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We consider a finite group acting on a vector space and the corresponding skew
group algebra generated by the group and the symmetric algebra of the space.
This skew group algebra illuminates the resulting orbifold and serves as a re-
placement for the ring of invariant polynomials, especially in the eyes of coho-
mology. One analyzes the Hochschild cohomology of the skew group algebra
using isomorphisms which convert between resolutions. We present an explicit
chain map from the bar resolution to the Koszul resolution of the symmetric
algebra which induces various isomorphisms on Hochschild homology and co-
homology, some of which have appeared in the literature before. This approach
unifies previous results on homology and cohomology of both the symmetric
algebra and skew group algebra. We determine induced combinatorial cochain
maps which invoke quantum differentiation (expressed by Demazure–BGG op-
erators).

1. Introduction

Let G be a finite group acting linearly on a finite-dimensional complex vector
space V . The skew group algebra S(V )#G is a natural semi-direct product of G
with the symmetric algebra S(V ) (a polynomial ring). It serves as a valuable, albeit
noncommutative, replacement for the invariant ring S(V )G in geometric settings,
as it encodes the abstract group structure of G as well as its action on V . The coho-
mology of S(V )#G informs various areas of mathematics (for example, geometry,
combinatorics, representation theory, and mathematical physics). In particular,
the Hochschild cohomology of S(V )#G governs its deformations, which include
graded Hecke algebras, symplectic reflection algebras, and Cherednik algebras.
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The orbifold V/G may be realized as an algebraic variety whose coordinate ring
is the ring of invariant functions S(V ∗)G on the dual space V ∗, which is the center
of S(V ∗)#G when G acts faithfully. (For details, see [Harris 1995].) The variety
V/G is nonsingular exactly when the action of G on V is generated by reflections.
Geometers and physicists are interested in resolving the singularities of V/G with
a smooth variety X and examining the coordinate ring of X instead of S(V )G . In
situations they study, the skew group algebra S(V )#G serves as a replacement for
the coordinate ring of X ; indeed, Hochschild cohomology sees no difference be-
tween these rings [Căldăraru et al. 2004]. Connections with representation theory
are still unfolding; for example, see [Gordon and Smith 2004].

The Hochschild cohomology HH
q
(A) of any algebra A over a field k is the

space Ext
q
A⊗Aop(A, A). The cup product and Gerstenhaber bracket on Hochschild

cohomology are both defined initially on the bar resolution, a natural A⊗ Aop-free
resolution of A. The cup product has another description as Yoneda composition of
extensions of modules, which can be transported to any other projective resolution.
However, the Gerstenhaber bracket has resisted such a general description. Instead,
one commonly computes HH

q
(A) using a more convenient resolution, then one

finds and uses relevant chain maps to lift the Gerstenhaber bracket from the bar
resolution. The case A= S(V )#G is complicated further because one does not work
with resolutions of A directly, but instead one derives information from resolutions
of the symmetric algebra S(V ).

In this paper, we begin this task by constructing explicit chain maps which en-
code traffic between resolutions used to describe the Hochschild cohomology of
A = S(V )#G. Our maps convert between the bar and Koszul resolutions of the
polynomial ring S(V ), and serve as a tool for investigating the homology and co-
homology of S(V ) with coefficients in any bimodule. Specifically, the Koszul res-
olution of the polynomial ring S(V ) embeds naturally into the bar resolution. We
define an explicit chain map, depending on a choice of basis, giving a quasi-inverse
to this embedding. We study in particular the induced maps on the Hochschild
cohomology HH

q
(S(V ), S(V )#G). We give an elegant, combinatorial description

of the induced map on cochains in terms of scaled Demazure (BGG) operators
(or quantum partial differential operators, see Definition 3-4). We describe the
induced maps on Hochschild homology as well. (These combinatorial descriptions
are useful for computations, which we pursue in other articles.) The cohomology
HH

q
(S(V )#G) manifests as the G-invariant subspace of HH

q
(S(V ), S(V )#G) in

characteristic 0. We thus obtain isomorphisms of homology and cohomology that
allow one to transfer structures defined on the bar resolution to the complexes
standardly used to describe HH

q
(S(V )#G).

In Section 2, we establish notation and deploy the Hochschild cohomology
HH

q
(S(V )#G) in terms of both the Koszul and bar resolutions of S(V ). We
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introduce a combinatorial map ϒ on cochains in Section 3. This combinatorial
converter ϒ takes vector forms (tagged by group elements) to twisted quantum
differential operators. In Section 4, we give a technical formula for explicit chain
maps from the bar resolution to the Koszul resolution (Definition 4-1), which is
valid over an arbitrary ground field. These specific chain maps each induce an
inverse to the embedding of the Koszul resolution into the bar resolution after
taking homology or cohomology. (Indeed, after applying functors ⊗ or Hom, we
recover some chain maps given in the literature for converting between complexes
expressing Hochschild homology and cohomology—see Section 6.) In Section 5,
we deduce that our combinatorial converter ϒ defines automorphisms of coho-
mology by showing that it is induced by the chain maps of Section 4. We present
similar automorphisms of homology (using quantum differentiation) in Section 6.

