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Let p be a prime integer and F a field of characteristic different from p. We
prove that the essential p-dimension edp

(
CSA(pr )

)
of the class CSA(pr ) of

central simple algebras of degree pr is at least (r − 1)pr
+ 1. The integer

edp
(
CSA(pr )

)
measures complexity of the class of central simple algebras of

degree pr over field extensions of F .

1. Introduction

The essential dimension of an algebraic structure is a numerical invariant that
measures its complexity. Informally, the essential dimension of an algebraic struc-
ture over a field F is the smallest number of algebraically independent parameters
required to define the structure over a field extension of F [Berhuy and Favi 2003;
Merkurjev 2009].

Let F : Fields/F→ Sets be a functor (an algebraic structure) from the category
Fields/F of field extensions of F and field homomorphisms over F to the category
of sets. Let K ∈ Fields/F , α ∈ F(K ), and K0 be a subfield of K over F . We
say that α is defined over K0 (and K0 is called a field of definition of α) if there
exists an element α0 ∈ F(K0) such that the image (α0)K of α0 under the map
F(K0)→ F(K ) coincides with α. The essential dimension of α, denoted edF(α),
is the least transcendence degree tr. degF (K0) over all fields of definition K0 of α.
The essential dimension of the functor F is

ed(F)= sup{edF(α)},

where the supremum is taken over fields K ∈ Fields/F and all α ∈ F(K ).
Let p be a prime integer and α ∈F(K ). The essential p-dimension edF

p (α) of α
is the minimum of edF(αK ′) over all finite field extensions K ′/K of degree prime
to p. The essential p-dimension edp(F) of F is the supremum of edF

p (α) over all
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fields K ∈ Fields/F and all α ∈F(K ) [Reichstein and Youssin 2000, §6]. Clearly,
edF(α)≥ edF

p (α) and ed(F)≥ edp(F) for all p.
Let CSA(n) be the functor taking a field extension K/F to the set of isomor-

phism classes CSAK (n) of central simple K -algebras of degree n. Let p be a prime
integer and let pr be the highest power of p dividing n. Then edp

(
CSA(n)

)
=

edp
(
CSA(pr )

)
[Reichstein and Youssin 2000, Lemma 8.5.5]. Every central sim-

ple algebra of degree p is cyclic over a finite field extension of degree prime to
p, and hence edp

(
CSA(p)

)
= 2 [Reichstein and Youssin 2000, Lemma 8.5.7].

It was proven in [Merkurjev 2010] that edp
(
CSA(p2)

)
= p2

+ 1 and in general,
2p2r−2

− pr
+1≥ edp

(
CSA(pr )

)
≥ 2r for all r ≥ 2 [Meyer and Reichstein 2009b,

Theorem 1; Reichstein and Youssin 2000, Theorem 8.6].
We improve the lower bound for edp

(
CSA(pr )

)
as follows:

Theorem 6.1. Let F be a field and p a prime integer different from char(F). Then

edp
(
CSA(pr )

)
≥ (r − 1)pr

+ 1.

Let G be an algebraic group over F . The essential dimension ed(G) (resp.
essential p-dimension edp(G)) of G is the essential dimension (resp. essential p-
dimension) of the functor G- torsors taking a field K to the set of isomorphism
classes of all G-torsors (principal homogeneous G-spaces) over K .

If G = PGL(n) is the projective linear group over F , the functor G- torsors

is isomorphic to the functor CSA(n). Therefore, the theorem yields the following
lower bound for the essential dimension of PGL(pr ):

ed
(
PGL(pr )

)
≥ edp

(
PGL(pr )

)
≥ (r − 1)pr

+ 1.

2. Preliminaries

Characters. Let F be a field, let Fsep be a separable closure of F , and let

0 = Gal(Fsep/F)

be the absolute Galois group of F . For a 0-module M , we write H n(F,M) for
the cohomology group H n(0,M).

The character group Ch(F) of F is defined as

Homcont(0,Q/Z)= H 1(F,Q/Z)' H 2(F,Z).

For a character χ ∈Ch(F), set F(χ)= (Fsep)
Ker(χ). Then F(χ)/F is a cyclic field

extension of degree ord(χ). If 8⊂ Ch(F) is a finite subgroup, we set

F(8)= (Fsep)
∩Ker(χ),



A lower bound on the essential dimension of simple algebras 1057

where the intersection is taken over all χ ∈8. The Galois group G=Gal(F(8)/F)
is abelian and 8 is canonically isomorphic to the character group Hom(G,Q/Z)

of G.
If F ′ ⊂ F is a subfield and χ ∈ Ch(F ′), we write χF for the image of χ under

the natural map Ch(F ′)→ Ch(F) and F(χ) for F(χF ). If 8 ⊂ Ch(F) is a finite
subgroup, then the character χF(8) is trivial if and only if χ ∈8.

Lemma 2.1. Let 8,8′ ⊂ Ch(F) be two finite subgroups. Suppose that for a field
extension K/F , we have 8K = 8

′

K in Ch(K ). Then there is a finite subextension
K ′/F in K/F such that 8K ′ =8

′

K ′ in Ch(K ′).

Proof. Choose a set of characters {χ1, . . . , χm} generating8 and a set of characters
{χ ′1, . . . , χ

′
m} generating 8′ such that (χi )K = (χ

′

i )K for all i . Let ηi = χi − χ
′

i .
Since all ηi vanish over K , the finite field extension K ′ := F(η1, . . . , ηm) of F can
be viewed as a subextension in K/F . Now 8K ′ =8

′

K ′ since (χi )K ′ = (χ
′

i )K ′ . �

Brauer groups. We write Br(F) for the Brauer group H 2(F, F×sep) of a field F .
If a ∈ Br(F) and K/F is a field extension, then we write aK for the image of a
under the natural homomorphism Br(F) → Br(K ). We write Br(K/F) for the
relative Brauer group Ker

(
Br(F)→ Br(K )

)
. We say that K is a splitting field of

a if aK = 0, that is, a ∈ Br(K/F). The index ind(a) of a is the smallest degree of
a splitting field of a.

The cup product

Ch(F)⊗ F× = H 2(F,Z)⊗ H 0(F, F×sep)→ H 2(F, F×sep)= Br(F)

takes χ ⊗ a to the class χ ∪ (a) in Br(F) that is split by F(χ).
For a finite subgroup 8 ⊂ Ch(F), write Brdec

(
F(8)/F

)
for the subgroup of

decomposable elements in Br
(
F(8)/F

)
generated by the elements χ ∪ (a) for all

χ ∈8 and a ∈ F×. The indecomposable relative Brauer group Br ind
(
F(8)/F

)
is

the factor group Br
(
F(8)/F

)
/Brdec

(
F(8)/F

)
.

