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A categorical proof of the Parshin
reciprocity laws on algebraic surfaces

Denis Osipov and Xinwen Zhu

We define and study the 2-category of torsors over a Picard groupoid, a central
extension of a group by a Picard groupoid, and commutator maps in this central
extension. Using this in the context of two-dimensional local fields and two-
dimensional adèle theory we obtain the two-dimensional tame symbol and a new
proof of Parshin reciprocity laws on an algebraic surface.

1. Introduction

Let C be a projective algebraic curve over a perfect field k. The famous Weil
reciprocity law states that ∏

p∈C

Nmk(p)/k{ f, g}p = 1, (1-1)

where f, g ∈ k(C)×,

{ f, g}p = (−1)νp( f )νp(g) f νp(g)

gνp( f ) (p)

is the one-dimensional tame symbol, and k(p) is the residue field of the point p.
The product (1-1) contains only finitely many terms not equal to 1.

There is a proof of this law (and the analogous reciprocity law for residues of
rational differential forms: sum of residues equals to zero) by reduction to the case
of P1

k using the connection between tame symbols (and residues of differentials)
in extensions of local fields; see, for example, [Serre 1988, Chapters 2 and 3].

On the other hand, Tate [1968] gave a definition of the local residue of a differ-
ential form as the trace of a certain infinite-dimensional matrix. Starting from this
definition he gave an intrinsic proof of the residue formula on a projective algebraic
curve C using the fact that dimk H i (C,OC) <∞, for i = 0, 1.

Osipov was financially supported by Russian Foundation for Basic Research (grant no. 11-01-00145)
and by the Programme for the Support of Leading Scientific Schools of the Russian Federation (grant
no. NSh-4713.2010.1). Zhu’s research is supported by NSF grant under DMS-1001280.
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higher adeles, reciprocity laws.

289



290 Denis Osipov and Xinwen Zhu

The multiplicative analog of Tate’s approach, i.e., the case of the tame symbol
and the proof of Weil reciprocity law, was done later by Arbarello, De Concini
and Kac [1988]. They used the central extension of the infinite-dimensional group
GL(K ) of continuous automorphisms of K , where K = k((t)), by the group k×,
and obtained the tame symbol up to sign as the commutator of the lifting of two
elements from K× ⊂ GL(K ) to this central extension. Hence, as in Tate’s proof
mentioned above, they obtained an intrinsic proof of the Weil reciprocity law on an
algebraic curve. However, in this proof the exterior algebra of finite-dimensional
k-vector spaces was used. Therefore difficult sign conventions were used in this
paper to obtain the reciprocity law. To avoid these difficulties, Beilinson, Bloch and
Esnault [2002] used the category of graded lines instead of the category of lines.
The category of graded lines has nontrivial commutativity constraints multipliers
(−1)mn , where m, n ∈ Z are corresponding gradings. In other words, they used
the Picard groupoid of graded lines which is a nonstrictly commutative instead of
strictly commutative Picard groupoid. It was the first application of this notion of
nonstrictly commutative Picard groupoid.

Now let X be an algebraic surface over a perfect field k. For any pair x ∈ C ,
where C ⊂ X is a curve that x ∈C is a closed point, it is possible to define the ring
Kx,C such that Kx,C is isomorphic to the two-dimensional local field

k(x)((t))((s))

when x is a smooth point on C and X . If x is not a smooth point, then Kx,C is
a finite direct sum of two-dimensional local fields (see Section 5B of this paper).
For any two-dimensional local field k ′((t))((s)) one can define the two-dimensional
tame symbol of 3 variables with values in k ′×, see Section 4A and [Parshin 1975,
1984, §3]. Parshin formulated and proved the reciprocity laws for two-dimensional
tame symbols, but his proof was never published. Contrary to the one-dimensional
case, there are a lot of reciprocity laws for two-dimensional tame symbols, which
belong to two types. For the first type we fix a point on the surface and will vary
irreducible curves containing this point. For the second type we fix a projective
irreducible curve on the surface and will vary points on this curve. Parshin’s idea
for the proof, for example, of more unexpected first type of reciprocity laws, was
to use the chain of successive blowups of points on algebraic surfaces. Later, Kato
[1986, Proposition 1] generalized the reciprocity laws for excellent schemes by
using the reduction to the reciprocity law of Bass and Tate for Milnor K-groups
of some field L(t). He used them to construct an analog of the Gersten–Quillen
complex for Milnor K-theory.

In this paper, we give a generalization of Tate’s proof of the reciprocity law
on an algebraic curve to the case of two-dimensional tame symbols and obtain an
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intrinsic proof of Parshin reciprocity laws for two-dimensional tame symbols on
an algebraic surface.

To fulfill this goal, we first generalize the notion of a central extension of a
group by a commutative group and of the commutator map associated to the central
extension. More precisely, we define and study in some detail the properties of the
category of central extensions of a group G by a (nonstrictly commutative) Picard
groupoid P. Roughly speaking, an object in this category is a rule to assign every
g ∈ G a P-torsor, satisfying certain properties. For such a central extension L we
define a map CL

3 which is an analog of the commutator map. In this case when
G is abelian, this commutator map is an antisymmetric and trimultiplicative map
from G3 to the group π1(P). Let us remark that to obtain some of these properties,
we used the results of Breen [1999] on group-like monoidal 2-groupoids. We hope
these constructions will be of some independent interest.

We then apply this formalism to P = PicZ, where PicZ stands for the Picard
groupoid of graded lines. The key ingredient here is Kapranov’s [2001] graded-
determinantal theory, which associates a PicZ-torsor to every 1-Tate vector space
(a locally linearly compact vector space). This allows one to construct the central
extension Det of GL(K) by PicZ, where K is a two-dimensional local field (or
more generally, a 2-Tate vector space). It turns out that the two-dimensional tame
symbol coincides with the commutator map CDet

3 . Finally, using “semilocal” adèle
complexes on an algebraic surface we obtain that the corresponding central exten-
sion constructed by semilocal fields on the surface is the trivial one. This leads
us to a new proof of Parshin’s reciprocity laws on an algebraic surface, which is
distinct from both Parshin’s original approach as well as Kato’s.

Our approach to the reciprocity laws on the algebraic surfaces has the follow-
ing features. First, we use the nonstrictly commutative Picard groupoid, which
can be regarded as another application of this notion after [Beilinson et al. 2002].
However, unlike the one-dimensional case where one can just plays with the usual
Picard groupoid of lines (though complicated, as done in [Arbarello et al. 1988]),
the use of PicZ is essential here. This indicates that the nonstrictly commutative Pi-
card groupoid is an important and fruitful mathematical object that deserves further
attention. Also, in order to apply this notion, we develop certain constructions in
higher categories (e.g., the commutator map CL

3 ), which could be potentially useful
elsewhere. Second, as in the one-dimensional case, our approach uses a local-to-
global (in other words, factorization) principle. Since the local-to-global (factor-
ization) principle in the one-dimensional story is very important in the Langlands
program and conformal field theory, we hope our approach is just a shadow of a
whole fascinating realm of mathematics yet to be explored. Finally, our approach
can be generalized by replacing the ground field k by an Artinian ring A (and
even more general rings) and we can obtain reciprocity laws for two-dimensional
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Contou–Carrère symbols. By choosing A appropriately, this specializes to residue
formulas for algebraic surfaces.1 We will carefully discuss this in a future paper.

The paper is organized as follows. In Section 2 we describe some categorical
constructions, which we need further on. In Section 2A we recall the definition
of a Picard groupoid. In Section 2B we discuss the difference between strictly
commutative and nonstrictly commutative Picard groupoids. In Section 2C we
describe the 2-category of P-torsors, where P is a Picard groupoid. In Section 2D
we study the Picard groupoid of homomorphisms from a group G to a Picard
groupoid P and describe the “commutator” of two commuting elements from G
with values in π1(P). In Section 2E we define and study the Picard 2-groupoid
of central extensions of a group G by a Picard groupoid P. We define and study
properties of the commutator category of such a central extension, and finally study
the “commutator” of three commuting elements form G with values in π1(P). This
section may be of independent interest.

In Section 3 we recall the theory of graded-determinantal theories on Tate vector
spaces. We recall the definition and basic properties of the category of n-Tate vector
spaces in Section 3A. In Section 3B we recall the definition of determinant functor
from the exact category (Tate0, isom) to the Picard groupoid PicZ of graded lines
and the definition of graded-determinantal theory on the exact category Tate1 of
1-Tate vector spaces.

In Section 4 we apply the constructions given above to one-dimensional and
two-dimensional local fields. In Section 4A we review one-dimensional and two-
dimensional tame symbols. In Section 4B we obtain a description of the one-
dimensional (usual) tame symbol as some commutator. In Section 4C we obtain
the two-dimensional tame symbol as commutator of 3 elements in some central
extension of the group K× = k((t))((s))× by the Picard groupoid PicZ.

In Section 5 we obtain the reciprocity laws. In Section 5A we give the proof
of Weil reciprocity law using the constructions given above and adèle complexes
on a curve. In Section 5B we apply the previous results in order to obtain a proof
of Parshin’s reciprocity laws on an algebraic surface using “semilocal” adèle com-
plexes on an algebraic surface.

2. General nonsense

2A. Picard groupoid. Let P be a Picard groupoid, i.e., a symmetric monoidal
group-like groupoid. Let us recall that this means that P is a groupoid, together
with a bifunctor

+ : P×P→ P

1The generalization of Tate’s approach to the n-dimensional residue of differential forms was
done in [Beilinson 1980], but that note contains no proofs.
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and natural (functorial) isomorphisms

ax,y,z : (x + y)+ z ' x + (y+ z),

called the associativity constraints, and natural (functorial) isomorphisms

cx,y : x + y ' y+ x,

called the commutativity constraints, such that:

(i) For each x ∈ P, the functor y 7→ x + y is an equivalence.

(ii) The pentagon axiom holds, i.e., the following diagram is commutative:

(x + y)+ (z+w)

uu ))
x + (y+ (z+w))

��

((x + y)+ z)+w

��
x + ((y+ z)+w) // (x + (y+ z))+w

(2-1)

(iii) The hexagon axiom holds, i.e., the following diagram is commutative:

(x + y)+ z

ww ''
(y+ x)+ z

��

x + (y+ z)

��
y+ (x + z)

''

x + (z+ y)

ww
(x + z)+ y

(2-2)

(iv) For any x, y ∈ P, cy,x cx,y = idx+y .

A unit (e, ϕ) of P is an object e∈P together with an isomorphism ϕ : e+e' e. It
is an exercise to show that (e, ϕ) exists and is unique up to a unique isomorphism.
For any x ∈ P, there is a unique isomorphism e+ x ' x such that the following
diagram is commutative:

(e+ e)+ x //

&&

e+ (e+ x)

xx
e+ x
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and therefore x + e ' e+ x ' x . For any x ∈ P, we choose an object, denoted by
−x , together with an isomorphism φx : x + (−x)' e. The pair (−x, φx) is called
an inverse of x , and it is unique up to a unique isomorphism. We choose for each
x its inverse (−x, φx), then we have a canonical isomorphism

−(−x)' e+ (−(−x))' (x + (−x))+ (−(−x))

' x + ((−x)+ (−(−x)))' x + e ' x, (2-3)

and therefore a canonical isomorphism

(−x)+ x ' (−x)+ (−(−x))' e. (2-4)

Observe that we have another isomorphism (−x)+ x ' x + (−x) ' e using the
commutativity constraint. When the Picard groupoid P is strictly commutative
(Section 2B), these two isomorphisms are the same [Zhu 2009, Lemma 1.6], but
in general they are different.

If P1,P2 are two Picard groupoids, then Hom(P1,P2) is defined as follows.
Objects are 1-homomorphisms, i.e., functors F : P1→ P2 together with isomor-
phisms F(x+y)' F(x)+F(y) such that the following diagrams are commutative:

F((x + y)+ z) //

��

(F(x)+ F(y))+ F(z)

��
F(x + (y+ z)) // F(x)+ (F(y)+ F(z)),

F(x + y) //

��

F(x)+ F(y)

��
F(y+ x) // F(y)+ F(x).

(2-5)

Morphisms in Hom(P1,P2) are 2-isomorphisms, i.e., natural transformations

θ : F1→ F2

such that the following diagram is commutative:

F1(x + y) //

θ

��

F1(x)+ F1(y)

θ

��
F2(x + y) // F2(x)+ F2(y).

It is clear that Hom(P1,P2) has a natural structure as a Picard groupoid. Namely,

(F1+ F2)(x) := F1(x)+ F2(x),



A categorical proof of the Parshin reciprocity laws on algebraic surfaces 295

and the isomorphism (F1+F2)(x+ y)' (F1+F2)(x)+(F1+F2)(y) is the unique
one such that the following diagram is commutative:

F1(x + y)+ F2(x + y) //

��

(F1(x)+ F1(y))+ (F2(x)+ F2(y))

rr
(F1(x)+ F2(x))+ (F1(y)+ F2(y))

The associativity constraints and the commutativity constraints for Hom(P1,P2)

are clear. If P1,P2,P3 are three Picard groupoids, then Hom(P1,P2;P3) is de-
fined as Hom(P1,Hom(P2,P3)), called the Picard groupoid of bilinear homomor-
phisms from P1×P2 to P3. The Picard groupoid of trilinear homomorphisms from
P1×P2×P3 to P4 is defined similarly.

For a (small) monoidal group-like groupoid (or gr-category) C we denote by
π0(C) the group2 of isomorphism classes of objects. We denote by π1(C) the
group AutC(e), where e is the unit object of C . It follows that π1(C) is an abelian
group. If C is a Picard groupoid, then π0(C) is also an abelian group.

2B. Strictly commutative vs. nonstrictly commutative Picard groupoids. If the
commutativity constraints c further satisfy cx,x = id, then the Picard groupoid P is
called strictly commutative. It is a theorem of Deligne’s [1973] that the 2-category
of strictly commutative Picard groupoids is 2-equivalent to the 2-category of 2-
term complexes of abelian groups concentrated on degree −1 and 0, whose terms
of degree −1 are injective abelian groups.3

Example 2.1. The most famous example is P= B A, where A is an abelian group,
and B A is the category of A-torsors. The tensor products of A-torsors make B A
a strictly commutative Picard groupoid. The 2-term complex of abelian groups
that represents B A under Deligne’s theorem is any injective resolution of A[1]. If
A = k× is the group of invertible elements in a field k, then B A is also denoted
by Pic, which is the symmetric monoidal category of one-dimensional k-vector
spaces.

However, it is also important for us to consider nonstrictly commutative Picard
groupoids. The following example of a nonstrictly commutative Picard groupoid
is crucial.

Example 2.2. Let PicZ denote the category of graded lines (one-dimensional k-
vector spaces with gradings) over a base field k. An object in PicZ is a pair (`, n),
where ` is a one-dimensional k-vector space, and n is an integer. The morphism
set HomPicZ((`1, n1), (`2, n2) is empty unless n1 = n2, and in this case, it is just

2The group structure on π0(C) is induced by the monoidal structure of C .
3In fact, Deligne’s theorem holds in any topos.
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Homk(`1, `2) \ 0. Observe that as a groupoid, PicZ is not connected. In fact
π0(P)' Z. The tensor product PicZ

×PicZ
→ PicZ is given as

(`1, n1)⊗ (`2, n2) 7→ (`1⊗ `2, n1+ n2).

There is a natural associativity constraint that makes PicZ a monoidal groupoid.

Convention. For the Picard groupoids Pic and PicZ, we will often use in this
article the usual notation ⊗ for monoidal structures in these categories, although
for a general Picard groupoid we denoted it as +.

We note that the commutativity constraint in category PicZ is the interesting one.
Namely,

c`1,`2 : (`1⊗ `2, n1+ n2)' (`2⊗ `1, n2+ n1), c`1,`2(v⊗w)= (−1)n1n2w⊗ v.

Of course, there is another commutativity constraint on the category of graded
lines given by c(v ⊗ w) = w ⊗ v. Then as a Picard groupoid with this naive
commutativity constraints, it is just the strictly commutative Picard groupoid Pic×
Z. There is a natural monoidal equivalence PicZ

'Pic×Z, but this equivalence is
not symmetric monoidal (that is, it is not a 1-homomorphism of Picard groupoids).
We denote by

FPic : PicZ
→ Pic

the natural monoidal functor.
The importance of PicZ lies in the following observation. Let us make the

following convention.

Convention. For any category C we denote by (C, isom) a category with the same
objects as in the category C, and morphisms in the category (C, isom) are the
isomorphisms in the category C.

Now let Tate0 be the category of finite dimensional vector spaces over a field
k. The categories Tate0 and (Tate0, isom) are symmetric monoidal categories un-
der the direct sum. The commutativity constraints in the categories Tate0 and
(Tate0, isom) are defined in the natural way. Namely, the map cV,W : V ⊕W →
W⊕V is given by cV,W (v,w)= (w, v). Then there is a natural symmetric monoidal
functor

det : (Tate0, isom)→ PicZ, (2-6)

which assigns to every V its top exterior power and the grading dim V , the dimen-
sion of the vector space V over the field k. Observe, however, that the functor
FPic ◦ det : (Tate0, isom)→ Pic is not symmetric monoidal.



A categorical proof of the Parshin reciprocity laws on algebraic surfaces 297

It is a folklore theorem that the category of Picard groupoids (not necessarily
strictly commutative) is equivalent to the category of spectra whose only nonvan-
ishing homotopy groups are π0 and π1

4. For example, PicZ should correspond to
the truncation τ≤1K, where K is the spectra of algebraic K -theory of k.

2C. P-torsors. Let P be a Picard groupoid. Recall (see also [Beilinson et al. 2002,
Appendix A6] and [Drinfeld 2006, §5.1]) that a P-torsor L is a module category
over P, i.e., there is a bifunctor

+ : P×L→ L

together with natural isomorphisms

ax,y,v : (x + y)+ v ' x + (y+ v), x, y ∈ P, v ∈ L,

satisfying

(i) the pentagon axiom, i.e., a diagram similar to (2-1) holds;

(ii) for any x ∈P, the functor from L to L given by v 7→ x+v is an equivalence;

(iii) for any v ∈L, the functor from P to L given by x 7→ x +v is an equivalence
of categories.

It is clear that we can verify the condition (ii) of this definition only for the unit
object e of P.

For any v ∈L, there is a unique isomorphism e+ v ' v such that the following
diagram is commutative:

(e+ e)+ v //

&&

e+ (e+ v)

xx
e+ v

.

If L1,L2 are P-torsors, then HomP(L1,L2) is the category defined as follows.
Objects are 1-isomorphisms, i.e., equivalences F :L1→L2 together with isomor-
phisms λ : F(x + v)' x + F(v) such that the following diagram is commutative:

F((x + y)+ v) //

��

(x + y)+ F(v)

��
F(x + (y+ v)) // x + (y+ F(v))

(2-7)

4Indeed, consider the geometrization of the nerve of P. Then the Picard structure of P puts an
E∞-structure on this space.
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Morphisms are natural transformations θ : F1→ F2 such that the following diagram
is commutative:

F1(x + v) //

θ

��

x + F1(v)

θ

��
F2(x + v) // x + F2(v)

From these discussions it follows that all P-torsors form a 2-category, denoted
by BP. We will choose, once and for all, for any P-torsors L1,L2 and any
F in HomP(L1,L2), a quasi-inverse F−1 of F together with an isomorphism
F−1 F ' id.

Moreover, BP is a category enriched over itself. That is, for any P-torsors
L1,L2 the category HomP(L1,L2) is again a P-torsor, where an action of P on
HomP(L1,L2) is defined as follows: for any z ∈ P, v ∈ L1, F ∈ HomP(L1,L2)

we put z+F ∈HomP(L1,L2) as (z+F)(v) := z+F(v). Now the isomorphism λ

for the equivalence z+F is defined by means of the braiding maps c in P (commu-
tativity constraints from Section 2A). Then the diagram (2-7) for the equivalence
z+F follows from hexagon diagram (2-2). It is clear that this definition is extended
to the definition of a bifunctor

+ : P×HomP(L1,L2)→ HomP(L1,L2) (2-8)

such that the axioms of P-torsor are satisfied (see the beginning of this section).
We note that to prove that the category BP is enriched over itself we used the

commutativity constraints in P. The commutativity constraints will be important
also below to define the sum of two P-torsors.

The category BP furthermore forms a Picard 2-groupoid. We will not make
the definition of Picard 2-groupoids precise. (However, one refers to [Kapranov
and Voevodsky 1994; Breen 1994] for details). We will only describe the Picard
structure on BP in the way we need.

First, if L1,L2 are two P-torsors, then L1 +L2 is defined to be the category
whose objects are pairs (v,w), where v ∈ L1 and w ∈ L2. The morphisms from
(v,w) to (v′, w′) are defined as the equivalence classes of triples (x, ϕ1, ϕ2), where
x ∈ P, ϕ1 ∈ HomL1(v, x + v′) and ϕ2 ∈ HomL2(x + w,w

′), and (x, ϕ1, ϕ2) ∼

(y, φ1, φ2) if there exists a map f : x→ y such that φ1 = f (ϕ1) and ϕ2 = f (φ2).
The identity in HomL1+L2((v,w), (v,w)) and the composition

HomL1+L2((v,w), (v
′, w′))×HomL1+L2((v

′, w′), (v′′, w′′))

→ HomL1+L2((v,w), (v
′′, w′′))

are clear. (To define the composition we have to use the commutativity constraints
in BP.) So L1+L2 is a category. Define the action of P on L1+L2 by
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x + (v,w) := (x + v,w).

The natural isomorphism (x + y)+ (v,w) ' x + (y+ (v,w)) is the obvious one.
It is easy to check that L1+L2 is a P-torsor.

There is an obvious 1-isomorphism of P-torsors

A : (L1+L2)+L3 ' L1+ (L2+L3),

which is the associativity constraint. Namely, objects in (L1 +L2)+L3 and in
L1+ (L2+L3) are both canonically bijective to triples (v1, v2, v3) where vi ∈Li .
Then A is identity on objects. A morphism from (v1, v2, v3) to (w1, w2, w3) in
(L1 + L2) + L3 is of the form (x, (y, ϕ1, ϕ2), ϕ3), where x, y ∈ P, ϕ1 : v1 →

y+(x+w1), ϕ2 : y+v2→w2, ϕ3 : x+v3→w3. Then A maps (x, (y, ϕ1, ϕ2), ϕ3)

to (x + y, ϕ′1, (x, ϕ
′

2, ϕ
′

3)), where ϕ′1 : v1→ (x + y)+w1 comes from

v1
ϕ1
→ y+ (x +w1)' (y+ x)+w1 ' (x + y)+w1,

ϕ′2 : (x + y)+ v2→ x +w2 comes from

(x + y)+ v2 ' x + (y+ v2)
x+ϕ2
−→ x +w2,

and ϕ′3 : x + v3→ w3 is the same as ϕ3.
To complete the definition of A, we should specify for every x ∈P, (v1, v2, v3)∈

(L1+L2)+L3, an isomorphism λ : A(x+(v1, v2, v3))' x+A(v1, v2, v3) such that
the diagram (2-7) is commutative for F= A. It is clear that λ= id : (x+v1, v2, v3)=

(x + v1, v2, v3) will suffice for this purpose.
It is clear from definition of A that we can similarly construct a 1-morphism

A−1 of P-torsors such that the following equalities are satisfied:

A−1 A = AA−1
= id .

From above construction of the associativity constraints (1-morphisms A and
A−1) it follows that for any P-torsors L1,L2,L3,L4 the following diagram of
1-morphisms (pentagon diagram) is commutative:

(L1+L2)+ (L3+L4)

uu ))
L1+ (L2+ (L3+L4))

��

((L1+L2)+L3)+L4

��
L1+ ((L2+L3)+L4) // (L1+ (L2+L3))+L4

(2-9)

(To prove this diagram we note that this diagram is evident for objects from cat-
egory (L1 + L2)+ (L3 + L4). To verify this diagram for morphisms from this
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category one needs to make some routine calculations. The analogous reasonings
are also applied to the diagram (2-13) below.)

The following axioms are satisfied in the category BP and describe the func-
toriality of the associativity constraints. Let L1,L2,L3,L′1 be any P-torsors,
and L1 → L′1 be any 1-morphism of P-torsors, then the following diagram of
1-morphisms is commutative:

(L1+L2)+L3 //

��

(L′1+L2)+L3

��
L1+ (L2+L3) // L′1+ (L2+L3).

(2-10)

Let L1,L2,L3,L′2 be any P-torsors, and L2 → L′2 be any 1-morphism of P-
torsors, then the following diagram of 1-morphisms is commutative:

(L1+L2)+L3 //

��

(L1+L′2)+L3

��
L1+ (L2+L3) // L1+ (L

′

2+L3).

(2-11)

Let L1,L2,L3,L′3 be any P-torsors, and L3 → L′3 be any 1-morphism of P-
torsors, then the following diagram of 1-morphisms is commutative:

(L1+L2)+L3 //

��

(L1+L2)+L′3

��
L1+ (L2+L3) // L1+ (L2+L′3).

(2-12)

(In diagrams (2-10)–(2-12) the vertical arrows are the associativity constraints.)
Next we define the commutativity constraints. Recall that we have chosen for

each x ∈ P its inverse (−x, φx), and then obtained the isomorphism (2-4). This
gives an obvious 1-isomorphism

C : L1+L2 ' L2+L1.

Namely, C will map the object (v1, v2) to (v2, v1), and (x, ϕ1, ϕ2) : (v1, v2)→

(w1, w2) to (−x, ϕ′1, ϕ
′

2) : (v2, v1)→ (w2, w1), where

ϕ′1 : v2 ' e+ v2 ' (−x + x)+ v2 '−x + (x + v2)
−x+ϕ2
→ −x +w2,

ϕ′2 : −x + v1
−x+ϕ1
→ −x + (x +w1)' (−x + x)+w1 ' e+w1 ' w1.

We also define for each x ∈ P, (v1, v2) ∈ L1+L2, the isomorphism

λ : C(x + (v1, v2))= (v2, x + v1)→ x +C(v1, v2)= (x + v2, v1)
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by λ = (−x, ϕ1, ϕ2), where ϕ1 : v2 ' (−x + x)+ v2 ' −x + (x + v2) and ϕ2 :

−x + (x + v1)' (−x + x)+ v1 ' v1.
In addition, by (2-3), there is an equality of 1-morphisms C2

= id.
The commutativity constrains together with the associativity constrains satisfy

the hexagon diagram; i.e., for any P-torsors L1,L2,L3 the following diagram of
1-morphisms is commutative:

(L1+L2)+L3

uu ))
(L1+L2)+L3

��

L1+ (L2+L3)

��
L1+ (L2+L3)

))

L1+ (L2+L3)

uu
(L1+L2)+L3

(2-13)

The following axiom is satisfied in the category BP and describes the functo-
riality of the commutativity constraints. Let L1,L2,L′1 be any P-torsors, and
L1 → L′1 be any 1-morphism of P-torsors, then the following diagram of 1-
morphisms is commutative:

L1+L2 //

��

L′1+L2

��
L2+L1 // L2+L′1,

(2-14)

where the vertical arrows are the commutativity constraints.
By regarding P as a P-torsor, there is a canonical 1-isomorphism of P-torsors

P+L→ L, (x, v) 7→ x + v satisfying the associativity and commutativity con-
straints. This means that P is the unit in BP. For each L ∈ BP, we have an
object

−L := HomP(L,P),

together with a natural 1-isomorphism of P-torsors ϕL :L+(−L)'P. This object
is called an inverse of L.

For L a P-torsor, HomP(L,L) is a natural monoidal groupoid (by composition).
The natural homomorphism

Z : P→ HomP(L,L) (2-15)
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given by Z(z)= z+id5 is a 1-isomorphism of monoidal groupoids. We will fix once
and for all its inverse, i.e., we choose an 1-isomorphism of monoidal groupoids

Z−1
: HomP(L,L)→ P (2-16)

together with a 2-isomorphism Z−1
◦Z' id.

Remark 2.3. We constructed some “semistrict” version of Picard 2-groupoid, be-
cause diagrams (2-9)–(2-14) are true in BP for 1-morphisms without considera-
tion of additional 2-morphisms which involve higher coherence axioms for braided
monoidal 2-categories as in [Kapranov and Voevodsky 1994] and [Baez and Neuchl
1996]. Besides, from the equality C2

= id we obtain at one stroke that our 2-
category BP is strongly braided, i.e, the diagram (8.4.6) in [Breen 1994, p. 149]
holds. Let us mention that in loc. cit., the commutativity constraint C is denoted
by R.

2D. The case H1(BG, P). Let P be a Picard groupoid, and G be a group. Then
we define H 1(BG,P) to be the Picard groupoid of homomorphisms from G to P.
That is, the objects are monoidal functors from G to P, where G is regarded as a
discrete monoidal category (the monoidal groupoid whose objects are elements of
G and whose only morphisms are the unit morphisms of objects), and morphisms
between these monoidal functors are monoidal natural transformations. In concrete
terms, f ∈ H 1(BG,P) is a functor f : G→ P, together with isomorphisms

f (gg′)' f (g)+ f (g′)

which are compatible with the associativity constraints. The monoidal structure
on H 1(BG,P) is given by ( f + f ′)(g)= f (g)+ f (g′). The natural isomorphism
( f + f ′)(gg′)' ( f + f ′)(g)+ ( f + f ′)(g′) is the obvious one. The associativity
constraints and the commutativity constraints on H 1(BG,P) are clear. Let (e, ϕ)
be a unit of P, and e is regarded as a discrete Picard groupoid with one object.
Then f : G→ P is called trivial if it is isomorphic to G→ e→ P.

Example 2.4. If P = B A, then H 1(BG, B A) is equivalent to the category of
central extensions of G by A as Picard groupoids.

Let Z2 ⊂ G × G be the subset of commuting elements, so that if G itself is
an abelian group, then Z2 = G ×G. In general, fix g ∈ G, then Z2 ∩ (G × g) '
Z2 ∩ (g×G)' ZG(g), the centralizer of g in G.

Lemma-Definition 2.5. There is a well defined antisymmetric bimultiplicative map
Comm( f ) : Z2→ π1(P)= EndP(e).

5Recall that we constructed the bifunctor + : P×HomP(L,L)→ HomP(L,L) in (2-8).
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Proof. The definition of Comm( f ) is as follows. For g1, g2 ∈ Z2, we have

f (g1g2)' f (g1)+ f (g2)' f (g2)+ f (g1)' f (g2g1)= f (g1g2),

where the first and the third isomorphisms come from the constraints for the ho-
momorphism f , and the second isomorphism comes from the commutativity con-
straints of the Picard groupoid P. We thus obtain an element

Comm( f )(g1, g2) ∈ AutP( f (g1g2))' π1(P).

Since P is Picard, i.e., the commutativity constraints satisfy

c f (g1), f (g2) = c−1
f (g2), f (g1)

,

the map Comm is antisymmetric. One checks directly by diagram that Comm( f )
is also bimultiplicative (see the analogous diagram (2-29) below).

Here we will give another proof of bimultiplicativity whose higher categori-
cal analog we will use in the proof of Lemma-Definition 2.13. We construct the
following category H f , where objects of H f are all possible expressions

f (g1)+· · ·+ f (gk) := (· · · ( f (g1)+ f (g2))+ f (g3))+· · · )+ f (gk), where gi ∈G,

and morphisms in H f are defined as follows:

HomH f ( f (gi1)+ · · ·+ f (gik ), f (g j1)+ · · ·+ f (g jl ))

=

{
∅ if gi1 . . . gik 6= g j1 . . . g jl ,

HomP( f (gi1)+· · ·+ f (gik ), f (g j1)+· · ·+ f (g jl )) if gi1 . . . gik = g j1 . . . g jl .

The category H f is a monoidal group-like groupoid (or gr -category), where the
monoidal structure on H f is given in an obvious way by using the associativity
constraints in the category P. We have π0(H f ) = G, and H f is equivalent to the
trivial gr -category. We consider π1(P)-torsor E over Z2 which is the commutator
of H f (see [Breen 1999, §3]). The fiber of E over (g1, g2) ∈ Z2 is the set

Eg1,g2 = HomH f ( f (g1)+ f (g2), f (g2)+ f (g1)).

The π1(P)-torsor E has a natural structure of a weak biextension of Z2 by π1(P)

(see [Breen 1999, Proposition 3.1]), i.e., there are partial composition laws on
E which are compatible (see also (2-22)). Now the commutativity constraints
c f (g1), f (g2) give a section of E over Z2 which is compatible with partial composition
laws on E , i.e., “bimultiplicative”. (The compatibility of this section with the com-
position laws follows at once from the definition of the partial composition laws on
E and the hexagon diagram (2-2).) The other section of E which is compatible with
partial composition laws on E is obtained as the composition of following two mor-
phisms from definition of f : f (g1)+ f (g2)' f (g1g2)= f (g2g1)' f (g2)+ f (g1).
(The compatibility of this section with composition laws follows from diagrams



304 Denis Osipov and Xinwen Zhu

(3.10) and (1.4) of [Breen 1999], because of the compatibility of our homomor-
phism f with the associativity constraints.) Now the difference between the first
section and the second section coincides with Comm( f ), which is, thus, a bimul-
tiplicative function, because both sections are “bimultiplicative”. �

Remark 2.6. In [Breen 1999, §2] the notion of a weak biextension was intoduced
only for Z2 = B× B where B is an abelian group. Here, we generalize this notion
by allowing B to be non-commutative and by replacing B × B by Z2. But all the
axioms for partial composition laws in loc. cit. are still applicable in this setting.
The same remark applies when we talk about (2, 2)-extensions on page 308.

Remark 2.7. It is clear that if f ' f ′ in H 1(BG,P), then Comm( f )=Comm( f ′).

Remark 2.8. When P = B A, this construction reduces to the usual construction
of inverse to the commutator pairing maps for central extensions.

Corollary 2.9. One has Comm( f + f ′)= Comm( f )+Comm( f ′).

Proof. It can be easily checked directly by diagrams. See, for example, analogous
formulas and diagrams in (2-30)–(2-32) below. �

Corollary 2.10. Assume that G is abelian so that Z2 = G × G. Then Comm( f )
is trivial if and only if the 1-homomorphism f is a 1-homomorphism of Picard
groupoids. In particular, if the homomorphism f is trivial, then Comm( f ) is
trivial.

Proof. This follows from diagram (2-5). �

Together, these two corollaries can be rephrased as saying that if G is abelian,
then there is an exact sequence of Picard groupoids

1→ Hom(G,P)→ H 1(BG,P)→ Hom
(∧2G, π1(P)

)
.

2E. The case H2(BG, P). If P′ is a Picard n-groupoid, and G is a group, one
should be able to define H 1(BG,P′) as the Picard n-groupoid of homomorphisms
from G to P′. When n = 1, this is what we discussed in the previous subsection.
The next step for consideration is n = 2. Again, instead of discussing general
Picard 2-groupoids, we will focus on the case when P′ = BP, where P is a Picard
groupoid. Then one can interpret H 1(BG, BP) as the Picard groupoid6 of central
extensions of the group G by the Picard groupoid P. For this reason, we also
denote H 1(BG, BP) by H 2(BG,P).

In concrete terms, an object L in H 2(BG,P) is a rule to assign to every g ∈ G
a P-torsor Lg, and to every g, g′ an equivalence Lgg′ 'Lg+Lg′ of P-torsors, and

6As we just mentioned, it is in fact a Picard 2-groupoid.
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to every g, g′, g′′ an isomorphism between two equivalences

Lgg′g′′

''ww

��

Lgg′ +Lg′′

��

Lg +Lg′g′′

��
(Lg +Lg′)+Lg′′ // Lg + (Lg′ +Lg′′)

(2-17)

such that for every g, g′, g′′, g′′′, the natural compatibility condition holds, which
we describe below.

Remark 2.11. Our notation for the 2-arrow in diagram (2-17) is symbolic, and
is distinct from the traditional notation of 2-arrows in a 2-category, because this
2-arrow is between a pair of 1-arrows from Lgg′g′′ to Lg + (L

′
g +L′′g) and should

be written horizontally from left to right rather than vertically. This notation for
the 2-arrow will be important for us in diagram (2-28).

We define an isomorphism between two central extensions of G by P. An
isomorphism between two central extensions L,L′ is a rule which assigns to any
g a P-torsor 1-isomorphism Lg'L′g, and to any g, g′ the following 2-isomorphism

Lgg′ //

��

Lg +Lg′

��
L′gg′

// L′g +L′g′

6>

.

In addition, these assignments have to be compatible with diagram (2-17) in an
obvious way.

Now we describe the compatibility condition which we need after diagram
(2-17). If we don’t consider the associativity constraints in category BP, then the
2-arrows induced by the one in (2-17) should satisfy the compatibility condition
described by the following cube:

Lg +Lg′ +Lg′′g′′′ // Lg +Lg′ +Lg′′ +Lg′′′

Lg +Lg′g′′g′′′

77

//

OO�
�
�

Lg +Lg′g′′ +Lg′′′

55

Lgg′ +Lg′′g′′′

�
�
�

______ //______ Lgg′ +Lg′′ +Lg′′′

OO

Lgg′g′′g′′′

OO

77oooo
// Lgg′g′′ +Lg′′′

OO

55

(2-18)
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To obtain the correct compatibility diagram for 2-morphisms, we have to replace
in diagram (2-18) the arrow (an edge of cube)

Lgg′ +Lg′′ +Lg′′′ // Lg +Lg′ +Lg′′ +Lg′′′

by the following commutative diagram of 1-morphisms in the category BP

(Lgg′ +Lg′′)+Lg′′′ //

��

((Lg +Lg′)+Lg′′)+Lg′′′

��
Lgg′ + (Lg′′ +Lg′′′) // (Lg +Lg′)+ (Lg′′ +Lg′′′)

(2-19)

(where the vertical arrows are associativity constraints); we have to replace in di-
agram (2-18) the arrow (an edge of the cube)

Lg +Lg′g′′ +Lg′′′ // Lg +Lg′ +Lg′′ +Lg′′′

by the following commutative diagram of 1-morphisms in the category BP:

(Lg +Lg′g′′)+Lg′′′ //

��

(Lg + (Lg′ +Lg′′))+Lg′′′

��
Lg + (Lg′g′′ +Lg′′′) // Lg + ((Lg′ +Lg′′)+Lg′′′)

(2-20)

(where vertical arrows are associativity constraints); we have to replace in diagram
(2-18) the arrow (an edge of the cube)

Lg +Lg′ +Lg′′g′′′ // Lg +Lg′ +Lg′′ +Lg′′′

by the following commutative diagram of 1-morphisms in the category BP:

(Lg +Lg′)+Lg′′g′′′ //

��

(Lg +Lg′)+ (Lg′′ +Lg′′′)

��
Lg + (Lg′ +Lg′′g′′′) // Lg + (Lg′ + (Lg′′ +Lg′′′))

(2-21)

(where vertical arrows are associativity constraints). Besides, instead of the vertex
Lg+Lg′+Lg′′+Lg′′′ in diagram (2-18) we insert the commutative diagram which is
the modification of pentagon diagram (2-9) for Lg,Lg′,Lg′′,Lg′′′ , and this diagram
is always true in category BP. The correct compatibility diagram for 2-morphisms
from diagrams (2-17) has 15 vertices.

We note that diagrams (2-19)–(2-21) are commutative for 1-morphisms; that is,
the corresponding 2-isomorphisms equal identity morphisms. These diagrams ex-
press the “functoriality” of associativity constraints in BP and follow from axioms-
diagrams (2-10)–(2-12) in category BP.
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The trivial central extension of G by P, which we will denote by the same letter
P, is the rule that assigns to every g ∈ G the trivial P-torsor P, to every g, g′

the natural 1-isomorphism P ' P+P,7 and to every g, g′, g′′ the corresponding
natural 2-isomorphism.

Remark 2.12. A central extension L of G by P gives rise to a gr-category, L̃,
together with a short exact sequence of gr-categories in the sense of [Breen 1992,
Definition 2.1.2]

1→ P
i
→ L̃

π
→ G→ 1.

Namely, as a category, L̃=
⋃

g∈G Lg. Then the natural equivalence Lgg′'Lg+Lg′

together with the compatibility conditions endows L̃ with a gr-category structure.
The natural morphism π : L̃ → G is clearly monoidal, and one can show that
kerπ = Le is 1-isomorphic to P.

As is shown in loc. cit., such a short exact sequence endows every L̃g :=

π−1(g) = Lg with a P-bitorsor structure. This P-bitorsor structure is nothing
but the canonical P-bitorsor structure on Lg (observe that the morphism Z : P→

HomP(Lg,Lg) as in (2-15) induces a canonical P-bitorsor structure on Lg).
The upshot is that an object L in H 2(BG,P) gives rise to a categorical gener-

alization of a central extension of a group by an abelian group. This justifies our
terminology. Indeed, one can define a central extension of G by P as a short exact
sequence as above such that the induced P-bitorsor structure on each L̃g is the
canonical one induced from its left P-torsor structure. Since we do not use this
second definition, we will not make it precise.

Finally, let us define the Picard structure on H 2(BG,P). Let L and L′ be two
central extensions of G by P. Then we define the central extension L+L′ by the
following way:

(L+L′)g := Lg +L′g,

and the equivalence (L+L′)gg′ ' (L+L′)g + (L+L′)g′ as the composition of
the equivalences

(L+L′)gg′ = Lgg′ +L′gg′ ' (Lg +Lg′)+ (L
′

g +L′g′)

' (Lg +L′g)+ (Lg′ +L′g′)= (L+L′)g + (L+L′)g′ .

