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It is now known that for any prime p and any finite semiabelian p-group G,
there exists a (tame) realization of G as a Galois group over the rationals Q with
exactly d = d(G) ramified primes, where d(G) is the minimal number of gener-
ators of G, which solves the minimal ramification problem for finite semiabelian
p-groups. We generalize this result to obtain a theorem on finite semiabelian
groups and derive the solution to the minimal ramification problem for a certain
family of semiabelian groups that includes all finite nilpotent semiabelian groups
G. Finally, we give some indication of the depth of the minimal ramification
problem for semiabelian groups not covered by our theorem.

1. Introduction

Let G be a finite group. Let d=d(G) be the smallest number for which there exists
a subset S of G with d elements such that the normal subgroup of G generated by
S is all of G. One observes that if G is realizable as a Galois group G(K/Q)
with K/Q tamely ramified (e.g., if none of the ramified primes divide the order of
G), then at least d(G) rational primes ramify in K (see, e.g., [Kisilevsky and Sonn
2010]). The minimal ramification problem for G is to realize G as the Galois group
of a tamely ramified extension K/Q in which exactly d(G) rational primes ramify.
This variant of the inverse Galois problem is open even for p-groups, and no coun-
terexample has been found. It is known that the problem has an affirmative solution
for all semiabelian p-groups, for all rational primes p [Neftin 2009; Kisilevsky and
Sonn 2010]. A finite group G is semiabelian if and only if G ∈ SA, where SA is
the smallest family of finite groups satisfying (i) every finite abelian group belongs
to SA, (ii) if G ∈ SA and A is finite abelian, then any semidirect product A o G
belongs to SA, and (iii) if G ∈ SA, then every homomorphic image of G belongs to
SA. In this paper we generalize this result to arbitrary finite semiabelian groups by
means of a “wreath product length” wl(G) of a finite semiabelian group G. When a
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finite semiabelian group G is nilpotent, wl(G)= d(G), which for nilpotent groups
G equals the (more familiar) minimal number of generators of G. Thus the general
result does not solve the minimal ramification problem for all finite semiabelian
groups, but does specialize to an affirmative solution to the minimal ramification
problem for nilpotent semiabelian groups. Note that for a nilpotent group G, d(G)
is maxp | |G| d(G p) and not

∑
p | |G| d(G p), where G p is the p-Sylow subgroup of

G. Thus, a solution to the minimal ramification problem for nilpotent groups does
not follow trivially from the solution for p-groups.

2. Properties of wreath products

2.1. Functoriality. The family of semiabelian groups can also be defined using
wreath products. Let us recall the definition of a wreath product. Here and through-
out the text the actions of groups on sets are all right actions.

Definition 2.1. Let G and H be two groups that act on the sets X and Y , respec-
tively. The (permutational) wreath product H oX G is the set H X

×G = {( f, g) |
f : X→ H, g ∈ G} which is a group with respect to the multiplication

( f1, g1)( f2, g2)= ( f1 f
g−1

1
2 , g1g2),

where f
g−1

1
2 is defined by f

g−1
1

2 (x) = f2(xg1) for any g1, g2 ∈ G, f1, f2 : X → H ,
and x ∈ X . The group H oX G acts on the set Y×X by (y, x)·( f, g)= (y f (x), xg),
for any y ∈ Y , x ∈ X , f : X→ H , g ∈ G.

Definition 2.2. The standard (or regular) wreath product H oG is defined as the
permutational wreath product with X = G, Y = H , and the right regular actions.

The functoriality of the arguments of a wreath product will play an important
role in the sequel. The following five lemmas are devoted to these functoriality
properties.

Definition 2.3. Let G be a group that acts on X and Y . A map φ : X→ Y is called
a G-map if φ(xg)= φ(x)g for every g ∈ G and x ∈ X .

Note that for such φ, we also have φ−1(y)g={xg |φ(x)= y}= {x ′ |φ(x ′g−1)=

y} = {x ′ | φ(x ′)= yg} = φ−1(yg).

Lemma 2.4. Let G be a group that acts on the finite sets X, Y and let A be an
abelian group. Then every G-map φ : X → Y induces a homomorphism φ̃ : A oX
G → A oY G by defining (φ̃( f, g)) = (φ̂( f ), g) for every f : X → A and g ∈ G,
where φ̂( f ) : Y → A is defined by

φ̂( f )(y)=
∏

x∈φ−1(y)

f (x),

for every y ∈ Y . Furthermore, if φ is surjective then φ̃ is an epimorphism.
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Proof. Let us show the above φ̃ is indeed a homomorphism. For this we claim
φ̃(( f1, g1)( f2, g2))= φ̃( f1, g1)φ̃( f2, g2) for every g1, g2 ∈ G and f1, f2 : X→ A.
By definition:

φ̃( f1, g1)φ̃( f2, g2)= (φ̂( f1), g1)(φ̂( f2), g2)= (φ̂( f1)φ̂( f2)
g−1

1 , g1g2),

while φ̃(( f1, g1)( f2, g2))= φ̃( f1 f
g−1

1
2 , g1g2)= (φ̂( f1 f

g−1
1

2 ), g1g2). We shall show
that φ̂( f1 f2) = φ̂( f1)φ̂( f2) and φ̂( f g) = φ̂( f )g for every f1, f2, f : X → A and
g ∈ G. Clearly this will imply the claim. The first assertion follows since

φ̂( f1 f2)(y)=
∏

x∈φ−1(y)

f1(x) f2(x)=
∏

x∈φ−1(y)

f1(x)
∏

x∈φ−1(y)

f2(x)= φ̂( f1)(y)φ̂( f2)(y).