Complete fields. Let E be a complete field with respect to a discrete valuation v,
and let K be its residue field.

Let p be a prime integer different from char(K ). There is a natural injective ho-
momorphism Ch(K ){p}→Ch(E){p} of the p-primary components of the charac-
ter groups that identifies Ch(K ){p} with the character group of an unramified field
extension of E . For a character χ ∈ Ch(K ){p}, we write χ̂ for the corresponding
character in Ch(E){p}.

By [Garibaldi et al. 2003, §7.9], there is an exact sequence

0→ Br(K ){p}
i
−→ Br(E){p}

∂v
−→ Ch(K ){p} → 0. (2-1)
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If a ∈ Br(K ){p}, we write â for the element i(a) in Br(E){p}. For example, if
a = χ ∪ (ū) for some χ ∈ Ch(K ){p} and a unit u ∈ E , then â = χ̂ ∪ (u).

Proposition 2.2 [Tignol 1978, Proposition 2.4; Jacob and Wadsworth 1990, Theo-
rem 5.15(a); Garibaldi et al. 2003, Proposition 8.2]. Let E be a complete field with
respect to a discrete valuation v, and let K be its residue field of characteristic
different from p. Then:

(i) ind(â)= ind(a) for any a ∈ Br(K ){p}.

(ii) Let b= â+
(
χ̂∪(x)

)
for an element a ∈Br(K ){p}, χ ∈Ch(K ){p} and x ∈ E×.

Then ∂v(b)= v(x)χ . Also, if v(x) is not divisible by p, we have

ind(b)= ind(aK (χ)) · ord(χ).

(iii) Let E ′/E be a finite field extension and v′ the discrete valuation on E ′ extend-
ing v with residue field K ′. Then for any b ∈ Br(E){p}, we have

∂v′(bE ′)= e · ∂v(b)K ′,

where e is the ramification index of E ′/E.

The choice of a prime element π in E provides us with a splitting of the sequence
(2-1) by sending a character χ to the class χ̂ ∪ (π) in Br(E){p}. Thus, any b ∈
Br(E){p} can be written in the form

b = â+
(
χ̂ ∪ (π)

)
, (2-2)

for χ = ∂v(b) and a unique a ∈ Br(K ){p}.
The homomorphism

sπ : Br(E){p} → Br(K ){p},

defined by sπ (b) = a, where a is given by (2-2), is called a specialization map.
For example, sπ (â) = a for any a ∈ Br(K ){p} and sπ

(
χ̂ ∪ (x)

)
= χ ∪ (ū), where

χ ∈ Ch(K ){p}, x ∈ E× and u is the unit in E such that x = uπv(x).
If v is trivial on a subfield F ⊂ E and 8⊂ Ch(F){p} a finite subgroup, then

sπ
(
Brdec(E(8)/E)

)
⊂ Brdec

(
K (8)/K

)
. (2-3)

We shall need the following technical lemma. For an abelian group A we write
p A for the subgroup of all elements in A of exponent dividing p.

Lemma 2.3. Let (E, v) be a complete discrete valued field with the residue field
K of characteristic different from p containing a primitive p2-th root of unity.
Let η ∈ Ch(E) be a character of order p2 such that p · η is unramified, that is,
p · η = ν̂ for some ν ∈ Ch(K ) of order p. Let χ ∈p Ch(K ) be a character linearly
independent from ν. Let a ∈ Br(K ) and set b = â +

(
χ̂ ∪ (x)

)
∈ Br(E), where

x ∈ E× is an element such that v(x) is not divisible by p. Then:
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(i) If η is unramified, that is, η = µ̂ for some µ ∈ Ch(K ) of order p2, then
ind(bE(η))= p · ind(aK (µ,χ)).

(ii) If η is ramified, then there exists a unit u ∈ E× such that K (ν)= K (ū1/p) and
ind(bE(η))= ind

(
a− (χ ∪ (ū1/p))

)
K (ν).

Proof. (i) If η = µ̂ for some µ ∈ Ch(K ), then K (µ) is the residue field of E(η)
and we have

bE(η) = âK (µ)+
(
χ̂K (µ) ∪ (x)

)
.

Since χ and ν are linearly independent, the character χK (µ) is nontrivial. The first
statement follows from Proposition 2.2(ii).

(ii) Since p · η is unramified, the ramification index of E(η)/E is equal to p, and
hence E(η) = E

(
(ux p)1/p2)

for some unit u ∈ E . Note that K (ν) = K (ū1/p) is
the residue field of E(η). Since u1/px is a pth power in E(η), the class

bE(η) = âK (ν)−
(
χ̂K (ν) ∪ (u1/p)

)
= âK (ν)−

̂(
χK (ν) ∪ (ū1/p)

)
is unramified. It follows from Proposition 2.2(i) that the elements bE(η) in Br

(
E(η)

)
and aK (ν)−

(
χK (ν) ∪ (ū1/p)

)
in Br

(
K (ν)

)
have the same indices. �

3. Brauer group and algebraic tori

Torsors. Let G be an algebraic group over F and let K/F be a field extension.
The set of isomorphism classes of G-torsors (principal homogeneous spaces) over
K is bijective to H 1(K ,G) [Serre 1997].

Example 3.1. Let A be a central simple F-algebra of degree n and G = Aut(A).
Then H 1(K ,G) is the set of isomorphism classes of central simple K -algebras
of degree n, or equivalently, the set of elements in Br(K ) of index dividing n. If
A = Mn(F) is the split algebra, then G = PGL(n).
Example 3.2. Let L be an étale F-algebra of dimension n. Consider the algebraic
torus U = RL/F (Gm,L)/Gm over F . The exact sequence

1→ Gm→ RL/F (Gm,L)→U → 1

and Hilbert Theorem 90 yield an isomorphism θ : H 1(F,U )
∼
→ Br(L/F). Note

that if L is a subalgebra of a central simple F-algebra A of degree n, then U is a
maximal torus in the group Aut(A).

