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In this paper I introduce modular symbols for Maass wave cusp forms. They
appear in the guise of finitely additive functions on the boolean algebra generated
by intervals with nonpositive rational ends, with values in analytic functions
(pseudomeasures in the sense of Manin and Marcolli). We explain the basic
issues and draw an analogy with the p-adic case. We then construct the new
modular symbols, followed by the related Lévy–Mellin transforms. This work
builds on the fundamental study of Lewis and Zagier (2001).

0. Introduction

0.0. Summary. Maass wave cusp forms can be considered as analogs of classical
cusp forms that have “complex weights” determined by the spectrum of the hy-
perbolic Laplace operator on the upper complex half-plane. In particular, Maass
eigenforms with respect to all Hecke operators define interesting Dirichlet series,
exactly as in the classical case.

Dirichlet series related to classical cusp forms admit p-adic analytic contin-
uation. An efficient way to construct this continuation is based on the theory of
modular symbols, which allows one to define first p-adic pseudomeasures and then
integrate them in order to construct a p-adic version of the Mellin transform (the
Mazur–Mellin transform; see [Mazur and Swinnerton-Dyer 1974; Višik and Manin
1974]).

In Section 1 we introduce modular symbols for Maass forms. We also trans-
fer the construction of p-adic pseudomeasures back to the archimedean domain,
and introduce the notion of ∞-adic integration and the respective Lévy–Mellin
transform.

We argue that in the real analog of Zp — the segment [0, 1]— the boolean alge-
bra of closed/open p-adic subsets must be replaced by the boolean algebra of finite
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unions of intervals with rational ends, on which modular symbols, both classical
and new, form a finitely additive pseudomeasure that can be used for Mellin-type
integration. This is the theme of Section 2.

An important role in this theory is played by continued fractions and the dy-
namical system based on them. In the last subsections I show that the respective
transfer operator can be treated as the “Hecke operator T1” corresponding to the
“prime” in characteristic zero, and that the modified Brjuno function in the theory
of linearization of holomorphic maps [Marmi et al. 2001; 2006] can be used for
the calculation of derivatives of classical Dirichlet series related to cusp forms,
replacing the eta function appearing in [Goldfeld 1995].

These ideas are explained in more detail below. In the proofs, I make heavy use
of the fundamental study [Lewis and Zagier 2001].

0.1. Period polynomials and period functions. Let u(τ ) ∈ S2k(SL(2,Z)) be a
cusp form of integer weight 2k > 0 for the full modular group. This means that it
is holomorphic in the upper half-plane, the tensor u(τ )(dτ)k is SL(2,Z)-invariant,
and u(τ ) vanishes at cusps.

Its period polynomial is defined as the integral

ψ(z)= ψu(z) :=
∫ i∞

0
u(τ )(z− τ)2k−2 dτ. (0.1)

Here z is, for the time being, an auxiliary formal variable.
One remarkable discovery in the theory of modular functions was the possibility

of developing versions for a certain set of complex weights 2s (replacing the former
2− 2k). This spectrum consists of the (doubled) zeroes of Selberg’s zeta function
Z(s) of SL(2,Z) acting on the upper half-plane, or equivalently, those values of
s for which the Mayer transfer operator L2

s [Mayer 1991a; 1991b] has 1 as its
eigenvalue: see [Lewis and Zagier 1997] for a short review and [Lewis and Zagier
2001] for a comprehensive exposition.

0.2. Classical modular symbols. The classical modular symbols of weight 2k for
SL(2,Z), in one of their guises, can be defined simply as the integrals∫ β

α

u(τ )(z− τ)2k−2 dτ, (0.2)

where this time α, β ∈P1(Q) are arbitrary cusps, and the integration is taken along,
say, the hyperbolic geodesic connecting β to α.

More precisely, the modular symbol {α, β}k (for the full modular group) is the
integral (0.2) considered as a linear map

{α, β}k : S2k(SL(2,Z))→ C[z]. (0.3)
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In the next subsections, we will briefly recall the number-theoretic motivations for
considering (0.3). A geometric interpretation of (0.3), after a dualization, runs as
follows: this integral expresses the pairing between the Hodge cohomology and the
Betti homology of the moduli space M1,2k−2 of elliptic curves with marked points.
(See [Shokurov 1980a; 1980b] for a version involving Kuga varieties rather than
moduli spaces.)

The modular symbols (0.3) satisfy the simple functional equations

{α, β}k +{β, γ}k +{γ, α}k = 0, {α, β}k +{β, α}k = {α, α}k = 0. (0.4)

Thus they can be extended to a C[z]-valued finitely additive function on the boolean
algebra generated by (positively oriented) segments with rational ends in P1(R).
We sometimes call such a function a pseudomeasure, as in [Manin and Marcolli
2008]. The variable change formula applied to (0.2) leads to an additional property
of this particular pseudomeasure, which we call its modularity:

{g(α), g(β)}k = g{α, β}k . (0.5)

Here g ∈SL(2,Z) acts on P1(Q) by fractional linear transformations, and on poly-
nomials of degree at most 2k− 2 by a natural twisted action.

A pseudomeasure can in principle take values in any abelian group, and the
modularity condition (0.5) makes sense if this group is a left SL(2,Z)-module. If
the group of values has no 2- and 3-torsion, the last two equations in (0.4) follow
from the first one.

0.3. Modular symbols for Maass cusp forms. Our first goal is to extend the def-
inition of {α, β}k to complex weights for which there exist nontrivial Maass cusp
forms. We take the formula (0.2) as our starting point and look for its analogs in
Lewis–Zagier theory. We are interested mostly in complex critical zeroes/weights
for which Re s = 1

2 .
Tracing parallels with the classical theory, one should keep in mind that certain

classical objects have more (or less) than one parallel in the new setting.
For example, the most straightforward analogs of u(τ ) ∈ S2k(SL(2,Z)) are ap-

parently Maass wave cusp forms [1949] — smooth SL(2,Z)-invariant functions on
H satisfying the hyperbolic Laplace equation 1u = s(1−s)u and certain growth
and vanishing conditions. An appropriate version of the period polynomial (0.1)
for such a form is its period function ψu(z), this time a holomorphic function of
our former auxiliary variable z.

