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We define and study the 2-category of torsors over a Picard groupoid, a central
extension of a group by a Picard groupoid, and commutator maps in this central
extension. Using this in the context of two-dimensional local fields and two-
dimensional adèle theory we obtain the two-dimensional tame symbol and a new
proof of Parshin reciprocity laws on an algebraic surface.

1. Introduction

Let C be a projective algebraic curve over a perfect field k. The famous Weil
reciprocity law states that ∏

p∈C

Nmk(p)/k{ f, g}p = 1, (1-1)

where f, g ∈ k(C)×,

{ f, g}p = (−1)νp( f )νp(g) f νp(g)

gνp( f ) (p)

is the one-dimensional tame symbol, and k(p) is the residue field of the point p.
The product (1-1) contains only finitely many terms not equal to 1.

There is a proof of this law (and the analogous reciprocity law for residues of
rational differential forms: sum of residues equals to zero) by reduction to the case
of P1

k using the connection between tame symbols (and residues of differentials)
in extensions of local fields; see, for example, [Serre 1988, Chapters 2 and 3].

On the other hand, Tate [1968] gave a definition of the local residue of a differ-
ential form as the trace of a certain infinite-dimensional matrix. Starting from this
definition he gave an intrinsic proof of the residue formula on a projective algebraic
curve C using the fact that dimk H i (C,OC) <∞, for i = 0, 1.
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The multiplicative analog of Tate’s approach, i.e., the case of the tame symbol
and the proof of Weil reciprocity law, was done later by Arbarello, De Concini
and Kac [1988]. They used the central extension of the infinite-dimensional group
GL(K ) of continuous automorphisms of K , where K = k((t)), by the group k×,
and obtained the tame symbol up to sign as the commutator of the lifting of two
elements from K× ⊂ GL(K ) to this central extension. Hence, as in Tate’s proof
mentioned above, they obtained an intrinsic proof of the Weil reciprocity law on an
algebraic curve. However, in this proof the exterior algebra of finite-dimensional
k-vector spaces was used. Therefore difficult sign conventions were used in this
paper to obtain the reciprocity law. To avoid these difficulties, Beilinson, Bloch and
Esnault [2002] used the category of graded lines instead of the category of lines.
The category of graded lines has nontrivial commutativity constraints multipliers
(−1)mn , where m, n ∈ Z are corresponding gradings. In other words, they used
the Picard groupoid of graded lines which is a nonstrictly commutative instead of
strictly commutative Picard groupoid. It was the first application of this notion of
nonstrictly commutative Picard groupoid.

Now let X be an algebraic surface over a perfect field k. For any pair x ∈ C ,
where C ⊂ X is a curve that x ∈C is a closed point, it is possible to define the ring
Kx,C such that Kx,C is isomorphic to the two-dimensional local field

k(x)((t))((s))

when x is a smooth point on C and X . If x is not a smooth point, then Kx,C is
a finite direct sum of two-dimensional local fields (see Section 5B of this paper).
For any two-dimensional local field k ′((t))((s)) one can define the two-dimensional
tame symbol of 3 variables with values in k ′×, see Section 4A and [Parshin 1975,
1984, §3]. Parshin formulated and proved the reciprocity laws for two-dimensional
tame symbols, but his proof was never published. Contrary to the one-dimensional
case, there are a lot of reciprocity laws for two-dimensional tame symbols, which
belong to two types. For the first type we fix a point on the surface and will vary
irreducible curves containing this point. For the second type we fix a projective
irreducible curve on the surface and will vary points on this curve. Parshin’s idea
for the proof, for example, of more unexpected first type of reciprocity laws, was
to use the chain of successive blowups of points on algebraic surfaces. Later, Kato
[1986, Proposition 1] generalized the reciprocity laws for excellent schemes by
using the reduction to the reciprocity law of Bass and Tate for Milnor K-groups
of some field L(t). He used them to construct an analog of the Gersten–Quillen
complex for Milnor K-theory.

In this paper, we give a generalization of Tate’s proof of the reciprocity law
on an algebraic curve to the case of two-dimensional tame symbols and obtain an
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intrinsic proof of Parshin reciprocity laws for two-dimensional tame symbols on
an algebraic surface.

To fulfill this goal, we first generalize the notion of a central extension of a
group by a commutative group and of the commutator map associated to the central
extension. More precisely, we define and study in some detail the properties of the
category of central extensions of a group G by a (nonstrictly commutative) Picard
groupoid P. Roughly speaking, an object in this category is a rule to assign every
g ∈ G a P-torsor, satisfying certain properties. For such a central extension L we
define a map CL

3 which is an analog of the commutator map. In this case when
G is abelian, this commutator map is an antisymmetric and trimultiplicative map
from G3 to the group π1(P). Let us remark that to obtain some of these properties,
we used the results of Breen [1999] on group-like monoidal 2-groupoids. We hope
these constructions will be of some independent interest.

We then apply this formalism to P = PicZ, where PicZ stands for the Picard
groupoid of graded lines. The key ingredient here is Kapranov’s [2001] graded-
determinantal theory, which associates a PicZ-torsor to every 1-Tate vector space
(a locally linearly compact vector space). This allows one to construct the central
extension Det of GL(K) by PicZ, where K is a two-dimensional local field (or
more generally, a 2-Tate vector space). It turns out that the two-dimensional tame
symbol coincides with the commutator map CDet

3 . Finally, using “semilocal” adèle
complexes on an algebraic surface we obtain that the corresponding central exten-
sion constructed by semilocal fields on the surface is the trivial one. This leads
us to a new proof of Parshin’s reciprocity laws on an algebraic surface, which is
distinct from both Parshin’s original approach as well as Kato’s.

Our approach to the reciprocity laws on the algebraic surfaces has the follow-
ing features. First, we use the nonstrictly commutative Picard groupoid, which
can be regarded as another application of this notion after [Beilinson et al. 2002].
However, unlike the one-dimensional case where one can just plays with the usual
Picard groupoid of lines (though complicated, as done in [Arbarello et al. 1988]),
the use of PicZ is essential here. This indicates that the nonstrictly commutative Pi-
card groupoid is an important and fruitful mathematical object that deserves further
attention. Also, in order to apply this notion, we develop certain constructions in
higher categories (e.g., the commutator map CL

3 ), which could be potentially useful
elsewhere. Second, as in the one-dimensional case, our approach uses a local-to-
global (in other words, factorization) principle. Since the local-to-global (factor-
ization) principle in the one-dimensional story is very important in the Langlands
program and conformal field theory, we hope our approach is just a shadow of a
whole fascinating realm of mathematics yet to be explored. Finally, our approach
can be generalized by replacing the ground field k by an Artinian ring A (and
even more general rings) and we can obtain reciprocity laws for two-dimensional
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Contou–Carrère symbols. By choosing A appropriately, this specializes to residue
formulas for algebraic surfaces.1 We will carefully discuss this in a future paper.

The paper is organized as follows. In Section 2 we describe some categorical
constructions, which we need further on. In Section 2A we recall the definition
of a Picard groupoid. In Section 2B we discuss the difference between strictly
commutative and nonstrictly commutative Picard groupoids. In Section 2C we
describe the 2-category of P-torsors, where P is a Picard groupoid. In Section 2D
we study the Picard groupoid of homomorphisms from a group G to a Picard
groupoid P and describe the “commutator” of two commuting elements from G
with values in π1(P). In Section 2E we define and study the Picard 2-groupoid
of central extensions of a group G by a Picard groupoid P. We define and study
properties of the commutator category of such a central extension, and finally study
the “commutator” of three commuting elements form G with values in π1(P). This
section may be of independent interest.

In Section 3 we recall the theory of graded-determinantal theories on Tate vector
spaces. We recall the definition and basic properties of the category of n-Tate vector
spaces in Section 3A. In Section 3B we recall the definition of determinant functor
from the exact category (Tate0, isom) to the Picard groupoid PicZ of graded lines
and the definition of graded-determinantal theory on the exact category Tate1 of
1-Tate vector spaces.

In Section 4 we apply the constructions given above to one-dimensional and
two-dimensional local fields. In Section 4A we review one-dimensional and two-
dimensional tame symbols. In Section 4B we obtain a description of the one-
dimensional (usual) tame symbol as some commutator. In Section 4C we obtain
the two-dimensional tame symbol as commutator of 3 elements in some central
extension of the group K× = k((t))((s))× by the Picard groupoid PicZ.

In Section 5 we obtain the reciprocity laws. In Section 5A we give the proof
of Weil reciprocity law using the constructions given above and adèle complexes
on a curve. In Section 5B we apply the previous results in order to obtain a proof
of Parshin’s reciprocity laws on an algebraic surface using “semilocal” adèle com-
plexes on an algebraic surface.

2. General nonsense

2A. Picard groupoid. Let P be a Picard groupoid, i.e., a symmetric monoidal
group-like groupoid. Let us recall that this means that P is a groupoid, together
with a bifunctor

+ : P×P→ P

1The generalization of Tate’s approach to the n-dimensional residue of differential forms was
done in [Beilinson 1980], but that note contains no proofs.
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and natural (functorial) isomorphisms

ax,y,z : (x + y)+ z ' x + (y+ z),

called the associativity constraints, and natural (functorial) isomorphisms

cx,y : x + y ' y+ x,

called the commutativity constraints, such that:

(i) For each x ∈ P, the functor y 7→ x + y is an equivalence.

(ii) The pentagon axiom holds, i.e., the following diagram is commutative:

(x + y)+ (z+w)

uu ))
x + (y+ (z+w))

��

((x + y)+ z)+w

��
x + ((y+ z)+w) // (x + (y+ z))+w

(2-1)

(iii) The hexagon axiom holds, i.e., the following diagram is commutative:

(x + y)+ z

ww ''
(y+ x)+ z

��

x + (y+ z)

��
y+ (x + z)

''

x + (z+ y)

ww
(x + z)+ y

(2-2)

(iv) For any x, y ∈ P, cy,x cx,y = idx+y .

A unit (e, ϕ) of P is an object e∈P together with an isomorphism ϕ : e+e' e. It
is an exercise to show that (e, ϕ) exists and is unique up to a unique isomorphism.
For any x ∈ P, there is a unique isomorphism e+ x ' x such that the following
diagram is commutative:

(e+ e)+ x //

&&

e+ (e+ x)

xx
e+ x
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and therefore x + e ' e+ x ' x . For any x ∈ P, we choose an object, denoted by
−x , together with an isomorphism φx : x + (−x)' e. The pair (−x, φx) is called
an inverse of x , and it is unique up to a unique isomorphism. We choose for each
x its inverse (−x, φx), then we have a canonical isomorphism

−(−x)' e+ (−(−x))' (x + (−x))+ (−(−x))

' x + ((−x)+ (−(−x)))' x + e ' x, (2-3)

and therefore a canonical isomorphism

(−x)+ x ' (−x)+ (−(−x))' e. (2-4)

Observe that we have another isomorphism (−x)+ x ' x + (−x) ' e using the
commutativity constraint. When the Picard groupoid P is strictly commutative
(Section 2B), these two isomorphisms are the same [Zhu 2009, Lemma 1.6], but
in general they are different.

If P1,P2 are two Picard groupoids, then Hom(P1,P2) is defined as follows.
Objects are 1-homomorphisms, i.e., functors F : P1→ P2 together with isomor-
phisms F(x+y)' F(x)+F(y) such that the following diagrams are commutative:

F((x + y)+ z) //

��

(F(x)+ F(y))+ F(z)

��
F(x + (y+ z)) // F(x)+ (F(y)+ F(z)),

F(x + y) //

��

F(x)+ F(y)

��
F(y+ x) // F(y)+ F(x).

(2-5)

Morphisms in Hom(P1,P2) are 2-isomorphisms, i.e., natural transformations

θ : F1→ F2

such that the following diagram is commutative:

F1(x + y) //

θ

��

F1(x)+ F1(y)

θ

��
F2(x + y) // F2(x)+ F2(y).

It is clear that Hom(P1,P2) has a natural structure as a Picard groupoid. Namely,

(F1+ F2)(x) := F1(x)+ F2(x),
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and the isomorphism (F1+F2)(x+ y)' (F1+F2)(x)+(F1+F2)(y) is the unique
one such that the following diagram is commutative:

F1(x + y)+ F2(x + y) //

��

(F1(x)+ F1(y))+ (F2(x)+ F2(y))

rr
(F1(x)+ F2(x))+ (F1(y)+ F2(y))

The associativity constraints and the commutativity constraints for Hom(P1,P2)

are clear. If P1,P2,P3 are three Picard groupoids, then Hom(P1,P2;P3) is de-
fined as Hom(P1,Hom(P2,P3)), called the Picard groupoid of bilinear homomor-
phisms from P1×P2 to P3. The Picard groupoid of trilinear homomorphisms from
P1×P2×P3 to P4 is defined similarly.

For a (small) monoidal group-like groupoid (or gr-category) C we denote by
π0(C) the group2 of isomorphism classes of objects. We denote by π1(C) the
group AutC(e), where e is the unit object of C . It follows that π1(C) is an abelian
group. If C is a Picard groupoid, then π0(C) is also an abelian group.

2B. Strictly commutative vs. nonstrictly commutative Picard groupoids. If the
commutativity constraints c further satisfy cx,x = id, then the Picard groupoid P is
called strictly commutative. It is a theorem of Deligne’s [1973] that the 2-category
of strictly commutative Picard groupoids is 2-equivalent to the 2-category of 2-
term complexes of abelian groups concentrated on degree −1 and 0, whose terms
of degree −1 are injective abelian groups.3

Example 2.1. The most famous example is P= B A, where A is an abelian group,
and B A is the category of A-torsors. The tensor products of A-torsors make B A
a strictly commutative Picard groupoid. The 2-term complex of abelian groups
that represents B A under Deligne’s theorem is any injective resolution of A[1]. If
A = k× is the group of invertible elements in a field k, then B A is also denoted
by Pic, which is the symmetric monoidal category of one-dimensional k-vector
spaces.