The corresponding 2-isomorphism for central extension L+L′ and any elements
g, g′, g′′ of G follows from diagrams (2-17) for central extensions L and L′. The
further compatibility conditions for these 2-isomorphisms hold as in diagrams
(2-18)–(2-21), since they follow at once from the corresponding diagrams for cen-
tral extensions L and L′.

7Naturality means this 1-isomorphism is the chosen quasi-inverse of the natural 1-isomorphism
P+P→ P.
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Again, let Z2 denote the subset of G×G consisting of commuting elements. We
will give a categorical analog of Lemma-Definition 2.5. For this purpose, let us first
explain some terminology. A 1-morphism f : Z2→P is called bimultiplicative if
for fixed g ∈ G, (ZG(g), g)⊂ Z2→ P and (g, ZG(g))⊂ Z2→ P are homomor-
phisms, i.e., monoidal functors from discrete monoidal categories (ZG(g), g) and
(g, ZG(g)) to P. In addition, the following diagram must be commutative (which
is the compatibility condition between these two homomorphisms):

f (g1g2, g3)+ f (g1g2, g4) // ( f (g1, g3)+ f (g2, g3))+ ( f (g1, g4)+ f (g2, g4))

'

��

f (g1g2, g3g4)

'

OO

'

��
f (g1, g3g4)+ f (g2, g3g4) // ( f (g1, g3)+ f (g1, g4))+ ( f (g2, g3)+ f (g2, g4))

(2-22)

When P= B A, a bimultiplicative 1-morphism from Z2→ B A is the same as a
weak biextension of Z2 by A as defined in [Breen 1999, §2] (see also Remark 2.6).

A 1-morphism f : Z2→ P is called antisymmetric if there is a 2-isomorphism
θ : f '− f ◦ σ , where σ is the natural flip on Z2, such that for any (g1, g2) ∈ Z2,
the following diagram is commutative:

f (g1, g2)
' // − f (g2, g1)

'

��
f (g1, g2) −(− f (g1, g2))

'oo

We need some more terminology. Following [Breen 1999, §7], we define a weak
(2, 2)-extension of Z2 by P as a rule which assigns to every (g, g′)∈ Z2 a P-torsor
E(g,g′) such that its restrictions to (g, ZG(g)) and ZG(g), g) are central extensions
of ZG(g) by P, and that the corresponding diagram (2-22) is 2-commutative (i.e.,
commutative modulo some 2-isomorphism), and these 2-isomorphisms satisfy fur-
ther compatibility conditions (see (7.1), (7.3) in loc. cit. where these compatibility
conditions are carefully spelt out).

Lemma-Definition 2.13. There is an antisymmetric bimultiplicative homomor-
phism CL

2 : Z2→ P.

Proof. As in the proof of 2.5, using the commutativity constraints C : Lg +Lg′ '

Lg′ + Lg in the category BP, one constructs the following composition of 1-
isomorphisms:

Lgg′ ' Lg +Lg′ ' Lg′ +Lg ' Lg′g = Lgg′,
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for (g, g′) ∈ Z2. In this way, we obtain a functor Z2→ HomP(Lgg′,Lgg′). Using
Z−1
: HomP(Lgg′,Lgg′)→ P (see (2-16)), we get a morphism CL

2 : Z2→ P.
We need to construct the following canonical isomorphisms

CL
2 (gg′, g′′)' CL

2 (g, g′′)+CL
2 (g
′, g′′), CL

2 (g, g′g′′)' CL
2 (g, g′)+CL

2 (g, g′′),

satisfying the natural compatibility conditions. We now construct the first isomor-
phism. The second is similar. Let Z :P→HomP(Lgg′g′′,Lgg′g′′) be the canonical
equivalence as monoidal groupoids as in (2-15). It is enough to construct a canon-
ical 2-isomorphism Z(CL

2 (gg′, g′′))' Z(CL
2 (g, g′′)+CL

2 (g
′, g′′)).

By the definition of the morphism CL
2 , there is a canonical 2-isomorphism

from 1-isomorphism Z(CL
2 (g, g′′)+CL

2 (g
′, g′′)) to the following composition of

1-isomorphisms:

Lgg′g′′ ' Lg+Lg′g′′ ' Lg+(Lg′+Lg′′)' Lg+(Lg′′+Lg′)' Lg+Lg′′g′ ' Lgg′′g′

' Lgg′′+Lg′ ' (Lg+Lg′′)+Lg′ ' (Lg′′+Lg)+Lg′ ' Lgg′′+Lg′ ' Lgg′g′′

(2-23)
By the definition of the central extension of G by P (see diagram (2-17)), there is
a canonical 2-isomorphism from the above composition of 1-isomorphisms to the
following composition of 1-isomorphisms

Lgg′g′′ ' Lg +Lg′g′′ ' Lg + (Lg′ +Lg′′)' Lg + (Lg′′ +Lg′)

' (Lg +Lg′′)+Lg′ ' (Lg′′ +Lg)+Lg′ ' Lgg′′ +Lg′ ' Lgg′g′′ . (2-24)

From the hexagon axiom for 1-morphisms in the category BP (see diagram (2-13))
we have that the 1-isomorphism which is the composition of the 1-isomorphisms
above is equal to the 1-isomorphism that is the composition of the 1-isomorphisms

Lgg′g′′ ' Lg +Lg′g′′ ' Lg + (Lg′ +Lg′′)' (Lg +Lg′)+Lg′′

' Lg′′ + (Lg +Lg′)' (Lg′′ +Lg)+Lg′ ' Lgg′′ +Lg′ ' Lgg′g′′ . (2-25)

By the “functoriality” of the commutativity constraints in the category BP (see
axiom-diagram (2-14)), the 1-isomorphism that is the composition of the 1-isomor-
phisms above is equal to the one that is the composition of the 1-isomorphisms

Lgg′g′′ ' Lg+Lg′g′′ ' Lg+(Lg′+Lg′′)' (Lg+Lg′)+Lg′′ ' Lgg′+Lg′′

' Lg′′+Lgg′ ' Lg′′+(Lg+Lg′)' (Lg′′+Lg)+Lg′ ' Lgg′′+Lg′ ' Lgg′g′′ .

(2-26)
Again, by the definition of the central extension of G by P (see diagram (2-17),
which we apply twice now), there is a canonical 2-isomorphism from the compo-
sition of 1-isomorphisms above to the composition of 1-isomorphisms

Lgg′g′′ ' Lgg′ +Lg′′ ' Lg′′ +Lgg′ ' Lgg′g′′ , (2-27)
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which is canonically isomorphic to Z(CL
2 (gg′, g′′)).

Let us write down a diagram which will represent the above 2-isomorphisms.
To simplify the notation, we will denote the 2-commutative diagram (2-17) by

Lgg′g′′

��
Lg +Lg′ +Lg′′

(2-28)

Then, the 2-isomorphism Z(CL
2 (gg′, g′′)) ' Z(CL

2 (g, g′′))+Z(CL
2 (g
′, g′′)) is

represented by the diagram

Lgg′′g′

�� Z(CL
2 (g,g

′′))

''

Lg +Lg′′ +Lg′

((vv
Lgg′g′′

Z(CL
2 (g
′,g′′))

77

+3

Z(CL
2 (gg′,g′′))

22Lg +Lg′ +Lg′′ // Lg′′ +Lg +Lg′ Lg′′gg′ks

(2-29)

To check all the compatibility conditions between these canonical isomorphisms
we generalize the proof of Lemma-Definition 2.5. We construct a 2-category HL

whose objects are objects from categories given by all expressions

Lg1 + · · ·+Lgk := (· · · (Lg1 +Lg2)+Lg3)+ · · · )+Lgk , where gi ∈ G;

the 1-morphisms in HL are defined as follows:

HomHL(Lgi1
+ · · ·+Lgik

, Lg j1
+ · · ·+Lg jl

)

=

{
∅ if gi1 . . . gik 6= g j1 . . . g jl ,

HomBP(Lgi1
+ · · ·+Lgik

, Lg j1
+ · · ·+Lg jl

) if gi1 . . . gik = g j1 . . . g jl ,

and the 2-morphisms in the 2-category HL come from the 2-morphisms of category
BP. The category HL is a monoidal group-like 2-groupoid (or a 2-gr -category),
see [Breen 1994, §8], where the monoidal structure on HL is given in an obvious
way by using the associativity constraints in the category BP and the pentagon
diagram (2-9). We have π0(HL)=G. We consider the P-torsor EL on Z2 which is
the commutator of HL. (See [Breen 1999, §8].8) The fiber of EL over (g1, g2)∈ Z2

8L. Breen assumed for simplicity in loc. cit. that the group π1 of a 2-gr-category is equal to 0.
We have π1(HL) 6= 0, but the constructions and its properties which we need remain true in our
situation.



A categorical proof of the Parshin reciprocity laws on algebraic surfaces 311

is the P-torsor
EL

g1,g2
= HomHL(Lg1 +Lg2,Lg2 +Lg1).

The P-torsor EL on Z2 has a natural structure of a weak (2, 2)-extension (see
[Breen 1999, Proposition 8.1]), i.e., there are partial composition (group) laws on
EL which are compatible (see diagrams (7.1), (7.3) in loc. cit). Now the commu-
tativity constraints C from BP give a trivialization of P-torsor EL on Z2 which
is compatible with partial composition laws on EL, i.e., “bimultiplicative”. (The
compatibility of this trivialization with composition laws follows at once from
definition of partial composition laws on EL and hexagon diagram (2-13). See
also the discussion in the end of [Breen 1999, §8] regarding the braiding structure
in HL, which gives the “bimultiplicative” trivialization of the P-torsor EL on Z2.)
The other trivialization of the P-torsor EL on Z2 which is compatible with par-
tial composition laws on EL is obtained as the composition of the following two
equivalences from definition of L:

SLg1 ,Lg2
: Lg1 +Lg2 ' Lg1g2 = Lg2g1 ' Lg2 +Lg1 .

Now the difference between the first trivialization and the second trivialization
of the P-torsor EL on Z2 coincides with CL

2 , which is, thus, a bimultiplicative
homomorphism, because both trivializations are “bimultiplicative”.

We have shown that CL
2 : Z2→P is a bimultiplicative 1-morphism. One readily

checks from the above constructions that this is antisymmetric from Z2 to P, since
C2
= id. �

Remark 2.14. If P = B A, then the construction of CL
2 given above is equiva-

lent to the construction of the commutator category of the central extension −L

introduced in [Deligne 1991].

We also have the following categorical analog of Corollary 2.9. First, let us
remark that if f1, f2 : Z2→ P are two bimultiplicative homomorphisms, one can
define f1+ f2, which is again a bimultiplicative homomorphism, in the same way
as defining the Picard structure on H 1(BG,P).

Lemma 2.15. For any two central extensions L and L′ of G by P there is a nat-
ural bimultiplicative 2-isomorphism (i.e., it respects the bimultiplicative structure)
between bimultiplicative 1-morphisms CL+L′

2 and CL
2 +CL′

2 .

Proof. Recall that we have the following canonical 1-isomorphism

Z : P→ Hom(Lgg′ +L′gg′,Lgg′ +L′gg′).

We construct a canonical isomorphism

Z(CL+L′

2 (g, g′))' Z(CL
2 (g, g′)+CL′

2 (g, g′))
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for any (g, g′) ∈ Z2 as follows. By definition, Z(CL+L′

2 (g, g′)) is canonically
2-isomorphic to the composition of 1-morphisms

(L+L′)gg′=Lgg′+L′gg′' (Lg+Lg′)+(L
′

g+L′g′)' (Lg+L′g)+(Lg′+L′g′)

= (L+L′)g+(L+L′)g′' (L+L′)g′+(L+L′)g' (Lg′+L′g′)+(Lg+L′g)

' (Lg′+Lg)+(L
′

g′+L′g)' Lg′g+L′g′g = (L+L′)g′g = (L+L′)gg′ . (2-30)

Using the functoriality of commutativity constraints, i.e., applying diagram (2-14)
twice, and using the following commutative diagram (which is written without
associativity constraints)

Lg +Lg′ +L′g +L′g′

uu ))
Lg +Lg′ +L′g′ +L′g

�� ,,

Lg +L′g +Lg′ +L′g′

��

oo

Lg′ +Lg +L′g′ +L′g Lg′ +L′g′ +Lg +L′goo

(2-31)

(to obtain the correct diagram we have to replace every triangle in this diagram by
a hexagon coming from (2-13)), we obtain that the composition of 1-morphisms
in (2-30) is equal to the composition of 1-morphisms

Lgg′ +L′gg′ ' (Lg +Lg′)+ (L
′

g +L′g′)

' (Lg′ +Lg)+ (L
′

g′ +L′g)' Lg′g +L′g′g = Lgg′ +L′gg′ , (2-32)

which is, by definition, 2-isomorphic to Z(CL
2 (g, g′)+CL′

2 (g, g′)).
To complete the proof, we need to show that the diagram

CL+L′

2 (g,g′′)+CL+L′

2 (g′,g′′) // (CL
2 (g,g

′′)+CL′

2 (g,g
′′))+(CL

2 (g
′,g′′)+CL′

2 (g
′,g′′))

��

CL+L′

2 (gg′,g′′)

OO

��
CL

2 (gg′,g′′)+CL′

2 (gg′,g′′) // (CL
2 (g,g

′′)+CL
2 (g

′,g′′))+(CL′

2 (g,g
′′)+CL′

2 (g
′,g′′))

(2-33)

and a similar diagram involving CL+L′

2 (g, g′g′′) are commutative. To prove this,
let us recall that the 2-isomorphism CL

2 (gg′, g′′) ' CL
2 (g, g′′)+CL

2 (g
′, g′′) is the

composition of the 2-isomorphisms

Z(CL
2 (g, g′′)+CL

2 (g
′, g′′))→ (2-23)→ (2-24)→· · ·→ (2-27)→Z(CL

2 (gg′, g′′)).
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Let us denote the 1-isomorphism (2-23) for L (resp. L′, resp. L+L′) as (2-23)L
(resp. (2-23)L′ , resp. (2-23)L+L′) and etc. Then it is readily checked that there
exists a canonical 2-isomorphism

(2-23)L+ (2-23)L′ ' (2-23)L+L′

between corresponding 1-isomorphisms Lgg′g′′ + L′gg′g′′ → Lgg′g′′ + Lgg′g′′ , and
canonical 2-isomorphisms for (2-24)–(2-27) such that the diagram

(2-23)L+ (2-23)L′ //

��

(2-23)L+L′

��
(2-24)L+ (2-24)L′ // (2-24)L+L′

and similar diagrams for (2-24)–(2-27) commute. In addition, the following dia-
grams commute:

Z(CL+L′

2 (g, g′′)+CL+L′

2 (g′, g′′)) //

��

Z
(
(CL

2 (g, g′′)+CL
2 (g

′, g′′))
+(CL′

2 (g, g′′)+CL′

2 (g
′, g′′))

)
��

(2-23)L+L′
// (2-23)L+ (2-23)L′

Z(CL+L′

2 (gg′, g′′)) // Z(CL
2 (gg′, g′′)+CL′

2 (gg′, g′′))

(2-27)L+L′
//

OO

(2-27)L+ (2-27)L′

OO

These facts together imply the commutativity of diagram (2-33). �

Fix g ∈G, the induced map ZG(g)→P given by g′ 7→CL
2 (g, g′) is denoted by

CL
g . The bimultiplicativity of CL

2 implies that CL
g is an object in H 1(B ZG(g),P).

It is easy to see from the definition the following lemma:

Lemma 2.16. (i) If two central extensions L and L′ of G by P are isomorphic
in H 2(BG,P), then for any g the induced two homomorphisms CL

g and CL′
g

are isomorphic in H 1(B ZG(g),P).

(ii) CP
g is the trivial homomorphism for any g ∈ G.

Let Z3 ⊂ G×G×G be the subset of pairwise commuting elements.

Proposition 2.17. The map
CL

3 : Z3→ π1(P)

defined by
CL

3 (g, g′, g′′) := Comm(CL
g )(g

′, g′′).

is an antisymmetric trimultiplicative homomorphism from Z3 to π1(P).
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Proof. We check the trimultiplicativity of the map CL
3 . The multiplicativity of this

map with respect to g′ or g′′ follows from Lemma-Definition 2.5. Multiplicativity
with respect to g follows from Lemma-Definition 2.13 and Corollary 2.9.

The hard part now is to prove that the map CL
3 is antisymmetric. Let us write

C2 instead of CL
2 , and C3 instead of CL

3 for simplicity. Let (g, g′, g′′) ∈ Z3. First
of all, let us observe that by definition, there is a canonical isomorphism

C2(g, g′g′′)+C2(g′, g′′)' C2(g′, g′′)+C2(g, g′′g′) (2-34)

induced by the 2-commutative diagram

Lgg′g′′ //

Z(C2(g,g′g′′))
++

Z(C2(g′,g′′))

��

Lg +Lg′g′′ //

��

Lg′g′′ +Lg //

��

Lgg′g′′

Z(C2(g′,g′′))

��

Lg + (Lg′ +Lg′′) //

��

(Lg′ +Lg′′)+Lg

��
Lg + (Lg′′ +Lg′) //

��

(Lg′′ +Lg′)+Lg

��
Lgg′′g′ //

Z(C2(g,g′′g′))

33Lg +Lg′′g′ // Lg′g′′ +Lg // Lgg′′g′

The following lemma can be checked using the definition of BP.

Lemma 2.18. The isomorphism (2-34) is the same as the commutativity constraint
in P.

Now, there are two isomorphisms between (C2(g, g′)+C2(g, g′′))+C2(g′, g′′)
and C2(g′, g′′) + (C2(g, g′′) + C2(g, g′)). Namely, the first isomorphism is ob-
tained by the associativity and commutativity constraints in P. (Recall that such
isomorphism is unique by Mac Lane’s coherence theorem for Picard category.)
The second isomorphism is

(C2(g, g′)+C2(g, g′′))+C2(g′, g′′)' C2(g, g′g′′)+C2(g′, g′′)
(2-34)
'

C2(g′, g′′)+C2(g, g′′g′)' C2(g′, g′′)+ (C2(g, g′′)+C2(g, g′)). (2-35)

By the lemma, the difference between these two isomorphisms is C3(g, g′, g′′).
If we recall the definition of C2(g, g′g′′)'C2(g, g′)+C2(g, g′′) by (2-29), we see
that the isomorphism (2-35) can be represented by the diagram



A categorical proof of the Parshin reciprocity laws on algebraic surfaces 315

Lg′gg′′
Z(C2(g,g′′)) //

"*

Lg′g′′g

Z(C2(g′,g′′))

��

t|
Lg′+Lg+Lg′′ // Lg′+Lg′′+Lg

&&
Lgg′g′′ +3

Z(C2(g,g′))

DD

Z(C2(g′,g′′))

��

Lg+Lg′+Lg′′

88

&&

Lg′′+Lg′+Lg Lg′′g′gks

Lg+Lg′′+Lg′ // Lg′′+Lg+Lg′

88

Lgg′′g′

4<

Z(C2(g,g′′))
// Lg′′gg′

bj Z(C2(g,g′))

DD

This diagram clearly implies that C3(g, g′, g′′) = C3(g′, g′′, g). This, together
with the fact that C3(g, g′, g′′)=−C3(g, g′′, g′) (because the map Comm(CL

g ) is
antisymmetric), implies that C3 is antisymmetric. �

Corollary 2.19. (i) If two central extensions L and L′ of G by P are isomorphic
in H 2(BG,P), then CL

3 = CL′

3 .

(ii) CP
3 is trivial.

Corollary 2.20. For any two central extensions L and L′ of G by P we have

CL+L′

3 = CL
3 +CL′

3 .

Proof. This follows from Lemma 2.15, Corollary 2.9 and the definition of C3. �

Remark 2.21. If P = B A, where A is an abelian group, then a central extension
L of a group G by the Picard groupoid P is a gr -category such that these gr -
categories are classified by the group H 3(G, A)with the trivial G-module A. In this
case the map CL

3 coincides with the symmetrization of corresponding 3-cocycle;
see [Breen 1999, §4]. (This follows from Remarks 2.14, 2.8 and [Osipov 2003,
Proposition 10].)

3. Tate vector spaces

3A. The category of Tate vector spaces. We first review the definition of Tate
vector spaces, following [Osipov 2007; Arkhipov and Kremnizer 2010]. Let us fix
a base field k.

Recall that Beilinson [1987] associates to an exact category E in the sense of
[Quillen 1973] another exact category lim

←→
E, which is again an exact category. In

nowadays terminology, this is the category of locally compact objects of E.
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For an exact category E, let Ê denote the category of left exact additive con-
travariant functors from the category E to the category of abelian groups. This
is again an exact category (in fact an abelian category), in which arbitrary small
colimits exist. The Yoneda embedding h : E → Ê is exact. Then the category
Ind(E) of (strict) ind-objects of E, is the full subcategory of Ê consisting of objects
of the form lim

−→i∈I
h(X i ), where I is a filtered small category, and X i ∈E, such that

for i→ j in I , the map X i → X j is an admissible monomorphism. This category
is a natural exact category. Likewise, one can define Pro(E) as Ind(Eop)op.

Definition 3.1. Let E be an exact category. Then lim
←→

E is the full subcategory of
Pro(Ind(E)) consisting of objects that can be represented as

lim
←−

i∈I op

lim
−→
j∈I

h(X i j )

such that, for any i→ i ′, j → j ′, the following diagram is cartesian (which auto-
matically makes it cocartesian).

X i j //

��

X i j ′

��
X i ′ j // X i ′ j ′

One can show that lim
←→

E is an exact category and the embedding lim
←→

E →

Pro(Ind(E)) is exact. Further, there is a natural embedding lim
←→

E→ Ind(Pro(E))
which is again exact. It is clear that the natural embedding Ind(E)→ Pro(Ind(E))
lands in lim

←→
E, and similarly the natural embedding Pro(E)→ Ind(Pro(E)) lands

in lim
←→

E.

Definition 3.2. Define Tate0 to be the category of finite dimensional vector spaces,
together with its canonical exact category structure. Define Taten = lim

←→
Taten−1,

together with the canonical exact category structure given by Beilinson.

There is a canonical forgetful functor Fn : Taten→Top, where Top denotes the
category of topological vector spaces. As is shown in [Osipov 2007], the functor
is fully faithful when n = 1, but this is in general not the case when n > 1.

Definition 3.3. Let V be an object of Taten . A lattice L of V is an object in Taten

which actually belongs to Pro(Taten−1), together with an admissible monomor-
phism L → V such that the object V/L belongs to Ind(Taten−1). A colattice Lc

of V is an object in Taten which actually belongs to Ind(Taten−1), together with
an addmissible monomorphism Lc

→ V such that the object V/Lc belongs to
Pro(Taten−1).
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It is clear that if L is a lattice of V and Lc is a colattice, then L ∩ Lc belongs to
Taten−1.

The main players of this paper are Tate1 and Tate2. The category Tate1 is just
the category of locally linearly compact k-vector spaces. A typical object in Tate1

is the field of formal Laurent series k((t)), that is, the field of fractions of the ring
k[[t]]. The field k((t)) is equipped with the standard topology, where the base of
neighborhoods of zero consists of integer powers of the maximal ideal of k[[t]].
The subspace k[[t]] is a lattice in k((t)) and k[t−1

] is a colattice. Observe that
k[t] ⊂ k((t)) is neither a lattice nor a colattice, because the subspace k[t] is not
closed in the topological space k((t)). Therefore the embedding k[t] ↪→ k((t)) is not
an admissible monomorphism, since any admissible (exact) triple in the category
Tate1 is of the form

0−→ V1 −→ V2 −→ V3 −→ 0,

where the locally linearly compact vector space V1 is a closed vector subspace in
a locally linearly compact vector space V2, and the locally linearly compact vector
space V3 has the quotient topology on the quotient vector space.

A typical object in Tate2 is k((t))((s)), since

k((t))((s))= lim
←−
l∈Z

lim
−→
m≤l

smk((t))[[s]] / slk((t))[[s]] = lim
−→
m∈Z

lim
←−
l≥m

smk((t))[[s]] / slk((t))[[s]],

and smk((t))[[s]] / slk((t))[[s]] is a locally linearly compact k-vector space.
The k-space k((t))[[s]] is a lattice, and the k-space k((t))[s−1

] is a colattice in
the k-space k((t))((s)). As just mentioned above, it is not enough to regard them as
topological vector spaces. On the other hand k[[t]]((s)) is not a lattice in k((t))((s))
although the natural map k[[t]]((s))→ k((t))((s)) is an admissible monomorphism.

Remark 3.4. The category Taten coincides with the category of complete Cn-
spaces from [Osipov 2007].

3B. Determinant theories of Tate vector spaces. We consider Tate0 as an exact
category. Then det : (Tate0, isom)→ PicZ (see (2-6)) is a functor satisfying the
following additional property: for each injective homomorphism V1 → V in the
category Tate0, there is a canonical isomorphism

det(V1)⊗ det(V/V1)' det(V ), (3-1)

such that:
(i) for V1 = 0 (resp. V1 = V ), equality (3-1) is the same as

`0⊗ det(V )' det(V ) (3-2)

resp.
det(V )⊗ `0 ' det(V ), (3-3)
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where `0 is the trivial k-line of degree zero.
(ii) For any diagram

0 // U1 //

'

��

U //

'

��

U/U1 //

'

��

0

0 // V1 // V // V/V1 // 0,

(3-4)

the following diagram is commutative:

det(U1)⊗ det(U/U1) //

��

det(U )

��
det(V1)⊗ det(V/V1) // det(V ).

(3-5)

(iii) For any diagram

0

��

0

��

0

��
0 // U1 //

��

V1 //

��

W1 //

��

0

0 // U //

��

V //

��

W //

��

0

0 // U/U1 //

��

V/V1 //

��

W/W1 //

��

0

0 0 0 ,

(3-6)

the following diagram is commutative:

(det(U1)⊗ det(U/U1))⊗ (det(W1)⊗ det(W/W1)) //

ass. and comm. constraints
��

det(U )⊗ det(W )

��

(det(U1)⊗ det(W1))⊗ (det(U/U1)⊗ det(W/W1))

��
det(V1)⊗ det(V/V1) // det(V )

(3-7)

Definition 3.5. Let P be a Picard groupoid. A determinant functor from the cat-
egory (Tate0, isom) to P is a functor D : (Tate0, isom) → P together with iso-
morphisms (3-1) satisfying equalities and diagrams (3-2)–(3-7), where we have to
change the notation det to D everywhere in these formulas.
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The next proposition is obvious.

Proposition 3.6. Let D : (Tate0, isom)→ P be a determinant functor. Then there
is a 1-homomorphism of Picard groupoids D̃ : PicZ

→ P and a monoidal natural
transformation ε : D̃ ◦ det ' D. Furthermore, the pair (D̃, ε) is unique up to a
unique isomorphism.

Remark 3.7. All the above discussions are valid when one replaces k by a noether-
ian commutative ring A, and replaces Tate0 by the category of finitely generated
projective A-modules.

Next we turn to Tate1. The following result is fundamental and is due to Kapra-
nov [2001] (but see also [Drinfeld 2006, §5.1–5.3]).

Proposition 3.8. There is a natural functor

Det : (Tate1, isom)→ BPicZ,

and for each admissible monomorphism V1→ V there is a 1-isomorphism

Det(V1)+Det(V/V1)→ Det(V) (3-8)

that coincides with the canonical 1-isomorphism P+Det (V)'Det (V) if V1 = 0
and with the canonical 1-isomorphism Det (V)+P' Det (V) if V1 = V.

For each admissible diagram (3-4) of 1-Tate vector spaces, the corresponding
diagram (3-5) is commutative. For each admissible diagram (3-6) of 1-Tate vector
spaces, there is a 2-isomorphism for the corresponding diagram (3-7).

Remark 3.9. Under conditions of Proposition 3.8, the 2-isomorphisms which ap-
pear from diagram (3-7) satisfy further compatibility conditions.

Proof. We recall the definition of a graded-determinantal theory 1 on a 1-Tate
vector space V. This is a rule that assign to every lattice L ⊂ V an object 1(L)
from PicZ and to every lattices L1 ⊂ L2 ⊂ V an isomorphism

1L1,L2 : 1(L1)⊗ det(L2/L1)−→1(L2)

such that for any three lattices L1 ⊂ L2 ⊂ L3 ⊂ V the following diagram is com-
mutative:

1(L1)⊗ det(L2/L1)⊗ det(L3/L2) //

��

1(L1)⊗ det(L3/L1)

��
1(L2)⊗ det(L3/L2) // 1(L3).

Let Det (V) be the category of graded-determinantal theories on V. This is a PicZ-
torsor, where for any x ∈ PicZ, 1 ∈ Det (V), we have (x +1)(L) := x ⊗1(L).
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Now for an admissible (exact) sequence

0−→ V1 −→ V
ε
−→ V/V1 −→ 0

the 1-isomorphism (3-8) is constructed as

1(L) :=11(L ∩V1)⊗12(ε(L)),

where L is a lattice in V, 11 ∈Det (V1), 12 ∈Det (V/V1), 1∈Det (V). (We used
that the k-space L ∩V1 is a lattice in the 1-Tate vector space V1, and the k-space
ε(L) is a lattice in the 1-Tate vector space V3).

We note that, by construction, V 7→Det (V) is naturally a contravariant functor
from the category (Tate1, isom) to the category BPicZ. To obtain the covariant
functor we have to inverse arrows in the category (Tate1, isom). �

4. Applications to the case G = GL(k((t))) and GL(k((t))((s)))

4A. Tame symbols. Let us first review the tame symbols. Recall that if K is a
field with discrete valuation ν : K×→ Z, and k denote its residue field, then there
are so-called boundary maps for any i ∈ N

∂i : K M
i (K )−→ K M

i−1(k),

where K M
i (F) denotes the i-th Milnor K-group of a field F . Recall also that for

a field F , the i-th Milnor K-group K M
i (F) is the quotient of the abelian group

F×⊗Z F×⊗Z · · ·⊗Z F× modulo the so-called Steinberg relations. Then the tame
symbol is defined as the composition of the maps

{ · , · } : K×⊗Z K× −→ K M
2 (K )

∂2
−→ K M

1 (k)' k×.

Explicitly, let π ⊂ K be the maximal ideal. Then

{ f, g} = (−1)ν( f )ν(g) f ν(g)

gν( f ) mod π (4-1)

Now, let K be a two-dimensional local field, whose residue field is denoted by
K , whose residue field is k. Then we define the map

νK : K×⊗Z K× −→ K M
2 (K)

∂2
−→ K M

1 (K )
∂1
−→ K M

0 (k)' Z,

and define the two-dimensional tame symbol as

{ · , · , · } : K×⊗Z K×⊗Z K× −→ K M
3 (K)

∂3
−→ K M

2 (K )
∂2
−→ K M

1 (k)' k×.

We have the following explicit formulas for νK and { · , · , · } (see [Osipov 2003]).
Let ν1 : K→ Z, and ν2 : K → Z be discrete valuations. Let πK be the maximal
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ideal of K, πK be the maximal ideal of K . For an element f ∈ OK, let f̄ denote its
residue class in K . Then

νK( f, g)= ν2

(
f ν1(g)

gν1( f )

)
(4-2)

and

{ f, g, h} = sgn( f, g, h) f νK(g,h)gνK(h, f )hνK( f,g) mod πK mod πK (4-3)

where
sgn( f, g, h)= (−1)A, (4-4)

with

A = νK( f, g)νK( f, h)+ νK(g, h)νK(g, f )+ νK(h, f )νK(h, g)

+ νK( f, g)νK(g, h)νK(h, f ).

Remark 4.1. Originally one used another explicit formula for the sign of the two-
dimensional tame symbol. This other formula was introduced in [Parshin 1975].

It is easy to see that tame symbols { · , · }, { · , · , · } and the map νK are antisym-
metric.

4B. The one-dimensional story. Let V be a 1-Tate vector space over k. The group
of automorphisms of V in this category is denoted by GL(V).

Proposition 4.2. There is a homomorphism DetV :GL(V)→PicZ, which is canon-
ical up to a unique isomorphism in H 1(BGL(V),PicZ).

Proof. According to Proposition 3.8, we have a homomorphism

GL(V)→ HomPicZ(Det (V),Det (V))' PicZ

via Z−1, where Z :PicZ
→HomPicZ(Det (V),Det (V)) is a natural homomorphism

from Section 2C. �

Choose L ⊂ V a lattice. It follows from the proof of Proposition 3.8 that in
concrete terms, one has to assign to DetV(g) the graded line

det(L | gL) := det
(

gL

L∩ gL

)
⊗ det

(
L

L∩ gL

)−1

, (4-5)

where g ∈ GL(V). Then, it is well-known that there is a canonical isomorphism

det(L | gg′L)' det(L|gL)⊗ det(gL | gg′L)' det(L | gL)⊗ det(L | g′L),

which is compatible with the associativity constraints in the category PicZ (see,
for example, [Frenkel and Zhu 2008, §1]). For different choice of L, the resulting
objects in H 1(BGL(V),PicZ) are isomorphic.
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We also have the following lemma, which easily follows from the construction
of homomorphism DetV and the discussion in Section 3B (in particular the diagram
(3-7)).

Lemma 4.3. If 0→V′→V→V′′→ 0 is a short exact sequence of 1-Tate vector
spaces (recall that Tate1 is an exact category). Let P be the subgroup of GL(V) that
preserves this sequence, then there is a canonical 1-isomorphism DetV′+DetV′′ '
DetV in H 1(B P,PicZ).

Remark 4.4. The 1-homomorphism FPic ◦ DetV : GL(V) → Pic is essentially
constructed in [Arbarello et al. 1988]. However, the above lemma does not hold for
this 1-homomorphism. This is the complication of the sign issues in that reference.

Now let k ′/k be a finite extension and K = k ′((t)) be a local field with residue
field k ′. Then K has a natural structure as a 1-Tate vector space over k. Let H =
K×. The multiplication gives a natural embedding H ⊂ GL(K ). The following
proposition is from [Beilinson et al. 2002].

Proposition 4.5. If f, g ∈ H , then

Comm(DetK )( f, g)= Nmk′/k{ f, g}−1

that is inverse to the tame symbol of f and g.

Remark 4.6. Since the natural functor FPic is monoidal, the restriction to H of
the functor FPic ◦DetK determines a homomorphism H → Pic. The commutator
pairing Comm( f, g) constructed by this homomorphism is

(−1)ord( f ) ord(g) Nmk′/k{ f, g}−1.

By Definition 3.3, a lattice L of V is a linearly compact open k-subspace of V

such that V/L is a discrete k-space. A colattice Lc is a k-subspace of V such that
for any lattice L, both Lc

∩L and V/(Lc
+L) are finite dimensional.

Lemma 4.7. Let P ⊂ GL(V) be a subgroup of GL(V) that preserves a lattice (or
a colattice) in V, then the homomorphism DetV is trivial on P.

Proof. Let L ⊂ V be a lattice such that the group P preserves it. We consider an
exact sequence of 1-Tate vector spaces

0−→ L−→ V−→ V/L−→ 0.

Then the group P preserves this sequence. Therefore by Lemma 4.3, it is enough
to prove that the homomorphisms DetL and DetL/V are trivial on P . But this is
obvious from the proof of Proposition 4.2.

For a colattice Lc
⊂ V we have to use the analogous reasonings. �
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4C. The two-dimensional story. If V∈Tate2, then we denote by GL(V) the group
of automorphisms of V in this category.

There should be a determinantal functor from (Tate2, isom) to B2PicZ, which
assigns to every such V the graded gerbal theory in the sense of [Arkhipov and
Kremnizer 2010], satisfying properties generalizing those listed in Proposition 3.8
(and further compatibility conditions). We do not make it precise. But we define
the corresponding central extension of GL(V) as follows. Pick a lattice L of V.
Then one associates with g the PicZ-torsor

DetV(g)= Det(L | gL) := Det
(

gL

L∩ gL

)
−Det

(
L

L∩ gL

)
. (4-6)

This definition is correct because both k-spaces gL

L∩gL
and L

L∩gL
belong to objects

of category Tate1. We define the 1-isomorphism as

Det(L | gg′L)'Det(L | gL)+Det(gL | gg′L)'Det(L | gL)+Det(L | g′L). (4-7)

One uses Proposition 3.8 to check that this defines a central extension of GL(V) by
PicZ. This central extension depends on the chosen lattice L of V. If we change the
lattice, then the central extension constructed by a new lattice will be isomorphic
to the previous one.

Remark 4.8. If one replaces PicZ by Pic, such a central extension was constructed
in [Osipov 2003; Frenkel and Zhu 2008]. In the first of these references the two-
dimensional tame symbol up to sign was obtained as an application of this con-
struction, and the reciprocity laws on algebraic surfaces were proved up to sign.

As generalization of Lemma 4.3 and Lemma 4.7 it is not difficult to prove the
following lemmas.

Lemma 4.9. If 0→ V′→ V→ V′′→ 0 is a short exact sequence of 2-Tate vector
spaces (recall that Tate2 is an exact category). Let P be the subgroup of GL(V) that
preserves this sequence, then there is a canonical 1-isomorphism DetV′ +DetV′′ '
DetV in H 2(B P,PicZ).

Lemma 4.10. Let P be subgroup of GL(V) which preserves a lattice or a colattice
in V, then the central extension restricted to P can be trivialized.

Let k ′/k be a finite field extension, and K = k ′((t))((s)) be a two-dimensional
local field. Then K has a natural structure as a 2-Tate vector space over k. The
group H =K× acts on K by left multiplications, which gives rise to an embedding
H → GL(K).

Theorem 4.11. For f, g, h ∈ H , one has

CDet
3 ( f, g, h)= Nmk′/k{ f, g, h},
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where the map CDet
3 is constructed in Proposition 2.17 and { · , · , · } is the two-

dimensional tame symbol.

In what follows, we will denote the bimultiplicative homomorphism CDet
2 by C2,

the homomorphism CDet
g by Cg and the map CDet

3 by C3.

Proof. Since both maps C3 and Nmk′/k{ · , · , · } are antisymmetric and trimultipli-
cative, we just need to consider the following cases: (i) f, g, h ∈ O×K; (ii) f, g ∈
O×K, h = s; (iii) f ∈ O×K, g = h = s; (iv) f = g = h = s. Here OK = k ′((t))[[s]] is the
ring of integers of the field K, which is also a lattice in K. We will fix L= OK.

In Case (i), both C3 and Nmk′/k{ · , · , · } are trivial (to see that C3 is trivial, one
uses Lemma 4.10).

Case (ii). According to formulas (4-2)–(4-4), this case amounts to proving that

C3( f, g, s)= Nmk′/k{ f̄ , ḡ},

where f̄ , ḡ are the image of elements f, g under the map O×K→ K×.
Let us consider a little more general situation. Let f, g ∈ GL(K) that leave the

lattice OK invariant, and let h ∈ GL(K) such that hOK ⊂ OK. Let V = OK/hOK,
which is a 1-Tate vector space over the field k. We assume that f, g, h mutu-
ally commute with each other. Then f, g : OK → OK induce automorphisms
πh( f ), πh(g) :V→V. Let Det be the central extension of GL(K) by PicZ defined
by the lattice L= OK. By definition, under the isomorphism

Z : PicZ
→ HomPicZ(Det (OK|hgOK),Det (OK|hgOK)),

the 1-isomorphism C2(h, g) corresponds to the composition of 1-isomorphisms of
PicZ-torsors:

Det (OK|hgOK)→ Det (OK|hOK)+Det (hOK|hgOK)

→ Det (OK|hOK)+Det (OK|gOK)

→ Det (OK|gOK)+Det (OK|hOK)

→ Det (OK|gOK)+Det (gOK|ghOK)→ Det (OK|ghOK).

Using the fact that gOK = OK and Proposition 3.8, this 1-isomorphism is canon-
ically 2-isomorphic to the 1-isomorphism

Det (OK | hgOK)
Z(DetV(π(g)))
−→ Det (OK | hgOK).

Therefore, there is a canonical 2-isomorphism C2(h, g)'−DetV(πh(g)), because,
by definition (see formula (4-6)), Det (OK | hOK)'−Det (V). One readily checks
by the construction of Lemma-Definition 2.13, that these 2-isomorphisms fit into



A categorical proof of the Parshin reciprocity laws on algebraic surfaces 325

the commutative diagrams

C2(h, f g) //

��

C2(h, f )+C2(h, g)

��
−DetV(πh( f g)) // −DetV(πh( f ))−DetV(πh(g))

(4-8)

where the natural isomorphism DetV(πh( f g)) → DetV(πh( f )) + DetV(πh(g))
comes from Proposition 4.2. (We have to use that Det ((0)) is canonically isomor-
phic to PicZ, and OK/gOK = (0), where (0) is the zero-space.)

We now return to our proof of case (ii). Let Ps be the subgroup of GL(K)
consisting of elements that preserve the lattice OK and commute with the element s.
Then the elements in the group Ps also preserve the lattice sOK, and therefore
induce a group homomorphism

πs : Ps→ GL(K ),

because K = OK/sOK. Then the commutative diagram (4-8) amounts to the fol-
lowing lemma.