As to the second assertion we have

φ̂( f g)(y)=
∏

x∈φ−1(y)

f g(x)=
∏

x∈φ−1(y)

f (xg−1)=
∏

x ′g∈φ−1(y)

f (x ′)=
∏

x ′∈φ−1(y)g−1

f (x ′).

Since φ is a G-map we have φ−1(y)g−1
= φ−1(yg−1) and thus

φ̂( f g)(y)=
∏

x∈φ−1(y)g−1

f (x)=
∏

x∈φ−1(yg−1)

f (x)= φ̂( f )g(y).

This proves the second assertion and hence the claim. It is left to show that if φ
is surjective then φ̃ is surjective. Let f ′ : Y → A and g′ ∈ G. Let us define an
f : X→ A that will map to f ′. For every y ∈Y choose an element xy ∈ X for which
φ(xy) = y and define f (xy) := f ′(y). Define f (x) = 1 for any x 6∈ {xy | y ∈ Y }.
Then clearly

φ̂( f )(y)=
∏

x∈φ−1(y)

f (x)= f (xy)= f ′(y).

Thus, φ̃( f, g′)= (φ̂( f ), g′)= ( f ′, g′) and φ̃ is onto. �

Lemma 2.5. Let B and C be two groups. Then there is a surjective B o C-map
φ : B oC→ B×C defined by φ( f, c)= ( f (1), c) for every f : C→ B, c ∈ C.

Proof. Let ( f, c), ( f ′, c′) be two elements of BoC . We check that φ(( f, c)( f ′, c′))=
φ( f, c)( f ′, c′). Indeed,

φ(( f, c)( f ′, c′))= φ( f f ′c
−1
, cc′)= ( f (1) f ′c

−1
(1), cc′)= ( f (1) f ′(c), cc′)

= ( f (1), c)( f ′, c)= φ( f, c)( f ′, c′).

Note that the map φ is surjective: For every b ∈ B and c ∈ C , one can choose a
function fb : C→ B for which fb(1)= b. One has φ( fb, c)= (b, c). �

The following lemma appears in [Meldrum 1995, Part I, Chapter I, Theorem
4.13] and describes the functoriality of the first argument in the wreath product.
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Lemma 2.6. Let G, A, B be groups and h : A→ B a homomorphism (resp. epi-
morphism). Then there is a naturally induced homomorphism (resp. epimorphism)
h∗ : A oG→ B oG given by h∗( f, g)= (h ◦ f, g) for every g ∈ G and f : G→ A.

The functoriality of the second argument is given in [Neftin 2009, Lemma 2.15]
whenever the first argument is abelian:

Lemma 2.7. Let A be an abelian group and let ψ : G→ H be a homomorphism
(resp. epimorphism) of finite groups. Then there is a homomorphism (resp. epi-
morphism) ψ̃ : A o G → A o H that is defined by ψ̃( f, g) = (ψ̂( f ), ψ(g)) with
ψ̂( f )(h)=

∏
k∈ψ−1(h) f (k) for every h ∈ H.

These functoriality properties can now be joined to give a connection between
different bracketing of iterated wreath products:

Lemma 2.8. Let A, B,C be finite groups and A abelian. Then there are epimor-
phisms

A o (B oC)→ (A o B) oC→ (A× B) oC.

Proof. Let us first construct an epimorphism h∗ : (A o B) oC→ (A× B) oC . Define
h : A o B→ A× B by

h( f, b)=
(∏

x∈B

f (x), b
)
,

for any f : B → A, b ∈ B. Since A is abelian h is a homomorphism. For every
a ∈ A, let fa : B→ A be the map fa(b′)= 0 for any 1 6= b′ ∈ B and fa(1)= a. Then
clearly h( fa, b)= (a, b) for any a∈ A, b∈ B and hence h is onto. By Lemma 2.6, h
induces an epimorphism h∗ : (AoB)oC→ (A×B)oC . To construct the epimorphism
A o (B oC)→ (A o B) oC , we shall use the associativity of the permutational wreath
product (see [Meldrum 1995, Theorem 3.2]). Using this associativity one has

(A o B) oC = (A oB B) oC C ∼= A oB×C (B oC C).

It is now left to construct an epimorphism:

A o (B oC)= A oBoC (B oC)→ A oB×C (B oC).

