤ dim G.

This proves the first claim of the theorem.
If the Nori dimension of G equals dim G, we have further that

dim FmG/Fm+1G= dim FmH/Fm+1H,

for all m ≥ 1. As G and H are closed subgroups of GLn(Zp), this implies F1G =

F1H, which implies (1).
If G is any closed subgroup of GLn , there exists a finite central extension of

G/G◦ which can be realized as a subgroup of G(Qp). (See, e.g., the proof of
[Khare et al. 2008, Proposition 6.2].) Jordan’s theorem implies the existence of a
normal abelian subgroup of bounded index.

For n < p− 1, GLn(Qp) has no element of order p, since the p-th cyclotomic
polynomial is irreducible over Qp. On the other hand, every extension of a group
containing an element of order p again has an element of order p. This gives (2).
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For (3), we note first that since G meets every component of G, it suffices to
prove that

G◦ := G∩G◦(Qp)

is of bounded index in G◦(Qp)∩GLn(Zp). As [G :G◦] is prime to p, the (mod p) re-
duction of G◦ is of prime-to-p index in that of G. It follows that Ndim G◦=Ndim G.
Replacing G with G◦ if necessary, we may assume without loss of generality that
G is connected.

Let F denote any finite extension of Qp over which G has no nontrivial aniso-
tropic quotient. We may take F to be totally ramified over Qp since the anisotropic
simple groups over Qp are all central quotients of groups of the form SL1(D),
where D is a division algebra over Qp [Kneser 1965], and every degree n division
algebra over Qp splits over Qp(p1/n). We denote by O the ring of elements of
nonnegative valuation in F . Thus, the residue field of O is Fp. By Proposition 2,
GF is exponentially generated.

Let ḠF denote GF∪(P
n2

F \GLn,F ), regarded as a reduced subscheme of Pn2

F and
ḠO denote the schematic closure of ḠF ⊂Pn2

F in Pn2

O , i.e., the unique O-flat closed
subscheme of Pn2

O having generic fiber ḠF [Grothendieck 1965, Proposition 2.8.5
on p. 35]. Thus, H⊂ ḠO(O).

Let X denote the union of Hilbert schemes of the polynomials in S over Z[1/N ],
where N and S are given by Proposition 3. Let Y be the universal closed subscheme
of Pn2

X with Hilbert polynomials in S. If An is sufficiently large, for every p> An ,
every p-adic field F , and every exponentially generated GF ⊂GLn,F , there exists
an F-point x ∈ X (F) such that GF = Yx ∩GLn,F . By the valuative criterion of
properness, x extends to a morphism Spec O→ X , where O is the ring of integers
in F . Pulling back Y by this morphism, we obtain an O-flat subscheme of GLn,O

whose generic point is ḠF . This must be isomorphic to ḠO by uniqueness of flat
extension over O. Let GO denote the intersection of ḠO with GLn,O ⊂ Pn2

O . Thus
GO is flat over O and the generic fiber of GO is ḠF ∩GLn,F = GF . The fiber GFp

has no more irreducible components than the fiber ḠFp , which can be regarded as a
fiber of Y → X . By the local constructibility of the function giving the number of
irreducible components of geometric fibers [Grothendieck 1966, Corollary 9.7.9
on p. 82] and Noetherian induction, this gives an upper bound dn on GFp/G◦Fp

independent of G and p > An .
By the flatness of GO, the special fiber GFp has dimension equal to that of

GF , which is Ndim G. We claim that the number of Fp-points of a connected
d-dimensional algebraic group over Fp is at least (p− 1)d and at most (p+ 1)d .
This is obvious for additive groups (where the number of points is pd ) and tori
(where the number of points is Q(p), Q being the characteristic polynomial of
Frobenius on the character group), and it is well-known in the semisimple case. It
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follows in the general case from the structure theory of connected linear algebraic
groups. The upper bound implies

GFp(Fp)≤ |GFp/G◦Fp
|(p+ 1)Ndim G

≤ dn(3/2)n
2
pNdim G.

The kernel F1GO(O) of the reduction map

GO(O)→ GO(Fp)= GFp(Fp)

consists of elements of F1 GLn(O), i.e., elements of GLn(O) congruent to 1 modulo
the maximal ideal of O. Thus,

H∩ F1GO(O)⊂ GLn(Zp)∩ F1 GLn(O)= F1 GLn(Zp).

It follows that
|H/F1H| ≤ dn(3/2)n

2
pNdim G.

On the other hand, by Nori’s theorem [1987], (G/F1G)+ is of bounded index en in
G N (G/F1G)(Fp). The lower bound for points on a connected group implies

|G/F1G| ≥ |(G/F1G)+| ≥ e−1
n (p− 1)Ndim G

≥ e−1
n 2−n2

pNdim G.

Combining these estimates, we obtain

|H/F1H|

|G/F1G|
≤ 3n2

dnen.

As F1G= F1H, setting Cn = 3n2
dnen , we obtain (3). �
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On the (non)rigidity of the Frobenius
endomorphism over Gorenstein rings

Hailong Dao, Jinjia Li and Claudia Miller

It is well-known that for a large class of local rings of positive characteristic,
including complete intersection rings, the Frobenius endomorphism can be used
as a test for finite projective dimension. In this paper, we exploit this property to
study the structure of such rings. One of our results states that the Picard group
of the punctured spectrum of such a ring R cannot have p-torsion. When R is a
local complete intersection, this recovers (with a purely local algebra proof) an
analogous statement for complete intersections in projective spaces first given by
Deligne in SGA and also a special case of a conjecture by Gabber. Our method
also leads to many simply constructed examples where rigidity for the Frobenius
endomorphism does not hold, even when the rings are Gorenstein with isolated
singularity. This is in stark contrast to the situation for complete intersection
rings. A related length criterion for modules of finite length and finite projective
dimension is discussed towards the end.

1. Introduction

The Frobenius endomorphism for rings of positive characteristic has been one of
the central objects of study in homological commutative algebra over the past
decades. Not only is it a useful tool in proofs of homological conjectures, but also
its intrinsic homological properties have been shown to have strong connections
with the structure of the ring or of modules over it. In this article we provide
several surprising connections, for example, the relationship between the ability of
the Frobenius to detect the finite projective dimension of modules and the torsion
part of the divisor class group.

We review some history and notation. In [Kunz 1969, Theorem 2.1] regular local
rings are characterized as those for which the Frobenius endomorphism f : R→ R
(or equivalently some iteration of it) is flat. Since then, a list of papers has yielded
further similar homological results for f , each analogous to a classical homological

Miller gratefully acknowledges partial financial support from NSA grant #H98230-06-1-0035. Dao
is partially supported by NSF grant 0834050.
MSC2000: primary 13A35; secondary 13D07, 14A05, 13C20.
Keywords: Frobenius endomorphism, rigidity, Tor, Picard group, isolated singularity.
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result concerning the residue field k (viewed as an R-module via π : R → k);
for further details see the survey [Miller 2003], as well as [Avramov et al. 2006;
Iyengar and Sather-Wagstaff 2004]. We will use the notation f n

R for R viewed as
an R-module via the n-th iteration f n of f .

For their celebrated proof of the Intersection Theorem, Peskine and Szpiro
[1969, Corollary 2; 1972, Theorem 1.7] generalized one direction of Kunz’s result,
and shortly thereafter Herzog [1974, Theorem 3.1] proved the converse, yielding
the following equivalence:

M has finite projective dimension⇔TorR
i (M,

f n
R)= 0 for all i > 0 and all n> 0.

This leads one to ask to what extent the module f n
R could function as a test module

for finite projective dimension: is the vanishing of TorR
i (M,

f n
R) for just one value

each of i>0 and n>0 sufficient? In particular, this would imply that the R-module
f n

R is rigid, that is, that

TorR
i (M,

f n
R)= 0 H⇒ TorR

i+1(M,
f n

R)= 0.

Several steps toward these goals have been made in recent years. In the general
setting, [Koh and Lee 1998, Proposition 2.6] proved a finiteness result: there is a
constant c(R), depending only on the ring R, such that vanishing of TorR

i (M,
f n

R)
for any depth R + 1 consecutive values of i > 0 and any one value of n ≥ c(R)
implies that M has finite projective dimension. In fact, it showed that depth R
consecutive values of i suffice if R is Cohen–Macaulay of positive dimension.
The best possible result however, occurs in the setting of complete intersection
rings:

Theorem 1.1 [Avramov and Miller 2001; Dutta 2003]. Let R be a local com-
plete intersection and M a finitely generated R-module. Then the vanishing of
TorR

i (M,
f n

R) for one value each of i > 0 and n > 0 implies that M has finite
projective dimension.

Phenomena like this can occur over noncomplete intersection rings as well. In
such a case, we call the corresponding f n

R strongly rigid (which is equivalent to
being rigid when n ≥ c(R) by Koh and Lee’s result above). See Definition 2.1 and
Example 2.2 for known examples.

In Section 2, we study the properties of Gorenstein local rings whose corre-
sponding f n

R is strongly rigid. We show that if R is Gorenstein such that f n
R is

locally strongly rigid (i.e., strongly rigid at the localization at every prime ideal),
then the minimal infinite projective dimension locus of a module M (see Definition
2.3) must be contained in the set of associated primes of Fn(M) (see Theorem 2.5).
One consequence of this result is the following characterization for modules of
finite projective dimension:
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Corollary 2.6. Let R be a Gorenstein local ring such that f n
R is locally strongly

rigid for some n > 0 and M an R-module. Then M has finite projective dimension
if and only if Ass Fn(M) is contained in the finite projective dimension locus of M.

Note that the class of rings such that f n
R is locally strongly rigid for all n > 0

includes, but is strictly bigger than, the class of all local complete intersections;
see Example 2.2.

We also apply Theorem 2.5 to prove that the divisor class groups of certain
Gorenstein domains have no p-torsion.

Theorem 2.9. Let R be a Gorenstein local ring such that f n
R is locally strongly

rigid for some n > 0. Let I be a reflexive ideal such that I is locally free in
codimension 2. Furthermore, assume that HomR(I, I ) ∼= R. Let q = pn . Then if
I (q) satisfies Serre’s condition (S3), I must be principal. In particular, the Picard
group of the punctured spectrum of R has no p-torsion. If , furthermore, R satisfies
condition (R2), Cl(R) has no p-torsion.

This theorem shows that the Picard groups of the punctured spectrum of com-
plete intersection rings cannot have p-torsion. For complete intersections in pro-
jective spaces, such a result was first proved in [Deligne 1973, Theorem 1.8] using
sophisticated geometric machinery. We also note that this particular case confirms
the positive characteristic case of the following conjecture:

Conjecture 1.2 [Gabber 2004]. Let (R,m) be a local complete intersection ring
of dimension 3. Let UR = Spec(R)− {m} be the punctured spectrum of R. Then
Pic(UR) is torsion-free.

It was implied in [Gabber 2004] that the positive characteristic case is known,
but we cannot find a precise reference. In any case, it is worth noting that our proof
is purely homological and quite simple.

In Section 3, we push the ideas in the previous section further to construct many
examples of Gorenstein local rings R such that f n

R is not strongly rigid. In other
words, the vanishing of TorR

i (M,
f n

R) for just one value each of i > 0 and n > 0
is not sufficient to conclude that M has finite projective dimension. Two differ-
ent approaches are used in these constructions. The first approach boils down to
finding an isolated Gorenstein singularity with torsion class group and applying
Theorem 2.9; see Example 3.2. The second approach takes a different route, via
Lemma 3.3. Obtaining an actual example requires some explicit computations on
the determinantal ring of 2 × 2 minors in 9 variables and hence is less general
than the first approach; see Example 3.5. The bonus is, however, that these have a
torsion-free class group.

In Section 4, we study the connection between (strong) rigidity and numerical
rigidity (see Definitions 4.1 and 4.2) of the Frobenius endomorphism. The main
result we prove there is this:



1042 Hailong Dao, Jinjia Li and Claudia Miller

Theorem 4.6. Let R be a Cohen–Macaulay local ring with isolated singularity
and of positive dimension. Fix n > 0. If f n

(R/y R) is numerically rigid for every
nonzerodivisor y ∈ R, then f n

R is strongly rigid against modules of dimension up
to one.

The rest of the introduction contains a review of the notation and definitions used
throughout the paper. We assume throughout that R is a commutative Noetherian
local ring of prime characteristic p>0 and that all R-modules M and N are finitely
generated. The Frobenius endomorphism f : R→ R is defined by f (r) = r p for
r ∈ R; its self-compositions are given by f n(r)= r pn

. Restriction of scalars along
each iteration f n endows R with a new R-module structure, denoted by f n

R.
The Frobenius functor, introduced in [Peskine and Szpiro 1972], is given by

base change along the Frobenius endomorphism:

FR(M)= M ⊗R
fR

for any R-module M . Its compositions are given by Fn
R(M)= M ⊗R

f n
R, namely

base change along the compositions f n of f . We omit the subscript R if there is
no ambiguity about R. Note particularly that the module structure on Fn(M) is via
usual multiplication in R on the right hand factor of the tensor product. The values
of the derived functors TorR

i (M,
f n

R) are similarly viewed as R-modules via the
target of the base change map f n .

It is easy to verify that Fn(R)∼= R and that for cyclic modules Fn(R/I )∼= R/I [q],
where q = pn and I [q] denotes the ideal generated by the q-th powers of the gen-
erators of I . We frequently use q to denote the power pn , which may vary.

In the sequel, `(M) will denote the length and pd M the projective dimension
of the module M . By the codimension of M we mean dim R−dim M . We use the
notation x for a sequence of elements of R and often write simply R/x for R/(x)
to save space. Likewise, xq denotes the ideal generated by the q-th powers of the
sequence x, not the q-th power of the ideal x.

2. Strong rigidity of Frobenius and torsion elements in divisor class groups

We now investigate the consequences of the phenomenon that over certain rings
the Frobenius map can be used to test for finite projective dimension (e.g., over
complete intersection rings). This work enables us to prove strong results about
torsion elements in the class groups of complete intersection rings and also allows
us to construct counterexamples to such phenomena over noncomplete intersection
rings. We begin with some convenient definitions to facilitate the discussion.

Definition 2.1. An R-module N is called strongly rigid if for any integer i and
any finitely generated R-module M , TorR

i (M, N ) = 0 implies pdR M <∞. The
module N is called locally strongly rigid if Np is strongly rigid for all p ∈ Spec R.
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Example 2.2. If R is a local complete intersection ring, then f n
R is locally strongly

rigid for all n; see Theorem 1.1. For any local Cohen–Macaulay ring R of dimen-
sion at most 1, there is a number c(R) such that for any n ≥ c(R), f n

R is strongly
rigid by virtue of [Koh and Lee 1998, Proposition 2.6], already mentioned on
page 1040. In particular, when (R,m) is Artinian and m[p]=0, then f n

R is (locally)
strongly rigid for all n [Miller 2003, 2.2.8].

Definition 2.3 [Dao 2010]. Let M be an R-module. One defines the infinite pro-
jective dimension locus of M as

IPD(M)= {p ∈ Spec R | pdRp
Mp =∞}.

Similarly, define FPD(M) to be the finite projective dimension locus of M . Finally,
we define the n-strong rigidity locus of R as

SRn(R)= {p ∈ Spec R | f n
Rp is strongly rigid}.

The following standard facts, which we state without proof, will be used often:

Fact 2.4. Let f : R→ S be a ring homomorphism and p a prime ideal of S. Then
for each i ≥ 0 and R-module M there is a natural isomorphism

TorR
i (M, S)p ∼= Tor

R f−1(p)
i (M f −1(p), Sp).

Furthermore, if f is the Frobenius endomorphism of R, then f −1(p) = p and
R f −1(p)→ Sp is the Frobenius endomorphism of Rp.

Theorem 2.5. Let R be a Gorenstein local ring and M an R-module. Then

min IPD(M)∩SRn(R)⊆ Ass Fn(M).

In particular, if f n
R is locally strongly rigid, then

min IPD(M)⊆ Ass Fn(M).

Proof. Since R is Gorenstein, by the Cohen–Macaulay approximation due to [Aus-
lander and Buchweitz 1989, 1.8], there is a short exact sequence

0→ M→ Q→ N → 0,

where pd Q <∞ and N is maximal Cohen–Macaulay. Tensoring with the Frobe-
nius endomorphism, we have an embedding

0→ TorR
1 (N ,

f n
R)→ Fn(M). (2-1)

Take any p ∈ min IPD(M) ∩ SRn(R); then pdRp
Mp = ∞ and f n

Rp is strongly
rigid. It follows that pdRp

Np = ∞ and therefore that TorRp

1 (Np,
f n

Rp) 6= 0. On
the other hand, since p is minimal in the infinite projective dimension locus of M ,
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pdRq
Mq<∞ for any prime q ( p, whence pdRq

Nq<∞ and so TorRq

1 (Nq,
f n

Rq)=

0. Therefore, the length of TorRp

1 (Np,
f n

Rp) must be finite.
Localizing (2-1) at p, we have an exact sequence

0→ TorRp

1 (Np,
f n

Rp)→ Fn(M)p.

This implies that depth Fn(M)p = 0. Hence p ∈ Ass Fn(M). �

Corollary 2.6. Let R be a Gorenstein local ring such that f n
R is locally strongly

rigid for some n > 0 and M an R-module. Then M has finite projective dimension
if and only if Ass Fn(M)⊆ FPD(M).

As an immediate consequence, we obtain the following special case with simpler
hypotheses. Here, Sing(R) denotes the singular locus of R. Note particularly that
the hypothesis that min Supp M and Sing(R) are disjoint holds, for example, when
dim M > dim Sing(R).

Corollary 2.7. Let R be a Gorenstein local ring such that f n
R is locally strongly

rigid for some n>0 (e.g., if R is a local complete intersection) and M an R-module
such that (min Supp M)∩ Sing(R) = ∅. If Fn(M) has no embedded primes, then
M has finite projective dimension. In particular, if Fn(M) is Cohen–Macaulay,
then M is perfect.

Proof. It suffices to note that

Ass Fn(M)=min Supp Fn(M)=min Supp M ⊆ Spec R\Sing(R)⊆ FPD(M),

where the first equality is by the assumption that Fn(M) has no embedded primes,
the second is well-known (see [Peskine and Szpiro 1972], for example) and the
first containment follows from the hypothesis. �

Remark 2.8. If R is reduced, we do not know if the disjointness of min Supp M
and Sing(R) in Corollary 2.7 can be replaced by the simpler condition dim M > 0.
However, this is impossible when R is not reduced (see [Miller 2003, 2.1.7], for
example).

We now give an application of Theorem 2.5 to divisor class groups. In the sequel,
we use Cl(R) to denote the divisor class group of R. We refer to [Fossum 1973]
for the definition and basic facts about Cl(R) and the Picard groups and to [Bruns
and Herzog 1993] for Serre’s conditions (Rn) and (Sn).

Theorem 2.9. Let R be a Gorenstein local ring such that f n
R is locally strongly

rigid for some n > 0. Let I be a reflexive ideal such that I is locally free in
codimension 2. Furthermore, assume that HomR(I, I ) ∼= R. Let q = pn . Then if
I (q) satisfies Serre’s condition (S3), I must be principal. In particular, the Picard
group of the punctured spectrum of R has no p-torsion. If , furthermore, R satisfies
condition (R2), then Cl(R) has no p-torsion.
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Proof. We may assume dim R ≥ 3. Assume that I is not principal, then it follows
that pd I =∞ (see [Braun 2004, Corollary 11] and [Bourbaki 1965, Chapter VII,
§4, no. 7, Corollary 2]). We claim that one can always write I = (a) : (b) for
a, b ∈ R. Here is a quick proof: choose a such that a generates I at the minimal
primes of I . Pick an irredundant primary decomposition of (a); it can be written
as I ∩ J (if I = (a) we are done). Choosing b in J but not in any minimal prime
of I , one can show that I = (a) : (b). By the short exact sequence

0→ R/(a : b)
b
→ R/(a)→ R/(a, b)→ 0

we obtain IPD(I )= IPD(R/(a, b)). Thus we have p ∈min IPD(R/(a, b)) for any
p ∈min IPD(I ), and so by Theorem 2.5,

p ∈ Ass
(
Fn(R/(a, b))

)
= Ass(R/(aq , bq)).

Localize the short exact sequence

0→ R/(aq
: bq)→ R/(aq)→ R/(aq , bq)→ 0

at p, and observe that (aq
: bq)= I (q). From the fact that depth(R/(aq , bq))p = 0

we get depth I (q)p ≤ 2. On the other hand, since I is locally free in codimension 2,
dim Rp≥3. So, I (q) does not satisfy (S3), and our first assertion is proved. The last
two statements follow immediately (note that if R is (R2) then R is automatically
normal). �

As a corollary we can recover a notable result about torsion elements in the
Picard groups of complete intersections.

Corollary 2.10. Let R be an equicharacteristic local complete intersection ring
of dimension at least 3. Then the Picard group of the punctured spectrum of R is
torsion-free. If , furthermore, R satisfies condition (R2), then the class group of R
is torsion-free.

Let X be a complete intersection variety of dimension at least 2 in the projec-
tive space over a field. The Picard group of X modulo the hyperplane section is
torsion-free.