Let α : G → GL(W ) be a finite dimensional representation over F . Suppose
that α is generically free, that is, there is a nonempty open subset W ′ ⊂ W and a
G-torsor β :W ′→ X for a variety X over F . The torsor β is versal, that is, every
G-torsor over a field extension K/F is the pull-back of β with respect to a K -point
of X . The generic fiber of β is called a generic G-torsor. It is a torsor over the
function field F(X) [Garibaldi et al. 2003; Reichstein 2000].
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Example 3.3. Let S be an algebraic torus over F . We embed S into the quasitrivial
torus P= RL/F (Gm,L), where L is an étale F-algebra [Colliot-Thélène and Sansuc
1977]. Then S acts on the vector space L by multiplication, so that the action on
the open subset P is regular. If T is the factor torus P/S, then the S-torsor P→ T
is versal.

The tori P8, S8, T8, U8 and V8. Let F be a field, 8 be a subgroup of p Ch(F)
of rank r , and L = F(8). Let G = Gal(L/F). Choose a basis χ1, χ2, . . . , χr

for 8. We can view each χi as a character of G, that is, as a homomorphism
χi : G→Q/Z. Let σ1, σ2, . . . , σr be the dual basis for G, that is,

χi (σ j )=

{
(1/p)+Z if i = j,
0 otherwise.

Let R be the group ring Z[G]. Consider the surjective homomorphism of G-
modules k : Rr

→ R taking the i th basis element ei of Rr to σi − 1. The image
of k is the augmentation ideal I = Ker(ε) in R, where ε : R → Z is defined by
ε(ρ)= 1 for all ρ ∈ G.

Write Ni = 1+ σi + σ
2
i + · · ·+ σ

p−1
i ∈ R.

Set N := Ker(k). Consider the following elements in N :

ei j := (σi − 1)e j − (σ j − 1)ei and fi = Ni ei , i, j = 1, . . . r.

Lemma 3.4. The G-module N is generated by ei j and fi .

Proof. Let R = Z[t1, . . . , tr ] be the polynomial ring. Acyclicity of the Koszul
complex for the homomorphism k̄ : (R)r → R, taking the i th basis element ēi to
ti − 1 [Matsumura 1980, Theorem 43] implies that Ker(k̄) is generated by ēi j :=

(ti − 1)ē j − (t j − 1)ēi .
The kernel J of the surjective homomorphism R→ R, taking ti to σi , is gener-

ated by t p
i − 1.

Let x :=
∑

xi ei ∈ Ker(k). Lift every xi to a polynomial x̄i ∈ R and consider
x̄ :=

∑
x̄i ēi ∈ (R)r . We have k̄(x̄) ∈ J , and hence

k̄(x̄)=
∑

(ti − 1)x̄i =
∑

(t p
i − 1)hi =

∑
(ti − 1)N i hi ,

for some polynomials hi ∈ R, where N i = 1+ ti + t2
i + · · · + t p−1

i ∈ R. Hence
the element

∑
(x̄i − hi N i )ēi belongs to the kernel of k̄ and therefore is a linear

combination of ēi j . It follows that x̄ is a linear combination of ēi j and N i ēi , and
hence x is a linear combination of ei j and fi . �

Let εi : Rr
→ Z be the i th projection followed by the augmentation map ε.

It follows from Lemma 3.4 that εi (N ) = pZ for every i . Moreover, the G-
homomorphism

l : N → Zr , m 7→
(
ε1(m)/p, . . . , εr (m)/p

)
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is surjective. Set M = Ker(l) and Q = Rr/M .

Lemma 3.5. The G-module M is generated by ei j .

Proof. Let M ′ be the submodule of N generated by ei j . Clearly, M ′ ⊂ M . Note
also that (σ j − 1) fi = Ni ei j ∈ M ′, and hence I fi ⊂ M ′.

Suppose that m ∈M . By Lemma 3.4, modifying m by an element in M ′, we can
assume that m =

∑r
i=1 xi fi for some xi ∈ R. Since l(m) = 0, we have ε(xi ) = 0,

that is, xi ∈ I for all i , and hence m ∈
∑

I fi ⊂ M ′. �

Let P8, S8, T8, U8 and V8 be the algebraic tori over F with the character
G-modules Rr , Q, M , I and N , respectively. The diagram of homomorphisms of
G-modules with exact columns and rows

M_�

��

M_�

��
N

l
����

�� // Rr

����

k // // I

Zr �� // Q // // I

(3-1)

yields the following diagram of homomorphisms of the tori:

U8 �� // S8_�

��

// // Gr
m_�

��
U8 �� // P8

����

// // V8

����
T8 T8

(3-2)

Let K/F be a field extension. Set K L := K ⊗F L . The exact sequence of
G-modules

0→ I → R→ Z→ 0 (3-3)

gives an exact sequence of the tori

1→ Gm→ RL/F (Gm,L)→U → 1,

and then an exact sequence

0→ H 1(K ,U8)→ H 2(K ,Gm)→ H 2(K L ,Gm).

Hence
H 1(K ,U8)' Br(K L/K ). (3-4)

Lemma 3.6. The homomorphism (K×)r→ H 1(K ,U8)'Br(K L/K ) induced by
the first row of the diagram (3-2) takes (x1, . . . , xr ) to

∑r
i=1
(
(χi )K ∪ (xi )

)
.
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Proof. Consider the composition

h : HomG(Z
r ,Z)→ Ext1G(I,Z)→ Ext2G(Z,Z)= H 2(G,Z)= Ch(G), (3-5)

where the first homomorphism is induced by the bottom row of the diagram (3-1),
and the second one by the exact sequence (3-3).

We claim that for any k, the image of the kth projection pk : Z
r
→ Z under the

composition (3-5) coincides with χk . Consider the G-homomorphism Rr
→ Q,

taking ek to 1/p and ei to 0 for all i 6= k. By Lemma 3.5, this homomorphism
vanishes on M , and hence it factors through a map Q → Q. Thus, we have a
commutative diagram

0 - Zr - Q - I - 0

0 - Z

pk
?

- Q
?

- Q/Z

fk
?

- 0

(3-6)

for the map fk defined by fk(σk − 1)= 1/p+Z and fk(σi − 1)= 0 for all i 6= k.
Let α be the image of the class of the top row of (3-6) under the map p∗k :

Ext1G(I,Zr )→ Ext1G(I,Z). Then h(pk) is the image of α under the second map in
the composition (3-5). Hence h(pk) is also the image of the class β of the sequence
(3-3) under the connecting map

H 1(G, I )= Ext1G(Z, I )→ Ext2G(Z,Z)= H 2(G,Z)

induced by the exact sequence representing the class α.
The diagram (3-6) yields a commutative diagram

H 1(G, I ) ∂- H 2(G,Zr )

H 1(G,Q/Z)

f ∗k ?