By Lemma 2.5, there is a B oC-map φ : B oC→ B×C and hence by Lemma 2.4
there is an epimorphism A oBoC (B oC)→ A oB×C (B oC). �

Let us iterate Lemma 2.8. Let G1, . . . ,Gn be groups. The ascending iterated
standard wreath product of G1, . . . ,Gn is defined as(

· · · ((G1 oG2) oG3) o · · ·
)
oGn,

and the descending iterated standard wreath product of G1, . . . ,Gn is defined as

G1 o (G2 o ( · · · o (Gn−1 oGn) · · · )).
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These two iterated wreath products are not isomorphic in general, as the standard
wreath product is not associative (as opposed to the permutation wreath product).
We shall abbreviate and write G1 o (G2 o · · · oGn) to refer to the descending wreath
product and (G1 o · · · oGr−1) oGr to refer to the ascending wreath product.

By iterating the epimorphism in Lemma 2.8 one obtains

Corollary 2.9. Let A1, . . . , Ar be abelian groups. Then (A1 o · · · o Ar−1) o Ar is an
epimorphic image of A1 o (A2 o · · · o Ar ).

Proof. By induction on r . The cases r = 1, 2 are trivial; assume r ≥ 3. By the
induction hypothesis there is an epimorphism

π ′1 : A1 o (A2 o · · · o Ar−1)→ (A1 o · · · o Ar−2) o Ar−1.

By Lemma 2.6, π ′1 induces an epimorphism π1 : (A1 o (A2 o · · · o Ar−1)) o Ar →

(A1 o · · · o Ar−1) o Ar . Applying Lemma 2.8 with A= A1, B = A2 o (A3 o · · · o Ar−1),
and C = Ar , one obtains an epimorphism

π2 : A1 o (A2 o · · · o Ar )→ (A1 o (A2 o · · · o Ar−1)) o Ar .

Taking the composition π = π1π2 one obtains an epimorphism

π : A1 o (A2 o · · · o Ar )→ (A1 o · · · o Ar−1) o Ar . �

2.2. Dimension under epimorphisms. Let us examine how the “dimension” d
behaves under the homomorphisms in Lemma 2.8 and Corollary 2.9. By [Ka-
plan and Lev 2003, Theorem 2.1], for any finite group G that is not perfect,
i.e., [G,G] 6= G, where [G,G] denotes the commutator subgroup of G, one
has d(G) = d(G/[G,G]). According to our definitions, for a perfect group G,
d(G/[G,G]) = d({1}) = 0, but if G is nontrivial, d(G) ≥ 1. As nontrivial semia-
belian groups are not perfect, this difference will not affect any of the arguments
in the sequel.

Definition 2.10. Let G be a finite group and p a prime. Define dp(G) to be the
rank of the p-Sylow subgroup of G/[G,G], i.e., dp(G) := d((G/[G,G])(p)).

Note that if G is not perfect one has d(G)=maxp(dp(G)).
Let p be a prime. An epimorphism f : G → H is called d-preserving (resp.

dp-preserving) if d(G)= d(H) (resp. dp(G)= dp(H)).

Lemma 2.11. Let G and H be two finite groups. Then:

H oG/[H oG, H oG] ∼= H/[H, H ]×G/[G,G].

Proof. Applying Lemmas 2.6 and 2.7 one obtains an epimorphism

H oG→ H/[H, H ] oG/[G,G].
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By Lemma 2.8 (applied with C = 1) there is an epimorphism

H/[H, H ] oG/[G,G] → H/[H, H ]×G/[G,G].

Composing these epimorphisms one obtains an epimorphism

π : H oG→ H/[H, H ]×G/[G,G],

that sends an element ( f : G→ H, g) ∈ H oG to(∏
x∈G

f (x)[H, H ], g[G,G]
)
∈ H/[H, H ]×G/[G,G].

The image of π is abelian and hence ker(π) contains K := [H oG, H oG].
Let us show K ⊇ker(π). Let ( f, g)∈ker(π). Then g∈[G,G] and

∏
x∈G f (x)∈

[H, H ]. As g ∈ [G,G], it suffices to show that the element f = ( f, 1) ∈ H o G
is in K . Let g1, . . . , gn be the elements of G, and for every i = 1, . . . , n let fi

be the function for which fi (gi ) = f (gi ) and f (g j ) = 1 for every j 6= i . One
can write f as

∏n
i=1 fi . Now for every i = 1, . . . , n, the function f1,i = f g−1

i
i

satisfies f1,i (1)= f (gi ) and f1,i (g j )= 1 for every j 6= 1. Thus fi is a product of
an element in [H |G|,G] and fi,1. So, f is a product of elements in [H |G|,G] and
f ′ =

∏n
i=1 f1,i . But f ′(1)=

∏
x∈G f (x) ∈ [H, H ] and f ′(gi )= 1 for every i 6= 1

and hence f ′ ∈ [H |G|, H |G|]. Thus, f ∈ K as required and K = kerπ . �

The following is an immediate conclusion:

Corollary 2.12. Let G and H be two finite groups. Then

dp(H oG)= dp(H)+ dp(G)

for any prime p.

So, for groups A, B,C as in Lemma 2.8, we have

dp(A o (B oC))= dp((A× B) oC)= dp(A× B×C)= dp(A)+ dp(B)+ dp(C)

for every p. In particular, the epimorphisms in Lemma 2.8 are d-preserving.
The same observation holds for Corollary 2.9, so one has:

Lemma 2.13. Let A1, . . . , Ar be finite abelian groups. Then

dp(A1 o (A2 o · · · o Ar ))= dp((A1 o · · · o Ar−1) o Ar )= dp(A1× · · ·× Ar )

are all
∑r

i=1 dp(Ai ) for any prime p.