Proof. Let p be the characteristic exponent of R (so it is 1 if the characteristic of R
is 0). The fact that neither the Picard group nor Cl(R) has an element whose order
is relatively prime to p was well-known [Robbiano 1976]. Theorem 2.9 takes care
of the p-torsion elements. The second half of the corollary follows by applying
the first to the local ring at the origin of the affine cone over X . �

Remark 2.11. The second half of the corollary was first proved in [Deligne 1973].
Another proof was given in [Bădescu 1978, Theorem B]. As far as we know, ours
is the first algebraic proof.
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Example 2.12. The conditions dim R ≥ 3 and (R2) in the corollary cannot be
weakened. Let R = k[[x, y, z]]/(xy− z2), where k is an algebraically closed field
of characteristic other than 2. Then dim R = 2 and R is regular in codimension 1,
but Cl(R)∼= Z/(2) (see, for example, [Fossum 1973, Proposition 11.4]).

3. Examples of nonrigidity

In this section we construct plenty of examples of a Gorenstein ring R in positive
characteristic such that f n

R is not (strongly) rigid. This is in stark contrast to the
situation for complete intersection rings, where the strong rigidity of f n

R is known
to hold. Our constructions take two completely different approaches. The first
approach (see Example 3.2) provides the desired examples with torsion divisor
class groups. This can be viewed as a natural consequence of Theorem 2.9. The
second approach (see Example 3.5), on the contrary, provides the desired examples
with torsion-free divisor class groups.

First we isolate a consequence of Theorem 2.9:

Corollary 3.1. Let R be a local, Gorenstein domain with isolated singularity.
Suppose that dim R ≥ 3 and Cl(R) has a torsion element of order l that satisfies
(S3). Then f n

R is not strongly rigid for any n such that pn
≡ 1 or 0 modulo l. In

particular, if l = 2, then f n
R is not strongly rigid for any n and not rigid for n� 0.

Proof. Let I be a reflexive ideal which represents an l-torsion element in Cl(R)
and q = pn . Then the ideal J = I (q) is isomorphic to I or R, both of which satisfy
(S3), contradicting Theorem 2.9. When l = 2, for any n, q = pn is congruent to 0
or 1 modulo 2. The last statement follows from Example 2.2. �

Example 3.2. It is not hard to find examples of isolated Gorenstein singularities
with torsion class group. Let S = k[x1, . . . , xd ] and l be an integer. Let T be the
l-Veronese subring of S and R be the local ring at the homogeneous maximal ideal
of T . Then one can show that Cl(R) = Cl(T ) = Z/(l) using [Watanabe 1981,
Theorem 1.6]. The ring R obviously has an isolated singularity, as it is the local
ring at the origin of the cone over a smooth projective variety. Also, R will be
Gorenstein as long as l divides d . Finally, let I represent the generator of Cl(T ). It
is easy to see that the cyclic cover of T corresponding to I is S, so I , and therefore
the generator of Cl(R), is Cohen–Macaulay. In particular, it will be (S3). So all of
the conditions of Corollary 3.1 can be satisfied easily.

For the rest of this section we will take another approach to construct exam-
ples of nonrigidity in which the rings have torsion-free divisor class groups. The
following result gives a general technique for finding such examples:

Lemma 3.3. Let (R,m) be a Gorenstein ring with isolated singularity and positive
dimension. The following are equivalent:
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(1) f n
R is strongly rigid.

(2) For any R-module L with infinite projective dimension, depth Fn(L)= 0.

Proof. That (1) implies (2) is a consequence of Corollary 2.6. Now assume (2).
Let L be a module of infinite projective dimension. It is enough to prove that
TorR

1 (L ,
f n

R) 6= 0. Consider the exact sequence

0→ L1→ Q→ L→ 0

where Q is free and L1 is the first syzygy of L . If TorR
1 (L ,

f n
R) = 0, then by

tensoring with f n
R one gets

0→ Fn(L1)→ Q→ Fn(L)→ 0.

But since pdR L = pdR L1 =∞, one has depth Fn(L1)= depth Fn(L)= 0. Since
depth Q = dim Q > 0, this is a contradiction. �

We also need the following crucial observation.

Lemma 3.4. Let k be a field of characteristic p> 0. Let A denote the determinan-
tal ring k[X ]/I2 where X = (X i j ) is a 3 × 3 matrix of indeterminates and I2 is the
ideal of k[X ] generated by all the 2 × 2 minors of X. Let xi j denote the images of
X i j in A. Let L = A/(x11, x12). Then depth Fn(L)> 0 for all n> 0 and pd L =∞.

Proof. Let δi j denote the minor of X corresponding to X i j and I be the ideal of
k[X ] generated by Xn

11, Xn
12, and all the δi j . We prove that for any field k (we

do not need to assume that k has prime characteristic!) and any n ≥ 2, x33 is a
nonzerodivisor for A/(xn

11, xn
12)
∼= k[X ]/I . In the following paragraph, we refer

the reader to [Eisenbud 1995, 15.2–4] for notation and terminology (some of it
italicized) regarding Gröbner bases.

We fix a reverse lexicographic order > on the monomials such that

X11 > X12 > X13 > X21 > X22 > X23 > X31 > X32 > X33.

Using Buchberger’s algorithm, one can produce a Gröbner basis for I consisting
of all the δi j , Xn

11, Xn
12, and all the monomials of the form X l

11 Xn−l
12 X s

22 X t
32, where

l runs from 1 through n−1 and s, t run through all positive integers such that
s + t = l. Therefore the initial ideal of I (henceforth in(I )) does not contain any
monomial divisible by X33. Assume for some g ∈ k[X ], X33g ∈ I . Let g0 be
the remainder of g (with respect to the generators of I ) in a standard expression
obtained by performing the division algorithm. If g0 6= 0, then X33g0 6= 0 since
k[X ] is a domain. On the other hand, since X33g0∈ I , at least one of the monomials
of X33g0 is in in(I ). Thus, at least one of the monomials of g0 is in in(I ). This
contradicts the fact that g0 is a nonzero remainder. Thus g0 = 0 and g ∈ I . It
follows that x33 is a nonzerodivisor for k[X ]/I .
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Finally, we show pd L =∞. Assume that pd L <∞, i.e., the ideal (x11, x12) is
of finite projective dimension. By [MacRae 1963, Corollary 4.4], two-generated
ideals of finite projective dimension have the form a(b, c), where a is a nonzero-
divisor and b, c form a regular sequence. But if (x11, x12)= a(b, c) for such a, b,
and c, since the degree of x11 is one, a is forced to be a unit (otherwise, (x11, x12)

would be a principal ideal which is impossible). Therefore (x11, x12)= (b, c). But
since x11x22 − x21x12 = 0, (x11, x12) cannot be an ideal generated by a regular
sequence of two elements. This is a contradiction. �

Combining the two lemmas above, we get the following example. Note that
the divisor class group of the ring in this example is isomorphic to Z [Bruns and
Herzog 1993, 7.3.5], which is torsion-free.

Example 3.5. Let R be the localization of the determinantal ring A as in Lemma
3.4 with respect to the maximal ideal (X). Then f n

R is not strongly rigid for any n.

Remark 3.6. In view of the theorem of Koh and Lee mentioned in Section 1, Ex-
ample 3.5 immediately yields the nonrigidity of f n

R for any n≥ c(R) (see Example
2.2). But in fact, with a little further computation, the reader can check that this
example yields nonrigidity for all n>0: indeed, the module N of infinite projective
dimension constructed in Theorem 2.5 by taking for the module M the module L
of Lemma 3.4 satisfies TorR

1 (N ,
f n

R)= 0 by the argument in the proof. But it can
be shown that in fact TorR

2 (N ,
f n

R) 6= 0.
We point out that we do not know of any example showing that f n

R is not
(strongly) rigid when dim R = 0 or against a module M of finite length. See,
however, the discussion at the end of Section 4.

4. Some further observations

Throughout this section, d will always be the dimension of the ring and n always
denotes some positive integer. We know from the previous section that R could fail
to be strongly rigid when R is no longer a complete intersection ring. However,
we still hope that to some extent such a property could hold over noncomplete
intersection rings. In particular, we do not know any example showing that f n

R is
not rigid when dim R = 0 or against a module M of finite length.

We first make two more definitions, the first of which is just a refinement of the
definition of strong rigidity of f n

R.

Definition 4.1. Let h be a nonnegative integer. f n
R is called strongly rigid against

modules of dimension at most h if, for any integer i and any finitely generated
module M of dimension at most h, TorR

i (M,
f n

R)= 0 implies pdR M <∞.

Definition 4.2. f n
R is called numerically rigid if for any R-module M of finite

length, `(Fn(M))= pnd`(M) implies pdR M <∞.
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The latter definition is motivated by the following characterization for modules
of finite projective dimension and finite length over complete intersection rings.

Theorem [Dutta 1983; Miller 2003]. Let R be a complete intersection ring in
characteristic p and M an R-module of finite length. Then the following are
equivalent:

(1) M has finite projective dimension,

(2) `(Fn(M))= pnd`(M) for all n > 0,

(3) `(Fn(M))= pnd`(M) for some n > 0.

The implication (3)⇒ (1) simply says that if R is a complete intersection ring,
then f n

R is numerically rigid for any n. When R is no longer a complete intersection
ring, it is an open question whether f n

R could still be numerically rigid.1 In fact,
such a question is closely related to the rigidity question discussed earlier. The
goal of this section is to explore the connections between them.

The following technical result plays a crucial role here. Recall that if `(M⊗N )
and pd N are finite, then

χ(M, N ) def
=

pd N∑
j=0
(−1) j`(TorR

j (M, N )).

Proposition 4.3. Let R be a Noetherian local Cohen–Macaulay ring of positive
dimension and of characteristic p > 0. Let M be an R-module of codimension c.
Suppose dim M > 0 and Rp is a complete intersection ring for every minimal prime
p of M. Then

`(Fn
R/x(M/xM))≥ qcχ(M, R/x) (∗)

for all n> 0 and for any system of parameters x of Fn(M) which is also R-regular.
Given n > 0, equality holds in (∗) if and only if Fn(M) is Cohen–Macaulay and
pdRp

Mp is finite for every minimal prime p of M.

For the proof the properties of the higher Euler characteristics of Koszul com-
plexes are used in an essential way. We recall some terms and results here.

For a pair of modules M and N such that `(M ⊗ N ) <∞ and pd N <∞, the
i -th higher Euler characteristic is defined by the formula

χi (M, N )=
pd N∑
j=i
(−1) j−i`(TorR

j (M, N )).

By convention, χ(M, N )= χ0(M, N ). Some standard facts about χ and χi can be
found in [Lichtenbaum 1966; Serre 1975]. In this paper, we particularly need the
following two well-known results:

1The implication (1) ⇒ (2) in the theorem fails even over Gorenstein rings [Miller and Singh
2000].
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Lemma 4.4 [Lichtenbaum 1966, Lemma 1]. Let M be an R-module and x =
{x1, x2, . . . , xc} an R-sequence such that `(M/xM) <∞. Then χ(M, R/x) ≥ 0,
with the equality holding if and only if dim M < c.

Theorem 4.5 [Lichtenbaum 1966, Theorem 1]. Let M be an R-module and x an
R-sequence such that `(M/xM) <∞. Then for any i > 0, χi (M, R/x) ≥ 0, with
the equality holding if and only if Tori (M, R/x)=0 (and hence Tor j (M, R/x)=0
for all j ≥ i).

Proof of Proposition 4.3. We have min Supp Fn(M)=min Supp M , since Supp M
and Supp Fn(M) coincide [Peskine and Szpiro 1972]. Now write

`(Fn
R/x(M/xM))= `(Fn(M)⊗R R/x)

≥ χ(Fn(M), R/x)

=
∑

p∈min Supp M
`(Fn(M)p)χ(R/p, R/x)

=
∑

p∈min Supp M
`(Fn

Rp
(Mp))χ(R/p, R/x)

≥
∑

p∈min Supp M
qc`(Mp)χ(R/p, R/x)

= qcχ(M, R/x),

where the first inequality holds since χ1(Fn(M), R/x) ≥ 0 by Theorem 4.5, the
second and last equalities hold by Lemma 4.4, and the second inequality is a re-
sult over complete intersection rings [Dutta 1983, Theorem 1.9] (note that Rp is
complete intersection by the hypotheses).

Therefore, furthermore, equality holds if and only if χ1(Fn(M), R/x)= 0 and
`(Fn

Rp
(Mp))= qc`(Mp) for every minimal prime p of M . The former is equivalent

to Fn(M) being Cohen–Macaulay by Theorem 4.5 and the latter is equivalent to
Mp having finite projective dimension over Rp by [Miller 2003, Theorem 5.2.2],
since Rp is a complete intersection ring. �

Theorem 4.6. Let R be a Cohen–Macaulay local ring with isolated singularity
and of positive dimension. Fix some n > 0. If for every nonzerodivisor y ∈ R,
f n
(R/y R) is numerically rigid, then f n

R is strongly rigid against modules of di-
mension at most one.

Proof. Let M be an R-module of dimension at most one. Assume f n
(R/y R) is

numerically rigid for every nonzerodivisor y ∈ R. We want to prove that for any i >
0, Tori (M, f n

R)= 0 implies pd M <∞. Let x = {x1, . . . , xd−1} be an R-sequence
contained in Ann M . We may assume that i = 1 by replacing M by its (i − 1)-th
syzygy over the ring R/(x1, . . . , xd−1) and using that Tori (R/(x1, . . . , xd−1),

f n
R)

vanishes for all i > 0, since pdR R/(x1, . . . , xd−1) <∞.
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Letting K be the first syzygy of M as an R/(x1, . . . , xd−1)-module, we get a
short exact sequence:

0→ Fn(K )→ Fn((R/(x1, . . . , xd−1))
t)
→ Fn(M)→ 0.

It follows that Fn(K ) is a Cohen–Macaulay module of dimension one. Hence by
Proposition 4.3 (note that R has an isolated singularity), one has `(Fn

R/y R(K/yK))=
qd−1χ(K , R/y R) for every y ∈ R which is regular on both K and R. Therefore,
`(Fn

R/y R(K/yK )) = qd−1`(K/yK ). Since we assume f n
(R/y R) is numerically

rigid, K/yK has finite projective dimension over R/y R. Thus K has finite pro-
jective dimension over R, whence M does too by the long exact sequence of Tors
against the residue field k. �

Remark 4.7. For the determinantal ring R=k[X ]/I2 used in Section 3, it was
shown there that f n

R is not strongly rigid against modules of dimension at most 5
for any n. In fact, we can also modify the example a little bit to show that it is not
strongly rigid against modules of dimension at most 3. For k of arbitrary character-
istic, though, we do not know if f n

R is strongly rigid against modules of dimension
at most 0, 1, or 2. However, in characteristic 2 we have an example which shows
that f 1

R is not strongly rigid against modules of dimension 1. In fact, if we set
k=Z/2Z and take the module N=R/(x12, x13, x21, x23, x31, x32), then it is easy
to check that dim N=1, depth F(N )=1, and pd N=∞. Taking an R-sequence
x1, x2, x3, x4 contained in the annihilator of N and embedding N into a module of
finite projective dimension over R/(x1, x2, x3, x4) (via the Auslander–Buchweitz
short exact sequence again), the cokernel of this embedding gives such an example.
Therefore, by Theorem 4.6, we also obtain an example of a Gorenstein ring R in
characteristic 2 for which the corresponding R-module f 1

R is not numerically rigid.
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A lower bound on the essential dimension
of simple algebras

Alexander S. Merkurjev

Let p be a prime integer and F a field of characteristic different from p. We
prove that the essential p-dimension edp

(
CSA(pr )

)
of the class CSA(pr ) of

central simple algebras of degree pr is at least (r − 1)pr
+ 1. The integer

edp
(
CSA(pr )

)
measures complexity of the class of central simple algebras of

degree pr over field extensions of F .

1. Introduction

The essential dimension of an algebraic structure is a numerical invariant that
measures its complexity. Informally, the essential dimension of an algebraic struc-
ture over a field F is the smallest number of algebraically independent parameters
required to define the structure over a field extension of F [Berhuy and Favi 2003;
Merkurjev 2009].

Let F : Fields/F→ Sets be a functor (an algebraic structure) from the category
Fields/F of field extensions of F and field homomorphisms over F to the category
of sets. Let K ∈ Fields/F , α ∈ F(K ), and K0 be a subfield of K over F . We
say that α is defined over K0 (and K0 is called a field of definition of α) if there
exists an element α0 ∈ F(K0) such that the image (α0)K of α0 under the map
F(K0)→ F(K ) coincides with α. The essential dimension of α, denoted edF(α),
is the least transcendence degree tr. degF (K0) over all fields of definition K0 of α.
The essential dimension of the functor F is

ed(F)= sup{edF(α)},

where the supremum is taken over fields K ∈ Fields/F and all α ∈ F(K ).
Let p be a prime integer and α ∈F(K ). The essential p-dimension edF

p (α) of α
is the minimum of edF(αK ′) over all finite field extensions K ′/K of degree prime
to p. The essential p-dimension edp(F) of F is the supremum of edF

p (α) over all

The work has been supported by the NSF grant DMS #0652316.
MSC2000: primary 16K50; secondary 14L30, 20G15.
Keywords: essential dimension, Brauer group, algebraic tori.

1055



1056 Alexander S. Merkurjev

fields K ∈ Fields/F and all α ∈F(K ) [Reichstein and Youssin 2000, §6]. Clearly,
edF(α)≥ edF

p (α) and ed(F)≥ edp(F) for all p.
Let CSA(n) be the functor taking a field extension K/F to the set of isomor-

phism classes CSAK (n) of central simple K -algebras of degree n. Let p be a prime
integer and let pr be the highest power of p dividing n. Then edp

(
CSA(n)

)
=

edp
(
CSA(pr )

)
[Reichstein and Youssin 2000, Lemma 8.5.5]. Every central sim-

ple algebra of degree p is cyclic over a finite field extension of degree prime to
p, and hence edp

(
CSA(p)

)
= 2 [Reichstein and Youssin 2000, Lemma 8.5.7].

It was proven in [Merkurjev 2010] that edp
(
CSA(p2)

)
= p2

+ 1 and in general,
2p2r−2

− pr
+1≥ edp

(
CSA(pr )

)
≥ 2r for all r ≥ 2 [Meyer and Reichstein 2009b,

Theorem 1; Reichstein and Youssin 2000, Theorem 8.6].
We improve the lower bound for edp

(
CSA(pr )

)
as follows:

Theorem 6.1. Let F be a field and p a prime integer different from char(F). Then

edp
(
CSA(pr )

)
≥ (r − 1)pr

+ 1.

Let G be an algebraic group over F . The essential dimension ed(G) (resp.
essential p-dimension edp(G)) of G is the essential dimension (resp. essential p-
dimension) of the functor G- torsors taking a field K to the set of isomorphism
classes of all G-torsors (principal homogeneous G-spaces) over K .

If G = PGL(n) is the projective linear group over F , the functor G- torsors

is isomorphic to the functor CSA(n). Therefore, the theorem yields the following
lower bound for the essential dimension of PGL(pr ):

ed
(
PGL(pr )

)
≥ edp

(
PGL(pr )

)
≥ (r − 1)pr

+ 1.

2. Preliminaries

Characters. Let F be a field, let Fsep be a separable closure of F , and let

0 = Gal(Fsep/F)

be the absolute Galois group of F . For a 0-module M , we write H n(F,M) for
the cohomology group H n(0,M).

The character group Ch(F) of F is defined as

Homcont(0,Q/Z)= H 1(F,Q/Z)' H 2(F,Z).

For a character χ ∈Ch(F), set F(χ)= (Fsep)
Ker(χ). Then F(χ)/F is a cyclic field

extension of degree ord(χ). If 8⊂ Ch(F) is a finite subgroup, we set

F(8)= (Fsep)
∩Ker(χ),
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where the intersection is taken over all χ ∈8. The Galois group G=Gal(F(8)/F)
is abelian and 8 is canonically isomorphic to the character group Hom(G,Q/Z)

of G.
If F ′ ⊂ F is a subfield and χ ∈ Ch(F ′), we write χF for the image of χ under

the natural map Ch(F ′)→ Ch(F) and F(χ) for F(χF ). If 8 ⊂ Ch(F) is a finite
subgroup, then the character χF(8) is trivial if and only if χ ∈8.

Lemma 2.1. Let 8,8′ ⊂ Ch(F) be two finite subgroups. Suppose that for a field
extension K/F , we have 8K = 8

′

K in Ch(K ). Then there is a finite subextension
K ′/F in K/F such that 8K ′ =8

′

K ′ in Ch(K ′).

Proof. Choose a set of characters {χ1, . . . , χm} generating8 and a set of characters
{χ ′1, . . . , χ

′
m} generating 8′ such that (χi )K = (χ

′

i )K for all i . Let ηi = χi − χ
′

i .
Since all ηi vanish over K , the finite field extension K ′ := F(η1, . . . , ηm) of F can
be viewed as a subextension in K/F . Now 8K ′ =8

′

K ′ since (χi )K ′ = (χ
′

i )K ′ . �

Brauer groups. We write Br(F) for the Brauer group H 2(F, F×sep) of a field F .
If a ∈ Br(F) and K/F is a field extension, then we write aK for the image of a
under the natural homomorphism Br(F) → Br(K ). We write Br(K/F) for the
relative Brauer group Ker

(
Br(F)→ Br(K )

)
. We say that K is a splitting field of

a if aK = 0, that is, a ∈ Br(K/F). The index ind(a) of a is the smallest degree of
a splitting field of a.

The cup product

Ch(F)⊗ F× = H 2(F,Z)⊗ H 0(F, F×sep)→ H 2(F, F×sep)= Br(F)

takes χ ⊗ a to the class χ ∪ (a) in Br(F) that is split by F(χ).
For a finite subgroup 8 ⊂ Ch(F), write Brdec

(
F(8)/F

)
for the subgroup of

decomposable elements in Br
(
F(8)/F

)
generated by the elements χ ∪ (a) for all

χ ∈8 and a ∈ F×. The indecomposable relative Brauer group Br ind
(
F(8)/F

)
is

the factor group Br
(
F(8)/F

)
/Brdec

(
F(8)/F

)
.