Lemma 4.12. The homomorphism Cs : Ps → PicZ is isomorphic to the minus (or
the inverse) of the homomorphism

Det K ◦πs : Ps→ GL(K )→ PicZ.

By Proposition 4.5, we thus obtain that

C3( f, g, s)= C3(s, f, g)= Comm(Cs)( f, g)= Nmk′/k{ f̄ , ḡ}

for f, g ∈ O×K ⊂ GL(K). Case (ii) follows.

Case (iii). According to formulas (4-2)–(4-4), one needs to show

C3( f, s, s)= C f (s, s)= Nmk′/k(−1)ν2( f̄ )
= (−1)(ν2( f̄ )[k′:k])

= (−1)(ν2( f̄ )[k′:k])2 .

We have the following exact sequence of 1-Tate vector spaces

0−→
sOK

s2OK

−→
OK

s2OK

−→
OK

sOK

−→ 0.

and therefore by Lemma 4.3, for any element p ∈ Ps , there is a canonical isomor-
phism in PicZ

Det OK

s2OK

(πs2(p))' Det sOK

s2OK

(πs2(p))+Det OK
sOK

(πs2(p)). (4-9)
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On the other hand, we have already shown that there are canonical isomorphisms

C2(s, p)'−Det OK
sOK

(πs(p))=−Det OK
sOK

(πs2(p)),

C2(s2, p)'−Det OK

s2OK

(πs2(g)).
(4-10)

Again, by checking the construction as in Lemma-Definition 2.13, one obtains that
under the isomorphisms (4-10), the canonical isomorphism

C2(s2, p)' C2(s, p)+C2(s, p)

corresponds to (4-9).
Now let p= f as in Case (iii). We know that DetOK/(sOK)(π( f )) is a graded line

of degree ν2( f̄ )[k ′ : k]. Therefore, using C2(a, b)'−C2(b, a) for any commuting
elements a, b ∈GL(K), we obtain that Case (iii) follows from the definition of the
commutativity constraints in PicZ.

Case (iv). One needs to show that Cs(s, s) = 1. One can easily show that there
are canonical isomorphisms C2(s, s) ' `0,C2(s2, s) ' `0, and the canonical iso-
morphism C2(s2, s) ' C2(s, s)+C2(s, s) corresponds to `0 ' `0+ `0. (We used
that for the k ′-space M = k ′[[t]]((s)) we have s M = M , and the k ′-space M induce
a lattice in every 1-Tate vector space snOK/sn+lOK, n ∈ Z, l ∈ N.) This case also
follows. �

5. Reciprocity laws

We will use the adèle theory on schemes. Adèles on algebraic surfaces were intro-
duced in [Parshin 1976]. On arbitrary noetherian schemes they were considered in
[Beilinson 1980]. See the proof of part of results of this latter reference in [Huber
1991]. A survey of adèles can be found in [Osipov 2008].

We fix a perfect field k.

5A. Weil reciprocity law. To fix the idea, let us first revisit the Weil reciprocity
law. Let C be an irreducible projective curve over a field k. Let k(C) be the
field of rational functions on the curve C . For a closed point p ∈ C let Ôp be the
completion by maximal ideal m p of the local ring Op of point p ∈C . Let a ring K p

be the localization of the ring Ôp with respect to the multiplicative system Op \ 0.
(If p is a smooth point, then K p = k(C)p is the fraction field of the ring Ôp, and
K p = k(p)((tp)), Ôp = k(p)[[tp]], where k(p) is the residue field of the point p,
tp is a local parameter at p. For a nonsmooth point p ∈ C , the ring K p is a finite
direct product of one-dimensional local fields.)

We have that K p is a 1-Tate vector space over k, and Ôp is a lattice in K p for
any point p ∈ C .
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For any coherent subsheaf F of the constant sheaf k(C) on the curve C we
consider the following adèle complex AC(F):

AC,0(F)⊕AC,1(F)−→ AC,01(F)

whose cohomology groups coincide with the cohomology groups H∗(C,F). We
recall that

AC,0(F)= k(C)⊗OC F, AC,1(F)=
∏
p∈C

Ôp⊗OC F,

AC,01(F)= AC =
∏
p∈C

′

K p⊗OC F,

where
∏
′ denotes the restricted (adèle) product with respect to

∏
p∈C Ôp. Observe

that since F is a subsheaf of k(C), we have

k(C)⊗OC F= k(C), K p⊗OC F= K p.

The adèle ring AC is a 1-Tate vector space over k. This is because

AC = lim
←−

G⊂k(C)

lim
−→

H⊂k(C)

AC,1(H)/AC,1(G),

and dimk AC,1(H)/AC,1(G) <∞ for coherent subsheaves 0 6=G⊂H of k(C). (We
used that AC,1(H)/AC,1(G) = AC,1 =

⊕
p∈C Ôp ⊗OC (H/G)). For any coherent

subsheaf F of k(C) the space AC,1(F) is a lattice in the space AC . Hence, the
k-space k(C) is a colattice in AC , since from the adelic complex A(F) it follows
that

dimk k(C)∩AC,1(F)= dimk H 0(C,F) <∞,

dimk AC/(k(C)+AC,1(F))= dimk H 1(C,F) <∞.

Let a p be a point of C and f , g a pair of elements of K×p . If K p = k(p)((tp)),
then we denote by { f, g}p the element from k(p)× which is the corresponding tame
symbol. If the ring K p is isomorphic to the finite product of fields isomorphic to
k(p)((t)), then we denote by { f, g}p the element from k(p)× which is the same
finite product of the corresponding tame symbols. Recall that there is the diagonal
embedding k(C) ↪→ AC .

Proposition 5.1 (Weil reciprocity law). For any elements f, g ∈ k(C)× the follow-
ing product contains only finitely many nonequal to 1 terms and∏

p∈C

Nmk(p)/k{ f, g}p = 1. (5-1)

Proof. By Proposition 4.5, we can change Nmk(p)/k{ f, g}p to Comm(DetK p)( f, g)
for all p ∈ C in (5-1). There are points p1, . . . , pl ∈ C such that if p ∈ C and
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p 6= pi (1 ≤ i ≤ l), then f Ôp = Ôp, gÔp = Ôp, and hence, by Lemma 4.7,
Comm(DetK p)( f, g)= 1 for points p 6= pi (1≤ i ≤ l).

We define the group H as the subgroup of the group k(C)× generated by the
elements f and g. We apply Lemma 4.3 to the 1-Tate k-vector spaces

V= AC , V′ = AC\{p1,...,pl }, V′′ =
∏

1≤i≤l

K pi .

The group H preserves the lattice
∏

p∈C\{p1,...,pl }
Ôp in the space V′. Therefore,

by Lemma 4.7, the homomorphism DetAC is isomorphic to the homomorphism
DetV′′ , which is (again by Lemma 4.3) isomorphic to the sum of homomorphisms
DetK p1

, . . . ,DetK pl
. Since the group H preserves the colattice k(C) in AC , the

homomorphism DetAC is isomorphic to the trivial one (by Lemma 4.7). Now using
Remark 2.7 and Corollaries 2.9 and 2.10 we obtain (5-1). �

Remark 5.2. To obtain the triviality of homomorphism DetAC : k(C)× → PicZ

in an explicit way, one has to use the following canonical isomorphism for any
g ∈ k(C)×:

DetAC (g) ' det(H∗(AC(gOC)))⊗ det(H∗(AC(OC)))
−1, (5-2)

where for any coherent sheaf F on C

det(H∗(AC(F))) := det(H 0(AC(F)))⊗ det(H 1(AC(F)))
−1

' det(H 0(C,F))⊗ det(H 1(C,F))−1.

(Formula (5-2) easily follows from adèle complexes and (4-5) if we change in (4-5)
the lattices L and gL in AC to any two lattices coming from nonzero coherent sub-
sheaves G⊂H of k(C), and change correspondingly in formula (5-2) the sheaves
O and gO to the sheaves G ⊂ H.) Now the homomorphism DetAC is isomorphic
to the trivial one by formula (5-2) and the fact that multiplication on an element
g ∈ k(C)∗ gives a canonical isomorphism between adèle complexes AC(OC) and
AC(gOC), which induce the canonical isomorphism between det(H∗(AC(OC)))

and det(H∗(AC(gOC))).

5B. Parshin reciprocity laws. Let X be an algebraic surface over the field k. We
assume, for simplicity, that X is a smooth connected surface.

We consider pairs x ∈ C , where C are irreducible curves on X and x are closed
points on C . For every such pair one can define the ring Kx,C , which will be a
finite product of two-dimensional local fields, as follows. Assume that the curve
C on X has the formal branches C1, . . . ,Cn at the point x ∈ C ; that is,

C |Spec Ôx
=

⋃
1≤i≤n

Ci ,
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where Ôx is the completion of the local ring Ox of a point x ∈ X , and Ci is
irreducible in Spec Ôx for any 1 ≤ i ≤ n. (Since we assumed X is smooth,
Ôx ' k(x)[[t1, t2]].) Now every Ci defines a discrete valuation on the fraction field
Frac Ôx . We define a two-dimensional local field Kx,Ci as the completion of the
field Frac Ôx with respect to this discrete valuation, and let Ôx,Ci be the valuation
ring. Then we define

Kx,C :=
⊕

1≤i≤n

Kx,Ci , Ôx,C :=
⊕

1≤i≤n

Ôx,Ci ,

Observe that if x ∈ C is a smooth point, then Ôx,C ' k(x)((t))[[s]] and Kx,C '

k(x)((t))((s)). It is clear that the ring Ôx diagonally embeds into the ring Kx,C .
Let us also define Bx ⊂ Kx,C as lim

−→n>0
s−n

C Ôx , where a local equation sC = 0
determines C on some open X ⊃ V 3 x . It is clear that the subring Bx of Kx,C

does not depend on the choice of such sC when V 3 x . If x ∈ C is a smooth point,
and Kx,C = k(x)((t))((sC)), where sC = 0 is a local equation of the curve C on X
near the point x and t = 0 defines a transversal curve locally on X near x , then
Bx = k(x)[[t]]((sC)).

Any ring Kx,C is a 2-Tate vector space over k(x) (and therefore over k), and the
ring Ôx,C is a lattice in Kx,C .

Let
f =

⊕
1≤i≤n

fi , g =
⊕

1≤i≤n

gi , h =
⊕

1≤i≤n

hi .

be elements of K×x,C . We define an element of k(x)× by

{ f, g, h}x,C :=
∏

1≤i≤n

{ fi , gi , hi }x,Ci , (5-3)

where { fi , gi , hi }x,Ci is the two-dimensional tame symbol associated to the two-
dimensional local field Kx,Ci (cf. Section 4A).

Fix a point x ∈ X . For any free finitely generated Ôx -module subsheaf F of
the constant sheaf Frac Ôx on the scheme Spec Ôx we consider the following adèle
complex AX,x(F):

AX,x,0(F)⊕AX,x,1(F)−→ AX,x,01(F).

This is the adèle complex on the one-dimensional scheme Ux := Spec Ôx \ x for
the sheaf F |Ux , and, hence, the cohomology groups of this complex coincide with
the cohomology groups H∗(Ux ,F |Ux ). By definition, we have

AX,x,0(F)=Frac Ôx , AX,x,1(F)=
∏
C3x

Ôx,C⊗Ôx
F, AX,x,01(F)=AX,x=

∏
C3x

′

K p,C,
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where the product is taken over all prime ideals C of height 1 of the ring Ôx , and∏
′ denotes the restricted (adèle) product with respect to

∏
C3x Ôx,C.

Observe that the adèle ring AX,x is a 2-Tate vector space over the field k(x).
This is because

AX,x = lim
←−

G⊂Frac Ôx

lim
−→

H⊂Frac Ôx

AX,x,1(H)/AX,x,1(G),

and AX,x,1(H)/AX,x,1(G) is a 1-Tate vector space for free Ôx -module subsheaves
0 6= G ⊂ H of Frac Ôx . (We used that AX,x,1(H)/AX,x,1(G) =

⊕
C3x Ôx,C ⊗Ôx

H/G.) For any free finitely generated Ôx -module subsheaf F of Frac Ôx the space
AX,x,1(F) is a lattice in the space AX,x .

From Proposition 8 in [Osipov 2005] it follows that the k(x)-vector spaces
H 0(AX,x(F)) and H 1(AX,x(F)) are 1-Tate vector spaces. Indeed, since x is a
smooth point of X ,

H 0(AX,x(F))= H 0(Ux ,F |Ux )= F

is a projective limit of finite-dimensional k(x)-vector spaces F/mn
x F (mx is the

maximal ideal of the ring Ôx ), and

H 1(AX,x(F))= H 1(Ux ,F |Ux )= lim
−→
n>0

Ext2
Ôx
(Ôx/mn

x ,F),

where for any n > 0 the space Ext2
Ôx
(Ôx/mn

x ,F) is a finite-dimensional over the
field k(x) vector space; see, for example, [Osipov 2005, Lemma 6].

Fix an irreducible projective curve C on X . For any invertible OX -subsheaf F of
the constant sheaf k(X) on X we consider the following adèle complex AX,C(F)

AX,C,0(F)⊕AX,C,1(F)−→ AX,C,01(F).

where AX,C,0(F) := KC , AX,C,01(F) := AX,C = AC((sC)), and

AX,C,1(F) :=

(∏
x∈C

Bx ⊗OX F

)
∩AX,C . (5-4)

Here KC is the completion of the field k(X) with respect to the discrete valuation
given by the curve C on X . (If sC = 0 is a local equation of the curve C on some
open subset V of X such that V ∩C 6=∅, then KC = k(C)((sC)).) The ring AX,C is
a subring of

∏
x∈C Kx,C , and does not depend on the choice of sC . The intersection

(5-4) is taken in the ring
∏

x∈C Kx,C .
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We note that from [Osipov 2005, § 5.1] it follows that the complex AX,C(F)

coincides with the following complex

lim
−→

n

lim
←−
m>n

A(C,OX/J m−n
C )(F⊗OX J n

C/J m
C ).

Here JC is the ideal sheaf of the curve C on X , (C,OX/J m−n
C ) is a one-dimensional

scheme which has the topological space C and the structure sheaf OX/J m−n
C , and

A(C,OX/J m−n
C )(F ⊗OX J n

C/J m
C ) is the adèle complex of the coherent sheaf F ⊗OX

J n
C/J m

C on the scheme (C,OX/J m−n
C ). Hence and from the proof of [Osipov 2005,

Proposition 12] we obtain that

H∗(AX,C(F))= lim
−→

n

lim
←−
m>n

H∗(C,F⊗OX J n
C/J m

C ),

where for i = 0 and i = 1 we have dimk H i (C,F⊗OX J n
C/J m

C ) <∞. For i = 0
and i = 1 the k-vector space H i (AX,C(F)) has the natural topology of inductive
and projective limits. It is not difficult to see that the space H 0(AX,C(F)) is a
locally linearly compact k-vector space; i.e., it is a 1-Tate vector space. But the
space H 1(AX,C(F)) is not a Hausdorff space in this topology. Let H̃ 1(AX,C(F))

be the quotient space of H 1(AX,C(F)) by the closure of zero. Then the space
H̃ 1(AX,C(F)) is a locally linearly compact k-vector space, i.e., a 1-Tate vector
space.

We note that for any invertible subsheaves 0 6= G⊂H of k(X) we have that the
space Bx ⊗Ôx

(H/G) is a 1-Tate vector space, which is equal to zero for almost all
points x ∈ C . Hence, we obtain that the space

AX,C,1(H)/AX,C,1(G)=
⊕
x∈C

Bx ⊗Ôx
(H/G)

is a 1-Tate vector space.

For any point x ∈ X , we define a ring Kx as the localization of the ring Ôx with
respect to the multiplicative system Ox \0. (We note that inside of the field Frac Ôx

the ring Kx is defined as the product of two subrings: Ôx and k(X).)
For any pair x ∈ C (where C is an irreducible curve on X and x ∈ C is a closed

point), we have the natural embeddings k(X) ↪→ Kx , k(X) ↪→ KC (recall that
KC is the completion of the field k(X) with respect to the discrete valuation given
by the curve C). In addition, there are the natural embeddings Kx , KC ↪→ Kx,C .
Therefore, we obtain

k(X) ↪→ Kx ↪→ AX,x , k(X) ↪→ KC ↪→ AX,C .

Theorem 5.3 (Parshin reciprocity laws). (1) Fix a point x ∈ X. Consider ele-
ments f, g, h of the group K×x of invertible elements of the ring Kx . Then the
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following product in k(x)× contains only finitely many terms distinct from 1
and ∏

C3x

{ f, g, h}x,C = 1. (5-5)

(2) Fix a projective irreducible curve C on X. Let elements f, g, h be from the
group K×C . Then the following product in k× contains only finitely many terms
distinct from 1 and ∏

x∈C

Nmk(x)/k{ f, g, h}x,C = 1. (5-6)

Proof. We first prove formula (5-5). By Theorem 4.11, for any f, g, h ∈ K×x,C we
have

{ f, g, h}x,C = CDetx,C
3 ( f, g, h) (5-7)

for all prime ideals C of height 1 of the ring Ôx , where the central extension Detx,C
of the group K×x,C by the Picard groupoid PicZ is constructed by formula (4-6)
from the 2-Tate vector space Kx,C over the field k(x) and the lattice Ôx,C as in
Section 4C. We note that for almost all prime ideals C of height 1 of ring Ôx , and for
any elements f, g, h from the group Frac Ô×x , we have f Ox,C=Ox,C, gOx,C=Ox,C,
and hOx,C = Ox,C. Then by Lemma 4.10 and Corollary 2.19, for almost all prime
ideals C of height 1 of ring Ôx we have CDetx,C

3 ( f, g, h)= 1.
We will prove that the central extension Detx of Frac Ô×x (⊂GL(AX,x)) by PicZ

constructed by the 2-Tate vector space AX,x and the lattice AX,x,1(Ôx) using for-
mula (4-6) can be trivialized in an explicit way. Observe that for any d ∈ Frac Ô×x ,
there is a canonical isomorphism of PicZ-torsors:

Det (AX,x,1(Ôx) | AX,x,1(dÔx)) ' Det (H∗(AX,x(dÔx)))−Det (H∗(AX,x(Ôx))),
(5-8)

where for any free subsheaf F of Frac Ôx on the scheme Spec Ôx

Det (H∗(AX,x(F))) := Det (H 0(AX,x(F)))−Det (H 1(AX,x(F))).

Indeed, isomorphism (5-8) follows from Proposition 3.8 applied to the long exact
sequence (decomposed into the short exact sequences) associated with the follow-
ing exact sequence of complexes of length 2 for any nonzero free subsheaves G⊂H

of Frac Ôx on the scheme Spec Ôx :

0−→AX,x(G)−→AX,x(H)−→AX,x,1(H)/AX,x,1(G)−→ 0,

where the last complex consists only of the group placed in degree zero. Now we
have
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Det (H∗(AX,x(dÔx)))−Det (H∗(AX,x(Ôx)))

' HomPicZ(Det (H∗(AX,x(Ôx))),Det (H∗(AX,x(dÔx))). (5-9)

Multiplication by the element d ∈ Frac Ô×x between adèle complexes AX,x(Ôx) and
AX,x(dÔx) gives a natural isomorphism of PicZ-torsor from formula (5-9) to the
trivial torsor PicZ.

Let H be the subgroup of Frac Ô×x generated by the elements f, g, h ∈ Frac Ô×x .
Now we proceed as the proof of Weil reciprocity law (see Equation (5-1)), with
the help of Lemma 4.9, Lemma 4.10, and Corollary 2.20. Then we obtain the
following equality: ∏

C3x

{ f, g, h}x,C = 1.

Formula (5-5) follows from the last formula, since if a prime ideal C of height
1 in Ôx is not a formal branch at x of some irreducible curve C on X , then for any
element d ∈ K×x we have dOx,C = Ox,C. Hence, by formula (5-7), { f, g, h}x,C = 1
for such C and any f, g, h ∈ K×x .

Next we will prove formula (5-6). We construct the central extension Det ′x,C of
the group k(X)× by the Picard groupoid PicZ in the following way. We fix a point
x ∈C , and associate with the rings Bx ⊂ Kx,C and with an element d ∈ k(X)× the
following PicZ-torsor:

Det(Bx | d Bx) := Det
(

d Bx

Bx ∩ d Bx

)
−Det

(
Bx

Bx ∩ d Bx

)
. (5-10)

(We used that Bx/Bx ∩ d Bx is a 1-Tate vector space over the field k.) By the
formula which is analogous to formula (4-7) we obtain that the central extension
Det ′x,C is well defined. In a similar way we define the central extensions Det ′C and
Det ′C\{x1,...,xl }

starting from the rings AX,C,1(OX )⊂AX,C and AX,C\{x1,...,xl },1(OX )⊂

AX,C\{x1,...,xl }, where x1, . . . , xl are some points on the curve C .
Let the group H be generated in the group k(X)× by the elements f, g, h ∈

k(X)×. For almost all points x of the curve C we have that the group H preserves
the subring Bx . Therefore form formula (5-10) we obtain that the central extension
Det ′x,C is isomorphic to the trivial one for almost all points x of the curve C .

Therefore for almost all points x of the curve C we have C
Det ′x,C
3 ( f, g, h)= 1.

We will prove that the central extension Det ′x,C is inverse (or dual) to the central
extension Detx,C , where the last central extension is constructed by formula (4-6)
from the lattice Ox,C in the 2-Tate vector space Kx,C . For any free subsheaf F of
the constant sheaf Frac Ôx on the scheme Spec Ôx there is the following complex
AX,C,x(F):

(Bx ⊗Ôx
F) ⊕ (Ôx,C ⊗Ôx

F)−→ Kx,C .
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We have canonically that H∗(AX,C,x(F))= H∗(Ux ,F |Ux ), where we recall Ux =

Spec Ôx \ x (see the proof of [Osipov 2005, Proposition 13]). Therefore the coho-
mology groups of complex AX,C,x(F) are 1-Tate vector spaces. Hence, there is a
canonical isomorphism between the following PicZ-torsors for any d ∈ k(X)×:

Det(Bx | d Bx)+Det(Ôx,C | dÔx,C),

HomPicZ(Det (H∗(AX,C,x(Ôx))) , Det (H∗(AX,C,x(dÔx)))).

Now multiplication by the element d of adèle complexes gives a natural isomor-
phism from the last PicZ-torsor to the trivial one. Hence from Corollary 2.20 we
have that

C
Det ′x,C
3 ( f, g, h)= C

Det ′x,C
3 ( f, g, h)

−1
= Nmk(x)/k{ f, g, h}−1

x,C

for f, g, h ∈ k(X)×.
Now the proof of formula (5-6) for elements f, g, h ∈ k(X)× follows by the

same method as in the proof of formula (5-5), but we have to use the adèle ring
AX,C instead of the ring AX,x , and to use the central extension Det ′C instead of
the central extension Det x . We need only to prove that the central extension Det ′C
constructed by the analog of formula (5-10) from the rings AX,C,1(OX )⊂ AX,C is
isomorphic the trivial central extension. This follows if we consider the following
PicZ-torsors for d ∈ k(X)×

HomPicZ(Det (H∗(AX,C(OX ))) , Det (H∗(AX,C(dOX )))), (5-11)

where

Det (H∗(AX,C(dOX )) := Det (H 0(AX,C(dOX ))−Det (H̃ 1(AX,C(dOX )).

Multiplication by d ∈ k(X)× of adèle complexes gives the triviality of the PicZ-
torsor (5-11). (See analogous reasonings earlier in the proof of this theorem.)

To obtain formula (5-6) for elements f, g, h ∈ K×C we have to use that the field
k(X) is dense in the field KC . Therefore for any element f ∈ K×C there is an
element f̃ ∈ k(X)× such that f = f̃ m, where the element m is from the subgroup
1 + mn

C of the group K×C for some n ≥ 1, and mC is the maximal ideal of the
valuation ring of discrete valuation field KC . Then from formula (4-3) we have
that {m, g, h}x,C = 1 for any point x ∈C , and any formal branch C of the curve C
at point x . Hence, from the trimultiplicativity of the two-dimensional tame symbol
we obtain that

{ f, g, h}x,C = { f̃ , g, h}x,C.

Applying successively the same procedure to elements g, h ∈ k×C we obtain

{ f, g, h}x,C = { f̃ , g̃, h̃}x,C,
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where f̃ , g̃, h̃ ∈ k(X)×, and any point x ∈ C , and C is any formal branch of the
curve C at point x . �

Remark 5.4. For the proof of Parshin reciprocity laws we used “semilocal” adèle
complexes of length 2 connected with either points or irreducible curves on an
algebraic surface. But for the formulation of these reciprocity laws we used the
rings Kx and KC which appear from the “global” adèle complex of length 3 on an
algebraic surface. It would be interesting to find direct connections between the
“global” adèle complex and “semilocal” adèle complexes of an algebrac surface.

Remark 5.5. We have a symmetric monoidal functor from the Picard torsor PicZ

to the Picard groupoid Z which sends every graded line to its grading element from
Z, where Z is considered as the groupoid with objects equal to Z and morphisms
equal to identities morphisms. Under this functor a central extension of a group G
by a PicZ-torsor goes to the usual central of the group G by the group Z. In this way
the map νK for a two-dimensional local field K was obtained as the commutator
of elements in this central extension in [Osipov 2005]. Also in this same reference
the reciprocity laws for the map νK were proved by the adèle complexes on an
algebraic surface.
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Quantum differentiation and chain maps
of bimodule complexes

Anne V. Shepler and Sarah Witherspoon

We consider a finite group acting on a vector space and the corresponding skew
group algebra generated by the group and the symmetric algebra of the space.
This skew group algebra illuminates the resulting orbifold and serves as a re-
placement for the ring of invariant polynomials, especially in the eyes of coho-
mology. One analyzes the Hochschild cohomology of the skew group algebra
using isomorphisms which convert between resolutions. We present an explicit
chain map from the bar resolution to the Koszul resolution of the symmetric
algebra which induces various isomorphisms on Hochschild homology and co-
homology, some of which have appeared in the literature before. This approach
unifies previous results on homology and cohomology of both the symmetric
algebra and skew group algebra. We determine induced combinatorial cochain
maps which invoke quantum differentiation (expressed by Demazure–BGG op-
erators).

1. Introduction

Let G be a finite group acting linearly on a finite-dimensional complex vector
space V . The skew group algebra S(V )#G is a natural semi-direct product of G
with the symmetric algebra S(V ) (a polynomial ring). It serves as a valuable, albeit
noncommutative, replacement for the invariant ring S(V )G in geometric settings,
as it encodes the abstract group structure of G as well as its action on V . The coho-
mology of S(V )#G informs various areas of mathematics (for example, geometry,
combinatorics, representation theory, and mathematical physics). In particular,
the Hochschild cohomology of S(V )#G governs its deformations, which include
graded Hecke algebras, symplectic reflection algebras, and Cherednik algebras.
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Keywords: Hochschild cohomology, skew group algebra, Koszul resolution, Demazure–BGG

operator, quantum differentiation.
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The orbifold V/G may be realized as an algebraic variety whose coordinate ring
is the ring of invariant functions S(V ∗)G on the dual space V ∗, which is the center
of S(V ∗)#G when G acts faithfully. (For details, see [Harris 1995].) The variety
V/G is nonsingular exactly when the action of G on V is generated by reflections.
Geometers and physicists are interested in resolving the singularities of V/G with
a smooth variety X and examining the coordinate ring of X instead of S(V )G . In
situations they study, the skew group algebra S(V )#G serves as a replacement for
the coordinate ring of X ; indeed, Hochschild cohomology sees no difference be-
tween these rings [Căldăraru et al. 2004]. Connections with representation theory
are still unfolding; for example, see [Gordon and Smith 2004].

The Hochschild cohomology HH
q
(A) of any algebra A over a field k is the

space Ext
q
A⊗Aop(A, A). The cup product and Gerstenhaber bracket on Hochschild

cohomology are both defined initially on the bar resolution, a natural A⊗ Aop-free
resolution of A. The cup product has another description as Yoneda composition of
extensions of modules, which can be transported to any other projective resolution.
However, the Gerstenhaber bracket has resisted such a general description. Instead,
one commonly computes HH

q
(A) using a more convenient resolution, then one

finds and uses relevant chain maps to lift the Gerstenhaber bracket from the bar
resolution. The case A= S(V )#G is complicated further because one does not work
with resolutions of A directly, but instead one derives information from resolutions
of the symmetric algebra S(V ).

In this paper, we begin this task by constructing explicit chain maps which en-
code traffic between resolutions used to describe the Hochschild cohomology of
A = S(V )#G. Our maps convert between the bar and Koszul resolutions of the
polynomial ring S(V ), and serve as a tool for investigating the homology and co-
homology of S(V ) with coefficients in any bimodule. Specifically, the Koszul res-
olution of the polynomial ring S(V ) embeds naturally into the bar resolution. We
define an explicit chain map, depending on a choice of basis, giving a quasi-inverse
to this embedding. We study in particular the induced maps on the Hochschild
cohomology HH

q
(S(V ), S(V )#G). We give an elegant, combinatorial description

of the induced map on cochains in terms of scaled Demazure (BGG) operators
(or quantum partial differential operators, see Definition 3-4). We describe the
induced maps on Hochschild homology as well. (These combinatorial descriptions
are useful for computations, which we pursue in other articles.) The cohomology
HH

q
(S(V )#G) manifests as the G-invariant subspace of HH

q
(S(V ), S(V )#G) in

characteristic 0. We thus obtain isomorphisms of homology and cohomology that
allow one to transfer structures defined on the bar resolution to the complexes
standardly used to describe HH

q
(S(V )#G).

In Section 2, we establish notation and deploy the Hochschild cohomology
HH

q
(S(V )#G) in terms of both the Koszul and bar resolutions of S(V ). We
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introduce a combinatorial map ϒ on cochains in Section 3. This combinatorial
converter ϒ takes vector forms (tagged by group elements) to twisted quantum
differential operators. In Section 4, we give a technical formula for explicit chain
maps from the bar resolution to the Koszul resolution (Definition 4-1), which is
valid over an arbitrary ground field. These specific chain maps each induce an
inverse to the embedding of the Koszul resolution into the bar resolution after
taking homology or cohomology. (Indeed, after applying functors ⊗ or Hom, we
recover some chain maps given in the literature for converting between complexes
expressing Hochschild homology and cohomology—see Section 6.) In Section 5,
we deduce that our combinatorial converter ϒ defines automorphisms of coho-
mology by showing that it is induced by the chain maps of Section 4. We present
similar automorphisms of homology (using quantum differentiation) in Section 6.

Our approach presents an immediate and obvious advantage: We define one
primitive map between resolutions and then apply various functors that automati-
cally give (co)chain maps in a variety of settings. We do not need to give separate
proofs (depending on context) showing that these induced maps are chain maps, as
such results follow immediately from the general theory. This uniform treatment
provides a clear channel for navigating between chain and cochain complexes. In-
deed, we use this channel in [Shepler and Witherspoon 2009; 2011] to explore the
algebraic structure of HH

q
(S(V )#G) under the cup product and the Gerstenhaber

bracket.
Some results in this paper are valid over a field of arbitrary characteristic, while

others assume the ground field is the complex numbers, C. We have tried to
state carefully requirements on the field throughout. The reader should note that
whenever we work over C, we could instead work over any field containing the
eigenvalues of the action of G on V in which |G| is invertible. All tensor and
exterior products will be taken over the ground field unless otherwise indicated.

2. Preliminary material

In this section, we work over the complex numbers C, although the definitions
below of Hochschild cohomology, bar resolution, and Koszul resolution are valid
over any ground field.

Let G be a finite group and V a (not necessarily faithful) CG-module. Let gv

denote the image of v ∈ V under the action of g ∈ G. We work with the induced
group action on all maps throughout this article: For any map θ and element h ∈
GL(V ), we define the map hθ by (hθ)(v) := h(θ(h

−1
v)) for all v. Let V ∗ denote

the vector space dual to V with the contragredient (i.e., dual) representation. For
any basis v1, . . . , vn of V , let v∗1 , . . . , v

∗
n be the dual basis of V ∗. Let V G

=

{v ∈ V : gv = v for all g ∈ G}, the set of G-invariants in V . For any g ∈ G, let
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Z(g)= {h ∈G : gh = hg}, the centralizer of g in G, and let V g
= {v ∈ V : gv= v},

the g-invariant subspace of V .
The skew group algebra S(V )#G is the vector space S(V )⊗CG with multipli-

cation given by
(a⊗ g)(b⊗ h)= a(gb)⊗ gh

for all a, b ∈ S(V ) and g, h ∈ G. We abbreviate a ⊗ g by ag (a ∈ S(V ), g ∈ G)
and a⊗1, 1⊗ g simply by a, g, respectively. An element g ∈ G acts on S(V ) by
an inner automorphism in S(V )#G: ga(g)−1

= (ga)g(g)−1
=

ga for all a ∈ A.
The Hochschild cohomology of a C-algebra A (such as A = S(V )#G), with

coefficients in an A-bimodule M , is the graded vector space

HH
q
(A,M)= Ext

q
Ae(A,M),

where Ae
= A⊗ Aop acts on A by left and right multiplication. This cohomology

may be expressed in terms of the bar resolution, the following free Ae-resolution
of A:

· · ·
δ3
−→ A⊗4 δ2

−→ A⊗3 δ1
−→ Ae m

−→ A→ 0, (2-1)

where

δp(a0⊗ · · ·⊗ ap+1)=

p∑
j=0

(−1) j a0⊗ · · ·⊗ a j a j+1⊗ · · ·⊗ ap+1,

and δ0=m is multiplication. We apply HomAe(−,M) to obtain a cochain complex
whose homology is HH

q
(A,M). If M = A, we abbreviate HH

q
(A)= HH

q
(A, A).

For each p,
HomAe(A⊗(p+2), A)∼= HomC(A⊗p, A),

and we identify these two spaces of p-cochains throughout this article. The graded
vector space HH

q
(A) admits both a cup product and a graded Lie bracket under

which it becomes a Gerstenhaber algebra. In this article, we develop automor-
phisms of cohomology converting between resolutions. These automorphisms will
be used in later publications to explore the algebraic structure of HH

q
(S(V )#G)

under these two operations.

Hochschild cohomology of S(V )#G. Farinati [2005] and Ginzburg and Kaledin
[2004] determined the graded vector space structure of HH

q
(S(V )#G)when G acts

faithfully on V . The same techniques apply to nonfaithful actions. The following
statements are valid only when the characteristic does not divide the order of G.
(Otherwise, the cohomology is more complicated as the group algebra of G may
itself not be semisimple.) Let C be a set of representatives of the conjugacy classes
of G. A consequence of [Ştefan 1995, Corollary 3.4] posits a natural G-action
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giving the first of a series of isomorphisms of graded vector spaces:

HH
q
(S(V )#G) ∼= HH

q
(S(V ), S(V )#G)G

∼=

(⊕
g∈G

HH
q
(S(V ), S(V )g)

)G

∼=

⊕
g∈C

HH
q(

S(V ), S(V )g
)Z(g)

. (2-2)

Specifically, the action of G on V extends naturally to the bar complex of S(V ) and
commutes with the differentials, and so induces a natural action on Hochschild co-
homology HH

q
(S(V ), S(V )#G) (for which we also use the action of G on S(V )#G

by inner automorphisms). The subspace of G-invariants of this action is denoted
by HH

q
(S(V ), S(V )#G)G . (Equivalently, this may also be defined via any other

choice of G-compatible resolution used to compute cohomology; see [Ştefan 1995,
Section 2], for example.)

The second isomorphism of (2-2) surfaces simply because the S(V )e-module
S(V )#G decomposes into the direct sum of S(V )e-modules S(V )g, and cohomol-
ogy preserves direct sums. (The isomorphism arises of course at the cochain level,
as the Hom-functor preserves direct sums.) We identify HH

q
(S(V ), S(V )#G) with⊕

g∈G HH
q
(S(V ), S(V )g) when convenient throughout this article. Note that G

permutes the components in the direct sum in accordance with the conjugation ac-
tion of G on itself. Thus for each g ∈G, the subgroup Z(g) fixes the g-component
HH

q
(S(V ), S(V )g) setwise. The third isomorphism of (2-2) canonically projects

onto a set of representative summands.
One may use the Koszul resolution for S(V ) to determine each g-component

HH
q
(S(V ), S(V )g) in the last line of (2-2) above. The Koszul resolution, denoted

by K q(S(V )), is given by K0(S(V )) = S(V )e, K1(S(V )) = S(V )e ⊗ V , and for
each p ≥ 2,

K p(S(V ))=
p−2⋂
j=0

S(V )e⊗ (V⊗ j
⊗ R⊗ V⊗(p− j−2)), (2-3)

where R is the subspace of V ⊗ V spanned by all v⊗w−w⊗ v (v,w ∈ V ); see
[Braverman and Gaitsgory 1996], for example. This is a subcomplex of the bar
resolution (2-1) for S(V ). For any choice of basis v1, . . . , vn of V , it is equivalent
to the Koszul resolution corresponding to the regular sequence {vi⊗1−1⊗vi }

n
i=1

in S(V )e:

K p({vi ⊗ 1− 1⊗ vi }
n
i=1)
∼= S(V )e⊗

∧p(V ), (2-4)
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a free S(V )e-resolution of S(V ); see [Weibel 1994, §4.5], for instance. The differ-
entials are given by

dp(1⊗ 1⊗ v j1∧ · · · ∧ v jp)

=

p∑
i=1

(−1)i+1(v ji ⊗ 1− 1⊗ v ji )⊗ (v j1∧ · · · ∧ v̂ ji∧ · · · ∧ v jp). (2-5)

The canonical inclusion of the Koszul resolution (2-3) into the bar resolution (2-1)
for S(V ) is then given on resolution (2-4) by the chain map

8 : S(V )e⊗
∧q
(V )→ S(V )⊗(

q+2) ,

defined by

8p(1⊗ 1⊗ v j1∧ · · · ∧ v jp)=
∑

π∈Symp

sgn(π)⊗ v jπ(1) ⊗ · · ·⊗ v jπ(p) ⊗ 1 (2-6)

for all v j1, . . . , v jp ∈ V , p ≥ 1, where Symp denotes the symmetric group on p
symbols. Note that by its definition, 8 is invariant under the action of GL(V ), i.e.,
h8=8 for all h in GL(V ).

Any chain map 9p : S(V )⊗(p+2)
→ S(V )e ⊗

∧pV from the bar resolution to
the Koszul resolution yields a commutative diagram:

· · · // S(V )⊗4 δ2 //

92
��

S(V )⊗3 δ1 //

91
��

S(V )e m //

=

��

S(V ) //

=

��

0

· · · // S(V )e⊗
∧2V

d2 //

82

OO

S(V )e⊗
∧1V

d1 //

81

OO

S(V )e m //

OO

S(V ) //

OO

0.

(In Definition 4-1, we explicitly define a map 9 depending on a choice of basis
of V .) Such maps 8 and 9 necessarily induce inverse isomorphisms on cohomol-
ogy HH

q
(S(V ),M) for any S(V )-bimodule M upon applying HomS(V )e(−,M).

(Similarly for homology; see Section 6.) Identifying HomS(V )e(S(V )⊗(p+2),M)
with HomC(S(V )⊗p,M) and HomS(V )e(S(V )e⊗

∧pV,M) with HomC(
∧pV,M)

for all p, we obtain the following commutative diagram:

HomC(S(V )⊗p,M)
δ∗p−1 //

8∗p

��

HomC(S(V )⊗(p+1),M)

8∗p+1
��

HomC(
∧pV,M)

d∗p−1 //

9∗p

OO

HomC(
∧p+1V,M)

9∗p+1

OO
(2-7)

The maps 89 and 98 are each homotopic to an identity map by the Comparison
Theorem, and thus 8∗p and 9∗p induce inverse automorphisms on the cohomology
HHp(S(V ),M); see the proof of [Weibel 1994, Lemma 2.4.1]. In this paper, we
primarily consider the S(V )e-modules M = S(V )#G and M = S(V )g for g in G.
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We transfer the map 8 and any chain map 9 to the Hochschild cohomology of
the full skew group algebra, HH

q
(S(V )#G), using the isomorphisms of (2-2). Set

M = S(V )#G and let 8∗ and 9∗ denote the induced maps on the cohomology

HH
q
(S(V ), S(V )#G)∼=

⊕
g∈G

HH
q(

S(V ), S(V )g
)
.

For each g in G, denote the restrictions to HH
q(

S(V ), S(V )g
)

by 8∗g and 9∗g ,
respectively, so that

8∗ =
⊕
g∈G

8∗g and 9∗ =
⊕
g∈G

9∗g .

The maps 8∗ and 9∗ behave nicely with respect to the action of G:

Proposition 2-8. Let 9 be any choice of chain map from the bar resolution (2-1)
to the Koszul resolution (2-4). The cochain maps 8∗ and 9∗ are inverse automor-
phisms on the cohomology HH

q
(S(V ), S(V )#G) converting between expressions

arising from the Koszul resolution and from the bar resolution. In addition,

(1) For any g ∈ G, the maps 8∗g and 9∗g on the cohomology HH
q(

S(V ), S(V )g
)

are invariant under the centralizer Z(g) of g in G, and the maps 8∗ and 9∗

on
⊕

g∈G HH
q(

S(V ), S(V )g
)

are invariant under G;

(2) The maps 8∗ and 9∗ induce inverse automorphisms on the graded vector
space⊕

g∈C

(
HH

q(
S(V ), S(V )g

))Z(g) ∼=

(⊕
g∈G

HH
q
(S(V ), S(V )g)

)G
∼= HH

q
(S(V )#G).