However, it is also important for us to consider nonstrictly commutative Picard
groupoids. The following example of a nonstrictly commutative Picard groupoid
is crucial.

Example 2.2. Let PicZ denote the category of graded lines (one-dimensional k-
vector spaces with gradings) over a base field k. An object in PicZ is a pair (`, n),
where ` is a one-dimensional k-vector space, and n is an integer. The morphism
set HomPicZ((`1, n1), (`2, n2) is empty unless n1 = n2, and in this case, it is just

2The group structure on π0(C) is induced by the monoidal structure of C .
3In fact, Deligne’s theorem holds in any topos.
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Homk(`1, `2) \ 0. Observe that as a groupoid, PicZ is not connected. In fact
π0(P)' Z. The tensor product PicZ

×PicZ
→ PicZ is given as

(`1, n1)⊗ (`2, n2) 7→ (`1⊗ `2, n1+ n2).

There is a natural associativity constraint that makes PicZ a monoidal groupoid.

Convention. For the Picard groupoids Pic and PicZ, we will often use in this
article the usual notation ⊗ for monoidal structures in these categories, although
for a general Picard groupoid we denoted it as +.

We note that the commutativity constraint in category PicZ is the interesting one.
Namely,

c`1,`2 : (`1⊗ `2, n1+ n2)' (`2⊗ `1, n2+ n1), c`1,`2(v⊗w)= (−1)n1n2w⊗ v.

Of course, there is another commutativity constraint on the category of graded
lines given by c(v ⊗ w) = w ⊗ v. Then as a Picard groupoid with this naive
commutativity constraints, it is just the strictly commutative Picard groupoid Pic×
Z. There is a natural monoidal equivalence PicZ

'Pic×Z, but this equivalence is
not symmetric monoidal (that is, it is not a 1-homomorphism of Picard groupoids).
We denote by

FPic : PicZ
→ Pic

the natural monoidal functor.
The importance of PicZ lies in the following observation. Let us make the

following convention.

Convention. For any category C we denote by (C, isom) a category with the same
objects as in the category C, and morphisms in the category (C, isom) are the
isomorphisms in the category C.

Now let Tate0 be the category of finite dimensional vector spaces over a field
k. The categories Tate0 and (Tate0, isom) are symmetric monoidal categories un-
der the direct sum. The commutativity constraints in the categories Tate0 and
(Tate0, isom) are defined in the natural way. Namely, the map cV,W : V ⊕W →
W⊕V is given by cV,W (v,w)= (w, v). Then there is a natural symmetric monoidal
functor

det : (Tate0, isom)→ PicZ, (2-6)

which assigns to every V its top exterior power and the grading dim V , the dimen-
sion of the vector space V over the field k. Observe, however, that the functor
FPic ◦ det : (Tate0, isom)→ Pic is not symmetric monoidal.
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It is a folklore theorem that the category of Picard groupoids (not necessarily
strictly commutative) is equivalent to the category of spectra whose only nonvan-
ishing homotopy groups are π0 and π1

4. For example, PicZ should correspond to
the truncation τ≤1K, where K is the spectra of algebraic K -theory of k.

2C. P-torsors. Let P be a Picard groupoid. Recall (see also [Beilinson et al. 2002,
Appendix A6] and [Drinfeld 2006, §5.1]) that a P-torsor L is a module category
over P, i.e., there is a bifunctor

+ : P×L→ L

together with natural isomorphisms

ax,y,v : (x + y)+ v ' x + (y+ v), x, y ∈ P, v ∈ L,

satisfying

(i) the pentagon axiom, i.e., a diagram similar to (2-1) holds;

(ii) for any x ∈P, the functor from L to L given by v 7→ x+v is an equivalence;

(iii) for any v ∈L, the functor from P to L given by x 7→ x +v is an equivalence
of categories.

It is clear that we can verify the condition (ii) of this definition only for the unit
object e of P.

For any v ∈L, there is a unique isomorphism e+ v ' v such that the following
diagram is commutative:

(e+ e)+ v //

&&

e+ (e+ v)

xx
e+ v

.

If L1,L2 are P-torsors, then HomP(L1,L2) is the category defined as follows.
Objects are 1-isomorphisms, i.e., equivalences F :L1→L2 together with isomor-
phisms λ : F(x + v)' x + F(v) such that the following diagram is commutative:

F((x + y)+ v) //

��

(x + y)+ F(v)

��
F(x + (y+ v)) // x + (y+ F(v))

(2-7)

4Indeed, consider the geometrization of the nerve of P. Then the Picard structure of P puts an
E∞-structure on this space.
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Morphisms are natural transformations θ : F1→ F2 such that the following diagram
is commutative:

F1(x + v) //

θ

��

x + F1(v)

θ

��
F2(x + v) // x + F2(v)

From these discussions it follows that all P-torsors form a 2-category, denoted
by BP. We will choose, once and for all, for any P-torsors L1,L2 and any
F in HomP(L1,L2), a quasi-inverse F−1 of F together with an isomorphism
F−1 F ' id.

Moreover, BP is a category enriched over itself. That is, for any P-torsors
L1,L2 the category HomP(L1,L2) is again a P-torsor, where an action of P on
HomP(L1,L2) is defined as follows: for any z ∈ P, v ∈ L1, F ∈ HomP(L1,L2)

we put z+F ∈HomP(L1,L2) as (z+F)(v) := z+F(v). Now the isomorphism λ

for the equivalence z+F is defined by means of the braiding maps c in P (commu-
tativity constraints from Section 2A). Then the diagram (2-7) for the equivalence
z+F follows from hexagon diagram (2-2). It is clear that this definition is extended
to the definition of a bifunctor

+ : P×HomP(L1,L2)→ HomP(L1,L2) (2-8)

such that the axioms of P-torsor are satisfied (see the beginning of this section).
We note that to prove that the category BP is enriched over itself we used the

commutativity constraints in P. The commutativity constraints will be important
also below to define the sum of two P-torsors.

The category BP furthermore forms a Picard 2-groupoid. We will not make
the definition of Picard 2-groupoids precise. (However, one refers to [Kapranov
and Voevodsky 1994; Breen 1994] for details). We will only describe the Picard
structure on BP in the way we need.

First, if L1,L2 are two P-torsors, then L1 +L2 is defined to be the category
whose objects are pairs (v,w), where v ∈ L1 and w ∈ L2. The morphisms from
(v,w) to (v′, w′) are defined as the equivalence classes of triples (x, ϕ1, ϕ2), where
x ∈ P, ϕ1 ∈ HomL1(v, x + v′) and ϕ2 ∈ HomL2(x + w,w

′), and (x, ϕ1, ϕ2) ∼

(y, φ1, φ2) if there exists a map f : x→ y such that φ1 = f (ϕ1) and ϕ2 = f (φ2).
The identity in HomL1+L2((v,w), (v,w)) and the composition

HomL1+L2((v,w), (v
′, w′))×HomL1+L2((v

′, w′), (v′′, w′′))

→ HomL1+L2((v,w), (v
′′, w′′))

are clear. (To define the composition we have to use the commutativity constraints
in BP.) So L1+L2 is a category. Define the action of P on L1+L2 by
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x + (v,w) := (x + v,w).

The natural isomorphism (x + y)+ (v,w) ' x + (y+ (v,w)) is the obvious one.
It is easy to check that L1+L2 is a P-torsor.

There is an obvious 1-isomorphism of P-torsors

A : (L1+L2)+L3 ' L1+ (L2+L3),

which is the associativity constraint. Namely, objects in (L1 +L2)+L3 and in
L1+ (L2+L3) are both canonically bijective to triples (v1, v2, v3) where vi ∈Li .
Then A is identity on objects. A morphism from (v1, v2, v3) to (w1, w2, w3) in
(L1 + L2) + L3 is of the form (x, (y, ϕ1, ϕ2), ϕ3), where x, y ∈ P, ϕ1 : v1 →

y+(x+w1), ϕ2 : y+v2→w2, ϕ3 : x+v3→w3. Then A maps (x, (y, ϕ1, ϕ2), ϕ3)

to (x + y, ϕ′1, (x, ϕ
′

2, ϕ
′

3)), where ϕ′1 : v1→ (x + y)+w1 comes from

v1
ϕ1
→ y+ (x +w1)' (y+ x)+w1 ' (x + y)+w1,

ϕ′2 : (x + y)+ v2→ x +w2 comes from

(x + y)+ v2 ' x + (y+ v2)
x+ϕ2
−→ x +w2,

and ϕ′3 : x + v3→ w3 is the same as ϕ3.
To complete the definition of A, we should specify for every x ∈P, (v1, v2, v3)∈

(L1+L2)+L3, an isomorphism λ : A(x+(v1, v2, v3))' x+A(v1, v2, v3) such that
the diagram (2-7) is commutative for F= A. It is clear that λ= id : (x+v1, v2, v3)=

(x + v1, v2, v3) will suffice for this purpose.
It is clear from definition of A that we can similarly construct a 1-morphism

A−1 of P-torsors such that the following equalities are satisfied:

A−1 A = AA−1
= id .

From above construction of the associativity constraints (1-morphisms A and
A−1) it follows that for any P-torsors L1,L2,L3,L4 the following diagram of
1-morphisms (pentagon diagram) is commutative:

(L1+L2)+ (L3+L4)

uu ))
L1+ (L2+ (L3+L4))

��

((L1+L2)+L3)+L4

��
L1+ ((L2+L3)+L4) // (L1+ (L2+L3))+L4

(2-9)

(To prove this diagram we note that this diagram is evident for objects from cat-
egory (L1 + L2)+ (L3 + L4). To verify this diagram for morphisms from this
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category one needs to make some routine calculations. The analogous reasonings
are also applied to the diagram (2-13) below.)

The following axioms are satisfied in the category BP and describe the func-
toriality of the associativity constraints. Let L1,L2,L3,L′1 be any P-torsors,
and L1 → L′1 be any 1-morphism of P-torsors, then the following diagram of
1-morphisms is commutative:

(L1+L2)+L3 //

��

(L′1+L2)+L3

��
L1+ (L2+L3) // L′1+ (L2+L3).

(2-10)

Let L1,L2,L3,L′2 be any P-torsors, and L2 → L′2 be any 1-morphism of P-
torsors, then the following diagram of 1-morphisms is commutative:

(L1+L2)+L3 //

��

(L1+L′2)+L3

��
L1+ (L2+L3) // L1+ (L

′

2+L3).

(2-11)

Let L1,L2,L3,L′3 be any P-torsors, and L3 → L′3 be any 1-morphism of P-
torsors, then the following diagram of 1-morphisms is commutative:

(L1+L2)+L3 //

��

(L1+L2)+L′3

��
L1+ (L2+L3) // L1+ (L2+L′3).

(2-12)

(In diagrams (2-10)–(2-12) the vertical arrows are the associativity constraints.)
Next we define the commutativity constraints. Recall that we have chosen for

each x ∈ P its inverse (−x, φx), and then obtained the isomorphism (2-4). This
gives an obvious 1-isomorphism

C : L1+L2 ' L2+L1.

Namely, C will map the object (v1, v2) to (v2, v1), and (x, ϕ1, ϕ2) : (v1, v2)→

(w1, w2) to (−x, ϕ′1, ϕ
′

2) : (v2, v1)→ (w2, w1), where

ϕ′1 : v2 ' e+ v2 ' (−x + x)+ v2 '−x + (x + v2)
−x+ϕ2
→ −x +w2,

ϕ′2 : −x + v1
−x+ϕ1
→ −x + (x +w1)' (−x + x)+w1 ' e+w1 ' w1.

We also define for each x ∈ P, (v1, v2) ∈ L1+L2, the isomorphism

λ : C(x + (v1, v2))= (v2, x + v1)→ x +C(v1, v2)= (x + v2, v1)
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by λ = (−x, ϕ1, ϕ2), where ϕ1 : v2 ' (−x + x)+ v2 ' −x + (x + v2) and ϕ2 :

−x + (x + v1)' (−x + x)+ v1 ' v1.
In addition, by (2-3), there is an equality of 1-morphisms C2

= id.
The commutativity constrains together with the associativity constrains satisfy

the hexagon diagram; i.e., for any P-torsors L1,L2,L3 the following diagram of
1-morphisms is commutative:

(L1+L2)+L3

uu ))
(L1+L2)+L3

��

L1+ (L2+L3)

��
L1+ (L2+L3)

))

L1+ (L2+L3)

uu
(L1+L2)+L3

(2-13)

The following axiom is satisfied in the category BP and describes the functo-
riality of the commutativity constraints. Let L1,L2,L′1 be any P-torsors, and
L1 → L′1 be any 1-morphism of P-torsors, then the following diagram of 1-
morphisms is commutative:

L1+L2 //

��

L′1+L2

��
L2+L1 // L2+L′1,

(2-14)

where the vertical arrows are the commutativity constraints.
By regarding P as a P-torsor, there is a canonical 1-isomorphism of P-torsors

P+L→ L, (x, v) 7→ x + v satisfying the associativity and commutativity con-
straints. This means that P is the unit in BP. For each L ∈ BP, we have an
object

−L := HomP(L,P),

together with a natural 1-isomorphism of P-torsors ϕL :L+(−L)'P. This object
is called an inverse of L.