However, the relationship between u and ψu , as it is first explained in [Lewis
and Zagier 2001, Chapter I, Section 1], does not look at all like (0.1) and passes
through three intermediate steps: u↔ Lε↔ f ↔ ψ .
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To the contrary, the structure of (0.1) is reproduced in the formula

ψ(z)=
∫ 0

−∞

(z− t)−2sU (t)dt (0.6)

(see [Lewis and Zagier 2001, p. 221]), in which U (t)dt denotes a certain distri-
bution on R, called the boundary value of u(τ ). Therefore, it is this distribution
that in our context seems to be a more adequate analog of a classical cusp form,
the more so that its SL(2,Z)-invariance property involves an explicitly weighted
action of the modular group,

U
(at+b

ct+d

)
= |ct + d|2−2sU (t), (0.7)

whereas a Maass form is simply SL(2,Z)-invariant.
Formula (0.6) seems to offer a straightforward way to define the modular sym-

bol — just consider the integrals∫ β

α

(z− t)−2sU (t)dt.

Formal manipulations with such integrals are simple and seemingly prove (0.4)
and (0.5); we reproduce them for their heuristic value. However, these calculations
cannot be taken literally, because the characteristic functions of the intervals with
rational ends do not belong to the space of test functions for the distribution.

Thus we have to find a way around this difficulty.
In fact, there are at least two different ways. One of them starts with the

three-term functional equation for the period function ψ(z), proceeds with pure
algebra, and works also for Lewis–Zagier’s “period-like functions”.

Another method is applicable only to the period functions of Maass forms u and
uses the Lewis–Zagier formula of the form

ψ(z)=
∫ 0

−∞

{u, Rs
z }(τ )

where the integrand is a closed 1-form depending on z as a parameter (its structure
is described in the main text below). One can then integrate this form along a path
that may this time connect two arbitrary cusps, thus getting another analog of (0.2).

These two constructions form the content of Section 1.

0.4. The Mellin transform and classical modular symbols. Now we will explain
some of our motivations.

Briefly, we want to describe a construction presenting the Maass Dirichlet series
as an integral over, say, [0, 1/2], formally similar to the Mazur–Mellin transform
in the theory of p-adic interpolation. We call such a representation the ∞-adic
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Lévy–Mellin transform [Manin and Marcolli 2008]. The integration measure in
both cases is constructed out of modular symbols.

Here is a sketch of the classical p-adic constructions. The classical theory of
modular symbols, as presented in [Manin 1972; 1973], started with the following
observations. Suppose that we are interested in the calculation of some values (say,
at integer points ρ) of a Dirichlet series

Lκ(ρ)=
∞∑

n=1

anκ(n)n−ρ, (0.8)

where (an) is a certain “arithmetic” function, and κ is an additive character of Z

of finite order. In the standard approach one first introduces the Fourier series

uκ(τ ) :=
∞∑

n=1

anκ(n)e2π inτ (0.9)

and then works with the Mellin transform

3κ(ρ) :=

∫ i∞

0
uκ(τ )

(
τ

i

)ρ−1
dτ, (0.10)

which is related to (0.8) by the simple formula 3(ρ)= i(2π)−ρ0(ρ)L(ρ).
Now, let u(τ ) :=uκ0(τ )where κ0 is identically 1. Clearly, uκ(τ )=u(τ+α) for a

rational number α such that κ(n)= e2π iαn , so we can write, shifting the integration
path,

3κ(ρ) :=

∫ i∞

α

u(τ )
(
τ−α

i

)ρ−1
dτ. (0.11)

Thus, if ρ ≥ 1 is an integer, varying κ in (0.8) reduces to replacing τ ρ−1 in (0.10)
by an arbitrary polynomial of degree ≤ ρ − 1 and allowing the integration paths
(α, i∞) with an arbitrary rational α.

Furthermore, if u ∈ S2k(SL(2,Z)) as above, and 1 ≤ ρ ≤ 2k − 1, applying
to α the “continued fractions trick”, we can replace (α, i∞) by a sum of geo-
desic paths in the upper half-plane, joining pairwise cusps of the form g−1(0) and
g−1(i∞), where g varies in SL(2,Z), and then return to (0, i∞) by transforming
the integrand via τ 7→ gτ . Thus, in particular, all values of (0.8) corresponding
to integer ρ inside the critical strip and arbitrary characters κ , can be expressed
as linear combinations of modular symbols with rational coefficients, and span a
finite-dimensional space over Q.

0.5. The p-adic Mellin–Mazur transform. Such expressions were used in [Manin
1973; 1974] to produce a p-adic interpolation of values (0.8). This problem will
make sense if (after an appropriate normalization) these values lie in a finitely
generated Z-module, so the basic problem is to control the denominators.
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As we already said, the main tool for such an interpolation was a p-adic integral
(the Mellin–Mazur transform) with respect to a p-adic pseudomeasure (see below)
constructed using modular symbols. This transform integrates τ ρ−1 twisted by κ
against this pseudomeasure, and for finite order κ produces the classical values
Lκ(ρ) more or less by definition. (In fact, one works usually with Dirichlet char-
acters in place of κ , but the only difference consists in the appearance of auxiliary
Gauss sums).

Here are some details.

(a) The p-adic integration domain and a naive pseudomeasure. The following
tentative construction applies to any (absolutely convergent) series of the type (0.8)
considered as a function of variable κ with fixed ρ.

At the first approximation, consider Zp with Z densely embedded in it. The
boolean algebra of closed/open subsets of Zp is generated by the primitive subsets
a+ pmZp, for m = 0, 1, 2, . . . and a ranging over all classes modulo pm . Put

µL(a+ pmZp) :=
∑

n≡a mod pm

ann−ρ . (0.12)

Any two primitive subsets either do not intersect, or one of them is contained in
the other. If one primitive subset I is a disjoint union of a finite family of other
primitive subsets I j , then µL(I ) =

∑
j µL(I j ). Thus µL extends to a C-valued

finitely additive function on the boolean algebra of closed/open subsets of Zp. We
will call such objects pseudomeasures on Zp.