=== H 2(G,Z)

p∗k ?

As we have shown, p∗k
(
∂(β)

)
= h(pk). Therefore, it suffices to prove that f ∗k (β)=

χk . The cocycle β satisfies β(σi )=σi−1. It follows that f ∗k (β)(σk)= fk(σk−1)=
1/p+Z and f ∗k (β)(σi )= 0 for all i 6= k. This proves the claim.

Consider the commutative diagram

(K×)r = HomG(Z
r ,Z)⊗ K× // Ext1G(I,Z)⊗ K×

��

// Ext2G(Z,Z)⊗ K×

��
(K×)r = HomG(Z

r , K L×) // Ext1G(I, K L×) // Ext2G(Z, K L×),

where the vertical homomorphisms are given by the cup products. By the claim,
the image of the tuple (x1, . . . , xr ) under the diagonal composition is equal to
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i=1
(
(χi )K ∪ (xi )

)
. On the other hand, the bottom composition coincides with

(K×)r → H 1(K ,U8)' Br(K L/K ). �

Corollary 3.7. The map H 1(K ,U8)→ H 1(K , S8) induces an isomorphism

H 1(K , S8)' Br ind(K L/K ).

It follows from Corollary 3.7 and the triviality of the group H 1(K , P8) that we
have a commutative diagram

V8(K ) - H 1(K ,U8) === Br(K L/K )

T8(K )
?

- H 1(K , S8)
?

== Br ind(K L/K )
?

(3-7)

with surjective homomorphisms.

3.1. The element a. Let a′ be the image of the generic point of V8 over K =
F(V8) in Br

(
L(V8)/F(V8)

)
in the diagram (3-7). Choose also an element a ∈

Br
(
L(T8)/F(T8)

)
corresponding to the generic point of T8 over F(T8). The

field F(T8) is a subfield of F(V8) and the classes aF(V8) and a′ are equal in
Br ind

(
L(V8)/F(V8)

)
. It follows that paF(V8) = pa′ in Br F(V8).

The exact sequence of G-modules

0→ L×⊕ N → L(V8)×→ Div(V8
L )→ 0

induces an exact sequence

H 1(G,Div(V8
L )
)
→ H 2(G, L×)⊕ H 2(G, N )→ H 2(G, L(V8)×

)
.

Since Div(V8
L ) is a permutation G-module, the first term in the sequence is trivial.

Therefore, we get an injective homomorphism

ϕ : H 2(G, N )→ Br F(V8)/Br(F).

Then (3-1) and (3-3) yield

H 2(G, N )' H 1(G, I )' Ĥ 0(G,Z)= Z/pr Z;

thus, H 2(G, N ) has a canonical generator ξ of order pr .

Lemma 3.8 [Merkurjev 2010, Lemma 2.4]. We have ϕ(ξ)=−a′+Br(F).
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Proof. Consider the diagram
HomG(Z,Z)

��
HomG(I, I )

��

// Ext1G(Z, I )

��
HomG(N , N )

��

// Ext1G(I, N )

l
��

// Ext2G(Z, N )

��
HomG

(
N , L(V8)×

)
// Ext1G

(
I, L(V8)×

)
// Ext2G

(
Z, L(V8)×

)
By [Cartan and Eilenberg 1999, Chapter XIV], the images of 1Z and −1I agree in
Ext1G(Z, I ), and the images of 1N and −1I agree in Ext1G(I, N ). It follows from
[Cartan and Eilenberg 1999, Chapter V, Proposition 4.1] that the upper square is
anticommutative. The image of 1Z is equal to ϕ(ξ), and the image of 1N is equal
to a′+Br(F) in the right bottom corner. �

Corollary 3.9. If r ≥ 2, then the class pr−1a in Br F(T8) does not belong to the
image of Br(F)→ Br F(T8).

Proof. The image of pr−1a in Br F(V8) coincides with pr−1a′. Modulo the image
of the map Br(F)→ Br F(V8), the class pr−1a′ is equal to −ϕ(pr−1ξ) and is
therefore nonzero, since ϕ is injective. �

4. Essential dimension of algebraic tori

Let S be an algebraic torus over F with the splitting group G. We assume that G is
a p-group of order pr . Let X be the G-module of characters of S. A p-presentation
of X is a G-homomorphism f : P→ X with P a permutation G-module and finite
cokernel of order prime to p. A p-presentation with the smallest rank(P) is called
minimal.

Essential p-dimension of algebraic tori was determined in [Lötscher et al. 2009,
Theorem 1.4]:

Theorem 4.1. Let S be an algebraic torus over F with the (finite) splitting group
G, X the G-module of characters of S, and f : P→ X a minimal p-presentation
of X. Then edp(S)= rank

(
Ker( f )

)
.

Corollary 4.2. Suppose that X admits a surjective minimal p-presentation f :
P→ X. Then ed(S)= edp(S)= rank

(
Ker( f )

)
.

Proof. As explained in Example 3.3, a surjective G-homomorphism f yields a
generically free representation of S of dimension rank(P). In view of Section 3 of
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[Reichstein 2000], we have

edp(S)≤ ed(S)≤ rank(P)− dim(S)= rank
(
Ker( f )

)
. �

In this section we derive from Theorem 4.1 an explicit formula for the essential
p-dimension of algebraic tori.

Define the group X := X/(pX + I X), where I is the augmentation ideal in
R = Z[G]. For any subgroup H ⊂ G, consider the composition X H ↪→ X → X .
For every k, let Vk denote the image of the homomorphism∐

H⊂G

X H
→ X ,

where the coproduct is taken over all subgroups H with [G : H ] ≤ pk . We have
the sequence of subgroups

0= V−1 ⊂ V0 ⊂ · · · ⊂ Vr = X . (4-1)

Theorem 4.3. The essential p-dimension of S is given by the explicit formula

edp(S)=
r∑

k=0

(rank Vk − rank Vk−1)pk
− dim(S).

Proof. Set bk = rank(Vk). By Theorem 4.1, it suffices to prove that the smallest
rank of the G-module P in a p-presentation of X is equal to

∑r
k=0(bk − bk−1)pk .

Let f : P → X be a p-presentation of X and A a G-invariant basis of P . The
set A is the disjoint union of the G-orbits A j , so that P is the direct sum of the
permutation G-modules Z[A j ].