For cyclic groups A1, . . . , Ar , dp(A1 o(A2 o· · ·oAr )) is simply the number of cyclic
groups among A1, . . . , Ar whose p-part is nontrivial. Thus:

Corollary 2.14. Let C1, . . . ,Cr be finite cyclic groups and G =C1 o (C2 o · · · oCr ).
Then d(G)=maxp | |G| d

(
C1(p) o (C2(p) o · · · oCr (p))

)
.
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Let us apply Lemma 2.8 in order to connect between descending iterated wreath
products of abelian and cyclic groups:

Proposition 2.15. Let A1, . . . , Ar be finite abelian groups and let Ai have invari-
ant factors Ci, j for j =1, . . . , li , i.e., Ai =

∏li
j=1 Ci, j and |Ci, j | divides |Ci, j+1| for

i = 1, . . . , r and j = 1, . . . , li − 1. There is an epimorphism from the descending
iterated wreath product G̃ := ori=1 o

li
j=1 Ci, j (where the groups Ci, j are ordered

lexicographically: C1,1,C1,2, . . . ,C1,l1,C2,1, . . . ,Cr,lr ) to G := A1 o (A2 o · · · o Ar ).

Proof. Assume A1 6= {0} (otherwise A1 can be simply omitted). Let us prove the
assertion by induction on

∑r
i=1 li . Let G2= A2o(A3o· · ·oAk). Write A1=C1,1×A′1.

By Lemma 2.8, there is an epimorphism

π1 : C1,1 o (A′1 oG2)→ (C1,1× A′1) oG2 = A1 oG2 = G.

By applying the induction hypothesis to A′1, A2, . . . , Ar , there is an epimorphism
π ′2 from the descending iterated wreath product G̃2 = o

l1
j=2C1, j o (o

r
i=2 o

li
j=1 Ci, j ) to

A′1 oG2. By Lemma 2.7, π ′2 induces an epimorphism π2 :C1,1 oG̃2→C1,1 o(A′1 oG2).
Taking the composition π = π2π1, we obtain the required epimorphism: π : G̃ =
C1,1 o G̃2→ G. �

Remark 2.16. Note that

dp(G̃)=
r∑

i=1

li∑
j=1

dp(Ci, j )=

r∑
i=1

dp(Ai )= dp(G)

for every p and hence π is d-preserving.

Therefore, showing G is a d-preserving epimorphic image of an iterated wreath
product of abelian groups is equivalent to showing G is a d-preserving epimorphic
image of an iterated wreath product of finite cyclic groups.

3. Wreath length

The following lemma is essential for the definition of wreath length:

Lemma 3.1. Let G be a finite semiabelian group. Then G is a homomorphic image
of a descending iterated wreath product of finite cyclic groups, i.e., there are finite
cyclic groups C1, . . . ,Cr and an epimorphism C1 o (C2 o · · · oCr )→ G.

Proof. By Proposition 2.15 it suffices to show G is an epimorphic image of a
descending iterated wreath product of finite abelian groups. We prove this by
induction on |G|, the case G = {1} being trivial. By Theorem 2.3 of [Dentzer
1995], we have G = A1 H with A1 an abelian normal subgroup and H a proper
semiabelian subgroup of G. First, there is an epimorphism

π1 : A1 o H → A1 H = G.
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By induction there are abelian groups A2, . . . , Ar and an epimorphism π ′2 : A2 o

(A3 o · · · o Ar ) → H . By Lemma 2.6, π ′2 can be extended to an epimorphism
π2 : A1 o (A2 o · · · o Ar )→ A1 o H . So, by taking the composition π = π1π2 one
obtains the required epimorphism π : A1 o (A2 o · · · o Ar )→ G. �

Definition 3.2. Let G be a finite semiabelian group. Define the wreath length
wl(G) of G to be the smallest positive integer r such that there are finite cyclic
groups C1, . . . ,Cr and an epimorphism C1 o (C2 o · · · oCr )→ G.

Let G̃ =C1 o (C2 o · · · oCr ) and π : G̃→ G an epimorphism. Then, by Corollary
2.14,

d(G)≤ d(G̃)≤ r.

In particular d(G)≤ wl(G).

Proposition 3.3. Let C1, . . . ,Cr be nontrivial finite cyclic groups. Then

wl(C1 o (C2 o · · · oCr ))= r.

Let dl(G) denote the derived length of a (finite) solvable group G, i.e., the
smallest positive integer n such that the n-th higher commutator subgroup of G
(the n-th element in the derived series G = G(0)

≥ G(1)
= [G,G] ≥ · · · ≥ G(i)

=

[G(i−1),G(i−1)
] ≥ · · · ) is trivial. In order to prove this proposition we will use the

following lemma:

Lemma 3.4. Let C1, . . . ,Cr be nontrivial finite cyclic groups. Then

dl(C1 o (C2 o · · · oCr ))= r.