Generally, there is no chance that such a pseudomeasure will tend p-adically
to zero when m →∞, even if its values lie in a finite-dimensional Q-space. As
explained in [Manin 1973], a Mazur’s p-adic integral of a function against such a
pseudomeasure typically converges not because the smaller primitive subsets have
asymptotically vanishing pseudomeasure, but because in a typical Riemann sum,
many approximately equal terms of not very large p-adic size are involved, and
the quantity of summands ≈ pm , tending to zero p-adically, produces an uncon-
ventional nonarchimedean convergence effect.

If the pseudomeasure of small subsets does not tend to zero, the best one may
hope for is that it will be bounded, i.e., its values will lie in a Z-module of finite
type. Even this usually will not happen: for example, one can suspect that

µL(pmZ)=
∑

n≡0 mod pm

ann−ρ = p−mρ
∑

n

anpm n−ρ

will have denominator of order p−mρ .
A radical way to avoid this danger is to postulate that an = 0 if n is divisible by

p. One can achieve this cheaply, if L admits an Euler product: simply discard the
p-th Euler factor of L .
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(Notice an interesting archimedean analogy: the Mellin transform 3 in (0.10)
produces L supplemented by the initially missing “Euler factor at arithmetical in-
finity”, where that phrase mean, as usual, the archimedean valuation of Q.)

Returning to L(p) := L divided by its p-factor, we may from now on look only at
the group of p-adic units Z∗p ⊂Zp by which our pseudomeasure is now supported.

We repeat, in conclusion, that the classical values (0.8) are tautologically in-
tegrals of the locally constant function κ against our pseudomeasure (0.12). (Of
course, this is why chose it in the first place.) Only when we start to interpolate
and allow, say, continuous p-adically valued multiplicative characters in place of κ
will we need the basics of such p-adic integration.

(b) Normalized p-adic pseudomeasure. Now let L be the Mellin transform of an
SL(2,Z)-cusp form of weight 2k as above. Representing the characteristic function
of the set a+ pmZ by a linear combination of the additive characters κ modulo pm ,
and calculating3κ(ρ) as in (0.4), we see thatµL(a+pmZp) is a linear combination
of modular symbols {bp−m, i∞}, b ∈ Z.

Conversely, we may take an appropriate linear combination of such measures
and obtain the one that was used in [Manin 1973; 1974], namely

µp(a+ pmZp) := ε
−m
{ap−m, i∞}k − p2k−2ε−m+1

{ap−m+1, i∞}k . (0.13)

Here ε is a root of the (inverted) p-factor of L: ε2
− apε+ p2k−1

= 0. If one of
the two roots is a p-adic unit, we get a bounded measure. In any case, its growth
can be controlled. The appearance of two summands and ε in (0.13) is a slightly
more sophisticated solution than the total discarding of the p-th Euler factor.

0.6. The ∞-adic Lévy–Mellin transform. As suggested in [Manin and Marcolli
2008], we make the following replacements in the picture sketched above.

Replace p by arithmetic infinity. Replace Z∗p by the semiinterval (0, 1].
Call the classical Farey intervals with ends (g−1(i∞), g−1(0)), g ∈ SL(2,Z),

primitive segments. They will be our replacement for the residue classes a+ pmZp.
Exactly as residue classes, two open primitive segments either do not intersect, or
one of them is contained in another. For an abelian group W , call a pseudomeasure
a W -valued finitely additive function on segments with rational ends (see additional
details below).

A typical pseudomeasure in this sense is the modular symbol itself:

µ(α, β)= {α, β}k;

in particular, µ(α,∞)= {α,∞}k , which may be compared to (0.13).
As in the p-adic case, the pseudomeasure of a small segment is not small in the

archimedean sense. However, now we cannot hope to compensate for this by the
nonarchimedean effect referred to above.
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Instead, we suggest using the following general feature of our constructions:

The Mellin transform of a cusp form, after suitable normalization, can be naturally
written as the sum over rational numbers in (0, 1] of values of a certain arithmetic
function a:

A :=
∑

β∈(0,1]∩Q

a(β). (0.14)

The values a(p/q) involved here are essentially modular symbols divided by a
power of the denominator q. For details, see Section 2.

Generally, a convergent series of the form (0.14) gives rise to an archimedean
integral in two related ways:

(i) The first construction. We can define a pseudomeasure µ= µa on the boolean
algebra generated by segments with irrational ends in [0, 1] putting

µ(α, β) :=
∑

γ∈(α,β)∩Q

a(γ) (0.15)

so that

A =
∫ 1

0
dµ. (0.16)

One can also treat (0.14) as a distribution on an appropriate space of test functions.
This is a direct analog of (0.12), however, it is not the version that we will use

in this paper.

(ii) The second construction. Let r be a function defined on pairs of positive co-
prime integers (p, q), p < q and decreasing sufficiently fast. For a real number
ξ , denote by qi (ξ) the denominator of the i-th convergent to ξ , i ≥ 0. We can
introduce the Lévy 1-form l(ξ)dξ , associated to r and defined on (0, 1

2 ] by the
prescription

l(ξ)= lr (ξ)=
∞∑

i=0

r
(
qi (ξ), qi+1(ξ)

)
. (0.17)

According to a lemma by P. Lévy, for any pair (p, q) as above, the set of all
ξ ∈ (0, 1

2 ] for which there exists i with (p, q) = (qi (ξ), qi+1(ξ)), fills a primitive
semiinterval of length 1/((p+ q)q). Moreover, this i is uniquely defined. There-
fore, when r(p, q) decreases sufficiently rapidly to assure convergence, we get∫ 1/2

0
lr (ξ)dξ =

∑
α=p/q∈(0,1]

r(p, q)
(p+ q)q

. (0.18)

In particular, we get A from (0.14) if we choose

r(p, q) := a(p/q)(p+ q)q. (0.19)
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When A comes from a modular form (classical or Maass), so that the summands
a(β) are concocted of (classical or Maass) modular symbols, we will call the in-
tegral in (0.12) the∞-adic Lévy–Mellin transform.

The Lévy functions and their generalizations appear also in a different context:
that of linearizations of the germs of analytic diffeomorphisms of one complex
variable z with an indifferent fixed point. For example, a germ with linear part
e2π iξ z is linearizable if and only if the Brjuno number of ξ ,

b(ξ) :=
∞∑

i=0

log qn+1(ξ)

qn(ξ)
, (0.20)

is finite. In fact, an interesting theory is developed/reviewed in [Marmi et al. 2001;
2006] for another Brjuno function B(ξ), which differs from b(ξ) by O(1), but
satisfies a functional equation and has a complex version closely resembling some
constructions in the theory of modular forms. In our context, it can be used for
calculation of the derivative of some classical L-series at certain points. This looks
like an interesting variation on the subject of the Lévy–Mellin transform.

