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Given a fixed integer n, we consider closed subgroups G of GLn(Zp), where p
is sufficiently large in terms of n. Assuming that the identity component of the
Zariski closure G of G in GLn,Qp does not admit any nontrivial torus as quotient
group, we give a condition on the (mod p) reduction of G which guarantees that
G is of bounded index in GLn(Zp)∩G(Qp).

Nori [1987] considered a special class of subgroups of GLn(Fp), namely groups
which are generated by elements of order p or, as we shall say, p-generated groups.
He showed that if p is sufficiently large in terms of n, there is a correspondence be-
tween p-generated groups and a certain class of connected algebraic groups which
he called exponentially generated. In particular, every p-generated group 0 is a
subgroup of G(Fp) for the corresponding algebraic group G, and [G(Fp) : 0] is
bounded by a constant depending only on n. The p-generated groups are admit-
tedly rather special, but on the other hand, every finite subgroup 0 ⊂ GLn(Fp)

contains a p-generated normal subgroup, 0+, of prime-to-p index, which shows
that every 0 can be related to a connected algebraic group in a weak sense. This
construction can serve in some measure as a substitute for the (identity component
of the) Zariski closure in the setting of finite linear groups, where the actual identity
component of the Zariski closure of 0 is always trivial.

In this paper we consider closed subgroups G of the compact p-adic Lie group
GLn(Zp). In this setting, of course, Zariski closure behaves well, so we do not need
a substitute. Nevertheless, it turns out that there is an interesting class of groups
G for which we can prove a bounded index result analogous to that of Nori: see
Theorem 7. We intend to give an application of this result to geometric monodromy
of nonsingular projective varieties over function fields in finite characteristic.

Throughout the paper, n will denote a positive integer and F a field. If F is
of characteristic p > 0, we assume p ≥ n, so i ! is nonzero for i < n. As every
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nilpotent element x ∈ Mn(F) satisfies xn
= 0, the truncated exponential function

exp(x) :=
n−1∑
i=0

x i

i !

satisfies exp(x + y) = exp(x) exp(y) for every pair x, y of commuting nilpotent
matrices. Moreover exp(x)− 1 is nilpotent, so exp(x) is unipotent. Conversely, if
u is unipotent, 1− u is nilpotent, so

log(u) := −
n−1∑
i=1

(1− u)i

i

is nilpotent, and log and exp set up mutually inverse bijections between the unipo-
tent and nilpotent n× n matrices over F . In the positive characteristic case, every
unipotent element u 6= 1 is of order p, and conversely, every element of order p is
unipotent (because this is true for every Jordan block of order ≤ p).

For every nilpotent element x ∈ Mn(F), there exists a morphism of algebraic
groups φx : A1

→ GLn defined by

φx(t) := exp(t x).

If x 6= 0, this morphism is injective, and its image is isomorphic to A1. If N is a
set of nilpotent elements of Mn(F), let G N denote the subgroup of GLn generated
by φx(A

1) for all x ∈ N , i.e., the intersection of all algebraic subgroups of GLn

which contain ⋃
x∈N

φx(A
1).

Following Nori we say that an algebraic subgroup of GLn over a field F is expo-
nentially generated if it is of the form G N for some N ⊂ Mn(F).

Proposition 1. Over a perfect field, every exponentially generated group is the
extension of a semisimple group by a unipotent group.

Proof. It is clear that every quotient group of an exponentially generated group G
must be generated by subgroups isomorphic to the additive group. In particular
exponentially generated groups must be connected, and every reductive exponen-
tially generated group must be semisimple since no nontrivial torus is generated
by additive groups. As long as F is perfect, the (geometric) unipotent radical N
is actually defined over F , so G is an extension of the semisimple group G/N by
the unipotent group N . �

In general, the converse of Proposition 1 is not true. For example, if F =R, GLn

contains F-anisotropic connected semisimple subgroups which have no nontrivial
unipotent elements. If F is of positive characteristic, even if it is algebraically



Exponential generation and largeness for compact p -adic Lie groups 1031

closed, the image of SL2 under the 4-dimensional representation which is the direct
sum of the standard representation and its Frobenius twist fails to be exponentially
generated. In characteristic zero, we have a precise criterion for exponential gen-
eration.