The composition f̄ : P→ X→ X is surjective. Since G acts trivially on X , the
rank of the group f̄ (Z[A j ]) is at most 1 for all j and f̄ (Z[A j ])⊂ Vk if |A j | ≤ pk .
It follows that the group X/Vk is generated by the images under the composition

P
f̄
−→ X→ X/Vk

of all Z[A j ] with |A j |> pk . Denote by ck the number of such orbits A j , so that

ck ≥ rank(X/Vk)= br − bk .

Set c′k = br − ck , so that bk ≥ c′k for all k and br = c′r .
Since the number of orbits A j with |A j | = pk is equal to ck−1− ck , we have

rank(P)=
r∑

k=0

(ck−1− ck)pk
=

r∑
k=0

(c′k − c′k−1)p
k
= c′r pr

+

r−1∑
k=0

c′k(p
k
− pk+1)

≥ br pr
+

r−1∑
k=0

bk(pk
− pk+1)=

r∑
k=0

(bk − bk−1)pk .
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It remains to construct a p-presentation with P of rank
∑r

k=0(bk−bk−1)pk . For
every k ≥ 0, choose a subset Xk in X of the preimage of Vk under the canonical
map X → X , with the property that for any x ∈ Xk there is a subgroup Hx ⊂ G
with x ∈ X Hx , and [G : Hx ] = pk such that the composition

Xk→ Vk→ Vk/Vk−1

yields a bijection between Xk and a basis of Vk/Vk−1. In particular, |Xk | =

bk − bk−1. Consider the G-homomorphism

f : P :=
r∐

k=0

∐
x∈Xk

Z[G/Hx ] → X,

taking 1 in Z[G/Hx ] to x in X .
By construction, the composition of f with the canonical map X→ X is surjec-

tive. Since G is a p-group, the ideal pR(p)+ I of R(p) is the Jacobson radical of
the ring R(p) := R⊗Z(p). By the Nakayama Lemma, f(p) is surjective. Hence the
cokernel of f is finite of order prime to p. The rank of the permutation G-module
P is equal to

r∑
k=0

∑
x∈Xk

pk
=

r∑
k=0

|Xk |pk
=

r∑
k=0

(bk − bk−1)pk . �

Remark 4.4. In the context of finite p-groups, Theorem 4.3 was proved in [Meyer
and Reichstein 2010, Theorem 1.2].

Example 4.5. Let F be a field and 8 be a subgroup of p Ch(F) of rank r , and let
L = F(8) and G = Gal(L/F). Consider the torus U8 with the character group
the augmentation ideal I defined in Section 3.

The middle row of (3-1) yields an exact sequence

N → (R)r → I → 0.

It follows from Lemma 3.4 that N ⊂ pRr
+ I r , and hence the first homomorphism

in the sequence is trivial. The middle group is isomorphic to (Z/pZ)r , and hence
rank(I )= r .

For any subgroup H ⊂ G, the Tate cohomology group Ĥ 0(H, I )' Ĥ−1(H,Z)

is trivial. It follows that the group I H is generated by NH x for all x ∈ I , where
NH =

∑
h∈H h ∈ R. Since I is of period p with trivial G-action, the classes of the

elements NH x in I are trivial if H is a nontrivial subgroup of G. It follows that the
maps I H

→ I are trivial for all H 6= 1. In the notation of (4-1), V0=· · ·= Vr−1= 0
and Vr = I . By Theorem 4.3,

edp(U8)= r pr
− dim(U8)= r pr

− pr
+ 1= (r − 1)pr

+ 1
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and the rank of the permutation module in a minimal p-presentation of I is equal
to r pr . Therefore, k : Rr

→ I is a minimal p-presentation of I that appears to be
surjective. Therefore, by Corollary 4.2,

ed(U8)= edp(U8)= (r − 1)pr
+ 1. (4-2)

Let S8 be the torus with the character group Q defined in Section 3. As in
(3-1), the homomorphism k factors through a surjective map Rr

→ Q that is then
necessarily a minimal p-presentation of Q. By Theorem 4.3 and Corollary 4.2,

ed(S8)= edp(S8)= r pr
− dim(S8)= (r − 1)pr

− r + 1. (4-3)

5. Degeneration

In this section we study the behavior of the essential p-dimension under degener-
ation, that is, we compare the essential p-dimension of an object over a complete
discrete valued field and its specialization over the residue field (Proposition 5.2).
The iterated degeneration (Corollary 5.4) connects a class in the Brauer group
degree pr over some (large) field and the elements of the indecomposable relative
Brauer group that are torsors for a certain torus.

A simple degeneration. Let F be a field, p a prime integer different from char(F),
and 8 ⊂ pCh(F) a finite subgroup. For an integer k ≥ 0 and a field extension
K/F , let

B8
k (K )= {a ∈ Br(K ){p} such that ind aK (8) ≤ pk

}.

Two elements a and a′ in B8
k (K ) are equivalent if a−a′ ∈Brdec

(
K (8)/K

)
. Write

F8
k (K ) for the set of equivalence classes in B8

k (K ). Abusing notation, we shall
write a for the equivalence class of an element a ∈B8

k (K ) in F8
k (K ).

We view B8
k and F8

k as functors from Fields/F to Sets .

Example 5.1. (i) If 8 is the zero subgroup, then F8
r = B8

r ' CSA(pr ) '

PGL(pr )- torsors .

(ii) The set B8
0 (K ) is naturally bijective to Br

(
K (8)/K

)
and

F8
0 (K )' Br ind

(
K (8)/K

)
.

By Corollary 3.7, the latter group is naturally isomorphic to H 1(K , S8),
where S8 is the torus defined in Section 3, and thus, F8

0 ' S8- torsors .

Let 8′ ⊂ 8 be a subgroup of index p and η ∈ 8 \ 8′; hence 8 = 〈8′, η〉.
Let E/F be a field extension such that ηE /∈ 8′E in Ch(E). Choose an element
a ∈B8

k (E), that is, a ∈ Br(E){p} and ind(aE(8))≤ pk .
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Let E ′ be a field extension of F that is complete with respect to a discrete
valuation v′ over F with residue field E , and set

a′ = â+
(
η̂E ∪ (x)

)
∈ Br(E ′) (5-1)

for some x ∈ E ′× such that v′(x) is not divisible by p. By Proposition 2.2(ii),
ind(a′E ′(8′))= p · ind(aE(8))≤ pk+1, and hence a′ ∈B8′

k+1(E
′).

Proposition 5.2. Suppose that for any finite field extension N/E of degree prime
to p and any character ρ ∈ Ch(N ) of order p2 such that p ·ρ ∈8N \8

′

N , we have
ind aN (8′,ρ) > pk−1. Then

ed
F8′

k+1
p (a′)≥ ed

F8
k

p (a)+ 1.