Complete fields. Let E be a complete field with respect to a discrete valuation v,
and let K be its residue field.

Let p be a prime integer different from char(K ). There is a natural injective ho-
momorphism Ch(K ){p}→Ch(E){p} of the p-primary components of the charac-
ter groups that identifies Ch(K ){p} with the character group of an unramified field
extension of E . For a character χ ∈ Ch(K ){p}, we write χ̂ for the corresponding
character in Ch(E){p}.

By [Garibaldi et al. 2003, §7.9], there is an exact sequence

0→ Br(K ){p}
i
−→ Br(E){p}

∂v
−→ Ch(K ){p} → 0. (2-1)
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If a ∈ Br(K ){p}, we write â for the element i(a) in Br(E){p}. For example, if
a = χ ∪ (ū) for some χ ∈ Ch(K ){p} and a unit u ∈ E , then â = χ̂ ∪ (u).

Proposition 2.2 [Tignol 1978, Proposition 2.4; Jacob and Wadsworth 1990, Theo-
rem 5.15(a); Garibaldi et al. 2003, Proposition 8.2]. Let E be a complete field with
respect to a discrete valuation v, and let K be its residue field of characteristic
different from p. Then:

(i) ind(â)= ind(a) for any a ∈ Br(K ){p}.

(ii) Let b= â+
(
χ̂∪(x)

)
for an element a ∈Br(K ){p}, χ ∈Ch(K ){p} and x ∈ E×.

Then ∂v(b)= v(x)χ . Also, if v(x) is not divisible by p, we have

ind(b)= ind(aK (χ)) · ord(χ).

(iii) Let E ′/E be a finite field extension and v′ the discrete valuation on E ′ extend-
ing v with residue field K ′. Then for any b ∈ Br(E){p}, we have

∂v′(bE ′)= e · ∂v(b)K ′,

where e is the ramification index of E ′/E.

The choice of a prime element π in E provides us with a splitting of the sequence
(2-1) by sending a character χ to the class χ̂ ∪ (π) in Br(E){p}. Thus, any b ∈
Br(E){p} can be written in the form

b = â+
(
χ̂ ∪ (π)

)
, (2-2)

for χ = ∂v(b) and a unique a ∈ Br(K ){p}.
The homomorphism

sπ : Br(E){p} → Br(K ){p},

defined by sπ (b) = a, where a is given by (2-2), is called a specialization map.
For example, sπ (â) = a for any a ∈ Br(K ){p} and sπ

(
χ̂ ∪ (x)

)
= χ ∪ (ū), where

χ ∈ Ch(K ){p}, x ∈ E× and u is the unit in E such that x = uπv(x).
If v is trivial on a subfield F ⊂ E and 8⊂ Ch(F){p} a finite subgroup, then

sπ
(
Brdec(E(8)/E)

)
⊂ Brdec

(
K (8)/K

)
. (2-3)

We shall need the following technical lemma. For an abelian group A we write
p A for the subgroup of all elements in A of exponent dividing p.

Lemma 2.3. Let (E, v) be a complete discrete valued field with the residue field
K of characteristic different from p containing a primitive p2-th root of unity.
Let η ∈ Ch(E) be a character of order p2 such that p · η is unramified, that is,
p · η = ν̂ for some ν ∈ Ch(K ) of order p. Let χ ∈p Ch(K ) be a character linearly
independent from ν. Let a ∈ Br(K ) and set b = â +

(
χ̂ ∪ (x)

)
∈ Br(E), where

x ∈ E× is an element such that v(x) is not divisible by p. Then:
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(i) If η is unramified, that is, η = µ̂ for some µ ∈ Ch(K ) of order p2, then
ind(bE(η))= p · ind(aK (µ,χ)).

(ii) If η is ramified, then there exists a unit u ∈ E× such that K (ν)= K (ū1/p) and
ind(bE(η))= ind

(
a− (χ ∪ (ū1/p))

)
K (ν).

Proof. (i) If η = µ̂ for some µ ∈ Ch(K ), then K (µ) is the residue field of E(η)
and we have

bE(η) = âK (µ)+
(
χ̂K (µ) ∪ (x)

)
.

Since χ and ν are linearly independent, the character χK (µ) is nontrivial. The first
statement follows from Proposition 2.2(ii).

(ii) Since p · η is unramified, the ramification index of E(η)/E is equal to p, and
hence E(η) = E

(
(ux p)1/p2)

for some unit u ∈ E . Note that K (ν) = K (ū1/p) is
the residue field of E(η). Since u1/px is a pth power in E(η), the class

bE(η) = âK (ν)−
(
χ̂K (ν) ∪ (u1/p)

)
= âK (ν)−

̂(
χK (ν) ∪ (ū1/p)

)
is unramified. It follows from Proposition 2.2(i) that the elements bE(η) in Br

(
E(η)

)
and aK (ν)−

(
χK (ν) ∪ (ū1/p)

)
in Br

(
K (ν)

)
have the same indices. �

3. Brauer group and algebraic tori

Torsors. Let G be an algebraic group over F and let K/F be a field extension.
The set of isomorphism classes of G-torsors (principal homogeneous spaces) over
K is bijective to H 1(K ,G) [Serre 1997].

Example 3.1. Let A be a central simple F-algebra of degree n and G = Aut(A).
Then H 1(K ,G) is the set of isomorphism classes of central simple K -algebras
of degree n, or equivalently, the set of elements in Br(K ) of index dividing n. If
A = Mn(F) is the split algebra, then G = PGL(n).
Example 3.2. Let L be an étale F-algebra of dimension n. Consider the algebraic
torus U = RL/F (Gm,L)/Gm over F . The exact sequence

1→ Gm→ RL/F (Gm,L)→U → 1

and Hilbert Theorem 90 yield an isomorphism θ : H 1(F,U )
∼
→ Br(L/F). Note

that if L is a subalgebra of a central simple F-algebra A of degree n, then U is a
maximal torus in the group Aut(A).

Let α : G → GL(W ) be a finite dimensional representation over F . Suppose
that α is generically free, that is, there is a nonempty open subset W ′ ⊂ W and a
G-torsor β :W ′→ X for a variety X over F . The torsor β is versal, that is, every
G-torsor over a field extension K/F is the pull-back of β with respect to a K -point
of X . The generic fiber of β is called a generic G-torsor. It is a torsor over the
function field F(X) [Garibaldi et al. 2003; Reichstein 2000].
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Example 3.3. Let S be an algebraic torus over F . We embed S into the quasitrivial
torus P= RL/F (Gm,L), where L is an étale F-algebra [Colliot-Thélène and Sansuc
1977]. Then S acts on the vector space L by multiplication, so that the action on
the open subset P is regular. If T is the factor torus P/S, then the S-torsor P→ T
is versal.

The tori P8, S8, T8, U8 and V8. Let F be a field, 8 be a subgroup of p Ch(F)
of rank r , and L = F(8). Let G = Gal(L/F). Choose a basis χ1, χ2, . . . , χr

for 8. We can view each χi as a character of G, that is, as a homomorphism
χi : G→Q/Z. Let σ1, σ2, . . . , σr be the dual basis for G, that is,

χi (σ j )=

{
(1/p)+Z if i = j,
0 otherwise.

Let R be the group ring Z[G]. Consider the surjective homomorphism of G-
modules k : Rr

→ R taking the i th basis element ei of Rr to σi − 1. The image
of k is the augmentation ideal I = Ker(ε) in R, where ε : R → Z is defined by
ε(ρ)= 1 for all ρ ∈ G.

Write Ni = 1+ σi + σ
2
i + · · ·+ σ

p−1
i ∈ R.

Set N := Ker(k). Consider the following elements in N :

ei j := (σi − 1)e j − (σ j − 1)ei and fi = Ni ei , i, j = 1, . . . r.

Lemma 3.4. The G-module N is generated by ei j and fi .

Proof. Let R = Z[t1, . . . , tr ] be the polynomial ring. Acyclicity of the Koszul
complex for the homomorphism k̄ : (R)r → R, taking the i th basis element ēi to
ti − 1 [Matsumura 1980, Theorem 43] implies that Ker(k̄) is generated by ēi j :=

(ti − 1)ē j − (t j − 1)ēi .
The kernel J of the surjective homomorphism R→ R, taking ti to σi , is gener-

ated by t p
i − 1.

Let x :=
∑

xi ei ∈ Ker(k). Lift every xi to a polynomial x̄i ∈ R and consider
x̄ :=

∑
x̄i ēi ∈ (R)r . We have k̄(x̄) ∈ J , and hence

k̄(x̄)=
∑

(ti − 1)x̄i =
∑

(t p
i − 1)hi =

∑
(ti − 1)N i hi ,

for some polynomials hi ∈ R, where N i = 1+ ti + t2
i + · · · + t p−1

i ∈ R. Hence
the element

∑
(x̄i − hi N i )ēi belongs to the kernel of k̄ and therefore is a linear

combination of ēi j . It follows that x̄ is a linear combination of ēi j and N i ēi , and
hence x is a linear combination of ei j and fi . �

Let εi : Rr
→ Z be the i th projection followed by the augmentation map ε.

It follows from Lemma 3.4 that εi (N ) = pZ for every i . Moreover, the G-
homomorphism

l : N → Zr , m 7→
(
ε1(m)/p, . . . , εr (m)/p

)
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is surjective. Set M = Ker(l) and Q = Rr/M .

Lemma 3.5. The G-module M is generated by ei j .

Proof. Let M ′ be the submodule of N generated by ei j . Clearly, M ′ ⊂ M . Note
also that (σ j − 1) fi = Ni ei j ∈ M ′, and hence I fi ⊂ M ′.

Suppose that m ∈M . By Lemma 3.4, modifying m by an element in M ′, we can
assume that m =

∑r
i=1 xi fi for some xi ∈ R. Since l(m) = 0, we have ε(xi ) = 0,

that is, xi ∈ I for all i , and hence m ∈
∑

I fi ⊂ M ′. �

Let P8, S8, T8, U8 and V8 be the algebraic tori over F with the character
G-modules Rr , Q, M , I and N , respectively. The diagram of homomorphisms of
G-modules with exact columns and rows

M_�

��

M_�

��
N

l
����

�� // Rr

����

k // // I

Zr �� // Q // // I

(3-1)

yields the following diagram of homomorphisms of the tori:

U8 �� // S8_�

��

// // Gr
m_�

��
U8 �� // P8

����

// // V8

����
T8 T8

(3-2)

Let K/F be a field extension. Set K L := K ⊗F L . The exact sequence of
G-modules

0→ I → R→ Z→ 0 (3-3)

gives an exact sequence of the tori

1→ Gm→ RL/F (Gm,L)→U → 1,

and then an exact sequence

0→ H 1(K ,U8)→ H 2(K ,Gm)→ H 2(K L ,Gm).

Hence
H 1(K ,U8)' Br(K L/K ). (3-4)

Lemma 3.6. The homomorphism (K×)r→ H 1(K ,U8)'Br(K L/K ) induced by
the first row of the diagram (3-2) takes (x1, . . . , xr ) to

∑r
i=1
(
(χi )K ∪ (xi )

)
.
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Proof. Consider the composition

h : HomG(Z
r ,Z)→ Ext1G(I,Z)→ Ext2G(Z,Z)= H 2(G,Z)= Ch(G), (3-5)

where the first homomorphism is induced by the bottom row of the diagram (3-1),
and the second one by the exact sequence (3-3).

We claim that for any k, the image of the kth projection pk : Z
r
→ Z under the

composition (3-5) coincides with χk . Consider the G-homomorphism Rr
→ Q,

taking ek to 1/p and ei to 0 for all i 6= k. By Lemma 3.5, this homomorphism
vanishes on M , and hence it factors through a map Q → Q. Thus, we have a
commutative diagram

0 - Zr - Q - I - 0

0 - Z

pk
?

- Q
?

- Q/Z

fk
?

- 0

(3-6)

for the map fk defined by fk(σk − 1)= 1/p+Z and fk(σi − 1)= 0 for all i 6= k.
Let α be the image of the class of the top row of (3-6) under the map p∗k :

Ext1G(I,Zr )→ Ext1G(I,Z). Then h(pk) is the image of α under the second map in
the composition (3-5). Hence h(pk) is also the image of the class β of the sequence
(3-3) under the connecting map

H 1(G, I )= Ext1G(Z, I )→ Ext2G(Z,Z)= H 2(G,Z)

induced by the exact sequence representing the class α.
The diagram (3-6) yields a commutative diagram

H 1(G, I ) ∂- H 2(G,Zr )

H 1(G,Q/Z)

f ∗k ?

=== H 2(G,Z)

p∗k ?

As we have shown, p∗k
(
∂(β)

)
= h(pk). Therefore, it suffices to prove that f ∗k (β)=

χk . The cocycle β satisfies β(σi )=σi−1. It follows that f ∗k (β)(σk)= fk(σk−1)=
1/p+Z and f ∗k (β)(σi )= 0 for all i 6= k. This proves the claim.

Consider the commutative diagram

(K×)r = HomG(Z
r ,Z)⊗ K× // Ext1G(I,Z)⊗ K×

��

// Ext2G(Z,Z)⊗ K×

��
(K×)r = HomG(Z

r , K L×) // Ext1G(I, K L×) // Ext2G(Z, K L×),

where the vertical homomorphisms are given by the cup products. By the claim,
the image of the tuple (x1, . . . , xr ) under the diagonal composition is equal to
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i=1
(
(χi )K ∪ (xi )

)
. On the other hand, the bottom composition coincides with

(K×)r → H 1(K ,U8)' Br(K L/K ). �

Corollary 3.7. The map H 1(K ,U8)→ H 1(K , S8) induces an isomorphism

H 1(K , S8)' Br ind(K L/K ).

It follows from Corollary 3.7 and the triviality of the group H 1(K , P8) that we
have a commutative diagram

V8(K ) - H 1(K ,U8) === Br(K L/K )

T8(K )
?

- H 1(K , S8)
?

== Br ind(K L/K )
?

(3-7)

with surjective homomorphisms.

3.1. The element a. Let a′ be the image of the generic point of V8 over K =
F(V8) in Br

(
L(V8)/F(V8)

)
in the diagram (3-7). Choose also an element a ∈

Br
(
L(T8)/F(T8)

)
corresponding to the generic point of T8 over F(T8). The

field F(T8) is a subfield of F(V8) and the classes aF(V8) and a′ are equal in
Br ind

(
L(V8)/F(V8)

)
. It follows that paF(V8) = pa′ in Br F(V8).

The exact sequence of G-modules

0→ L×⊕ N → L(V8)×→ Div(V8
L )→ 0

induces an exact sequence

H 1(G,Div(V8
L )
)
→ H 2(G, L×)⊕ H 2(G, N )→ H 2(G, L(V8)×

)
.

Since Div(V8
L ) is a permutation G-module, the first term in the sequence is trivial.

Therefore, we get an injective homomorphism

ϕ : H 2(G, N )→ Br F(V8)/Br(F).

Then (3-1) and (3-3) yield

H 2(G, N )' H 1(G, I )' Ĥ 0(G,Z)= Z/pr Z;

thus, H 2(G, N ) has a canonical generator ξ of order pr .

Lemma 3.8 [Merkurjev 2010, Lemma 2.4]. We have ϕ(ξ)=−a′+Br(F).
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Proof. Consider the diagram
HomG(Z,Z)

��
HomG(I, I )

��

// Ext1G(Z, I )

��
HomG(N , N )

��

// Ext1G(I, N )

l
��

// Ext2G(Z, N )

��
HomG

(
N , L(V8)×

)
// Ext1G

(
I, L(V8)×

)
// Ext2G

(
Z, L(V8)×

)
By [Cartan and Eilenberg 1999, Chapter XIV], the images of 1Z and −1I agree in
Ext1G(Z, I ), and the images of 1N and −1I agree in Ext1G(I, N ). It follows from
[Cartan and Eilenberg 1999, Chapter V, Proposition 4.1] that the upper square is
anticommutative. The image of 1Z is equal to ϕ(ξ), and the image of 1N is equal
to a′+Br(F) in the right bottom corner. �

Corollary 3.9. If r ≥ 2, then the class pr−1a in Br F(T8) does not belong to the
image of Br(F)→ Br F(T8).

Proof. The image of pr−1a in Br F(V8) coincides with pr−1a′. Modulo the image
of the map Br(F)→ Br F(V8), the class pr−1a′ is equal to −ϕ(pr−1ξ) and is
therefore nonzero, since ϕ is injective. �

4. Essential dimension of algebraic tori

Let S be an algebraic torus over F with the splitting group G. We assume that G is
a p-group of order pr . Let X be the G-module of characters of S. A p-presentation
of X is a G-homomorphism f : P→ X with P a permutation G-module and finite
cokernel of order prime to p. A p-presentation with the smallest rank(P) is called
minimal.

Essential p-dimension of algebraic tori was determined in [Lötscher et al. 2009,
Theorem 1.4]:

Theorem 4.1. Let S be an algebraic torus over F with the (finite) splitting group
G, X the G-module of characters of S, and f : P→ X a minimal p-presentation
of X. Then edp(S)= rank

(
Ker( f )

)
.

Corollary 4.2. Suppose that X admits a surjective minimal p-presentation f :
P→ X. Then ed(S)= edp(S)= rank

(
Ker( f )

)
.

Proof. As explained in Example 3.3, a surjective G-homomorphism f yields a
generically free representation of S of dimension rank(P). In view of Section 3 of
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[Reichstein 2000], we have

edp(S)≤ ed(S)≤ rank(P)− dim(S)= rank
(
Ker( f )

)
. �

In this section we derive from Theorem 4.1 an explicit formula for the essential
p-dimension of algebraic tori.

Define the group X := X/(pX + I X), where I is the augmentation ideal in
R = Z[G]. For any subgroup H ⊂ G, consider the composition X H ↪→ X → X .
For every k, let Vk denote the image of the homomorphism∐

H⊂G

X H
→ X ,

where the coproduct is taken over all subgroups H with [G : H ] ≤ pk . We have
the sequence of subgroups

0= V−1 ⊂ V0 ⊂ · · · ⊂ Vr = X . (4-1)

Theorem 4.3. The essential p-dimension of S is given by the explicit formula

edp(S)=
r∑

k=0

(rank Vk − rank Vk−1)pk
− dim(S).

Proof. Set bk = rank(Vk). By Theorem 4.1, it suffices to prove that the smallest
rank of the G-module P in a p-presentation of X is equal to

∑r
k=0(bk − bk−1)pk .

Let f : P → X be a p-presentation of X and A a G-invariant basis of P . The
set A is the disjoint union of the G-orbits A j , so that P is the direct sum of the
permutation G-modules Z[A j ].

The composition f̄ : P→ X→ X is surjective. Since G acts trivially on X , the
rank of the group f̄ (Z[A j ]) is at most 1 for all j and f̄ (Z[A j ])⊂ Vk if |A j | ≤ pk .
It follows that the group X/Vk is generated by the images under the composition

P
f̄
−→ X→ X/Vk

of all Z[A j ] with |A j |> pk . Denote by ck the number of such orbits A j , so that

ck ≥ rank(X/Vk)= br − bk .

Set c′k = br − ck , so that bk ≥ c′k for all k and br = c′r .
Since the number of orbits A j with |A j | = pk is equal to ck−1− ck , we have

rank(P)=
r∑

k=0

(ck−1− ck)pk
=

r∑
k=0

(c′k − c′k−1)p
k
= c′r pr

+

r−1∑
k=0

c′k(p
k
− pk+1)

≥ br pr
+

r−1∑
k=0

bk(pk
− pk+1)=

r∑
k=0

(bk − bk−1)pk .
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It remains to construct a p-presentation with P of rank
∑r

k=0(bk−bk−1)pk . For
every k ≥ 0, choose a subset Xk in X of the preimage of Vk under the canonical
map X → X , with the property that for any x ∈ Xk there is a subgroup Hx ⊂ G
with x ∈ X Hx , and [G : Hx ] = pk such that the composition

Xk→ Vk→ Vk/Vk−1

yields a bijection between Xk and a basis of Vk/Vk−1. In particular, |Xk | =

bk − bk−1. Consider the G-homomorphism

f : P :=
r∐

k=0

∐
x∈Xk

Z[G/Hx ] → X,

taking 1 in Z[G/Hx ] to x in X .
By construction, the composition of f with the canonical map X→ X is surjec-

tive. Since G is a p-group, the ideal pR(p)+ I of R(p) is the Jacobson radical of
the ring R(p) := R⊗Z(p). By the Nakayama Lemma, f(p) is surjective. Hence the
cokernel of f is finite of order prime to p. The rank of the permutation G-module
P is equal to

r∑
k=0

∑
x∈Xk

pk
=

r∑
k=0

|Xk |pk
=

r∑
k=0

(bk − bk−1)pk . �

Remark 4.4. In the context of finite p-groups, Theorem 4.3 was proved in [Meyer
and Reichstein 2010, Theorem 1.2].

Example 4.5. Let F be a field and 8 be a subgroup of p Ch(F) of rank r , and let
L = F(8) and G = Gal(L/F). Consider the torus U8 with the character group
the augmentation ideal I defined in Section 3.

The middle row of (3-1) yields an exact sequence

N → (R)r → I → 0.