Proposition 2. Let F be a field of characteristic zero. An algebraic subgroup G
of GLn defined over F is exponentially generated if and only if it has no nontrivial
finite, toric, or anisotropic quotient group.

Proof. As there is no nontrivial homomorphism from an additive group to a finite,
toric, or anisotropic group, one direction is clear. For the other, let U denote a
unipotent F-subgroup of G. Thus U has a composition series

U =U0 ⊃U1 ⊃ · · · ⊃Us = {e},

with each Ui/Ui+1 isomorphic to the additive group. By Steinberg’s theorem
[1965], H 1(F,Ui ) = 0 for all i , so for each 1 ≤ i ≤ s we have a short exact
sequence

0→Ui (F)→Ui−1(F)→ F→ 0,

and there exists ui−1 ∈Ui−1(F) \Ui (F). As F is of characteristic zero,

〈ui 〉 ⊂Ui−1(F)∩φlog(ui )(F)

is isomorphic to Z, so φlog(ui )(A
1)∩Ui−1 has dimension 1, which means φlog(ui )(A

1)

⊂Ui−1. It follows that

φlog(ui )(A
1)Ui =Ui−1.

Thus, by descending induction,

U =
s∏

i=1

φlog(ui−1)(A
1).

Let H denote the quotient of G = G◦ by its unipotent radical N . As H is
isotropic, the set P of its proper parabolic F-subgroups is nonempty. For each P ∈
P, let UP denote the inverse image in G of the unipotent radical of P . Thus each
UP is a unipotent F-subgroup of G containing N . Each is therefore exponentially
generated. Let K ⊂ G be the (exponentially generated group) generated by all
UP . Thus K is normalized by the inverse image of H(F) in G. By a theorem of
[Chevalley 1954], H(F) is Zariski-dense in H , so K is normal in G. Thus G/K is
isomorphic to a quotient H/(K/N ), which is isotropic. It follows that P contains a
proper parabolic F-subgroup not contained in K/N , contrary to assumption. Thus
K = G, and G is exponentially generated. �
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We say that a Lie algebra is nilpotently generated if it is spanned by its nilpotent
elements. By [Nori 1987, Theorem A], if F is of characteristic zero or charac-
teristic p sufficiently large in terms of n, the log and exp maps give mutually in-
verse bijections, described more explicitly below, between exponentially generated
F-subgroups of GLn and nilpotently generated F-subalgebras of the Lie algebra
Mn = gln .

The following proposition allows us to put all exponentially generated subgroups
(as well, possibly, as other subvarieties of GLn) into a family over a base of finite
type. It is convenient to work projectively, by embedding GLn into Pn2

. For any
scheme Z and any closed subvariety K of GLn,Z , we denote by K̄ the closed subset
Z ∪ (Pn2

Z \GLn,Z ) endowed with its reduced induced scheme structure.

Proposition 3. For every positive integer n there exists an integer N and a finite set
S of polynomials such that for every field F over Z[1/N ] and every exponentially
generated subgroup GF ⊂ GLn,F , the Hilbert polynomial of ḠF belongs to S.

Proof. We prove that there exists a positive integer N and a morphism Y ′→ X ′

of schemes of finite type over Z such that for all F whose characteristic does not
divide N and all exponentially generated GF ⊂GLn,F , there exists x ′ ∈ X ′(F) with
Y ′x ′ = ḠF . By [Grothendieck 1961, §2], the set of Hilbert polynomials for the ḠF

is therefore finite.
We begin by trying to parametrize nilpotently generated Lie algebras. The set of

k-tuples of nilpotent n×n matrices which span a Lie subalgebra of n×n matrices
is constructible because Lie algebra closure can be expressed as the existence of a
set of k3 structure constants for the Lie bracket. Let Nn/Z denote the scheme of
nilpotent n × n matrices and W ⊂ N n2

n the constructible set of ordered n2-tuples
of nilpotent matrices spanning a Lie algebra. Replacing W with the disjoint union
X of the strata of a suitable stratification, we get a scheme indexing n2-tuples
of nilpotent matrices which span nilpotent Lie algebras. Thus, for every field F
of characteristic zero or characteristic p sufficiently large and every nilpotently
generated Lie algebra L ⊂ gln over F , there exists x ∈ X (F) which indexes a
spanning set of L .