Proof. Let M/E ′ be a finite field extension of degree prime to p, let M0 ⊂ M be a
subfield over F , and let a′0 ∈B8′

k+1(M0) be such that (a′0)M = a′M in F8′

k+1 and

tr. degF (M0)= ed
F8′

k+1
p (a′).

We have
a′M − (a

′

0)M ∈ Brdec
(
M(8′)/M

)
. (5-2)

It follows from (5-1) that

a′M = âN +
(
η̂N ∪ (x)

)
(5-3)

and ∂v′(a′)=q ·ηE , where q=v′(x) is relatively prime to p. We extend the discrete
valuation v′ on E ′ to a (unique) discrete valuation v on M . The ramification index
e′ and inertia degree are both prime to p. Thus, the residue field N of v is a finite
extension of E of degree prime to p. By Proposition 2.2(iii),

∂v(a′M)= e′ · ∂v′(a′)N = e′q · ηN . (5-4)

Let v0 be the restriction of v to M0 and N0 its residue field. From (5-2), we have

∂v(a′M)− ∂v
(
(a′0)M

)
∈8′N . (5-5)

Recall that ηE /∈8
′

E . Since [N : E] is not divisible by p, it follows that

ηN /∈8′N . (5-6)

By (5-4), (5-5) and (5-6), ∂v
(
(a′0)M

)
6= 0, that is, (a′0)M is ramified and therefore

v0 is nontrivial, that is, v0 is a discrete valuation on M0.
Let η0 := ∂v0(a

′

0) ∈ Ch(N0){p}. By Proposition 2.2(iii),

∂v
(
(a′0)M

)
= e · (η0)N , (5-7)
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where e is the ramification index of M/M0, and hence (η0)N 6= 0. It follows from
(5-4), (5-5) and (5-7) that

e′q · ηN − e · (η0)N ∈8
′

N . (5-8)

Since e′q is relatively prime to p,

ηN ∈ 〈8
′

N , (η0)N 〉 in Ch(N ). (5-9)

Let pt (t≥1) be the order of (η0)N . It follows from (5-6) and (5-8) that vp(e)= t−1
and

pt−1
· (η0)N ∈8N \8

′

N . (5-10)

Choose a prime element π0 in M0 and write

(a′0)M̂0
= â0+

(
η̂0 ∪ (π0)

)
(5-11)

in Br(M̂0), where a0 ∈ Br(N0){p}.
Applying the specialization homomorphism sπ : Br(M){p} → Br(N ){p} (for a

prime element π in M) to (5-2), (5-3) and (5-11), using (2-3) and (5-9), we get

aN − (a0)N ∈ Brdec
(
N (8′, η0)/N

)
. (5-12)

It follows from (5-12) that

aN (8′,η0) = (a0)N (8′,η0) (5-13)

in Br
(
N (8′, η0)

)
.

By (5-11),
(a′0)M̂0(8′)

= (̂a0)N0(8′)+
(
(̂η0)N0(8′)

∪ (π0)
)
.

Since no nontrivial multiple of (η0)N belongs to 8′N , by (5-10), the order of the
character (η0)N0(8′) is at least pt . It follows from Proposition 2.2(ii) that

ind(a0)N0(8′,η0) = ind(a′0)M̂0(8′)
/ ord(η0)N0(8′) ≤ pk+1/pt

= pk−t+1. (5-14)

By (5-13) and (5-14),

ind(aN (8′,η0))≤ pk−t+1. (5-15)

Suppose that t ≥ 2, and consider the character ρ = pt−2
· (η0)N of order p2 in

Ch(N ). We have p ·ρ = pt−1(η0)N ∈8N \8
′

N , by (5-10). Also, the degree of the
field extension N (8′, η0)/N (8′, ρ) is equal to pt−2. Hence, by (5-15),

ind(aN (8′,ρ))≤ ind(aN (8′,η0)) · p
t−2
≤ pk−t+1

· pt−2
= pk−1.

This contradicts the assumption. Therefore, t = 1, that is, ord(η0)N = p. Then
(e, p)= 1 and it follows from (5-8) that (η0)N ∈ 〈8

′

N , ηN 〉. Moreover,

〈8′, η0〉N = 〈8
′, η〉N =8N . (5-16)
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There is a finite subextension N1/N0 of N/N0 such that 〈8′, η0〉N1 = 8N1 ,
by Lemma 2.1. Replacing N0 by N1 and a0 by (a0)N1 , we may assume that
〈8′, η0〉N0 =8N0 . In particular, η0 is of order p in Ch(N0).

Since ind(a0)N0(8) = ind(a0)N0(8′,η0) ≤ pk by (5-14), we have a0 ∈B8
k (N0).

It follows from (5-12) that

aN − (a0)N ∈ Brdec
(
N (8)/N

)
.

Hence the classes of aN and (a0)N are equal in F8
k (N ). The class of aN in F8

k (N )
is then defined over N0, and therefore

ed
F8′

k+1
p (a′)= tr. degF (M0)≥ tr. degF (N0)+ 1≥ ed

F8
k

p (a)+ 1. �

5.1. Multiple degeneration. In this section we assume that the base field F con-
tains a primitive p2-th root of unity.

Let χ1, χ2, . . . , χr be linearly independent characters in p Ch(F), and let 8 =
〈χ1, χ2, . . . , χr 〉. Let E/F be a field extension such that rank(8E) = r and let
a ∈ Br(E){p} be an element that is split by E(8).

Let E0=E , E1, . . . , Er be field extensions of F such that for any k=1, 2, . . . , r ,
the field Ek is complete with respect to a discrete valuation vk over F and Ek−1

is its residue field. For any k = 1, 2, . . . , r , choose elements xk ∈ E×k such that
vk(xk) is not divisible by p, and define the elements ak ∈ Br(Ek){p} inductively
by a0 = a and

ak = âk−1+
(
(̂χk)Ek−1

∪ (xk)
)
.

Let8k be the subgroup of8 generated by χk+1, . . . , χr . Thus, 80=8, 8r = 0
and rank(8k)= r − k. Note that the character (χk)Ek−1(8k) is not trivial. It follows
from Proposition 2.2(ii) that

ind(ak)Ek(8k) = p · ind(ak−1)Ek−1(8k−1)

for any k = 1, . . . , r . Since ind aE(8) = 1, we have ind(ak)Ek(8k) = pk for all
k = 0, 1, . . . , r . In particular, ak ∈B8k

k (Ek).
The following lemma assures that under a certain restriction on the element

a, the conditions of Proposition 5.2 are satisfied for the fields Ek , the groups of
characters 8k , and the elements ak .