Proof. As explained after Diagram (2-7), the maps 8∗g and 9∗g are inverse isomor-
phisms on the cohomology HH

q(
S(V ), S(V )g

)
. By its definition, 8 is invariant

under the action of GL(V ), and so the map 8∗ on HH
q
(S(V ), S(V )#G) is in-

variant under G, and the map 8∗g on HH
q(

S(V ), S(V )g
)

is invariant under Z(g).
Fix some h in Z(g) and consider the map h(9∗g ). As maps on the cohomology
HH

q(
S(V ), S(V )g

)
,

1 = h(8∗g 9
∗

g ) =
h(8∗g)

h(9∗g ) = 8∗g
h(9∗g ),

thus h(9∗g ) is also inverse to 8∗g. Hence h(9∗g )=9
∗
g (since the inverse is unique)

as maps on cohomology, for all h in Z(g), and 9∗g is also Z(g)-invariant. Thus
statement (1) holds. As a consequence, we may restrict both 8∗g and 9∗g to the
graded vector space

(
HH

q
(S(V ), S(V )g)

)
Z(g). Applying the isomorphisms (2-2),

we obtain (2). �

The cohomology HH
q
(S(V ), S(V )#G) arising from the Koszul resolution (2-4)

of S(V ) may be viewed as a set of vector forms on V tagged by group elements
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of G. Indeed, we identify HomC(
∧pV, S(V )g) with S(V )g ⊗

∧pV ∗ for each g
in G, and recognize the set of cochains derived from the Koszul resolution as (see
Diagram (3-3) below)

C
q
:=

⊕
g∈G

C
q
g, where C p

g := S(V )g⊗
∧pV ∗ . (2-9)

3. Quantum differentiation and a combinatorial converter map

One generally uses the Koszul resolution of S(V ) to compute Hochschild coho-
mology, but some of the algebraic structure of its cohomology is defined using
the bar resolution instead. We thus define automorphisms of cohomology which
convert between resolutions. In Equation (2-6), we defined the familiar inclusion
map 8 from the Koszul resolution to the bar resolution. But in order to transfer
algebraic structure, we need chain maps in both directions. In Section 4, we shall
construct explicit chain maps 9 from the bar resolution to the Koszul resolution,
which will then induce cochain maps 9∗. These maps 9 are somewhat unwieldy,
however. Thus, in this section, we first define a more elegant and handy map ϒ on
cochains using quantum differential operators (alternatively, Demazure operators).
In Theorem 5-1, we prove that ϒ = 9∗ as maps on cocycles, for our specific
construction of a chain map 9 from the bar resolution to the Koszul resolution of
S(V ). This implies that the map ϒ is itself a cochain map, and that ϒ is in fact
equal to9∗ on cohomology, for any choice of chain map9 from the bar resolution
to the Koszul resolution of S(V ). This development allows us to deduce important
properties of the expedient map ϒ (useful for computations) from the elephantine
map 9∗. In this section, we work over the complex numbers C.

Given any basis v1, . . . , vn of V , and any complex number ε 6= 1, we define
the ε-quantum partial differential operator with respect to v := vi as the scaled
Demazure (BGG) operator ∂v,ε : S(V )→ S(V ) given by

∂v,ε( f ) = (1− ε)−1 f − s f
v

=
f − s f
v− sv

, (3-1)

where s ∈GL(V ) is the reflection whose matrix with respect to the basis v1, . . . , vn

is diag(1, . . . , 1, ε, 1, . . . , 1)with ε in the i th slot. Set ∂v,ε=∂/∂v, the usual partial
differential operator with respect to v, when ε = 1.

Remark 3-2. The quantum partial differential operator ∂v,ε above coincides with
the usual definition of quantum partial differentiation: One takes the ordinary par-
tial derivative with respect to v but instead of multiplying each monomial by its
degree k in v, one multiplies by the quantum integer [k]ε , where

[k]ε := 1+ ε+ ε2
+ · · ·+ εk−1.
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Let us check explicitly that these two definitions coincide. For v = v1, ε 6= 1,

∂v,ε(v
k1
1 v

k2
2 · · · v

kn
n )=

(v
k1
1 v

k2
2 · · · v

kn
n )−

s(v
k1
1 v

k2
2 · · · v

kn
n )

v1− sv1

=
v

k1
1 v

k2
2 · · · v

kn
n − ε

k1v
k1
1 v

k2
2 · · · v

kn
n

v1− εv1

=
(1− εk1)v

k1
1 v

k2
2 · · · v

kn
n

(1− ε)v1

= [k1]ε v
k1−1
1 v

k2
2 · · · v

kn
n .

We are now ready to construct the map ϒ taking vector forms (tagged by group
elements) to twisted quantum differential operators. We define ϒ on cochains C q
(see (2-9)) so that the following diagram commutes for M = S(V )#G:

HomC(S(V )⊗p,M)
δ∗p−1 //

8∗p��

HomC(S(V )⊗(p+1),M)

8∗p+1��⊕
g∈G

S(V )g⊗
∧pV ∗ d∗p−1 //

ϒp

OO

⊕
g∈G

S(V )g⊗
∧p+1V ∗

ϒp+1

OO

(3-3)

First, some notation. For g in G, fix a basis Bg = {v1, . . . , vn} of V consisting of
eigenvectors of g with corresponding eigenvalues ε1, . . . , εn . Decompose g into
a product of reflections diagonal in this basis: Let g = s1 · · · sn where each si is
either the identity or a reflection defined by siv j = v j for j 6= i and sivi = εivi . Let
∂i := ∂vi ,εi , the quantum partial derivative (see Definition (3-1)) with respect to Bg.

Definition 3-4. We define a resolution converter map ϒ from the dual Koszul
complex to the dual bar complex with coefficients in S(V )#G:

ϒp : C p
→ HomC(S(V )⊗p, S(V )#G) .

Let g lie in G with basis Bg = {v1, . . . , vn} of V as above. Let

α = fgg⊗ v∗j1 ∧ · · · ∧ v
∗

jp

with fg ∈ S(V ) and 1≤ j1 < . . . < jp ≤ n. Define ϒ(α) : S(V )⊗p
→ S(V )#G by

ϒ(α)( f1⊗ · · ·⊗ f p)=

( p∏
k=1

s1s2···s jk−1(∂ jk fk)

)
fgg .

By Theorem 5-1 below, ϒ is a cochain map. Thus ϒ induces a map on the coho-
mology HH

q
(S(V ), S(V )#G)∼=

⊕
g∈GHH

q
(S(V ), S(V )g), which we denote by ϒ
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as well. For each g in G, let ϒg denote the restriction to C q
g and the restriction to

HH
q
(S(V ), S(V )g), so that

ϒ =
⊕
g∈G

ϒg.

Remark 3-5. For each g in G, the cochain map ϒg =ϒg,B depends on the chosen
basis B = Bg of eigenvectors of g. But we shall see (in Corollary 5-3 below) that
the induced automorphism on cohomology HH

q(
S(V ), S(V )g

)
does not depend

on the choice of basis. This will imply that as an automorphism of HH
q
(S(V )#G),

the map ϒ does not depend on choices of bases of V used in its definition.

Example 3-6. Let G = Z/2Z× Z/2Z be the Klein four-group consisting of ele-
ments 1, g, h, gh. Let V =C3 with basis v1, v2, v3 on which G acts by gv1=−v1,
gv2 = v2, gv3 = −v3, hv1 = −v1, hv2 = −v2, hv3 = v3. Let α = fh h̄ ⊗ v∗1 ∧ v

∗

2
for some fh ∈ S(V ). Write h = s1s2, a product of reflections with s1v1 = −v1,
s2v2 =−v2. Then ϒ(α) is the function on S(V )⊗2 given by

ϒ(α)( f1⊗ f2)= (∂1 f1)(
s1∂2 f2) fh h̄

for all f1, f2 ∈ S(V ). For example, ϒ(α)(v1⊗v2)= fh h̄ while ϒ(α)(v2⊗v1)= 0.

Remark 3-7. The mapϒ transforms any decomposable vector form into a (twisted)
quantum operator characterizing the same subspace: For the fixed basis Bg =

{v1, . . . , vn} and α = fgg⊗ v∗j1 ∧ · · · ∧ v
∗

jp
in C p

g (with j1 < . . . < jp), we have

ϒ(α)(vi1 ⊗ · · ·⊗ vi p)= 0 unless i1 = j1, . . . , i p = jp .

Generally, ϒ(α)( f1⊗ · · ·⊗ f p)= 0 whenever ∂

∂v jk
( fk)= 0 for some k.

The next proposition explains how ϒ depends on our choices of bases as a map
on cochains.

Proposition 3-8. The maps ϒg,B on cochains, for g in G, satisfy the following
change of basis rule: For any a in G,

aϒg,B = ϒaga−1, aB .

In particular, for a in the centralizer Z(g), aϒg,B = ϒg, aB .

Proof. One may check directly from (3-1) that quantum partial differentiation
obeys the following transformation law: For all v in V and ε in C,

a∂v,ε = ∂ av,ε ,

where a∂v,ε differentiates with respect to a basis B and ∂ av,ε with respect to aB.
Let B = {v1, . . . , vn} be a basis of V of eigenvectors of g with corresponding

eigenvalues ε1, . . . , εn . Decompose g as a product of diagonal reflections si in
GL(V ) (for i = 1, . . . , n) in this basis; we retain the notation before Definition 3-4.
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Let g′= aga−1, B ′= aB, v′i =
avi , s ′i = asi a−1, and ∂ ′i =

a∂i . Then the s ′i similarly
decompose g′ in the basis B ′ with ∂ ′i = ∂v′i ,εi .

Consider α = fg ⊗ v
∗

j1 ∧ · · · ∧ v
∗

jp
in C p. For all fi in S(V ),

a(ϒg,B(α)
)
( f1⊗ . . .⊗ f p)=

a(ϒg,B(α)(
a−1

f1⊗ · · ·⊗
a−1

f p)
)

=
a( s1···s j1−1∂ j1(

a−1
f1) · · ·

s1···s jp−1(∂ jp(
a−1

f p)) fg g
)

=
s′1···s

′

j1−1(a∂ j1 f1) · · ·
s′1···s

′

jp−1(a∂ jp f p)
afg g′

=
s′1···s

′

j1−1(∂ ′j1 f1) · · ·
s′1···s

′

jp−1(∂ ′jp
f p)

afg g′

= ϒg′,B ′(
aα)( f1⊗ . . .⊗ f p) ,

and the result follows. �

The above proposition can also be seen using Definition 4-1 below of the chain
map 9B , Theorem 5-1 below equating ϒg,B and 9B , and the straightforward fact
that 9B has a similar change of basis property.

4. Chain maps from the bar to the Koszul resolution

In this section, we define specific chain maps 9B from the bar resolution of S(V )
to its Koszul resolution (see (2-1) and (2-4)) depending on bases B of V . By the
Comparison Theorem, the resulting maps (9B)

∗ on cohomology do not depend
on the choice of B. In particular, we consider cohomology with coefficients in
S(V )g and write 9∗g,B for the induced map (9B)

∗
g on HH

q(
S(V ), S(V )g

)
. We

shall show in Theorem 5-1 below that 9∗g,B = ϒg,B (recall Definition 3-4) for
any choice B of basis of V consisting of eigenvectors of g used to define both
maps. This will imply (see Corollary 5-3) that as maps on cohomology, ϒg and ϒ
are automorphisms independent of choices of bases B used to define them at the
cochain level. In this section, we work over any base field.

First, we introduce some notation. Let ` denote an n-tuple ` := (`1, . . . , `n).
Let v` be the monomial v` := v`1

1 · · · v
`n
n where v1, . . . , vn is a chosen basis of V .

Sometimes we further abbreviate a p-tuple `1, . . . , `p of n-tuples by ` when no
confusion will arise.

Definition 4-1. Let V be a vector space over an arbitrary field, and let B =
{v1, . . . , vn} be a basis of V . Define an S(V )e-map 9B from the bar resolution
to the Koszul resolution, 9B : S(V )⊗( q+2)

→ S(V )e ⊗
∧q
(V ) , as follows. Let

(9B)0 be the identity map. For each p ≥ 1, define (9B)p by

(9B)p(1⊗ v`
1
⊗ · · ·⊗ v`

p
⊗ 1)

=

∑
1≤i1<···<i p≤n

∑
0≤ai j<`

j
i j

vQ(`;i1,...,i p)⊗ v Q̂(`;i1,...,i p)⊗ vi1∧ · · · ∧ vi p , (4-2)
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where the second sum ranges over all ai1, . . . , ai p such that 0 ≤ ai j < `
j
i j

for each
j ∈ {1, . . . , p} and the functions Q and Q̂ (indicating monomial degree) depend
also on the choices ai j (this dependence is suppressed in the notation for brevity):

Q(`1, . . . , `p
; i1, . . . , i p)i =

{
ai + `

1
i + · · ·+ `

j−1
i if i = i j ,

`1
i + · · ·+ `

j
i if i j < i < i j+1,

where we set i0 = 0 and i p+1 = n + 1 for convenience. We define the n-tuple
Q̂(`; i1, . . . , i p) to be complementary to Q(`; i1, . . . , i p) in the sense that

vQ(`;i1,...,i p) v Q̂(`;i1,...,i p) vi1 · · · vi p = v
`1
· · · v`

p
.

We simply write Q̂ when it is clear with respect to which Q(`; i1, . . . , i p) it is
complementary.

For small values of p, the formula for (9B)p is less cumbersome. In particular,
for p = 1, 2, such formulas were given in [Witherspoon 2006, (4.9), (4.10)]. We
repeat them here:

91(1⊗ v
`1
1 · · · v

`n
n ⊗ 1)=

n∑
i=1

`i∑
t=1

v
`i−t
i v

`i+1
i+1 · · · v

`n
n ⊗ v

`1
1 · · · v

`i−1
i−1 v

t−1
i ⊗ vi ,

92(1⊗ v
`1
1 · · · v

`n
n ⊗ v

m1
1 · · · v

mn
n ⊗ 1)

=

∑
1≤i< j≤n

m j∑
r=1

`i∑
t=1

(
v
`i−t
i v

`i+1
i+1 · · · v

` j−1
j−1v

` j+m j−r
j v

` j+1+m j+1
j+1 · · · v`n+mn

n

⊗ v
`1+m1
1 · · · v

`i−1+mi−1
i−1 v

mi+t−1
i v

mi+1
i+1 · · · v

m j−1
j−1 v

r−1
j ⊗ vi ∧ v j

)
.

Example 4-3. To illustrate, we compute 92 on a few monomials of small degree:

92(1⊗ v1⊗ v2⊗ 1)= 1⊗ 1⊗ v1 ∧ v2,

92(1⊗ v1v2⊗ v
3
2 ⊗ 1)= (v3

2 ⊗ 1+ v2
2 ⊗ v2+ v2⊗ v

2
2)⊗ v1 ∧ v2,

92(1⊗ v1v2⊗ v
2
2v3⊗ 1)= (v2

2v3⊗ 1+ v2v3⊗ v2)⊗ v1 ∧ v2

+ 1⊗ v1v
2
2 ⊗ v2 ∧ v3+ v2⊗ v

2
2 ⊗ v1 ∧ v3.

Theorem 4-4. For each choice of basis B of V , the map 9B of Definition 4-1 is a
chain map.

We defer the proof of Theorem 4-4 to the Appendix as it is rather technical.

5. Merits of the combinatorial converter map

In the previous two sections, we examined two maps ϒg,B and 9∗g,B which con-
vert between cochain complexes: They each transform cochains procured from
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the Koszul resolution (2-4) of S(V ) into cochains procured from the bar resolu-
tion (2-1) of S(V ) (see Definitions 3-4 and 4-1). In this section, we show that the
two mapsϒg,B and9∗g,B are identical on cochains, and hence also on cohomology,
for any g in G and any basis B consisting of eigenvectors of g. This will imply
that ϒ is itself a cochain map. We deduce other salient properties of the map ϒ
using this connection between ϒ and 9. We take our ground field to be C in this
section.

Theorem 5-1. Let g be in G and let B be a basis of V consisting of eigenvectors
of g. Then

ϒg,B =9
∗

g,B

as maps on cochains. Thus ϒg,B is a cochain map.

Proof. We check thatϒg,B and9∗g,B agree on cochains: Let α= fgg⊗v∗j1∧· · ·∧v
∗

jp

be a cochain in C p
g with fg ∈ S(V ) and j1 < . . . < jp, where B = {v1, . . . , vn}. Let

f1 = v
`1
, . . . , f p = v

`p

be monomials in S(V ). Without loss of generality, it suffices to show that 9∗g,B(α)
and ϒg,B(α) agree on f1⊗· · ·⊗ f p, since such elements form a basis for S(V )⊗p.
By Definition 4-1,

9∗g,B(α)( f1⊗ · · ·⊗ f p)

= α(9g,B( f1⊗ · · ·⊗ f p))

= α(9g,B(v
`1

1
1 · · · v

`1
n

n ⊗ · · ·⊗ v
`

p
1

1 · · · v
`

p
n

n ))

= α

( ∑
1≤i1<···<i p≤n

∑
0≤ aik<`

k
ik

vQ(`;i1,...,i p)⊗ v Q̂(`;i1,...,i p)⊗ vi1∧ · · · ∧ vi p

)
.

Since α has exterior part v∗j1 ∧ · · · ∧ v
∗

jp
, each summand is zero save one (the

summand with ik = jk for k = 1, . . . p). Then

9∗g,B(α)( f1⊗ · · ·⊗ f p)

=

∑
0≤a jk<`

k
jk

vQ(`; j1,..., jp) fgg v Q̂(`; j1,..., jp)

=

∑
0≤a jk<`

k
jk

( p∏
t=1

ε
(`t

jt
−a jt−1)+`t+1

jt
···+`

p
jt

jt

∏
it−1<i<it

ε
`t

i+···+`
p
i

i

)
vQ(`; j1,..., jp)v Q̂(`; j1,..., jp) fgg.

Recall that, by definition, vQ(`; j1,..., jp)v Q̂(`; j1,..., jp)v j1 · · · v jp = v
`1
· · · v`

p
. Thus

the factor vQ(`; j1,..., jp)v Q̂(`; j1,..., jp) fgg in each term of the above sum does not de-
pend on the values of a jk , and we may move the summation symbol inside the
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parentheses. Simplifying, we obtain( p∏
t=1

[`t
jt ]ε jt

ε
`t+1

jt
+···+`

p
jt

jt

∏
it−1<i<it

ε
`t

i+···+`
p
i

i

)
vQ(`; j1,..., jp)v Q̂(`; j1,..., jp) fgg

=

( p∏
k=1

s1···s jk−1(∂ jk fk)

)
fgg

= ϒg,B(α)( f1⊗ · · ·⊗ f p),

by Definition 3-4. Hence ϒg,B =9
∗

g,B as maps on cochains. �

As a consequence, we obtain a statement about any chain map 9 from the bar
resolution to the Koszul resolution, at the level of cohomology, which has further
implications for the map ϒ :

Corollary 5-2. Let9 be any chain map from the bar resolution (2-1) to the Koszul
resolution (2-4) for S(V ). Then:

(1) ϒg =9
∗
g as maps on the cohomology HH

q
(S(V ), S(V )g), for all g in G.

(2) ϒ =9∗ as maps on

HH
q
(S(V ), S(V )#G)∼=

⊕
g∈G

HH
q(

S(V ), S(V )g
)

and on its G-invariant subalgebra,

HH
q
(S(V ), S(V )#G)G ∼= HH

q
(S(V )#G).

Proof. We constructed a specific choice of chain map 9B in Definition 4-1 above
from the bar to the Koszul resolution of S(V ). Since 9 and 9B are homotopic by
the Comparison Theorem,9∗g =9

∗

g,B as maps on cohomology HH
q(

S(V ), S(V )g
)
.

But 9∗g,B = ϒg,B for any choice of g and B by Theorem 5-1, and hence 9∗ = ϒ .
By Proposition 2-8, these maps preserve G-invariant subspaces, and so 9∗ = ϒ
on HH

q
(S(V )#G) as well. �

Corollary 5-3. Let g ∈ G. On the cohomology HH
q
(S(V ), S(V )g), the map ϒg =

ϒg,B is independent of choice of basis B of eigenvectors of g used in its definition.
Hence, as a map on the cohomologies HH

q
(S(V ), S(V )#G) and HH

q
(S(V )#G),

ϒ is independent of the choices of bases used in its definition.

Proof. By Corollary 5-2, ϒg =9
∗
g on cohomology for any choice of chain map 9

from the bar complex to the Koszul complex of S(V ), independent of the choice of
basis of eigenvectors of g used to define ϒg. Hence, ϒ is independent of choices
of bases. �

Corollary 5-4. The maps ϒ and 8∗ are inverse isomorphisms on the cohomology
HH

q
(S(V ), S(V )#G) and on its G-invariant subalgebra HH

q
(S(V ), S(V )#G)G ∼=

HH
q
(S(V )#G).
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Proof. Again, in Corollary 5-2, we found that ϒ = 9∗ on cohomology for any
chain map 9 from the bar to the Koszul complex. But any such 9 induces an
automorphism on cohomology inverse to 8∗ by the Comparison Theorem. �

This corollary actually follows from a stronger fact: ϒ is a right-sided inverse
to 8∗ on cochains, not merely on cohomology, for any choice of bases {Bg}g∈G

defining ϒ . Indeed, a calculation shows directly that 8∗ϒ = 1 on cochains C q.
We can see this fact yet another way. One can check that 9B8= 1 on chains, and
therefore 8∗g(9B)

∗
g = 1 on cochains, for every B and g. In Theorem 5-1, we saw

that ϒg,B = (9B)
∗
g = 9

∗

g,B as maps on cochains, for all g in G and for any basis
B of eigenvectors of g, and hence 8∗ϒ = 1 as a map on cochains.

6. Hochschild homology

Our chain maps 9B of Definition 4-1 are useful in settings other than the co-
homology of S(V )#G. In this section, we obtain induced maps on Hochschild
homology, and compare our induced maps on homology and cohomology with
those in the literature. The Hochschild-Kostant-Rosenberg Theorem states that for
smooth commutative algebras, Hochschild homology is isomorphic to the module
of differential forms (i.e., the exterior algebra generated by the Kähler differen-
tials); e.g., see [Weibel 1994, §9.4.2]. For noncommutative algebras, Hochschild
homology provides a generalization of the notion of “differential forms”. It is
interesting to note that for some types of algebras (in particular for S(V )#G),
Hochschild homology and cohomology are dual (see [van den Bergh 1998] for
the general theory and [Farinati 2005] for the case S(V )#G). In this section, we
work over an arbitrary field initially, then over C in Theorem 6-4.

Let M be any S(V )e-module. Then 9B induces an isomorphism on Hochschild
homology

HH q(S(V ),M) := TorS(V )eq (S(V ),M)

and on Hochschild cohomology

HH
q
(S(V ),M) := Ext

q
S(V )e(S(V ),M)

by applying the functors M ⊗S(V )e − and HomS(V )e(−,M), respectively, to the
bar resolution (2-1) and to the Koszul resolution (2-4). This approach to obtaining
maps on homology and cohomology has advantages over previous approaches in
the literature which we explain now.

We obtain a map on Hochschild homology HH q(S(V )) := HH q(S(V ), S(V )),
denoted by (9B)∗, by setting M = S(V ). At the chain level,

(9B)∗ : S(V )⊗ S(V )⊗
q
−→ S(V )⊗

∧q
(V ) .



354 Anne V. Shepler and Sarah Witherspoon

A computation similar to that in the proof of Theorem 5-1 yields the following
explicit formula for (9B)∗, valid over any ground field:

Theorem 6-1. Let B = {v1, . . . , vn} be a basis of V . Then as an automorphism on
HH q(S(V )) at the chain level,

(9B)∗( f0⊗ f1⊗ · · ·⊗ f p)=
∑

1≤i1<···<i p≤n

f0
∂ f1

∂vi1

· · ·
∂ f p

∂vi p

⊗ vi1∧ · · · ∧ vi p (6-2)

for all f0, f1, . . . , f p ∈ S(V ).

Proof. Without loss of generality, assume that f1, . . . , f p are monomials, say

fk = v
`k
= v

`k
1

1 · · · v
`k

n
n

for some n-tuple `k
= (`k

1, . . . , `
k
n). Then

(9B)∗( f0⊗ v
`1
⊗ · · ·⊗ v`

p
)

= f09B(1⊗ v`
1
⊗ · · ·⊗ v`

p
)

= f0

( ∑
1≤i1<···<i p≤n

∑
0≤ai j<`

j
i j

vQ(`;i1,...,i p)⊗ v Q̂(`;i1,...,i p)⊗ vi1∧ · · · ∧ vi p

)
=

∑
1≤i1<···<i p≤n

∑
0≤ai j<`

j
i j

vQ(`;i1,...,i p) f0 v
Q̂(`;i1,...,i p)⊗ vi1∧ · · · ∧ vi p

=

∑
1≤i1<···<i p≤n

∑
0≤ai j<`

j
i j

f0 v
Q(`;i1,...,i p)v Q̂(`;i1,...,i p)⊗ vi1∧ · · · ∧ vi p

=

∑
1≤i1<···<i p≤n

∑
0≤ai j<`

j
i j

f0 v
`1
· · · v`

p
v−1

i1
· · · v−1

i p
⊗ vi1∧ · · · ∧ vi p

=

∑
1≤i1<···<i p≤n

`1
i1
· · · `

p
i p

f0 v
`1
· · · v`

p
v−1

i1
· · · v−1

i p
⊗ vi1∧ · · · ∧ vi p ,

where the product v`
1
· · · v`

p
v−1

i1
· · · v−1

i p
is computed in the ring of Laurent poly-

nomials in v1, . . . , vn . (Since 0≤ ai j < `
j
i j

, the result lies in S(V ) when the corre-
sponding sum is nonempty.) The expression above is precisely that claimed in the
theorem. �

In case the ground field is C or R, by the above theorem, our map (9B)∗ is
precisely the map J of [Halbout 2001]. Halbout gave an explicit homotopy s
showing that J is a homotopy inverse to the canonical embedding of the de Rham
complex into the Hochschild complex. In contrast, we see immediately that (9B)∗

induces an isomorphism on homology since 9B is itself a chain map.
For comparison, we give the map on Hochschild cohomology HH

q
(S(V )); this

is simply the case g = 1 of Definition 3-4, by Theorem 5-1:



Quantum differentiation and chain maps of bimodule complexes 355

Theorem 6-3. Let B = {v1, . . . , vn} be a basis of V . Then as an automorphism on
HH

q
(S(V )) at the chain level,

(9B)
∗(α)( f1⊗ · · ·⊗ f p)= f0

∂ f1

∂v j1
· · ·

∂ f p

∂v jp

,

when α = f0⊗ v
∗

j1 ∧ · · · ∧ v
∗

jp
∈ HomC(S(V )⊗

∧pV, S(V )), f0, . . . , f p ∈ S(V ).

Now we restrict our choice of field again to C. Let M = S(V )#G, and note that
Hochschild homology decomposes just as does Hochschild cohomology:

HH q(S(V )#G)∼= HH q(S(V ), S(V )#G)G ∼=
(⊕

g∈G

HH q(S(V ), S(V )g)
)G

(see [Farinati 2005; Ştefan 1995]). Thus one is interested in the components
HH q(S(V ), S(V )g) = TorS(V )eq (S(V ), S(V )g), for each g in G. A calculation
similar to that in the proof of Theorem 5-1 yields the explicit formula in the next
theorem for the induced map

(9B)∗ : S(V )g⊗ S(V )⊗
q
→ S(V )g⊗

∧q
(V ) .

Note that quantum differential operators surface (compare with Definition 3-4 of
ϒ , which is equal to 9∗B by Theorem 5-1). We have not found these maps in the
literature on Hochschild homology.

For g in G, let B = {v1, . . . , vn} be a basis of V consisting of eigenvectors of g
with corresponding eigenvalues ε1, . . . , εn . Write g= s1 · · · sn where siv j = v j for
j 6= i and sivi = εivi . Recall the quantum partial differential operators ∂i := ∂vi ,εi

of Definition (3-1).

Theorem 6-4. Let g ∈ G and let B = {v1, . . . , vn} be a basis of V consisting of
eigenvectors for g. Then as an automorphism on HH q(S(V ), S(V )g) at the chain
level,

(9B)∗( f0g⊗ f1⊗· · ·⊗ f p)=
∑

1≤i1<···<i p≤n

f0

( p∏
k=1

s1s2···sik−1 (∂ik fk)

)
g⊗vi1∧· · ·∧vi p

for all f0, f1, . . . , f p ∈ S(V ).

We make a few final comments about the appearance of our chain maps 9B in
Hochschild cohomology. Again let M = S(V )#G, and consider the map (9B)

∗ on
the Hochschild cohomology HH

q
(S(V ), S(V )#G) for any basis B of V . We ob-

served (as a consequence of Theorem 5-1 and Definition 3-4) that (9B)
∗ is given by

quantum partial differential operators. The reader should compare with maps given
in [Halbout and Tang 2010]: these authors define functions directly on cochain
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complexes (without first defining chain maps on resolutions) and then must prove
that these functions are cochain maps. Again, our approach presents an advantage:
We instead define one primitive chain map 9B from which induced cochain maps
effortlessly spring. For example, (9B)

∗
=ϒ is automatically a cochain map since

9B is a chain map by Theorem 4-4. The reader is cautioned that Halbout and Tang
[2010] work only over R, in which case Hochschild cohomology has a specialized
description (V and V ∗ are G-isomorphic in that setting, simplifying some aspects
of homology and cohomology).

Appendix: Proof of Theorem 4-4

Let V be a finite-dimensional vector space over any field. Fix a basis

B = {v1, . . . , vn}

of V . Recall Definition 4-1 of the linear map9=9B from the bar resolution (2-1)
to the Koszul resolution (2-4) of S(V ). We prove that 9 is a chain map, that is,
9p−1δp = dp9p for all p ≥ 1.

A straightforward but tedious calculation shows that 90δ1 = d191, and we as-
sume from now on that p ≥ 2.

We first compute

dp9p(1⊗ v`
1
⊗ · · ·⊗ v`

p
⊗ 1).

For each j ∈ N, let δ[ j] : N→ {0, 1} be the Kronecker delta function defined by

(δ[ j])i = δ[ j](i)=
{

1 if i = j
0 if i 6= j.

Then

dp9p(1⊗ v`
1
⊗ · · ·⊗ v`

p
⊗ 1)

= dp

( ∑
1≤i1<···<i p≤n

∑
0≤ai j<`

j
i j

vQ(`;i1,...,i p)⊗ v Q̂(`;i1,...,i p)⊗ vi1∧ · · · ∧ vi p

)

=

∑
1≤i1<···<i p≤n

∑
0≤ai j<`

j
i j

p∑
m=1

(−1)m+1
(
vQ+δ[im ]⊗ v Q̂

⊗ vi1∧ · · · ∧ v̂im∧ · · · ∧ vi p

−vQ
⊗v Q̂+δ[im ]⊗vi1∧· · ·∧v̂im∧· · ·∧vi p

)
,

where Q = Q(`; i1, . . . , i p) and Q̂ = Q̂(`; i1, . . . , i p) are determined by the ai j

as in Definition 4-1. Now fix m in the above expression. The factors vQ+δ[im ] and
vQ differ only in the power of vim . In the sum, the power aim ranges over the set
{0, . . . , `m

im
− 1}, and thus the corresponding terms cancel except for the first term
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when aim = `
m
im
−1 and the second term when aim = 0. After all such cancellations,

for each m = 1, . . . , p, what remains is

∑
1≤i1<···<i p≤n

p∑
m=1

∑
0≤ ai j<`

j
i j

(−1)m+1
(
vRm(`;i1,...,i p)⊗v R̂m

⊗vi1∧· · ·∧ v̂im∧· · ·∧vi p

−vSm(`;i1,...,i p)⊗v Ŝm
⊗vi1∧· · ·∧v̂im∧· · ·∧vi p

)
,

where the rightmost sum is over ai , . . . , âim , . . . , ai p and (abusing notation, as R, S
depend on fewer ai j’s than Q)

Rm(`; i1, . . . , i p)i =

{
`1

im
+ · · ·+ `m

im
if i = im,

Q(`; i1, . . . , i p)i if i 6= im,

Sm(`; i1, . . . , i p)i =

{
`1

im
+ · · ·+ `m−1

im
if i = im,

Q(`; i1, . . . , i p)i if i 6= im,

and R̂m, Ŝm are defined by the equations

vRm(`;i1,...,i p)v R̂m(`;i1,...,i p)vi1 · · · v̂im · · · vi p = v
`1
· · · v`

p
,

vSm(`;i1,...,i p)v Ŝm(`;i1,...,i p)vi1 · · · v̂im · · · vi p = v
`1
· · · v`

p
.

Consider the leftmost sum over 1≤ i1 < · · ·< i p ≤ n. If we replace a given im

in Sm by im + 1 in Rm (provided im + 1< im+1), keeping the others fixed, then

Sm(`; i1, . . . , i p)= Rm(`; i1, . . . , im−1, im + 1, im+1, . . . , i p).

We thus have further cancellation, with the remaining terms coming from the first
summand when im = im−1+ 1 and the second summand when im = im+1− 1:

p∑
m=1

∑
1≤i1<···<ı̂m<···<i p≤n

∑
0≤ai j<`

j
i j

(−1)m+1

(
vRm(`;i1,...,im−1,im−1+1,im+1,...,i p)⊗ v R̂m

⊗ vi1∧ · · · ∧ v̂im∧ · · · ∧ vi p

− vSm(`;i1,...,im−1,im+1−1,im+1,...,i p)⊗ v Ŝm
⊗ vi1∧ · · · ∧ v̂im∧ · · · ∧ vi p

)
,

where the rightmost sum is over all such ai1, . . . , âim , . . . , ai p .
Now consider the middle sum above ranging over all 1≤ i1 < · · ·< ı̂m < · · ·<

i p ≤ n. If m = 1, this sum does not include i2 = 1, due to the left out entry ı̂m .
Similarly, if m = p, this sum does not include i p−1 = n. For the sake of later
comparison, we add and subtract terms in the m = 1 summand, corresponding to
i2 = 1, and in the m = p summand, corresponding to i p−1 = n. These added and
subtracted terms may be written with either notation, R or S, so that the result
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looks the same as above except that now we include summands corresponding to
m = 1, i2 = 1 and to m = p, i p−1 = n.

We next combine some of the terms. Consider the terms arising from a pair of
subsequent indices m and m+1 in the leftmost sum. We pair each summand of type
Sm with a summand of type Rm+1. Fix an integer i and collect those summands
(in the m-th sum) with Sm-exponent for which im+1 = i and those summands (in
the (m + 1)-st sum) with Rm+1-exponent for which im = i . Note that all these
summands share the same sign. We compare the exponents

Sm(`; i1, . . . , im−1, im+1− 1, im+1, . . . , i p)

and

Rm+1(`; i1, . . . , im, im + 1, im+2, . . . , i p)

when im = i = im+1 and see that the power of vi ranges from `1
i + · · · + `

m−1
i to

`1
i + · · · + `

m−1
i + `m

i − 1 and then again from `1
i + · · · + `

m−1
i + `m

i to `1
i + · · · +

`m
i +`

m+1
i −1 in this collection. Hence, we can simply rewrite the partial sum over

this collection using the exponent

Q(`1, . . . , `m−1, `m
+ `m+1, `m+2, . . . , `p

; i1, . . . , ı̂m+1, . . . , i p)

instead. We obtain the following, in which the m = 1 (unmatched R1) and m = p
(unmatched S p) sums have been singled out:∑
1≤i2<···<i p≤n

∑
0≤ ai j<`

j
i j

(for j∈{2,...,p})

vQ(`2,··· ,`p
;i2,··· ,i p)+`

1
⊗ v Q̂

⊗ vi2∧ · · · ∧ vi p

+

p−1∑
m=1

(−1)m
∑

1≤i1<···<ı̂m<···<i p≤n

∑
0≤ ai j<`

j
i j
(for j∈{1,...,m−1})

0≤ aim+1≤ `
m
im+1
+`m+1

im+1
−1

0≤ ai j<`
j+1
i j

(for j∈{m+2,...,p})

vQ(`1,...,`m−1,`m
+`m+1,`m+2,...,`p

;i1,...,ı̂m ,...,i p)⊗ v Q̂
⊗ vi1∧ · · · ∧ v̂m ∧ · · · ∧ vi p

+ (−1)p
∑

1≤i1<···
<i p−1≤n

∑
0≤ ai j<`

j
i j

(for j∈{1,...,p−1})

vQ(`1,··· ,`p−1
;i2,··· ,i p−1)⊗ v Q̂+`p

⊗ vi1∧ · · · ∧ vi p−1 .

Now relabel indices so that each sum is taken over 1≤ i1 < · · ·< i p−1 ≤ n. We
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obtain∑
1≤i1<···<i p−1≤n

∑
0≤ ai j<`

j
i j

vQ(`2,··· ,`p
;i1,··· ,i p−1)+`

1
⊗ v Q̂

⊗ vi1∧ · · · ∧ vi p−1

+

p−1∑
m=1

(−1)m
∑

1≤i1<···<i p−1≤n

∑
0≤ ai j<`

j
i j
(for j∈{1,...,m−1})

0≤ aim≤ `
m
im+`

m+1
im −1

0≤ ai j<`
j+1
i j

(for j∈{m+1,...,p})

vQ(`1,...,`m−1,`m
+`m+1,`m+2,...,`p

;i1,...,i p−1)⊗ v Q̂
⊗ vi1∧ · · · ∧ vi p−1

+ (−1)p
∑

1≤i1<···<i p−1≤n

∑
0≤ ai j<`

j
i j

vQ(`1,··· ,`p−1
;i2,··· ,i p−1)⊗ v Q̂+`p

⊗ vi1∧ · · · ∧ vi p−1

= 9p−1(δp(1⊗ v`
1
⊗ · · ·⊗ v`

p
⊗ 1)).

This finishes the proof of Theorem 4-4.
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Toric-friendly groups
Mikhail Borovoi and Zinovy Reichstein

Let G be a connected linear algebraic group over a field k. We say that G is
toric-friendly if for any field extension K/k and any maximal K -torus T in G the
group G(K ) acts transitively on (G/T )(K ). Our main result is a classification
of semisimple (and under certain assumptions on k, of connected) toric-friendly
groups.

Introduction

Let k be a field and X be a homogeneous space of a connected linear algebraic
group G defined over k. The first question one usually asks about X is whether or
not it has a k-point. If the answer is “yes”, then one often wants to know whether
or not the set X (k) of k-points of X forms a single orbit under the group G(k).

In this paper we shall focus on the case where the geometric stabilizers for
the G-action on X are maximal tori of Gk := G ×k k (here k stands for a fixed
algebraic closure of k). Such homogeneous spaces arise, in particular, in the study
of the adjoint action of a connected reductive group G on its Lie algebra or of the
conjugation action of G on itself; see [Colliot-Thélène et al. 2011]. It is shown
in Corollary 4.6 of the same reference (see also [Kottwitz 1982, Lemma 2.1]) that
every homogeneous space X of this type has a k-point, assuming that G is split and
char(k)= 0. Therefore it is natural to ask if this point is unique up to translations
by G(k).

Definition 0.1. Let k be a field. We say that a connected linear k-group G is
toric-friendly if for every field extension K/k the following condition is satisfied:

(∗) For every maximal K -torus T of G K :=G×k K , the group G(K ) has only one
orbit in (G K /T )(K ); equivalently, the natural map π :G(K )→ (G K /T )(K )
is surjective.

Borovoi was partially supported by the Hermann Minkowski Center for Geometry. Reichstein was
partially supported by NSERC Discovery and Accelerator Supplement grants.
MSC2000: primary 20G10; secondary 20G15, 14G05.
Keywords: toric-friendly group, linear algebraic group, semisimple group, maximal torus, rational

point, elementary obstruction.
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Examining the cohomology exact sequence associated to the K -subgroup T of
G K [Serre 1994, I.5.4, Proposition 36], we see that G is toric-friendly if and only if
ker[H 1(K , T )→ H 1(K ,G)]=1 for every field extension K/k and every maximal
K -torus T of G K .

Observe that G is toric-friendly if and only if condition (∗) of Definition 0.1 is
satisfied for all finitely generated extensions K/k.

We are interested in classifying toric-friendly groups. In Section 1 we partially
reduce this problem to the case where the group is semisimple. The rest of this pa-
per will be devoted to proving the following classification theorem for semisimple
toric-friendly groups.

Main Theorem 0.2. Let k be a field. A connected semisimple k-group G is toric-
friendly if and only if G is isomorphic to a direct product

∏
i RFi/k G ′i , where each

Fi is a finite separable extension of k and each G ′i is an inner form of PGL ni ,Fi for
some integer ni .

Notation. Unless otherwise specified, k will denote an arbitrary field. For any field
K we denote by Ks a separable closure of K .

By a k-group we mean an affine algebraic group scheme over k, not necessarily
smooth or connected. However, when talking of a reductive or semisimple k-group,
we implicitly assume smoothness and connectedness.