We choose N sufficiently divisible that outside of characteristics dividing N ,
there is a bijection between exponentially generated subgroups G of GLn and
nilpotently generated Lie subalgebras L of gln , given by the mutually inverse
maps sending G to its Lie algebra and L to the group generated by φx(A

1) for
all nilpotent x ∈ L . In particular, φxi (A

1) generates G whenever x1, . . . , xn2 is a
nilpotent spanning set of L . From the scheme X indexing all possible n2-tuples,
we would like to obtain a scheme of finite type over Z[1/N ] indexing all ḠF ,
where GF ranges over exponentially generated groups and F ranges over fields
over Z[1/N ].
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Recall (from [Borel 1991, Proposition 2.2], for example) that if V ⊂ G ⊂ GLn

is any connected generating subvariety of an algebraic group G, the image of V n2

under the multiplication map is dense in G, and the image of V 2n2
is exactly G.

This implies (
φx1(A

1) . . . φxn2 (A
1)
)2n2

� G.

Let Y := Pn2

X and

Z := (Pn2

X \GLn,X )
∐
(X ×A2n4

).

We define ξ : Z→Y by extending the obvious inclusion map on the first component
of Z by

ξ
(
(x1, . . . , xn2), (t1,1, . . . , tn2,2n2)

)
:=

(
(x1, . . . , xn2),

2n2∏
j=1

n2∏
i=1

φxi (ti, j )
)
.

For each F and each x ∈ X (F), the image of the map of fibers Zx → Yx = Pn2

F
is the union of Pn2

F \GLn,F and the exponential subgroup of GLn,F in correspon-
dence with the nilpotently generated Lie subalgebra of gln(F) associated to x . The
following lemma now implies the proposition. �

Lemma 4. Let m be a positive integer, X a scheme of finite type over Z, Y a closed
subscheme of Pm

X , and ξ : Z → Y a morphism of finite type such that ξ(Zx) is a
closed subset of Yx for all x ∈ X. There exists N ∈N, a morphism ψ : X ′→ X , and
a closed subscheme Y ′ ⊂ Pm

X ′ such that for every field F over Z[1/N ] and every
x ∈ X (F), there exists x ′ ∈ X ′x(F) such that Y ′x ′ = ξ(Zx)

red.

Proof. We use Noetherian induction on X . If the image of Z → X has Zariski
closure C ( X , we can replace X and Y by C and YC respectively. We therefore
assume without loss of generality that Z → X has dense image. Replacing Z
by Z red, without loss of generality we may assume Z is reduced. We choose N
divisible by every prime which is the characteristic of a generic point of X .

Let η denote a generic point of X . As any localization of a reduced ring is
reduced, Zη is reduced. Either η lies over a prime p dividing N or η is of char-
acteristic zero. In the former case, let U1 denote any neighborhood of η which
lies over Spec Fp. In the latter case, Zη is geometrically reduced [Grothendieck
1965, Proposition 4.6.1 on p. 68], so Zx is geometrically reduced for all x in some
neighborhood U1 of η [Grothendieck 1966, Theorem 9.7.7(iii) on p. 79]. Let W
denote the Zariski closure of ξ(Z) \ ξ(Z) in Y , endowed with its reduced induced
scheme structure. As ξ(Zη) is closed in Yη, the η-fibers of ξ(Z) and ξ(Z) are the
same, so Wη is empty. Let U2 denote a neighborhood of η which does not meet
the image of W → X . Finally, let U =U1 ∩U2, X1 = X \U , Y1 = Y ×X X1, and
Z1 = Z ×X X1.



1034 Michael Larsen

By the induction hypothesis, if N is sufficiently divisible, the lemma holds for
X1, Y1, and Z1. Let X ′1, Y ′1, and ψ1 be chosen suitably. Let X ′ = U

∐
X ′1 and

Y ′ =WU
∐

Y ′1, and let ψ denote the extension of ψ1 which is given on WU by the
composition of the obvious maps WU → Y → Pm

X → X . If x ∈ X (F) belongs to
X1(F), we are done already. If not, it belongs to U (F). Let x ′ denote the image
of x ∈U (F) under the inclusion U→ X ′. As U ⊂U2, at the set level, the fiber Y ′x ′
coincides with ξ(Zx). As U ⊂U1, if F is a Z[1/N ]-algebra, then Y ′x ′ is reduced. �

We now specialize to the case F = Fp, where p ≥ n. If 0 is a subgroup of
GLn(Fp), we write 0+ for the subgroup of 0 generated by all elements of order
p. Let N (0)= N (0+) denote the set {log u | u p

= 1, u ∈ 0}, and let G := G N (0).
Then 0+ ⊂ G(Fp).