For L a P-torsor, HomP(L,L) is a natural monoidal groupoid (by composition).
The natural homomorphism

Z : P→ HomP(L,L) (2-15)
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given by Z(z)= z+id5 is a 1-isomorphism of monoidal groupoids. We will fix once
and for all its inverse, i.e., we choose an 1-isomorphism of monoidal groupoids

Z−1
: HomP(L,L)→ P (2-16)

together with a 2-isomorphism Z−1
◦Z' id.

Remark 2.3. We constructed some “semistrict” version of Picard 2-groupoid, be-
cause diagrams (2-9)–(2-14) are true in BP for 1-morphisms without considera-
tion of additional 2-morphisms which involve higher coherence axioms for braided
monoidal 2-categories as in [Kapranov and Voevodsky 1994] and [Baez and Neuchl
1996]. Besides, from the equality C2

= id we obtain at one stroke that our 2-
category BP is strongly braided, i.e, the diagram (8.4.6) in [Breen 1994, p. 149]
holds. Let us mention that in loc. cit., the commutativity constraint C is denoted
by R.

2D. The case H1(BG, P). Let P be a Picard groupoid, and G be a group. Then
we define H 1(BG,P) to be the Picard groupoid of homomorphisms from G to P.
That is, the objects are monoidal functors from G to P, where G is regarded as a
discrete monoidal category (the monoidal groupoid whose objects are elements of
G and whose only morphisms are the unit morphisms of objects), and morphisms
between these monoidal functors are monoidal natural transformations. In concrete
terms, f ∈ H 1(BG,P) is a functor f : G→ P, together with isomorphisms

f (gg′)' f (g)+ f (g′)

which are compatible with the associativity constraints. The monoidal structure
on H 1(BG,P) is given by ( f + f ′)(g)= f (g)+ f (g′). The natural isomorphism
( f + f ′)(gg′)' ( f + f ′)(g)+ ( f + f ′)(g′) is the obvious one. The associativity
constraints and the commutativity constraints on H 1(BG,P) are clear. Let (e, ϕ)
be a unit of P, and e is regarded as a discrete Picard groupoid with one object.
Then f : G→ P is called trivial if it is isomorphic to G→ e→ P.

Example 2.4. If P = B A, then H 1(BG, B A) is equivalent to the category of
central extensions of G by A as Picard groupoids.

Let Z2 ⊂ G × G be the subset of commuting elements, so that if G itself is
an abelian group, then Z2 = G ×G. In general, fix g ∈ G, then Z2 ∩ (G × g) '
Z2 ∩ (g×G)' ZG(g), the centralizer of g in G.

Lemma-Definition 2.5. There is a well defined antisymmetric bimultiplicative map
Comm( f ) : Z2→ π1(P)= EndP(e).

5Recall that we constructed the bifunctor + : P×HomP(L,L)→ HomP(L,L) in (2-8).
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Proof. The definition of Comm( f ) is as follows. For g1, g2 ∈ Z2, we have

f (g1g2)' f (g1)+ f (g2)' f (g2)+ f (g1)' f (g2g1)= f (g1g2),

where the first and the third isomorphisms come from the constraints for the ho-
momorphism f , and the second isomorphism comes from the commutativity con-
straints of the Picard groupoid P. We thus obtain an element

Comm( f )(g1, g2) ∈ AutP( f (g1g2))' π1(P).

Since P is Picard, i.e., the commutativity constraints satisfy

c f (g1), f (g2) = c−1
f (g2), f (g1)

,

the map Comm is antisymmetric. One checks directly by diagram that Comm( f )
is also bimultiplicative (see the analogous diagram (2-29) below).

Here we will give another proof of bimultiplicativity whose higher categori-
cal analog we will use in the proof of Lemma-Definition 2.13. We construct the
following category H f , where objects of H f are all possible expressions

f (g1)+· · ·+ f (gk) := (· · · ( f (g1)+ f (g2))+ f (g3))+· · · )+ f (gk), where gi ∈G,

and morphisms in H f are defined as follows:

HomH f ( f (gi1)+ · · ·+ f (gik ), f (g j1)+ · · ·+ f (g jl ))

=

{
∅ if gi1 . . . gik 6= g j1 . . . g jl ,

HomP( f (gi1)+· · ·+ f (gik ), f (g j1)+· · ·+ f (g jl )) if gi1 . . . gik = g j1 . . . g jl .

The category H f is a monoidal group-like groupoid (or gr -category), where the
monoidal structure on H f is given in an obvious way by using the associativity
constraints in the category P. We have π0(H f ) = G, and H f is equivalent to the
trivial gr -category. We consider π1(P)-torsor E over Z2 which is the commutator
of H f (see [Breen 1999, §3]). The fiber of E over (g1, g2) ∈ Z2 is the set

Eg1,g2 = HomH f ( f (g1)+ f (g2), f (g2)+ f (g1)).

The π1(P)-torsor E has a natural structure of a weak biextension of Z2 by π1(P)

(see [Breen 1999, Proposition 3.1]), i.e., there are partial composition laws on
E which are compatible (see also (2-22)). Now the commutativity constraints
c f (g1), f (g2) give a section of E over Z2 which is compatible with partial composition
laws on E , i.e., “bimultiplicative”. (The compatibility of this section with the com-
position laws follows at once from the definition of the partial composition laws on
E and the hexagon diagram (2-2).) The other section of E which is compatible with
partial composition laws on E is obtained as the composition of following two mor-
phisms from definition of f : f (g1)+ f (g2)' f (g1g2)= f (g2g1)' f (g2)+ f (g1).
(The compatibility of this section with composition laws follows from diagrams
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(3.10) and (1.4) of [Breen 1999], because of the compatibility of our homomor-
phism f with the associativity constraints.) Now the difference between the first
section and the second section coincides with Comm( f ), which is, thus, a bimul-
tiplicative function, because both sections are “bimultiplicative”. �

Remark 2.6. In [Breen 1999, §2] the notion of a weak biextension was intoduced
only for Z2 = B× B where B is an abelian group. Here, we generalize this notion
by allowing B to be non-commutative and by replacing B × B by Z2. But all the
axioms for partial composition laws in loc. cit. are still applicable in this setting.
The same remark applies when we talk about (2, 2)-extensions on page 308.

Remark 2.7. It is clear that if f ' f ′ in H 1(BG,P), then Comm( f )=Comm( f ′).

Remark 2.8. When P = B A, this construction reduces to the usual construction
of inverse to the commutator pairing maps for central extensions.

Corollary 2.9. One has Comm( f + f ′)= Comm( f )+Comm( f ′).

Proof. It can be easily checked directly by diagrams. See, for example, analogous
formulas and diagrams in (2-30)–(2-32) below. �

Corollary 2.10. Assume that G is abelian so that Z2 = G × G. Then Comm( f )
is trivial if and only if the 1-homomorphism f is a 1-homomorphism of Picard
groupoids. In particular, if the homomorphism f is trivial, then Comm( f ) is
trivial.

Proof. This follows from diagram (2-5). �

Together, these two corollaries can be rephrased as saying that if G is abelian,
then there is an exact sequence of Picard groupoids

1→ Hom(G,P)→ H 1(BG,P)→ Hom
(∧2G, π1(P)

)
.

2E. The case H2(BG, P). If P′ is a Picard n-groupoid, and G is a group, one
should be able to define H 1(BG,P′) as the Picard n-groupoid of homomorphisms
from G to P′. When n = 1, this is what we discussed in the previous subsection.
The next step for consideration is n = 2. Again, instead of discussing general
Picard 2-groupoids, we will focus on the case when P′ = BP, where P is a Picard
groupoid. Then one can interpret H 1(BG, BP) as the Picard groupoid6 of central
extensions of the group G by the Picard groupoid P. For this reason, we also
denote H 1(BG, BP) by H 2(BG,P).

In concrete terms, an object L in H 2(BG,P) is a rule to assign to every g ∈ G
a P-torsor Lg, and to every g, g′ an equivalence Lgg′ 'Lg+Lg′ of P-torsors, and

6As we just mentioned, it is in fact a Picard 2-groupoid.
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to every g, g′, g′′ an isomorphism between two equivalences

Lgg′g′′

''ww

��

Lgg′ +Lg′′

��

Lg +Lg′g′′

��
(Lg +Lg′)+Lg′′ // Lg + (Lg′ +Lg′′)

(2-17)

such that for every g, g′, g′′, g′′′, the natural compatibility condition holds, which
we describe below.

Remark 2.11. Our notation for the 2-arrow in diagram (2-17) is symbolic, and
is distinct from the traditional notation of 2-arrows in a 2-category, because this
2-arrow is between a pair of 1-arrows from Lgg′g′′ to Lg + (L

′
g +L′′g) and should

be written horizontally from left to right rather than vertically. This notation for
the 2-arrow will be important for us in diagram (2-28).

We define an isomorphism between two central extensions of G by P. An
isomorphism between two central extensions L,L′ is a rule which assigns to any
g a P-torsor 1-isomorphism Lg'L′g, and to any g, g′ the following 2-isomorphism

Lgg′ //

��

Lg +Lg′

��
L′gg′

// L′g +L′g′

6>

.

In addition, these assignments have to be compatible with diagram (2-17) in an
obvious way.

Now we describe the compatibility condition which we need after diagram
(2-17). If we don’t consider the associativity constraints in category BP, then the
2-arrows induced by the one in (2-17) should satisfy the compatibility condition
described by the following cube:

Lg +Lg′ +Lg′′g′′′ // Lg +Lg′ +Lg′′ +Lg′′′

Lg +Lg′g′′g′′′

77

//

OO�
�
�

Lg +Lg′g′′ +Lg′′′

55

Lgg′ +Lg′′g′′′

�
�
�

______ //______ Lgg′ +Lg′′ +Lg′′′

OO

Lgg′g′′g′′′

OO

77oooo
// Lgg′g′′ +Lg′′′

OO

55

(2-18)
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To obtain the correct compatibility diagram for 2-morphisms, we have to replace
in diagram (2-18) the arrow (an edge of cube)

Lgg′ +Lg′′ +Lg′′′ // Lg +Lg′ +Lg′′ +Lg′′′

by the following commutative diagram of 1-morphisms in the category BP

(Lgg′ +Lg′′)+Lg′′′ //

��

((Lg +Lg′)+Lg′′)+Lg′′′

��
Lgg′ + (Lg′′ +Lg′′′) // (Lg +Lg′)+ (Lg′′ +Lg′′′)

(2-19)

(where the vertical arrows are associativity constraints); we have to replace in di-
agram (2-18) the arrow (an edge of the cube)

Lg +Lg′g′′ +Lg′′′ // Lg +Lg′ +Lg′′ +Lg′′′

by the following commutative diagram of 1-morphisms in the category BP:

(Lg +Lg′g′′)+Lg′′′ //

��

(Lg + (Lg′ +Lg′′))+Lg′′′

��
Lg + (Lg′g′′ +Lg′′′) // Lg + ((Lg′ +Lg′′)+Lg′′′)

(2-20)

(where vertical arrows are associativity constraints); we have to replace in diagram
(2-18) the arrow (an edge of the cube)

Lg +Lg′ +Lg′′g′′′ // Lg +Lg′ +Lg′′ +Lg′′′

by the following commutative diagram of 1-morphisms in the category BP:

(Lg +Lg′)+Lg′′g′′′ //

��

(Lg +Lg′)+ (Lg′′ +Lg′′′)

��
Lg + (Lg′ +Lg′′g′′′) // Lg + (Lg′ + (Lg′′ +Lg′′′))

(2-21)

(where vertical arrows are associativity constraints). Besides, instead of the vertex
Lg+Lg′+Lg′′+Lg′′′ in diagram (2-18) we insert the commutative diagram which is
the modification of pentagon diagram (2-9) for Lg,Lg′,Lg′′,Lg′′′ , and this diagram
is always true in category BP. The correct compatibility diagram for 2-morphisms
from diagrams (2-17) has 15 vertices.

We note that diagrams (2-19)–(2-21) are commutative for 1-morphisms; that is,
the corresponding 2-isomorphisms equal identity morphisms. These diagrams ex-
press the “functoriality” of associativity constraints in BP and follow from axioms-
diagrams (2-10)–(2-12) in category BP.
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The trivial central extension of G by P, which we will denote by the same letter
P, is the rule that assigns to every g ∈ G the trivial P-torsor P, to every g, g′

the natural 1-isomorphism P ' P+P,7 and to every g, g′, g′′ the corresponding
natural 2-isomorphism.

Remark 2.12. A central extension L of G by P gives rise to a gr-category, L̃,
together with a short exact sequence of gr-categories in the sense of [Breen 1992,
Definition 2.1.2]

1→ P
i
→ L̃

π
→ G→ 1.

Namely, as a category, L̃=
⋃

g∈G Lg. Then the natural equivalence Lgg′'Lg+Lg′

together with the compatibility conditions endows L̃ with a gr-category structure.
The natural morphism π : L̃ → G is clearly monoidal, and one can show that
kerπ = Le is 1-isomorphic to P.

As is shown in loc. cit., such a short exact sequence endows every L̃g :=

π−1(g) = Lg with a P-bitorsor structure. This P-bitorsor structure is nothing
but the canonical P-bitorsor structure on Lg (observe that the morphism Z : P→

HomP(Lg,Lg) as in (2-15) induces a canonical P-bitorsor structure on Lg).
The upshot is that an object L in H 2(BG,P) gives rise to a categorical gener-

alization of a central extension of a group by an abelian group. This justifies our
terminology. Indeed, one can define a central extension of G by P as a short exact
sequence as above such that the induced P-bitorsor structure on each L̃g is the
canonical one induced from its left P-torsor structure. Since we do not use this
second definition, we will not make it precise.