Proof. It is easy (by induction) to see that dl(C1 o (C2 o · · · oCr )) ≤ r . We turn to
the reverse inequality. By Corollary 2.9, it suffices to prove it for the ascending
iterated wreath product G = (C1 o · · · oCr−1) oCr . We prove this by induction on r .
The case r = 1 is trivial. Assume r ≥ 1. Write G1 := (C1 o · · · oCr−2) oCr−1 so that
G=G1 oCr . By the induction hypothesis, dl(G1)= r−1. View G as the semidirect
product Gr

1 o Cr . For any g ∈ G1, the element tg := (g, g−1, 1, 1, . . . , 1) ∈ Gr
1

lies in [Gr
1,Cr ] and hence in [Gr

1,Cr ] ≤ G ′ ≤ Gr
1. Let H = {tg | g ∈ G1}. The

projection map Gr
1→ G1 onto the first copy of G1 in Gr

1 maps H onto G1. Since
H ≤ G ′, the projection map also maps G ′ onto G1. Now dl(G1) = r − 1 by the
induction hypothesis. It follows that dl(G ′)≥ r − 1, whence dl(G)≥ r . �

Proof of Proposition 3.3. We first observe that wl(C1 o (C2 o · · · o Cr )) ≤ r by
definition. If C1 o(C2 o · · · oCr ) were a homomorphic image of a shorter descending
iterated wreath product C ′1 o (C

′

2 o · · · oC
′
s), then by Lemma 3.4,

s = dl(C ′1 o (C
′

2 o · · · oC
′

s))≥ dl(C1 o (C2 o · · · oCr ))= r > s,

a contradiction. �
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Combining Proposition 3.3 with Corollary 2.14 we have:

Corollary 3.5. Let C1, . . . ,Cr be finite cyclic groups and G = C1 o (C2 o · · · oCr ).
Then wl(G)= d(G) if and only if there is a prime p for which p | |C1|, . . . , |Cr |.

All examples of groups G with wl(G)= d(G) arise from Corollary 3.5:

Proposition 3.6. Let G be a finite semiabelian group. Then wl(G) = d(G) if
and only if there is a prime p, finite cyclic groups C1, . . . ,Cr for which p | |Ci |,
i = 1, . . . , r , and a d-preserving epimorphism π : C1 o (C2 o · · · oCr )→ G.

Proof. Let d = d(G). The equality d = wl(G) holds if and only if there are finite
cyclic groups C1,C2, . . . ,Cd and an epimorphism π : G̃ =C1 o(C2 o · · · oCd)→G.
Assume the latter holds. Clearly d ≤ d(G̃) but by Corollary 2.14 applied to G̃ we
also have d(G̃)≤ d . It follows that π is d-preserving. Since d(G)=maxp(dp(G)),
there is a prime p for which d = dp(G) and hence dp(G̃) = d . Thus, p | |Ci | for
all i = 1, . . . , r .

Let us prove the converse. Assume there is a prime p, finite cyclic groups
C1, . . . ,Cr for which p | |Ci |, i = 1, . . . , r , and a d-preserving epimorphism π :

G̃ := C1 o (C2 o · · · o Cr ) → G. Since p | |Ci |, it follows that dp(G̃) = r . As
dp(G̃)≤d(G̃)≤ r , it follows that d(G)=d(G̃)= r . In particular wl(G)≤ r =d(G)
and hence wl(G)= d(G). �

Remark 3.7. Let G be a semiabelian p-group. By [Neftin 2009, Corollary 2.15],
G is a d-preserving image of an iterated wreath product of abelian subgroups of
G (following the proof one can observe that the abelian groups were actually sub-
groups of G). So, by Proposition 2.15, G is a d-preserving epimorphic image
of G̃ := C1 o (C2 o · · · o Ck) for cyclic subgroups C1, . . . ,Ck of G. By applying
Proposition 3.6 one obtains wl(G)= d(G).

Remark 3.8. Throughout the proof of [Neftin 2009, Corollary 2.15] one can use
the minimality assumption posed on the decompositions to show directly that the
abelian groups A1, . . . , Ar , for which there is a d-preserving epimorphism A1 o

(A2 o · · · o Ar )→ G, can be actually chosen to be cyclic.

We generalize Remark 3.7 to nilpotent groups:

Proposition 3.9. Let G be a finite nilpotent semiabelian group. Then wl(G) =
d(G).