Definition 5. If 0 is a subgroup of GLn(Fp) we define the Nori dimension, Ndim0,
to be dim G N (0). Likewise if G is a subgroup of GLn(Zp) its Nori dimension,
Ndim G, is the Nori dimension of its reduction (mod p).

Lemma 6. Let p ≥ 2n, let x be a nilpotent n × n matrix over Fp, and let A ∈
GLn(Zp) be a p-adic lift of exp(x). For all positive integers k,

Apk
≡ 1+ pk M (mod pk+1),

where M reduces (mod p) to x.

Proof. It suffices to prove the lemma when k = 1. Without loss of generality, we
may assume that M is nilpotent, so M p

= 0. Let N = exp(M)− 1. As N reduces
(mod p) to the nilpotent element exp(x)− 1, N n is divisible by p in Mn(Zp), and
we can write A as 1+ N + pB for some B ∈ Mn(Zp). Expanding,

Ap
= (1+ N + pB)p

=

p∑
m=0

( p
m

)
(N + pB)m

≡

p∑
m=0

( p
m

)(
N m
+ p

∑
i+ j=m−1

N i B N j
)

≡

p∑
m=0

( p
m

)
N m
= (1+ N )p

= exp(pM)≡ 1+ pM (mod p2). �

Theorem 7. For every positive integer n there exist constants An , Bn , and Cn such
that if p > An is prime, G is a closed subgroup of GLn(Zp), and G is the Zariski
closure of G in GLn,Qp , then Ndim G≤ dim G. If Ndim G= dim G, then:

(1) G is an open subgroup of G(Qp).

(2) G/G◦ is of prime-to-p order and has a normal abelian subgroup of index
≤ Bn .
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(3) If , in addition, the radical of G◦ is unipotent, then

[G(Qp)∩GLn(Zp) : G] ≤ Cn.

Proof. We fix An ≥ 2n large enough for Proposition 3 to apply.
Let H = G(Qp)∩GLn(Zp). Let FmH denote the subgroup of H consisting of

elements congruent to 1 (mod pm). We identify FmH/Fm+1H with a subspace of
Mn over the field Fp. As

(1+ pm A)p
≡ 1+ pm+1 A (mod pm+2),

we have that
FmH/Fm+1H⊂ Fm+1H/Fm+2H

for all m ≥ 1. It follows that

dim FmH/Fm+1H≤ dim G

for all m ≥ 1. Indeed, otherwise, the quotient H/FmH would grow at least as fast
as cpm(1+dim G), which is impossible [Serre 1981, Theorem 8].

As G⊂H, we have

FmG/Fm+1G⊂ FmH/Fm+1H.

By the preceding lemma the dimension of FmG/Fm+1G is at least the dimension of
the vector space spanned by the logarithms of elements of order p in the (mod p)
reduction of G. By the correspondence between exponentially generated groups
and nilpotently generated Lie algebras this dimension is the Nori dimension of G.
In summary, for all m ≥ 1,

Ndim G≤ FmG/Fm+1G≤ FmH/Fm+1H≤ dim G.

This proves the first claim of the theorem.
If the Nori dimension of G equals dim G, we have further that

dim FmG/Fm+1G= dim FmH/Fm+1H,

for all m ≥ 1. As G and H are closed subgroups of GLn(Zp), this implies F1G =

F1H, which implies (1).
If G is any closed subgroup of GLn , there exists a finite central extension of

G/G◦ which can be realized as a subgroup of G(Qp). (See, e.g., the proof of
[Khare et al. 2008, Proposition 6.2].) Jordan’s theorem implies the existence of a
normal abelian subgroup of bounded index.