Let S be a k-group. We denote by H i (k, S) the i-th flat cohomology set for
i = 0, 1 [Waterhouse 1979, 17.6]. If S is abelian, we denote by H i (k, S) the
i-th flat cohomology group for i ≥ 0 [Berhuy et al. 2007, Appendix B]. There
are exact sequences for flat cohomology similar to those for Galois cohomology,
[Waterhouse 1979, 18.1; Berhuy et al. 2007, Appendix B]. When S is smooth, the
flat cohomology H i (k, S) can be identified with Galois cohomology.

1. First reductions

Lemma 1.1. Let 1 → U → G
ϕ
−−→ G ′ → 1 be an exact sequence of smooth

connected k-groups, where U is unipotent. We assume that U is k-split, that is, has
a composition series over k whose successive quotients are isomorphic to Ga,k .
Then G is toric-friendly if and only if G ′ is toric-friendly.

Proof. Choose a field extension K/k and a maximal K -torus T ⊂ G K . Set T ′ =
ϕ(T ) ⊂ G ′K , then T ′ is a maximal torus of G ′K . The map ϕT

: T → T ′ is an
isomorphism, because T ∩UK = 1 (as UK is unipotent). Conversely, let us start
from a maximal torus T ′ of G ′K . The preimage

H = ϕ−1(T ′)⊂ G K
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of T ′ is smooth and connected, so any maximal torus T of H maps isomorphically
onto T ′ and therefore it is maximal in G K .

Now we have a commutative diagram

H 1(K , T ) //

ϕT
∗

��

H 1(K ,G)

ϕ∗

��
H 1(K , T ′) // H 1(K ,G ′)

Since ϕT
: T → T ′ is an isomorphism of tori, the left vertical arrow ϕT

∗
is an

isomorphism of abelian groups. On the other hand, by [Sansuc 1981, Lemma 1.13],
the right vertical arrow ϕ∗ is a bijective map. We see that the top horizontal arrow
in the diagram is injective if and only if the bottom horizontal arrow is injective,
which proves the lemma. �

Let k be a perfect field and G be a connected k-group. Recall that over a perfect
field the unipotent radical of G makes sense; that is, the “geometric” unipotent
radical over an algebraic closure is defined over k, by Galois descent. We denote
the unipotent radical of G by Ru(G).

Corollary 1.2. Let k be a perfect field, G be a connected k-group, and Ru(G) be
its unipotent radical. Then G is toric-friendly if and only if the associated reductive
k-group G/Ru(G) is toric-friendly.

Proof. Since k is perfect, the smooth connected unipotent k-group Ru(G) is k-split
[Borel 1991, Theorem 15.4], and the corollary follows from Lemma 1.1. �

Let k be a field. We recall that a k-group G is called special if H 1(K ,G) = 1
for every field extension K/k. This notion was introduced by J.-P. Serre [1958].
Semisimple special groups over an algebraically closed field were classified by
A. Grothendieck [1958]; we shall use his classification later on.

Recall that a k-torus T is called quasitrivial, if its character group X(T ) is a per-
mutation Galois module. Split tori and, more general, quasitrivial tori are special.

Proposition 1.3. Let 1→C→G
ϕ
−−→G ′→ 1 be an exact sequence of k-groups,

where G and G ′ are reductive, and C ⊂ G is central, hence of multiplicative type
(not necessarily connected or smooth).

(a) If G is toric-friendly, so is G ′.

(b) If C is a special k-torus, then G is toric-friendly if and only if G ′ is toric-
friendly.

Proof. Let K/k be a field extension. The map T 7→ T ′ := ϕ(T ) is a bijection
between the set of maximal K -tori T ⊂G K and the set of maximal K -tori T ′⊂G ′K
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(the inverse map is T ′ 7→ T := ϕ−1(T ′)). For such T and T ′ = ϕ(T ) we have
commutative diagrams

G K
ϕ //

π

��

G ′K

π ′

��

G(K )
ϕ //

π

��

G ′(K )

π ′

��
G K /T

ϕ∗

∼=

// G ′K /T ′ (G K /T )(K )
ϕ∗

∼=

// (G ′K /T ′)(K )

where ϕ∗ : G K /T
∼
→ G ′K /T ′ is an isomorphism of K -varieties, and the induced

map on K -points ϕ∗ : (G K /T )(K )→ (G ′K /T ′)(K ) is a bijection. Now, if G is
toric-friendly, then the map π :G(K )→ (G K /T )(K ) is surjective, and we see from
the right-hand diagram that then the map π ′ : G ′(K )→ (G ′K /T ′)(K ) is surjective
as well. This shows that G ′ is toric-friendly, thus proving (a).

To prove (b), assume that G ′ is toric-friendly and C is a special k-torus. Then
the map π ′ :G ′(K )→ (G ′K /T ′)(K ) is surjective (because G ′ is toric-friendly) and
the map ϕ : G(K )→ G ′(K ) is surjective (because C is special). We see from the
right-hand diagram that the map π : G(K )→ (G K /T )(K ) is surjective as well.
Hence G is toric-friendly. �

We record the following immediate corollary of Proposition 1.3(b).

Corollary 1.4. Let G be a reductive k-group. Suppose that the radical R(G) is a
special k-torus (in particular, this condition is satisfied if R(G) is a quasitrivial
k-torus). Then G is toric-friendly if and only if the semisimple group G/R(G) is
toric-friendly. �

The next result follows from Corollaries 1.2 and 1.4. It partially reduces the
problem of classifying toric-friendly groups G to the case where G is semisimple.

Corollary 1.5. Let k be a perfect field. Let G be a connected k-group containing
a split maximal torus. Then G is toric-friendly if and only if the semisimple group
G/R(G) is toric-friendly. �

The following two lemmas will be used to reduce the problem of classifying
adjoint semisimple toric-friendly groups G to the case where G is an absolutely
simple adjoint k-group.

Lemma 1.6. A direct product G=G ′×k G ′′ of connected k-groups is toric-friendly
if and only if both G ′ and G ′′ are toric-friendly.

Proof. Let K/k be a field extension. Let T ′ ⊂ G ′K and T ′′ ⊂ G ′′K be maximal K -
tori, then T := T ′×K T ′′ ⊂G K is a maximal K -torus, and every maximal K -torus



Toric-friendly groups 365

in G K is of this form. The commutative diagram

G(K )

��

G ′(K )×G ′′(K )

��
(G K /T )(K ) (G ′K /T ′)(K )× (G ′′K /T ′′)(K )

shows that every K -point of G K /T lifts to G if and only if every K -point of G ′K /T ′

lifts to G ′ and every K -point of G ′′K /T ′′ lifts to G ′′. �

Lemma 1.7. Let l/k be a finite separable field extension, G ′ a connected l-group,
and G = Rl/k G ′. Then G is toric-friendly if and only if G ′ is toric-friendly.

Proof. Let K/k be a field extension. Then l ⊗k K = L1× · · · × Lr , where L i are
finite separable extensions of K . It follows that G K =

∏
i RL i/K G ′L i

. Let T ⊂G K

be a maximal K -torus, then T =
∏

i RL i/K T ′i , where T ′i is a maximal L i -torus of
G ′L i

for each i . We have

G(K )= G K (K )=
(∏

i

RL i/K G ′L i

)
(K )=

∏
i

G ′L i
(L i )=

∏
i

G ′(L i )

and similarly (G K /T )(K )=
∏

i (G
′

L i
/T ′i )(L i ), yielding a commutative diagram

G(K )

��

∏
i G ′(L i )

��
(G K /T )(K )

∏
i (G
′

L i
/T ′i )(L i )

If G ′ is toric-friendly, then the right vertical arrow in the diagram is surjective,
hence the left vertical arrow is surjective and G is toric-friendly.

Conversely, assume that G is toric-friendly. Let L/ l be a field extension and
T ′ ⊂ G ′L a maximal L-torus. Set K := L and T := T ′ in the diagram above. Then
we can identify L with one of L i in the decomposition l⊗k K = L1×· · ·× Lr , say
with L1. In this way we identify G ′L with G ′L1

and G ′L/T ′ with G ′L1
/T ′1. Since G

is toric-friendly, the left vertical arrow in the diagram is surjective, hence the right
vertical arrow is also surjective. This means that the map G ′(L i )→ (G ′L i

/T ′i )(L i )

is surjective for each i and in particular, for i = 1. Consequently, the map G ′(L)→
(G ′L/T ′)(L) is surjective, and G ′ is toric-friendly, as desired. �

2. The elementary obstruction

2.1. Let K be a field and X be a smooth geometrically integral K -variety. Write
g=Gal(Ks/K ), where Ks is a fixed separable closure of K . Recall from [Colliot-
Thélène and Sansuc 1987, Definition 2.2.1] that the elementary obstruction ob(X)
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is the class in Ext1g(Ks(X)∗/K ∗s , K ∗s ) of the extension

1→ K ∗s → Ks(X)∗→ Ks(X)∗/K ∗s → 1.

In particular, ob(X)= 0 if and only if this extension of g-modules splits. If X has a
K -point, then ob(X)= 0 [Colliot-Thélène and Sansuc 1987, Proposition 2.2.2(a)].
Conversely, if Y is a T -torsor over K for some K -torus T , and ob(Y )= 0, then Y
has a K -point, by Lemma 2.1(iv) of [Borovoi et al. 2008]. However, if X is an H -
torsor over K for some simply connected semisimple K -group H , then ob(X)= 0
even when X has no K -points; see Lemma 2.2(viii) of that same reference. (The
standing assumption in [Borovoi et al. 2008] is that char(K ) = 0; however, the
proofs of Lemmas 2.1(iv) and 2.2(viii) go through in arbitrary characteristic.)

The following key lemma was suggested to us by J.-L. Colliot-Thélène.

Lemma 2.2. Let K be a field, T be a K -torus, H be a simply connected semisimple
K -group, X be a H-torsor over K and Y be a T -torsor over K . If Y has an F-point
over the function field F = K (X) of X , then Y has a K -point.

Proof. Since H is simply connected, ob(X) = 0; see Section 2.1 above. Suppose
Y has an F-point. This means that there exist a K -rational map X 99K Y . By
[Wittenberg 2008, Lemma 3.1.2], if we have a K -rational map X 99K Y between
smooth geometrically integral K -varieties, then ob(X) = 0 implies ob(Y ) = 0.
Since T is a K -torus, if ob(Y ) = 0, then Y (K ) 6= ∅; see Section 2.1 above. Thus
in our situation Y has a K -point, as claimed. �

Lemma 2.3. Let k be a field. Assume we have a commutative diagram of k-groups

S

��

// T

��
H // G

where G is a smooth connected k-group, the vertical map T → G is the inclusion
of a maximal k-torus T into G, and H is semisimple and simply connected. If there
exists a field extension K/k such that the map

H 1(K , S)→ H 1(K , T )

is nontrivial, then G is not toric-friendly.

Proof. Choose K and s ∈ H 1(K , S) such that the image t ∈ H 1(K , T ) of s in
H 1(K , T ) is nontrivial. Let h ∈ H 1(K , H) be the image of s ∈ H 1(K , S) in
H 1(K , H), and let g ∈ H 1(K ,G) be the image of t (and of h) in H 1(K ,G), as
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shown in the commutative diagram below:

H 1(K , S)

��

// H 1(K , T )

��

s //

��

t

��

H 1(K , H) // H 1(K ,G) h // g

Let X be an H -torsor over K representing h and let F = K (X) be the function field
of X . We denote by hF the image of h in H 1(F, H), and similarly we define sF ,
tF , and gF . Clearly X has an F-point, hence hF = 1 in H 1(F, H) and therefore
gF = 1 in H 1(F,G). On the other hand, by Lemma 2.2, tF 6= 1. We conclude that
the kernel of the natural map H 1(F, T )→ H 1(F,G) contains tF 6= 1 and hence,
is nontrivial. This implies that G is not toric-friendly. �

2.4. Let G be a reductive k-group. Let Gss be the derived group of G (it is
semisimple), and let Gsc be the universal cover of Gss (it is semisimple and simply
connected). Consider the composed homomorphism f : Gsc� Gss ↪→ G.

Let K/k be a field extension. There is a canonical bijective correspondence
T ↔ T sc between the set of maximal K -tori T ⊂ G K and the set of maximal K -
tori T sc

⊂ Gsc. Starting from a maximal K -torus T ⊂ G K , we define a maximal
K -torus T sc

:= f −1(T ) ⊂ Gsc
K . Conversely, starting from a maximal K -torus

T sc
⊂Gsc

K , we define a maximal K -torus T := f (T sc) ·R(G)K ⊂G K , where R(G)
is the radical of G.

Proposition 2.5. Let G be a reductive k-group. Let Gsc and f : Gsc
→ G be as in

Section 2.4 above. Let K/k be a field extension, T ⊂ G K be a maximal K -torus
of G K , and set T sc

= f −1(T ) ⊂ Gsc
K as above. If the natural map H 1(K , T sc)→

H 1(K , T ) is nontrivial, then G is not toric-friendly.

Proof. Immediate from Lemma 2.3. �

Proposition 2.6. Let G be a semisimple k-group, f : Gsc
→ G be the universal

covering and C := ker( f ). Then the following conditions are equivalent:

(a) G is toric-friendly.

(b) The map H 1(K , T sc)→ H 1(K , T ) is trivial (identically zero) for every field
extension K/k and every maximal K -torus T sc of Gsc. Here T := f (T sc).

(c) The map H 1(K ,C)→ H 1(K , T sc) is surjective for every field extension K/k
and every maximal K -torus T sc of Gsc.

(d) The connecting homomorphism ∂T : H 1(K , T )→ H 2(K ,C) is injective for
every field extension K/k and every maximal K -torus T of G.

(e) The natural map H 1(K , T )→ H 1(K ,G) is injective for every field extension
K/k and every maximal K -torus T of G.
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Proof. (a)⇒ (b) by Proposition 2.5. Examining the cohomology sequence

H 1(K ,C)→ H 1(K , T sc)→ H 1(K , T )→ H 2(K ,C)

associated to the exact sequence 1→C→ T sc
→ T → 1 of k-groups, we see that

(b), (c) and (d) are equivalent.
(d)⇒ (e): The diagram

1 // C // T sc //
_�

��

T //
_�

��

1

1 // C // Gsc // G // 1

of K -groups induces compatible connecting morphisms

H 1(K , T )

��

∂T

&&
H 2(K ,C)

H 1(K ,G)

∂G
88

Suppose α, β ∈ H 1(K , T ) map to the same element in H 1(K ,G). Then the di-
agram above shows that ∂T (α) = ∂T (β) in H 2(K ,C). Part (d) now tells us that
α = β.

(e)⇒ (a) is obvious, since (a) is equivalent to the assertion that H 1(K , T )→
H 1(K ,G) has trivial kernel for every K and T ; see Definition 0.1. �

Corollary 2.7. With the assumptions and notation of Proposition 2.6, if G is toric-
friendly and quasisplit, then

(a) the map H 1(K ,Gsc)→ H 1(K ,G) is trivial for every K/k,

(b) the map H 1(K ,C)→ H 1(K ,Gsc) is surjective for every K/k,

(c) the connecting map ∂G : H 1(K ,G)→ H 2(K ,C) has trivial kernel for every
K/k.

Proof. Examining the cohomology sequence

H 1(K ,C)→ H 1(K ,Gsc)→ H 1(K ,G)→ H 2(K ,C)

associated to the exact sequence 1→C→ Gsc
→ G→ 1, we see that (a), (b) and

(c) are equivalent.
To prove (a), recall that since G K is quasisplit, by a theorem of Steinberg [1965,

Theorem 1.8] every x sc
∈ H 1(K ,Gsc) lies in the image of the map H 1(K , T sc)→
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H 1(K ,Gsc) for some maximal K -torus T sc of Gsc
K . Since G is toric-friendly, by

Proposition 2.6 the map H 1(K , T sc) → H 1(K , T ) is trivial. The commutative
diagram

H 1(K , T sc)

��

// H 1(K , T )

��
H 1(K ,Gsc) // H 1(K ,G)

now shows that the image of x sc in H 1(K ,G) is 1. Thus the map H 1(K ,Gsc)→

H 1(K ,G) is trivial. �

Theorem 2.8. Let G be a split semisimple k-group and f :Gsc
→G be its universal

covering map. If G is toric-friendly, then Gsc is special.

Proof. Let T sc be a split maximal torus of Gsc. Recall that T sc is special (as is any
split torus). Set C = ker f , then C ⊂ T sc. For any field extension K/k, the map
H 1(K ,C)→ H 1(K ,Gsc) factors through H 1(K , T sc)= 1 and hence is trivial. By
Corollary 2.7(b) this map is also surjective. This shows that H 1(K ,Gsc) = 1 for
every K/k, that is, Gsc is special. �

Remark 2.9. Our proof of Theorem 2.8 goes through for any (not necessarily split)
semisimple k-group G, as long as Gsc contains a special maximal k-torus T sc. In
particular, Theorem 2.8 remains valid for any quasisplit semisimple k-group G,
in view of Lemma 2.10 below. This lemma is a special case of [Colliot-Thélène
et al. 2004, Lemma 5.6]; however, for the sake of completeness we supply a short
self-contained proof.

Lemma 2.10. Let G be a semisimple, simply connected, quasisplit k-group over a
field k. Let B ⊂ G be a Borel subgroup defined over k, and let T ⊂ B ⊂ G be a
maximal k-torus of G contained in B. Then T is a quasitrivial k-torus.

Proof. We write k for a fixed algebraic closure of k. Let X∨(T ) denote the group
of cocharacters of T . Let R∨ = R∨(Gk, Tk) ⊂ X∨(T ) denote the coroot system
of Gk with respect to Tk , and let 5∨ ⊂ R∨ denote the basis of R∨ corresponding
to B. The Galois group Gal(ks/k) acts on X∨(T ). Since T , G, and B are defined
over k, the subsets R∨ and 5∨ of X∨(T ) are invariant under this action. Since
G is simply connected, 5∨ is a Z-basis of X∨(T ). Thus Gal(ks/k) permutes the
Z-basis 5∨ of X∨(T ); in other words, T is a quasitrivial torus. �

Remark 2.11. A similar assertion for adjoint quasisplit groups was proved by G.
Prasad [1989, Proof of Lemma 2.0].

3. Examples in type A

Let k be a field and A a central simple k-algebra of dimension n2. We write GL1,A

for the k-group with GL1,A(R)= (A⊗k R)∗ for any unital commutative k-algebra
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R (here ( )∗ denotes the group of invertible elements). The k-group GL1,A is an
inner form of GL n,k .

Let K be a field. Recall that an n-dimensional commutative étale K -algebra is
a finite product E =

∏
i L i , where each L i is a finite separable field extension of

K and
∑

i [L i : K ] = n. For such E =
∏

i L i we define a K -torus RE/K Gm,E :=∏
i RL i/K Gm,L i , then (RE/K Gm,E)(K ) = E∗. Clearly the K -torus RE/K Gm,E is

quasitrivial.

Proposition 3.1. Let k be a field, and let A/k be a central simple k-algebra of
dimension n2.

(a) The k-group G = GL1,A is toric-friendly.

(b) The k-group PGL1,A := GL1,A/Gm,k is toric-friendly.

(c) In particular, GL n,k and PGL n,k are toric-friendly.

Proof. (a) Let K/k be a field extension and let

T ⊂ G K = GL1,A⊗kK

be a maximal K -torus. Let E be the centralizer of T in A⊗kK . An easy calculation
over a separable closure Ks of K shows that E is an n-dimensional commutative
étale K -subalgebra of A ⊗k K and that T = RE/K Gm,E . It follows that T is
quasitrivial, hence special. Since all maximal K -tori T ⊂ G K are special, G is
toric-friendly.

(b) follows from (a) and Corollary 1.4. To deduce (c) from (a) and (b), set
A = Mn(k) (the matrix algebra). �

We now come to the main result of this section, which asserts that a toric-friendly
semisimple groups of type A is necessarily an adjoint group.

Proposition 3.2. Let k be a field. Consider a k-group G = (SL n1×· · ·×SL nr )/C ,
where C ⊂µ :=µn1×· · ·×µnr is a central subgroup of Gsc

= SL n1×· · ·×SL nr ,
not necessarily smooth. If C 6= µ, then G is not toric-friendly.

Before proceeding with the proof, we fix some notation. Let L/K be a finite
separable field extension of degree n. Set

R1
L/K (Gm) := ker[NL/K : RL/K Gm,L → Gm,K ],

where NL/K is the norm map. Clearly R1
L/K (Gm) can be embedded into SL n,K

as a maximal K -torus. The embedding K ↪→ L induces an embedding µn,K ↪→

R1
L/K Gm , where n = [L : K ].
The following two lemmas are undoubtedly known. We include short proofs

below because we have not been able to find appropriate references.
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Lemma 3.3. There is a commutative diagram

K ∗/K ∗n
∼= //

��

H 1(K , µn)

��
K ∗/NL/K (L∗)

∼= // H 1(K , R1
L/K Gm)

(1)

where the horizontal arrows are canonical isomorphisms, the right vertical arrow
is induced by the embedding µn ↪→ R1

L/K Gm , and the left vertical arrow is the
natural projection.

Proof. Apply the flat cohomology functor to the commutative diagram of commu-
tative K -groups

1 // µn,K //
_�

��

Gm,K
n //

_�

��

Gm,K //

id
��

1

1 // R1
L/K Gm // RL/K Gm

NL/K // Gm,K // 1

and use Hilbert’s Theorem 90. �

Lemma 3.4. Suppose r | n. Then there is a commutative diagram

K ∗/K ∗n
∼= //

��

H 1(K , µn)

(n/r)∗
��

K ∗/K ∗r
∼= // H 1(K , µr ) ,

where the horizontal arrows are canonical isomorphisms, the right vertical arrow
is induced by the homomorphismµn

n/r
−−→µr given by x 7→ xn/r , and the left vertical

arrow is the natural projection.

Proof. Similar to that of Lemma 3.3, using the commutative diagram

1 // µn //

n/r
��

Gm
n //

n/r

��

Gm //

id

��

1

1 // µr // Gm
r // Gm // 1 �

Example 3.5. The group G = SL n,k (n ≥ 2) is not toric-friendly.

Proof. Since SL n is special, it suffices to construct an extension K/k and a max-
imal K -torus T := R1

L/K (Gm) such that H 1(K , T ) 6= 1. In view of Lemma 3.3 it
suffices to show that NL/K (L∗) 6= K ∗ for some field extension K/k and some finite
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separable field extension L/K of degree n. This is well known; see for example
the proof of [Rowen 1980, Proposition 3.1.46]. We include a short proof below
as a way of motivating a related but more complicated argument at the end of the
proof of Proposition 3.2.

Let L := k(x1, . . . , xn), where x1, . . . , xn are independent variables, and K :=
L0, where 0 is the cyclic group of order n that acts on L by cyclically permuting
x1, . . . , xn . For 0 6= a ∈ k[x1, . . . , xn], let deg(a) ∈ N denote the degree of a as a
polynomial in x1, . . . , xn . If a ∈ k(x1, . . . , xn) is of the form a= b/c with nonzero
b, c ∈ k[x1, . . . , xn], then we define deg(a) = deg(b) − deg(c). This yields the
usual degree homomorphism deg : L∗→ Z. Since NL/K (a)=

∏
γ∈0 γ (a), we see

that deg(NL/K (a)) = n deg(a) is divisible by n, for every a ∈ L∗. On the other
hand, s1 = x1 + · · · + xn ∈ K has degree 1. This shows that NL/K (L∗) 6= K ∗, as
claimed. �

3.6. Proof of Proposition 3.2. Let K/k be a field extension. For each i=1, . . . , r ,
let L i be a separable field extension of degree ni over K , and let T =T1×· · ·×Tr be
a maximal K -torus of Gsc, where Ti := R1

L i/K (Gm). By Proposition 2.6 it suffices
to show that the composition

H 1(K ,C)→ H 1(K , µ)→ H 1(K , T ) (2)

is not surjective for some choice of extensions K/k and L i/Ki . Since C $µ, there
exist a prime p and a nontrivial character χ : µ→ µp such that χ(C) = 1. By
Proposition 1.3(a) we may assume that C = ker( χ). For notational simplicity, let
us suppose that n1, . . . , ns are divisible by p and ns+1, . . . , nr are not, for some
0≤ s ≤ r . Then it is easy to see that χ is of the form

χ(c1, . . . , cr )= cd1n1/p
1 · · · c dsns/p

s

for some integers d1, . . . , ds . Since χ is nontrivial on µ, we have s ≥ 1 and di is
not divisible by p for some i = 1, . . . , s, say for i = 1. That is, we may assume
that d1 is not divisible by p.

Lemma 3.3 gives a concrete description of the second map in (2). To determine
the image of the map H 1(K ,C)→ H 1(K , µ), we examine the cohomology exact
sequence

H 1(K ,C) // H 1(K , µ)
χ∗ // H 1(K , µp)

∏r
i=1 K ∗/K ∗ni

χ∗ // K/K ∗p

induced by the exact sequence 1→ C→ µ
χ
−→ µp→ 1. The image of H 1(K ,C)

in H 1(K , µ) is the kernel of χ∗. By Lemma 3.4, χ∗ maps the class of (a1, . . . , ar )
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in H 1(K , µ)=
∏r

i=1 K ∗/K ∗ni to the class of ad1
1 · · · a

ds
s in H 1(K , µp)= K/K ∗p.

In other words, the image of H 1(K ,C) in H 1(K , µ) is the subgroup of classes of
r -tuples (a1, . . . , ar ) in H 1(K , µ) =

∏r
i=1 K ∗/K ∗ni such that ad1

1 . . . ads
s ∈ K ∗p.

Hence, the image of H 1(K ,C) in H 1(K , T ) =
∏r

i=1 K ∗/NL i/K (L∗i ) consists of
classes of r -tuples (a1, . . . , ar ) such that ad1

1 . . . ads
s ∈ K ∗p.

It remains to construct a field extension K/k, separable field extensions L i/K of
degree ni for i = 1, . . . , r , and an element α ∈ H 1(K , T )=

∏r
i=1 K ∗/NL i/K (L∗i ),

which cannot be represented by (a1, . . . , ar ) ∈ (K ∗)r such that ad1
1 · · · a

ds
s ∈ K ∗p.

This will show that the map H 1(K ,C)→ H 1(K , T ) is not surjective, as claimed.
Set L := k(x1, . . . , xn), where n = n1 + · · · + nr and x1, . . . , xn are indepen-

dent variables. The symmetric group Sn acts on L by permuting these variables;
we embed Sn1 × · · · × Snr into Sn in the natural way, by letting Sn1 permute the
first n1 variables, Sn2 permute the next n2 variables, etc. Set K := L Sn1×···×Snr ,
s1 := x1+ · · ·+ xn ∈ K and

L1 := K (x1), L 2 := K (xn1+1), . . . Lr := K (xn1+···+nr−1+1) .

Clearly [L i : K ] = ni . We claim the class of (s1, 1, . . . , 1) in
∏r

i=1K ∗/NL i/K (L∗i )
cannot be represented by any (a1, . . . , ar ) ∈ (K ∗)r with ad1

1 · · · a
ds
s ∈ K ∗p.

Let deg : L∗ → Z be the degree map, as in Example 3.5. Arguing as we did
there, we see that deg(NL i/K (a)) is divisible by ni for every i = 1, . . . , r and every
a ∈ L∗i . In particular, (a1, . . . , ar ) 7→ deg(ai ) + ni Z is a well-defined function∏r

i=1 K ∗/NL i/K (L∗i )→ Z/ni Z, and consequently,

f (a1, . . . , an) := d1 deg(a1)+ · · ·+ ds deg(as)+ pZ

is a well-defined function H 1(K , T )→ Z/pZ. We have

f (a1, . . . , an)= deg(ad1
1 · · · a

ds
s ).

If ad1
1 · · · a

ds
s ∈ K ∗p, then f (a1, . . . , ar ) = 0 in Z/pZ. On the other hand, since

deg(1)=0, deg(s1)=1 and d1 is not divisible by p, we conclude that f (s1,1, . . . ,1)
is nonzero in Z/pZ. This proves the claim and the proposition. �

4. Groups of type Cn and outer forms of An

Proposition 4.1. No absolutely simple k-group of type Cn (n ≥ 2) is toric-friendly.

Proof. Clearly we may assume that k is algebraically closed. We may also assume
that G is adjoint, see Proposition 1.3(a). We see that G=PSp2n and Gsc

=Sp2n . By
Example 3.5, SL 2 is not toric-friendly. This means that there exist a field extension
K/k, a maximal K -torus S⊂ SL 2,K , and a cohomology class aS ∈ H 1(K , S) such
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that aS 6= 1. We consider the standard embedding

(SL 2)
n
= (Sp2)

n ↪→ Sp2n, n ≥ 2.

Set T sc
= Sn

⊂ (Sp2)
n
⊂ Sp2n = Gsc. Let ι : S ↪→ T sc

= Sn be the embedding
as the first factor. Set asc

= ι∗(aS) ∈ H 1(K , T sc). Let T be the image of T sc in
G = PSp2n , and let a be the image of asc in H 1(K , T ).

Now observe that the homomorphism

χ : T sc
= Sn

→ S, (x1, . . . , xn) 7→ x1x−1
2 ,

factors through T (recall that n ≥ 2). Since χ ◦ ι= idS , we see that a 6= 1. On the
other hand, the image of asc in H 1(K ,Gsc) is 1 (because Gsc

= Sp2n is special),
hence a ∈ ker[H 1(K , T )→ H 1(K ,G)], and we see that G = PSp2n is not toric-
friendly. �

Proposition 4.2. No absolutely simple k-group of outer type An (n ≥ 2) is toric-
friendly.

Lemma 4.3. Let k be a field, K/k a separable quadratic extension, and D/K a
central division algebra of dimension r2 over K with an involution σ of the second
kind (i.e., σ acts nontrivially on K and trivially on k). Then there exists a finite
separable field extension F/k such that K F := K ⊗k F is a field and D⊗K KF is
split, that is, KF -isomorphic to the matrix algebra Mr (K F ).

Proof of the lemma. Since there are no nontrivial central division algebras over
finite fields, we may assume that k and K are infinite. Let

H = {x ∈ D | xσ = x}

denote the k-space of Hermitian elements of D. Consider the embedding D ↪→

Mr (Ks) induced by an isomorphism D⊗K Ks ∼= Mr (Ks), where Ks is a separable
closure of K . An element x of D is called semisimple regular if its image in
D⊗K Ks ∼=Mr (Ks) is a semisimple matrix with r distinct eigenvalues. A standard
argument using an isomorphism D ⊗k Ks ∼= Mr (Ks)× Mr (Ks) shows that there
is a dense open subvariety Hreg in the space H , consisting of semisimple regular
elements. Clearly Hreg is defined over k and contains k-points.

Let x ∈ Hreg(k) ⊂ D be a semisimple regular Hermitian element. Let L be
the centralizer of x in D. Since x is Hermitian (σ -invariant), the k-algebra L is
σ -invariant. Since x is semisimple and regular, the algebra L is a commutative
étale K -subalgebra of D of dimension r over K , as is easily seen by passing to
Ks . Clearly L is a field, [L : K ] = r , and L is separable over k. Since L ⊂ D and
[L : K ] = r , the field L is a splitting field for D; see, for example, [Pierce 1982,
Corollary 13.3].
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Since L ⊃ K , we see that σ acts nontrivially on L . Let F = L〈σ 〉 denote the
subfield of L consisting of elements fixed by σ . Then [L : F] = 2 and [F : k] = r .
Clearly F is separable over k. Since F ∩ K = k and F K = L , we conclude that
L = K ⊗k F := KF . This completes the proof of the lemma. �

4.4. Proof of Proposition 4.2. By Proposition 1.3(a) we may assume that G is
adjoint. By Lemma 4.3 there is a finite separable field extension F/k such that
G F ∼= PSU(Ln+1, h), where L/F is a separable quadratic extension and h is a
Hermitian form on Ln+1. It suffices to prove that G F = PSU(Ln+1, h) is not toric-
friendly.

Set S = R1
L/F Gm . We set Gsc

F = SU(Ln+1, h). We may assume that h is a
diagonal form [Knus 1991, Proposition 6.2.4(1); Scharlau 1985, Theorem 7.6.3].
Consider the diagonal torus Sn+1

⊂U(Ln+1, h) and set T sc
= Sn+1

∩SU(Ln+1, h).
We claim that there exists a field extension K/F such that H 1(K , S) 6= 1. In-

deed, take K = F((t)), the field of formal Laurent series over F . Then by [Serre
1968, Proposition V.2.3(c)], H 1(K , S)∼= H 1(F, S)×Z/2Z 6= 1.

Now let aS ∈ H 1(K , S), aS 6= 1, and consider the embedding

ι : S ↪→ T sc
⊂ Sn+1, x 7→ (x, x−1, 1, . . . , 1).

Set asc
= ι∗(aS) ∈ H 1(K , T sc). Let T be the image of T sc in G F = PSU(Ln+1, h)

and a be the image of asc in H 1(K , T ).
Note that the homomorphism

χ : T sc
→ S, (x1, . . . , xn, xn+1) 7→ x1x−1

3 ,

factors through T (recall that n ≥ 2). Since χ ◦ ι= idS , we see that a 6= 1. Now by
Proposition 2.5, G F and hence G are not toric-friendly. �

5. Classification of semisimple toric-friendly groups

Lemma 5.1. Let k be an algebraically closed field. If a semisimple k-group G is
toric-friendly, then it is adjoint of type A, that is, G ∼=

∏
i PGL ni for some integers

ni ≥ 2.

Proof. First assume that G is simple. By Theorem 2.8 the simply connected cover
Gsc of G is special. By a theorem of Grothendieck [1958, Theorem 3], Gsc is
special if and only if G is of type An , n ≥ 1 or Cn , n ≥ 2. Proposition 4.1 rules out
the second possibility. Thus G is of type A.

Now let G be semisimple. By Proposition 1.3(a), Gad is toric-friendly. Write
Gad
=
∏

i Gi , where each Gi is an adjoint simple group, then by Lemma 1.6 each
Gi is toric-friendly. As we have seen, this implies that each Gi is of type A, that
is, isomorphic to PGL ni for some ni . By Proposition 3.2, G is adjoint, that is,
G = Gad

=
∏

i PGL ni . �



376 Mikhail Borovoi and Zinovy Reichstein

5.2. Proof of the Main Theorem 0.2. If G is toric-friendly, then clearly Gk is
toric-friendly, where k is an algebraic closure of k. By Lemma 5.1, G is adjoint of
type A. Write G =

∏
i RFi/k G ′i , where each Fi/k is a finite separable extension

and G ′i is a form of PGL ni ,Fi . By Lemmas 1.6 and 1.7, each G ′i is toric-friendly,
and by Proposition 4.2, G ′i is an inner form of PGL ni ,Fi .

Conversely, by Proposition 3.1 an inner form G ′i of PGL ni ,Fi is toric-friendly.
By Lemmas 1.6 and 1.7, the product G =

∏
i RFi/k G ′i is toric-friendly. �

Corollary 5.3. Let G be a nontrivial semisimple k-group. Then there exist a
field extension K/k and a maximal K -torus T ⊂ G that is not special. Equiv-
alently, there exist a field extension K/k and a maximal K -torus T of G such that
H 1(K , T ) 6= 1.

Proof. Assume the contrary, that is, that for any field extension K/k, any maximal
K -torus T ⊂ G K is special. We may and shall assume that G is split. Recall
that for a (quasi)split group, by [Steinberg 1965, Theorem 11.1], every element of
H 1(K ,G) lies in the image of the map H 1(K , T )→ H 1(K ,G) for some maximal
K -torus T of G. Thus, under our assumption we have H 1(K ,G) = 1 for every
field extension K/k, that is, G is special. By [Grothendieck 1958, Theorem 3],
this is only possible if G is simply connected and has components only of types
A and C . On the other hand, G is clearly toric-friendly (see Definition 0.1), and
by the Main Theorem 0.2 no nontrivial simply connected semisimple group can be
toric-friendly, a contradiction. �

The next result follows immediately from the Main Theorem 0.2 and Corol-
lary 1.4.

Corollary 5.4. Let G be a split reductive k-group. The group G is toric-friendly if
and only if it satisfies these two conditions:

(a) the center Z(G) of G is a k-torus, and

(b) the adjoint group Gad
:=G/Z(G) is a direct product of simple adjoint groups

of type A. �

Note that in condition (a) we allow the trivial k-torus {1}.
By Corollary 1.4 if G is a reductive k-group such that G/R(G) is toric-friendly

and R(G) is special, then G is toric-friendly. The example below shows that when
G/R(G) is toric-friendly but R(G) is not special, G need not be toric-friendly.

Example 5.5. Let k=R, G=U2, the unitary group in two complex variables. Then
Z(G) is the group of scalar matrices in G, it is connected, hence R(G) = Z(G)
and G/R(G) = Gad

= PSU2. Since PSU2 is an inner form of PGL 2,R, by the
Main Theorem 0.2 it is toric-friendly. However, the group G = U2 is not toric-
friendly. This does not contradict Corollary 1.4, because R(G) = Z(G) is not
special: H 1(R, Z(G))= R∗/NC/R(C

∗)∼= Z/2Z.
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To show that G=U2 is not toric-friendy, set S= R1
C/RGm . Let T be the diagonal

maximal R-torus of U2. Set Gsc
= SU2, T sc

= T ∩SU2, then T sc ∼= S.
Let asc

∈ H 1(R, T sc) be the cohomology class of the cocycle given by the ele-
ment −1 ∈ T sc(R) of order 2. Let a ∈ H 1(R, T ) be the image of asc in H 1(R, T ).
Clearly a 6= 1. By Proposition 2.5, G is not toric-friendly. �
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Reflexivity and rigidity for complexes, II
Schemes

Luchezar Avramov, Srikanth B. Iyengar and Joseph Lipman

We prove basic facts about reflexivity in derived categories over noetherian
schemes, and about related notions such as semidualizing complexes, invertible
complexes, and Gorenstein-perfect maps. Also, we study a notion of rigidity
with respect to semidualizing complexes, in particular, relative dualizing com-
plexes for Gorenstein-perfect maps. Our results include theorems of Yekutieli
and Zhang concerning rigid dualizing complexes on schemes. This work is a
continuation of part I (Algebra and Number Theory 4:1 (2010), 47–86), which
dealt with commutative rings.
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Introduction

This paper is concerned with properties of complexes over noetherian schemes,
that play important roles in duality theory. Some such properties, like (derived)
reflexivity, have been an integral part of the theory since its inception; others,
like rigidity, appeared only recently. Our main results reveal new aspects of such
concepts and establish novel links between them.

Similar questions over commutative rings were examined in [Avramov et al.
2010a]. Additional topics treated there are semidualizing complexes, complexes of
finite Gorenstein dimension, perfect complexes, invertible complexes, and rigidity
with respect to semidualizing complexes, as well as versions of these notions rel-
ative to essentially-finite-type ring-homomorphisms that have finite flat dimension
or, more generally, finite Gorenstein dimension. In this sequel we globalize such
considerations, that is, extend them to the context of schemes.

This work is a substantial application of Grothendieck duality theory, seen as
the study of a twisted inverse image pseudofunctor (−)! defined on appropriate
categories of schemes. Duality theory provides interpretations of the local facts,
a technology to globalize them, and suggestions for further directions of develop-
ment.

To place our work in context, we review two methods for proving existence
of (−)! for noetherian schemes and separated scheme-maps of finite type. The
original approach of Grothendieck involves the construction of a “coherent family”
of dualizing complexes; details are presented in [Hartshorne 1966] and revised in
[Conrad 2000]. An alternative method, based on Nagata compactifications and
sketched in [Deligne 1966] and [Verdier 1969], is developed in [Lipman 2009].
Recent extensions of these approaches to maps essentially of finite type provide
a principal object of this study — the concept of rigidity — and one of our main
tools.

Indeed, rigid dualizing complexes over rings, introduced by van den Bergh
[1997] in the context of noncommutative algebraic geometry, are used by Yekutieli
and Zhang [2008; 2009] in an ongoing project aiming to simplify Grothendieck’s
construction of (−)!, and extend it to schemes essentially of finite type over a
regular ring of finite Krull dimension. On the other hand, Nayak [2009] proved an
analog of Nagata’s compactification theorem and extended the pseudofunctor (−)!

to the category of all noetherian schemes and their separated maps essentially of
finite type. We work in this category.

Next we describe in some detail the notions and results of the paper. Comparison
with earlier work is postponed until the end of this Introduction.
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All schemes are assumed to be noetherian; all scheme-maps are assumed to
be essentially of finite type and separated. Let X be a scheme, D(X) the derived
category of the category of OX -modules, and Db

c(X) ⊂ D(X) the full subcategory
whose objects are the complexes with coherent homology that vanishes in all but
finitely many degrees.

For F and A in D(X), we say that F is derived A-reflexive if both F and
RHomX (F, A) are in Db

c(X), and if the canonical D(X)-map is an isomorphism

F −→∼ RHomX
(
RHomX (F, A), A

)
.

When OX itself is derived A-reflexive the complex A is said to be semidualizing.
(The classical notion of dualizing complex includes the additional requirement that
A be isomorphic, in D(X), to a bounded complex of injective sheaves.)