0.7. A summary of p-adic/∞-adic analogies. For clarity, we summarize the sug-
gested analogies as follows:

Z∗p ⇐⇒ (0, 1]

∪ ∪

Z ⇐⇒ Q∩ (0, 1]

a+ pmZp ⇐⇒ primitive (Farey) segments
∞∑

m=1

am

mρ
⇐⇒

∑
0<p/q≤1

a(p/q)
qρ

Mazur–Mellin transform ⇐⇒ Lévy–Mellin transform

1. Pseudomeasures associated with period-like functions

1.1. A heuristic construction. For the moment, we adopt the viewpoint of [Lewis
and Zagier 2001, Chapter II, Section 5]. Fix a complex number s such that s(1−s)
is an eigenvalue of the standard hyperbolic Laplace operator on C producing a
PSL(2,Z)-invariant Maass wave form u(z)=us(z), z∈H . Define complex powers
by the usual formula t s

:= es log t where the branch of the logarithm is determined
by the normalization −π < arg t ≤ π . As shown in [Lewis and Zagier 1997], there
exists a distribution U (t) = Us(t) on R whose values on the test functions of t
given by

(Im z)s |z− t |−2s, (z− t)−2s, χ(−∞,0)(t)(z− t)−2s
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(where z enters as a parameter) are respectively u(z) (the initial Maass form),
a function f (z) holomorphic in C \ R, and a period function ψ(z) defined and
holomorphic in C′ := C \ (−∞, 0]. Here χ is the characteristic function of R−; in
other words,

ψ(z)=
∫ 0

−∞

(z− t)−2sU (t)dt. (1.1)

The distribution U is automorphic in the following sense: for all

g =
(

a b
c d

)
∈ SL(2,Z)

we have
U
(at+b

ct+d

)
= |ct + d|2−2sU (t). (1.2)

Thus, (1.1) has the same structure as (0.1).
Now consider only g ∈ SL(2,Z) with nonnegative entries. Then for any z ∈ C′

we have also gz := (az+ b)/(cz+ d) ∈ C′. From (1.2) we find formally

ψ(gz)=
∫ 0

−∞

(gz− t)−2sU (t)dt =
∫ g−1(0)

g−1(−∞)

(gz− gτ)−2sU (gτ)d(gτ). (1.3)

A direct calculation using (1.2) reduces the integrand to the form[
z− τ

(cz+ d)(cτ + d)

]−2s

|cτ + d|−2s+2U (τ )
dτ

|cτ + d|2
. (1.4)

Since a 6= 0, we have

g−1(−∞)=−
d
c
<−

b
a
= g−1(0),

and hence for τ ∈ (g−1(−∞), g−1(0)) we have cτ + d > 0. This shows that all
terms involving cτ + d in (1.4) cancel, so that finally we find formally

ψ(gz)= (cz+ d)2s
∫
−b/a

−d/c
(z− τ)−2sU (τ )dτ. (1.5)

Thus if (α, β)= (g−1(−∞), g−1(0)) with g as above, and if we put

µ(α, β)(z) := (cz+ d)−2sψ(gz)=
∫ β

α

(z− t)−2sU (t)dt, (1.6)

then for three intervals (α, β), (β, γ), (α, γ) of this type, we would have from (1.6)

µ(α, β)(z)+µ(β, γ)(z)= µ(α, γ)(z). (1.7)

As we will see, all primitive intervals in R− are of this form, so we have formally
constructed a premeasure (see below) on (the left half of) P1(R), extendable to a
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pseudomeasure on this half with values in the space of holomorphic functions on
C′, in view of [Manin and Marcolli 2008, Theorem 1.8].

The weak point of this reasoning, about which the word “formally” is supposed
to warn the reader, is this: the functions χ(α,β)(t)(z − t)−2s generally do not be-
long to the space of test functions as defined in [Lewis and Zagier 1997, p. 225].
Therefore the integrals on the right-hand sides of (1.5) and (1.6) a priori make no
sense.

Our heuristic reasoning is in fact a simple extension of the formal argument
of [Lewis and Zagier 1997, p. 222], “proving” the three-term functional equation
for ψ(z).

In the next subsections, we will provide a precise construction of the pseudo-
measures, whose values on the intervals considered above are given by

µ
(
g−1(−∞), g−1(0)

)
(z) := (cz+ d)−2sψ(gz) (1.8)

without appealing to the integral representation (1.6), but making use of the theory
developed in [Lewis and Zagier 1997].

1.2. Preliminaries: left primitive segments. We recall some notions and facts from
[Manin and Marcolli 2008]. We consider Q ⊂ R ⊂ C as points of an affine line
with a fixed coordinate z. Completing this line by one point∞=−∞= i∞, we
get points of the projective line P1(Q) ⊂ P1(R) ⊂ P1(C) (Riemannian sphere).
The group GL(2,C) acts on P1(C) by fractional linear transformations. Segments
are defined as nonempty connected subsets of P1(R). A segment is called infinite
if∞ is in its closure; otherwise it is called finite. The boundary of each segment
generally consists of an unordered pair of points (α, β) in P1(R). We will identify
a segment with the ordered pair of its ends: the additional element of structure is its
orientation from α to β. For our purposes, it is usually inessential whether one or
two boundary points belong to the segment. In this section we will consider mostly
left segments, that is, ones for which −∞≤ α and β ≤ 0. One-point segments are
sometimes called improper ones.

A segment is called rational if its ends are in P1(Q), and primitive, or Farey, if
it is of the form (g(∞), g(0)) for some g ∈ GL(2,Z).

A pseudomeasure with values in an abelian group W is a finitely additive W -
valued function on the boolean algebra of rational segments, vanishing on improper
segments. We extended it to oriented segments by the condition that µ(α, β) =
−µ(β, α).