It follows from Lemma 3.4 that N ⊂ pRr
+ I r , and hence the first homomorphism

in the sequence is trivial. The middle group is isomorphic to (Z/pZ)r , and hence
rank(I )= r .

For any subgroup H ⊂ G, the Tate cohomology group Ĥ 0(H, I )' Ĥ−1(H,Z)

is trivial. It follows that the group I H is generated by NH x for all x ∈ I , where
NH =

∑
h∈H h ∈ R. Since I is of period p with trivial G-action, the classes of the

elements NH x in I are trivial if H is a nontrivial subgroup of G. It follows that the
maps I H

→ I are trivial for all H 6= 1. In the notation of (4-1), V0=· · ·= Vr−1= 0
and Vr = I . By Theorem 4.3,

edp(U8)= r pr
− dim(U8)= r pr

− pr
+ 1= (r − 1)pr

+ 1
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and the rank of the permutation module in a minimal p-presentation of I is equal
to r pr . Therefore, k : Rr

→ I is a minimal p-presentation of I that appears to be
surjective. Therefore, by Corollary 4.2,

ed(U8)= edp(U8)= (r − 1)pr
+ 1. (4-2)

Let S8 be the torus with the character group Q defined in Section 3. As in
(3-1), the homomorphism k factors through a surjective map Rr

→ Q that is then
necessarily a minimal p-presentation of Q. By Theorem 4.3 and Corollary 4.2,

ed(S8)= edp(S8)= r pr
− dim(S8)= (r − 1)pr

− r + 1. (4-3)

5. Degeneration

In this section we study the behavior of the essential p-dimension under degener-
ation, that is, we compare the essential p-dimension of an object over a complete
discrete valued field and its specialization over the residue field (Proposition 5.2).
The iterated degeneration (Corollary 5.4) connects a class in the Brauer group
degree pr over some (large) field and the elements of the indecomposable relative
Brauer group that are torsors for a certain torus.

A simple degeneration. Let F be a field, p a prime integer different from char(F),
and 8 ⊂ pCh(F) a finite subgroup. For an integer k ≥ 0 and a field extension
K/F , let

B8
k (K )= {a ∈ Br(K ){p} such that ind aK (8) ≤ pk

}.

Two elements a and a′ in B8
k (K ) are equivalent if a−a′ ∈Brdec

(
K (8)/K

)
. Write

F8
k (K ) for the set of equivalence classes in B8

k (K ). Abusing notation, we shall
write a for the equivalence class of an element a ∈B8

k (K ) in F8
k (K ).

We view B8
k and F8

k as functors from Fields/F to Sets .

Example 5.1. (i) If 8 is the zero subgroup, then F8
r = B8

r ' CSA(pr ) '

PGL(pr )- torsors .

(ii) The set B8
0 (K ) is naturally bijective to Br

(
K (8)/K

)
and

F8
0 (K )' Br ind

(
K (8)/K

)
.

By Corollary 3.7, the latter group is naturally isomorphic to H 1(K , S8),
where S8 is the torus defined in Section 3, and thus, F8

0 ' S8- torsors .

Let 8′ ⊂ 8 be a subgroup of index p and η ∈ 8 \ 8′; hence 8 = 〈8′, η〉.
Let E/F be a field extension such that ηE /∈ 8′E in Ch(E). Choose an element
a ∈B8

k (E), that is, a ∈ Br(E){p} and ind(aE(8))≤ pk .
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Let E ′ be a field extension of F that is complete with respect to a discrete
valuation v′ over F with residue field E , and set

a′ = â+
(
η̂E ∪ (x)

)
∈ Br(E ′) (5-1)

for some x ∈ E ′× such that v′(x) is not divisible by p. By Proposition 2.2(ii),
ind(a′E ′(8′))= p · ind(aE(8))≤ pk+1, and hence a′ ∈B8′

k+1(E
′).

Proposition 5.2. Suppose that for any finite field extension N/E of degree prime
to p and any character ρ ∈ Ch(N ) of order p2 such that p ·ρ ∈8N \8

′

N , we have
ind aN (8′,ρ) > pk−1. Then

ed
F8′

k+1
p (a′)≥ ed

F8
k

p (a)+ 1.

Proof. Let M/E ′ be a finite field extension of degree prime to p, let M0 ⊂ M be a
subfield over F , and let a′0 ∈B8′

k+1(M0) be such that (a′0)M = a′M in F8′

k+1 and

tr. degF (M0)= ed
F8′

k+1
p (a′).

We have
a′M − (a

′

0)M ∈ Brdec
(
M(8′)/M

)
. (5-2)

It follows from (5-1) that

a′M = âN +
(
η̂N ∪ (x)

)
(5-3)

and ∂v′(a′)=q ·ηE , where q=v′(x) is relatively prime to p. We extend the discrete
valuation v′ on E ′ to a (unique) discrete valuation v on M . The ramification index
e′ and inertia degree are both prime to p. Thus, the residue field N of v is a finite
extension of E of degree prime to p. By Proposition 2.2(iii),

∂v(a′M)= e′ · ∂v′(a′)N = e′q · ηN . (5-4)

Let v0 be the restriction of v to M0 and N0 its residue field. From (5-2), we have

∂v(a′M)− ∂v
(
(a′0)M

)
∈8′N . (5-5)

Recall that ηE /∈8
′

E . Since [N : E] is not divisible by p, it follows that

ηN /∈8′N . (5-6)

By (5-4), (5-5) and (5-6), ∂v
(
(a′0)M

)
6= 0, that is, (a′0)M is ramified and therefore

v0 is nontrivial, that is, v0 is a discrete valuation on M0.
Let η0 := ∂v0(a

′

0) ∈ Ch(N0){p}. By Proposition 2.2(iii),

∂v
(
(a′0)M

)
= e · (η0)N , (5-7)
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where e is the ramification index of M/M0, and hence (η0)N 6= 0. It follows from
(5-4), (5-5) and (5-7) that

e′q · ηN − e · (η0)N ∈8
′

N . (5-8)

Since e′q is relatively prime to p,

ηN ∈ 〈8
′

N , (η0)N 〉 in Ch(N ). (5-9)

Let pt (t≥1) be the order of (η0)N . It follows from (5-6) and (5-8) that vp(e)= t−1
and

pt−1
· (η0)N ∈8N \8

′

N . (5-10)

Choose a prime element π0 in M0 and write

(a′0)M̂0
= â0+

(
η̂0 ∪ (π0)

)
(5-11)

in Br(M̂0), where a0 ∈ Br(N0){p}.
Applying the specialization homomorphism sπ : Br(M){p} → Br(N ){p} (for a

prime element π in M) to (5-2), (5-3) and (5-11), using (2-3) and (5-9), we get

aN − (a0)N ∈ Brdec
(
N (8′, η0)/N

)
. (5-12)

It follows from (5-12) that

aN (8′,η0) = (a0)N (8′,η0) (5-13)

in Br
(
N (8′, η0)

)
.

By (5-11),
(a′0)M̂0(8′)

= (̂a0)N0(8′)+
(
(̂η0)N0(8′)

∪ (π0)
)
.

Since no nontrivial multiple of (η0)N belongs to 8′N , by (5-10), the order of the
character (η0)N0(8′) is at least pt . It follows from Proposition 2.2(ii) that

ind(a0)N0(8′,η0) = ind(a′0)M̂0(8′)
/ ord(η0)N0(8′) ≤ pk+1/pt

= pk−t+1. (5-14)

By (5-13) and (5-14),

ind(aN (8′,η0))≤ pk−t+1. (5-15)

Suppose that t ≥ 2, and consider the character ρ = pt−2
· (η0)N of order p2 in

Ch(N ). We have p ·ρ = pt−1(η0)N ∈8N \8
′

N , by (5-10). Also, the degree of the
field extension N (8′, η0)/N (8′, ρ) is equal to pt−2. Hence, by (5-15),

ind(aN (8′,ρ))≤ ind(aN (8′,η0)) · p
t−2
≤ pk−t+1

· pt−2
= pk−1.

This contradicts the assumption. Therefore, t = 1, that is, ord(η0)N = p. Then
(e, p)= 1 and it follows from (5-8) that (η0)N ∈ 〈8

′

N , ηN 〉. Moreover,

〈8′, η0〉N = 〈8
′, η〉N =8N . (5-16)
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There is a finite subextension N1/N0 of N/N0 such that 〈8′, η0〉N1 = 8N1 ,
by Lemma 2.1. Replacing N0 by N1 and a0 by (a0)N1 , we may assume that
〈8′, η0〉N0 =8N0 . In particular, η0 is of order p in Ch(N0).

Since ind(a0)N0(8) = ind(a0)N0(8′,η0) ≤ pk by (5-14), we have a0 ∈B8
k (N0).

It follows from (5-12) that

aN − (a0)N ∈ Brdec
(
N (8)/N

)
.

Hence the classes of aN and (a0)N are equal in F8
k (N ). The class of aN in F8

k (N )
is then defined over N0, and therefore

ed
F8′

k+1
p (a′)= tr. degF (M0)≥ tr. degF (N0)+ 1≥ ed

F8
k

p (a)+ 1. �

5.1. Multiple degeneration. In this section we assume that the base field F con-
tains a primitive p2-th root of unity.

Let χ1, χ2, . . . , χr be linearly independent characters in p Ch(F), and let 8 =
〈χ1, χ2, . . . , χr 〉. Let E/F be a field extension such that rank(8E) = r and let
a ∈ Br(E){p} be an element that is split by E(8).

Let E0=E , E1, . . . , Er be field extensions of F such that for any k=1, 2, . . . , r ,
the field Ek is complete with respect to a discrete valuation vk over F and Ek−1

is its residue field. For any k = 1, 2, . . . , r , choose elements xk ∈ E×k such that
vk(xk) is not divisible by p, and define the elements ak ∈ Br(Ek){p} inductively
by a0 = a and

ak = âk−1+
(
(̂χk)Ek−1

∪ (xk)
)
.

Let8k be the subgroup of8 generated by χk+1, . . . , χr . Thus, 80=8, 8r = 0
and rank(8k)= r − k. Note that the character (χk)Ek−1(8k) is not trivial. It follows
from Proposition 2.2(ii) that

ind(ak)Ek(8k) = p · ind(ak−1)Ek−1(8k−1)

for any k = 1, . . . , r . Since ind aE(8) = 1, we have ind(ak)Ek(8k) = pk for all
k = 0, 1, . . . , r . In particular, ak ∈B8k

k (Ek).
The following lemma assures that under a certain restriction on the element

a, the conditions of Proposition 5.2 are satisfied for the fields Ek , the groups of
characters 8k , and the elements ak .

Lemma 5.3. Suppose that aE(9) /∈ Im
(
Br F(9)→ Br E(9)

)
for any proper sub-

group 9 ⊂ 8. Then for every k = 0, 1, . . . , r − 1, and any finite field extension
N/Ek of degree prime to p and any character ρ ∈ Ch(N ) of order p2 such that
p · ρ ∈ (8k)N \ (8k+1)N , we have

ind(ak)N (8k+1,ρ) > pk−1. (5-17)
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Proof. Let k = 0, 1, . . . , r−1 and N/Ek be a finite field extension of degree prime
to p. We construct a new sequence of fields Ẽ0, Ẽ1, . . . , Ẽr such that each Ẽi is
a finite extension of Ei of degree prime to p as follows. We set Ẽ j = N . The
fields Ẽ j with j < k are constructed by descending induction on j . If we have
constructed Ẽ j as a finite extension of E j of degree prime to p, then we extend the
valuation v j to Ẽ j and let Ẽ j−1 be its residue field. The fields Ẽ j with j > k are
constructed by induction on j . If we have constructed Ẽ j as a finite extension of
E j of degree prime to p, then let Ẽ j+1 be an extension of E j+1 of degree [Ẽ j : E j ]

with residue field Ẽ j .
Replacing Ei by Ẽi and ai by (ai )Ẽi

, we may assume that N = Ek . Let ρ ∈
Ch(Ek) be a character of order p2. We prove the inequality (5-17) by induction
on r . The case r = 1 is obvious. Suppose first that k < r − 1. Consider the fields
F ′= F(χr ), E ′= E(χr ), E ′i = Ei (χr ), the sequence of characters χ ′i = (χi )F ′ , and
the sequence of elements a′i := (ai )E ′i ∈ Br(E ′i ) for i = 0, 1, . . . , r − 1. Let 8′ =
〈χ ′1, χ

′

2, . . . , χ
′

r−1〉 and let 8′k be the subgroup of 8′ generated by χ ′k+1, . . . , χ
′

r−1.
Let 9 ′ ⊂ 8′ be a proper subgroup. Then 9 := 9 ′+ 〈χr 〉 is a proper subgroup

of 8. Since F(9)= F ′(9 ′) and E(9)= E ′(9 ′), we have

aE ′(9 ′) /∈ Im
(
Br F ′(9 ′)→ Br E ′(9 ′)

)
.

By induction, the inequality (5-17) holds for the term a′k of the new sequence.
Since

(a′k)E ′k(8
′

k+1,ρ)
= (ak)Ek(8k+1,ρ),

the inequality (5-17) holds for the term ak .
Thus we can assume that k = r − 1.

Case 1. The character ρ is unramified with respect to vr−1, that is, ρ = µ̂ for a
character µ ∈ Ch(Er−2) of order p2. By Lemma 2.3(i),

ind(ar−2)Er−2(χr−1,µ) = ind(ar−1)Er−1(ρ)/p = ind(ar−1)Er−1(8r ,ρ)/p. (5-18)

Consider the fields F ′= F(χr−1), E ′= E(χr−1), E ′i = Ei (χr−1), the new sequence
of characters χ1, . . . , χr−2, χr and the elements a′i ∈Br(E ′i ) for i = 0, 1, . . . , r−1
defined by a′i = (ai )E ′i for i ≤ r − 2 and a′r−1 = âr−2+

(
χ̂r ∪ (xr−1)

)
over E ′r−1.

Let 8′ = 〈χ1, . . . , χr−2, χr 〉 and 9 ′ ⊂ 8′ be a proper subgroup. Then 9 :=
9 ′+〈χr−1〉 is a proper subgroup of8. Since F(9)= F ′(9 ′) and E(9)= E ′(9 ′),
we have aE ′(9 ′) /∈ Im

(
Br F ′(9 ′)→Br E ′(9 ′)

)
. By induction, the inequality (5-17)

holds for the term a′r−2 of the new sequence, the field N = E ′r−2, and the character
µN . Since

(a′r−2)E ′r−2(µ)
= (ar−2)Er−2(χr−1,µ),

the equality (5-18) shows that (5-17) holds for ar−1.
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Case 2. The character ρ is ramified. Note that p · ρ is a nonzero multiple of
(χr )Er−1 . Suppose the inequality (5-17) fails for ar−1, that is, we have

ind(ar−1)Er−1(ρ) ≤ pr−2.

By Lemma 2.3(ii), there exists a unit u ∈ Er−1 such that Er−2(χr ) = Er−2(ū1/p)

and
ind
(
ar−2− (χr−1 ∪ (ū1/p))

)
Er−2(χr )

= ind(ar−1)Er−1(ρ) ≤ pr−2.

By descending induction on j = 0, 1, . . . , r − 2, we show that there exist a
unit u j in E j+1 and a subgroup 2 j ⊂ 8 of rank r − j − 1 such that χr ∈ 2 j ,
〈χ1, . . . , χ j , χr−1〉 ∩2 j = 0, E j (χr )= E j (ū

1/p
j ), and

ind
(
a j − (χr−1 ∪ (ū

1/p
j ))

)
E j (2 j )

≤ p j . (5-19)

If j = r − 2, we set u j = u and 2 j = 〈χr 〉.
( j ⇒ j − 1): The field E j (ū

1/p
j )= E j (χr ) is unramified over E j , and hence

v j (ū j ) is divisible by p. Modifying u j by a p2-th power, we may assume that
ū j = u j−1xmp

j for a unit u j−1 ∈ E j and an integer m. Then(
a j − (χr−1 ∪ (ū

1/p
j ))

)
E j (2 j )

= b̂+
(
η̂∪ (x j )

)
E j (2 j )

,

where η = χ j −mχr−1 and b =
(
a j−1− (χr−1 ∪ (ū

1/p
j−1))

)
E j−1(2 j )

. Since η is not
contained in 2 j , the character ηE j−1(2 j ) is not trivial. Set 2 j−1 = 〈2 j , η〉. It
follows from Proposition 2.2(ii) that

ind(bE j−1(2 j−1))= ind
(
a j − (χr−1 ∪ (ū

1/p
j ))

)
E j (2 j )

/p ≤ p j−1.

Applying the inequality (5-19) in the case j = 0, we get

aE(20) =
(
χr−1 ∪ (w

1/p)
)

E(20)

for an element w ∈ E× such that E(w1/p) = E(χr ). Since the character χr is
defined over F , we may assume that w ∈ F×, and therefore

aE(20) ∈ Im
(
Br F(20)→ Br E(20)

)
.

The degree of the extension E(20)/E is equal to pr−1, and hence 20 is a proper
subgroup of 8, a contradiction. Thus, we have shown that the inequality (5-17)
holds. �

By Example 5.1(ii), we can view a as an S8-torsor over E .

Corollary 5.4. Suppose that pr−1a /∈ Im
(
Br(F)→ Br(E)

)
. Then

edCSA(pr )
p (ar )≥ edS8- torsors

p (a)+ r.
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Proof. By iterated application of Proposition 5.2 and Example 5.1,

edCSA(pr )
p (ar )= edF8r

r
p (ar )≥ ed

F
8r−1
r−1

p (ar−1)+ 1≥ . . .

≥ ed
F
81
1

p (a1)+ (r − 1)≥ ed
F
80
0

p (a0)+ r = edS8- torsors
p (a)+ r. �

6. Proof of the main theorem

Theorem 6.1. Let F be a field and p a prime integer different from char(F). Then

edp
(
CSA(pr )

)
≥ (r − 1)pr

+ 1.

Proof. Since edp
(
CSA(pr )

)
can only go down if we replace the base field F by

any field extension [Merkurjev 2009, Proposition 1.5], we can replace F by any
field extension. In particular, we may assume that F contains a primitive p2-th
root of unity and that there is a subgroup 8 of p Ch(F) of rank r (replacing F by
the field of rational functions in r variables over F).

Let T8 be the algebraic torus constructed in Section 3 for the subgroup 8. Set
E = F(T8), and let a ∈ Br(E L/E) be the element defined in Section 3.1. Let
ar ∈ Br(Er ) be the element of index pr constructed in Section 5.1. By Corollary
3.9, the class pr−1a in Br(E) does not belong to the image of Br(F)→ Br(E). It
follows from Corollary 5.4 that

edCSA(pr )
p (ar )≥ edS8- torsors

p (a)+ r. (6-1)

The S8-torsor a is the generic fiber of the versal S8-torsor P8→T8 (see Example
3.3), and hence a is a generic torsor. By [Reichstein and Youssin 2000, §6] or
[Merkurjev 2009, Theorem 2.9],

edS8- torsors
p (a)= edp(S8). (6-2)

The essential p-dimension of S8 was calculated in (4-3):

edp(S8)= (r − 1)pr
− r + 1. (6-3)

Finally, it follows from (6-1), (6-2) and (6-3) that

edp
(
CSA(pr )

)
≥ edCSA(pr )

p (ar )≥ edS8- torsors
p (a)+ r = (r − 1)pr

+ 1. �

7. Remarks

Let K/F be a field extension and G an elementary abelian group of order pr .
Consider the subset CSAK (G) of CSAK (pr ) consisting of all classes admitting
a splitting Galois K -algebra E with Gal(E/K ) ' G. Equivalently, CSAK (G)
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consists of all classes represented by crossed product algebras with the group G
[Herstein 1994, §4.4].

Write Pair K (G) for the set of isomorphism classes of pairs (a, E), where a ∈
CSAK (G) and E is a Galois G-algebra splitting a.

Finally, fix a Galois field extension L/F with Gal(L/F)' G and consider the
subset CSAK (L/F) of CSAK (G) consisting of all classes split by the extension
K L/K . Thus, CSA(L/F) is a subfunctor of CSA(G) and there is the obvious
surjective morphism of functors Pair(G)→ CSA(G).

Theorem 7.1. Let F be a field, p a prime integer different from char(F), G an
elementary abelian group of order pr , r ≥ 2, and L/F a Galois field extension
with Gal(L/F) ' G. Let F be one of the three functors CSA(L/F), CSA(G),
Pair(G). Then

ed(F)= edp(F)= (r − 1)pr
+ 1.

Proof. The functor CSA(L/F) is isomorphic to U8- torsors by (3-4), where 8 is
a subgroup of Ch(F) such that L = F(8). It follows from (4-2) that

ed
(
CSA(L/F)

)
= edp

(
CSA(L/F)

)
= (r − 1)pr

+ 1.

Let ar be the element in Br(Er ) in the proof of Theorem 6.1. It satisfies

edCSA(pr )
p (ar )≥ (r − 1)pr

+ 1.

By construction, ar ∈ CSAEr (G). Since CSA(G) is a subfunctor of CSA(pr ), we
have

edp
(
CSA(G)

)
≥ edCSA(G)

p (ar )≥ edCSA(pr )
p (ar )≥ (r − 1)pr

+ 1.

The upper bound ed
(
CSA(G)

)
≤ (r −1)pr

+1 was proven in [Lorenz et al. 2003,
Corollary 3 10].

The split étale F-algebra E :=Map(G, F) has the natural structure of a Galois
G-algebra over F . The group G acts on the split torus U := RE/F (Gm,E)/Gm .
Let A be the split F-algebra EndF (E). The semidirect product H := U o G acts
naturally on A by F-algebra automorphisms. Moreover, by the Skolem–Noether
Theorem, H is precisely the automorphism group of the pair (A, E). It follows
that the functor Pair K (G) is isomorphic to H - torsors .