Finally, let us define the Picard structure on H 2(BG,P). Let L and L′ be two
central extensions of G by P. Then we define the central extension L+L′ by the
following way:

(L+L′)g := Lg +L′g,

and the equivalence (L+L′)gg′ ' (L+L′)g + (L+L′)g′ as the composition of
the equivalences

(L+L′)gg′ = Lgg′ +L′gg′ ' (Lg +Lg′)+ (L
′

g +L′g′)

' (Lg +L′g)+ (Lg′ +L′g′)= (L+L′)g + (L+L′)g′ .

The corresponding 2-isomorphism for central extension L+L′ and any elements
g, g′, g′′ of G follows from diagrams (2-17) for central extensions L and L′. The
further compatibility conditions for these 2-isomorphisms hold as in diagrams
(2-18)–(2-21), since they follow at once from the corresponding diagrams for cen-
tral extensions L and L′.

7Naturality means this 1-isomorphism is the chosen quasi-inverse of the natural 1-isomorphism
P+P→ P.
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Again, let Z2 denote the subset of G×G consisting of commuting elements. We
will give a categorical analog of Lemma-Definition 2.5. For this purpose, let us first
explain some terminology. A 1-morphism f : Z2→P is called bimultiplicative if
for fixed g ∈ G, (ZG(g), g)⊂ Z2→ P and (g, ZG(g))⊂ Z2→ P are homomor-
phisms, i.e., monoidal functors from discrete monoidal categories (ZG(g), g) and
(g, ZG(g)) to P. In addition, the following diagram must be commutative (which
is the compatibility condition between these two homomorphisms):

f (g1g2, g3)+ f (g1g2, g4) // ( f (g1, g3)+ f (g2, g3))+ ( f (g1, g4)+ f (g2, g4))

'

��

f (g1g2, g3g4)

'

OO

'

��
f (g1, g3g4)+ f (g2, g3g4) // ( f (g1, g3)+ f (g1, g4))+ ( f (g2, g3)+ f (g2, g4))

(2-22)

When P= B A, a bimultiplicative 1-morphism from Z2→ B A is the same as a
weak biextension of Z2 by A as defined in [Breen 1999, §2] (see also Remark 2.6).

A 1-morphism f : Z2→ P is called antisymmetric if there is a 2-isomorphism
θ : f '− f ◦ σ , where σ is the natural flip on Z2, such that for any (g1, g2) ∈ Z2,
the following diagram is commutative:

f (g1, g2)
' // − f (g2, g1)

'

��
f (g1, g2) −(− f (g1, g2))

'oo

We need some more terminology. Following [Breen 1999, §7], we define a weak
(2, 2)-extension of Z2 by P as a rule which assigns to every (g, g′)∈ Z2 a P-torsor
E(g,g′) such that its restrictions to (g, ZG(g)) and ZG(g), g) are central extensions
of ZG(g) by P, and that the corresponding diagram (2-22) is 2-commutative (i.e.,
commutative modulo some 2-isomorphism), and these 2-isomorphisms satisfy fur-
ther compatibility conditions (see (7.1), (7.3) in loc. cit. where these compatibility
conditions are carefully spelt out).

Lemma-Definition 2.13. There is an antisymmetric bimultiplicative homomor-
phism CL

2 : Z2→ P.

Proof. As in the proof of 2.5, using the commutativity constraints C : Lg +Lg′ '

Lg′ + Lg in the category BP, one constructs the following composition of 1-
isomorphisms:

Lgg′ ' Lg +Lg′ ' Lg′ +Lg ' Lg′g = Lgg′,
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for (g, g′) ∈ Z2. In this way, we obtain a functor Z2→ HomP(Lgg′,Lgg′). Using
Z−1
: HomP(Lgg′,Lgg′)→ P (see (2-16)), we get a morphism CL

2 : Z2→ P.
We need to construct the following canonical isomorphisms

CL
2 (gg′, g′′)' CL

2 (g, g′′)+CL
2 (g
′, g′′), CL

2 (g, g′g′′)' CL
2 (g, g′)+CL

2 (g, g′′),

satisfying the natural compatibility conditions. We now construct the first isomor-
phism. The second is similar. Let Z :P→HomP(Lgg′g′′,Lgg′g′′) be the canonical
equivalence as monoidal groupoids as in (2-15). It is enough to construct a canon-
ical 2-isomorphism Z(CL

2 (gg′, g′′))' Z(CL
2 (g, g′′)+CL

2 (g
′, g′′)).

By the definition of the morphism CL
2 , there is a canonical 2-isomorphism

from 1-isomorphism Z(CL
2 (g, g′′)+CL

2 (g
′, g′′)) to the following composition of

1-isomorphisms:

Lgg′g′′ ' Lg+Lg′g′′ ' Lg+(Lg′+Lg′′)' Lg+(Lg′′+Lg′)' Lg+Lg′′g′ ' Lgg′′g′

' Lgg′′+Lg′ ' (Lg+Lg′′)+Lg′ ' (Lg′′+Lg)+Lg′ ' Lgg′′+Lg′ ' Lgg′g′′

(2-23)
By the definition of the central extension of G by P (see diagram (2-17)), there is
a canonical 2-isomorphism from the above composition of 1-isomorphisms to the
following composition of 1-isomorphisms

Lgg′g′′ ' Lg +Lg′g′′ ' Lg + (Lg′ +Lg′′)' Lg + (Lg′′ +Lg′)

' (Lg +Lg′′)+Lg′ ' (Lg′′ +Lg)+Lg′ ' Lgg′′ +Lg′ ' Lgg′g′′ . (2-24)

From the hexagon axiom for 1-morphisms in the category BP (see diagram (2-13))
we have that the 1-isomorphism which is the composition of the 1-isomorphisms
above is equal to the 1-isomorphism that is the composition of the 1-isomorphisms

Lgg′g′′ ' Lg +Lg′g′′ ' Lg + (Lg′ +Lg′′)' (Lg +Lg′)+Lg′′

' Lg′′ + (Lg +Lg′)' (Lg′′ +Lg)+Lg′ ' Lgg′′ +Lg′ ' Lgg′g′′ . (2-25)

By the “functoriality” of the commutativity constraints in the category BP (see
axiom-diagram (2-14)), the 1-isomorphism that is the composition of the 1-isomor-
phisms above is equal to the one that is the composition of the 1-isomorphisms

Lgg′g′′ ' Lg+Lg′g′′ ' Lg+(Lg′+Lg′′)' (Lg+Lg′)+Lg′′ ' Lgg′+Lg′′

' Lg′′+Lgg′ ' Lg′′+(Lg+Lg′)' (Lg′′+Lg)+Lg′ ' Lgg′′+Lg′ ' Lgg′g′′ .

(2-26)
Again, by the definition of the central extension of G by P (see diagram (2-17),
which we apply twice now), there is a canonical 2-isomorphism from the compo-
sition of 1-isomorphisms above to the composition of 1-isomorphisms

Lgg′g′′ ' Lgg′ +Lg′′ ' Lg′′ +Lgg′ ' Lgg′g′′ , (2-27)
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which is canonically isomorphic to Z(CL
2 (gg′, g′′)).

Let us write down a diagram which will represent the above 2-isomorphisms.
To simplify the notation, we will denote the 2-commutative diagram (2-17) by

Lgg′g′′

��
Lg +Lg′ +Lg′′

(2-28)

Then, the 2-isomorphism Z(CL
2 (gg′, g′′)) ' Z(CL

2 (g, g′′))+Z(CL
2 (g
′, g′′)) is

represented by the diagram

Lgg′′g′

�� Z(CL
2 (g,g

′′))

''

Lg +Lg′′ +Lg′

((vv
Lgg′g′′

Z(CL
2 (g
′,g′′))

77

+3

Z(CL
2 (gg′,g′′))

22Lg +Lg′ +Lg′′ // Lg′′ +Lg +Lg′ Lg′′gg′ks

(2-29)

To check all the compatibility conditions between these canonical isomorphisms
we generalize the proof of Lemma-Definition 2.5. We construct a 2-category HL

whose objects are objects from categories given by all expressions

Lg1 + · · ·+Lgk := (· · · (Lg1 +Lg2)+Lg3)+ · · · )+Lgk , where gi ∈ G;

the 1-morphisms in HL are defined as follows:

HomHL(Lgi1
+ · · ·+Lgik

, Lg j1
+ · · ·+Lg jl

)

=

{
∅ if gi1 . . . gik 6= g j1 . . . g jl ,

HomBP(Lgi1
+ · · ·+Lgik

, Lg j1
+ · · ·+Lg jl

) if gi1 . . . gik = g j1 . . . g jl ,

and the 2-morphisms in the 2-category HL come from the 2-morphisms of category
BP. The category HL is a monoidal group-like 2-groupoid (or a 2-gr -category),
see [Breen 1994, §8], where the monoidal structure on HL is given in an obvious
way by using the associativity constraints in the category BP and the pentagon
diagram (2-9). We have π0(HL)=G. We consider the P-torsor EL on Z2 which is
the commutator of HL. (See [Breen 1999, §8].8) The fiber of EL over (g1, g2)∈ Z2

8L. Breen assumed for simplicity in loc. cit. that the group π1 of a 2-gr-category is equal to 0.
We have π1(HL) 6= 0, but the constructions and its properties which we need remain true in our
situation.
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is the P-torsor
EL

g1,g2
= HomHL(Lg1 +Lg2,Lg2 +Lg1).

The P-torsor EL on Z2 has a natural structure of a weak (2, 2)-extension (see
[Breen 1999, Proposition 8.1]), i.e., there are partial composition (group) laws on
EL which are compatible (see diagrams (7.1), (7.3) in loc. cit). Now the commu-
tativity constraints C from BP give a trivialization of P-torsor EL on Z2 which
is compatible with partial composition laws on EL, i.e., “bimultiplicative”. (The
compatibility of this trivialization with composition laws follows at once from
definition of partial composition laws on EL and hexagon diagram (2-13). See
also the discussion in the end of [Breen 1999, §8] regarding the braiding structure
in HL, which gives the “bimultiplicative” trivialization of the P-torsor EL on Z2.)
The other trivialization of the P-torsor EL on Z2 which is compatible with par-
tial composition laws on EL is obtained as the composition of the following two
equivalences from definition of L:

SLg1 ,Lg2
: Lg1 +Lg2 ' Lg1g2 = Lg2g1 ' Lg2 +Lg1 .

Now the difference between the first trivialization and the second trivialization
of the P-torsor EL on Z2 coincides with CL

2 , which is, thus, a bimultiplicative
homomorphism, because both trivializations are “bimultiplicative”.

We have shown that CL
2 : Z2→P is a bimultiplicative 1-morphism. One readily

checks from the above constructions that this is antisymmetric from Z2 to P, since
C2
= id. �

Remark 2.14. If P = B A, then the construction of CL
2 given above is equiva-

lent to the construction of the commutator category of the central extension −L

introduced in [Deligne 1991].

We also have the following categorical analog of Corollary 2.9. First, let us
remark that if f1, f2 : Z2→ P are two bimultiplicative homomorphisms, one can
define f1+ f2, which is again a bimultiplicative homomorphism, in the same way
as defining the Picard structure on H 1(BG,P).

Lemma 2.15. For any two central extensions L and L′ of G by P there is a nat-
ural bimultiplicative 2-isomorphism (i.e., it respects the bimultiplicative structure)
between bimultiplicative 1-morphisms CL+L′

2 and CL
2 +CL′

2 .

Proof. Recall that we have the following canonical 1-isomorphism

Z : P→ Hom(Lgg′ +L′gg′,Lgg′ +L′gg′).