In Chapter 1 we prove basic results about semidualizing complexes in D(X), and
examine their interplay with perfect complexes, that is, complexes F ∈Db

c(X) such
that for every x ∈ X the stalk Fx is isomorphic in D(OX,x ) to a bounded complex of
flat OX,x -modules (or equivalently, such that F is isomorphic in D(X) to a bounded
complex of flat OX -modules).

In Chapter 2 we explore conditions on a scheme-map f : X→ Y that allow for
the transfer of properties, like reflexivity, along standard functors D(Y )→ D(X).
These basic global notions turn out to be local, not only in the Zariski topology
but also in the flat topology; that is, we find that they behave rather well under
faithfully flat maps. (This opens the way to examination of more general sites, not
undertaken here.)

One such condition involves the notion of perfection relative to f , defined for
F in Db

c(X) by replacing OX,x with OY, f (x) in the definition of perfection. If this
condition holds with F =OX , then f is said to be perfect (aka finite flat dimension,
or finite tor-dimension). Flat maps are classical examples.

As a sample of results concerning ascent and descent along perfect maps, we
quote from Theorem 2.2.5 and Corollary 2.2.6:

Theorem 1. Let f : X→ Y be a perfect map and B a complex in D+c (Y ).
If M ∈ D(Y ) is derived B-reflexive, then the complex L f ∗M in D(X) is both

derived L f ∗B-reflexive and derived f !B-reflexive. For M = OY this says that if
B is semidualizing then so are L f ∗B and f !B.

For each of these four statements, the converse holds if M and B are in Db
c(Y ),

and f is faithfully flat, or f is perfect, proper and surjective.

The perfection of f can be recognized by its relative dualizing complex, f !OY .
Indeed, f is perfect if and only if f !OY is relatively perfect. Furthermore, if f is
perfect, then every perfect complex in D(X) is derived f !OY -reflexive.
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In particular, when f is perfect the complex f !OY is semidualizing. We take this
condition as the definition of G-perfect maps. (Here G stands for Gorenstein.) In
the affine case, these are just maps of finite G-dimension (see Example 2.3.6). They
form a class significantly larger than that of perfect maps. For instance, when the
scheme Y is Gorenstein every scheme map X→ Y is G-perfect. In Section 2.3, we
prove some basic properties of such maps, and, more generally, of OX -complexes
that are derived f !OY -reflexive. For such complexes, called G-perfect relative
to f , there exist nice dualities with respect to the relative dualizing complex (see
Corollary 2.3.12).

Quasi-Gorenstein maps are defined by the condition that f !OY is perfect. A very
special case has been extensively studied: a flat map is quasi-Gorenstein if and only
if all its fibers are Gorenstein schemes. On the other hand, every map of Gorenstein
schemes is quasi-Gorenstein. Every quasi-Gorenstein map is G-perfect.

The conditions of relative perfection and G-perfection interact in many pleasing
ways with composition and base change of scheme-maps, as explicated mainly
in Section 2.5. Included there are a number of additional results about ascent and
descent along perfect maps. Application to the case of structure sheaves produces
facts, such as the following — all taken from Section 2.5, about the behavior of
perfect, of G-perfect and of quasi-Gorenstein maps.

Theorem 2. Let Z
g
−→X

f
−→Y be scheme-maps, with g perfect.

(i) If f is perfect (resp. G-perfect) then so is f g. The converse holds if g is
faithfully flat.

(ii) Suppose that f g is quasi-Gorenstein. Then so is g; and if g is faithfully flat,
then also f is quasi-Gorenstein.

Theorem 3. Let Z
g
−→X

f
−→Y be scheme-maps, with f quasi-Gorenstein.

The composition f g is G-perfect if and only if so is g.
Also, if g is quasi-Gorenstein then so is f g.

Theorem 4. Let there be given a fiber square, with u flat:

•
v

//

h

��

•

f

��

• u
// •

(i) If f is G-perfect then so is h. The converse holds if u is faithfully flat.
(ii) If f is quasi-Gorenstein then so is h . The converse holds if u is faithfully flat.

In Chapter 3 we define rigidity with respect to an arbitrary semidualizing com-
plex A ∈ D(X). An A-rigid structure on F in Db

c(X) is a D(X)-isomorphism

ρ : F −→∼ RHomX (RHomX (F, A), F).
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We say that (F, ρ) is an A-rigid pair; F ∈Db
c(X) is an A-rigid complex if such an

isomorphism ρ exists. Morphisms of rigid pairs are defined in the obvious way.
In Theorem 3.1.7 we establish the basic fact about rigid pairs:

Theorem 5. Let A be a semidualizing complex in D(X).
For each quasicoherent OX -ideal I such that I 2

= I , there exists a canonical
A-rigid structure on I A; and every A-rigid pair is uniquely isomorphic in D(X)
to such an I A along with its canonical structure.

The theorem validates the term “rigid”, as it implies that the only automorphism
of a rigid pair is the identity. It also shows that isomorphism classes of A-rigid
complexes correspond bijectively to the open-and-closed subsets of X . A more
precise description — in terms of those subsets — of the skeleton of the category
of rigid pairs appears in Theorem 3.2.6.

In the derived category, gluing over open coverings is usually not possible; but it
is for idempotent ideals (Proposition C.8). Consequently the uniqueness expressed
by Theorem 5 leads to gluing for rigid pairs, in the following strong sense:

Theorem 6. For any open cover (Uα) of X and family (Fα, ρα) of A|Uα
-rigid pairs

such that for all α, α′ the restrictions of (Fα, ρα) and (Fα′, ρα′) to Uα ∩Uα′ are
isomorphic, there is a unique (up to unique isomorphism) A-rigid pair (F, ρ), such
that for each α, (F, ρ)|Uα

' (Fα, ρα).

This gluing property holds even under the flat topology, see Theorem 3.2.9.
In Section 3.3 we study complexes that are relatively rigid, that is, rigid with

respect to the relative dualizing complex f !OY of a G-perfect map f : X → Y (a
complex that is, by the definition of such maps, semidualizing). As a consequence
of gluing for rigid complexes under the flat topology, gluing for relatively rigid
complexes holds under the étale topology, see Proposition 3.3.1.

Relative rigidity behaves naturally with respect to (G-)perfect maps, in the sense
that certain canonical isomorphisms from duality theory, involving relative dualiz-
ing complexes, respect the additional rigid structure. In Corollary 3.3.5 we show
that, when g is perfect, the twisted inverse image functor g! preserves relative rigid-
ity; and also, for a composition Z

g
−→ X

f
−→Y where f is G-perfect, we demonstrate

the interaction of rigidity with the canonical isomorphism

g!OX ⊗
L
Z Lg∗ f !OY −→

∼ ( f g)!OY .

In Corollary 3.3.7 we do the same with respect to flat base change. Such results are
obtained as applications of simple necessary and sufficient condition for additive
functors of rigid complexes to be liftable to rigid pairs, detailed in Theorem 3.3.2.

The results above can be applied to complete some work started in [Avramov
et al. 2010b]. In that paper, we associated a relative dualizing complex to each
essentially-finite-type homomorphism of commutative rings, but did not touch
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upon the functoriality properties of that complex. This aspect of the construction
can now be supplied by using the fact that the sheafification of the complex in
[Avramov et al. 2010b] is a relative dualizing complex for the corresponding map
of spectra; see Example 2.3.2. One can then use the results in Section 3.3, dis-
cussed above, to enrich the reduction isomorphism [Avramov et al. 2010b, 4.1] to
a functorial one. For such applications, it is crucial to work with scheme-maps that
are essentially of finite type; this is one of our reasons for choosing this category
in the setup for this paper.

Notions and notation related to scheme-maps, as well as pertinent material from
Grothendieck duality theory, as used in this paper, are surveyed in the Appendices.

We finish the introduction by reviewing connections to earlier work.

The results in Chapter 1 are, for the most part, extensions to the global situation
of results proved over commutative rings in [Avramov et al. 2010a]; the transfer is
fairly straightforward.

Homomorphisms of commutative noetherian rings that track Gorenstein-type
properties were introduced and studied in [Avramov and Foxby 1992; Avramov and
Foxby 1997; Iyengar and Sather-Wagstaff 2004], without finiteness hypotheses.
Those papers are based on Auslander and Bridger’s [1969] theory of Gorenstein
dimension, which is defined in terms of resolutions by finite modules or projective
modules, and so does not globalize. The scheme-maps defined and studied in
Chapter 2 are based on a different description of finite Gorenstein dimension for
ring-homomorphisms essentially of finite type, obtained in [Avramov et al. 2010a,
2.2].

The developments in Chapter 3 are largely motivated and inspired by work of
Yekutieli and Zhang [2004; 2008; 2009] (see also [Yekutieli 2010]). One of their
goals was to construct a new foundation for Grothendieck duality theory. Making
extensive use of differential graded algebras (DGAs), Yekutieli and Zhang [2008;
2009] extended van den Bergh’s construction [1997] of rigid dualizing complexes
to schemes essentially of finite type over a regular ring of finite Krull dimension,
and analyzed the behavior of such complexes under some types of perfect maps.
Theirs is a novel approach, especially with regard to the introduction of DGAs
into the subject. However, it remains to be seen whether, once all the details are
fully exposed, it will prove to be simpler than the much more generally applicable
theory presented, for example, in [Lipman 2009].

We come to rigidity from the opposite direction, presupposing duality theory and
making no use of DGAs. The concept obtained in this way applies to semidualizing
complexes over arbitrary schemes, and behaves well under all perfect scheme-
maps. In the setup of [Yekutieli and Zhang 2009], the regularity of the base
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ring implies that relative dualizing complexes are actually dualizing. To compare
results, one also needs to know that, when both apply, our concept of rigidity
coincides with Yekutieli and Zhang’s. This follows from the Reduction Theorem
[Avramov et al. 2010b, 4.1]; see [Avramov et al. 2010a, 8.5.5].

1. Derived reflexivity over schemes

Rings are assumed to be commutative, and both rings and schemes are assumed to
be noetherian.

1.1. Standard homomorphisms. Let (X,OX) be a scheme and D(X) the derived
category of the category of sheaves of OX -modules.

Let D+(X), resp. D−(X), be the full subcategory of D(X) having as objects
those complexes whose cohomology vanishes in all but finitely many negative,
resp. positive, degrees; set Db(X) := D+(X) ∩ D−(X). For • = +, − or b, let
D•c(X), resp. D•qc(X), be the full subcategory of D(X)with objects those complexes
all of whose cohomology sheaves are coherent, resp. quasicoherent.

To lie in D•
∗
(X) (∗= c or qc, and •= +, − or b) is a local condition: if (Uα) is an

open cover of X, then F ∈D(X) lies in D•
∗
(X) if and only if for all α the restriction

F |Uα
lies inD•

∗
(Uα).

A number of canonical homomorphisms play a fundamental role in this paper.

Remark 1.1.1. There is a standard trifunctorial isomorphism, relating the derived
tensor and sheaf-homomorphism functors (see e.g., [Lipman 2009, §2.6]):

RHomX
(
E ⊗L

X F,G
)
−→
∼ RHomX

(
E,RHomX (F,G )

)
(E, F,G ∈D(X))

(1.1.1.1)
from which one gets, by application of the composite functor H0R0(X,−),

HomD(X)
(
E ⊗L

X F,G
)
−→
∼ HomD(X)

(
E,RHomX (F,G )

)
. (1.1.1.2)

The map corresponding via (1.1.1.2) to the identity map of RHomX (F,G )

ε = εF
G : RHomX (F,G )⊗L

X F→ G (F,G ∈ D(X)) (1.1.1.3)

is called evaluation. When F is a flat complex in D−(X) (or more generally, any
q-flat complex in D(X), see [Lipman 2009, §2.5]), and G is an injective complex
in D+(X) (or more generally, any q-injective complex in D(X), see [Lipman 2009,
§2.3]), one verifies that ε is induced by the family of maps of complexes

ε(U ) : HomOX (U )(F(U ),G(U ))⊗OX (U ) F(U )→ G(U ) (U ⊆ X open)

where, for homogeneous α ∈ HomOX (U )(F(U ),G(U )) and b ∈ F(U ),

ε(U )(α⊗ b)= α(b).
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Basic properties of supports of complexes are recalled for further reference.

Remark 1.1.2. For any F ∈ D(X), the support of F is the set

SuppX F := { x ∈ X | H n(Fx) 6= 0 for some n }. (1.1.2.1)

If F ∈Db
c(X), then SuppX F is a closed subset of X . Also, for all F and G in D−c (X),

it follows from, e.g., [Avramov et al. 2010a, A.6] that

SuppX (F ⊗
L
X G)= SuppX F ∩SuppX G. (1.1.2.2)

Note that SuppX F =∅ if and only if F = 0 in D(X).

The following example opens the door to applications of the results in [Avramov
et al. 2010a].

Example 1.1.3. Let R be a ring. Let D(R) be the derived category of the category
of R-modules, and define, as above, its full subcategories D•(R) for • = +, − or
b. Let D•f (R) be the full subcategory of D•(R) having as objects those complexes
whose cohomology modules are all finite, i.e., finitely generated, over R.

For the affine scheme X = Spec R, the functor that associates to each complex
M ∈ D(R) its sheafification M∼ is an equivalence of categories D•f (R)

≈
−→D•c(X),

see [Bökstedt and Neeman 1993, 5.5]; when •= + or b, see also [Hartshorne 1966,
p. 133, 7.19].

There is a natural bifunctorial isomorphism

(M ⊗L
R N )∼ −→∼ M∼⊗L

X N∼
(
M, N ∈ D(R)

)
; (1.1.3.1)

to define it one may assume that M and N are suitable flat complexes, so that ⊗L

becomes ordinary ⊗, see [Lipman 2009, §2.5 and (2.6.5)].
There is also a natural bifunctorial map

RHomR(M, N )∼ −→ RHomX
(
M∼, N∼

)
, (1.1.3.2)

defined to be the one that corresponds via (1.1.1.2) to the composite map

RHomR(M, N )∼⊗L
X M∼ −→∼ (RHomR(M, N )⊗L

R M)∼
ε∼

−→ N∼,

where the isomorphism comes from (1.1.3.1), and the evaluation map ε corre-
sponds to the identity map of RHomR(M, N ) via the analog of (1.1.1.2) over D(R).

The map (1.1.3.2) is an isomorphism if M ∈ D−f (R) and N ∈ D+(R). To show
this for variable M and fixed N one can use the “way-out” Lemma [Hartshorne
1966, p. 68, 7.1], with A the opposite of the category of R-modules and P the
family (Rn)n>0 , to reduce to the case M = R, where, one checks, the map is the
obvious isomorphism.
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1.2. Derived multiplication by global functions. Let (X,OX) be a scheme. Here
we discuss some technicalities about the natural action of H0(X,OX) on D(X).

We identify H0(X,OX) with HomD(X)(OX ,OX) via the ring isomorphism that
takes α ∈H0(X,OX) to multiplication by α. For α ∈H0(X,OX) and F ∈ D(X), let
µF (α) (“multiplication by α in F ”) be the natural composite D(X)-map

F ' OX ⊗
L
X F

α⊗L
X 1

−−−→ OX ⊗
L
X F ' F,

or equivalently,

F ' F ⊗L
X OX

1⊗L
Xα

−−−→ F ⊗L
X OX ' F.

Clearly, for any D(X)-map φ : F→ C ,

φα := φ ◦µF (α)= µC(α) ◦φ =: αφ.

Furthermore, using the obvious isomorphism (OX ⊗
L
X F)[1] −→∼ OX ⊗

L
X F[1] one

sees that µF (α) commutes with translation, that is, µF (α)[1] = µF[1](α).
Thus, the family (µF )F∈D(X) maps H0(X,OX) into the ring CX consisting of

endomorphisms of the identity functor of D(X) that commute with translation —
the center of D(X). It is straightforward to verify that this map is an injective
ring homomorphism onto the subring of tensor-compatible members of CX , that
is, those η ∈ CX such that for all F , G ∈ D(X),

η(F ⊗L
X G)= η(F)⊗L

X idG
= idG

⊗
L
X η(G).

The category D(X) is CX -linear: for all F , G ∈ D(X), HomD(X)(F,G) has a
natural structure of CX -module, and composition of maps is CX -bilinear. So D(X)
is also H0(X,OX)-linear, via µ.

Lemma 1.2.1. For any F , G ∈D(X) and D(X)-homomorphism α : OX → OX , and
µ•(α) as above, there are equalities

RHomX (µF (α),G)= µRHomX(F,G)(α)= RHomX (F, µG(α))).

Proof. Consider, for any E ∈ D(X), the natural trifunctorial isomorphism

τ : HomD(X)(E ⊗L
X F,G) −→∼ HomD(X)(E,RHomX (F,G)).

From tensor-compatibility in the image of µ, and H0(X,OX)-linearity of D(X), it
follows that for any α ∈H0(X,OX), the map µE(α) induces multiplication by α in
both the source and target of τ . Functoriality shows then that τ is an isomorphism
of H0(X,OX)-modules.

Again, tensor-compatibility implies that µF (α) induces multiplication by α in
the source of the H0(X,OX)-linear map τ , hence also in the target. Thus, by func-
toriality, RHomX (µF (α),G) induces multiplication by α in the target of τ . For
E =RHomX (F,G), this gives RHomX (µF (α),G)=µRHomX(F,G)(α). One shows
similarly that RHomX (F, µG(α))= µRHomX(F,G)(α). �
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1.3. Derived reflexivity. Let (X,OX) be a scheme.
One has, for all A and F in D(X), a biduality morphism

δA
F : F→ RHomX

(
RHomX (F, A), A

)
,

corresponding via (1.1.1.2) to the natural composition

F ⊗L
X RHomX (F, A) −→∼ RHomX (F, A)⊗L

X F
εF

A
−→A.

The map δA
F “commutes” with restriction to open subsets (use [Lipman 2009,

2.4.5.2]).
When A is a q-injective complex in D(X), δA

F is induced by the family

δ(U ) : F(U )→ HomOX (U )(HomOX (U )(F(U ), A(U )), A(U )) (U ⊆ X open)

of maps of complexes, where, for each n ∈ F(U ) of degree b, the map δ(U )(n) is

α 7→ (−1)abα(n) ,

for α ∈ HomOX (U )(F(U ), A(U )) homogeneous of degree a.

Definition 1.3.1. Given A and F in D(X), we say that F is derived A-reflexive if
both F and RHomR(F, A) are in Db

c(X) and δA
F is an isomorphism.

This is a local condition: for any open cover (Uα) of X, F is derived A-reflexive
if and only if the same is true over every Uα for the restrictions of F and A. Also,
as indicated below, if U is affine, say U := Spec R, and C,M ∈ Db

f (R), then

M∼ is derived C∼-reflexive in D(U )⇐⇒ M is derived C-reflexive in D(R).

Example 1.3.2. When X = Spec R and M,C ∈ D(R), it follows that with δC
M as

in [Avramov et al. 2010a, (2.0.1)], the map δC∼
M∼ factors naturally as

M∼
(δC

M )
∼

−−−→
(
RHomR(RHomR(M,C),C)

)∼ s
−→RHomX

(
RHomX (M∼, C∼), C∼

)
,

where, as in (1.1.3.2), the map s is an isomorphism if M ∈ D−f (R), C ∈ D+(R)
and RHomR(M,C) ∈ Db

f (R). Thus, derived reflexivity globalizes the notion in
[Avramov et al. 2010a, §2].

From [Avramov et al. 2010a, 2.1 and 2.3] one now gets:

Proposition 1.3.3. Let X be a noetherian scheme, and let A, F ∈ Db
c(X). Then

the following conditions are equivalent.
(i) F is derived A-reflexive.
(ii) RHomX (F, A) ∈ D−(X) and there exists an isomorphism in D(X)

F −→∼ RHomX
(
RHomX (F, A), A).

(iii) RHomX (F, A) is derived A-reflexive and SuppX F ⊆ SuppX A. �
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Remark 1.3.4. For A = OX the theorem above shows that F ∈ Db
c(X) is derived

OX -reflexive if and only if so is RHomX (F,OX).
In the affine case, X = Spec R, for any M ∈ Db

f (R), the derived OX -reflexivity
of M∼ is equivalent to finiteness of the Gorenstein dimension of M, as defined by
Auslander and Bridger [1969].

Definition 1.3.5. An OX -complex A is semidualizing if OX is derived A-reflexive.
In other words, A ∈ Db

c(X) and the map χ A
: OX → RHomX (A, A) corresponding

via (1.1.1.2) to the natural map OX ⊗
L
X A→ A is an isomorphism.

As above, this condition is local on X. When X =Spec R, a complex C ∈Db
f (R)

is semidualizing in the commutative-algebra sense (that is, R is derived C-reflexive;
see, e.g., [Avramov et al. 2010a, §3]) if and only if C∼ is semidualizing in the
present sense.

Lemma 1.3.6. If A ∈ D(X) is semidualizing then each D(X)-endomorphism of A
is multiplication by a uniquely determined α ∈ H0(X,OX).

Proof. With χ A
: OX→RHomX (A, A) as in Definition 1.3.5, the map µA is easily

seen to factor as follows:

HomD(X)(OX ,OX)
via χ A

−−−→ HomD(X)
(
OX ,RHomX (A, A)

)
∼= HomD(X)(OX⊗

L
X A, A)

∼= HomD(X)(A, A).

The assertion results. �

Lemma 1.3.7. Let X be a noetherian scheme. If A is a semidualizing OX -complex,
then SuppX A = X. Furthermore, if there is an isomorphism A ' A1 ⊕ A2 then
SuppX A1 ∩SuppX A2 =∅.

Proof. The OX -complex RHomX (A, A), which is isomorphic in D(X) to OX , is
acyclic over the open set X \SuppX A. This implies SuppX A = X .

As to the second assertion, taking stalks at arbitrary x ∈ X reduces the problem
to showing that if R is a local ring, and M1 and M2 in D(R) are such that the natural
map

R→ RHomR(M1⊕M2, M1⊕M2)=
⊕2

i, j=1
RHomR(Mi ,M j )

is an isomorphism, then either M1 = 0 or M2 = 0.
But clearly, R being local, at most one of the direct summands RHomR(Mi ,M j )

can be nonzero, so for i = 1 or i = 2 the identity map of Mi is 0, whence the
conclusion. �



390 Luchezar Avramov, Srikanth B. Iyengar and Joseph Lipman

1.4. Perfect complexes. Again, (X,OX) is a scheme.

Definition 1.4.1. An OX -complex P is perfect if X is a union of open subsets U
such that the restriction P|U is D(U )-isomorphic to a bounded complex of finite-
rank locally free OU -modules.

From [Illusie 1971, p. 115, 3.5 and p. 135, 5.8.1], one gets:

Remark 1.4.2. The complex P is perfect if and only if P ∈ Dc(X) and P is
isomorphic in D(X) to a bounded complex of flat OX -modules.

Perfection is a local condition. If X =Spec R and M ∈ D(R) then M∼ is perfect
if and only if N is isomorphic in D(R) to a bounded complex of finite projective
R-modules; cf. [Avramov et al. 2010a, §4]. The next result is contained in [Chris-
tensen 2000, 2.1.10]; see also [Avramov et al. 2010a, 4.1].

Theorem 1.4.3. P ∈ Db
c(X) is perfect if and only if so is RHomX (P,OX). �

Proposition 1.4.4. Let A and P be in D(X), with P perfect.
If F ∈D(X) is derived A-reflexive then so is P⊗L

X F ; in particular, P is derived
OX -reflexive. If A is semidualizing then P is derived A-reflexive.

Proof. The assertion being local, we may assume that P is a bounded complex of
finite-rank free OX-modules. If two vertices of a triangle are derived A-reflexive
then so is the third, whence an easy induction on the number of degrees in which
P is nonzero shows that if F is A-reflexive then so is P ⊗L

X F . To show that P is
derived OX -reflexive, take A = OX = F .

For the final assertion, take F = OX . �

A partial converse is given by the next result:

Theorem 1.4.5. Let F ∈Dc(X), let A∈D+c (X), and let P be a perfect OX -complex
with SuppX P ⊇SuppX F.If P⊗L

X F is in Db
c(X), or P⊗L

X F is perfect, or P⊗L
X F is

derived A-reflexive, then the corresponding property holds forF.

Proof. The assertions are all local, and the local statements are proved in [Avramov
et al. 2010a, 4.3, 4.4, and 4.5], modulo sheafification; see Example 1.1.3. �

We’ll need the following isomorphisms, for which cf. [Illusie 1971, pp. 152–153,
7.6 and 7.7].

Let E , F and G be complexes in D(X), and consider the map

RHomX (E, F)⊗L
X G→ RHomX (E, F ⊗L

X G ), (1.4.5.1)

corresponding via (1.1.1.2) to the natural composition

(RHomX (E, F)⊗L
X G )⊗L

X E −→∼ (RHomX (E, F)⊗L
X E)⊗L

X G
ε⊗L

X1
−−−→F ⊗L

X G.

where ε is the evaluation map from (1.1.1.3).
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Lemma 1.4.6. Let E , F and G be complexes in D(X).

(1) When either E or G is perfect, the map (1.4.5.1) is an isomorphism

RHomX (E, F)⊗L
X G −→∼ RHomX (E, F ⊗L

X G ).

(2) When G is perfect, there is a natural isomorphism

RHomX (E ⊗L
X G, F) −→∼ RHomX (E, F)⊗L

X RHomX (G,OX).

Proof. (1). Whether the map (1.4.5.1) is an isomorphism is a local question, so if
E is perfect then one may assume that E is a bounded complex of finite-rank free
OX -modules. The affirmative answer is then given by a simple induction on the
number of degrees in which E is nonzero.

A similar argument applies when G is perfect.
(2). Setting Ǧ := RHomX (G,OX), we get from (1), with (E, F,G ) changed to

(G,OX , F), an isomorphism

F ⊗L
X Ǧ ' Ǧ⊗L

X F −→∼ RHomX (G, F).

This induces the second isomorphism below:

RHomX (E ⊗L
X G, F) −→∼ RHomX (E,RHomX (G, F))

−→
∼ RHomX (E, F ⊗L

X Ǧ)

−→
∼ RHomX (E, F)⊗L

X Ǧ;

the first isomorphism comes from (1.1.1.1) and the third from (1), since Ǧ is also
perfect, by Theorem 1.4.3. The desired map is the composite isomorphism. �

1.5. Invertible complexes. Again, (X,OX) is a scheme.

Definition 1.5.1. A complex in D(X) is invertible if it is semidualizing and perfect.

This condition is local. If X =Spec R and M ∈D(R), then M is invertible in the
sense of [Avramov et al. 2010a, §5] if and only if M∼ is invertible in the present
sense.

Recall that 6 denotes the usual translation (suspension) operator on complexes.

Theorem 1.5.2. For L ∈ Db
c(X) the following conditions are equivalent.

(i) L is invertible.

(ii) L−1
:= RHomX (L ,OX) is invertible.

(iii) Each x ∈ X has an open neighborhood Ux such that for some integer rx , there
is a D(Ux)-isomorphism L|Ux '6

rx OUx .

(iii′) For each connected component U of X there is an integer r , a locally free
rank-one OU -module L, and a D(U )-isomorphism L|U '6r L.
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(iv) For some F ∈ Dc(X) there is an isomorphism F ⊗L
X L ' OX .

(v) For all G ∈ D(X) the evaluation map ε from (1.1.1.3) is an isomorphism

RHomX (L ,G)⊗L
X L −→∼ G.

(v′) For all G and G ′ in D(X), the natural composite map (see (1.1.1.1))

RHomX (G ′⊗L
X L,G)⊗L

X L −→∼ RHomX (L ⊗L
X G ′, G)⊗L

X L

−→
∼ RHomX (L ,RHomX (G ′, G))⊗L

X L

−→
ε

RHomX (G ′, G)

is an isomorphism.

Proof. When (i) holds, Lemma 1.4.6(2), with E = OX and G = L = F , yields:

OX −→
∼ RHom X (L , L) −→∼ L ⊗L

X L−1. (1.5.2.1)

(i)⇔ (ii). By Theorem 1.4.3, the OX -complex L is perfect if and only if so is
L−1. If (i) holds, then (1.5.2.1), Proposition 1.4.4 (with A= OX = F , P = L), and
Lemma 1.4.6(1) give isomorphisms

OX −→
∼ L ⊗L

X L−1
−→
∼ RHomX (L−1,OX)⊗

L
X L−1

−→
∼ RHomX (L−1, L−1),

so that by Proposition 1.3.3(ii) (with F = OX and A = L−1), the OX -module L−1

is semidualizing; since it also perfect (ii) holds.
The same argument with L and L−1 interchanged establishes that (ii)⇒ (i).
(i)⇒ (iii). One may assume here that X is affine. Then, since L is invertible,

§5.1 of [Avramov et al. 2010a] gives that the stalk at x of the cohomology of L
vanishes in all but one degree, where it is isomorphic to OX,x . The cohomology
of L is bounded and coherent, therefore there is an open neighborhood Ux of x over
which the cohomology of L vanishes in all but one degree, where it is isomorphic
to OUx , i.e., (iii) holds.

(iii)⇒ (iv). If (iii) holds then the evaluation map (1.1.1.3) (with A = L and
G = OX ) is an isomorphism L−1

⊗
L
X L −→∼ OX .

(iv)⇒ (i). This is a local statement that is established (along with some other
unstated equivalences) in [Avramov et al. 2010a, 5.1]; see also [Frankild et al.
2009, 4.7].

(iii)⇒ (iii′). The function x 7→ rx must be locally constant, so of constant value,
say r , on U ; and then in D(U ), L '6r H−r (L).

(iii′)⇒ (iii). This implication is clear.
(i)⇒ (v). The first of the following isomorphisms comes from Lemma 1.4.6(2)

(with (E, F,G)= (L ,G,OX)), and the second from (1.5.2.1):

RHom X (L ,G)⊗L
X L −→∼ L−1

⊗
L
X G⊗L

X L −→∼ G.
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That this composite isomorphism is ε is essentially the definition of the isomor-
phism

L−1
⊗

L
X G = RHomX (L ,OX)⊗

L
X G −→∼ RHomX (L ,G) ;

see the proof of Lemma 1.4.6.
(v)⇒ (iv). Set F := L−1, and apply (v) for G = OX .
(v)⇔ (v′). Replace G in (v) by RHomX (G ′, G); or G ′ in (v′) by OX . �

Corollary 1.5.3. Let L1 and L2 be complexes in Dc(X).

(1) If L1 and L2 are invertible, then so is L1⊗
L
X L2 .

(2) If L1 is in Db
c(X) and L1⊗

L
X L2 is invertible, then L1 is invertible.

(3) For any scheme-map g : Z→ X , if L1 is invertible then so is Lg∗L1.

Proof. For (1), use Theorem 1.5.2(iii′); for (2), Theorem 1.5.2(iv) — noting that
the F there may be taken to be the invertible complex L−1, and that tensoring with
an invertible complex takes Dc(X) into itself; and for (3), the fact that g maps any
connected component of Z into a connected component of X. �

Corollary 1.5.4. Let A, L and F be complexes in Db
c(X), with L invertible.

(1) F is derived A-reflexive if and only if it is derived L ⊗L
X A-reflexive.

(2) F is derived A-reflexive if and only if F ⊗L
X L is derived A-reflexive.

(3) A is semidualizing if and only if L ⊗L
X A is semidualizing.

Proof. From, say, Theorem 1.5.2(iii′) and Lemma 1.4.6(1), one gets

RHomX (F, A) ∈ Db
c(X)⇐⇒ RHomX (F, L ⊗L

X A) ∈ Db
c(X).

Since L−1
⊗

L
X L ' OX , (1) follows now from Lemma 1.4.6; (2) follows from

Theorem 1.5.2(iii); and (3) follows from (1). �

Remark 1.5.5. A complex A ∈ Db
c(X) is pointwise dualizing if every F ∈ Db

c(X)
is derived A-reflexive (see [Avramov et al. 2010a, 6.2.2]). Such an A is semi-
dualizing: take F = OX .

It is proved in [Avramov et al. 2010a, 8.3.1] that OX is pointwise dualizing if
and only if X is a Gorenstein scheme (i.e., the local ring OX,x is Gorenstein for all
x ∈ X ).

It follows from [Avramov et al. 2010a, 5.7] that invertible complexes can be
characterized as those that are semidualizing and derived OX -reflexive. Hence when
X is Gorenstein,

A ∈ Db
c(X) is semidualizing⇐⇒ A is pointwise dualizing⇐⇒ A is invertible.
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2. Gorenstein-type properties of scheme-maps

All schemes are assumed to be noetherian; all scheme-maps are assumed to be
essentially of finite type (see Appendix A) and separated.

2.1. Perfect maps. Let f : X→ Y be a scheme-map.
Let f0 : X → Y denote the underlying map of topological spaces, and f −1

0 the
left adjoint of the direct image functor f0∗ from sheaves of abelian groups on X to
sheaves of abelian groups on Y . There is then a standard way of making f −1

0 OY

into a sheaf of commutative rings on X, whose stalk at any point x ∈ X is OY, f (x) .

Definition 2.1.1. An OX -complex F is perfect relative to f — or, as we will write,
perfect over f — if it is in Db

c(X), and in the derived category of the category of
f −1
0 OY -modules F is isomorphic to a bounded complex of flat f −1

0 OY -modules.
The map f is perfect if OX is perfect over f [Illusie 1971, p. 250, définition 4.1].

Perfection over idX is equivalent to perfection in D(X); see Remark 1.4.2.

Remark 2.1.2. Using [Illusie 1971, p. 242, 3.3], one sees that perfection over f is
local on X, in the sense that F has this property if and only if every x ∈ X has an
open neighborhood U such that F |U is perfect over f |U .

Since f is essentially of finite type, there is always such a U for which f |U
factors as (essentially smooth) ◦ (closed immersion). If X

i
−→W → Y is such a

factorization, then F is perfect over f if and only if i∗F is perfect over idW : the
proof of [Illusie 1971, pp. 252, 4.4] applies here (see Remark A.3).

Remark 2.1.3. Each complex that is perfect over f is derived f !OY -reflexive. In
particular, if the map f is perfect, then OX is derived f !OY -reflexive.

This is given by [Illusie 1971, p. 259, 4.9.2], in whose proof “smooth” can be
replaced by “essentially smooth”; see [Avramov et al. 2010b, 5.1].

Let P( f ) be the full subcategory of D(X) whose objects are all the complexes
that are perfect over f ; and let P(X) := P(idX) be the full subcategory of D(X)
whose objects are all the perfect OX -complexes.

Example 2.1.4. If the map f : X = Spec S → Spec K = Y corresponds to a
homomorphism of noetherian rings σ : K → S, then P( f ) is equivalent to the full
subcategory P(σ ) ⊆ Db

f (S) with objects those complexes M that are isomorphic
in D(K ) to some bounded complex of flat K -modules; this follows from [Illusie
1971, p. 168, 2.2.2.1 and p. 242, 3.3], in view of the standard equivalence, given
by sheafification, between finite S-modules and coherent OX -modules.

Recall that an exact functor F : D(Y )→ D(X) is said to be bounded below if
there is an integer d such that for all M ∈ D(Y ) and n ∈ Z the following holds:

H i (M)= 0 for all i < n H⇒ H j (F(M))= 0 for all j < n− d,
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By substituting > for < in the preceding definition one obtains the notion of
bounded above. If F is bounded below, then clearly FD+(Y ) ⊆ D+(Y ); likewise,
if F is bounded above, then FD−(Y )⊆ D−(Y ).

Remark 2.1.5. For every scheme-map f the functor L f ∗ is bounded above. It is
bounded below if and only if f is perfect. When f is perfect, one has

L f ∗Db
c(Y )⊆ Db

c(X) .

For, L f ∗ is bounded above and below, hence, as above, L f ∗Db(Y )⊆Db(X). Also,
L f ∗Dc(Y ) ⊆ Dc(X); see [Hartshorne 1966, p. 99, 4.4], whose proof uses 7.3 on
page 73 of the same reference as well as compatibility of L f ∗ with open base
change to reduce to the assertion that L f ∗OY = OX .

The following characterization of perfection of f , in terms of the twisted inverse
image functor f !, was proved for finite-type f in [Lipman 2009, 4.9.4] and then
extended to the essentially finite-type case in [Nayak 2009, 5.9].

Remark 2.1.6. For any scheme-map f : X → Y , and for all M, N in D+qc(Y ),
there is defined in [Lipman 2009, §4.9] and [Nayak 2009, 5.7–5.8] a functorial
D(X)-map

f !M ⊗L
X L f ∗N → f !(M ⊗L

Y N ). (2.1.6.1)

The following conditions on f are equivalent:

(i) The map f is perfect.

(ii) The functor f ! : D+qc(Y )→ D+qc(X) is bounded above and below.

(iii) The complex f !OY is perfect over f .

(iv) When M is perfect, f !M is perfect over f ; and when M ⊗L
Y N is in D+qc(Y ),

the natural map (2.1.6.1) is an isomorphism

f !M ⊗L
X L f ∗N −→∼ f !(M ⊗L

Y N ). (2.1.6.2)

From (ii) one gets, as above, f !Dqc
b (Y )⊆Db(X); and the last paragraph in §5.4

of [Nayak 2005] gives
f !D+c (Y )⊆ D+c (X). (2.1.6.3)

Thus, for perfect f , one has

f !Db
c(Y )⊆ Db

c(X). (2.1.6.4)

Next we establish some further properties of perfect maps for later use.

Lemma 2.1.7. Let f : X→ Y be a scheme-map, and M, B complexes in D(Y ).
If f is an open immersion, or if f is perfect, M is in D−c (Y ) and B is in D+qc(Y ),

then there are natural isomorphisms

L f ∗RHomY (M, B) −→∼ RHomX (L f ∗M, L f ∗B) , (2.1.7.1)

f !RHomY (M, B) −→∼ RHomX (L f ∗M, f !B) . (2.1.7.2)
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Proof. As a map in D(X), (2.1.7.1) comes from (B.1.5). To show that it is an
isomorphism we may assume that Y is affine, say Y = Spec R. Then by [Bök-
stedt and Neeman 1993, 5.5] and [Hartshorne 1966, p. 42, 4.6.1 (dualized)], any
M ∈ D−c (Y ) is isomorphic to the sheafification of a complex of finite-rank free
R-modules, vanishing in all large degrees; so [Lipman 2009, p. 181, (4.6.7)] gives
the desired assertion.

For (2.1.7.2), use [Lipman 2009, 4.2.3(e)] when f is proper; and then in the
general case, compactify, see Appendix A. �

Remark 2.1.8. Let f : X→ Y be a perfect and proper scheme map.
One has R f∗(Db

c(X)) ⊆ Db
c(Y ), by [Illusie 1971, p. 237, 2.2.1]. Moreover, if

F ∈Db
c(X) is perfect, then so is R f∗F ; see Remark 1.4.2 and [Illusie 1971, p. 250,

Proposition 3.7.2].

Remark 2.1.9. In D(X) there is a natural map

α(E, F,G) :RHomX (E, F)→RHomX (E⊗L
X G, F⊗L

X G)
(
E, F,G ∈D(X)

)
,

corresponding via (1.1.1.2) to

(RHomX (E, F)⊗L
X E)⊗L

X G
ε⊗L

X 1
−−−→F ⊗L

X G

where ε is evaluation (1.1.1.3).
Assume now that f is perfect. By Remark 2.1.6 there is a natural isomorphism

L f ∗N ⊗L
X f !OY ' f !N (N ∈ D+qc(Y )). (2.1.9.1)

Hence α(L f ∗M, L f ∗N, f !OY ) gives rise to a natural map, for all M, N ∈ D+qc(Y ),

β(M, N, f ) :RHomX (L f ∗M, L f ∗N )→RHomX ( f !M, f !N ). (2.1.9.2)

Lemma 2.1.10. When f : X → Y is perfect, M is in Db
c(Y ), and N is in D+qc(Y ),

the map β(M, N, f ) is an isomorphism.

Proof. One checks, using B.3(i) and Lemma 2.1.7, that the question is local on
both X and Y . Hence, via [Hartshorne 1966, p. 133, 7.19], one may assume that Y
is affine, that M is a bounded-above complex of finite-rank free OY -modules, and
that N is a quasicoherent complex in D+(X).

By Remarks 2.1.5 and 2.1.6, respectively, the functors L f ∗ and f ! are bounded
(both above and below). Therefore, for every fixed N , the source and target of
β(M, N , f ) are bounded-below functors of M . So one can argue as in the proof
of [Hartshorne 1966, p.69, (iv)] to reduce the problem to the case M = OY . This
case can be dealt with as follows (cf. [Lipman 2009, p. 239, (c)].