In this section, we will construct pseudomeasures supported by left segments.
Each such pseudomeasure is defined by its restriction to the set P of positively
oriented left primitive segments. We will use the following enumeration of the
latter.
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Denote by S ⊂ SL(2,Z) the subsemigroup of matrices with nonnegative entries
a, b, c, and d . For any g ∈ S, (g−1(−∞), g−1(0)) is in P . In fact, if c 6= 0,

g−1(∞)=
d
−c

< g−1(0)= −b
a
,

because ad − bc = 1. If c = 0, then a = d = 1, and again

g−1(∞)=−∞< g−1(0)=−b.

Finally, the case a = 0 does not occur in S.
One easily sees that this map S → P: g 7→ (g−1(−∞), g−1(0)) is in fact a

bijection.

1.3. Preliminaries: the slash operators of complex weight. Here we summarize
the considerations of [Lewis and Zagier 2001, p. 240] and [Hilgert et al. 2005,
Section 3]. They determine a partial map

(ϕ, g) 7→ ϕ|s g, (1.9)

allowing us to make sense of and correctly calculate expressions such as those
appearing in (1.4) and (1.6). For proofs, see [Hilgert et al. 2005].

(i) Definition domain. The argument ϕ = ϕ(z) in (1.9) can be an arbitrary function
holomorphic in some domain of the form C\(−∞, r ], r ∈R. Such functions form
a C-algebra which we will denote F. Period functions ψ = ψs belong to F.

Hilgert et al. call any point r such that ϕ ∈ F is holomorphic in C \ (−∞, r ] a
branching point of ϕ.

The argument g in (1.9) can be any (2, 2)-matrix g =
(a

c
b
d

)
with integer entries

and nonzero determinant such that either c> 0 or else c= 0 and a, d > 0. Denote
by G the set of such matrices. The set S describing left primitive segments in
Section 1.2 is a subset of G. When g ∈ G and s ∈C, the function (cz+d)s belongs
to F.

A pair (ϕ, g)∈F×G belongs to the definition domain DS of the slash operator
(1.9) if ϕ admits a branching point r such that either a−cr > 0, or a−cr = 0 and
dr−b< 0. For a period function ϕ =ψ , we can take r = 0, and g will do if a > 0
or if a = 0 and b > 0.

Let G+ be the set of matrices in G such that b, d ≥ 0 and either a > 0, or a = 0
and b > 0. Again, S ⊂ G+. Denote by F0 the subspace of F admitting 0 as a
branch point. Then F0× G+ ⊂ DS.

(ii) Slash operator of weight s. It is the map DS→ F defined by

(ϕ(z), g) 7→ (ϕ|s g)(z) := |det g|s(cz+ d)−2sϕ(gz). (1.10)

It is well defined. Moreover, it sends F0× G+ to F0.
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(iii) Properties of the slash operator. The basic property is that slash operator is an
honest action: if g1, g2 ∈ G and (ϕ, g1), (ϕ|s g1, g2), (ϕ, g1g2) ∈ DS, then

ϕ|s(g1g2)= (ϕ|s g1)|s g2.

(Formally, it is the associativity of the triple product of ϕ, g1, g2.) Applying this to
F0×G+, one can check that |s defines a right action of the multiplicative semigroup
G+ on F0 [Hilgert et al. 2005, Remark 3.4].

From Section 1.2 one sees that if (g−1(−∞), g−1(0)) is a left primitive seg-
ment, then g ∈ G+. Since ψ ∈ F0 in the first equality of (1.6), this expression
for µ(α, β)(z) (disregarding the second equality and the poorly defined integral)
makes sense, and the slash action can be further iterated.

1.4. The premeasures related to period-like functions. Choose a complex num-
ber s and a function ψ(z) ∈ F0 satisfying the three term functional equation

ψ(z)= ψ(z+ 1)+ (z+ 1)−2sψ
( z

z+1

)
. (1.11)

Thus, ψ is a period-like function in the sense of [Lewis and Zagier 2001, Chapter
III].

For a left primitive segment (α, β)= (g−1(−∞), g−1(0)), put

µ̃(α, β)(z)= (cz+ d)−2sψ(gz)= ψ |s(z). (1.12)

Consider now the three left primitive segments (α, β) = (g−1
1 (−∞), g−1

1 (0)),
(β, γ) = (g−1

2 (−∞), g−1
2 (0)), and (α, γ) = (g−1

3 (−∞), g−1
3 (0)). In plain words,

the third segment is broken into two others by a point β in the middle.

Lemma 1.4.1. We have

µ̃(α, β)(z)+ µ̃(β, γ)(z)= µ̃(α, γ)(z). (1.13)

Proof. Case 1. (α, β, γ)= (−∞,−1, 0). In this case

g1 = T :=
( 1 1

0 1

)
, g2 = T ′ :=

( 1 0
1 1

)
, g3 = I :=

( 1 0
0 1

)
,

and (1.13) coincides with (1.11) which can be written as

ψ |s I = ψ |s T +ψ |s T ′. (1.14)

Case 2. g1 = T g, g2 = T ′g, and g3 = g, where g ∈ SL(2,Z) is a matrix with
nonnegative entries. In this case, (1.13) reads

ψ |s g = ψ |s T g+ψ |s T ′g,

which obviously holds in view of (1.14) and the associativity of the slash operator
restricted to F0× G+.
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General case. In fact, the previous case is general: we necessarily have g1 = T g3

and g2 = T ′g3.
Let us check this for the case when α 6= −∞ leaving the remaining case to

the reader. Put α = d/−c and γ = −b/a as in Section 1.2 where (a, b, c, d) are
the entries of g3. Then the only possible value of β is β = −(b+ d)/(a+ c) =
(b+ d)/−(a+ c) as is well known from the classical theory of Farey series. This
fact directly translates into g1 = T g3 and g2 = T ′g3. �

Remark. Notice that if ψ(z) is an actual period function for a Maass wave form,
the lemma becomes obvious in view of the integral representation of ψ(z) proven
in [Lewis and Zagier 2001, Chapter II, Section 1]. The relevant formula on p. 212
of that reference, with ψ1 replace by ψ and a change in sign, is

(cζ + d)−2sψ(gζ )=
∫ g−1(0)

g−1(∞)

{u, Rs
ζ }(z). (1.15)

In this formula, we integrate a closed form along an arbitrary path leaving ζ and ζ
to the right of it. Additivity (1.13) becomes evident.