The character group of U is G-isomorphic to the ideal I in R = Z[G]. By
[Meyer and Reichstein 2009a, §3], the G-homomorphism k : Rr

→ I constructed
in Section 3 yields a representation W of the group H of dimension r pr . Since
r ≥ 2, by Lemma 3.4, G acts faithfully on the kernel N of k. By [Meyer and
Reichstein 2009a, Lemma 3.3], the action of H on W is generically free, and
hence

ed
(
Pair(G)

)
= ed(H)≤ dim(W )− dim(H)= (r − 1)pr

+ 1.
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Since Pair(G) surjects onto CSA(G), we have

ed
(
Pair(G)

)
≥ edp

(
Pair(G)

)
≥ edp

(
CSA(G)

)
= (r − 1)pr

+ 1. �

Remark 7.2. The generic G-crossed product algebra D constructed in [Amitsur
and Saltman 1978] is a generic element for the functor CSA(G) in the sense of
[Merkurjev 2009, §2], and hence

ed(D)= edp(D)= (r − 1)pr
+ 1

for r ≥ 2 by Theorem 7.1.
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On the minimal ramification problem
for semiabelian groups

Hershy Kisilevsky, Danny Neftin and Jack Sonn

It is now known that for any prime p and any finite semiabelian p-group G,
there exists a (tame) realization of G as a Galois group over the rationals Q with
exactly d = d(G) ramified primes, where d(G) is the minimal number of gener-
ators of G, which solves the minimal ramification problem for finite semiabelian
p-groups. We generalize this result to obtain a theorem on finite semiabelian
groups and derive the solution to the minimal ramification problem for a certain
family of semiabelian groups that includes all finite nilpotent semiabelian groups
G. Finally, we give some indication of the depth of the minimal ramification
problem for semiabelian groups not covered by our theorem.

1. Introduction

Let G be a finite group. Let d=d(G) be the smallest number for which there exists
a subset S of G with d elements such that the normal subgroup of G generated by
S is all of G. One observes that if G is realizable as a Galois group G(K/Q)
with K/Q tamely ramified (e.g., if none of the ramified primes divide the order of
G), then at least d(G) rational primes ramify in K (see, e.g., [Kisilevsky and Sonn
2010]). The minimal ramification problem for G is to realize G as the Galois group
of a tamely ramified extension K/Q in which exactly d(G) rational primes ramify.
This variant of the inverse Galois problem is open even for p-groups, and no coun-
terexample has been found. It is known that the problem has an affirmative solution
for all semiabelian p-groups, for all rational primes p [Neftin 2009; Kisilevsky and
Sonn 2010]. A finite group G is semiabelian if and only if G ∈ SA, where SA is
the smallest family of finite groups satisfying (i) every finite abelian group belongs
to SA, (ii) if G ∈ SA and A is finite abelian, then any semidirect product A o G
belongs to SA, and (iii) if G ∈ SA, then every homomorphic image of G belongs to
SA. In this paper we generalize this result to arbitrary finite semiabelian groups by
means of a “wreath product length” wl(G) of a finite semiabelian group G. When a

Kisilevsky’s research was supported in part by a grant from the NSERC.
MSC2000: primary 11R32; secondary 20D15.
Keywords: Galois group, nilpotent group, ramified primes, wreath product, semiabelian group.
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finite semiabelian group G is nilpotent, wl(G)= d(G), which for nilpotent groups
G equals the (more familiar) minimal number of generators of G. Thus the general
result does not solve the minimal ramification problem for all finite semiabelian
groups, but does specialize to an affirmative solution to the minimal ramification
problem for nilpotent semiabelian groups. Note that for a nilpotent group G, d(G)
is maxp | |G| d(G p) and not

∑
p | |G| d(G p), where G p is the p-Sylow subgroup of

G. Thus, a solution to the minimal ramification problem for nilpotent groups does
not follow trivially from the solution for p-groups.

2. Properties of wreath products

2.1. Functoriality. The family of semiabelian groups can also be defined using
wreath products. Let us recall the definition of a wreath product. Here and through-
out the text the actions of groups on sets are all right actions.

Definition 2.1. Let G and H be two groups that act on the sets X and Y , respec-
tively. The (permutational) wreath product H oX G is the set H X

×G = {( f, g) |
f : X→ H, g ∈ G} which is a group with respect to the multiplication

( f1, g1)( f2, g2)= ( f1 f
g−1

1
2 , g1g2),

where f
g−1

1
2 is defined by f

g−1
1

2 (x) = f2(xg1) for any g1, g2 ∈ G, f1, f2 : X → H ,
and x ∈ X . The group H oX G acts on the set Y×X by (y, x)·( f, g)= (y f (x), xg),
for any y ∈ Y , x ∈ X , f : X→ H , g ∈ G.

Definition 2.2. The standard (or regular) wreath product H oG is defined as the
permutational wreath product with X = G, Y = H , and the right regular actions.

The functoriality of the arguments of a wreath product will play an important
role in the sequel. The following five lemmas are devoted to these functoriality
properties.

Definition 2.3. Let G be a group that acts on X and Y . A map φ : X→ Y is called
a G-map if φ(xg)= φ(x)g for every g ∈ G and x ∈ X .

Note that for such φ, we also have φ−1(y)g={xg |φ(x)= y}= {x ′ |φ(x ′g−1)=

y} = {x ′ | φ(x ′)= yg} = φ−1(yg).

Lemma 2.4. Let G be a group that acts on the finite sets X, Y and let A be an
abelian group. Then every G-map φ : X → Y induces a homomorphism φ̃ : A oX
G → A oY G by defining (φ̃( f, g)) = (φ̂( f ), g) for every f : X → A and g ∈ G,
where φ̂( f ) : Y → A is defined by

φ̂( f )(y)=
∏

x∈φ−1(y)

f (x),

for every y ∈ Y . Furthermore, if φ is surjective then φ̃ is an epimorphism.
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Proof. Let us show the above φ̃ is indeed a homomorphism. For this we claim
φ̃(( f1, g1)( f2, g2))= φ̃( f1, g1)φ̃( f2, g2) for every g1, g2 ∈ G and f1, f2 : X→ A.
By definition:

φ̃( f1, g1)φ̃( f2, g2)= (φ̂( f1), g1)(φ̂( f2), g2)= (φ̂( f1)φ̂( f2)
g−1

1 , g1g2),

while φ̃(( f1, g1)( f2, g2))= φ̃( f1 f
g−1

1
2 , g1g2)= (φ̂( f1 f

g−1
1

2 ), g1g2). We shall show
that φ̂( f1 f2) = φ̂( f1)φ̂( f2) and φ̂( f g) = φ̂( f )g for every f1, f2, f : X → A and
g ∈ G. Clearly this will imply the claim. The first assertion follows since

φ̂( f1 f2)(y)=
∏

x∈φ−1(y)

f1(x) f2(x)=
∏

x∈φ−1(y)

f1(x)
∏

x∈φ−1(y)

f2(x)= φ̂( f1)(y)φ̂( f2)(y).

As to the second assertion we have

φ̂( f g)(y)=
∏

x∈φ−1(y)

f g(x)=
∏

x∈φ−1(y)

f (xg−1)=
∏

x ′g∈φ−1(y)

f (x ′)=
∏

x ′∈φ−1(y)g−1

f (x ′).

Since φ is a G-map we have φ−1(y)g−1
= φ−1(yg−1) and thus

φ̂( f g)(y)=
∏

x∈φ−1(y)g−1

f (x)=
∏

x∈φ−1(yg−1)

f (x)= φ̂( f )g(y).

This proves the second assertion and hence the claim. It is left to show that if φ
is surjective then φ̃ is surjective. Let f ′ : Y → A and g′ ∈ G. Let us define an
f : X→ A that will map to f ′. For every y ∈Y choose an element xy ∈ X for which
φ(xy) = y and define f (xy) := f ′(y). Define f (x) = 1 for any x 6∈ {xy | y ∈ Y }.
Then clearly

φ̂( f )(y)=
∏

x∈φ−1(y)

f (x)= f (xy)= f ′(y).

Thus, φ̃( f, g′)= (φ̂( f ), g′)= ( f ′, g′) and φ̃ is onto. �

Lemma 2.5. Let B and C be two groups. Then there is a surjective B o C-map
φ : B oC→ B×C defined by φ( f, c)= ( f (1), c) for every f : C→ B, c ∈ C.

Proof. Let ( f, c), ( f ′, c′) be two elements of BoC . We check that φ(( f, c)( f ′, c′))=
φ( f, c)( f ′, c′). Indeed,

φ(( f, c)( f ′, c′))= φ( f f ′c
−1
, cc′)= ( f (1) f ′c

−1
(1), cc′)= ( f (1) f ′(c), cc′)

= ( f (1), c)( f ′, c)= φ( f, c)( f ′, c′).

Note that the map φ is surjective: For every b ∈ B and c ∈ C , one can choose a
function fb : C→ B for which fb(1)= b. One has φ( fb, c)= (b, c). �

The following lemma appears in [Meldrum 1995, Part I, Chapter I, Theorem
4.13] and describes the functoriality of the first argument in the wreath product.
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Lemma 2.6. Let G, A, B be groups and h : A→ B a homomorphism (resp. epi-
morphism). Then there is a naturally induced homomorphism (resp. epimorphism)
h∗ : A oG→ B oG given by h∗( f, g)= (h ◦ f, g) for every g ∈ G and f : G→ A.

The functoriality of the second argument is given in [Neftin 2009, Lemma 2.15]
whenever the first argument is abelian:

Lemma 2.7. Let A be an abelian group and let ψ : G→ H be a homomorphism
(resp. epimorphism) of finite groups. Then there is a homomorphism (resp. epi-
morphism) ψ̃ : A o G → A o H that is defined by ψ̃( f, g) = (ψ̂( f ), ψ(g)) with
ψ̂( f )(h)=

∏
k∈ψ−1(h) f (k) for every h ∈ H.

These functoriality properties can now be joined to give a connection between
different bracketing of iterated wreath products:

Lemma 2.8. Let A, B,C be finite groups and A abelian. Then there are epimor-
phisms

A o (B oC)→ (A o B) oC→ (A× B) oC.

Proof. Let us first construct an epimorphism h∗ : (A o B) oC→ (A× B) oC . Define
h : A o B→ A× B by

h( f, b)=
(∏

x∈B

f (x), b
)
,

for any f : B → A, b ∈ B. Since A is abelian h is a homomorphism. For every
a ∈ A, let fa : B→ A be the map fa(b′)= 0 for any 1 6= b′ ∈ B and fa(1)= a. Then
clearly h( fa, b)= (a, b) for any a∈ A, b∈ B and hence h is onto. By Lemma 2.6, h
induces an epimorphism h∗ : (AoB)oC→ (A×B)oC . To construct the epimorphism
A o (B oC)→ (A o B) oC , we shall use the associativity of the permutational wreath
product (see [Meldrum 1995, Theorem 3.2]). Using this associativity one has

(A o B) oC = (A oB B) oC C ∼= A oB×C (B oC C).

It is now left to construct an epimorphism:

A o (B oC)= A oBoC (B oC)→ A oB×C (B oC).

By Lemma 2.5, there is a B oC-map φ : B oC→ B×C and hence by Lemma 2.4
there is an epimorphism A oBoC (B oC)→ A oB×C (B oC). �

Let us iterate Lemma 2.8. Let G1, . . . ,Gn be groups. The ascending iterated
standard wreath product of G1, . . . ,Gn is defined as(

· · · ((G1 oG2) oG3) o · · ·
)
oGn,

and the descending iterated standard wreath product of G1, . . . ,Gn is defined as

G1 o (G2 o ( · · · o (Gn−1 oGn) · · · )).
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These two iterated wreath products are not isomorphic in general, as the standard
wreath product is not associative (as opposed to the permutation wreath product).
We shall abbreviate and write G1 o (G2 o · · · oGn) to refer to the descending wreath
product and (G1 o · · · oGr−1) oGr to refer to the ascending wreath product.

By iterating the epimorphism in Lemma 2.8 one obtains

Corollary 2.9. Let A1, . . . , Ar be abelian groups. Then (A1 o · · · o Ar−1) o Ar is an
epimorphic image of A1 o (A2 o · · · o Ar ).

Proof. By induction on r . The cases r = 1, 2 are trivial; assume r ≥ 3. By the
induction hypothesis there is an epimorphism

π ′1 : A1 o (A2 o · · · o Ar−1)→ (A1 o · · · o Ar−2) o Ar−1.

By Lemma 2.6, π ′1 induces an epimorphism π1 : (A1 o (A2 o · · · o Ar−1)) o Ar →

(A1 o · · · o Ar−1) o Ar . Applying Lemma 2.8 with A= A1, B = A2 o (A3 o · · · o Ar−1),
and C = Ar , one obtains an epimorphism

π2 : A1 o (A2 o · · · o Ar )→ (A1 o (A2 o · · · o Ar−1)) o Ar .

Taking the composition π = π1π2 one obtains an epimorphism

π : A1 o (A2 o · · · o Ar )→ (A1 o · · · o Ar−1) o Ar . �

2.2. Dimension under epimorphisms. Let us examine how the “dimension” d
behaves under the homomorphisms in Lemma 2.8 and Corollary 2.9. By [Ka-
plan and Lev 2003, Theorem 2.1], for any finite group G that is not perfect,
i.e., [G,G] 6= G, where [G,G] denotes the commutator subgroup of G, one
has d(G) = d(G/[G,G]). According to our definitions, for a perfect group G,
d(G/[G,G]) = d({1}) = 0, but if G is nontrivial, d(G) ≥ 1. As nontrivial semia-
belian groups are not perfect, this difference will not affect any of the arguments
in the sequel.

Definition 2.10. Let G be a finite group and p a prime. Define dp(G) to be the
rank of the p-Sylow subgroup of G/[G,G], i.e., dp(G) := d((G/[G,G])(p)).

Note that if G is not perfect one has d(G)=maxp(dp(G)).
Let p be a prime. An epimorphism f : G → H is called d-preserving (resp.

dp-preserving) if d(G)= d(H) (resp. dp(G)= dp(H)).

Lemma 2.11. Let G and H be two finite groups. Then:

H oG/[H oG, H oG] ∼= H/[H, H ]×G/[G,G].

Proof. Applying Lemmas 2.6 and 2.7 one obtains an epimorphism

H oG→ H/[H, H ] oG/[G,G].
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By Lemma 2.8 (applied with C = 1) there is an epimorphism

H/[H, H ] oG/[G,G] → H/[H, H ]×G/[G,G].

Composing these epimorphisms one obtains an epimorphism

π : H oG→ H/[H, H ]×G/[G,G],

that sends an element ( f : G→ H, g) ∈ H oG to(∏
x∈G

f (x)[H, H ], g[G,G]
)
∈ H/[H, H ]×G/[G,G].

The image of π is abelian and hence ker(π) contains K := [H oG, H oG].
Let us show K ⊇ker(π). Let ( f, g)∈ker(π). Then g∈[G,G] and

∏
x∈G f (x)∈

[H, H ]. As g ∈ [G,G], it suffices to show that the element f = ( f, 1) ∈ H o G
is in K . Let g1, . . . , gn be the elements of G, and for every i = 1, . . . , n let fi

be the function for which fi (gi ) = f (gi ) and f (g j ) = 1 for every j 6= i . One
can write f as

∏n
i=1 fi . Now for every i = 1, . . . , n, the function f1,i = f g−1

i
i

satisfies f1,i (1)= f (gi ) and f1,i (g j )= 1 for every j 6= 1. Thus fi is a product of
an element in [H |G|,G] and fi,1. So, f is a product of elements in [H |G|,G] and
f ′ =

∏n
i=1 f1,i . But f ′(1)=

∏
x∈G f (x) ∈ [H, H ] and f ′(gi )= 1 for every i 6= 1

and hence f ′ ∈ [H |G|, H |G|]. Thus, f ∈ K as required and K = kerπ . �

The following is an immediate conclusion:

Corollary 2.12. Let G and H be two finite groups. Then

dp(H oG)= dp(H)+ dp(G)

for any prime p.

So, for groups A, B,C as in Lemma 2.8, we have

dp(A o (B oC))= dp((A× B) oC)= dp(A× B×C)= dp(A)+ dp(B)+ dp(C)

for every p. In particular, the epimorphisms in Lemma 2.8 are d-preserving.
The same observation holds for Corollary 2.9, so one has:

Lemma 2.13. Let A1, . . . , Ar be finite abelian groups. Then

dp(A1 o (A2 o · · · o Ar ))= dp((A1 o · · · o Ar−1) o Ar )= dp(A1× · · ·× Ar )

are all
∑r

i=1 dp(Ai ) for any prime p.

For cyclic groups A1, . . . , Ar , dp(A1 o(A2 o· · ·oAr )) is simply the number of cyclic
groups among A1, . . . , Ar whose p-part is nontrivial. Thus:

Corollary 2.14. Let C1, . . . ,Cr be finite cyclic groups and G =C1 o (C2 o · · · oCr ).
Then d(G)=maxp | |G| d

(
C1(p) o (C2(p) o · · · oCr (p))

)
.
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Let us apply Lemma 2.8 in order to connect between descending iterated wreath
products of abelian and cyclic groups:

Proposition 2.15. Let A1, . . . , Ar be finite abelian groups and let Ai have invari-
ant factors Ci, j for j =1, . . . , li , i.e., Ai =

∏li
j=1 Ci, j and |Ci, j | divides |Ci, j+1| for

i = 1, . . . , r and j = 1, . . . , li − 1. There is an epimorphism from the descending
iterated wreath product G̃ := ori=1 o

li
j=1 Ci, j (where the groups Ci, j are ordered

lexicographically: C1,1,C1,2, . . . ,C1,l1,C2,1, . . . ,Cr,lr ) to G := A1 o (A2 o · · · o Ar ).

Proof. Assume A1 6= {0} (otherwise A1 can be simply omitted). Let us prove the
assertion by induction on

∑r
i=1 li . Let G2= A2o(A3o· · ·oAk). Write A1=C1,1×A′1.

By Lemma 2.8, there is an epimorphism

π1 : C1,1 o (A′1 oG2)→ (C1,1× A′1) oG2 = A1 oG2 = G.

By applying the induction hypothesis to A′1, A2, . . . , Ar , there is an epimorphism
π ′2 from the descending iterated wreath product G̃2 = o

l1
j=2C1, j o (o

r
i=2 o

li
j=1 Ci, j ) to

A′1 oG2. By Lemma 2.7, π ′2 induces an epimorphism π2 :C1,1 oG̃2→C1,1 o(A′1 oG2).
Taking the composition π = π2π1, we obtain the required epimorphism: π : G̃ =
C1,1 o G̃2→ G. �

Remark 2.16. Note that

dp(G̃)=
r∑

i=1

li∑
j=1

dp(Ci, j )=

r∑
i=1

dp(Ai )= dp(G)

for every p and hence π is d-preserving.

Therefore, showing G is a d-preserving epimorphic image of an iterated wreath
product of abelian groups is equivalent to showing G is a d-preserving epimorphic
image of an iterated wreath product of finite cyclic groups.

3. Wreath length

The following lemma is essential for the definition of wreath length:

Lemma 3.1. Let G be a finite semiabelian group. Then G is a homomorphic image
of a descending iterated wreath product of finite cyclic groups, i.e., there are finite
cyclic groups C1, . . . ,Cr and an epimorphism C1 o (C2 o · · · oCr )→ G.

Proof. By Proposition 2.15 it suffices to show G is an epimorphic image of a
descending iterated wreath product of finite abelian groups. We prove this by
induction on |G|, the case G = {1} being trivial. By Theorem 2.3 of [Dentzer
1995], we have G = A1 H with A1 an abelian normal subgroup and H a proper
semiabelian subgroup of G. First, there is an epimorphism

π1 : A1 o H → A1 H = G.
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By induction there are abelian groups A2, . . . , Ar and an epimorphism π ′2 : A2 o

(A3 o · · · o Ar ) → H . By Lemma 2.6, π ′2 can be extended to an epimorphism
π2 : A1 o (A2 o · · · o Ar )→ A1 o H . So, by taking the composition π = π1π2 one
obtains the required epimorphism π : A1 o (A2 o · · · o Ar )→ G. �

Definition 3.2. Let G be a finite semiabelian group. Define the wreath length
wl(G) of G to be the smallest positive integer r such that there are finite cyclic
groups C1, . . . ,Cr and an epimorphism C1 o (C2 o · · · oCr )→ G.

Let G̃ =C1 o (C2 o · · · oCr ) and π : G̃→ G an epimorphism. Then, by Corollary
2.14,

d(G)≤ d(G̃)≤ r.

In particular d(G)≤ wl(G).

Proposition 3.3. Let C1, . . . ,Cr be nontrivial finite cyclic groups. Then

wl(C1 o (C2 o · · · oCr ))= r.

Let dl(G) denote the derived length of a (finite) solvable group G, i.e., the
smallest positive integer n such that the n-th higher commutator subgroup of G
(the n-th element in the derived series G = G(0)

≥ G(1)
= [G,G] ≥ · · · ≥ G(i)

=

[G(i−1),G(i−1)
] ≥ · · · ) is trivial. In order to prove this proposition we will use the

following lemma:

Lemma 3.4. Let C1, . . . ,Cr be nontrivial finite cyclic groups. Then

dl(C1 o (C2 o · · · oCr ))= r.