The question being local on X, one may assume there is a factorization f = pi as
in Remark 2.1.2 (i : X→W a closed immersion, p : W → Y essentially smooth),
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with i∗OX a perfect complex. Since the functor i∗ preserves stalks of sheaves, it
suffices then to show that the composite map

i∗Li∗ p∗N ∼= i∗RHomX (L f ∗OY, L f ∗N )
i∗β
−→i∗RHomX ( f !OY, f !N )

(
β = β(OY , N, f )

)
∼= i∗RHomX (i ! p!OY, i ! p!N )
∼= RHomW (i∗i ! p!OY, p!N ) (see (B.6.1))
∼= RHomW

(
RHomW (i∗OX, p!OY ), p!N )

)
(see (B.6.1))

is an isomorphism in D(W ).
Since both i∗OX and p!OY are perfect complexes (see (B.5.1), therefore the target

of i∗β is a bounded functor of N , that preserves direct sums. (This well-known
fact about perfect complexes P can be shown by an easy induction on the number
of degrees in which P is nonzero.) Also, using (B.1.3), one gets

i∗i∗ p∗N ∼= i∗(OX ⊗
L
X i∗ p∗N )∼= i∗OX ⊗

L
W p∗N ;

and hence the source of i∗β is a bounded functor of N , that preserves direct sums.
Every quasicoherent OY -module being a homomorphic image of a free one, argu-

ing as in [Hartshorne 1966, p.69, (iii) and (iv)(dualized)] reduces the isomorphism
question to the case N = OY . It remains to observe that β(OY ,OY , f ) is isomor-
phic to the natural map OX→RHom X ( f !OY, f !OY ), a map that, by Remark 2.1.3,
is indeed an isomorphism. �

Lemma 2.1.11. Let f : X→ Y be a perfect map.
When M is in D−c (Y ) and B is in D+c (Y ), the complex L f ∗M is derived L f ∗B-

reflexive if and only if it is derived f !B-reflexive.

Proof. We deal first with the boundedness conditions in Definition 1.3.1. The
condition L f ∗M ∈ Db

c(X) holds throughout, by assumption.
Assume that RHomX (L f ∗M, L f ∗B) is in Db

c(X). As RHomY (M, B) ∈ D+c (Y )
(see [Hartshorne 1966, p. 92, 3.3]), one gets from Remark 2.1.6 and (2.1.7.1) an
isomorphism

f !OY ⊗
L
X RHomX (L f ∗M, L f ∗B)' f !RHomY (M, B) . (2.1.11.1)

By Remark 2.1.6(iii), f !OY ∈Db
c(X), so it follows that f !RHomY (M, B)∈D−c (X).

On the other hand, by (2.1.6.3), f !RHomY (M, B) ∈ D+c (X). We conclude that
f !RHomY (M, B)∈Db

c(X), and so by (2.1.7.2), that RHomX (L f ∗M, f !B)∈Db
c(X).

Suppose, conversely, that RHomX (L f ∗M, f !B) ∈ Db
c(X), so that by (2.1.7.2),

there is an integer n such that

H i( f !RHomY (M, B))= 0 for all i > n.
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Using (2.1.7.1) and Remark 2.1.5 one gets

RHomX (L f ∗M, L f ∗B)' L f ∗RHomY (M, B) ∈ Dc(X).

Also, f !OY ∈Db
c(X), by Remark 2.1.6, and it follows from an application of (i)–(iii)

in B.3 to a local factorization of f as (essentially smooth)◦(closed immersion) —
or from Proposition 2.3.9 — that SuppX f !OY = X . So except for the trivial case
where X is empty, there is an integer m such that

H m f !OY 6= 0 and H j f !OY = 0 for all j > m.

Hence, by (2.1.11.1), for each x in X and for all k > n−m, [Avramov et al. 2010a,
A.4.3] gives (H k RHomX (L f ∗M, L f ∗B))x = 0. It follows that

RHomX (L f ∗M, L f ∗B) ∈ Db
c(X).

The desired assertions now result from the isomorphisms

RHomX(RHomX(L f ∗M,L f ∗B),L f ∗B) −→∼ RHomX(L f ∗RHomX(M,B),L f ∗B)

−→
∼ RHomX( f !RHomX(M,B), f !B)

−→
∼ RHomX(RHomX(L f ∗M, f !B), f !B),

given by formula (2.1.7.1), Lemma 2.1.10, and formula (2.1.7.2), respectively. �

2.2. Ascent and descent. Let f : X→ Y be a scheme-map.

Remark 2.2.1. Recall that f is said to be faithfully flat if it is flat and surjective;
and that for any flat f , the canonical map to f ∗ from its left-derived functor L f ∗

is an isomorphism — in brief, L f ∗ = f ∗.

Lemma 2.2.2. Let f : X→Y be a perfect scheme-map and M a complex in D(Y ).
If M is in Db

c(Y ) then L f ∗M is in Db
c(X). The converse holds when M is in Dc(Y )

and f is faithfully flat, or proper and surjective.

Proof. The forward implication is contained in Remark 2.1.5. For the converse,
when f is faithfully flat there are isomorphisms H n( f ∗M) ∼= f ∗H n(M) (n ∈ Z);
so it suffices that f ∗H n(M) = 0 imply H n(M) = 0. This can be seen stalkwise,
where we need only recall, for a flat local homomorphism R→ S of local rings
and any R-module P, that P ⊗R S = 0 implies P = 0.

When f is proper then by Remark 2.1.8, R f∗(Db
c(X)) ⊆ Db

c(Y ) and R f∗OX is
perfect. Furthermore, surjectivity of f implies that

SuppY R f∗OX ⊇ SuppY H 0R f∗OX = SuppY f∗OX = Y.

In view of the projection isomorphism

R f∗L f ∗M ' R f∗OX ⊗
L
Y M ,

see (B.1.4), the desired converse follows from Theorem 1.4.5. �
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Proposition 2.2.3. Let f : X→ Y be a scheme-map and M ∈ D−c (Y ).
If M is perfect, then L f ∗M is perfect. The converse holds if f is faithfully flat,

or if f is perfect, proper and surjective.

Proof. Suppose M is perfect in D(Y ). One may assume, after passing to a suitable
open cover, that M is a bounded complex of finite-rank free OY -modules. Then
L f ∗M = f ∗M is a bounded complex of finite-rank free OX -modules. Thus if M is
perfect then so is L f ∗M .

For the converse, when f is faithfully flat we use the following characterization
of perfection ([Illusie 1971, p. 135, 5.8.1]): M ∈ D(Y ) is perfect if and only if
M ∈ Db

c(Y ) and there are integers m ≤ n such that for all OY -modules E and all i
outside the interval [m, n], H i (E ⊗L

Y M )= 0.
Writing f ∗ in place of L f ∗ (see Remark 2.2.1) we have, as in the proof of

Lemma 2.2.2, that for any i , the vanishing of

H i ( f ∗E ⊗L
X f ∗M )= H i ( f ∗(E ⊗L

Y M ))∼= f ∗H i (E ⊗L
Y M )

implies that of H i (E ⊗L
Y M ). Hence the converse holds.

When f is perfect, proper and surjective, one can argue as in the last part of the
proof of Lemma 2.2.2 to show that if L f ∗M is perfect then M is perfect. �

Proposition 2.2.4. Let f : X→ Y be a proper scheme-map and B ∈ D+qc(Y ).
If F ∈ D(X) is derived f !B-reflexive then R f∗F is derived B-reflexive.

Proof. Since F and RHom X (F, f !B) are in Db
c(X), it follows from Remark 2.1.8

that R f∗F is in Db
c(Y ), and (via (B.6.1)) that

RHomY (R f∗F, B)' R f∗RHom X (F, f !B) ∈ Db
c(Y ).

Now apply the functor R f∗ to the assumed isomorphism

δ
f !B

F : F −→
∼ RHom X (RHom X (F, f !B), f !B),

and use the duality isomorphism (B.6.1) twice, to get the isomorphisms

R f∗F −→∼ R f∗RHom X (RHom X (F, f !B), f !B)

−→
∼ RHomY (R f∗RHom X (F, f !B), B)

−→
∼ RHomY (RHomY (R f∗F, B), B).

Their composition is actually δB
R f∗F , though that doesn’t seem so easy to show.

Fortunately, owing to Proposition 1.3.3(ii) we needn’t do so to conclude that R f∗F
is derived B-reflexive. �

Theorem 2.2.5. Let f : X→ Y be a perfect scheme-map, M a complex in D−c (Y ),
and B a complex in D+c (Y ).
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If M is derived B-reflexive, then L f ∗M is derived L f ∗B-reflexive and derived
f !B-reflexive. If f is faithfully flat, or proper and surjective, and L f ∗M is derived
L f ∗B-reflexive or derived f !B-reflexive, then M is derived B-reflexive.

Proof. Suppose first that M is derived B-reflexive, so that, by definition, both
M and RHomY (M, B) are in Db

c(Y ). Then (2.1.7.1) and Remark 2.1.5 show that
L f ∗M and RHom X (L f ∗M, L f ∗B) are in Db

c(X). Moreover, application of the
functor L f ∗ to the D(Y )-isomorphism M ' RHomY (RHomY (M, B), B) yields
provides a D(X)-isomorphism

L f ∗M ' RHom X (RHom X (L f ∗M, L f ∗B), L f ∗B).

Proposition 1.3.3(ii) then gives that L f ∗M is derived L f ∗B-reflexive. When B is
in D+c (Y ), Lemma 2.1.11 yields that L f ∗M is derived f !B-reflexive.

Suppose, conversely, that L f ∗M is derived L f ∗B-reflexive, or equivalently, that
L f ∗M is derived f !B-reflexive (see Lemma 2.1.11). Then, first, L f ∗M ∈ Db

c(X)
and, by (2.1.7.1), L f ∗RHomY (M, B)∈Db

c(X). Lemma 2.2.2 then gives M∈Db
c(Y );

similarly, since RHomY (M, B) ∈ Dc(Y ) (see [Hartshorne 1966, p. 92, 3.3]), we
obtain RHomY (M, B) ∈ Db

c(Y ).
Next, when f is faithfully flat (so that L f ∗= f ∗, see Remark 2.2.1), one checks,

with moderate effort, that if

δ := δB
M : M→ RHomY (RHomY (M, B), B)

is the canonical D(Y )-map, then f ∗δ is identified, via (2.1.7.1), with the canon-
ical D(X)-map δ f ∗B

f ∗M . The latter being an isomorphism, therefore so are all the
maps H n( f ∗δ)= f ∗H n(δ). Verifying that a sheaf-map is an isomorphism can be
done stalkwise, and so, f being faithfully flat, local considerations show that the
maps H n(δ) are isomorphisms. Therefore, δ is an isomorphism.

Finally, when f is proper and surjective and L f ∗M is derived f !B-reflexive,
whence, by Proposition 2.2.4, R f∗M is derived B-reflexive, one argues as in the
last part of the proof of Lemma 2.2.2 to deduce that M is derived B-reflexive. �

Taking M = OY one gets:

Corollary 2.2.6. Let f : X→ Y be a perfect scheme-map and B ∈ D+c (Y ).
If B is semidualizing, then so are L f ∗B and f !B. Conversely, if f is faithfully

flat, or proper and surjective, and L f ∗B or f !B is semidualizing, then so is B. �

Corollary 2.2.7. Let f : X → Y be a perfect scheme-map and M a complex
in D−c (Y ). Consider the following properties:

(a) M is semidualizing.

(b) M is derived OY -reflexive.

(c) M is invertible.
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Each of these properties implies the corresponding property for L f ∗M in D(X).
The converse holds when f is faithfully flat, or proper and surjective.

Proof. Note that, given Lemma 2.2.2, we may assume that M is in Db
c(Y ). The

assertions about properties (a) and (b) are the special cases (M, B)= (OY ,M) and
(M, B)= (M,OY ), respectively, of Theorem 2.2.5. The assertion about (c) follows
from the assertion about (a) together with Proposition 2.2.3. �

2.3. Gorenstein-perfect maps. Let f : X→ Y be a scheme-map.

Definition 2.3.1. A relative dualizing complex for f is any OX -complex isomor-
phic in D(X) to f !OY .

Any relative dualizing complex is in D+c (X). Indeed, § B.3(i) and B.4 reduce the
assertion to the case of maps between affine schemes, where the desired assertion
follows from the following example.

Example 2.3.2. For a homomorphism τ : K→ P of commutative rings denote the
P-module of relative differentials by �τ , and set

�n
τ =

∧n
P�τ for each 0≤ n ∈ Z.

Let σ : K → S be a homomorphism of rings that is essentially of finite type;
thus, there exists a factorization

K
σ̇
−→P

σ ′
−→S (2.3.2.1)

where σ̇ is essentially smooth of relative dimension d and σ ′ is finite, see A.1. As
in [Avramov et al. 2010a, (8.0.2)], we set

Dσ
:=6d RHomP(S, �d

σ̇ ) ∈ D(S). (2.3.2.2)

With f : X = Spec S→ Spec K = Y the scheme-map corresponding to σ , the
complex of OX -modules (Dσ )∼ is a relative dualizing complex for f ; in particular,
up to isomorphism, Dσ depends only on σ , and not on the factorization (2.3.2.1).

Indeed, there is a Dqc(X)-isomorphism

f !OY ' (Dσ )∼; (2.3.2.3)

for, if f = ḟ f ′ is the factorization corresponding to (2.3.2.1) then

f !OY ' f ′! ḟ !OY ' f ′!(6d�d
σ̇ )
∼
'6d RHomP(S, �d

σ̇ )
∼
= (Dσ )∼,

the second isomorphism coming from B.5, and the third from (B.6.2).

Definition 2.3.3. A complex F in D(X) is said to be G-perfect (for Gorenstein-
perfect) relative to f if F is derived f !OY -reflexive. The full subcategory of Db

c(X),
whose objects are the complexes that are G-perfect relative to f is denoted G( f ).
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In particular, F is in G(idX ) if and only if F is derived OX -reflexive. We set

G(X):= G(idX ) .

In view of (2.3.2.3), in the affine case G-perfection can be expressed in terms
of finite G-dimension in the sense of [Auslander and Bridger 1969]; see [Avramov
et al. 2010a, §6.3 and 8.2.1].

As is the case for perfection (Remark 2.1.2), G-perfection can be tested locally.

Remark 2.3.4. A complex F in D(X) is in G( f ) if and only if every x ∈ X has an
open neighborhood U such that F |U is in G( f |U ).

If f factors as
X

i
−→W

h
−→Y

with i a closed immersion and h essentially smooth, then F is in G( f ) if and only
if i∗F is in G(W ). It suffices to show this locally; and then this is [Avramov et al.
2010a, 8.2.1], in view of the equivalence of categories in Example 1.1.3.

Definition 2.3.5. The map f : X → Y is said to be G-perfect (for Gorenstein
perfect) if f !OY is semidualizing, that is, if OX is in G( f ).

A local theory of such maps already exists:

Example 2.3.6. If X = Spec S and Y = Spec K , where K and S are noetherian
rings, and σ : K → S is the ring-homomorphism corresponding to f , then f is
G-perfect if and only if σ is of finite G-dimension in the sense of [Avramov and
Foxby 1997]; see [Avramov et al. 2010a, 8.4.1].

Recall from Remark 2.1.6 that f is perfect if and only if f !OY is in P( f ), the
full subcategory of D(X) whose objects are all the complexes that are perfect with
respect to f . There is a similar description of G-perfection:

Remark 2.3.7. The map f is G-perfect if and only if f !OY ∈ G( f ). This follows
from Proposition 1.3.3, since for all x ∈ X, the stalk at x satisfies ( f !OY )x 6' 0;
see (2.3.2.3).

Remark 2.3.8. When Y is Gorenstein, every map f : X → Y is G-perfect, since
[Avramov et al. 2010a, 8.3.1] and (2.3.2.3) together imply that G( f )= Db

c(X).

Via (2.3.2.3), a slight generalization of [Illusie 1971, p. 258, 4.9ff ] globalizes
[Avramov et al. 2010b, 1.2]:

Proposition 2.3.9. Let f : X→ Y be a scheme-map.
The following inclusion holds: P( f )⊆ G( f ).
If M ∈ P(Y ) then the functor RHomX (−, f !M) takes P( f ) (resp. G( f )) into

itself ; and if M ∈ G(Y ) then RHomX (−, f !M) takes P( f ) into G( f ).
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Proof. The first assertion is a restatement of Remark 2.1.3.
The second assertion is local on X , so one may suppose f factors as X

i
−→W

h
−→Y

with i a closed immersion and h essentially smooth. For any F ∈ Db
c(X) and

M ∈ D+qc(Y ) one has, using formula (B.6.1), B.5 and Lemma 1.4.6,

i∗RHomX (F, i !h!M)' RHomW (i∗F, h!M)' RHomW (i∗F, h∗M)⊗L
W h!OY ,

where h!OY is invertible. Consequently, by Remark 2.1.2,

RHomX (F, f !M) ∈ P( f )⇐⇒ i∗RHomX (F, f !M) ∈ P(W )

⇐⇒ RHomW (i∗F, h∗M) ∈ P(W ).

Similarly, by Remark 2.3.4 and Corollary 1.5.4(2),

RHomX (F, f !M) ∈ G( f )⇐⇒ i∗RHomX (F, f !M) ∈ G(h)

⇐⇒ RHomW (i∗F, h∗M) is derived OW -reflexive.

If F ∈ P( f ) then i∗F is a perfect OW -complex, and by Lemma 1.4.6(2),

RHomW (i∗F, h∗M)' h∗M ⊗L
W RHomW (i∗F,OW ), (2.3.9.1)

where RHomW (i∗F,OW ) is perfect (see Theorem 1.4.3).
If M ∈ P(Y ) then by Proposition 2.2.3, h∗M ∈ P(W ), and then (2.3.9.1) shows

that RHomW (i∗F, h∗M) ∈ P(W ). Thus RHomX (F, f !M) ∈ P( f ).
If M ∈G(Y ), then h∗M is derived OW -reflexive, hence so is RHomW (i∗F, h∗M);

see Theorem 2.2.5, (2.3.9.1) and Proposition 1.4.4. So RHomX (F, f !M) ∈ G( f ).
If F ∈ G( f ) and M ∈ P(Y ) then i∗F ∈ G(h) is OW -reflexive and h∗M is perfect;

so by Lemma 1.4.6(1), (2.3.9.1) still holds, so RHomW (i∗F, h∗M) is OW -reflexive,
by Remark 1.3.4 and Proposition 1.4.4. So again, RHomX (F, f !M) ∈ G( f ). �

From Proposition 2.3.9 one gets the following result. It can also be seen as the
special case g = idY of Proposition 2.5.2 below.

Corollary 2.3.10. Any perfect map is G-perfect. �

Applying Proposition 2.3.9 to RHomX (OX , f !F), one gets:

Corollary 2.3.11. If f : X → Y is perfect then f !P(Y ) ⊆ P( f ) and furthermore
f !G(Y )⊆ G( f ). If f is G-perfect then f !P(Y )⊆ G( f ). �

Also, in view of Proposition 1.3.3(iii):

Corollary 2.3.12. For any scheme-map f : X → Y , the relative dualizing functor
RHomX (−, f !OY ) induces a commutative diagram of categories, where horizontal
arrows represent equivalences:
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G( f )op oo
≡

//

⊆

G( f )

⊆

P( f )op oo
≡

// P( f )

These equivalences are dualities, in the sense of [Avramov et al. 2010a, §6]. �

2.4. Quasi-Gorenstein maps. For the following notion of quasi-Gorenstein map,
cf. [Avramov and Iyengar 2008, 2.2] and [Avramov et al. 2010a, §8.6.1]. For the
case when f is flat, see also [Hartshorne 1966, p. 298, Exercise 9.7], which can be
done, e.g., along the lines of the proof of [Lipman 1979, Lemma 1].)

Definition 2.4.1. A map f : X → Y is quasi-Gorenstein if f !OY is invertible. If,
in addition, f is perfect, then f is said to be a Gorenstein map.

If f : X → Y is quasi-Gorenstein then, clearly, OX ∈ G( f ), i.e., f is G-perfect.
More generally, Corollary 1.5.4 shows that G( f )= G(X).

Example 2.4.2. Let f : X → Y be a scheme map. If X is Gorenstein and f is
G-perfect, then f is quasi-Gorenstein; see Remark 1.5.5. Remark 2.3.8 shows then
that when X and Y are both Gorenstein f is quasi-Gorenstein.

One has the following globalization of the flat case of [Avramov et al. 2010a,
8.6.2], see also [Avramov and Iyengar 2008, 2.4]:

Proposition 2.4.3. If f : X → Y is a flat Gorenstein map, with diagonal map
δ : X→ X ×Y X , then there are natural isomorphisms

W f :=HomX (δ
!(OX×Y X ), OX) −→

∼

ν
RHomX (δ

!(OX×Y X ), OX) −→
∼ f !OY .

If furthermore g : Z→ X is finite, then (B.6.1) gives a natural isomorphism

g∗( f g)!OY ∼= Rg∗g! f !OY −→
∼ RHomX (g∗OZ ,W f ) .

Proof. For any flat scheme-map f : X→ Y there is a natural isomorphism

δ!(OX×Y X ) −→
∼ RHomX ( f !OY,OX)

(see Corollary 6.5 in [Avramov et al. 2010b], with M = OX = N ).
It follows, when f !OY is invertible, that the complex δ!(OX×Y X) is invertible,

and that there is a natural D(X)-isomorphism

f !OY −→
∼ RHomX (δ

!(OX×Y X ), OX).

That the natural map ν is an isomorphism holds true with any perfect complex
in place of δ!(OX×Y X ): the assertion is local, hence reduces to the corresponding
(obvious) assertion for rings.
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For the final assertion, note that the natural map is an isomorphism

g∗( f g)!OY −→
∼ Rg∗( f g)!OY

because the equivalence of categories given in [Hartshorne 1966, p. 133, 7.19]
allows us to work exclusively with quasicoherent sheaves, on which the functor g∗
is exact. �

2.5. Composition, decomposition, and base change. We turn now to the behavior
of relative perfection and G-perfection, especially vis-à-vis the derived direct- and
inverse-image functors and the twisted inverse image functor, when several maps
are involved.

Generalizing Proposition 2.2.3 (which is the special case f = idX ), one has:

Proposition 2.5.1 (cf. [Illusie 1971, pp. 253–254, 4.5.1]). Let Z
g
−→X and X

f
−→Y

be scheme-maps, with g perfect.
Then Lg∗P( f )⊆ P( f g). In particular, if f is perfect then so is f g.
Conversely, if g is faithfully flat, or if g is proper and surjective and F ∈Dc(X),

then Lg∗F ∈ P( f g) H⇒ F ∈ P( f ). In particular, if f g is perfect then so is f .

Proof. Let F ∈ P( f ). By Lemma 2.2.2, Lg∗F ∈ Db
c(Z). Hence by [Illusie 1971,

p. 242, 3.3, p. 251, 4.3 and p. 115, 3.5(b)] (whose proofs are easily made to apply
to essentially finite-type maps of noetherian schemes), for Lg∗F to be in P( f g)
it suffices that there be integers m ≤ n such that for any OY -module M and any
integer j /∈ [m, n],

0= H j (Lg∗F ⊗L
Z L( f g)∗M)∼= H j (Lg∗(F ⊗L

X L f ∗M)).

But by loc. cit. this holds because F is in P(g) and Lg∗ is bounded.
Taking M = OY one gets that if f is perfect then f g is perfect.
For the converse, if g is faithfully flat (so that Lg∗ = g∗) then for any OX -

module F and any j ∈ Z, one sees stalkwise that

H j (g∗F )∼= g∗H j (F )= 0⇐⇒ H j (F )= 0.

Hence if F ∈ Dc(X) and g∗F ∈ P( f g)⊆ Db
c(Z)— whence F ∈ Db

c(X)— then by
an argument like that above, F ∈ P( f ).

In the remaining case one argues as in the proof of Proposition 2.2.3. (It should
be noted that the relevant part of Theorem 1.4.5 is proved via the above criterion
for relative perfection, so it applies not only to perfection but more generally to
relative perfection.) �

Analogously, for A:= f !OY one has ( f g)!OY ' g!A, so Theorem 2.2.5 gives

Proposition 2.5.2 (cf. [Avramov and Foxby 1997, 4.7]). Let Z
g
−→X

f
−→Y be scheme-

maps, with g perfect.



406 Luchezar Avramov, Srikanth B. Iyengar and Joseph Lipman

Then Lg∗G( f )⊆ G( f g). In particular, if f is G-perfect then so is f g.
Conversely, if g is faithfully flat and F ∈D−c (X), or if g is proper and surjective

and F ∈ Dc(X), then Lg∗F in G( f g) implies F ∈ G( f ). �

The next proposition generalizes parts of Proposition 2.3.9. The proof is quite
similar, and so is omitted.

Proposition 2.5.3. Let Z
g
−→X

f
−→Y be scheme-maps, P ∈ P(g), F, A ∈ D(X).

If F ∈ P( f ) then RHom Z (P, g!F) ∈ P( f g). (Cf. [Illusie 1971, p. 258, 4.9].) In
other words, the functor RHom Z (−, g!F) takes P(g) to P( f g).

If F is A-reflexive then RHom Z (P, g!F) is g!A-reflexive. For A = f !OY this
gives that RHom X (−, g!F) takes P(g) to G( f g). �

Proposition 2.5.4. Let Z
g
−→X

f
−→Y be scheme-maps, with g perfect.

Then g!P( f )⊆ P( f g) and g!G( f )⊆ G( f g).
Conversely, if g is proper and surjective, F is in D+c (X), and g!F is in P( f g)

(resp. G( f g)) then F is in P( f ) (resp. G( f )).

Proof. The direct assertions are obtained from Proposition 2.5.3 by taking P = OZ .
If g is perfect then g!OX ∈ P(g) and

Rg∗g!F ' Rg∗(g!OX ⊗
L
Z Lg∗F)' Rg∗g!OX ⊗

L
X F ;

see Remark 2.1.6. If g is also proper then Rg∗g!OX is perfect [Illusie 1971, p. 257,
4.8(a)]. One can then argue as at the end of the proof of Proposition 2.5.1. �

Proposition 2.5.5. Let Z
g
−→X

f
−→Y be scheme-maps, with g proper.

Then Rg∗P( f g)⊆ P( f ) and Rg∗G( f g)⊆ G( f ).

Proof. For P one can proceed as in [Illusie 1971, p. 257, 4.8]. (This ultimately uses
the projection isomorphism (B.1.3).)

For G apply Proposition 2.2.4 with B = f !OY . �

Proposition 2.5.6 (cf. [Iyengar and Sather-Wagstaff 2004, 5.2]). Let Z
g
−→X

f
−→Y

be scheme-maps, with f quasi-Gorenstein.
Then G( f g)= G(g). In particular, f g is G-perfect if and only if so is g.
Also, if g is quasi-Gorenstein then so is f g.

Proof. For any invertible F ∈ D(X) the natural map (see (2.1.6.1))

g!OX ⊗
L
Z Lg∗F→ g!F

is an isomorphism: the question being local (see B.4), one reduces via 1.5.2(iii′)
to the simple case F = OX .

When F is the invertible complex f !OY , there results an isomorphism

g!OX ⊗
L
Z Lg∗ f !OY → g! f !OY ' ( f g)!OY .
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The first assertion follows from Corollary 1.5.4(1) (with A= g!OX , L = Lg∗ f !OY );
and the last holds because if g!OX is invertible then by Corollary 1.5.3, ( f g)!OY is
invertible as well. �

The last assertion of Proposition 2.5.6 expresses a composition property of
quasi-Gorenstein homomorphisms. Here is a decomposition property:

Proposition 2.5.7 (cf. [Avramov and Foxby 1992, 4.6], [Iyengar and Sather-Wag-
staff 2004, 5.5]). Let Z

g
−→X

f
−→Y be scheme-maps, with g perfect.

If f g is quasi-Gorenstein then g is Gorenstein.
Suppose g is faithfully flat, or proper and surjective. If f g is quasi-Gorenstein

(resp. Gorenstein) then so is f .

Proof. By Remark 2.1.6, one has g!OX ∈ Db
c(Z) and an isomorphism

g!OX ⊗
L
Z Lg∗ f !OY → g! f !OY ' ( f g)!OY .

Also, the paragraph immediately before §5.5 in [Nayak 2009] yields f !OY ∈Dc(X),
whence Lg∗ f !OY ∈ Dc(Z). Now Corollary 1.5.3(2) gives the first assertion. It also
shows that Lg∗ f !OY is invertible, whence so is f !OY if g is faithfully flat, or proper
and surjective (see Corollary 2.2.7), giving the quasi-Gorenstein part of the second
assertion. The last assertion in Proposition 2.5.2 now gives the Gorenstein part. �

From Propositions 2.5.2, 2.5.4 and 2.5.6 one gets:

Corollary 2.5.8. Let there be given a commutative diagram

X ′
v

//

h

��

X

f

��

Y ′ u
// Y

with u quasi-Gorenstein and v perfect.
Then Lv∗G( f ) ⊆ G(h) and v!G( f ) ⊆ G(h). Thus, when f is G-perfect so is h.

�

It is shown in [Illusie 1971, p. 245, 3.5.2] that relative perfection is preserved
under tor-independent base change. Here is an analog (and more) for relative G-
perfection.

Proposition 2.5.9. Let there be given a tor-independent fiber square (see §B.2)

X ′
v

//

h

��

X

f

��

Y ′ u
// Y
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If the map u is Gorenstein, or flat, or if u is perfect and f is proper, then
Lv∗G( f )⊆ G(h). In particular, if f is G-perfect then so is h.

Conversely, suppose that u is faithfully flat, or that u is perfect, proper, and
surjective and f is proper. If F ∈ Db

c(X) and Lv∗F ∈ G(h), then F ∈ G( f ).

Proof. In all cases, u is perfect, whence so is v [Illusie 1971, p. 245, 3.5.2].
If u is Gorenstein, the assertion is contained in Corollary 2.5.8.
By Lemma 2.2.2, if F is f !OY -reflexive then Lv∗F is Lv∗ f !OY -reflexive.
If u (hence v) is flat then by B.4, one has

Lv∗ f !OY ∼= h!Lu∗OY = h!OY ′ . (2.5.9.1)

Thus v∗F is h!OY ′-reflexive, i.e., v∗F ∈ G(h).
The case when u is perfect and f is proper is treated similarly through the tor-

independent base-change theorem [Lipman 2009, 4.4.3].
For the converse, the assumption is, in view of the isomorphism (2.5.9.1), that

Lv∗F is derived Lv∗ f !OY -reflexive. Formula (2.1.6.3) gives that f !OY ∈D+c (X). So
since v satisfies all the same hypotheses as u does, Theorem 2.2.5 yields that F is
f !OY -reflexive, as asserted. �

Proposition 2.5.10. Let there be given a tor-independent fiber square (see B.2)

X ′
v

//

h

��

X

f

��

Y ′ u
// Y

with either u flat, or u perfect and f proper.
If the map f is quasi-Gorenstein (resp. Gorenstein) then so is h .
The converse holds if u (hence v) is faithfully flat, or if u (hence v) is perfect,

proper and surjective and f is proper.

Proof. As in the proof of Proposition 2.5.9, one has the isomorphism (2.5.9.1).
Hence if f !OY is invertible then so is h!OY ′ (see Corollary 1.5.3(3)), whence the
first quasi-Gorenstein assertion, whose converse follows from Corollary 2.2.7(c).
Also, by [Illusie 1971, p. 245, 3.5.2], if f is perfect then so is h, whence the first
Gorenstein assertion, whose converse follows from the preceding converse and
Proposition 2.5.1 (since u perfect and h perfect implies hu = f v perfect). �

3. Rigidity over schemes

As in previous sections, schemes are assumed to be noetherian, and scheme-maps
to be essentially of finite type, and separated.
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3.1. Rigid complexes. Fix a scheme X and a semidualizing OX -complex A, and
for any F ∈ D(X) set

F†
:= RHom X (F, A).

Definition 3.1.1. An A-rigid pair (F, ρ) is one where F ∈Db
c(X) and ρ is a D(X)-

isomorphism
ρ : F −→∼ RHom X (F†, F).

An OX -complex F is A-rigid if there exists a ρ such that (F, ρ) is an A-rigid pair.
Such a ρ is called an A-rigidifying isomorphism for F.

A morphism of A-rigid pairs (F, ρ) → (G, σ ) is a D(X)-map φ : F → G
such that the following diagram, with φ̃ : RHom X (F†, F)→ RHom X (G†,G) the
map induced by φ, commutes:

F
ρ
� RHom X (F†, F)

G

φ
g

σ
� RHom X (G†,G)

φ̃
g

The terminology “rigid” is motivated by the fact, contained in Theorem 3.2.1,
that the only automorphism of an A-rigid pair is the identity.

Example 3.1.2. If R is a ring, X = Spec R, and M,C ∈ Db
f (R) are such that

RHomR(M,C) ∈ Db
f (R), then by Example 1.1.3, M is C-rigid in the sense of

[Avramov et al. 2010a, §7] if and only if M∼ is C∼-rigid in the present sense.

Since RHom commutes with restriction to open subsets, an A-rigid pair restricts
over any open U ⊆ X to an A|U -rigid pair. However, rigidity is not a local condi-
tion: any invertible sheaf F is F-rigid, but OX is not F-rigid unless F ∼= OX .

On the other hand, rigid pairs glue, in the sense explained in Theorem 6 of the
Introduction, and generalized in Theorem 3.2.9 below.

The central result of this section, Theorem 3.1.7, a globalization of [Avramov
et al. 2010a, 7.2], is that any A-rigid F is isomorphic in D(X) to i∗i∗A, with i the
inclusion into X of some open-and-closed subscheme — necessarily the support
of F, see (1.1.2.1); or equivalently, F ' I A for some idempotent OX -ideal I ,
uniquely determined by F (see Appendix C); or equivalently, F is, in D(X), a
direct summand of A.

Example 3.1.3. The pair (A, ρA) with ρA the natural composite isomorphism

ρA
: A −→∼ RHomX (OX , A) −→∼ RHom X (RHomX (A, A), A),

is A-rigid.

Extending this example a little leads to:
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Example 3.1.4. Let U ⊆ X be an open-and-closed subset, and i : U ↪→ X the
inclusion. Recall that the OU -module i∗A is semidualizing; see Corollary 2.2.6. If
F ∈ D(U ) is i∗A-rigid then i∗F is A-rigid.

Indeed, if ρ is an i∗A-rigidifying isomorphism for F, then one has isomorphisms

i∗F −→∼i∗ρ
i∗RHomU

(
RHomU (F, i∗A), F

)
−→
∼ i∗RHomU

(
i∗RHomX (i∗F, A), F

)
−→
∼ RHomX

(
RHomX (i∗F, A), i∗F

)
,

where the second comes from (B.1.5) (since i∗i∗F = F), and the third is a special
case of [Lipman 2009, p. 98, (3.2.3.2)] (or see [Lipman 2009, §3.5.4], or just reason
directly, using that i∗F vanishes outside U ).

The composition of these isomorphisms is A-rigidifying for i∗F .

Definition 3.1.5. The U-canonical A-rigid pair (i∗i∗A, ρ i∗i∗A) is the one con-
structed in Example 3.1.4 out of the i∗A-rigid pair (i∗A, ρ i∗A) in Example 3.1.3.

It is well known that any monomorphism (resp. epimorphism) in D(X) is split,
i.e., has a left (resp. right) inverse (see e.g., [Lipman 2009, 1.4.2.1]). Thus, when
we speak of mono- or epimorphisms, the adjective “split” will usually be omitted.

Lemma 3.1.6. Let θ : F ↪→ A be a monomorphism in D(X). Let (A, ρA) be
the canonical A-rigid pair in Example 3.1.3. There exists a unique A-rigidifying
isomorphism ρ for F such that θ is a morphism of rigid pairs (F, ρ)→ (A, ρA).

Proof. It suffices to deal with the situation separately over each connected compo-
nent of X ; so we may assume that X is connected. Then, by Lemma 1.3.7, either
F = 0 or θ is an isomorphism. In either case the assertion is obvious. �

Theorem 3.1.7. For any F ∈ D(X), the following conditions are equivalent.

(i) F is A-rigid.

(ii) In D(X), F ' I ⊗L
X A ' I A ' I † for some idempotent OX -ideal I .

(iii) There is an open-and-closed U ⊆ X such that, i :U ↪→ X being the inclusion,
F ' i∗i∗A in D(X), whence U = SuppX F.

(iv) There is, in D(X), a monomorphism F→ A.

When they hold, there is a unique ideal I satisfying condition (ii).

Proof. (iii)⇒ (i). In view of Example 3.1.3, this is contained in Example 3.1.4.
(i)⇒ (iii). For the last assertion in (iii), since i∗i∗A vanishes outside U, and

since for all x ∈U one has, in D(OU,x),

0 6= OU,x ' (RHomU (i∗A, i∗A))x ' RHomOU,x ((i∗i
∗A)x , (i∗i∗A)x)

therefore U = SuppX (i∗i
∗A).
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Now let F be A-rigid. Then U := SuppX F is an open-and-closed subset of X.
For, X is covered by open subsets of the form V = Spec R; and with j : V ↪→ X
the inclusion, the j∗A-rigid complex j∗F (resp. its homology) is the sheafification
of FV := R0(V, F) (resp. its homology), so (SuppX F) ∩ V = SuppR FV . But
FV is R0(V, A)-rigid (since (FV )

∼ ∼= j∗F is j∗A-rigid), so by [Avramov et al.
2010a, 7.2], SuppR FV = U ∩ V is an open-and-closed subset of V . That U is
open-and-closed follows.

Hence, the natural map F→ i∗i∗F is a D(X)-isomorphism; so to prove the theo-
rem we can replace (X, A, F) by (U, i∗A, i∗F), i.e., we may assume SuppX F = X.

In D(X), the complex L:= F† is isomorphic to H 0L , which is an invertible sheaf:
this assertion need only be checked locally, i.e., for affine X, where it is given by
[Avramov et al. 2010a, 4.9]. (The assumptions of that theorem are satisfied because
F and A are both in Db

c(X).) The invertible complex L is derived A-reflexive (take
F =OX in 1.5.4(2)); similarly, so is L⊗L

X L . Since SuppX A= X , by Lemma 1.3.7,
therefore Proposition 1.3.3(iii) yields that F is derived A-reflexive. So L†

' F,
and

L†
' RHomX (L , L†)' (L ⊗L

X L)† (see (1.1.1.1)).

Applying the functor † to these isomorphisms we get L ⊗L
X L ' L . Tensoring

with L−1 shows then that L ' OX . Thus F ' L†
' A.

(iii)⇒ (ii). Associated to any open-and closed U ⊆ X is the unique idempotent
OX -ideal I that is isomorphic to i∗OU (Corollary C.3). For this I we have natural
isomorphisms, the second from (B.1.3) and the last two from Corollary C.4:

i∗i∗A ' i∗(OU ⊗
L
U i∗A)' i∗OU ⊗

L
X A ' I ⊗L

X A ' I A ' I †.

(ii)⇒ (iii). Given I as in (ii), let U = SuppX I , with inclusion i :U ↪→ X , and
use the preceding isomorphisms (see Corollary C.3).

(iii)⇒ (iv). If i is as in (iii), then i∗i∗A is a direct summand of A.
(iv)⇒ (i). See Lemma 3.1.6.
It remains to note that the uniqueness of I in (ii) results from

SuppX I A = SuppX (I ⊗
L
X A)= SuppX I ∩SuppX A = SuppX I ∩ X = SuppX I,

see (1.1.2.2). The proof of Theorem 3.1.7 is now completed. �

Define a direct decomposition of F ∈ D(X) to be a D(X)-isomorphism

F ' F1⊕ F2⊕ · · ·⊕ Fn (3.1.7.1)

such that no Fi vanishes; call F indecomposable if F 6= 0 and in any direct decom-
position of F, one has n = 1. Say that (3.1.7.1) is an orthogonal decomposition
of F if, in addition, Fi ⊗

L
X F j = 0 for all i 6= j .
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Corollary 3.1.8. Let F 6= 0 be an A-rigid complex. Let SuppX F =
⊔n

s=1 Us be a
decomposition into disjoint nonempty connected closed subsets, and is :Us ↪→ X
(1≤ s ≤ n) the canonical inclusions.

The Us are then connected components of X, and there is an orthogonal decom-
position into indecomposable A-rigid complexes:

F '
n⊕

s=1

(is)∗(is)
∗A.

If F' F1⊕· · ·⊕Fr is a direct decomposition with each Ft indecomposable, then
r = n and (after renumbering) there is for each s an isomorphism Fs ' (is)∗(is)

∗A.

Proof. Since by Theorem 3.1.7(iii), SuppX F is open and closed in X, therefore
each Us is a connected component of X. Moreover, if i : SuppX F ↪→ X is the
inclusion, then i∗A is semidualizing (Corollary 2.2.6), and compatibility of RHom
with open immersions (to see which, use [Lipman 2009, 2.4.5.2]) implies that i∗F
is i∗A-rigid. It follows then from Theorem 3.1.7(iii) that we may assume F = A.

The decomposition X =
⊔n

s=1 Us now yields a decomposition of F ∈ D(X):

F '
n⊕

s=1

(is)∗(is)
∗F =

n⊕
s=1

(is)∗(is)
∗A .

As before, (is)
∗A is a semidualizing complex of OUs -modules, so its support is Us ,

and it is indecomposable; see Lemma 1.3.7. Hence (is)∗(is)
∗A is indecomposable,

and has support Us . It then follows from (1.1.2.2) that the decomposition above is
orthogonal. Moreover, the complexes (is)∗(is)

∗A are A-rigid; see Definition 3.1.5.
Let F' F1⊕· · ·⊕Fr be a direct decomposition. It results from Lemma 1.3.7 that

this decomposition is orthogonal. Hence X = SuppX F =
⊔r

t=1 Vt . Furthermore,
F ∈ Db

c(X) H⇒ Ft ∈ Db
c(X) for all t . Hence Vt = SuppX Ft is open and closed;

and since Ft is indecomposable, Vt is connected. Thus the Vt are the connected
components of X . In particular, r = n, and, after renumbering, one may assume
Vt =Ut for each t . It remains to observe that Fs ' (is)∗(is)

∗F ' (is)∗(is)
∗A. �

3.2. Morphisms of rigid complexes. We present elaborations of Theorem 3.1.7,
leading to a simple description of the skeleton of the category of rigid pairs; see
Theorem 3.2.6 and Remark 3.2.7.