Proof. Let d = d(G). Let p1, . . . , pk be the primes dividing |G| and let Pi be the
pi -Sylow subgroup of G for every i = 1, . . . , k. So, G ∼=

∏k
i=1 Pi . By Remark

3.7, there are cyclic pi -groups Ci,1, . . . ,Ci,ri and a d-preserving epimorphism πi :

Ci,1 o(Ci,2 o· · ·oCi,ri )→ Pi for every i = 1, . . . , k. In particular for any i = 1, . . . , k,
ri = d(Pi )= dp(G) ≤ d . For any i = 1, . . . , k and any d ≥ j > ri , set Ci, j = {1}.
For any j = 1, . . . , d define Cj =

∏k
i=1 Ci, j .
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We claim G is an epimorphic image of G̃ = C1 o (C2 o · · · o Cd). To prove
this claim it suffices to show every Pi is an epimorphic image of G̃ for every
i = 1, . . . , k. As Ci, j is an epimorphic image of C j for every j = 1, . . . , d and
every i = 1, . . . , k, one can apply Lemmas 2.6 and 2.7 iteratively to obtain an
epimorphism π ′i : G̃ → Ci,1 o (Ci,2 o · · · o Ci,r ) for every i = 1, . . . , k. Taking the
composition π ′iπi gives the required epimorphism and proves the claim. As G is
an epimorphic image of an iterated wreath product of d(G) cyclic groups one has
wl(G)≤ d(G) and hence wl(G)= d(G). �

Example 3.10. Let G = Dn = 〈σ, τ | σ
2
= 1, τ n

= 1, σ τσ = τ−1
〉 for n ≥ 3. Since

G is an epimorphic image of 〈τ 〉 o 〈σ 〉 and G is not abelian we have wl(G) = 2.
On the other hand d(G) = d(G/[G,G]) is 1 if n is odd and 2 if n is even. So,
G = D3 = S3 is the minimal example for which wl(G) 6= d(G).

4. A ramification bound for semiabelian groups

Theorem 4.1. Let G be a finite semiabelian group. Then there exists a tamely
ramified extension K/Q with G(K/Q)∼=G in which at most wl(G) primes ramify.

The proof relies on the splitting lemma from [Kisilevsky and Sonn 2010]: Let
` be a rational prime, K a number field, and p a prime of K that is prime to `. Let
IK ,p denote the group of fractional ideals prime to p, let PK ,p denote the subgroup
of principal ideals that are prime to p, and let PK ,p,1 be the subgroup of principal
ideals (α) with α ≡ 1 (mod p). Let Pp denote PK ,p/PK ,p,1. The ray class group
ClK ,p is defined to be IK ,p/PK ,p,1. Now, as IK ,p/PK ,p ∼= ClK , one has the short
exact sequence

1−→ P (`)p −→ Cl(`)K ,p −→ Cl(`)K −→ 1, (4-1)

where A(`) denotes the `-primary component of an abelian group A. Let us de-
scribe a sufficient condition for the splitting of (4-1). Let a1, . . . , ar ∈ IK ,p, and
let ã1, . . . , ãr be their classes in Cl(`)K ,p with images a1, . . . , ar in Cl(`)K , so that
Cl(`)K = 〈a1〉×〈a2〉×· · ·×〈ar 〉. Let `mi := |〈ai 〉| and let ai ∈ K satisfy a`

mi
i = (ai ),

for i = 1, . . . , r .

Lemma 4.2 [Kisilevsky and Sonn 2006]. Let p be a prime of K and let K ′ =
K ( `mi√ai | i = 1, . . . , r). If p splits completely in K ′ then the sequence (4-1) splits.

The splitting of (4-1) was used in [Kisilevsky and Sonn 2010] to construct cyclic
ramified extensions at one prime only. Let m = max{1,m1, . . . ,mr }. Let UK

denote the units in OK .

Lemma 4.3 [Kisilevsky and Sonn 2010]. Let K ′′ = K (µ`m , `m
√
ξ, `mi√ai | ξ ∈

UK , i = 1, . . . , r) and let p be a prime of K which splits completely in K ′′. Then
there is a cyclic `m-extension of K that is totally ramified at p and is not ramified
at any other prime of K .
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Corollary 4.4. Let K be a number field, n a positive integer. Then there exists a
finite extension K ′′′ of K such that if p is any prime of K that splits completely
in K ′′′, then there exists a cyclic extension L/K of degree n in which p is totally
ramified and p is the only prime of K that ramifies in L.

Proof. Let n =
∏
` `

m(`) be the decomposition of n into primes. Let K ′′′ be the
composite of the fields K ′′ = K ′′(`) in Lemma 4.3 (m = m(`)). Let L(`) be the
cyclic extension of degree `m(`) yielded by Lemma 4.3. The composite L=

∏
L(`)

has the desired property. �

Proof of Theorem 4.1. By definition, G is a homomorphic image of a descending
iterated wreath product of cyclic groups C1 o(C2 o · · · oCr ), r =wl(G). Without loss
of generality G ∼=C1 o(C2 o · · · oCr ) is itself a descending iterated wreath product of
cyclic groups. Proceed by induction on r . For r = 1, G is cyclic of order, say, N .
If p is a rational prime ≡ 1 (mod N ), then the field of p-th roots of unity Q(µp)

contains a subfield L cyclic over Q with Galois group G and exactly one ramified
prime, namely p. Thus the theorem holds for r = 1.