Proof. It is easy (by induction) to see that dl(C1 o (C2 o · · · oCr )) ≤ r . We turn to
the reverse inequality. By Corollary 2.9, it suffices to prove it for the ascending
iterated wreath product G = (C1 o · · · oCr−1) oCr . We prove this by induction on r .
The case r = 1 is trivial. Assume r ≥ 1. Write G1 := (C1 o · · · oCr−2) oCr−1 so that
G=G1 oCr . By the induction hypothesis, dl(G1)= r−1. View G as the semidirect
product Gr

1 o Cr . For any g ∈ G1, the element tg := (g, g−1, 1, 1, . . . , 1) ∈ Gr
1

lies in [Gr
1,Cr ] and hence in [Gr

1,Cr ] ≤ G ′ ≤ Gr
1. Let H = {tg | g ∈ G1}. The

projection map Gr
1→ G1 onto the first copy of G1 in Gr

1 maps H onto G1. Since
H ≤ G ′, the projection map also maps G ′ onto G1. Now dl(G1) = r − 1 by the
induction hypothesis. It follows that dl(G ′)≥ r − 1, whence dl(G)≥ r . �

Proof of Proposition 3.3. We first observe that wl(C1 o (C2 o · · · o Cr )) ≤ r by
definition. If C1 o(C2 o · · · oCr ) were a homomorphic image of a shorter descending
iterated wreath product C ′1 o (C

′

2 o · · · oC
′
s), then by Lemma 3.4,

s = dl(C ′1 o (C
′

2 o · · · oC
′

s))≥ dl(C1 o (C2 o · · · oCr ))= r > s,

a contradiction. �
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Combining Proposition 3.3 with Corollary 2.14 we have:

Corollary 3.5. Let C1, . . . ,Cr be finite cyclic groups and G = C1 o (C2 o · · · oCr ).
Then wl(G)= d(G) if and only if there is a prime p for which p | |C1|, . . . , |Cr |.

All examples of groups G with wl(G)= d(G) arise from Corollary 3.5:

Proposition 3.6. Let G be a finite semiabelian group. Then wl(G) = d(G) if
and only if there is a prime p, finite cyclic groups C1, . . . ,Cr for which p | |Ci |,
i = 1, . . . , r , and a d-preserving epimorphism π : C1 o (C2 o · · · oCr )→ G.

Proof. Let d = d(G). The equality d = wl(G) holds if and only if there are finite
cyclic groups C1,C2, . . . ,Cd and an epimorphism π : G̃ =C1 o(C2 o · · · oCd)→G.
Assume the latter holds. Clearly d ≤ d(G̃) but by Corollary 2.14 applied to G̃ we
also have d(G̃)≤ d . It follows that π is d-preserving. Since d(G)=maxp(dp(G)),
there is a prime p for which d = dp(G) and hence dp(G̃) = d . Thus, p | |Ci | for
all i = 1, . . . , r .

Let us prove the converse. Assume there is a prime p, finite cyclic groups
C1, . . . ,Cr for which p | |Ci |, i = 1, . . . , r , and a d-preserving epimorphism π :

G̃ := C1 o (C2 o · · · o Cr ) → G. Since p | |Ci |, it follows that dp(G̃) = r . As
dp(G̃)≤d(G̃)≤ r , it follows that d(G)=d(G̃)= r . In particular wl(G)≤ r =d(G)
and hence wl(G)= d(G). �

Remark 3.7. Let G be a semiabelian p-group. By [Neftin 2009, Corollary 2.15],
G is a d-preserving image of an iterated wreath product of abelian subgroups of
G (following the proof one can observe that the abelian groups were actually sub-
groups of G). So, by Proposition 2.15, G is a d-preserving epimorphic image
of G̃ := C1 o (C2 o · · · o Ck) for cyclic subgroups C1, . . . ,Ck of G. By applying
Proposition 3.6 one obtains wl(G)= d(G).

Remark 3.8. Throughout the proof of [Neftin 2009, Corollary 2.15] one can use
the minimality assumption posed on the decompositions to show directly that the
abelian groups A1, . . . , Ar , for which there is a d-preserving epimorphism A1 o

(A2 o · · · o Ar )→ G, can be actually chosen to be cyclic.

We generalize Remark 3.7 to nilpotent groups:

Proposition 3.9. Let G be a finite nilpotent semiabelian group. Then wl(G) =
d(G).

Proof. Let d = d(G). Let p1, . . . , pk be the primes dividing |G| and let Pi be the
pi -Sylow subgroup of G for every i = 1, . . . , k. So, G ∼=

∏k
i=1 Pi . By Remark

3.7, there are cyclic pi -groups Ci,1, . . . ,Ci,ri and a d-preserving epimorphism πi :

Ci,1 o(Ci,2 o· · ·oCi,ri )→ Pi for every i = 1, . . . , k. In particular for any i = 1, . . . , k,
ri = d(Pi )= dp(G) ≤ d. For any i = 1, . . . , k and any d ≥ j > ri , set Ci, j = {1}.
For any j = 1, . . . , d define Cj =

∏k
i=1 Ci, j .
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We claim G is an epimorphic image of G̃ = C1 o (C2 o · · · o Cd). To prove
this claim it suffices to show every Pi is an epimorphic image of G̃ for every
i = 1, . . . , k. As Ci, j is an epimorphic image of C j for every j = 1, . . . , d and
every i = 1, . . . , k, one can apply Lemmas 2.6 and 2.7 iteratively to obtain an
epimorphism π ′i : G̃ → Ci,1 o (Ci,2 o · · · o Ci,r ) for every i = 1, . . . , k. Taking the
composition π ′iπi gives the required epimorphism and proves the claim. As G is
an epimorphic image of an iterated wreath product of d(G) cyclic groups one has
wl(G)≤ d(G) and hence wl(G)= d(G). �

Example 3.10. Let G = Dn = 〈σ, τ | σ
2
= 1, τ n

= 1, σ τσ = τ−1
〉 for n ≥ 3. Since

G is an epimorphic image of 〈τ 〉 o 〈σ 〉 and G is not abelian we have wl(G) = 2.
On the other hand d(G) = d(G/[G,G]) is 1 if n is odd and 2 if n is even. So,
G = D3 = S3 is the minimal example for which wl(G) 6= d(G).

4. A ramification bound for semiabelian groups

Theorem 4.1. Let G be a finite semiabelian group. Then there exists a tamely
ramified extension K/Q with G(K/Q)∼=G in which at most wl(G) primes ramify.

The proof relies on the splitting lemma from [Kisilevsky and Sonn 2010]: Let
` be a rational prime, K a number field, and p a prime of K that is prime to `. Let
IK ,p denote the group of fractional ideals prime to p, let PK ,p denote the subgroup
of principal ideals that are prime to p, and let PK ,p,1 be the subgroup of principal
ideals (α) with α ≡ 1 (mod p). Let Pp denote PK ,p/PK ,p,1. The ray class group
ClK ,p is defined to be IK ,p/PK ,p,1. Now, as IK ,p/PK ,p ∼= ClK , one has the short
exact sequence

1−→ P (`)p −→ Cl(`)K ,p −→ Cl(`)K −→ 1, (4-1)

where A(`) denotes the `-primary component of an abelian group A. Let us de-
scribe a sufficient condition for the splitting of (4-1). Let a1, . . . , ar ∈ IK ,p, and
let ã1, . . . , ãr be their classes in Cl(`)K ,p with images a1, . . . , ar in Cl(`)K , so that
Cl(`)K = 〈a1〉×〈a2〉×· · ·×〈ar 〉. Let `mi := |〈ai 〉| and let ai ∈ K satisfy a`

mi
i = (ai ),

for i = 1, . . . , r .

Lemma 4.2 [Kisilevsky and Sonn 2006]. Let p be a prime of K and let K ′ =
K ( `mi√ai | i = 1, . . . , r). If p splits completely in K ′ then the sequence (4-1) splits.

The splitting of (4-1) was used in [Kisilevsky and Sonn 2010] to construct cyclic
ramified extensions at one prime only. Let m = max{1,m1, . . . ,mr }. Let UK

denote the units in OK .

Lemma 4.3 [Kisilevsky and Sonn 2010]. Let K ′′ = K (µ`m , `m
√
ξ, `mi√ai | ξ ∈

UK , i = 1, . . . , r) and let p be a prime of K which splits completely in K ′′. Then
there is a cyclic `m-extension of K that is totally ramified at p and is not ramified
at any other prime of K .
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Corollary 4.4. Let K be a number field, n a positive integer. Then there exists a
finite extension K ′′′ of K such that if p is any prime of K that splits completely
in K ′′′, then there exists a cyclic extension L/K of degree n in which p is totally
ramified and p is the only prime of K that ramifies in L.

Proof. Let n =
∏
` `

m(`) be the decomposition of n into primes. Let K ′′′ be the
composite of the fields K ′′ = K ′′(`) in Lemma 4.3 (m = m(`)). Let L(`) be the
cyclic extension of degree `m(`) yielded by Lemma 4.3. The composite L=

∏
L(`)

has the desired property. �

Proof of Theorem 4.1. By definition, G is a homomorphic image of a descending
iterated wreath product of cyclic groups C1 o(C2 o · · · oCr ), r =wl(G). Without loss
of generality G ∼=C1 o(C2 o · · · oCr ) is itself a descending iterated wreath product of
cyclic groups. Proceed by induction on r . For r = 1, G is cyclic of order, say, N .
If p is a rational prime ≡ 1 (mod N ), then the field of p-th roots of unity Q(µp)

contains a subfield L cyclic over Q with Galois group G and exactly one ramified
prime, namely p. Thus the theorem holds for r = 1.

Assume r > 1 and the theorem holds for r − 1. Let K1/Q be a tamely ramified
Galois extension with G(K1/Q)∼=G1, where G1 is the descending iterated wreath
product C2 o (C3 o · · · o Cr ), such that the ramified primes in K1 are a subset of
{p2, . . . , pr }. By Corollary 4.4, there exists a prime p = p1 not dividing the order
of G which splits completely in K ′′′1 , the field supplied for K1 by Corollary 4.4,
and let p= p1 be a prime of K1 dividing p. By Corollary 4.4, there exists a cyclic
extension L/K1 with G(L/K1)∼=C1 in which p is totally ramified and in which p

is the only prime of K1 which ramifies in L .
Now p has |G1| distinct conjugates {σ(p) | σ ∈ G(K1/Q)} over K1. For each

σ ∈ G(K1/Q), the conjugate extension σ(L)/K1 is well-defined, since K1/Q is
Galois. Let M be the composite of the σ(L), σ ∈G(K1/Q). For each σ , σ(L)/K1

is cyclic of degree |C1|, ramified only at σ(p), and σ(p) is totally ramified in
σ(L)/K1. It now follows (see, e.g., [Kisilevsky and Sonn 2010, Lemma 1]) that
the fields {σ(L) | σ ∈ G(K1/Q)} are linearly disjoint over K1, hence G(M/Q)∼=
C1 oG1∼=G. Since the only primes of K1 ramified in M are {σ(p) | σ ∈G(K1/Q)},
the only rational primes ramified in M are p1, p2, . . . , pn . �

Corollary 4.5. The minimal ramification problem has a positive solution for all
finite semiabelian groups G for which wl(G) = d(G). Precisely, any finite semia-
belian group G for which wl(G)= d(G) can be realized tamely as a Galois group
over the rational numbers with exactly d(G) ramified primes.

By Proposition 3.9, we have:

Corollary 4.6. The minimal ramification problem has a positive solution for all
finite nilpotent semiabelian groups.
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5. Arithmetic consequences

In this section we examine some arithmetic consequences of a positive solution to
the minimal ramification problem. Specifically, given a group G, the existence of
infinitely many minimally tamely ramified G-extensions K/Q is reinterpreted in
some cases in terms of some open problems in algebraic number theory. We will
be most interested in the case d(G)= 1.

Proposition 5.1. Let q and ` be distinct primes. Let K/Q be a cyclic extension of
degree n := [K :Q] ≥ 2 with (n, q`)= 1. Suppose that K/Q is totally and tamely
ramified at a unique prime l dividing `. Then q divides the class number hK of K
if and only if there exists an extension L/K satisfying the following:

(1) L/Q is a Galois extension with nonabelian Galois group G = G(L/Q).

(2) The degree [L : K ] = qs is a power of q.

(3) L/Q is (tamely) ramified only at primes over `.

Proof. First suppose that q divides hK . Let K0 be the q-Hilbert class field of K , i.e.,
K0/K is the maximal unramified abelian q-extension of K . Then K0/Q is a Galois
extension with Galois group G :=G(K0/Q), and H :=G(K0/K )' (CK )q 6=0, the
q-part of the ideal class group of K . Then [G,G] is contained in H . If [G,G]( H ,
then the fixed field of [G,G] would be an abelian extension of Q which contains
an unramified q-extension of Q, which is impossible. Hence [G,G] = H 6= 0 and
so G is a nonabelian group, and L = K0 satisfies (1), (2), and (3) of the statement.

Conversely suppose that there is an extension L/K satisfying (1), (2), and (3)
of the statement. Since H = G(L/K ) is a q-group, there is a sequence of normal
subgroups H = H0 ⊃ H1 ⊃ H2 · · · ⊃ Hs = 0 with Hi/Hi+1 a cyclic group of order
q . Let L i denote the fixed field of Hi so that K = L0⊂ · · · ⊂ Ls = L . Let m be the
largest index such that Lm/Q is totally ramified (necessarily at `). If m = s, then
L/Q is totally and tamely ramified at ` and so the inertia group T (L/(`)) = G,
where in this case L is the unique prime of L dividing `. Since L/Q is tamely
ramified it follows that T (L/(`)) is cyclic, but this contradicts the hypothesis that
G is nonabelian. Therefore it follows that m < s, and so Lm+1/Lm is unramified
and therefore q must divide the class number hLm . Then a result of [Iwasawa 1956]
implies that q divides all of the class numbers hLm−1, . . . , hL0 = hK . �

We now apply this to the case that G 6= {1} is a quotient of the regular wreath
product Cq oC p where p and q are distinct primes. Then d(G)= 1.

The existence of infinitely many minimally tamely ramified G-extensions L/Q
would by Proposition 5.1 imply the existence of infinitely many cyclic extensions
K/Q of degree [K : Q] = p ramified at a unique prime ` 6= p, q for which q
divides the class number hK . (If there were only finitely many distinct such cyclic
extensions K/Q, then the number of ramified primes ` would be bounded, and
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there would be an absolute upper bound on the possible discriminants of the dis-
tinct fields L/Q. By Hermite’s theorem, this would mean that the number of such
G-extensions L/Q would be bounded).

The question of whether there is an infinite number of cyclic degree p extensions
(or even one) of Q whose class number is divisible by q is in general open at this
time.

For p=2, it is known that there are infinitely many quadratic fields (see [Ankeny
and Chowla 1955]), with class numbers divisible by q , but it is not known that this
occurs for quadratic fields with prime discriminant.

This latter statement is also a consequence of Schinzel’s hypothesis as is shown
in [Plans 2004]. There is also some numerical evidence that the heuristic of Cohen-
Lenstra should be statistically independent of the primality of the discriminant
[Jacobson et al. 1995; te Riele and Williams 2003]. If this were true, then one
would expect that there is a positive density of primes ` for which the cyclic ex-
tension of degree p and conductor ` would have class number divisible by q .

For p = 3 it has been proved in [Bhargava 2005] that there are infinitely many
cubic fields K/Q for which 2 divides their class numbers. That there are infinitely
many cyclic cubics with prime squared discriminants whose class numbers are
even (or more generally divisible by some fixed prime q) seems out of reach at this
time.

In our view, there is significant arithmetic interest in solving the minimal ram-
ification problem for other groups. See also [Harbater 1994; Jones and Roberts
2008; Rabayev 2009].
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Remarks on modular symbols for Maass
wave forms

Yuri I. Manin

To Professor F. Hirzebruch, with friendship and admiration, for his anniversary.

In this paper I introduce modular symbols for Maass wave cusp forms. They
appear in the guise of finitely additive functions on the boolean algebra generated
by intervals with nonpositive rational ends, with values in analytic functions
(pseudomeasures in the sense of Manin and Marcolli). We explain the basic
issues and draw an analogy with the p-adic case. We then construct the new
modular symbols, followed by the related Lévy–Mellin transforms. This work
builds on the fundamental study of Lewis and Zagier (2001).

0. Introduction

0.0. Summary. Maass wave cusp forms can be considered as analogs of classical
cusp forms that have “complex weights” determined by the spectrum of the hy-
perbolic Laplace operator on the upper complex half-plane. In particular, Maass
eigenforms with respect to all Hecke operators define interesting Dirichlet series,
exactly as in the classical case.

Dirichlet series related to classical cusp forms admit p-adic analytic contin-
uation. An efficient way to construct this continuation is based on the theory of
modular symbols, which allows one to define first p-adic pseudomeasures and then
integrate them in order to construct a p-adic version of the Mellin transform (the
Mazur–Mellin transform; see [Mazur and Swinnerton-Dyer 1974; Višik and Manin
1974]).

In Section 1 we introduce modular symbols for Maass forms. We also trans-
fer the construction of p-adic pseudomeasures back to the archimedean domain,
and introduce the notion of ∞-adic integration and the respective Lévy–Mellin
transform.

We argue that in the real analog of Zp — the segment [0, 1]— the boolean alge-
bra of closed/open p-adic subsets must be replaced by the boolean algebra of finite

MSC2000: 11F37.
Keywords: Maass modular forms, modular symbols.
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unions of intervals with rational ends, on which modular symbols, both classical
and new, form a finitely additive pseudomeasure that can be used for Mellin-type
integration. This is the theme of Section 2.

An important role in this theory is played by continued fractions and the dy-
namical system based on them. In the last subsections I show that the respective
transfer operator can be treated as the “Hecke operator T1” corresponding to the
“prime” in characteristic zero, and that the modified Brjuno function in the theory
of linearization of holomorphic maps [Marmi et al. 2001; 2006] can be used for
the calculation of derivatives of classical Dirichlet series related to cusp forms,
replacing the eta function appearing in [Goldfeld 1995].

These ideas are explained in more detail below. In the proofs, I make heavy use
of the fundamental study [Lewis and Zagier 2001].

0.1. Period polynomials and period functions. Let u(τ ) ∈ S2k(SL(2,Z)) be a
cusp form of integer weight 2k > 0 for the full modular group. This means that it
is holomorphic in the upper half-plane, the tensor u(τ )(dτ)k is SL(2,Z)-invariant,
and u(τ ) vanishes at cusps.

Its period polynomial is defined as the integral

ψ(z)= ψu(z) :=
∫ i∞

0
u(τ )(z− τ)2k−2 dτ. (0.1)

Here z is, for the time being, an auxiliary formal variable.
One remarkable discovery in the theory of modular functions was the possibility

of developing versions for a certain set of complex weights 2s (replacing the former
2− 2k). This spectrum consists of the (doubled) zeroes of Selberg’s zeta function
Z(s) of SL(2,Z) acting on the upper half-plane, or equivalently, those values of
s for which the Mayer transfer operator L2

s [Mayer 1991a; 1991b] has 1 as its
eigenvalue: see [Lewis and Zagier 1997] for a short review and [Lewis and Zagier
2001] for a comprehensive exposition.

0.2. Classical modular symbols. The classical modular symbols of weight 2k for
SL(2,Z), in one of their guises, can be defined simply as the integrals∫ β

α

u(τ )(z− τ)2k−2 dτ, (0.2)

where this time α, β ∈P1(Q) are arbitrary cusps, and the integration is taken along,
say, the hyperbolic geodesic connecting β to α.

More precisely, the modular symbol {α, β}k (for the full modular group) is the
integral (0.2) considered as a linear map

{α, β}k : S2k(SL(2,Z))→ C[z]. (0.3)
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In the next subsections, we will briefly recall the number-theoretic motivations for
considering (0.3). A geometric interpretation of (0.3), after a dualization, runs as
follows: this integral expresses the pairing between the Hodge cohomology and the
Betti homology of the moduli space M1,2k−2 of elliptic curves with marked points.
(See [Shokurov 1980a; 1980b] for a version involving Kuga varieties rather than
moduli spaces.)

The modular symbols (0.3) satisfy the simple functional equations

{α, β}k +{β, γ}k +{γ, α}k = 0, {α, β}k +{β, α}k = {α, α}k = 0. (0.4)

Thus they can be extended to a C[z]-valued finitely additive function on the boolean
algebra generated by (positively oriented) segments with rational ends in P1(R).
We sometimes call such a function a pseudomeasure, as in [Manin and Marcolli
2008]. The variable change formula applied to (0.2) leads to an additional property
of this particular pseudomeasure, which we call its modularity:

{g(α), g(β)}k = g{α, β}k . (0.5)

Here g ∈SL(2,Z) acts on P1(Q) by fractional linear transformations, and on poly-
nomials of degree at most 2k− 2 by a natural twisted action.

A pseudomeasure can in principle take values in any abelian group, and the
modularity condition (0.5) makes sense if this group is a left SL(2,Z)-module. If
the group of values has no 2- and 3-torsion, the last two equations in (0.4) follow
from the first one.