We construct a canonical isomorphism

Z(CL+L′

2 (g, g′))' Z(CL
2 (g, g′)+CL′

2 (g, g′))
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for any (g, g′) ∈ Z2 as follows. By definition, Z(CL+L′

2 (g, g′)) is canonically
2-isomorphic to the composition of 1-morphisms

(L+L′)gg′=Lgg′+L′gg′' (Lg+Lg′)+(L
′

g+L′g′)' (Lg+L′g)+(Lg′+L′g′)

= (L+L′)g+(L+L′)g′' (L+L′)g′+(L+L′)g' (Lg′+L′g′)+(Lg+L′g)

' (Lg′+Lg)+(L
′

g′+L′g)' Lg′g+L′g′g = (L+L′)g′g = (L+L′)gg′ . (2-30)

Using the functoriality of commutativity constraints, i.e., applying diagram (2-14)
twice, and using the following commutative diagram (which is written without
associativity constraints)

Lg +Lg′ +L′g +L′g′

uu ))
Lg +Lg′ +L′g′ +L′g

�� ,,

Lg +L′g +Lg′ +L′g′

��

oo

Lg′ +Lg +L′g′ +L′g Lg′ +L′g′ +Lg +L′goo

(2-31)

(to obtain the correct diagram we have to replace every triangle in this diagram by
a hexagon coming from (2-13)), we obtain that the composition of 1-morphisms
in (2-30) is equal to the composition of 1-morphisms

Lgg′ +L′gg′ ' (Lg +Lg′)+ (L
′

g +L′g′)

' (Lg′ +Lg)+ (L
′

g′ +L′g)' Lg′g +L′g′g = Lgg′ +L′gg′ , (2-32)

which is, by definition, 2-isomorphic to Z(CL
2 (g, g′)+CL′

2 (g, g′)).
To complete the proof, we need to show that the diagram

CL+L′

2 (g,g′′)+CL+L′

2 (g′,g′′) // (CL
2 (g,g

′′)+CL′

2 (g,g
′′))+(CL

2 (g
′,g′′)+CL′

2 (g
′,g′′))

��

CL+L′

2 (gg′,g′′)

OO

��
CL

2 (gg′,g′′)+CL′

2 (gg′,g′′) // (CL
2 (g,g

′′)+CL
2 (g

′,g′′))+(CL′

2 (g,g
′′)+CL′

2 (g
′,g′′))

(2-33)

and a similar diagram involving CL+L′

2 (g, g′g′′) are commutative. To prove this,
let us recall that the 2-isomorphism CL

2 (gg′, g′′) ' CL
2 (g, g′′)+CL

2 (g
′, g′′) is the

composition of the 2-isomorphisms

Z(CL
2 (g, g′′)+CL

2 (g
′, g′′))→ (2-23)→ (2-24)→· · ·→ (2-27)→Z(CL

2 (gg′, g′′)).
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Let us denote the 1-isomorphism (2-23) for L (resp. L′, resp. L+L′) as (2-23)L
(resp. (2-23)L′ , resp. (2-23)L+L′) and etc. Then it is readily checked that there
exists a canonical 2-isomorphism

(2-23)L+ (2-23)L′ ' (2-23)L+L′

between corresponding 1-isomorphisms Lgg′g′′ + L′gg′g′′ → Lgg′g′′ + Lgg′g′′ , and
canonical 2-isomorphisms for (2-24)–(2-27) such that the diagram

(2-23)L+ (2-23)L′ //

��

(2-23)L+L′

��
(2-24)L+ (2-24)L′ // (2-24)L+L′

and similar diagrams for (2-24)–(2-27) commute. In addition, the following dia-
grams commute:

Z(CL+L′

2 (g, g′′)+CL+L′

2 (g′, g′′)) //

��

Z
(
(CL

2 (g, g′′)+CL
2 (g

′, g′′))
+(CL′

2 (g, g′′)+CL′

2 (g
′, g′′))

)
��

(2-23)L+L′
// (2-23)L+ (2-23)L′

Z(CL+L′

2 (gg′, g′′)) // Z(CL
2 (gg′, g′′)+CL′

2 (gg′, g′′))

(2-27)L+L′
//

OO

(2-27)L+ (2-27)L′

OO

These facts together imply the commutativity of diagram (2-33). �

Fix g ∈G, the induced map ZG(g)→P given by g′ 7→CL
2 (g, g′) is denoted by

CL
g . The bimultiplicativity of CL

2 implies that CL
g is an object in H 1(B ZG(g),P).

It is easy to see from the definition the following lemma:

Lemma 2.16. (i) If two central extensions L and L′ of G by P are isomorphic
in H 2(BG,P), then for any g the induced two homomorphisms CL

g and CL′
g

are isomorphic in H 1(B ZG(g),P).

(ii) CP
g is the trivial homomorphism for any g ∈ G.

Let Z3 ⊂ G×G×G be the subset of pairwise commuting elements.

Proposition 2.17. The map
CL

3 : Z3→ π1(P)

defined by
CL

3 (g, g′, g′′) := Comm(CL
g )(g

′, g′′).

is an antisymmetric trimultiplicative homomorphism from Z3 to π1(P).
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Proof. We check the trimultiplicativity of the map CL
3 . The multiplicativity of this

map with respect to g′ or g′′ follows from Lemma-Definition 2.5. Multiplicativity
with respect to g follows from Lemma-Definition 2.13 and Corollary 2.9.

The hard part now is to prove that the map CL
3 is antisymmetric. Let us write

C2 instead of CL
2 , and C3 instead of CL

3 for simplicity. Let (g, g′, g′′) ∈ Z3. First
of all, let us observe that by definition, there is a canonical isomorphism

C2(g, g′g′′)+C2(g′, g′′)' C2(g′, g′′)+C2(g, g′′g′) (2-34)

induced by the 2-commutative diagram

Lgg′g′′ //

Z(C2(g,g′g′′))
++

Z(C2(g′,g′′))

��

Lg +Lg′g′′ //

��

Lg′g′′ +Lg //

��

Lgg′g′′

Z(C2(g′,g′′))

��

Lg + (Lg′ +Lg′′) //

��

(Lg′ +Lg′′)+Lg

��
Lg + (Lg′′ +Lg′) //

��

(Lg′′ +Lg′)+Lg

��
Lgg′′g′ //

Z(C2(g,g′′g′))

33Lg +Lg′′g′ // Lg′g′′ +Lg // Lgg′′g′

The following lemma can be checked using the definition of BP.

Lemma 2.18. The isomorphism (2-34) is the same as the commutativity constraint
in P.

Now, there are two isomorphisms between (C2(g, g′)+C2(g, g′′))+C2(g′, g′′)
and C2(g′, g′′) + (C2(g, g′′) + C2(g, g′)). Namely, the first isomorphism is ob-
tained by the associativity and commutativity constraints in P. (Recall that such
isomorphism is unique by Mac Lane’s coherence theorem for Picard category.)
The second isomorphism is

(C2(g, g′)+C2(g, g′′))+C2(g′, g′′)' C2(g, g′g′′)+C2(g′, g′′)
(2-34)
'

C2(g′, g′′)+C2(g, g′′g′)' C2(g′, g′′)+ (C2(g, g′′)+C2(g, g′)). (2-35)

By the lemma, the difference between these two isomorphisms is C3(g, g′, g′′).
If we recall the definition of C2(g, g′g′′)'C2(g, g′)+C2(g, g′′) by (2-29), we see
that the isomorphism (2-35) can be represented by the diagram
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Lg′gg′′
Z(C2(g,g′′)) //

"*

Lg′g′′g

Z(C2(g′,g′′))

��

t|
Lg′+Lg+Lg′′ // Lg′+Lg′′+Lg

&&
Lgg′g′′ +3

Z(C2(g,g′))

DD

Z(C2(g′,g′′))

��

Lg+Lg′+Lg′′

88

&&

Lg′′+Lg′+Lg Lg′′g′gks

Lg+Lg′′+Lg′ // Lg′′+Lg+Lg′

88

Lgg′′g′

4<

Z(C2(g,g′′))
// Lg′′gg′

bj Z(C2(g,g′))

DD

This diagram clearly implies that C3(g, g′, g′′) = C3(g′, g′′, g). This, together
with the fact that C3(g, g′, g′′)=−C3(g, g′′, g′) (because the map Comm(CL

g ) is
antisymmetric), implies that C3 is antisymmetric. �

Corollary 2.19. (i) If two central extensions L and L′ of G by P are isomorphic
in H 2(BG,P), then CL

3 = CL′

3 .

(ii) CP
3 is trivial.

Corollary 2.20. For any two central extensions L and L′ of G by P we have

CL+L′

3 = CL
3 +CL′

3 .

Proof. This follows from Lemma 2.15, Corollary 2.9 and the definition of C3. �

Remark 2.21. If P = B A, where A is an abelian group, then a central extension
L of a group G by the Picard groupoid P is a gr -category such that these gr -
categories are classified by the group H 3(G, A)with the trivial G-module A. In this
case the map CL

3 coincides with the symmetrization of corresponding 3-cocycle;
see [Breen 1999, §4]. (This follows from Remarks 2.14, 2.8 and [Osipov 2003,
Proposition 10].)

3. Tate vector spaces

3A. The category of Tate vector spaces. We first review the definition of Tate
vector spaces, following [Osipov 2007; Arkhipov and Kremnizer 2010]. Let us fix
a base field k.

Recall that Beilinson [1987] associates to an exact category E in the sense of
[Quillen 1973] another exact category lim

←→
E, which is again an exact category. In

nowadays terminology, this is the category of locally compact objects of E.
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For an exact category E, let Ê denote the category of left exact additive con-
travariant functors from the category E to the category of abelian groups. This
is again an exact category (in fact an abelian category), in which arbitrary small
colimits exist. The Yoneda embedding h : E → Ê is exact. Then the category
Ind(E) of (strict) ind-objects of E, is the full subcategory of Ê consisting of objects
of the form lim

−→i∈I
h(X i ), where I is a filtered small category, and X i ∈E, such that

for i→ j in I , the map X i → X j is an admissible monomorphism. This category
is a natural exact category. Likewise, one can define Pro(E) as Ind(Eop)op.

Definition 3.1. Let E be an exact category. Then lim
←→

E is the full subcategory of
Pro(Ind(E)) consisting of objects that can be represented as

lim
←−

i∈I op

lim
−→
j∈I

h(X i j )

such that, for any i→ i ′, j → j ′, the following diagram is cartesian (which auto-
matically makes it cocartesian).

X i j //

��

X i j ′

��
X i ′ j // X i ′ j ′

One can show that lim
←→

E is an exact category and the embedding lim
←→

E →

Pro(Ind(E)) is exact. Further, there is a natural embedding lim
←→

E→ Ind(Pro(E))
which is again exact. It is clear that the natural embedding Ind(E)→ Pro(Ind(E))
lands in lim

←→
E, and similarly the natural embedding Pro(E)→ Ind(Pro(E)) lands

in lim
←→

E.

Definition 3.2. Define Tate0 to be the category of finite dimensional vector spaces,
together with its canonical exact category structure. Define Taten = lim

←→
Taten−1,

together with the canonical exact category structure given by Beilinson.

There is a canonical forgetful functor Fn : Taten→Top, where Top denotes the
category of topological vector spaces. As is shown in [Osipov 2007], the functor
is fully faithful when n = 1, but this is in general not the case when n > 1.

Definition 3.3. Let V be an object of Taten . A lattice L of V is an object in Taten

which actually belongs to Pro(Taten−1), together with an admissible monomor-
phism L → V such that the object V/L belongs to Ind(Taten−1). A colattice Lc

of V is an object in Taten which actually belongs to Ind(Taten−1), together with
an addmissible monomorphism Lc

→ V such that the object V/Lc belongs to
Pro(Taten−1).
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It is clear that if L is a lattice of V and Lc is a colattice, then L ∩ Lc belongs to
Taten−1.

The main players of this paper are Tate1 and Tate2. The category Tate1 is just
the category of locally linearly compact k-vector spaces. A typical object in Tate1

is the field of formal Laurent series k((t)), that is, the field of fractions of the ring
k[[t]]. The field k((t)) is equipped with the standard topology, where the base of
neighborhoods of zero consists of integer powers of the maximal ideal of k[[t]].
The subspace k[[t]] is a lattice in k((t)) and k[t−1

] is a colattice. Observe that
k[t] ⊂ k((t)) is neither a lattice nor a colattice, because the subspace k[t] is not
closed in the topological space k((t)). Therefore the embedding k[t] ↪→ k((t)) is not
an admissible monomorphism, since any admissible (exact) triple in the category
Tate1 is of the form

0−→ V1 −→ V2 −→ V3 −→ 0,

where the locally linearly compact vector space V1 is a closed vector subspace in
a locally linearly compact vector space V2, and the locally linearly compact vector
space V3 has the quotient topology on the quotient vector space.

A typical object in Tate2 is k((t))((s)), since

k((t))((s))= lim
←−
l∈Z

lim
−→
m≤l

smk((t))[[s]] / slk((t))[[s]] = lim
−→
m∈Z

lim
←−
l≥m

smk((t))[[s]] / slk((t))[[s]],

and smk((t))[[s]] / slk((t))[[s]] is a locally linearly compact k-vector space.
The k-space k((t))[[s]] is a lattice, and the k-space k((t))[s−1

] is a colattice in
the k-space k((t))((s)). As just mentioned above, it is not enough to regard them as
topological vector spaces. On the other hand k[[t]]((s)) is not a lattice in k((t))((s))
although the natural map k[[t]]((s))→ k((t))((s)) is an admissible monomorphism.

Remark 3.4. The category Taten coincides with the category of complete Cn-
spaces from [Osipov 2007].

3B. Determinant theories of Tate vector spaces. We consider Tate0 as an exact
category. Then det : (Tate0, isom)→ PicZ (see (2-6)) is a functor satisfying the
following additional property: for each injective homomorphism V1 → V in the
category Tate0, there is a canonical isomorphism

det(V1)⊗ det(V/V1)' det(V ), (3-1)

such that:
(i) for V1 = 0 (resp. V1 = V ), equality (3-1) is the same as

`0⊗ det(V )' det(V ) (3-2)

resp.
det(V )⊗ `0 ' det(V ), (3-3)
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where `0 is the trivial k-line of degree zero.
(ii) For any diagram

0 // U1 //

'

��

U //

'

��

U/U1 //

'

��

0

0 // V1 // V // V/V1 // 0,

(3-4)

the following diagram is commutative:

det(U1)⊗ det(U/U1) //

��

det(U )

��
det(V1)⊗ det(V/V1) // det(V ).

(3-5)

(iii) For any diagram

0

��

0

��

0

��
0 // U1 //

��

V1 //

��

W1 //

��

0

0 // U //

��

V //

��

W //

��

0

0 // U/U1 //

��

V/V1 //

��

W/W1 //

��

0

0 0 0 ,

(3-6)

the following diagram is commutative:

(det(U1)⊗ det(U/U1))⊗ (det(W1)⊗ det(W/W1)) //

ass. and comm. constraints
��

det(U )⊗ det(W )

��

(det(U1)⊗ det(W1))⊗ (det(U/U1)⊗ det(W/W1))

��
det(V1)⊗ det(V/V1) // det(V )

(3-7)

Definition 3.5. Let P be a Picard groupoid. A determinant functor from the cat-
egory (Tate0, isom) to P is a functor D : (Tate0, isom) → P together with iso-
morphisms (3-1) satisfying equalities and diagrams (3-2)–(3-7), where we have to
change the notation det to D everywhere in these formulas.
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The next proposition is obvious.