Lemma 5.3. Suppose that aE(9) /∈ Im
(
Br F(9)→ Br E(9)

)
for any proper sub-

group 9 ⊂ 8. Then for every k = 0, 1, . . . , r − 1, and any finite field extension
N/Ek of degree prime to p and any character ρ ∈ Ch(N ) of order p2 such that
p · ρ ∈ (8k)N \ (8k+1)N , we have

ind(ak)N (8k+1,ρ) > pk−1. (5-17)
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Proof. Let k = 0, 1, . . . , r−1 and N/Ek be a finite field extension of degree prime
to p. We construct a new sequence of fields Ẽ0, Ẽ1, . . . , Ẽr such that each Ẽi is
a finite extension of Ei of degree prime to p as follows. We set Ẽ j = N . The
fields Ẽ j with j < k are constructed by descending induction on j . If we have
constructed Ẽ j as a finite extension of E j of degree prime to p, then we extend the
valuation v j to Ẽ j and let Ẽ j−1 be its residue field. The fields Ẽ j with j > k are
constructed by induction on j . If we have constructed Ẽ j as a finite extension of
E j of degree prime to p, then let Ẽ j+1 be an extension of E j+1 of degree [Ẽ j : E j ]

with residue field Ẽ j .
Replacing Ei by Ẽi and ai by (ai )Ẽi

, we may assume that N = Ek . Let ρ ∈
Ch(Ek) be a character of order p2. We prove the inequality (5-17) by induction
on r . The case r = 1 is obvious. Suppose first that k < r − 1. Consider the fields
F ′= F(χr ), E ′= E(χr ), E ′i = Ei (χr ), the sequence of characters χ ′i = (χi )F ′ , and
the sequence of elements a′i := (ai )E ′i ∈ Br(E ′i ) for i = 0, 1, . . . , r − 1. Let 8′ =
〈χ ′1, χ

′

2, . . . , χ
′

r−1〉 and let 8′k be the subgroup of 8′ generated by χ ′k+1, . . . , χ
′

r−1.
Let 9 ′ ⊂ 8′ be a proper subgroup. Then 9 := 9 ′+ 〈χr 〉 is a proper subgroup

of 8. Since F(9)= F ′(9 ′) and E(9)= E ′(9 ′), we have

aE ′(9 ′) /∈ Im
(
Br F ′(9 ′)→ Br E ′(9 ′)

)
.

By induction, the inequality (5-17) holds for the term a′k of the new sequence.
Since

(a′k)E ′k(8
′

k+1,ρ)
= (ak)Ek(8k+1,ρ),

the inequality (5-17) holds for the term ak .
Thus we can assume that k = r − 1.

Case 1. The character ρ is unramified with respect to vr−1, that is, ρ = µ̂ for a
character µ ∈ Ch(Er−2) of order p2. By Lemma 2.3(i),

ind(ar−2)Er−2(χr−1,µ) = ind(ar−1)Er−1(ρ)/p = ind(ar−1)Er−1(8r ,ρ)/p. (5-18)

Consider the fields F ′= F(χr−1), E ′= E(χr−1), E ′i = Ei (χr−1), the new sequence
of characters χ1, . . . , χr−2, χr and the elements a′i ∈Br(E ′i ) for i = 0, 1, . . . , r−1
defined by a′i = (ai )E ′i for i ≤ r − 2 and a′r−1 = âr−2+

(
χ̂r ∪ (xr−1)

)
over E ′r−1.

Let 8′ = 〈χ1, . . . , χr−2, χr 〉 and 9 ′ ⊂ 8′ be a proper subgroup. Then 9 :=
9 ′+〈χr−1〉 is a proper subgroup of8. Since F(9)= F ′(9 ′) and E(9)= E ′(9 ′),
we have aE ′(9 ′) /∈ Im

(
Br F ′(9 ′)→Br E ′(9 ′)

)
. By induction, the inequality (5-17)

holds for the term a′r−2 of the new sequence, the field N = E ′r−2, and the character
µN . Since

(a′r−2)E ′r−2(µ)
= (ar−2)Er−2(χr−1,µ),

the equality (5-18) shows that (5-17) holds for ar−1.
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Case 2. The character ρ is ramified. Note that p · ρ is a nonzero multiple of
(χr )Er−1 . Suppose the inequality (5-17) fails for ar−1, that is, we have

ind(ar−1)Er−1(ρ) ≤ pr−2.

By Lemma 2.3(ii), there exists a unit u ∈ Er−1 such that Er−2(χr ) = Er−2(ū1/p)

and
ind
(
ar−2− (χr−1 ∪ (ū1/p))

)
Er−2(χr )

= ind(ar−1)Er−1(ρ) ≤ pr−2.

By descending induction on j = 0, 1, . . . , r − 2, we show that there exist a
unit u j in E j+1 and a subgroup 2 j ⊂ 8 of rank r − j − 1 such that χr ∈ 2 j ,
〈χ1, . . . , χ j , χr−1〉 ∩2 j = 0, E j (χr )= E j (ū

1/p
j ), and

ind
(
a j − (χr−1 ∪ (ū

1/p
j ))

)
E j (2 j )

≤ p j . (5-19)

If j = r − 2, we set u j = u and 2 j = 〈χr 〉.
( j ⇒ j − 1): The field E j (ū

1/p
j )= E j (χr ) is unramified over E j , and hence

v j (ū j ) is divisible by p. Modifying u j by a p2-th power, we may assume that
ū j = u j−1xmp

j for a unit u j−1 ∈ E j and an integer m. Then(
a j − (χr−1 ∪ (ū

1/p
j ))

)
E j (2 j )

= b̂+
(
η̂∪ (x j )

)
E j (2 j )

,

where η = χ j −mχr−1 and b =
(
a j−1− (χr−1 ∪ (ū

1/p
j−1))

)
E j−1(2 j )

. Since η is not
contained in 2 j , the character ηE j−1(2 j ) is not trivial. Set 2 j−1 = 〈2 j , η〉. It
follows from Proposition 2.2(ii) that

ind(bE j−1(2 j−1))= ind
(
a j − (χr−1 ∪ (ū

1/p
j ))

)
E j (2 j )

/p ≤ p j−1.