0.3. Modular symbols for Maass cusp forms. Our first goal is to extend the def-
inition of {α, β}k to complex weights for which there exist nontrivial Maass cusp
forms. We take the formula (0.2) as our starting point and look for its analogs in
Lewis–Zagier theory. We are interested mostly in complex critical zeroes/weights
for which Re s = 1

2 .
Tracing parallels with the classical theory, one should keep in mind that certain

classical objects have more (or less) than one parallel in the new setting.
For example, the most straightforward analogs of u(τ ) ∈ S2k(SL(2,Z)) are ap-

parently Maass wave cusp forms [1949] — smooth SL(2,Z)-invariant functions on
H satisfying the hyperbolic Laplace equation 1u = s(1−s)u and certain growth
and vanishing conditions. An appropriate version of the period polynomial (0.1)
for such a form is its period function ψu(z), this time a holomorphic function of
our former auxiliary variable z.

However, the relationship between u and ψu , as it is first explained in [Lewis
and Zagier 2001, Chapter I, Section 1], does not look at all like (0.1) and passes
through three intermediate steps: u↔ Lε↔ f ↔ ψ .
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To the contrary, the structure of (0.1) is reproduced in the formula

ψ(z)=
∫ 0

−∞

(z− t)−2sU (t)dt (0.6)

(see [Lewis and Zagier 2001, p. 221]), in which U (t)dt denotes a certain distri-
bution on R, called the boundary value of u(τ ). Therefore, it is this distribution
that in our context seems to be a more adequate analog of a classical cusp form,
the more so that its SL(2,Z)-invariance property involves an explicitly weighted
action of the modular group,

U
(at+b

ct+d

)
= |ct + d|2−2sU (t), (0.7)

whereas a Maass form is simply SL(2,Z)-invariant.
Formula (0.6) seems to offer a straightforward way to define the modular sym-

bol — just consider the integrals∫ β

α

(z− t)−2sU (t)dt.

Formal manipulations with such integrals are simple and seemingly prove (0.4)
and (0.5); we reproduce them for their heuristic value. However, these calculations
cannot be taken literally, because the characteristic functions of the intervals with
rational ends do not belong to the space of test functions for the distribution.

Thus we have to find a way around this difficulty.
In fact, there are at least two different ways. One of them starts with the

three-term functional equation for the period function ψ(z), proceeds with pure
algebra, and works also for Lewis–Zagier’s “period-like functions”.

Another method is applicable only to the period functions of Maass forms u and
uses the Lewis–Zagier formula of the form

ψ(z)=
∫ 0

−∞

{u, Rs
z }(τ )

where the integrand is a closed 1-form depending on z as a parameter (its structure
is described in the main text below). One can then integrate this form along a path
that may this time connect two arbitrary cusps, thus getting another analog of (0.2).

These two constructions form the content of Section 1.

0.4. The Mellin transform and classical modular symbols. Now we will explain
some of our motivations.

Briefly, we want to describe a construction presenting the Maass Dirichlet series
as an integral over, say, [0, 1/2], formally similar to the Mazur–Mellin transform
in the theory of p-adic interpolation. We call such a representation the ∞-adic



Remarks on modular symbols for Maass wave forms 1095

Lévy–Mellin transform [Manin and Marcolli 2008]. The integration measure in
both cases is constructed out of modular symbols.

Here is a sketch of the classical p-adic constructions. The classical theory of
modular symbols, as presented in [Manin 1972; 1973], started with the following
observations. Suppose that we are interested in the calculation of some values (say,
at integer points ρ) of a Dirichlet series

Lκ(ρ)=
∞∑

n=1

anκ(n)n−ρ, (0.8)

where (an) is a certain “arithmetic” function, and κ is an additive character of Z

of finite order. In the standard approach one first introduces the Fourier series

uκ(τ ) :=
∞∑

n=1

anκ(n)e2π inτ (0.9)

and then works with the Mellin transform

3κ(ρ) :=

∫ i∞

0
uκ(τ )

(
τ

i

)ρ−1
dτ, (0.10)

which is related to (0.8) by the simple formula 3(ρ)= i(2π)−ρ0(ρ)L(ρ).
Now, let u(τ ) :=uκ0(τ )where κ0 is identically 1. Clearly, uκ(τ )=u(τ+α) for a

rational number α such that κ(n)= e2π iαn , so we can write, shifting the integration
path,

3κ(ρ) :=

∫ i∞

α

u(τ )
(
τ−α

i

)ρ−1
dτ. (0.11)

Thus, if ρ ≥ 1 is an integer, varying κ in (0.8) reduces to replacing τ ρ−1 in (0.10)
by an arbitrary polynomial of degree ≤ ρ − 1 and allowing the integration paths
(α, i∞) with an arbitrary rational α.

Furthermore, if u ∈ S2k(SL(2,Z)) as above, and 1 ≤ ρ ≤ 2k − 1, applying
to α the “continued fractions trick”, we can replace (α, i∞) by a sum of geo-
desic paths in the upper half-plane, joining pairwise cusps of the form g−1(0) and
g−1(i∞), where g varies in SL(2,Z), and then return to (0, i∞) by transforming
the integrand via τ 7→ gτ . Thus, in particular, all values of (0.8) corresponding
to integer ρ inside the critical strip and arbitrary characters κ , can be expressed
as linear combinations of modular symbols with rational coefficients, and span a
finite-dimensional space over Q.

0.5. The p-adic Mellin–Mazur transform. Such expressions were used in [Manin
1973; 1974] to produce a p-adic interpolation of values (0.8). This problem will
make sense if (after an appropriate normalization) these values lie in a finitely
generated Z-module, so the basic problem is to control the denominators.
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As we already said, the main tool for such an interpolation was a p-adic integral
(the Mellin–Mazur transform) with respect to a p-adic pseudomeasure (see below)
constructed using modular symbols. This transform integrates τ ρ−1 twisted by κ
against this pseudomeasure, and for finite order κ produces the classical values
Lκ(ρ) more or less by definition. (In fact, one works usually with Dirichlet char-
acters in place of κ , but the only difference consists in the appearance of auxiliary
Gauss sums).

Here are some details.

(a) The p-adic integration domain and a naive pseudomeasure. The following
tentative construction applies to any (absolutely convergent) series of the type (0.8)
considered as a function of variable κ with fixed ρ.

At the first approximation, consider Zp with Z densely embedded in it. The
boolean algebra of closed/open subsets of Zp is generated by the primitive subsets
a+ pmZp, for m = 0, 1, 2, . . . and a ranging over all classes modulo pm . Put

µL(a+ pmZp) :=
∑

n≡a mod pm

ann−ρ . (0.12)

Any two primitive subsets either do not intersect, or one of them is contained in
the other. If one primitive subset I is a disjoint union of a finite family of other
primitive subsets I j , then µL(I ) =

∑
j µL(I j ). Thus µL extends to a C-valued

finitely additive function on the boolean algebra of closed/open subsets of Zp. We
will call such objects pseudomeasures on Zp.

Generally, there is no chance that such a pseudomeasure will tend p-adically
to zero when m →∞, even if its values lie in a finite-dimensional Q-space. As
explained in [Manin 1973], a Mazur’s p-adic integral of a function against such a
pseudomeasure typically converges not because the smaller primitive subsets have
asymptotically vanishing pseudomeasure, but because in a typical Riemann sum,
many approximately equal terms of not very large p-adic size are involved, and
the quantity of summands ≈ pm , tending to zero p-adically, produces an uncon-
ventional nonarchimedean convergence effect.

If the pseudomeasure of small subsets does not tend to zero, the best one may
hope for is that it will be bounded, i.e., its values will lie in a Z-module of finite
type. Even this usually will not happen: for example, one can suspect that

µL(pmZ)=
∑

n≡0 mod pm

ann−ρ = p−mρ
∑

n

anpm n−ρ

will have denominator of order p−mρ .
A radical way to avoid this danger is to postulate that an = 0 if n is divisible by

p. One can achieve this cheaply, if L admits an Euler product: simply discard the
p-th Euler factor of L .
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(Notice an interesting archimedean analogy: the Mellin transform 3 in (0.10)
produces L supplemented by the initially missing “Euler factor at arithmetical in-
finity”, where that phrase mean, as usual, the archimedean valuation of Q.)

Returning to L(p) := L divided by its p-factor, we may from now on look only at
the group of p-adic units Z∗p ⊂Zp by which our pseudomeasure is now supported.

We repeat, in conclusion, that the classical values (0.8) are tautologically in-
tegrals of the locally constant function κ against our pseudomeasure (0.12). (Of
course, this is why chose it in the first place.) Only when we start to interpolate
and allow, say, continuous p-adically valued multiplicative characters in place of κ
will we need the basics of such p-adic integration.

(b) Normalized p-adic pseudomeasure. Now let L be the Mellin transform of an
SL(2,Z)-cusp form of weight 2k as above. Representing the characteristic function
of the set a+ pmZ by a linear combination of the additive characters κ modulo pm ,
and calculating3κ(ρ) as in (0.4), we see thatµL(a+pmZp) is a linear combination
of modular symbols {bp−m, i∞}, b ∈ Z.

Conversely, we may take an appropriate linear combination of such measures
and obtain the one that was used in [Manin 1973; 1974], namely

µp(a+ pmZp) := ε
−m
{ap−m, i∞}k − p2k−2ε−m+1

{ap−m+1, i∞}k . (0.13)

Here ε is a root of the (inverted) p-factor of L: ε2
− apε+ p2k−1

= 0. If one of
the two roots is a p-adic unit, we get a bounded measure. In any case, its growth
can be controlled. The appearance of two summands and ε in (0.13) is a slightly
more sophisticated solution than the total discarding of the p-th Euler factor.

0.6. The ∞-adic Lévy–Mellin transform. As suggested in [Manin and Marcolli
2008], we make the following replacements in the picture sketched above.

Replace p by arithmetic infinity. Replace Z∗p by the semiinterval (0, 1].
Call the classical Farey intervals with ends (g−1(i∞), g−1(0)), g ∈ SL(2,Z),

primitive segments. They will be our replacement for the residue classes a+ pmZp.
Exactly as residue classes, two open primitive segments either do not intersect, or
one of them is contained in another. For an abelian group W , call a pseudomeasure
a W -valued finitely additive function on segments with rational ends (see additional
details below).

A typical pseudomeasure in this sense is the modular symbol itself:

µ(α, β)= {α, β}k;

in particular, µ(α,∞)= {α,∞}k , which may be compared to (0.13).
As in the p-adic case, the pseudomeasure of a small segment is not small in the

archimedean sense. However, now we cannot hope to compensate for this by the
nonarchimedean effect referred to above.
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Instead, we suggest using the following general feature of our constructions:

The Mellin transform of a cusp form, after suitable normalization, can be naturally
written as the sum over rational numbers in (0, 1] of values of a certain arithmetic
function a:

A :=
∑

β∈(0,1]∩Q

a(β). (0.14)

The values a(p/q) involved here are essentially modular symbols divided by a
power of the denominator q . For details, see Section 2.

Generally, a convergent series of the form (0.14) gives rise to an archimedean
integral in two related ways:

(i) The first construction. We can define a pseudomeasure µ= µa on the boolean
algebra generated by segments with irrational ends in [0, 1] putting

µ(α, β) :=
∑

γ∈(α,β)∩Q

a(γ) (0.15)

so that

A =
∫ 1

0
dµ. (0.16)

One can also treat (0.14) as a distribution on an appropriate space of test functions.
This is a direct analog of (0.12), however, it is not the version that we will use

in this paper.

(ii) The second construction. Let r be a function defined on pairs of positive co-
prime integers (p, q), p < q and decreasing sufficiently fast. For a real number
ξ , denote by qi (ξ) the denominator of the i-th convergent to ξ , i ≥ 0. We can
introduce the Lévy 1-form l(ξ)dξ , associated to r and defined on (0, 1

2 ] by the
prescription

l(ξ)= lr (ξ)=
∞∑

i=0

r
(
qi (ξ), qi+1(ξ)

)
. (0.17)

According to a lemma by P. Lévy, for any pair (p, q) as above, the set of all
ξ ∈ (0, 1

2 ] for which there exists i with (p, q) = (qi (ξ), qi+1(ξ)), fills a primitive
semiinterval of length 1/((p+ q)q). Moreover, this i is uniquely defined. There-
fore, when r(p, q) decreases sufficiently rapidly to assure convergence, we get∫ 1/2

0
lr (ξ)dξ =

∑
α=p/q∈(0,1]

r(p, q)
(p+ q)q

. (0.18)

In particular, we get A from (0.14) if we choose

r(p, q) := a(p/q)(p+ q)q. (0.19)
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When A comes from a modular form (classical or Maass), so that the summands
a(β) are concocted of (classical or Maass) modular symbols, we will call the in-
tegral in (0.12) the∞-adic Lévy–Mellin transform.

The Lévy functions and their generalizations appear also in a different context:
that of linearizations of the germs of analytic diffeomorphisms of one complex
variable z with an indifferent fixed point. For example, a germ with linear part
e2π iξ z is linearizable if and only if the Brjuno number of ξ ,

b(ξ) :=
∞∑

i=0

log qn+1(ξ)

qn(ξ)
, (0.20)

is finite. In fact, an interesting theory is developed/reviewed in [Marmi et al. 2001;
2006] for another Brjuno function B(ξ), which differs from b(ξ) by O(1), but
satisfies a functional equation and has a complex version closely resembling some
constructions in the theory of modular forms. In our context, it can be used for
calculation of the derivative of some classical L-series at certain points. This looks
like an interesting variation on the subject of the Lévy–Mellin transform.

0.7. A summary of p-adic/∞-adic analogies. For clarity, we summarize the sug-
gested analogies as follows:

Z∗p ⇐⇒ (0, 1]

∪ ∪

Z ⇐⇒ Q∩ (0, 1]

a+ pmZp ⇐⇒ primitive (Farey) segments
∞∑

m=1

am

mρ
⇐⇒

∑
0<p/q≤1

a(p/q)
qρ

Mazur–Mellin transform ⇐⇒ Lévy–Mellin transform

1. Pseudomeasures associated with period-like functions

1.1. A heuristic construction. For the moment, we adopt the viewpoint of [Lewis
and Zagier 2001, Chapter II, Section 5]. Fix a complex number s such that s(1−s)
is an eigenvalue of the standard hyperbolic Laplace operator on C producing a
PSL(2,Z)-invariant Maass wave form u(z)=us(z), z∈H . Define complex powers
by the usual formula t s

:= es log t where the branch of the logarithm is determined
by the normalization −π < arg t ≤ π . As shown in [Lewis and Zagier 1997], there
exists a distribution U (t) = Us(t) on R whose values on the test functions of t
given by

(Im z)s |z− t |−2s, (z− t)−2s, χ(−∞,0)(t)(z− t)−2s
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(where z enters as a parameter) are respectively u(z) (the initial Maass form),
a function f (z) holomorphic in C \ R, and a period function ψ(z) defined and
holomorphic in C′ := C \ (−∞, 0]. Here χ is the characteristic function of R−; in
other words,

ψ(z)=
∫ 0

−∞

(z− t)−2sU (t)dt. (1.1)

The distribution U is automorphic in the following sense: for all

g =
(

a b
c d

)
∈ SL(2,Z)

we have
U
(at+b

ct+d

)
= |ct + d|2−2sU (t). (1.2)

Thus, (1.1) has the same structure as (0.1).
Now consider only g ∈ SL(2,Z) with nonnegative entries. Then for any z ∈ C′

we have also gz := (az+ b)/(cz+ d) ∈ C′. From (1.2) we find formally

ψ(gz)=
∫ 0

−∞

(gz− t)−2sU (t)dt =
∫ g−1(0)

g−1(−∞)

(gz− gτ)−2sU (gτ)d(gτ). (1.3)

A direct calculation using (1.2) reduces the integrand to the form[
z− τ

(cz+ d)(cτ + d)

]−2s

|cτ + d|−2s+2U (τ )
dτ

|cτ + d|2
. (1.4)

Since a 6= 0, we have

g−1(−∞)=−
d
c
<−

b
a
= g−1(0),

and hence for τ ∈ (g−1(−∞), g−1(0)) we have cτ + d > 0. This shows that all
terms involving cτ + d in (1.4) cancel, so that finally we find formally

ψ(gz)= (cz+ d)2s
∫
−b/a

−d/c
(z− τ)−2sU (τ )dτ. (1.5)

Thus if (α, β)= (g−1(−∞), g−1(0)) with g as above, and if we put

µ(α, β)(z) := (cz+ d)−2sψ(gz)=
∫ β

α

(z− t)−2sU (t)dt, (1.6)

then for three intervals (α, β), (β, γ), (α, γ) of this type, we would have from (1.6)

µ(α, β)(z)+µ(β, γ)(z)= µ(α, γ)(z). (1.7)

As we will see, all primitive intervals in R− are of this form, so we have formally
constructed a premeasure (see below) on (the left half of) P1(R), extendable to a
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pseudomeasure on this half with values in the space of holomorphic functions on
C′, in view of [Manin and Marcolli 2008, Theorem 1.8].

The weak point of this reasoning, about which the word “formally” is supposed
to warn the reader, is this: the functions χ(α,β)(t)(z − t)−2s generally do not be-
long to the space of test functions as defined in [Lewis and Zagier 1997, p. 225].
Therefore the integrals on the right-hand sides of (1.5) and (1.6) a priori make no
sense.

Our heuristic reasoning is in fact a simple extension of the formal argument
of [Lewis and Zagier 1997, p. 222], “proving” the three-term functional equation
for ψ(z).

In the next subsections, we will provide a precise construction of the pseudo-
measures, whose values on the intervals considered above are given by

µ
(
g−1(−∞), g−1(0)

)
(z) := (cz+ d)−2sψ(gz) (1.8)

without appealing to the integral representation (1.6), but making use of the theory
developed in [Lewis and Zagier 1997].

1.2. Preliminaries: left primitive segments. We recall some notions and facts from
[Manin and Marcolli 2008]. We consider Q ⊂ R ⊂ C as points of an affine line
with a fixed coordinate z. Completing this line by one point∞=−∞= i∞, we
get points of the projective line P1(Q) ⊂ P1(R) ⊂ P1(C) (Riemannian sphere).
The group GL(2,C) acts on P1(C) by fractional linear transformations. Segments
are defined as nonempty connected subsets of P1(R). A segment is called infinite
if∞ is in its closure; otherwise it is called finite. The boundary of each segment
generally consists of an unordered pair of points (α, β) in P1(R). We will identify
a segment with the ordered pair of its ends: the additional element of structure is its
orientation from α to β. For our purposes, it is usually inessential whether one or
two boundary points belong to the segment. In this section we will consider mostly
left segments, that is, ones for which −∞≤ α and β ≤ 0. One-point segments are
sometimes called improper ones.

A segment is called rational if its ends are in P1(Q), and primitive, or Farey, if
it is of the form (g(∞), g(0)) for some g ∈ GL(2,Z).

A pseudomeasure with values in an abelian group W is a finitely additive W -
valued function on the boolean algebra of rational segments, vanishing on improper
segments. We extended it to oriented segments by the condition that µ(α, β) =
−µ(β, α).

In this section, we will construct pseudomeasures supported by left segments.
Each such pseudomeasure is defined by its restriction to the set P of positively
oriented left primitive segments. We will use the following enumeration of the
latter.
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Denote by S ⊂ SL(2,Z) the subsemigroup of matrices with nonnegative entries
a, b, c, and d . For any g ∈ S, (g−1(−∞), g−1(0)) is in P . In fact, if c 6= 0,

g−1(∞)=
d
−c

< g−1(0)= −b
a
,

because ad − bc = 1. If c = 0, then a = d = 1, and again

g−1(∞)=−∞< g−1(0)=−b.

Finally, the case a = 0 does not occur in S.
One easily sees that this map S → P: g 7→ (g−1(−∞), g−1(0)) is in fact a

bijection.

1.3. Preliminaries: the slash operators of complex weight. Here we summarize
the considerations of [Lewis and Zagier 2001, p. 240] and [Hilgert et al. 2005,
Section 3]. They determine a partial map

(ϕ, g) 7→ ϕ|s g, (1.9)

allowing us to make sense of and correctly calculate expressions such as those
appearing in (1.4) and (1.6). For proofs, see [Hilgert et al. 2005].

(i) Definition domain. The argument ϕ = ϕ(z) in (1.9) can be an arbitrary function
holomorphic in some domain of the form C\(−∞, r ], r ∈R. Such functions form
a C-algebra which we will denote F. Period functions ψ = ψs belong to F.

Hilgert et al. call any point r such that ϕ ∈ F is holomorphic in C \ (−∞, r ] a
branching point of ϕ.

The argument g in (1.9) can be any (2, 2)-matrix g =
(a

c
b
d

)
with integer entries

and nonzero determinant such that either c> 0 or else c= 0 and a, d > 0. Denote
by G the set of such matrices. The set S describing left primitive segments in
Section 1.2 is a subset of G. When g ∈ G and s ∈C, the function (cz+d)s belongs
to F.

A pair (ϕ, g)∈F×G belongs to the definition domain DS of the slash operator
(1.9) if ϕ admits a branching point r such that either a−cr > 0, or a−cr = 0 and
dr−b< 0. For a period function ϕ =ψ , we can take r = 0, and g will do if a > 0
or if a = 0 and b > 0.

Let G+ be the set of matrices in G such that b, d ≥ 0 and either a > 0, or a = 0
and b > 0. Again, S ⊂ G+. Denote by F0 the subspace of F admitting 0 as a
branch point. Then F0× G+ ⊂ DS.

(ii) Slash operator of weight s. It is the map DS→ F defined by

(ϕ(z), g) 7→ (ϕ|s g)(z) := |det g|s(cz+ d)−2sϕ(gz). (1.10)

It is well defined. Moreover, it sends F0× G+ to F0.
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(iii) Properties of the slash operator. The basic property is that slash operator is an
honest action: if g1, g2 ∈ G and (ϕ, g1), (ϕ|s g1, g2), (ϕ, g1g2) ∈ DS, then

ϕ|s(g1g2)= (ϕ|s g1)|s g2.