Proposition 3.6. Let D : (Tate0, isom)→ P be a determinant functor. Then there
is a 1-homomorphism of Picard groupoids D̃ : PicZ

→ P and a monoidal natural
transformation ε : D̃ ◦ det ' D. Furthermore, the pair (D̃, ε) is unique up to a
unique isomorphism.

Remark 3.7. All the above discussions are valid when one replaces k by a noether-
ian commutative ring A, and replaces Tate0 by the category of finitely generated
projective A-modules.

Next we turn to Tate1. The following result is fundamental and is due to Kapra-
nov [2001] (but see also [Drinfeld 2006, §5.1–5.3]).

Proposition 3.8. There is a natural functor

Det : (Tate1, isom)→ BPicZ,

and for each admissible monomorphism V1→ V there is a 1-isomorphism

Det(V1)+Det(V/V1)→ Det(V) (3-8)

that coincides with the canonical 1-isomorphism P+Det (V)'Det (V) if V1 = 0
and with the canonical 1-isomorphism Det (V)+P' Det (V) if V1 = V.

For each admissible diagram (3-4) of 1-Tate vector spaces, the corresponding
diagram (3-5) is commutative. For each admissible diagram (3-6) of 1-Tate vector
spaces, there is a 2-isomorphism for the corresponding diagram (3-7).

Remark 3.9. Under conditions of Proposition 3.8, the 2-isomorphisms which ap-
pear from diagram (3-7) satisfy further compatibility conditions.

Proof. We recall the definition of a graded-determinantal theory 1 on a 1-Tate
vector space V. This is a rule that assign to every lattice L ⊂ V an object 1(L)
from PicZ and to every lattices L1 ⊂ L2 ⊂ V an isomorphism

1L1,L2 : 1(L1)⊗ det(L2/L1)−→1(L2)

such that for any three lattices L1 ⊂ L2 ⊂ L3 ⊂ V the following diagram is com-
mutative:

1(L1)⊗ det(L2/L1)⊗ det(L3/L2) //

��

1(L1)⊗ det(L3/L1)

��
1(L2)⊗ det(L3/L2) // 1(L3).

Let Det (V) be the category of graded-determinantal theories on V. This is a PicZ-
torsor, where for any x ∈ PicZ, 1 ∈ Det (V), we have (x +1)(L) := x ⊗1(L).
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Now for an admissible (exact) sequence

0−→ V1 −→ V
ε
−→ V/V1 −→ 0

the 1-isomorphism (3-8) is constructed as

1(L) :=11(L ∩V1)⊗12(ε(L)),

where L is a lattice in V, 11 ∈Det (V1), 12 ∈Det (V/V1), 1∈Det (V). (We used
that the k-space L ∩V1 is a lattice in the 1-Tate vector space V1, and the k-space
ε(L) is a lattice in the 1-Tate vector space V3).

We note that, by construction, V 7→Det (V) is naturally a contravariant functor
from the category (Tate1, isom) to the category BPicZ. To obtain the covariant
functor we have to inverse arrows in the category (Tate1, isom). �

4. Applications to the case G = GL(k((t))) and GL(k((t))((s)))

4A. Tame symbols. Let us first review the tame symbols. Recall that if K is a
field with discrete valuation ν : K×→ Z, and k denote its residue field, then there
are so-called boundary maps for any i ∈ N

∂i : K M
i (K )−→ K M

i−1(k),

where K M
i (F) denotes the i-th Milnor K-group of a field F . Recall also that for

a field F , the i-th Milnor K-group K M
i (F) is the quotient of the abelian group

F×⊗Z F×⊗Z · · ·⊗Z F× modulo the so-called Steinberg relations. Then the tame
symbol is defined as the composition of the maps

{ · , · } : K×⊗Z K× −→ K M
2 (K )

∂2
−→ K M

1 (k)' k×.

Explicitly, let π ⊂ K be the maximal ideal. Then

{ f, g} = (−1)ν( f )ν(g) f ν(g)

gν( f ) mod π (4-1)

Now, let K be a two-dimensional local field, whose residue field is denoted by
K , whose residue field is k. Then we define the map

νK : K×⊗Z K× −→ K M
2 (K)

∂2
−→ K M

1 (K )
∂1
−→ K M

0 (k)' Z,

and define the two-dimensional tame symbol as

{ · , · , · } : K×⊗Z K×⊗Z K× −→ K M
3 (K)

∂3
−→ K M

2 (K )
∂2
−→ K M

1 (k)' k×.

We have the following explicit formulas for νK and { · , · , · } (see [Osipov 2003]).
Let ν1 : K→ Z, and ν2 : K → Z be discrete valuations. Let πK be the maximal
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ideal of K, πK be the maximal ideal of K . For an element f ∈ OK, let f̄ denote its
residue class in K . Then

νK( f, g)= ν2

(
f ν1(g)

gν1( f )

)
(4-2)

and

{ f, g, h} = sgn( f, g, h) f νK(g,h)gνK(h, f )hνK( f,g) mod πK mod πK (4-3)

where
sgn( f, g, h)= (−1)A, (4-4)

with

A = νK( f, g)νK( f, h)+ νK(g, h)νK(g, f )+ νK(h, f )νK(h, g)

+ νK( f, g)νK(g, h)νK(h, f ).

Remark 4.1. Originally one used another explicit formula for the sign of the two-
dimensional tame symbol. This other formula was introduced in [Parshin 1975].

It is easy to see that tame symbols { · , · }, { · , · , · } and the map νK are antisym-
metric.

4B. The one-dimensional story. Let V be a 1-Tate vector space over k. The group
of automorphisms of V in this category is denoted by GL(V).

Proposition 4.2. There is a homomorphism DetV :GL(V)→PicZ, which is canon-
ical up to a unique isomorphism in H 1(BGL(V),PicZ).

Proof. According to Proposition 3.8, we have a homomorphism

GL(V)→ HomPicZ(Det (V),Det (V))' PicZ

via Z−1, where Z :PicZ
→HomPicZ(Det (V),Det (V)) is a natural homomorphism

from Section 2C. �

Choose L ⊂ V a lattice. It follows from the proof of Proposition 3.8 that in
concrete terms, one has to assign to DetV(g) the graded line

det(L | gL) := det
(

gL

L∩ gL

)
⊗ det

(
L

L∩ gL

)−1

, (4-5)

where g ∈ GL(V). Then, it is well-known that there is a canonical isomorphism

det(L | gg′L)' det(L|gL)⊗ det(gL | gg′L)' det(L | gL)⊗ det(L | g′L),

which is compatible with the associativity constraints in the category PicZ (see,
for example, [Frenkel and Zhu 2008, §1]). For different choice of L, the resulting
objects in H 1(BGL(V),PicZ) are isomorphic.



322 Denis Osipov and Xinwen Zhu

We also have the following lemma, which easily follows from the construction
of homomorphism DetV and the discussion in Section 3B (in particular the diagram
(3-7)).

Lemma 4.3. If 0→V′→V→V′′→ 0 is a short exact sequence of 1-Tate vector
spaces (recall that Tate1 is an exact category). Let P be the subgroup of GL(V) that
preserves this sequence, then there is a canonical 1-isomorphism DetV′+DetV′′ '
DetV in H 1(B P,PicZ).

Remark 4.4. The 1-homomorphism FPic ◦ DetV : GL(V) → Pic is essentially
constructed in [Arbarello et al. 1988]. However, the above lemma does not hold for
this 1-homomorphism. This is the complication of the sign issues in that reference.

Now let k ′/k be a finite extension and K = k ′((t)) be a local field with residue
field k ′. Then K has a natural structure as a 1-Tate vector space over k. Let H =
K×. The multiplication gives a natural embedding H ⊂ GL(K ). The following
proposition is from [Beilinson et al. 2002].

Proposition 4.5. If f, g ∈ H , then

Comm(DetK )( f, g)= Nmk′/k{ f, g}−1

that is inverse to the tame symbol of f and g.

Remark 4.6. Since the natural functor FPic is monoidal, the restriction to H of
the functor FPic ◦DetK determines a homomorphism H → Pic. The commutator
pairing Comm( f, g) constructed by this homomorphism is

(−1)ord( f ) ord(g) Nmk′/k{ f, g}−1.

By Definition 3.3, a lattice L of V is a linearly compact open k-subspace of V

such that V/L is a discrete k-space. A colattice Lc is a k-subspace of V such that
for any lattice L, both Lc

∩L and V/(Lc
+L) are finite dimensional.

Lemma 4.7. Let P ⊂ GL(V) be a subgroup of GL(V) that preserves a lattice (or
a colattice) in V, then the homomorphism DetV is trivial on P.

Proof. Let L ⊂ V be a lattice such that the group P preserves it. We consider an
exact sequence of 1-Tate vector spaces

0−→ L−→ V−→ V/L−→ 0.

Then the group P preserves this sequence. Therefore by Lemma 4.3, it is enough
to prove that the homomorphisms DetL and DetL/V are trivial on P . But this is
obvious from the proof of Proposition 4.2.

For a colattice Lc
⊂ V we have to use the analogous reasonings. �
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4C. The two-dimensional story. If V∈Tate2, then we denote by GL(V) the group
of automorphisms of V in this category.

There should be a determinantal functor from (Tate2, isom) to B2PicZ, which
assigns to every such V the graded gerbal theory in the sense of [Arkhipov and
Kremnizer 2010], satisfying properties generalizing those listed in Proposition 3.8
(and further compatibility conditions). We do not make it precise. But we define
the corresponding central extension of GL(V) as follows. Pick a lattice L of V.
Then one associates with g the PicZ-torsor

DetV(g)= Det(L | gL) := Det
(

gL

L∩ gL

)
−Det

(
L

L∩ gL

)
. (4-6)

This definition is correct because both k-spaces gL

L∩gL
and L

L∩gL
belong to objects

of category Tate1. We define the 1-isomorphism as

Det(L | gg′L)'Det(L | gL)+Det(gL | gg′L)'Det(L | gL)+Det(L | g′L). (4-7)

One uses Proposition 3.8 to check that this defines a central extension of GL(V) by
PicZ. This central extension depends on the chosen lattice L of V. If we change the
lattice, then the central extension constructed by a new lattice will be isomorphic
to the previous one.

Remark 4.8. If one replaces PicZ by Pic, such a central extension was constructed
in [Osipov 2003; Frenkel and Zhu 2008]. In the first of these references the two-
dimensional tame symbol up to sign was obtained as an application of this con-
struction, and the reciprocity laws on algebraic surfaces were proved up to sign.

As generalization of Lemma 4.3 and Lemma 4.7 it is not difficult to prove the
following lemmas.

Lemma 4.9. If 0→ V′→ V→ V′′→ 0 is a short exact sequence of 2-Tate vector
spaces (recall that Tate2 is an exact category). Let P be the subgroup of GL(V) that
preserves this sequence, then there is a canonical 1-isomorphism DetV′ +DetV′′ '
DetV in H 2(B P,PicZ).

Lemma 4.10. Let P be subgroup of GL(V) which preserves a lattice or a colattice
in V, then the central extension restricted to P can be trivialized.

Let k ′/k be a finite field extension, and K = k ′((t))((s)) be a two-dimensional
local field. Then K has a natural structure as a 2-Tate vector space over k. The
group H =K× acts on K by left multiplications, which gives rise to an embedding
H → GL(K).

Theorem 4.11. For f, g, h ∈ H , one has

CDet
3 ( f, g, h)= Nmk′/k{ f, g, h},
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where the map CDet
3 is constructed in Proposition 2.17 and { · , · , · } is the two-

dimensional tame symbol.

In what follows, we will denote the bimultiplicative homomorphism CDet
2 by C2,

the homomorphism CDet
g by Cg and the map CDet

3 by C3.

Proof. Since both maps C3 and Nmk′/k{ · , · , · } are antisymmetric and trimultipli-
cative, we just need to consider the following cases: (i) f, g, h ∈ O×K; (ii) f, g ∈
O×K, h = s; (iii) f ∈ O×K, g = h = s; (iv) f = g = h = s. Here OK = k ′((t))[[s]] is the
ring of integers of the field K, which is also a lattice in K. We will fix L= OK.

In Case (i), both C3 and Nmk′/k{ · , · , · } are trivial (to see that C3 is trivial, one
uses Lemma 4.10).

Case (ii). According to formulas (4-2)–(4-4), this case amounts to proving that

C3( f, g, s)= Nmk′/k{ f̄ , ḡ},

where f̄ , ḡ are the image of elements f, g under the map O×K→ K×.
Let us consider a little more general situation. Let f, g ∈ GL(K) that leave the

lattice OK invariant, and let h ∈ GL(K) such that hOK ⊂ OK. Let V = OK/hOK,
which is a 1-Tate vector space over the field k. We assume that f, g, h mutu-
ally commute with each other. Then f, g : OK → OK induce automorphisms
πh( f ), πh(g) :V→V. Let Det be the central extension of GL(K) by PicZ defined
by the lattice L= OK. By definition, under the isomorphism

Z : PicZ
→ HomPicZ(Det (OK|hgOK),Det (OK|hgOK)),

the 1-isomorphism C2(h, g) corresponds to the composition of 1-isomorphisms of
PicZ-torsors:

Det (OK|hgOK)→ Det (OK|hOK)+Det (hOK|hgOK)

→ Det (OK|hOK)+Det (OK|gOK)

→ Det (OK|gOK)+Det (OK|hOK)

→ Det (OK|gOK)+Det (gOK|ghOK)→ Det (OK|ghOK).