The result below involves the H0(X,OX) action on D(X) described in 1.2.

Theorem 3.2.1. If (F, ρ), (F ′, ρ ′) are A-rigid pairs with SuppX F = SuppX F ′

then there exists a unique isomorphism (F, ρ) −→∼ (F ′, ρ ′). In particular, any A-
rigid pair (F, ρ) admits a unique isomorphism into a U-canonical one, for some
open-and-closed U ⊆ X , necessarily the support of F.
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Moreover, if F ′ = F then with UF := SuppX F, there is a unique unit u in the
ring H0(UF ,OUF) such that ρ ′ = ρ ū, where ū ∈ H0(X,OX) is u extended by 0, and
the unique isomorphism (F, ρ) −→∼ (F, ρ ′) is multiplication in F by ū.

For any endomorphism φ of the A-rigid pair (F, ρ) there is a uniquely deter-
mined idempotent u ∈ H0(UF ,OUF) such that φ is multiplication by ū.

Proof. Modulo Theorem 3.1.7, the proof is basically that of [Avramov et al. 2010a,
7.3]. Indeed, Theorem 3.1.7(iii) implies that we may assume F = F ′, and that
furthermore, we may replace X by U, i.e., assume F = A (so that ū = u).

Each endomorphism of F is multiplication by a unique element u in H0(X,OX).
From Lemma 1.2.1 it follows that multiplication by u induces multiplication by u
on F† and multiplication by u2 on RHomX (F†, F). With uF , resp. uH , multipli-
cation by u on F , resp. on RHomX (F†, F), we have then that uHρ= ρuF , see 1.2,
so that u2

Hρ = uHρuF = ρu2
F .

In view of this identity, one gets that uF is an isomorphism from the rigid pair
(F, ρ) to the rigid pair (F, ρ ′)⇐⇒ ρ ′uF = u2

Hρ ⇐⇒ ρ ′uF = ρu2
F ⇐⇒ ρ ′ = ρuF .

Thus the sought-after u is the unique one such that uF is the automorphism ρ−1ρ ′.
In the same vein, when uF induces an endomorphism of the rigid pair (F, ρ)

one gets a relation ρu = ρu2, whence, ρ being an isomorphism, u2
= u. �

Corollary 3.2.2. For any A-rigid complex F, the group of automorphisms of F
acts faithfully and transitively on the set of rigidifying isomorphisms ρ of F.
�

Corollary 3.2.3. If X is connected then every nonzero morphism of A-rigid pairs
is an isomorphism. �

Definition 3.2.4. For any D(X)-map φ : F → F ′ of A-rigid pairs, SuppX φ is the
union of those connected components of X to which the restriction of φ is nonzero.

By Corollary 3.2.3, if X is connected then nonzero maps of A-rigid pairs are
isomorphisms. So for a composable pair (φ, ψ) of maps of A-rigid pairs,

SuppX (φψ)= SuppX φ ∩SuppX ψ. (3.2.4.1)

Corollary 3.2.5. Let (F, ρ) and (F ′, ρ ′) be A-rigid pairs.

(1) Suppose that SuppX F ⊆ SuppX F ′. Then there is a unique monomorphism
(F, ρ) ↪→ (F ′, ρ ′) and a unique epimorphism (F ′, ρ ′)� (F, ρ).

(2) For any morphism φ : (F, ρ)→ (F ′, ρ ′), if (G, σ ) is an A-rigid pair with
SuppX G = SuppX φ then φ factors uniquely as

(F, ρ)
φ′

� (G, σ )
φ′′

↪→ (F ′, ρ ′)

with φ′ an epimorphism and φ′′ a monomorphism.

Thus φ is uniquely determined by its source, target and support.
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Proof. Looking at connected components separately, one reduces to where X is
connected; the assertions then follow from Corollary 3.2.3 and Theorem 3.2.1. �

Here is a structure theorem for the category RpA(X) of A-rigid pairs.

Theorem 3.2.6. Let OC(X) be the category whose objects are the open-and-closed
subsets of X , and whose maps U→ V are the open-and-closed subsets of U ∩ V,
the composition of S ⊆U ∩ V and T ⊆ V ∩W being S ∩ T ⊆U ∩W.

Let 9 : RpA(X)→ OC(X) be the functor taking (F, ρ) ∈ RpA(X) to SuppX F,
and taking a morphism φ ∈ RpA(X) to SuppX φ (see (3.2.4.1)).

This 9 is an equivalence of categories.

Proof. Let (F, ρ) and (F ′, ρ ′) be A-rigid pairs, U := SuppX F, V := SuppX F ′, and
S an open-and-closed subset of U∩V . It follows from Corollary 3.2.5, with (G, σ )
the S-canonical pair, that there is a unique map of A-rigid pairs φ : (F, ρ)→ (F ′, ρ ′)
such that SuppX φ = S, whence the conclusion. �

Remark 3.2.7. A quasi-inverse 8 of 9 can be constructed as follows:
8 :OC(X)→ RpA(X) takes an open-and-closed U ⊆ X to an arbitrarily chosen

rigid pair (F, ρ) with SuppX F = U ; and then, for any OC(X)-map S ⊆ U ∩ V ,
8(S) is the unique epimorphism 8U � 8S followed by the unique monomor-
phism 8S ↪→8V (see Corollary 3.2.5).

That this describes a functor is, modulo (3.2.4.1), straightforward to see.
Taking into account that the map S ⊆ U ∩ V factors as a split epimorphism

(namely S ⊆ U ∩ S) followed by a split monomorphism (namely S ⊆ S ∩ V ),
and that any functor respects left and right inverses, one sees that in fact all quasi-
inverses of 9 have the preceding form.

In particular, there is a canonical8, associating to each U the U -canonical pair.
Thus OC(X) is canonically isomorphic to the category of canonical A-rigid pairs.

The next result is in preparation for establishing a gluing property for rigid pairs.

Lemma 3.2.8. If g : Z→ X is a perfect map and F is an A-rigid complex in D(X),
then Lg∗A ∈ Db

c(Z) is semidualizing and Lg∗F is (Lg∗A)-rigid.

Proof. That Lg∗A is semidualizing is given by Corollary 2.2.6.
If ρ is an A-rigidifying isomorphism for F ∈ D(X), then, abusing notation, we

let Lg∗ρ be the composed isomorphism

Lg∗F −→∼ Lg∗RHomX (F†, F)

−→
∼ RHom Z (Lg∗F†, Lg∗F)

−→
∼ RHom Z (RHom Z (Lg∗F, Lg∗A), Lg∗F),

where the first isomorphism is the result of applying the functor Lg∗ to ρ, and the
other two come from (2.1.7.1). Thus Lg∗ρ is (Lg∗A)-rigidifying for Lg∗F. �
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Theorem 3.2.9. Let g : Z → X be a faithfully flat scheme-map, W := Z ×X Z ,
π1 :W → Z and π2 :W → Z the canonical projections.

Let A ∈ D(X) be semidualizing. If (G, σ ) is a (g∗A)-rigid pair such that there
exists an isomorphism π∗1 G ' π∗2 G, then there is, up to unique isomorphism,
a unique A-rigid pair (F, ρ) such that (G, σ )' (g∗F, g∗ρ).

Proof. (Uniqueness.) If g∗F ' g∗F ′ then, since

g−1 SuppX F = SuppZ g∗F = SuppZ g∗F ′ = g−1 SuppX F ′,

and g is surjective, therefore SuppX F = SuppX F ′; and so by Theorem 3.2.1, there
is a unique isomorphism (F, ρ) −→∼ (F ′, ρ ′).

(Existence.) In view of Theorem 3.1.7, we may assume that G= Jg∗A for some
idempotent OZ -ideal J . Then, for i = 1, 2, Corollaries C.4 and C.7 yield

SuppW π
∗

i G = SuppW (π
∗

i J ⊗L
W π

∗

i g∗A)

= SuppW π
∗

i J ∩ SuppW π
∗

i g∗A

= SuppW π
∗

i J.

So π∗1 J and π∗2 J , being isomorphic to idempotent ideals with the same support,
must be isomorphic. Hence by Proposition C.8, there is a unique idempotent OX -
ideal I such that J = I OZ . If F = I A then G ' g∗F .

Let ρ be a rigidifying isomorphism for F, so that (g∗F, g∗ρ) is a (g∗A)-rigid
pair. By Theorem 3.2.1, there is a unique isomorphism (g∗F, g∗ρ) −→∼ (G, σ ).

�

Remark 3.2.10. In view of 3.2.1 and 3.2.8, the hypothesis π∗1 G ' π∗2 G in 3.2.9
means simply that SuppW π

∗

1 G = SuppW π
∗

2 G.

3.3. Relative rigidity. With reference to a G-perfect map f : X → Y , we take
particular interest in those complexes that are f !OY -rigid — complexes we will
simply call f -rigid.

For g any essentially étale map (so that, by Proposition 2.5.2, f g is G-perfect),
there is a natural isomorphism of functors ( f g)!'g∗ f ! (see B.3). By Lemma 3.2.8,
if P is f -rigid then g∗P is ( f g)-rigid.

The following étale gluing result (where for simplicity we omit mention of
rigidifying isomorphisms) is an immediate consequence of Theorem 3.2.9.

Proposition 3.3.1. Let Z
g
−→X

f
−→Y be scheme-maps, where f is G-perfect and g

is essentially étale and surjective. Let W := Z ×X Z , with canonical projections
π1 :W→ Z and π2 :W → Z. If P is an ( f g)-rigid complex such that there exists
an isomorphism π∗1 P ' π∗2 P , then there exists, up to isomorphism, a unique f -
rigid complex F with g∗F ' P. �
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Fix a semidualizing complex A on a scheme X . The main result in this sec-
tion, Theorem 3.3.2, is that for any additive functor from A-rigid complexes to the
derived category of some scheme, that takes A to a semidualizing complex C —
and hence, by Theorem 3.1.7(iv), takes A-rigid complexes to C-rigid complexes —
there is a unique lifting to the category of A-rigid pairs that takes the canonical pair
(A, ρA) to (C, ρC ), provided that the functor “respects intersection of supports”.

From Theorem 3.3.2 we will derive the behavior of relatively rigid complexes
with respect to perfect maps (Corollaries 3.3.4 and 3.3.5). These results generalize,
and were inspired by, results in [Yekutieli and Zhang 2004, Sections 3 and 6].

Let RcA(X) ⊆ D(X) be the full subcategory of A-rigid complexes, and let
RpA(X) be the category of A-rigid pairs. Let ϕX : RpA(X)→ D(X) be the functor
taking (F, ρ) to F ∈ RcA(X). The rigid pair (A, ρA) is defined in Example 3.1.3.

Theorem 3.3.2. Let X and Z be schemes, let A ∈ D(X) be semidualizing, and let
F : RcA(X)→ D(Z) be an additive functor such that FA is semidualizing.

There exists at most one functor F : RpA(X)→ RpFA(Z), such that

ϕZF= FϕX and F(A, ρA)= (FA, ρFA) .

For such an F to exist it is necessary that for any idempotent OX-ideals I, J,

SuppZ F(I J A)= SuppZ F(I A)∩ SuppZ F(J A), (3.3.2.1)

and it is sufficient that (3.3.2.1) hold whenever I J = 0.

Remark 3.3.3. Let a, b ∈ H0(X,OX) be the idempotents such that I = aOX and
J = bOX . Since I A admits a monomorphism into A, therefore F(I A) admits a
monomorphism into FA, and it follows from Theorem 3.1.7 that there is a unique
idempotent f (a)∈H0(Z ,OZ ) with F(I A)' f (a)FA. By (1.1.2.2), Corollary C.4,
and the fact that a semidualizing complex on a scheme is supported at every point
of the underlying space, see Lemma 1.3.7, condition (3.3.2.1) amounts then to
f (ab)= f (a) f (b).

Before proving Theorem 3.3.2, we gather together some examples. Part (1) of
the next corollary elaborates Lemma 3.2.8.

Recall that if g : Z → X is perfect then both Lg∗B and g!A are semidualizing;
see Corollary 2.2.6. If L ∈ D(X) is invertible then L ⊗L

X A is semidualizing,
by Corollary 1.5.4(3); and if F ∈ D+qc(X), then there is as in (2.1.6.2) a natural
isomorphism g!L ⊗L

Z Lg∗F −→∼ g!(L ⊗L
X F).

Corollary 3.3.4. Let g : Z→ X be a perfect map, and A ∈ Db
c(X) semidualizing.

(1) There is a unique functor g∗∗ : RpA(X)→ RpLg∗A(Z) such that

ϕZ g∗∗ = Lg∗ and g∗∗(A, ρA)= (Lg∗A, ρLg∗A ).
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(2) There is a unique functor g!! : RpA(X)→ Rpg!A(Z) such that

ϕZ g!! = g! and g!!(A, ρA)= (g!A, ρ g!A ).

(3) For each invertible L ∈ D(X) there is a unique bifunctor

g⊗ : Rpg!L(Z)×RpA(X)→ Rpg!(L⊗L
X A)(Z)

such that

ϕZ g⊗(P, F)= P ⊗L
Z Lg∗F

and

g⊗
(
(g!L , ρ g!L), (A, ρA)

)
= (g!(L ⊗L

X A), ρ g!(L⊗L
X A)) .

Proof. Corollary C.7 implies that for either functor, one has in Remark 3.3.3 that
f (a) is the image of a under the natural map H0(X,OX) → H0(Z ,OZ ). Thus
f (ab)= f (a) f (b) holds, and so (1) and (2) result from Theorem 3.3.2.

For (3) replace X in Theorem 3.3.2 by the disjoint union Z t X . For P ∈ D(Z)
and F ∈ D(X), let (P, F) ∈ D(Z t X) be the complex whose restriction to Z is P
and to X is F . There is an obvious functor F : D(Z t X)→ D(Z) taking (P, F) to
P ⊗L

Z Lg∗F . This takes the semidualizing complex (g!L , A) to the semidualizing
complex g!L⊗L

Z Lg∗A' g!(L⊗L
X A). Using (1.1.2.2) and Remark 3.3.3, one verifies

that (3.3.2.1) holds; and so (3) results. �

Recall that if Z
g
−→X

f
−→Y are maps such that g is perfect and f is G-perfect then

f g is G-perfect (Proposition 2.5.2). Taking A = f !OY and L = OX in (2) and (3)
of Corollary 3.3.4 one gets:

Corollary 3.3.5. Let g : Z→ X be perfect, and f : X→ Y G-perfect.

(1) If F is f -rigid then g!F is f g-rigid.

(2) If P is g-rigid and F is f -rigid then P ⊗L
Z Lg∗F is f g-rigid. �

Corollary 3.3.6. Let g : Z → X be a proper map such that the natural map is an
isomorphism OX −→

∼ Rg∗OZ . Let A ∈ D+qc(X) be such that g!A is semidualizing.
Then A is semidualizing, the canonical map is an isomorphism Rg∗g!A −→∼ A,

and there is a unique functor g∗∗ : Rpg!A(Z)→ RpA(X) such that

ϕX g∗∗ = Rg∗ϕZ and g∗∗(g!A, ρg!A)= (Rg∗g!A, ρRg∗g!A).

Hence, if f : X → Y is such that f g is G-perfect then f is G-perfect, and if P is
f g-rigid then Rg∗P is f -rigid.
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Proof. That A is semidualizing is given by Proposition 2.2.4.
There are, for E ∈ Dqc(X), natural isomorphisms, the second from B.3(ii), and

the third from (B.1.3),

HomD(X)(E,Rg∗g!A)∼= HomD(Z)(Lg∗E, g!A)
∼= HomD(X)(Rg∗(OZ ⊗

L
Z Lg∗E), A)

∼= HomD(X)(Rg∗OZ ⊗
L
X E, A)∼= HomD(X)(E, A).

It follows, via [Lipman 2009, 3.4.7(ii)], that the canonical map is an isomorphism

Rg∗g!A −→∼ A.

By assumption, one has the natural isomorphism H0(X,OX) −→
∼ H0(Z ,OZ ). So

there is a bijection between the idempotents in these two rings; and also, g is
surjective. Hence g−1 gives a bijection from the open-and-closed subsets of X to
the open-and-closed subsets of Z . Furthermore, for any P ∈ Db

c(Z), the support
SuppZ P is closed, whence, g being proper, U := X \ g(SuppZ P) is open; and
the restriction of P to g−1U is acyclic. Thus SuppX Rg∗P ⊆ g(SuppZ P). One
now easily checks (3.3.2.1), with F= Rg∗ and A replaced by g!A, when I J = 0 —
so that SuppZ (Ig!A) and SuppZ (Jg!A) are disjoint open-and-closed subsets of Z .
The existence and uniqueness of g∗∗ follows then from Theorem 3.3.2.

For the last assertion, take A = f !OY . �

Corollary 3.3.7. Let there be given a tor-independent fiber square (see B.2)

X ′
v

//

h

��

X

f

��

Y ′ u
// Y

in which f is G-perfect.
If u is flat, or if u is perfect and f is proper, then h is G-perfect and for any

f -rigid OX-complex F, Lv∗F is h-rigid.

Proof. Proposition 2.5.9 and [Illusie 1971, p. 245, 3.5.2] imply h is G-perfect and
v is perfect. By Corollary 3.3.4(i), Lv∗F is Lv∗ f !OY -rigid, i.e., h!OY ′-rigid; see
(2.5.9.1). �

Proof of Theorem 3.3.2. (Uniqueness.) Let (G, σ ) be an A-rigid pair.
Set (FG, τ ):=F(G, σ ). Let φG be the unique (split) monomorphism from (G, σ )

to the canonical pair (A, ρA), so that F(φG) is a (split) monomorphism, necessarily
the unique one from (FG, τ ) to (FA, σ FA), see Corollary 3.2.5. It follows then from
Lemma 3.1.6 that τ depends only on F and (G, σ ).
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Also, for any morphism φ of A-rigid pairs, ϕZF= F implies Fφ = Fφ.
(Necessity of (3.3.2.1)). Let9Z :RpFA(Z)→OC(Z) be as in Theorem 3.2.6. Let

8 : OC(X)→ RpA(X) be as in Remark 3.2.7, sending an open-and-closed U ⊆ X
to IU A, where IU is the idempotent OX -ideal that is OU over U and (0) elsewhere.
Then9ZF8 :OC(X)→OC(Z) respects composition of maps, i.e., (3.3.2.1) holds.

(Existence.) Since any functor preserves a map’s property of being split —
mono or epi — Theorem 3.1.7(iv) shows that F takes A-rigid complexes to FA-
rigid complexes; and the preceding uniqueness argument shows how F(G, σ )must
be defined. It remains to prove that for any morphism φ : (G, σ )→ (G ′, σ ′) of
A-rigid pairs, Fφ is a morphism of FA-rigid pairs.

Let U1, . . . ,Un be the connected components of X . For each j , let V j be the
support of the FA-rigid complex F(IU j A) (see above). The condition (3.3.2.1),
for I J = 0, guarantees that if j 6= k then the open-and-closed subsets V j and Vk

are disjoint. So we need only show that
(∗) the restriction of Fφ over each V j is a morphism of FA|V j -rigid pairs.

Corollary 3.1.8 shows that φ=
∑n

j=1 φ j where for each j , the source and target
of φ j each have support that, if not empty, is U j . Then, since F is additive, Fφ =∑n

j=1 Fφ j ; and the source and target of Fφ j each have support contained in V j

(see the first assertion in Theorem 3.2.1). Hence the restriction of Fφ over V j

is Fφ j . Proving (∗) is thus reduced to the case where X is connected, so that
by Corollary 3.2.3, φ is either 0 or an isomorphism.

If φ=0, (∗) is obvious. If φ (hence Fφ) is an isomorphism consider the diagram,
where (FG, τ ):=F(G, σ ), (FG ′, τ ′):=F(G ′, σ ′), where φG ′ is as above, and where
the maps on the right are induced by those on the left:

FG τ
� RHomZ (RHomZ (FG, FA), FG)

FG ′
Fφ
g

τ ′

� RHomZ (RHomZ (FG ′, FA), FG ′)

ξ
g

FA

FφG′g

σ FA
� RHomZ (RHomZ (FA, FA), FA)

ξ ′

g

By the above-indicated definition of τ and τ ′, the bottom square commutes, as does
the square obtained by erasing τ ′. Since ξ ′ is a monomorphism, therefore the top
square commutes too. Thus Fφ is a map of FA-rigid pairs. �

Remark 3.3.8. One would naturally like more concrete definitions of the functors
in Corollary 3.3.4.
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One does find in [Yekutieli and Zhang 2004, §3] some explicitly formulated —
in DGA terms — versions of special cases of these functors. (Indeed, that’s what
suggested Corollary 3.3.4.) But getting from here to there does not appear to be a
simple matter. One might well have to go via the Reduction Theorem [Avramov
et al. 2010b, 4.1], the main result of that paper, cf. [Avramov et al. 2010a, 8.5.5]);
and, say for smooth maps, make use of nontrivial formal properties of Verdier’s
isomorphism (B.5).

In Duality Land the well-cultivated concrete and abstract plains are not presently
known to be connected other than by forbidding mountain passes, that can only be
traversed by hard slogging.

Appendices: Background

We review background concepts and basic facts having to do with scheme-maps,
insofar as needed in the main text. Of special import is the twisted inverse-image
pseudofunctor, a fundamental object in Grothendieck duality theory.

Rings and schemes are assumed throughout to be noetherian.

A. Essentially finite-type maps

A.1. A homomorphism σ : K→ S of commutative rings is essentially of finite type
if σ can be factored as a composition of ring-homomorphisms

K ↪→ K [x1, . . . , xd ] → V−1K [x1, . . . , xd ]� S ,

where x1, . . . , xd are indeterminates, V ⊆K [x1, . . . , xd ] is a multiplicatively closed
set, the first two maps are canonical and the third is surjective. The map σ is of
finite type if one can choose V = {1}; the map σ is finite if it turns S into a finite
(that is, finitely generated) R-module.

A homomorphism σ̇ : K → P is (essentially) smooth if it is flat and (essen-
tially) of finite type, and if for each homomorphism of rings K → k, where k is a
field, the ring k⊗K P is regular. By [Grothendieck and Dieudonné 1967, 17.5.1],
this notion of smoothness is equivalent to the one defined in terms of lifting of
homomorphisms.

When σ̇ is essentially smooth the P-module �σ̇ of relative Kähler differentials
is finite projective; we say σ̇ has relative dimension d if for every p ∈ Spec S, the
free Sp-module (�σ̇)p has rank d.

A.2. A scheme-map f : X → Y is essentially of finite type if every y ∈ Y has an
affine open neighborhood V = Spec(A) such that f −1V can be covered by finitely
many affine open sets Ui = Spec(Ci ) so that the corresponding ring homomor-
phisms A→ Ci are essentially of finite type.
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If, moreover, there exists for each i a multiplicatively closed subset Vi ⊆ A such
that A→Ci factors as A→V−1

i A −→∼ Ci where the first map is canonical and the
second is an isomorphism (in other words, A→Ci is a localization of A), then we
say that f is localizing. If the scheme-map f is localizing and also set-theoretically
injective, then we say that f is a localizing immersion.

The map f is essentially smooth (of relative dimension d ) if it is essentially of
finite type and the above data A→Ci can be chosen to be essentially smooth ring
homomorphisms (of relative dimension d ). The map f is essentially étale if it is
essentially smooth of relative dimension 0. Equivalently, f is essentially smooth
(resp. étale) if it is essentially of finite type and formally smooth (resp. étale); see
[Grothendieck and Dieudonné 1967, §17.1]. For example, any localizing map is
essentially étale.

Remark A.3. We will refer a few times to proofs in [Illusie 1971] that make use of
the fact that the diagonal of a smooth map is a quasiregular immersion. To ensure
that those proofs apply here, we note that the same property for essentially smooth
maps is given by [Grothendieck and Dieudonné 1967, 16.10.2 and 16.9.4].

Nayak [2009, 4.1], extending a compactification theorem of Nagata, shows that
every essentially-finite-type separated map f of noetherian schemes factors as
f = f̄ u with f̄ proper and u a localizing immersion.

Example A.4. (Local compactification.) A map f : X = Spec S→ Spec K = Y
coming from an essentially finite-type homomorphism of rings K → S factors as

X
j
−→W

i
↪→ W̄

π
−→Y,

where W is the Spec of a finitely generated K -algebra T of which S is a localiza-
tion, j being the corresponding map, where i is an open immersion, and where π
is a projective map, so that π is proper and i j is a localizing immersion.

B. Review of global duality theory

All scheme-maps are assumed to be essentially of finite type and separated.
We recall some global duality theory, referring to [Lipman 2009] and [Nayak

2009] for details.

B.1. To any scheme-map f : X→ Y one associates the right-derived direct-image
functor R f∗ : Dqc(X)→ Dqc(Y ) and its left adjoint, the left-derived inverse-image
functor L f ∗ :Dqc(Y )→Dqc(X) [Lipman 2009, 3.2.2, 3.9.1, 3.9.2]. These functors
interact with the left-derived tensor product ⊗L via a natural isomorphism

L f ∗(M ⊗L
Y N ) −→∼ L f ∗M ⊗L

X L f ∗N
(
M, N ∈ D(Y )

)
, (B.1.1)
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see [Lipman 2009, 3.2.4]; via the functorial map

R f∗F ⊗L
Y R f∗G→ R f∗(F ⊗L

X G)
(
F,G ∈ D(X)

)
(B.1.2)

adjoint to the natural composite map

L f ∗(R f∗F ⊗L
Y R f∗G) −→∼ L f ∗R f∗F ⊗L

X L f ∗R f∗G −→ F ⊗L
X G;

and via the projection isomorphism

R f∗F ⊗L
Y M −→∼ R f∗(F ⊗L

X L f ∗M)
(
F ∈ Dqc(X), M ∈ Dqc(Y )

)
, (B.1.3)

defined qua map to be the natural composition

R f∗F ⊗L
Y M→ R f∗F ⊗L

Y R f∗L f ∗M→ R f∗(F ⊗L
X L f ∗M).

see [Lipman 2009, 3.9.4)]. The projection isomorphism yields a natural isomor-
phism

R f∗L f ∗M ' R f∗(OX ⊗
L
X L f ∗M)' R f∗OX ⊗

L
Y M. (B.1.4)

Interactions with the derived (sheaf-)homomorphism functor RHom occur via
natural bifunctorial maps:

L f ∗RHomY (M, N )→ RHomX (L f ∗M, L f ∗N )
(
M, N ∈ D(Y )

)
, (B.1.5)

(see [Lipman 2009, 3.5.6(a)]) which is an isomorphism if f is an open immersion
[Lipman 2009, p. 190, end of §4.6]; and

R f∗RHomX (F,G)→ RHomY (R f∗F, R f∗G)
(
F,G ∈ D(X)

)
, (B.1.6)

the latter corresponding via (1.1.1.2) to the natural composition

R f∗RHomX (F,G)⊗L
Y R f∗F→ R f∗

(
RHomX (F,G)⊗L

X F
) R f∗ε
−−→R f∗G,

where the first map comes from (B.1.2), and ε is the evaluation map (1.1.1.3).

B.2. For any commutative square of scheme-maps

X ′
v

//

h

��

X

f

��

4

Y ′ u
// Y

(B.2.1)

one has the map θ4 : Lu∗R f∗→ Rh∗Lv∗ adjoint to the natural composite map

R f∗ −→ R f∗Rv∗Lv∗ −→∼ Ru∗Rh∗Lv∗.

When 4 is a fiber square (which means that the map associated to 4 is an iso-
morphism X ′ −→∼ X ×Y Y ′), and u is flat, then θ4 is an isomorphism. In fact, for
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any fiber square4, θ4 is an isomorphism⇐⇒4 is tor-independent [Lipman 2009,
3.10.3].

B.3. Duality theory focuses on the twisted inverse-image pseudofunctor

f ! : D+qc(Y )→ D+qc(X),

where “pseudofunctoriality” (also known as “2-functoriality”) entails, in addition
to functoriality, a family of functorial isomorphisms cg, f : ( f g)! −→∼ g! f !, one
for each composable pair Z

g
−→X

f
−→Y , satisfying a natural “associativity” property

vis-à-vis any composable triple; see, e.g., [Lipman 2009, 3.6.5].
This pseudofunctor is uniquely determined up to isomorphism by the following

three properties:
(i) If f is essentially étale then f ! is the usual restriction functor f ∗.
(ii) If f is proper then f ! is right-adjoint to R f∗ .
(iii) If in a fiber square 4 as in (B.2.1) the map f (and hence h) is proper and

u is essentially étale, then the functorial base-change map

β4(M) : v∗ f !M→ h!u∗M
(
M ∈ D+qc(Y )

)
, (B.3.1)

defined to be adjoint to the natural composition

Rh∗v∗ f !M −→∼
θ−1
4

u∗R f∗ f !M −→ u∗M,

is identical with the natural composite isomorphism

v∗ f !M = v! f !M −→∼ ( f v)!M = (uh)!M −→∼ h!u!M = h!u∗M.

For the existence of such a pseudofunctor, see [Nayak 2009, section 5.2 ].

B.4. Nayak’s theorem [2009, 5.3] (as elaborated in [Nayak 2005, 7.1.6]) shows
that one can associate, in a unique way, to every fiber square 4 as in (B.2.1) with u
(and hence v) flat, a functorial isomorphism

β4(M) : v∗ f !M −→∼ h!u∗M (M ∈ D+qc(Y )) ,

equal to (B.3.1) when f is proper, and to the natural isomorphism v∗ f ∗ −→∼ h∗u∗

when f is essentially étale.

B.5. Generalizing (i) in B.3, let f : X → Y be essentially smooth, so that by
[Grothendieck and Dieudonné 1967, 16.10.2] the relative differential sheaf � f is
locally free over OX . On any connected component W of X, the rank of � f is a
constant, denoted d(W ).

There is a functorial isomorphism

f !M −→∼ 6d�d
f ⊗OX f ∗M

(
M ∈ Dqc(Y )

)
, (B.5.1)
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with 6d�d
f the complex whose restriction to any W is 6d(W )

∧d(W )

OW

(
� f
∣∣
W

)
.

(6 is the usual translation automorphism of D(X); and
∧

denotes exterior power.)
To prove this, one may assume that X itself is connected, and set d := d(X).

Noting that the diagonal 1 : X → X ×Y X is defined locally by a regular seq-
uence of length d (see Remark A.3), so that 1!OX×Y X ⊗

L L1∗G ∼= 1!G for all
G ∈ Dqc(X ×Y X) [Hartshorne 1966, p. 180, 7.3], one can imitate the proof of
[Verdier 1969, p. 397, Thm. 3], where, in view of (a) above, one can drop the
properness condition and take U = X, and where finiteness of Krull dimension is
superfluous.

B.6. The fact that β4(M) in (B.3.1) is an isomorphism for all M whenever u is an
open immersion and f is proper, is shown in [Lipman 2009, §4.6, part V] to be
equivalent to sheafified duality, which is that for any proper f : X → Y , and any
F ∈ Dqc(X), M ∈ D+qc(Y ), the natural composition, in which the first map comes
from (B.1.6),

R f∗Hom X (F, f !M)→ RHomY (R f∗F, R f∗ f !M)→ RHomY (R f∗F,M),
(B.6.1)

is an isomorphism.
Moreover, if the proper map f has finite flat dimension, then sheafified duality

holds for all M ∈ Dqc(Y ), see [Lipman 2009, 4.7.4].
If f is a finite map, then (B.6.1) with F = OX determines the functor f !. (See

also [Conrad 2007, §2.2].) In particular, if f : Spec B → Spec A corresponds to
a finite ring homomorphism A→ B, and ∼ is the standard sheafification functor,
then for an A-complex N, f !(N∼) is the B-complex

f !(N∼)= RHomA(B, N )∼, (B.6.2)

where RHomA(B,−) denotes the right-derived functor of the functor HomA(B,−)
from A-modules to B-modules.

C. Idempotent ideal sheaves

Definition C.1. Let (X,OX) be a local-ringed space, i.e., X is a topological space
and OX is a sheaf of commutative rings whose stalk at each point is a local ring (not
necessarily noetherian). An OX -ideal is idempotent if it is of finite type (i.e., locally
finitely generated) and satisfies the equivalent conditions in the next proposition.

Proposition C.2. Let (X,OX) be a local-ringed space. Consider the following
conditions on an OX -ideal I .

(i) There is an a ∈ H 0(X,OX) such that a2
= a and I = aOX .

(i′) The identity map of I extends to an OX -homomorphism π : OX → I .
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(ii) There is an open and closed U ⊆ X , with inclusion, say, i : U ↪→ X , and an
OX -isomorphism i∗OU ' I .

(iii) The OX -module OX/I is flat.

(iv) For all OX -modules F, the natural map is an isomorphism I ⊗X F −→∼ I F.

(v) For all OX -ideals J , I J = I ∩ J .

(vi) I 2
= I .

One has the implications

(i)⇐⇒ (i′)⇐⇒ (ii) H⇒ (iii)⇐⇒ (iv)⇐⇒ (v) H⇒ (vi);

and if I is of finite type then (vi) H⇒ (i).

Proof. (i) ⇔ (i′). If (i) holds, let π be the map taking 1 ∈ H0(X,OX) to a.
Conversely, given (i′), let a = π(1).

(ii)⇒ (i). Let a be the global section that is 1 over U and 0 over X \U .
(i)⇒ (vi). Trivial.
(vi)⇒ (ii) when I is of finite type (whence (i)⇒ (ii) always). The support of I ,

U := { x ∈ X | Ix 6= 0 }, is closed when I is of finite type. For any x ∈U, since Ix

is a finitely generated OX,x -ideal such that Ix = I 2
x , therefore Nakayama’s lemma

shows that Ix = OX,x . So X \U = { x ∈ X | OX,x/Ix 6= 0 } is closed, and thus U is
open as well as closed. Clearly, I |U = OU and I |X\U = 0, whence I ' i∗OU .

(i)⇒ (iii). If (i) holds then the germ of a at any x ∈ X is 1 or 0, so (O/I )x is
either (0) or OX,x , both of which are flat over OX,x .

The remaining implications can be tested stalkwise, and so reduce to the cor-
responding well-known implications for ideals I , J in a local ring R, and R-
modules F :

(iii)⇒ (iv). The surjection I⊗R F� I F⊆ R⊗R F has kernel TorR
1 (R/I, F)=0.

(iv)⇒ (v). (I ∩ J )/I J is the kernel of the natural injective (by (iv)) map

R/I J ∼= I ⊗R R/J → R⊗R (R/J )= R/J.

(v)⇒ (iii). Flatness of R/I is implied by injectivity, for all R-ideals J , of the
natural map J/I J ∼= J ⊗R (R/I )→ R⊗R (R/I )= R/I , with kernel (I ∩ J )/I J .

(v)⇒ (vi). Take J = I . �

Corollary C.3. (1) Taking a to aOX gives a bijection from the set of idempotent
elements of H 0(X,OX) to the set of idempotent OX -ideals.

(2) There is a bijection that associates to each idempotent OX -ideal its support —
an open-and-closed subset of X — and to each open-and-closed U ⊆ X, with inclu-
sion map i , the unique idempotent OX-ideal isomorphic to i∗OU , that is, the ideal
whose restriction to U is OU and to X \U is (0). �
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Corollary C.4. A finite-type OX -ideal I is idempotent if and only if for each G ∈
D(X) there exist D(X)-isomorphisms, functorial in G,

RHomX (I,G)' I ⊗L
X G ' I G.

Proof. If I is idempotent then over the open set U := SuppX I one has I = OU , and
over the disjoint open set X \U , I ' 0, so the asserted isomorphisms obviously
exist over X =U t (X \U ).

Conversely, if these isomorphisms hold for all members of the natural triangle

I → OX → OX/I
+
−→

then, since I (OX/I ) = 0, application of the functor RHom(I,−) yields that the
natural map is an isomorphism I ' I 2 in D(X), hence in OX , i.e., I = I 2. �

Corollary C.5. Let X be a locally noetherian scheme. For a complex L ∈ D(X)
the following conditions are equivalent.

(i) L is isomorphic in D(X) to an idempotent OX -ideal.
(ii) L ∈ Db

c(X) and there exists a D(X)-isomorphism L ⊗L
X L −→∼ L.

Proof. If (i) holds then L ∈ Db
c(X) is clear; and taking G = I in C.4, one gets (ii).

When (ii) holds, (i) follows easily from [Avramov et al. 2010a, 4.9]. �

Proposition C.6. Let g : Z → X be a morphism of local ringed spaces (so that
for each z ∈ Z the associated stalk homomorphism OX,gz → OZ ,z is a local ho-
momorphism of local rings). Let I be an OX -ideal. If I is idempotent then so is
I OZ ∼= g∗I ' Lg∗I . The converse holds if g is flat and surjective.

Proof. If I = I 2 then I OZ = (I OZ )
2. Flatness of OX/I implies that I is flat and

that the natural map g∗I → g∗OX = OZ is injective, and thus Lg∗I ' g∗I ∼= I OZ .
If g is flat and surjective then for each x ∈ X there is a z ∈ Z such that g(z)= x ,

and then there is a flat local homomorphism OX,x → OZ ,z . Hence if I OZ = (I OZ )
2

then Ix OZ ,z = I 2
x OZ ,z , i.e., Ix = I 2

x . As this holds for all x , therefore I = I 2. �

Corollary C.7. Let g : Z → X be a morphism of local ringed spaces, and I an
idempotent OX -ideal.

(1) For any E ∈ D(X), there is a unique isomorphism

Lg∗(IE)' I Lg∗E

whose composition with the natural map I Lg∗E→ Lg∗E is the map obtained
by applying Lg∗ to the natural map IE→ E.

(2) If g is a perfect scheme-map then for any E ∈ D+qc(X), there exists a unique
isomorphism g!(IE)' Ig!E whose composition with the natural map Ig!E→
g!E is the map obtained by applying g! to the natural map IE→ E.
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Proof. Uniqueness holds because, I OZ being idempotent, ILg∗E ' I OZ ⊗Z Lg∗E
is a direct summand of OZ ⊗Z Lg∗E ' Lg∗E (Proposition C.2, (iv) and (i′)).

Since both I and OX/I are flat over OX , there are for all F ∈ D(X) natural
isomorphisms Lg∗I ⊗L

Z F ' g∗I ⊗Z F ∼= I F. So for all E ∈ D(X),

Lg∗(IE)' Lg∗(I ⊗L
X E)' Lg∗I ⊗L

Z Lg∗E ' I Lg∗E .

The composition of these isomorphisms has the property asserted in (1).
Similarly, if g is a perfect scheme-map then, using Remark 2.1.6, one gets nat-

ural isomorphisms for all E ∈ D+qc(X),

g!(IE)' g!(I ⊗L
X E)' Lg∗I ⊗L

Z Lg∗E⊗L
Z g!OX ' Lg∗I ⊗L

Z g!E ' I g!E,

that compose to the isomorphism needed for (2). �

The next result is to the effect that idempotence satisfies faithfully flat descent
(without any “cocycle condition”).

Proposition C.8. Let g : Z→ X be a faithfully flat map, and let π1 : Z×X Z→ Z
and π2 : Z×X Z→ Z be the canonical projections. If J is an idempotent OZ -ideal
such that there exists an isomorphism π∗1 J ∼=π∗2 J then there is a unique idempotent
OX -ideal such that J = I OZ .

Proof. (Uniqueness.) If J = I OZ = I ′OZ where I and I ′ are idempotent OX -ideals
with respective supports U and U ′, then g−1U = g−1U ′ (both being the support
of J ), and since g is surjective, therefore U =U ′, so I = I ′.

(Existence.) Let V be the support of J . The support of π∗1 J is π−1
1 V = V ×X Z ,

and similarly that of π∗1 J is Z ×X V . Hence, since π∗1 J ∼= π∗2 J , the following
subsets of Z ×X Z are all the same:

V ×X Z = Z ×X V = (V ×X Z)∩ (Z ×X V )= V ×X V .

If v ∈ V and w ∈ Z are such that g(v) = g(w), then there is a field K and a
map γ : Spec K → V ×X Z = V ×X V such that the set-theoretic images of π1γ

and π2γ are v and w respectively, so w ∈ V . Thus V = g−1g(V ).
We claim that g(V ) is open and closed in X . For this it suffices to show that for

each connected component X ′⊆ X , g(V∩g−1 X ′)= X ′. Without loss of generality,
then, we may assume that X is connected, so X ′ = X .

Since g is flat, if y ∈ g(V ) then the generic point x1 of any irreducible compo-
nent X1 of X containing y is also in g(V ). In fact X1 ⊆ g(V ), else the preceding
argument applied to V̄ := Z \V would show that x1 ∈ g(V̄ )= X \ g(V ). It results
that some open neighborhood of y is in g(V ); and thus g(V ) is open. Similarly,
g(V̄ )= X \ g(V ) is open, so g(V ) is closed.

The conclusion follows, with I the idempotent OX -ideal corresponding to the
open-and-closed set g(V )⊆ X . �
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