(Formally, it is the associativity of the triple product of ϕ, g1, g2.) Applying this to
F0×G+, one can check that |s defines a right action of the multiplicative semigroup
G+ on F0 [Hilgert et al. 2005, Remark 3.4].

From Section 1.2 one sees that if (g−1(−∞), g−1(0)) is a left primitive seg-
ment, then g ∈ G+. Since ψ ∈ F0 in the first equality of (1.6), this expression
for µ(α, β)(z) (disregarding the second equality and the poorly defined integral)
makes sense, and the slash action can be further iterated.

1.4. The premeasures related to period-like functions. Choose a complex num-
ber s and a function ψ(z) ∈ F0 satisfying the three term functional equation

ψ(z)= ψ(z+ 1)+ (z+ 1)−2sψ
( z

z+1

)
. (1.11)

Thus, ψ is a period-like function in the sense of [Lewis and Zagier 2001, Chapter
III].

For a left primitive segment (α, β)= (g−1(−∞), g−1(0)), put

µ̃(α, β)(z)= (cz+ d)−2sψ(gz)= ψ |s(z). (1.12)

Consider now the three left primitive segments (α, β) = (g−1
1 (−∞), g−1

1 (0)),
(β, γ) = (g−1

2 (−∞), g−1
2 (0)), and (α, γ) = (g−1

3 (−∞), g−1
3 (0)). In plain words,

the third segment is broken into two others by a point β in the middle.

Lemma 1.4.1. We have

µ̃(α, β)(z)+ µ̃(β, γ)(z)= µ̃(α, γ)(z). (1.13)

Proof. Case 1. (α, β, γ)= (−∞,−1, 0). In this case

g1 = T :=
( 1 1

0 1

)
, g2 = T ′ :=

( 1 0
1 1

)
, g3 = I :=

( 1 0
0 1

)
,

and (1.13) coincides with (1.11) which can be written as

ψ |s I = ψ |s T +ψ |s T ′. (1.14)

Case 2. g1 = T g, g2 = T ′g, and g3 = g, where g ∈ SL(2,Z) is a matrix with
nonnegative entries. In this case, (1.13) reads

ψ |s g = ψ |s T g+ψ |s T ′g,

which obviously holds in view of (1.14) and the associativity of the slash operator
restricted to F0× G+.
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General case. In fact, the previous case is general: we necessarily have g1 = T g3

and g2 = T ′g3.
Let us check this for the case when α 6= −∞ leaving the remaining case to

the reader. Put α = d/−c and γ = −b/a as in Section 1.2 where (a, b, c, d) are
the entries of g3. Then the only possible value of β is β = −(b+ d)/(a+ c) =
(b+ d)/−(a+ c) as is well known from the classical theory of Farey series. This
fact directly translates into g1 = T g3 and g2 = T ′g3. �

Remark. Notice that if ψ(z) is an actual period function for a Maass wave form,
the lemma becomes obvious in view of the integral representation of ψ(z) proven
in [Lewis and Zagier 2001, Chapter II, Section 1]. The relevant formula on p. 212
of that reference, with ψ1 replace by ψ and a change in sign, is

(cζ + d)−2sψ(gζ )=
∫ g−1(0)

g−1(∞)

{u, Rs
ζ }(z). (1.15)

In this formula, we integrate a closed form along an arbitrary path leaving ζ and ζ
to the right of it. Additivity (1.13) becomes evident.

We will use this integral representation in the next section.

1.4.2. The premeasure on left segments. To define a premeasure in the sense of
[Manin and Marcolli 2008], supported by the subset of left primitive segments, it
remains to complete (1.12) of the function µ̃ by putting for α < β ≤ 0

µ̃(β, α) := −µ̃(α, β), µ̃(α, α)= 0.

One easily checks that (1.13) continues to hold on this extended domain.

1.5. The pseudomeasure related to a period-like function. Now we can state the
main result of this section.

Theorem 1.5.1. There exists a unique finitely additive functionµwith values in F0

coinciding with µ̃ on left primitive segments and vanishing on all rational segments
in (0,∞).

Sketch of proof. We recall the plan of the proof of [Manin and Marcolli 2008,
Theorem 1.8]. It consists of the following steps.

(1) Using the “continued fractions trick”, we show that for any nonpositive ra-
tional (or infinite) α and β one can find a sequence of rational nonpositive
numbers α0=α, α1, . . . , αn=β such that (αi , αi+1) is a left primitive segment
for all i = 0, . . . , n−1. Such a sequence is called a primitive chain connecting
α to β.

(2) Having chosen such a primitive chain, we put
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µ(α, β) :=

n−1∑
i=0

µ̃(αi , αi+1). (1.16)

(3) The fact that (1.16) does not depend on the choice of the connecting primitive
chain is checked by proving that any two chains can be transformed one to
another by using “elementary moves” compatible with relations that hold for
µ̃. An elementary move essentially replaces a Farey interval

(a
c ,

b
d

)
by the

chain
(a

c ,
a+b
c+d

)
,
(a+b

c+d ,
b
d

)
, or vice versa.

(4) Finally, we have to check that (1.16) implies finite additivity and the sign
change after the change of orientation. This is straightforward.

1.6. Modularity. Let 0 be a subgroup of SL(2,Z) and W a left 0-module.
In [Manin and Marcolli 2008], a pseudomeasure µ with values in W is called

0-modular if for all g ∈ 0 and α, β ∈ P1(Q) we have

µ(gα, gβ)= gµ(α, β).

It was checked that such pseudomeasures correspond to parabolic 1-cocycles.
In our context, this is replaced by the following property: for all g with g−1

∈ S
and any left segment (α, β),

µ(g−1(α), g−1(β))= µ(α, β)|s g. (1.17)

In fact, it suffices to check this for left primitive segments, say

(α, β)= (h−1(−∞), h−1(0)),

in which case we have

µ
(
g−1(α), g−1(β)

)
= µ

(
(hg)−1(−∞), (hg)−1(0)

)
= ψ |s(hg)= (ψ |sh)|s g = µ(α, β)|s g.

Since the right slash action of g can be considered as the left action of g−1, we
can say that (1.17) expresses the modularity of µ with respect to the multiplicative
semigroup S−1

⊂ SL(2,Z).

2. Maass L-functions and their Mellin–Lévy transforms

2.1. Maass L-series as sums over rational numbers. Let u = us be a Maass cusp
form, which is an eigenfunction with respect to all Hecke operators

Tm :=
∑

ad=m
0<b≤d

(
a −b
0 d

)
(2.1)

acting via the slash operator of weight 0: u 7→ u|0Tm = λmu.
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Put

Lu(ρ) :=

∞∑
m=1

λm

mρ
. (2.2)

The action of the Hecke operators on u induces an action on the period func-
tions, which can be explicitly described by a nice formula, for example, as in
[Mühlenbruch 2004]. However, we will need a different expression, involving the
pseudomeasure µu , and we will start with an heuristic derivation of it, as in Section
1.1.

Let us formally apply the slash operator |−s of (1.10) to the boundary measure
U (t)dt and denote the resulting action upon the respective period function ψ by
T ∗m . In this heuristic calculation we “define” ψ by (1.1). The choice of weight −s
is motivated by the invariance property (1.2). We get

(ψ | T ∗m)(ζ ) :=
∫ 0

−∞

(ζ − t)−2s(U (t)dt |−s Tm)

=

∑
ad=m
0<b≤d

(d
a

)s
∫ 0

−∞

(ζ − t)−2sU
(at−b

d

)
d
(at−b

d

)
.

Make the change of variable τ = at−b
d

. The last integral takes the form∑
ad=m
0<b≤d

(d
a

)s
∫
−b/d

−∞

(
ζ −

dτ+b
a

)−2s
U (τ )dτ

=

∑
ad=m
0<b≤d

(d
a

)s
∫
−b/d

−∞

(dz+b
a
−

dτ+b
a

)−2s
U (τ )dτ,

where z = aζ−b
d

. The integral in the last sum can be rewritten as(a
d

)2s
∫
−b/d

−∞

(ζ − τ)−2sU (τ )dτ.

Thus, heuristically,

(ψ | T ∗m)(ζ )= (µ(−∞, 0) | T ∗m)(ζ )=
∑

ad=m
0<b≤d

(a
d

)s
µ
(
−∞,−

b
d

)(aζ−b
d

)

=

∑
ad=m
0<b≤d

µ
(
−∞,−

b
d

)∣∣∣
s

(
a −b
0 d

)
(ζ ). (2.3)

This expression is useful for our purposes because it allows us to represent the
(somewhat normalized) Dirichlet series Lu(s) as a natural sum over rational num-
bers. We will state now the respective theorem:
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Theorem 2.2. We have

ψ(z)
∞∑

m=1

λm

mρ

= ζ(ρ− s) ζ(ρ+ s)
∞∑

q=1

1
qρ

∑
0<p≤q
(p,q)=1

µ(−∞,−p/q)|s

(
1 −p
0 q

)
(z). (2.4)

Proof. Step 1. First, we have to supply an honest proof of (2.3). In [Lewis and
Zagier 2001, Chapter II, Section 2], the authors construct a differential 1-form
{u, Rs

ζ }(z) which we invoked at the end of Lemma 1.4.1. It has the following
properties:

(i) {u,Rs
ζ}(z) is a closed smooth form of z varying in the complex upper half-plane

H . It depends on the parameter ζ∈C holomorphically when z 6= ζ, ζ . Generally it
is multivalued, but a well-defined branch can be chosen on the complement in H
of a path joining ζ to ζ .

(ii) The period function ψ(ζ ), ζ ∈ H for u (up to a constant proportionality factor)
can be then written as an integral:

ψ(ζ )=

∫ 0

−∞

{u, Rs
ζ }(z) (2.5)

taken along any path in H leaving ζ to the left of it.

Now assume that u|0Tm = λmu for Tm from (2.1) and a constant λm . Then we
have from (2.5) and (2.1)

λmψ(ζ )=

∫ 0

−∞

{ ∑
ad=m
0<b≤d

u
(az−b

d

)
, Rs

ζ

}
(z). (2.6)

For each a, b, and d fixed, we first want to make the implicit argument z of Rs
ζ the

same as that of u, i.e., (az− b)/d . We have (see [Lewis and Zagier 2001, p. 211]):

Rζ (z)=
i
2
(
(z− ζ )−1

− (z− ζ )−1)
=

a
d
·

i
2

((az−b
d
−

aζ−b
d

)−1
−

(az−b
d
−

aζ−b
d

)−1
)
=

a
d

Rξ
(az−b

d

)
,

where ξ := (aζ − b)/d .
Substituting this into (2.6), we obtain

λmψ(ζ )=
∑

ad=m
0<b≤d

(a
d

)s
∫ 0

−∞

{
u
(az−b

d

)
, Rs

(aζ−b)/d

(az−b
d

)}
. (2.7)
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Considering now z 7→ (az− b)/d as a holomorphic change of variables, we infer
from [Lewis and Zagier 2001, Lemma, p. 210] that the integrand in the respective
term of (2.7) can be rewritten as

{u, Rs
(aζ−b)/d}

(az−b
d

)
.

Hence, finally,

λmψ(ζ )=
∑

ad=m
0<b≤d

(a
d

)s
∫
−b/d

−∞

{u, Rs
(aζ−b)/d}(z)

=

∑
ad=m
0<b≤d

µ(−∞,−b/d)|s

(
a −b
0 d

)
(ζ ). (2.8)

This is formula (2.3), written for u which is an eigenfunction of Tm , and its respec-
tive period function.

Step 2. Multiply (2.8) by m−ρ and sum over all m = 1, 2, . . . . Again replacing the
free variable ζ by z, to avoid confusion with Riemann’s zeta, we obtain

ψ(z)
∞∑

m=1

λm

mρ
=

∞∑
m=1

1
mρ

∑
ad=m
0<b≤d

µ(−∞,−b/d)|s

(
a −b
0 d

)
(z). (2.9)

Each matrix in (2.9) can be uniquely written in the following way:(
a −b
0 d

)
=

(
d2 −pd1

0 qd1

)
=

(
1 −p
0 q

)(
1 0
0 d1

)(
d2 0
0 1

)
, (2.10)

where m = d1d2q , di ≥ 1, and 0 < p ≤ q , (p, q) = 1. Moreover, the arbitrary
quadruple (d1, d2, p, q) satisfying these conditions produces one term in (2.9).

From (2.10) and the associativity of the slash operator (1.10) it follows that

|s

(
a −b
0 d

)
=|s

(
1 −p
0 q

)
· d−s

1 ds
2 .

Hence we can rewrite (2.9) as follows:

ψ(z)
∞∑

m=1

λm

mρ
=

∞∑
q,d1,d2=1

1

qρdρ−s
1 dρ+s

2

∑
0<p≤q
(p,q)=1

µ(−∞,−p/q)|s

(
1 −p
0 q

)
(z).

(2.11)
This last expression is seen to be equal to the right-hand side of (2.4), concluding
the proof. �
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2.3. The Lévy–Mellin transform. Now put

ru(p, q) := (p+ q)q1−ρµ(−∞,−p/q)|s

(
1 −p
0 q

)
(z) ·ψ(z)−1

and

lu(ξ) :=

∞∑
i=0

∞∑
i=0

r
(
qi (ξ), qi+1(ξ)

)
.

From (2.4) and (0.18) we get:

Corollary 2.3.1. Let u be a Maass cusp form, 1u = s(1− s)u, and u | Tm = λmu
for all m ≥ 1. Put

3u(ρ) := ζ(ρ− s)−1ζ(ρ+ s)−1
∞∑

m=1

λm

mρ
.

Then
3u(ρ)=

∫ 1/2

0
lu(ξ)dξ.

Remark 2.3.2. The class of series of the form (0.18) involving modular symbols
includes also the Eisenstein series of [Goldfeld 1999]. They certainly deserve
further study.

2.4. Hecke operators on period functions via continued fractions. Consider the
sequence of normalized convergents b/d as in [Manin and Marcolli 2008, (1.5)].
When 0< b/d < 1, it starts with

−∞=
1
0
=:

b−1

d−1
, 0= 0

1
=:

b0

d0
, . . . , b/d =

bn

dn
,

where n = n(b/d) is the length of the continued fraction expansion.
The following sequence of left primitive segments Ik = Ik(b/d) connects −∞

to −b/d. We order their ends from the left one to the right one, and put a minus
before those that should be run in the opposite direction in our chain:

I0 = (−∞, 0)=
(
−

b−1

d−1
,−

b0

d0

)
, I1 =−

(
−

b1

d1
,−

b0

d0

)
,

I2 =

(
−

b1

d1
,−

b2

d2

)
, I3 =−

(
−

b3

d3
,−

b2

d2

)
,

and generally

Ik = (−1)k
(
−

bk−εk

dk−εk

,−
bk−εk+1

dk−εk+1

)
where εk = 1 for even k and εk = 0 for odd k.

This means that
(−1)k Ik =

(
g−1

k (−∞), g−1
k (0)

)
(2.12)
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where

gk = gk,b/d =

(
dk−εk+1 bk−εk+1

dk−εk bk−εk

)
∈ S. (2.13)

Therefore, (2.8) can be rewritten as

λmψ(ζ )=
∑

ad=m
0<b≤d

(a
d

)s
n(b/d)∑

k=0

(−1)k
∫ 0

−∞

{u(gk,b/d(z)), Rs
(aζ−b)/d(gk,b/d(z))}. (2.14)

We have u(gk,b/d(z))= u(z) and

Rs
(aζ−b)/d(gk,b/d(z))=

(
dk−εk g−1

k,b/d

(aζ−b
d

)
+bk−εk

)2s
Rs

g−1
k,b/d ((aζ−b)/d)

(z). (2.15)

This follows from the formula (2.6) on [Lewis and Zagier 2001, p. 211] and (2.13).
To shorten notation, set

jk(b/d, ζ )2s
:=

(
dk−εk g−1

k,b/d

(aζ−b
d

)
+ bk−εk

)2s

. (2.16)

Then we get

λmψ(ζ )=
∑

ad=m
0<b≤d

(a
d

)s
n(b/d)∑

k=0

(−1)k jk(b/d, ζ )2s
∫ 0

−∞

{u(z), Rs
g−1

k,b/d ((aζ−b)/d)
(z)}

=

∑
ad=m
0<b≤d

(a
d

)s
n(b/d)∑

k=0

(−1)k jk(b/d, ζ )2sψ

(
g−1

k,b/d

(aζ−b
d

))
. (2.17)

In order to deduce from (2.17) a nice explicit formula for λm , as was done in
[Manin 1973] for the coefficients of the classical cusp forms, one could use an
appropriate linear functional on functions of ζ . In the classical case, it was the
highest coefficient (or the constant term) of the period polynomial.

In the Maass case, one could try to use asymptotic behaviors at 0 or∞. Other
forms of Hecke operators, as (2.18), might be useful.

2.5. Hecke operators and transfer operator. In [Mühlenbruch 2004] it is shown,
using the method of [Choie and Zagier 1993], that the Hecke operators acting on
period functions for the full modular group can be written in the nice form

T+m =
∑

a>c≥0
d>b≥0

ad−bc=m

( a b
c d

)
. (2.18)

Of course, they act on ψ(z) via |s in our notation. (Mühlenbruch denotes this slash
operator by |2s .) In particular, for m = 1 we have T+m = I .
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However, if we change the summation domain slightly, replacing a > c ≥ 0 by
a ≥ c > 0, then the equations for case m = 1 will admit the following solutions.
From ad = 1+ bc ≤ 1+ (d − 1)a it follows that a = c = 1 and d = b+ 1 ≥ 1 so
that we will get the operator

T ∗1 :=
∞∑

b=0

(
1 b
1 b+1

)
. (2.19)

This correction is not as ad hoc as it seems. In fact, if we compare it with the
Atkin–Lehner operators for the group 00(N ) and p/N ,

Up := Tp − p · id,

we will see that T ∗1 imitates the “characteristic 1” Atkin–Lehner operator corre-
sponding to the “improper prime p = 1”, with eigenvalue 1 on ψ :

Claim 2.5.1. If ψ(z) is a period function for a Maass cusp form of weight s with
Re s > 0, s 6= 1

2 , then
ψ |s T ∗1 (z)= ψ(z). (2.20)

Proof. Assume moreover that

ψτ (z) := ψ |s
( 0 1

1 0

)
(z)= εψ(z), ε =±1, (2.21)

so that ψ is even or odd. This is not a restriction because any ψ is the sum of an
even and an odd period function.

According to [Lewis and Zagier 2001, p. 255], the function

h(z) := ψ(z+ 1)= ψ |s
( 1 1

0 1

)
(z) (2.22)

satisfies the equation

εh|s

( ∞∑
n=1

( 0 1
1 n

))
(z)= h(z). (2.23)

Substituting first (2.22) into (2.23), and then (2.21) into the resulting identity, yields

ψ |s

( 0 1
1 0

)
|s

( 1 1
0 1

)
|s

( ∞∑
n=1

( 0 1
1 n

))
(z)= ψ |s

( 1 1
0 1

)
(z). (2.24)

The associativity of the slash operator and the identity( 0 1
1 0

)( 1 1
0 1

)( 0 1
1 n

)( 1 −1
0 1

)
=

( 1 n−1
0 n

)
establish (2.20). �
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2.6. The Brjuno function and derivatives of the classical L-functions. The Brjuno
function of (0.20) is defined in this context as a generalized Lévy sum

B(ξ) :=
∞∑
j=0

|p j (ξ)− q j (ξ)ξ | log
p j−1(ξ)− q j−1(ξ)ξ

q j (ξ)ξ − p j (ξ)
. (2.25)

This series diverges on a set of measure 0. Outside it converges to a measurable
function, continuous at irrational points, with period 1 [Marmi et al. 2006].

The values of derivatives of Mellin transforms of classical forms were studied by
D. Goldfeld [1995] and Diamantis [1999]. Goldfeld’s idea consisted in replacing
the log y initially appearing in the Mellin expression for the first derivative by
the logarithm of the η-function, or a combination of such, to enhance the modular
properties of the integrand. The same game can be played with the Brjuno function
in place of the η-function.

Consider a classical cusp form u(z) for SL(2, Z) of integral weight 2k =w+2
as on page 1092. Let Lu(s) be its Mellin transform.

Proposition 2.6.1. We have

L ′u(w/2+2)=C
(
−

∫ 1

0
u(iy)yw/2 B(y)dy+

∫
∞

1
u(iy)yw/2−1 B(y)dy

)
, (2.26)

where

C =
(2π)(w+4)/2

0((w+ 2)/2)
(1+ iw+2).

Proof. An easy calculation shows that B(ξ) satisfies the functional equation

B(ξ)=− log ξ + ξ B(ξ−1), ξ ∈ (0, 1). (2.27)

Therefore, we have∫
∞

0
u(iy)yw/2 log y dy

=

∫ 1

0
u(iy)yw/2

(
−B(y)+y B(y−1)

)
dy+

∫
∞

1
u(iv)vw/2

(
v−1 B(v)−B(v−1)

)
dv.

In the second summand of the second integrand, make the change of variable v =
y−1, and combine it with the first summand of the first integrand. Similarly, in the
second summand of the first integrand, make the change of variable y = v−1, and
combine it with the first summand of the second integrand. This will result in

(1+ iw+2)

(
−

∫ 1

0
u(iy)yw/2 B(y)dy+

∫
∞

1
u(iy)yw/2−1 B(y)dy

)
.

The remaining factor in C comes from the Mellin transform. �
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