Assume r > 1 and the theorem holds for r − 1. Let K1/Q be a tamely ramified
Galois extension with G(K1/Q)∼=G1, where G1 is the descending iterated wreath
product C2 o (C3 o · · · o Cr ), such that the ramified primes in K1 are a subset of
{p2, . . . , pr }. By Corollary 4.4, there exists a prime p = p1 not dividing the order
of G which splits completely in K ′′′1 , the field supplied for K1 by Corollary 4.4,
and let p= p1 be a prime of K1 dividing p. By Corollary 4.4, there exists a cyclic
extension L/K1 with G(L/K1)∼=C1 in which p is totally ramified and in which p

is the only prime of K1 which ramifies in L .
Now p has |G1| distinct conjugates {σ(p) | σ ∈ G(K1/Q)} over K1. For each

σ ∈ G(K1/Q), the conjugate extension σ(L)/K1 is well-defined, since K1/Q is
Galois. Let M be the composite of the σ(L), σ ∈G(K1/Q). For each σ , σ(L)/K1

is cyclic of degree |C1|, ramified only at σ(p), and σ(p) is totally ramified in
σ(L)/K1. It now follows (see, e.g., [Kisilevsky and Sonn 2010, Lemma 1]) that
the fields {σ(L) | σ ∈ G(K1/Q)} are linearly disjoint over K1, hence G(M/Q)∼=
C1 oG1∼=G. Since the only primes of K1 ramified in M are {σ(p) | σ ∈G(K1/Q)},
the only rational primes ramified in M are p1, p2, . . . , pn . �

Corollary 4.5. The minimal ramification problem has a positive solution for all
finite semiabelian groups G for which wl(G) = d(G). Precisely, any finite semia-
belian group G for which wl(G)= d(G) can be realized tamely as a Galois group
over the rational numbers with exactly d(G) ramified primes.

By Proposition 3.9, we have:

Corollary 4.6. The minimal ramification problem has a positive solution for all
finite nilpotent semiabelian groups.
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5. Arithmetic consequences

In this section we examine some arithmetic consequences of a positive solution to
the minimal ramification problem. Specifically, given a group G, the existence of
infinitely many minimally tamely ramified G-extensions K/Q is reinterpreted in
some cases in terms of some open problems in algebraic number theory. We will
be most interested in the case d(G)= 1.

Proposition 5.1. Let q and ` be distinct primes. Let K/Q be a cyclic extension of
degree n := [K :Q] ≥ 2 with (n, q`)= 1. Suppose that K/Q is totally and tamely
ramified at a unique prime l dividing `. Then q divides the class number hK of K
if and only if there exists an extension L/K satisfying the following:

(1) L/Q is a Galois extension with nonabelian Galois group G = G(L/Q).

(2) The degree [L : K ] = qs is a power of q.

(3) L/Q is (tamely) ramified only at primes over `.

Proof. First suppose that q divides hK . Let K0 be the q-Hilbert class field of K , i.e.,
K0/K is the maximal unramified abelian q-extension of K . Then K0/Q is a Galois
extension with Galois group G :=G(K0/Q), and H :=G(K0/K )' (CK )q 6=0, the
q-part of the ideal class group of K . Then [G,G] is contained in H . If [G,G]( H ,
then the fixed field of [G,G] would be an abelian extension of Q which contains
an unramified q-extension of Q, which is impossible. Hence [G,G] = H 6= 0 and
so G is a nonabelian group, and L = K0 satisfies (1), (2), and (3) of the statement.

Conversely suppose that there is an extension L/K satisfying (1), (2), and (3)
of the statement. Since H = G(L/K ) is a q-group, there is a sequence of normal
subgroups H = H0 ⊃ H1 ⊃ H2 · · · ⊃ Hs = 0 with Hi/Hi+1 a cyclic group of order
q . Let L i denote the fixed field of Hi so that K = L0⊂ · · · ⊂ Ls = L . Let m be the
largest index such that Lm/Q is totally ramified (necessarily at `). If m = s, then
L/Q is totally and tamely ramified at ` and so the inertia group T (L/(`)) = G,
where in this case L is the unique prime of L dividing `. Since L/Q is tamely
ramified it follows that T (L/(`)) is cyclic, but this contradicts the hypothesis that
G is nonabelian. Therefore it follows that m < s, and so Lm+1/Lm is unramified
and therefore q must divide the class number hLm . Then a result of [Iwasawa 1956]
implies that q divides all of the class numbers hLm−1, . . . , hL0 = hK . �

We now apply this to the case that G 6= {1} is a quotient of the regular wreath
product Cq oC p where p and q are distinct primes. Then d(G)= 1.

The existence of infinitely many minimally tamely ramified G-extensions L/Q
would by Proposition 5.1 imply the existence of infinitely many cyclic extensions
K/Q of degree [K : Q] = p ramified at a unique prime ` 6= p, q for which q
divides the class number hK . (If there were only finitely many distinct such cyclic
extensions K/Q, then the number of ramified primes ` would be bounded, and
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there would be an absolute upper bound on the possible discriminants of the dis-
tinct fields L/Q. By Hermite’s theorem, this would mean that the number of such
G-extensions L/Q would be bounded).

The question of whether there is an infinite number of cyclic degree p extensions
(or even one) of Q whose class number is divisible by q is in general open at this
time.

For p=2, it is known that there are infinitely many quadratic fields (see [Ankeny
and Chowla 1955]), with class numbers divisible by q , but it is not known that this
occurs for quadratic fields with prime discriminant.