For n < p− 1, GLn(Qp) has no element of order p, since the p-th cyclotomic
polynomial is irreducible over Qp. On the other hand, every extension of a group
containing an element of order p again has an element of order p. This gives (2).
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For (3), we note first that since G meets every component of G, it suffices to
prove that

G◦ := G∩G◦(Qp)

is of bounded index in G◦(Qp)∩GLn(Zp). As [G :G◦] is prime to p, the (mod p) re-
duction of G◦ is of prime-to-p index in that of G. It follows that Ndim G◦=Ndim G.
Replacing G with G◦ if necessary, we may assume without loss of generality that
G is connected.

Let F denote any finite extension of Qp over which G has no nontrivial aniso-
tropic quotient. We may take F to be totally ramified over Qp since the anisotropic
simple groups over Qp are all central quotients of groups of the form SL1(D),
where D is a division algebra over Qp [Kneser 1965], and every degree n division
algebra over Qp splits over Qp(p1/n). We denote by O the ring of elements of
nonnegative valuation in F . Thus, the residue field of O is Fp. By Proposition 2,
GF is exponentially generated.

Let ḠF denote GF∪(P
n2

F \GLn,F ), regarded as a reduced subscheme of Pn2

F and
ḠO denote the schematic closure of ḠF ⊂Pn2

F in Pn2

O , i.e., the unique O-flat closed
subscheme of Pn2

O having generic fiber ḠF [Grothendieck 1965, Proposition 2.8.5
on p. 35]. Thus, H⊂ ḠO(O).

Let X denote the union of Hilbert schemes of the polynomials in S over Z[1/N ],
where N and S are given by Proposition 3. Let Y be the universal closed subscheme
of Pn2

X with Hilbert polynomials in S. If An is sufficiently large, for every p> An ,
every p-adic field F , and every exponentially generated GF ⊂GLn,F , there exists
an F-point x ∈ X (F) such that GF = Yx ∩GLn,F . By the valuative criterion of
properness, x extends to a morphism Spec O→ X , where O is the ring of integers
in F . Pulling back Y by this morphism, we obtain an O-flat subscheme of GLn,O

whose generic point is ḠF . This must be isomorphic to ḠO by uniqueness of flat
extension over O. Let GO denote the intersection of ḠO with GLn,O ⊂ Pn2

O . Thus
GO is flat over O and the generic fiber of GO is ḠF ∩GLn,F = GF . The fiber GFp

has no more irreducible components than the fiber ḠFp , which can be regarded as a
fiber of Y → X . By the local constructibility of the function giving the number of
irreducible components of geometric fibers [Grothendieck 1966, Corollary 9.7.9
on p. 82] and Noetherian induction, this gives an upper bound dn on GFp/G◦Fp

independent of G and p > An .
By the flatness of GO, the special fiber GFp has dimension equal to that of

GF , which is Ndim G. We claim that the number of Fp-points of a connected
d-dimensional algebraic group over Fp is at least (p− 1)d and at most (p+ 1)d .
This is obvious for additive groups (where the number of points is pd ) and tori
(where the number of points is Q(p), Q being the characteristic polynomial of
Frobenius on the character group), and it is well-known in the semisimple case. It
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follows in the general case from the structure theory of connected linear algebraic
groups. The upper bound implies

GFp(Fp)≤ |GFp/G◦Fp
|(p+ 1)Ndim G

≤ dn(3/2)n
2
pNdim G.

The kernel F1GO(O) of the reduction map

GO(O)→ GO(Fp)= GFp(Fp)

consists of elements of F1 GLn(O), i.e., elements of GLn(O) congruent to 1 modulo
the maximal ideal of O. Thus,

H∩ F1GO(O)⊂ GLn(Zp)∩ F1 GLn(O)= F1 GLn(Zp).

It follows that
|H/F1H| ≤ dn(3/2)n

2
pNdim G.

On the other hand, by Nori’s theorem [1987], (G/F1G)+ is of bounded index en in
G N (G/F1G)(Fp). The lower bound for points on a connected group implies

|G/F1G| ≥ |(G/F1G)+| ≥ e−1
n (p− 1)Ndim G

≥ e−1
n 2−n2

pNdim G.

Combining these estimates, we obtain

|H/F1H|

|G/F1G|
≤ 3n2

dnen.

As F1G= F1H, setting Cn = 3n2
dnen , we obtain (3). �
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