Using the fact that gOK = OK and Proposition 3.8, this 1-isomorphism is canon-
ically 2-isomorphic to the 1-isomorphism

Det (OK | hgOK)
Z(DetV(π(g)))
−→ Det (OK | hgOK).

Therefore, there is a canonical 2-isomorphism C2(h, g)'−DetV(πh(g)), because,
by definition (see formula (4-6)), Det (OK | hOK)'−Det (V). One readily checks
by the construction of Lemma-Definition 2.13, that these 2-isomorphisms fit into
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the commutative diagrams

C2(h, f g) //

��

C2(h, f )+C2(h, g)

��
−DetV(πh( f g)) // −DetV(πh( f ))−DetV(πh(g))

(4-8)

where the natural isomorphism DetV(πh( f g)) → DetV(πh( f )) + DetV(πh(g))
comes from Proposition 4.2. (We have to use that Det ((0)) is canonically isomor-
phic to PicZ, and OK/gOK = (0), where (0) is the zero-space.)

We now return to our proof of case (ii). Let Ps be the subgroup of GL(K)
consisting of elements that preserve the lattice OK and commute with the element s.
Then the elements in the group Ps also preserve the lattice sOK, and therefore
induce a group homomorphism

πs : Ps→ GL(K ),

because K = OK/sOK. Then the commutative diagram (4-8) amounts to the fol-
lowing lemma.

Lemma 4.12. The homomorphism Cs : Ps → PicZ is isomorphic to the minus (or
the inverse) of the homomorphism

Det K ◦πs : Ps→ GL(K )→ PicZ.

By Proposition 4.5, we thus obtain that

C3( f, g, s)= C3(s, f, g)= Comm(Cs)( f, g)= Nmk′/k{ f̄ , ḡ}

for f, g ∈ O×K ⊂ GL(K). Case (ii) follows.

Case (iii). According to formulas (4-2)–(4-4), one needs to show

C3( f, s, s)= C f (s, s)= Nmk′/k(−1)ν2( f̄ )
= (−1)(ν2( f̄ )[k′:k])

= (−1)(ν2( f̄ )[k′:k])2 .

We have the following exact sequence of 1-Tate vector spaces

0−→
sOK

s2OK

−→
OK

s2OK

−→
OK

sOK

−→ 0.

and therefore by Lemma 4.3, for any element p ∈ Ps , there is a canonical isomor-
phism in PicZ

Det OK

s2OK

(πs2(p))' Det sOK

s2OK

(πs2(p))+Det OK
sOK

(πs2(p)). (4-9)
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On the other hand, we have already shown that there are canonical isomorphisms

C2(s, p)'−Det OK
sOK

(πs(p))=−Det OK
sOK

(πs2(p)),

C2(s2, p)'−Det OK

s2OK

(πs2(g)).
(4-10)

Again, by checking the construction as in Lemma-Definition 2.13, one obtains that
under the isomorphisms (4-10), the canonical isomorphism

C2(s2, p)' C2(s, p)+C2(s, p)

corresponds to (4-9).
Now let p= f as in Case (iii). We know that DetOK/(sOK)(π( f )) is a graded line

of degree ν2( f̄ )[k ′ : k]. Therefore, using C2(a, b)'−C2(b, a) for any commuting
elements a, b ∈GL(K), we obtain that Case (iii) follows from the definition of the
commutativity constraints in PicZ.

Case (iv). One needs to show that Cs(s, s) = 1. One can easily show that there
are canonical isomorphisms C2(s, s) ' `0,C2(s2, s) ' `0, and the canonical iso-
morphism C2(s2, s) ' C2(s, s)+C2(s, s) corresponds to `0 ' `0+ `0. (We used
that for the k ′-space M = k ′[[t]]((s)) we have s M = M , and the k ′-space M induce
a lattice in every 1-Tate vector space snOK/sn+lOK, n ∈ Z, l ∈ N.) This case also
follows. �

5. Reciprocity laws

We will use the adèle theory on schemes. Adèles on algebraic surfaces were intro-
duced in [Parshin 1976]. On arbitrary noetherian schemes they were considered in
[Beilinson 1980]. See the proof of part of results of this latter reference in [Huber
1991]. A survey of adèles can be found in [Osipov 2008].

We fix a perfect field k.

5A. Weil reciprocity law. To fix the idea, let us first revisit the Weil reciprocity
law. Let C be an irreducible projective curve over a field k. Let k(C) be the
field of rational functions on the curve C . For a closed point p ∈ C let Ôp be the
completion by maximal ideal m p of the local ring Op of point p ∈C . Let a ring K p

be the localization of the ring Ôp with respect to the multiplicative system Op \ 0.
(If p is a smooth point, then K p = k(C)p is the fraction field of the ring Ôp, and
K p = k(p)((tp)), Ôp = k(p)[[tp]], where k(p) is the residue field of the point p,
tp is a local parameter at p. For a nonsmooth point p ∈ C , the ring K p is a finite
direct product of one-dimensional local fields.)

We have that K p is a 1-Tate vector space over k, and Ôp is a lattice in K p for
any point p ∈ C .
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For any coherent subsheaf F of the constant sheaf k(C) on the curve C we
consider the following adèle complex AC(F):

AC,0(F)⊕AC,1(F)−→ AC,01(F)

whose cohomology groups coincide with the cohomology groups H∗(C,F). We
recall that

AC,0(F)= k(C)⊗OC F, AC,1(F)=
∏
p∈C

Ôp⊗OC F,

AC,01(F)= AC =
∏
p∈C

′

K p⊗OC F,

where
∏
′ denotes the restricted (adèle) product with respect to

∏
p∈C Ôp. Observe

that since F is a subsheaf of k(C), we have

k(C)⊗OC F= k(C), K p⊗OC F= K p.

The adèle ring AC is a 1-Tate vector space over k. This is because

AC = lim
←−

G⊂k(C)

lim
−→

H⊂k(C)

AC,1(H)/AC,1(G),

and dimk AC,1(H)/AC,1(G) <∞ for coherent subsheaves 0 6=G⊂H of k(C). (We
used that AC,1(H)/AC,1(G) = AC,1 =

⊕
p∈C Ôp ⊗OC (H/G)). For any coherent

subsheaf F of k(C) the space AC,1(F) is a lattice in the space AC . Hence, the
k-space k(C) is a colattice in AC , since from the adelic complex A(F) it follows
that

dimk k(C)∩AC,1(F)= dimk H 0(C,F) <∞,

dimk AC/(k(C)+AC,1(F))= dimk H 1(C,F) <∞.

Let a p be a point of C and f , g a pair of elements of K×p . If K p = k(p)((tp)),
then we denote by { f, g}p the element from k(p)× which is the corresponding tame
symbol. If the ring K p is isomorphic to the finite product of fields isomorphic to
k(p)((t)), then we denote by { f, g}p the element from k(p)× which is the same
finite product of the corresponding tame symbols. Recall that there is the diagonal
embedding k(C) ↪→ AC .

Proposition 5.1 (Weil reciprocity law). For any elements f, g ∈ k(C)× the follow-
ing product contains only finitely many nonequal to 1 terms and∏

p∈C

Nmk(p)/k{ f, g}p = 1. (5-1)

Proof. By Proposition 4.5, we can change Nmk(p)/k{ f, g}p to Comm(DetK p)( f, g)
for all p ∈ C in (5-1). There are points p1, . . . , pl ∈ C such that if p ∈ C and
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p 6= pi (1 ≤ i ≤ l), then f Ôp = Ôp, gÔp = Ôp, and hence, by Lemma 4.7,
Comm(DetK p)( f, g)= 1 for points p 6= pi (1≤ i ≤ l).

We define the group H as the subgroup of the group k(C)× generated by the
elements f and g. We apply Lemma 4.3 to the 1-Tate k-vector spaces

V= AC , V′ = AC\{p1,...,pl }, V′′ =
∏

1≤i≤l

K pi .

The group H preserves the lattice
∏

p∈C\{p1,...,pl }
Ôp in the space V′. Therefore,

by Lemma 4.7, the homomorphism DetAC is isomorphic to the homomorphism
DetV′′ , which is (again by Lemma 4.3) isomorphic to the sum of homomorphisms
DetK p1

, . . . ,DetK pl
. Since the group H preserves the colattice k(C) in AC , the

homomorphism DetAC is isomorphic to the trivial one (by Lemma 4.7). Now using
Remark 2.7 and Corollaries 2.9 and 2.10 we obtain (5-1). �

Remark 5.2. To obtain the triviality of homomorphism DetAC : k(C)× → PicZ

in an explicit way, one has to use the following canonical isomorphism for any
g ∈ k(C)×:

DetAC (g) ' det(H∗(AC(gOC)))⊗ det(H∗(AC(OC)))
−1, (5-2)

where for any coherent sheaf F on C

det(H∗(AC(F))) := det(H 0(AC(F)))⊗ det(H 1(AC(F)))
−1

' det(H 0(C,F))⊗ det(H 1(C,F))−1.

(Formula (5-2) easily follows from adèle complexes and (4-5) if we change in (4-5)
the lattices L and gL in AC to any two lattices coming from nonzero coherent sub-
sheaves G⊂H of k(C), and change correspondingly in formula (5-2) the sheaves
O and gO to the sheaves G ⊂ H.) Now the homomorphism DetAC is isomorphic
to the trivial one by formula (5-2) and the fact that multiplication on an element
g ∈ k(C)∗ gives a canonical isomorphism between adèle complexes AC(OC) and
AC(gOC), which induce the canonical isomorphism between det(H∗(AC(OC)))

and det(H∗(AC(gOC))).

5B. Parshin reciprocity laws. Let X be an algebraic surface over the field k. We
assume, for simplicity, that X is a smooth connected surface.

We consider pairs x ∈ C , where C are irreducible curves on X and x are closed
points on C . For every such pair one can define the ring Kx,C , which will be a
finite product of two-dimensional local fields, as follows. Assume that the curve
C on X has the formal branches C1, . . . ,Cn at the point x ∈ C ; that is,

C |Spec Ôx
=

⋃
1≤i≤n

Ci ,
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where Ôx is the completion of the local ring Ox of a point x ∈ X , and Ci is
irreducible in Spec Ôx for any 1 ≤ i ≤ n. (Since we assumed X is smooth,
Ôx ' k(x)[[t1, t2]].) Now every Ci defines a discrete valuation on the fraction field
Frac Ôx . We define a two-dimensional local field Kx,Ci as the completion of the
field Frac Ôx with respect to this discrete valuation, and let Ôx,Ci be the valuation
ring. Then we define

Kx,C :=
⊕

1≤i≤n

Kx,Ci , Ôx,C :=
⊕

1≤i≤n

Ôx,Ci ,

Observe that if x ∈ C is a smooth point, then Ôx,C ' k(x)((t))[[s]] and Kx,C '

k(x)((t))((s)). It is clear that the ring Ôx diagonally embeds into the ring Kx,C .
Let us also define Bx ⊂ Kx,C as lim

−→n>0
s−n

C Ôx , where a local equation sC = 0
determines C on some open X ⊃ V 3 x . It is clear that the subring Bx of Kx,C

does not depend on the choice of such sC when V 3 x . If x ∈ C is a smooth point,
and Kx,C = k(x)((t))((sC)), where sC = 0 is a local equation of the curve C on X
near the point x and t = 0 defines a transversal curve locally on X near x , then
Bx = k(x)[[t]]((sC)).

Any ring Kx,C is a 2-Tate vector space over k(x) (and therefore over k), and the
ring Ôx,C is a lattice in Kx,C .

Let
f =

⊕
1≤i≤n

fi , g =
⊕

1≤i≤n

gi , h =
⊕

1≤i≤n

hi .

be elements of K×x,C . We define an element of k(x)× by

{ f, g, h}x,C :=
∏

1≤i≤n

{ fi , gi , hi }x,Ci , (5-3)

where { fi , gi , hi }x,Ci is the two-dimensional tame symbol associated to the two-
dimensional local field Kx,Ci (cf. Section 4A).

Fix a point x ∈ X . For any free finitely generated Ôx -module subsheaf F of
the constant sheaf Frac Ôx on the scheme Spec Ôx we consider the following adèle
complex AX,x(F):

AX,x,0(F)⊕AX,x,1(F)−→ AX,x,01(F).

This is the adèle complex on the one-dimensional scheme Ux := Spec Ôx \ x for
the sheaf F |Ux , and, hence, the cohomology groups of this complex coincide with
the cohomology groups H∗(Ux ,F |Ux ). By definition, we have

AX,x,0(F)=Frac Ôx , AX,x,1(F)=
∏
C3x

Ôx,C⊗Ôx
F, AX,x,01(F)=AX,x=

∏
C3x

′

K p,C,
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where the product is taken over all prime ideals C of height 1 of the ring Ôx , and∏
′ denotes the restricted (adèle) product with respect to

∏
C3x Ôx,C.

Observe that the adèle ring AX,x is a 2-Tate vector space over the field k(x).
This is because

AX,x = lim
←−

G⊂Frac Ôx

lim
−→

H⊂Frac Ôx

AX,x,1(H)/AX,x,1(G),

and AX,x,1(H)/AX,x,1(G) is a 1-Tate vector space for free Ôx -module subsheaves
0 6= G ⊂ H of Frac Ôx . (We used that AX,x,1(H)/AX,x,1(G) =

⊕
C3x Ôx,C ⊗Ôx

H/G.) For any free finitely generated Ôx -module subsheaf F of Frac Ôx the space
AX,x,1(F) is a lattice in the space AX,x .