This latter statement is also a consequence of Schinzel’s hypothesis as is shown
in [Plans 2004]. There is also some numerical evidence that the heuristic of Cohen-
Lenstra should be statistically independent of the primality of the discriminant
[Jacobson et al. 1995; te Riele and Williams 2003]. If this were true, then one
would expect that there is a positive density of primes ` for which the cyclic ex-
tension of degree p and conductor ` would have class number divisible by q .

For p = 3 it has been proved in [Bhargava 2005] that there are infinitely many
cubic fields K/Q for which 2 divides their class numbers. That there are infinitely
many cyclic cubics with prime squared discriminants whose class numbers are
even (or more generally divisible by some fixed prime q) seems out of reach at this
time.

In our view, there is significant arithmetic interest in solving the minimal ram-
ification problem for other groups. See also [Harbater 1994; Jones and Roberts
2008; Rabayev 2009].

References

[Ankeny and Chowla 1955] N. C. Ankeny and S. Chowla, “On the divisibility of the class number
of quadratic fields”, Pacific J. Math. 5 (1955), 321–324. MR 19,18f Zbl 0065.02402

[Bhargava 2005] M. Bhargava, “The density of discriminants of quartic rings and fields”, Ann. of
Math. (2) 162:2 (2005), 1031–1063. MR 2006m:11163 Zbl 1159.11045

[Dentzer 1995] R. Dentzer, “On geometric embedding problems and semiabelian groups”, Manu-
scripta Math. 86:2 (1995), 199–216. MR 96c:12006 Zbl 0836.12002

[Harbater 1994] D. Harbater, “Galois groups with prescribed ramification”, pp. 35–60 in Arithmetic
geometry (Tempe, AZ, 1993), edited by N. Childress and J. W. Jones, Contemp. Math. 174, Amer.
Math. Soc., Providence, RI, 1994. MR 96a:12008 Zbl 0815.11053

[Iwasawa 1956] K. Iwasawa, “A note on class numbers of algebraic number fields”, Abh. Math. Sem.
Univ. Hamburg 20 (1956), 257–258. MR 18,644d Zbl 0074.03002

[Jacobson et al. 1995] M. J. Jacobson, Jr., R. F. Lukes, and H. C. Williams, “An investigation of
bounds for the regulator of quadratic fields”, Experiment. Math. 4 (1995), 211–225. MR 97d:11173
Zbl 0859.11057

[Jones and Roberts 2008] J. W. Jones and D. P. Roberts, “Number fields ramified at one prime”, pp.
226–239 in Algorithmic number theory, edited by A. J. van der Poorten and A. Stein, Lecture Notes
in Comput. Sci. 5011, Springer, Berlin, 2008. MR 2010b:11152 Zbl 05279289



1090 Hershy Kisilevsky, Danny Neftin and Jack Sonn

[Kaplan and Lev 2003] G. Kaplan and A. Lev, “On the dimension and basis concepts in finite
groups”, Comm. Algebra 31:6 (2003), 2707–2717. MR 2004f:20060 Zbl 1038.20020

[Kisilevsky and Sonn 2006] H. Kisilevsky and J. Sonn, “Abelian extensions of global fields with
constant local degree”, Math. Res. Lett. 13:4 (2006), 599–605. MR 2007e:11130 Zbl 1158.11045

[Kisilevsky and Sonn 2010] H. Kisilevsky and J. Sonn, “On the minimal ramification problem for
`-groups”, Compos. Math. 146:3 (2010), 599–606. MR 2644928 Zbl 1197.11150

[Meldrum 1995] J. D. P. Meldrum, Wreath products of groups and semigroups, Pitman Mono-
graphs and Surveys in Pure and Applied Mathematics 74, Longman, Harlow, 1995. MR 97j:20030
Zbl 0833.20001

[Neftin 2009] D. Neftin, “On semiabelian p-groups”, preprint, 2009. arXiv 0908.1472v2

[Plans 2004] B. Plans, “On the minimal number of ramified primes in some solvable extensions of
Q”, Pacific J. Math. 215:2 (2004), 381–391. MR 2005d:12005 Zbl 1064.11072

[Rabayev 2009] D. Rabayev, Polynomials with roots mod n for all n, Master’s Thesis, Technion,
2009.

[te Riele and Williams 2003] H. te Riele and H. Williams, “New computations concerning the
Cohen–Lenstra heuristics”, Experiment. Math. 12 (2003), 99–113. MR 2005d:11183 Zbl 1050.
11096

Communicated by Hendrik W. Lenstra
Received 2009-12-20 Revised 2010-06-24 Accepted 2010-08-01

kisilev@mathstat.concordia.ca Department of Mathematics and Statistics,
Concordia University, 1455 de Maisonneuve Blvd West,
Montreal, QC H3G1M8, Canada

neftind@tx.technion.ac.il Department of Mathematics,
Technion – Israel Institute of Technology, 32000 Haifa, Israel
http://www.technion.ac.il/~neftind/

sonn@math.technion.ac.il Department of Mathematics,
Technion – Israel Institute of Technology, 32000 Haifa, Israel
http://www.math.technion.ac.il/~sonn/

mathematical sciences publishers msp



Algebra & Number Theory
www.jant.org

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France
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