We will use this integral representation in the next section.

1.4.2. The premeasure on left segments. To define a premeasure in the sense of
[Manin and Marcolli 2008], supported by the subset of left primitive segments, it
remains to complete (1.12) of the function µ̃ by putting for α < β ≤ 0

µ̃(β, α) := −µ̃(α, β), µ̃(α, α)= 0.

One easily checks that (1.13) continues to hold on this extended domain.

1.5. The pseudomeasure related to a period-like function. Now we can state the
main result of this section.

Theorem 1.5.1. There exists a unique finitely additive functionµwith values in F0

coinciding with µ̃ on left primitive segments and vanishing on all rational segments
in (0,∞).

Sketch of proof. We recall the plan of the proof of [Manin and Marcolli 2008,
Theorem 1.8]. It consists of the following steps.

(1) Using the “continued fractions trick”, we show that for any nonpositive ra-
tional (or infinite) α and β one can find a sequence of rational nonpositive
numbers α0=α, α1, . . . , αn=β such that (αi , αi+1) is a left primitive segment
for all i = 0, . . . , n−1. Such a sequence is called a primitive chain connecting
α to β.

(2) Having chosen such a primitive chain, we put
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µ(α, β) :=

n−1∑
i=0

µ̃(αi , αi+1). (1.16)

(3) The fact that (1.16) does not depend on the choice of the connecting primitive
chain is checked by proving that any two chains can be transformed one to
another by using “elementary moves” compatible with relations that hold for
µ̃. An elementary move essentially replaces a Farey interval

(a
c ,

b
d

)
by the

chain
(a

c ,
a+b
c+d

)
,
(a+b

c+d ,
b
d

)
, or vice versa.

(4) Finally, we have to check that (1.16) implies finite additivity and the sign
change after the change of orientation. This is straightforward.

1.6. Modularity. Let 0 be a subgroup of SL(2,Z) and W a left 0-module.
In [Manin and Marcolli 2008], a pseudomeasure µ with values in W is called

0-modular if for all g ∈ 0 and α, β ∈ P1(Q) we have

µ(gα, gβ)= gµ(α, β).

It was checked that such pseudomeasures correspond to parabolic 1-cocycles.
In our context, this is replaced by the following property: for all g with g−1

∈ S
and any left segment (α, β),

µ(g−1(α), g−1(β))= µ(α, β)|s g. (1.17)

In fact, it suffices to check this for left primitive segments, say

(α, β)= (h−1(−∞), h−1(0)),

in which case we have

µ
(
g−1(α), g−1(β)

)
= µ

(
(hg)−1(−∞), (hg)−1(0)

)
= ψ |s(hg)= (ψ |sh)|s g = µ(α, β)|s g.

Since the right slash action of g can be considered as the left action of g−1, we
can say that (1.17) expresses the modularity of µ with respect to the multiplicative
semigroup S−1

⊂ SL(2,Z).

2. Maass L-functions and their Mellin–Lévy transforms

2.1. Maass L-series as sums over rational numbers. Let u = us be a Maass cusp
form, which is an eigenfunction with respect to all Hecke operators

Tm :=
∑

ad=m
0<b≤d

(
a −b
0 d

)
(2.1)

acting via the slash operator of weight 0: u 7→ u|0Tm = λmu.
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Put

Lu(ρ) :=

∞∑
m=1

λm

mρ
. (2.2)

The action of the Hecke operators on u induces an action on the period func-
tions, which can be explicitly described by a nice formula, for example, as in
[Mühlenbruch 2004]. However, we will need a different expression, involving the
pseudomeasure µu , and we will start with an heuristic derivation of it, as in Section
1.1.

Let us formally apply the slash operator |−s of (1.10) to the boundary measure
U (t)dt and denote the resulting action upon the respective period function ψ by
T ∗m . In this heuristic calculation we “define” ψ by (1.1). The choice of weight −s
is motivated by the invariance property (1.2). We get

(ψ | T ∗m)(ζ ) :=
∫ 0

−∞

(ζ − t)−2s(U (t)dt |−s Tm)

=

∑
ad=m
0<b≤d

(d
a

)s
∫ 0

−∞

(ζ − t)−2sU
(at−b

d

)
d
(at−b

d

)
.

Make the change of variable τ = at−b
d

. The last integral takes the form∑
ad=m
0<b≤d

(d
a

)s
∫
−b/d

−∞

(
ζ −

dτ+b
a

)−2s
U (τ )dτ

=

∑
ad=m
0<b≤d

(d
a

)s
∫
−b/d

−∞

(dz+b
a
−

dτ+b
a

)−2s
U (τ )dτ,

where z = aζ−b
d

. The integral in the last sum can be rewritten as(a
d

)2s
∫
−b/d

−∞

(ζ − τ)−2sU (τ )dτ.

Thus, heuristically,

(ψ | T ∗m)(ζ )= (µ(−∞, 0) | T ∗m)(ζ )=
∑

ad=m
0<b≤d

(a
d

)s
µ
(
−∞,−

b
d

)(aζ−b
d

)

=

∑
ad=m
0<b≤d

µ
(
−∞,−

b
d

)∣∣∣
s

(
a −b
0 d

)
(ζ ). (2.3)

This expression is useful for our purposes because it allows us to represent the
(somewhat normalized) Dirichlet series Lu(s) as a natural sum over rational num-
bers. We will state now the respective theorem:
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Theorem 2.2. We have

ψ(z)
∞∑

m=1

λm

mρ

= ζ(ρ− s) ζ(ρ+ s)
∞∑

q=1

1
qρ

∑
0<p≤q
(p,q)=1

µ(−∞,−p/q)|s

(
1 −p
0 q

)
(z). (2.4)

Proof. Step 1. First, we have to supply an honest proof of (2.3). In [Lewis and
Zagier 2001, Chapter II, Section 2], the authors construct a differential 1-form
{u, Rs

ζ }(z) which we invoked at the end of Lemma 1.4.1. It has the following
properties:

(i) {u,Rs
ζ}(z) is a closed smooth form of z varying in the complex upper half-plane

H . It depends on the parameter ζ∈C holomorphically when z 6= ζ, ζ . Generally it
is multivalued, but a well-defined branch can be chosen on the complement in H
of a path joining ζ to ζ .