From Proposition 8 in [Osipov 2005] it follows that the k(x)-vector spaces
H 0(AX,x(F)) and H 1(AX,x(F)) are 1-Tate vector spaces. Indeed, since x is a
smooth point of X ,

H 0(AX,x(F))= H 0(Ux ,F |Ux )= F

is a projective limit of finite-dimensional k(x)-vector spaces F/mn
x F (mx is the

maximal ideal of the ring Ôx ), and

H 1(AX,x(F))= H 1(Ux ,F |Ux )= lim
−→
n>0

Ext2
Ôx
(Ôx/mn

x ,F),

where for any n > 0 the space Ext2
Ôx
(Ôx/mn

x ,F) is a finite-dimensional over the
field k(x) vector space; see, for example, [Osipov 2005, Lemma 6].

Fix an irreducible projective curve C on X . For any invertible OX -subsheaf F of
the constant sheaf k(X) on X we consider the following adèle complex AX,C(F)

AX,C,0(F)⊕AX,C,1(F)−→ AX,C,01(F).

where AX,C,0(F) := KC , AX,C,01(F) := AX,C = AC((sC)), and

AX,C,1(F) :=

(∏
x∈C

Bx ⊗OX F

)
∩AX,C . (5-4)

Here KC is the completion of the field k(X) with respect to the discrete valuation
given by the curve C on X . (If sC = 0 is a local equation of the curve C on some
open subset V of X such that V ∩C 6=∅, then KC = k(C)((sC)).) The ring AX,C is
a subring of

∏
x∈C Kx,C , and does not depend on the choice of sC . The intersection

(5-4) is taken in the ring
∏

x∈C Kx,C .
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We note that from [Osipov 2005, § 5.1] it follows that the complex AX,C(F)

coincides with the following complex

lim
−→

n

lim
←−
m>n

A(C,OX/J m−n
C )(F⊗OX J n

C/J m
C ).

Here JC is the ideal sheaf of the curve C on X , (C,OX/J m−n
C ) is a one-dimensional

scheme which has the topological space C and the structure sheaf OX/J m−n
C , and

A(C,OX/J m−n
C )(F ⊗OX J n

C/J m
C ) is the adèle complex of the coherent sheaf F ⊗OX

J n
C/J m

C on the scheme (C,OX/J m−n
C ). Hence and from the proof of [Osipov 2005,

Proposition 12] we obtain that

H∗(AX,C(F))= lim
−→

n

lim
←−
m>n

H∗(C,F⊗OX J n
C/J m

C ),

where for i = 0 and i = 1 we have dimk H i (C,F⊗OX J n
C/J m

C ) <∞. For i = 0
and i = 1 the k-vector space H i (AX,C(F)) has the natural topology of inductive
and projective limits. It is not difficult to see that the space H 0(AX,C(F)) is a
locally linearly compact k-vector space; i.e., it is a 1-Tate vector space. But the
space H 1(AX,C(F)) is not a Hausdorff space in this topology. Let H̃ 1(AX,C(F))

be the quotient space of H 1(AX,C(F)) by the closure of zero. Then the space
H̃ 1(AX,C(F)) is a locally linearly compact k-vector space, i.e., a 1-Tate vector
space.

We note that for any invertible subsheaves 0 6= G⊂H of k(X) we have that the
space Bx ⊗Ôx

(H/G) is a 1-Tate vector space, which is equal to zero for almost all
points x ∈ C . Hence, we obtain that the space

AX,C,1(H)/AX,C,1(G)=
⊕
x∈C

Bx ⊗Ôx
(H/G)

is a 1-Tate vector space.

For any point x ∈ X , we define a ring Kx as the localization of the ring Ôx with
respect to the multiplicative system Ox \0. (We note that inside of the field Frac Ôx

the ring Kx is defined as the product of two subrings: Ôx and k(X).)
For any pair x ∈ C (where C is an irreducible curve on X and x ∈ C is a closed

point), we have the natural embeddings k(X) ↪→ Kx , k(X) ↪→ KC (recall that
KC is the completion of the field k(X) with respect to the discrete valuation given
by the curve C). In addition, there are the natural embeddings Kx , KC ↪→ Kx,C .
Therefore, we obtain

k(X) ↪→ Kx ↪→ AX,x , k(X) ↪→ KC ↪→ AX,C .

Theorem 5.3 (Parshin reciprocity laws). (1) Fix a point x ∈ X. Consider ele-
ments f, g, h of the group K×x of invertible elements of the ring Kx . Then the
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following product in k(x)× contains only finitely many terms distinct from 1
and ∏

C3x

{ f, g, h}x,C = 1. (5-5)

(2) Fix a projective irreducible curve C on X. Let elements f, g, h be from the
group K×C . Then the following product in k× contains only finitely many terms
distinct from 1 and ∏

x∈C

Nmk(x)/k{ f, g, h}x,C = 1. (5-6)

Proof. We first prove formula (5-5). By Theorem 4.11, for any f, g, h ∈ K×x,C we
have

{ f, g, h}x,C = CDetx,C
3 ( f, g, h) (5-7)

for all prime ideals C of height 1 of the ring Ôx , where the central extension Detx,C
of the group K×x,C by the Picard groupoid PicZ is constructed by formula (4-6)
from the 2-Tate vector space Kx,C over the field k(x) and the lattice Ôx,C as in
Section 4C. We note that for almost all prime ideals C of height 1 of ring Ôx , and for
any elements f, g, h from the group Frac Ô×x , we have f Ox,C=Ox,C, gOx,C=Ox,C,
and hOx,C = Ox,C. Then by Lemma 4.10 and Corollary 2.19, for almost all prime
ideals C of height 1 of ring Ôx we have CDetx,C

3 ( f, g, h)= 1.
We will prove that the central extension Detx of Frac Ô×x (⊂GL(AX,x)) by PicZ

constructed by the 2-Tate vector space AX,x and the lattice AX,x,1(Ôx) using for-
mula (4-6) can be trivialized in an explicit way. Observe that for any d ∈ Frac Ô×x ,
there is a canonical isomorphism of PicZ-torsors:

Det (AX,x,1(Ôx) | AX,x,1(dÔx)) ' Det (H∗(AX,x(dÔx)))−Det (H∗(AX,x(Ôx))),
(5-8)

where for any free subsheaf F of Frac Ôx on the scheme Spec Ôx

Det (H∗(AX,x(F))) := Det (H 0(AX,x(F)))−Det (H 1(AX,x(F))).

Indeed, isomorphism (5-8) follows from Proposition 3.8 applied to the long exact
sequence (decomposed into the short exact sequences) associated with the follow-
ing exact sequence of complexes of length 2 for any nonzero free subsheaves G⊂H

of Frac Ôx on the scheme Spec Ôx :

0−→AX,x(G)−→AX,x(H)−→AX,x,1(H)/AX,x,1(G)−→ 0,

where the last complex consists only of the group placed in degree zero. Now we
have
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Det (H∗(AX,x(dÔx)))−Det (H∗(AX,x(Ôx)))

' HomPicZ(Det (H∗(AX,x(Ôx))),Det (H∗(AX,x(dÔx))). (5-9)

Multiplication by the element d ∈ Frac Ô×x between adèle complexes AX,x(Ôx) and
AX,x(dÔx) gives a natural isomorphism of PicZ-torsor from formula (5-9) to the
trivial torsor PicZ.

Let H be the subgroup of Frac Ô×x generated by the elements f, g, h ∈ Frac Ô×x .
Now we proceed as the proof of Weil reciprocity law (see Equation (5-1)), with
the help of Lemma 4.9, Lemma 4.10, and Corollary 2.20. Then we obtain the
following equality: ∏

C3x

{ f, g, h}x,C = 1.

Formula (5-5) follows from the last formula, since if a prime ideal C of height
1 in Ôx is not a formal branch at x of some irreducible curve C on X , then for any
element d ∈ K×x we have dOx,C = Ox,C. Hence, by formula (5-7), { f, g, h}x,C = 1
for such C and any f, g, h ∈ K×x .

Next we will prove formula (5-6). We construct the central extension Det ′x,C of
the group k(X)× by the Picard groupoid PicZ in the following way. We fix a point
x ∈C , and associate with the rings Bx ⊂ Kx,C and with an element d ∈ k(X)× the
following PicZ-torsor:

Det(Bx | d Bx) := Det
(

d Bx

Bx ∩ d Bx

)
−Det

(
Bx

Bx ∩ d Bx

)
. (5-10)

(We used that Bx/Bx ∩ d Bx is a 1-Tate vector space over the field k.) By the
formula which is analogous to formula (4-7) we obtain that the central extension
Det ′x,C is well defined. In a similar way we define the central extensions Det ′C and
Det ′C\{x1,...,xl }

starting from the rings AX,C,1(OX )⊂AX,C and AX,C\{x1,...,xl },1(OX )⊂

AX,C\{x1,...,xl }, where x1, . . . , xl are some points on the curve C .
Let the group H be generated in the group k(X)× by the elements f, g, h ∈

k(X)×. For almost all points x of the curve C we have that the group H preserves
the subring Bx . Therefore form formula (5-10) we obtain that the central extension
Det ′x,C is isomorphic to the trivial one for almost all points x of the curve C .

Therefore for almost all points x of the curve C we have C
Det ′x,C
3 ( f, g, h)= 1.

We will prove that the central extension Det ′x,C is inverse (or dual) to the central
extension Detx,C , where the last central extension is constructed by formula (4-6)
from the lattice Ox,C in the 2-Tate vector space Kx,C . For any free subsheaf F of
the constant sheaf Frac Ôx on the scheme Spec Ôx there is the following complex
AX,C,x(F):

(Bx ⊗Ôx
F) ⊕ (Ôx,C ⊗Ôx

F)−→ Kx,C .
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We have canonically that H∗(AX,C,x(F))= H∗(Ux ,F |Ux ), where we recall Ux =

Spec Ôx \ x (see the proof of [Osipov 2005, Proposition 13]). Therefore the coho-
mology groups of complex AX,C,x(F) are 1-Tate vector spaces. Hence, there is a
canonical isomorphism between the following PicZ-torsors for any d ∈ k(X)×:

Det(Bx | d Bx)+Det(Ôx,C | dÔx,C),

HomPicZ(Det (H∗(AX,C,x(Ôx))) , Det (H∗(AX,C,x(dÔx)))).

Now multiplication by the element d of adèle complexes gives a natural isomor-
phism from the last PicZ-torsor to the trivial one. Hence from Corollary 2.20 we
have that

C
Det ′x,C
3 ( f, g, h)= C

Det ′x,C
3 ( f, g, h)

−1
= Nmk(x)/k{ f, g, h}−1

x,C

for f, g, h ∈ k(X)×.
Now the proof of formula (5-6) for elements f, g, h ∈ k(X)× follows by the

same method as in the proof of formula (5-5), but we have to use the adèle ring
AX,C instead of the ring AX,x , and to use the central extension Det ′C instead of
the central extension Det x . We need only to prove that the central extension Det ′C
constructed by the analog of formula (5-10) from the rings AX,C,1(OX )⊂ AX,C is
isomorphic the trivial central extension. This follows if we consider the following
PicZ-torsors for d ∈ k(X)×

HomPicZ(Det (H∗(AX,C(OX ))) , Det (H∗(AX,C(dOX )))), (5-11)

where

Det (H∗(AX,C(dOX )) := Det (H 0(AX,C(dOX ))−Det (H̃ 1(AX,C(dOX )).

Multiplication by d ∈ k(X)× of adèle complexes gives the triviality of the PicZ-
torsor (5-11). (See analogous reasonings earlier in the proof of this theorem.)

To obtain formula (5-6) for elements f, g, h ∈ K×C we have to use that the field
k(X) is dense in the field KC . Therefore for any element f ∈ K×C there is an
element f̃ ∈ k(X)× such that f = f̃ m, where the element m is from the subgroup
1 + mn

C of the group K×C for some n ≥ 1, and mC is the maximal ideal of the
valuation ring of discrete valuation field KC . Then from formula (4-3) we have
that {m, g, h}x,C = 1 for any point x ∈C , and any formal branch C of the curve C
at point x . Hence, from the trimultiplicativity of the two-dimensional tame symbol
we obtain that

{ f, g, h}x,C = { f̃ , g, h}x,C.

Applying successively the same procedure to elements g, h ∈ k×C we obtain

{ f, g, h}x,C = { f̃ , g̃, h̃}x,C,
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where f̃ , g̃, h̃ ∈ k(X)×, and any point x ∈ C , and C is any formal branch of the
curve C at point x . �

Remark 5.4. For the proof of Parshin reciprocity laws we used “semilocal” adèle
complexes of length 2 connected with either points or irreducible curves on an
algebraic surface. But for the formulation of these reciprocity laws we used the
rings Kx and KC which appear from the “global” adèle complex of length 3 on an
algebraic surface. It would be interesting to find direct connections between the
“global” adèle complex and “semilocal” adèle complexes of an algebrac surface.

Remark 5.5. We have a symmetric monoidal functor from the Picard torsor PicZ

to the Picard groupoid Z which sends every graded line to its grading element from
Z, where Z is considered as the groupoid with objects equal to Z and morphisms
equal to identities morphisms. Under this functor a central extension of a group G
by a PicZ-torsor goes to the usual central of the group G by the group Z. In this way
the map νK for a two-dimensional local field K was obtained as the commutator
of elements in this central extension in [Osipov 2005]. Also in this same reference
the reciprocity laws for the map νK were proved by the adèle complexes on an
algebraic surface.
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