Applying the inequality (5-19) in the case j = 0, we get

aE(20) =
(
χr−1 ∪ (w

1/p)
)

E(20)

for an element w ∈ E× such that E(w1/p) = E(χr ). Since the character χr is
defined over F , we may assume that w ∈ F×, and therefore

aE(20) ∈ Im
(
Br F(20)→ Br E(20)

)
.

The degree of the extension E(20)/E is equal to pr−1, and hence 20 is a proper
subgroup of 8, a contradiction. Thus, we have shown that the inequality (5-17)
holds. �

By Example 5.1(ii), we can view a as an S8-torsor over E .

Corollary 5.4. Suppose that pr−1a /∈ Im
(
Br(F)→ Br(E)

)
. Then

edCSA(pr )
p (ar )≥ edS8- torsors

p (a)+ r.
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Proof. By iterated application of Proposition 5.2 and Example 5.1,

edCSA(pr )
p (ar )= edF8r

r
p (ar )≥ ed

F
8r−1
r−1

p (ar−1)+ 1≥ . . .

≥ ed
F
81
1

p (a1)+ (r − 1)≥ ed
F
80
0

p (a0)+ r = edS8- torsors
p (a)+ r. �

6. Proof of the main theorem

Theorem 6.1. Let F be a field and p a prime integer different from char(F). Then

edp
(
CSA(pr )

)
≥ (r − 1)pr

+ 1.

Proof. Since edp
(
CSA(pr )

)
can only go down if we replace the base field F by

any field extension [Merkurjev 2009, Proposition 1.5], we can replace F by any
field extension. In particular, we may assume that F contains a primitive p2-th
root of unity and that there is a subgroup 8 of p Ch(F) of rank r (replacing F by
the field of rational functions in r variables over F).

Let T8 be the algebraic torus constructed in Section 3 for the subgroup 8. Set
E = F(T8), and let a ∈ Br(E L/E) be the element defined in Section 3.1. Let
ar ∈ Br(Er ) be the element of index pr constructed in Section 5.1. By Corollary
3.9, the class pr−1a in Br(E) does not belong to the image of Br(F)→ Br(E). It
follows from Corollary 5.4 that

edCSA(pr )
p (ar )≥ edS8- torsors

p (a)+ r. (6-1)

The S8-torsor a is the generic fiber of the versal S8-torsor P8→T8 (see Example
3.3), and hence a is a generic torsor. By [Reichstein and Youssin 2000, §6] or
[Merkurjev 2009, Theorem 2.9],

edS8- torsors
p (a)= edp(S8). (6-2)

The essential p-dimension of S8 was calculated in (4-3):

edp(S8)= (r − 1)pr
− r + 1. (6-3)

Finally, it follows from (6-1), (6-2) and (6-3) that

edp
(
CSA(pr )

)
≥ edCSA(pr )

p (ar )≥ edS8- torsors
p (a)+ r = (r − 1)pr

+ 1. �

7. Remarks

Let K/F be a field extension and G an elementary abelian group of order pr .
Consider the subset CSAK (G) of CSAK (pr ) consisting of all classes admitting
a splitting Galois K -algebra E with Gal(E/K ) ' G. Equivalently, CSAK (G)
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consists of all classes represented by crossed product algebras with the group G
[Herstein 1994, §4.4].

Write Pair K (G) for the set of isomorphism classes of pairs (a, E), where a ∈
CSAK (G) and E is a Galois G-algebra splitting a.

Finally, fix a Galois field extension L/F with Gal(L/F)' G and consider the
subset CSAK (L/F) of CSAK (G) consisting of all classes split by the extension
K L/K . Thus, CSA(L/F) is a subfunctor of CSA(G) and there is the obvious
surjective morphism of functors Pair(G)→ CSA(G).

Theorem 7.1. Let F be a field, p a prime integer different from char(F), G an
elementary abelian group of order pr , r ≥ 2, and L/F a Galois field extension
with Gal(L/F) ' G. Let F be one of the three functors CSA(L/F), CSA(G),
Pair(G). Then

ed(F)= edp(F)= (r − 1)pr
+ 1.

Proof. The functor CSA(L/F) is isomorphic to U8- torsors by (3-4), where 8 is
a subgroup of Ch(F) such that L = F(8). It follows from (4-2) that

ed
(
CSA(L/F)

)
= edp

(
CSA(L/F)

)
= (r − 1)pr

+ 1.

Let ar be the element in Br(Er ) in the proof of Theorem 6.1. It satisfies

edCSA(pr )
p (ar )≥ (r − 1)pr

+ 1.

By construction, ar ∈ CSAEr (G). Since CSA(G) is a subfunctor of CSA(pr ), we
have

edp
(
CSA(G)

)
≥ edCSA(G)

p (ar )≥ edCSA(pr )
p (ar )≥ (r − 1)pr

+ 1.

The upper bound ed
(
CSA(G)

)
≤ (r −1)pr

+1 was proven in [Lorenz et al. 2003,
Corollary 3 10].

The split étale F-algebra E :=Map(G, F) has the natural structure of a Galois
G-algebra over F . The group G acts on the split torus U := RE/F (Gm,E)/Gm .
Let A be the split F-algebra EndF (E). The semidirect product H := U o G acts
naturally on A by F-algebra automorphisms. Moreover, by the Skolem–Noether
Theorem, H is precisely the automorphism group of the pair (A, E). It follows
that the functor Pair K (G) is isomorphic to H - torsors .

The character group of U is G-isomorphic to the ideal I in R = Z[G]. By
[Meyer and Reichstein 2009a, §3], the G-homomorphism k : Rr

→ I constructed
in Section 3 yields a representation W of the group H of dimension r pr . Since
r ≥ 2, by Lemma 3.4, G acts faithfully on the kernel N of k. By [Meyer and
Reichstein 2009a, Lemma 3.3], the action of H on W is generically free, and
hence

ed
(
Pair(G)

)
= ed(H)≤ dim(W )− dim(H)= (r − 1)pr

+ 1.
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Since Pair(G) surjects onto CSA(G), we have

ed
(
Pair(G)

)
≥ edp

(
Pair(G)

)
≥ edp

(
CSA(G)

)
= (r − 1)pr

+ 1. �

Remark 7.2. The generic G-crossed product algebra D constructed in [Amitsur
and Saltman 1978] is a generic element for the functor CSA(G) in the sense of
[Merkurjev 2009, §2], and hence

ed(D)= edp(D)= (r − 1)pr
+ 1

for r ≥ 2 by Theorem 7.1.
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