(ii) The period function ψ(ζ ), ζ ∈ H for u (up to a constant proportionality factor)
can be then written as an integral:

ψ(ζ )=

∫ 0

−∞

{u, Rs
ζ }(z) (2.5)

taken along any path in H leaving ζ to the left of it.

Now assume that u|0Tm = λmu for Tm from (2.1) and a constant λm . Then we
have from (2.5) and (2.1)

λmψ(ζ )=

∫ 0

−∞

{ ∑
ad=m
0<b≤d

u
(az−b

d

)
, Rs

ζ

}
(z). (2.6)

For each a, b, and d fixed, we first want to make the implicit argument z of Rs
ζ the

same as that of u, i.e., (az− b)/d . We have (see [Lewis and Zagier 2001, p. 211]):

Rζ (z)=
i
2
(
(z− ζ )−1

− (z− ζ )−1)
=

a
d
·

i
2

((az−b
d
−

aζ−b
d

)−1
−

(az−b
d
−

aζ−b
d

)−1
)
=

a
d

Rξ
(az−b

d

)
,

where ξ := (aζ − b)/d.
Substituting this into (2.6), we obtain

λmψ(ζ )=
∑

ad=m
0<b≤d

(a
d

)s
∫ 0

−∞

{
u
(az−b

d

)
, Rs

(aζ−b)/d

(az−b
d

)}
. (2.7)
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Considering now z 7→ (az− b)/d as a holomorphic change of variables, we infer
from [Lewis and Zagier 2001, Lemma, p. 210] that the integrand in the respective
term of (2.7) can be rewritten as

{u, Rs
(aζ−b)/d}

(az−b
d

)
.

Hence, finally,

λmψ(ζ )=
∑

ad=m
0<b≤d

(a
d

)s
∫
−b/d

−∞

{u, Rs
(aζ−b)/d}(z)

=

∑
ad=m
0<b≤d

µ(−∞,−b/d)|s

(
a −b
0 d

)
(ζ ). (2.8)

This is formula (2.3), written for u which is an eigenfunction of Tm , and its respec-
tive period function.

Step 2. Multiply (2.8) by m−ρ and sum over all m = 1, 2, . . . . Again replacing the
free variable ζ by z, to avoid confusion with Riemann’s zeta, we obtain

ψ(z)
∞∑

m=1

λm

mρ
=

∞∑
m=1

1
mρ

∑
ad=m
0<b≤d

µ(−∞,−b/d)|s

(
a −b
0 d

)
(z). (2.9)

Each matrix in (2.9) can be uniquely written in the following way:(
a −b
0 d

)
=

(
d2 −pd1

0 qd1

)
=

(
1 −p
0 q

)(
1 0
0 d1

)(
d2 0
0 1

)
, (2.10)

where m = d1d2q , di ≥ 1, and 0 < p ≤ q, (p, q) = 1. Moreover, the arbitrary
quadruple (d1, d2, p, q) satisfying these conditions produces one term in (2.9).

From (2.10) and the associativity of the slash operator (1.10) it follows that

|s

(
a −b
0 d

)
=|s

(
1 −p
0 q

)
· d−s

1 ds
2 .

Hence we can rewrite (2.9) as follows:

ψ(z)
∞∑

m=1

λm

mρ
=

∞∑
q,d1,d2=1

1

qρdρ−s
1 dρ+s

2

∑
0<p≤q
(p,q)=1

µ(−∞,−p/q)|s

(
1 −p
0 q

)
(z).

(2.11)
This last expression is seen to be equal to the right-hand side of (2.4), concluding
the proof. �
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2.3. The Lévy–Mellin transform. Now put

ru(p, q) := (p+ q)q1−ρµ(−∞,−p/q)|s

(
1 −p
0 q

)
(z) ·ψ(z)−1

and

lu(ξ) :=

∞∑
i=0

∞∑
i=0

r
(
qi (ξ), qi+1(ξ)

)
.

From (2.4) and (0.18) we get:

Corollary 2.3.1. Let u be a Maass cusp form, 1u = s(1− s)u, and u | Tm = λmu
for all m ≥ 1. Put

3u(ρ) := ζ(ρ− s)−1ζ(ρ+ s)−1
∞∑

m=1

λm

mρ
.

Then
3u(ρ)=

∫ 1/2

0
lu(ξ)dξ.

Remark 2.3.2. The class of series of the form (0.18) involving modular symbols
includes also the Eisenstein series of [Goldfeld 1999]. They certainly deserve
further study.

2.4. Hecke operators on period functions via continued fractions. Consider the
sequence of normalized convergents b/d as in [Manin and Marcolli 2008, (1.5)].
When 0< b/d < 1, it starts with

−∞=
1
0
=:

b−1

d−1
, 0= 0

1
=:

b0

d0
, . . . , b/d =

bn

dn
,

where n = n(b/d) is the length of the continued fraction expansion.
The following sequence of left primitive segments Ik = Ik(b/d) connects −∞

to −b/d . We order their ends from the left one to the right one, and put a minus
before those that should be run in the opposite direction in our chain:

I0 = (−∞, 0)=
(
−

b−1

d−1
,−

b0

d0

)
, I1 =−

(
−

b1

d1
,−

b0

d0

)
,

I2 =

(
−

b1

d1
,−

b2

d2

)
, I3 =−

(
−

b3

d3
,−

b2

d2

)
,

and generally

Ik = (−1)k
(
−

bk−εk

dk−εk

,−
bk−εk+1

dk−εk+1

)
where εk = 1 for even k and εk = 0 for odd k.

This means that
(−1)k Ik =

(
g−1

k (−∞), g−1
k (0)

)
(2.12)
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where

gk = gk,b/d =

(
dk−εk+1 bk−εk+1

dk−εk bk−εk

)
∈ S. (2.13)

Therefore, (2.8) can be rewritten as

λmψ(ζ )=
∑

ad=m
0<b≤d

(a
d

)s
n(b/d)∑

k=0

(−1)k
∫ 0

−∞

{u(gk,b/d(z)), Rs
(aζ−b)/d(gk,b/d(z))}. (2.14)

We have u(gk,b/d(z))= u(z) and

Rs
(aζ−b)/d(gk,b/d(z))=

(
dk−εk g−1

k,b/d

(aζ−b
d

)
+bk−εk

)2s
Rs

g−1
k,b/d ((aζ−b)/d)

(z). (2.15)

This follows from the formula (2.6) on [Lewis and Zagier 2001, p. 211] and (2.13).
To shorten notation, set

jk(b/d, ζ )2s
:=

(
dk−εk g−1

k,b/d

(aζ−b
d

)
+ bk−εk

)2s

. (2.16)

Then we get

λmψ(ζ )=
∑

ad=m
0<b≤d

(a
d

)s
n(b/d)∑

k=0

(−1)k jk(b/d, ζ )2s
∫ 0

−∞

{u(z), Rs
g−1

k,b/d ((aζ−b)/d)
(z)}

=

∑
ad=m
0<b≤d

(a
d

)s
n(b/d)∑

k=0

(−1)k jk(b/d, ζ )2sψ

(
g−1

k,b/d

(aζ−b
d

))
. (2.17)

In order to deduce from (2.17) a nice explicit formula for λm , as was done in
[Manin 1973] for the coefficients of the classical cusp forms, one could use an
appropriate linear functional on functions of ζ . In the classical case, it was the
highest coefficient (or the constant term) of the period polynomial.

In the Maass case, one could try to use asymptotic behaviors at 0 or∞. Other
forms of Hecke operators, as (2.18), might be useful.

2.5. Hecke operators and transfer operator. In [Mühlenbruch 2004] it is shown,
using the method of [Choie and Zagier 1993], that the Hecke operators acting on
period functions for the full modular group can be written in the nice form

T+m =
∑

a>c≥0
d>b≥0

ad−bc=m

( a b
c d

)
. (2.18)

Of course, they act on ψ(z) via |s in our notation. (Mühlenbruch denotes this slash
operator by |2s .) In particular, for m = 1 we have T+m = I .
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However, if we change the summation domain slightly, replacing a > c ≥ 0 by
a ≥ c > 0, then the equations for case m = 1 will admit the following solutions.
From ad = 1+ bc ≤ 1+ (d − 1)a it follows that a = c = 1 and d = b+ 1 ≥ 1 so
that we will get the operator

T ∗1 :=
∞∑

b=0

(
1 b
1 b+1

)
. (2.19)

This correction is not as ad hoc as it seems. In fact, if we compare it with the
Atkin–Lehner operators for the group 00(N ) and p/N ,

Up := Tp − p · id,

we will see that T ∗1 imitates the “characteristic 1” Atkin–Lehner operator corre-
sponding to the “improper prime p = 1”, with eigenvalue 1 on ψ :

Claim 2.5.1. If ψ(z) is a period function for a Maass cusp form of weight s with
Re s > 0, s 6= 1

2 , then
ψ |s T ∗1 (z)= ψ(z). (2.20)

Proof. Assume moreover that

ψτ (z) := ψ |s
( 0 1

1 0

)
(z)= εψ(z), ε =±1, (2.21)

so that ψ is even or odd. This is not a restriction because any ψ is the sum of an
even and an odd period function.

According to [Lewis and Zagier 2001, p. 255], the function

h(z) := ψ(z+ 1)= ψ |s
( 1 1

0 1

)
(z) (2.22)

satisfies the equation

εh|s

( ∞∑
n=1

( 0 1
1 n

))
(z)= h(z). (2.23)

Substituting first (2.22) into (2.23), and then (2.21) into the resulting identity, yields

ψ |s

( 0 1
1 0

)
|s

( 1 1
0 1

)
|s

( ∞∑
n=1

( 0 1
1 n

))
(z)= ψ |s

( 1 1
0 1

)
(z). (2.24)

The associativity of the slash operator and the identity( 0 1
1 0

)( 1 1
0 1

)( 0 1
1 n

)( 1 −1
0 1

)
=

( 1 n−1
0 n

)
establish (2.20). �
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2.6. The Brjuno function and derivatives of the classical L-functions. The Brjuno
function of (0.20) is defined in this context as a generalized Lévy sum

B(ξ) :=
∞∑
j=0

|p j (ξ)− q j (ξ)ξ | log
p j−1(ξ)− q j−1(ξ)ξ

q j (ξ)ξ − p j (ξ)
. (2.25)

This series diverges on a set of measure 0. Outside it converges to a measurable
function, continuous at irrational points, with period 1 [Marmi et al. 2006].

The values of derivatives of Mellin transforms of classical forms were studied by
D. Goldfeld [1995] and Diamantis [1999]. Goldfeld’s idea consisted in replacing
the log y initially appearing in the Mellin expression for the first derivative by
the logarithm of the η-function, or a combination of such, to enhance the modular
properties of the integrand. The same game can be played with the Brjuno function
in place of the η-function.

Consider a classical cusp form u(z) for SL(2, Z) of integral weight 2k =w+2
as on page 1092. Let Lu(s) be its Mellin transform.

Proposition 2.6.1. We have

L ′u(w/2+2)=C
(
−

∫ 1

0
u(iy)yw/2 B(y)dy+

∫
∞

1
u(iy)yw/2−1 B(y)dy

)
, (2.26)

where

C =
(2π)(w+4)/2

0((w+ 2)/2)
(1+ iw+2).

Proof. An easy calculation shows that B(ξ) satisfies the functional equation

B(ξ)=− log ξ + ξ B(ξ−1), ξ ∈ (0, 1). (2.27)

Therefore, we have∫
∞

0
u(iy)yw/2 log y dy

=

∫ 1

0
u(iy)yw/2

(
−B(y)+y B(y−1)

)
dy+

∫
∞

1
u(iv)vw/2

(
v−1 B(v)−B(v−1)

)
dv.

In the second summand of the second integrand, make the change of variable v =
y−1, and combine it with the first summand of the first integrand. Similarly, in the
second summand of the first integrand, make the change of variable y = v−1, and
combine it with the first summand of the second integrand. This will result in

(1+ iw+2)

(
−

∫ 1

0
u(iy)yw/2 B(y)dy+

∫
∞

1
u(iy)yw/2−1 B(y)dy

)
.

The remaining factor in C comes from the Mellin transform. �
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