Our approach presents an immediate and obvious advantage: We define one
primitive map between resolutions and then apply various functors that automati-
cally give (co)chain maps in a variety of settings. We do not need to give separate
proofs (depending on context) showing that these induced maps are chain maps, as
such results follow immediately from the general theory. This uniform treatment
provides a clear channel for navigating between chain and cochain complexes. In-
deed, we use this channel in [Shepler and Witherspoon 2009; 2011] to explore the
algebraic structure of HH

q
(S(V )#G) under the cup product and the Gerstenhaber

bracket.
Some results in this paper are valid over a field of arbitrary characteristic, while

others assume the ground field is the complex numbers, C. We have tried to
state carefully requirements on the field throughout. The reader should note that
whenever we work over C, we could instead work over any field containing the
eigenvalues of the action of G on V in which |G| is invertible. All tensor and
exterior products will be taken over the ground field unless otherwise indicated.

2. Preliminary material

In this section, we work over the complex numbers C, although the definitions
below of Hochschild cohomology, bar resolution, and Koszul resolution are valid
over any ground field.

Let G be a finite group and V a (not necessarily faithful) CG-module. Let gv

denote the image of v ∈ V under the action of g ∈ G. We work with the induced
group action on all maps throughout this article: For any map θ and element h ∈
GL(V ), we define the map hθ by (hθ)(v) := h(θ(h

−1
v)) for all v. Let V ∗ denote

the vector space dual to V with the contragredient (i.e., dual) representation. For
any basis v1, . . . , vn of V , let v∗1 , . . . , v

∗
n be the dual basis of V ∗. Let V G

=

{v ∈ V : gv = v for all g ∈ G}, the set of G-invariants in V . For any g ∈ G, let
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Z(g)= {h ∈G : gh = hg}, the centralizer of g in G, and let V g
= {v ∈ V : gv= v},

the g-invariant subspace of V .
The skew group algebra S(V )#G is the vector space S(V )⊗CG with multipli-

cation given by
(a⊗ g)(b⊗ h)= a(gb)⊗ gh

for all a, b ∈ S(V ) and g, h ∈ G. We abbreviate a ⊗ g by ag (a ∈ S(V ), g ∈ G)
and a⊗1, 1⊗ g simply by a, g, respectively. An element g ∈ G acts on S(V ) by
an inner automorphism in S(V )#G: ga(g)−1

= (ga)g(g)−1
=

ga for all a ∈ A.
The Hochschild cohomology of a C-algebra A (such as A = S(V )#G), with

coefficients in an A-bimodule M , is the graded vector space

HH
q
(A,M)= Ext

q
Ae(A,M),

where Ae
= A⊗ Aop acts on A by left and right multiplication. This cohomology

may be expressed in terms of the bar resolution, the following free Ae-resolution
of A:

· · ·
δ3
−→ A⊗4 δ2

−→ A⊗3 δ1
−→ Ae m

−→ A→ 0, (2-1)

where

δp(a0⊗ · · ·⊗ ap+1)=

p∑
j=0

(−1) j a0⊗ · · ·⊗ a j a j+1⊗ · · ·⊗ ap+1,

and δ0=m is multiplication. We apply HomAe(−,M) to obtain a cochain complex
whose homology is HH

q
(A,M). If M = A, we abbreviate HH

q
(A)= HH

q
(A, A).

For each p,
HomAe(A⊗(p+2), A)∼= HomC(A⊗p, A),

and we identify these two spaces of p-cochains throughout this article. The graded
vector space HH

q
(A) admits both a cup product and a graded Lie bracket under

which it becomes a Gerstenhaber algebra. In this article, we develop automor-
phisms of cohomology converting between resolutions. These automorphisms will
be used in later publications to explore the algebraic structure of HH

q
(S(V )#G)

under these two operations.

Hochschild cohomology of S(V )#G. Farinati [2005] and Ginzburg and Kaledin
[2004] determined the graded vector space structure of HH

q
(S(V )#G)when G acts

faithfully on V . The same techniques apply to nonfaithful actions. The following
statements are valid only when the characteristic does not divide the order of G.
(Otherwise, the cohomology is more complicated as the group algebra of G may
itself not be semisimple.) Let C be a set of representatives of the conjugacy classes
of G. A consequence of [Ştefan 1995, Corollary 3.4] posits a natural G-action
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giving the first of a series of isomorphisms of graded vector spaces:

HH
q
(S(V )#G) ∼= HH

q
(S(V ), S(V )#G)G

∼=

(⊕
g∈G

HH
q
(S(V ), S(V )g)

)G

∼=

⊕
g∈C

HH
q(

S(V ), S(V )g
)Z(g)

. (2-2)

Specifically, the action of G on V extends naturally to the bar complex of S(V ) and
commutes with the differentials, and so induces a natural action on Hochschild co-
homology HH

q
(S(V ), S(V )#G) (for which we also use the action of G on S(V )#G

by inner automorphisms). The subspace of G-invariants of this action is denoted
by HH

q
(S(V ), S(V )#G)G . (Equivalently, this may also be defined via any other

choice of G-compatible resolution used to compute cohomology; see [Ştefan 1995,
Section 2], for example.)

The second isomorphism of (2-2) surfaces simply because the S(V )e-module
S(V )#G decomposes into the direct sum of S(V )e-modules S(V )g, and cohomol-
ogy preserves direct sums. (The isomorphism arises of course at the cochain level,
as the Hom-functor preserves direct sums.) We identify HH

q
(S(V ), S(V )#G) with⊕

g∈G HH
q
(S(V ), S(V )g) when convenient throughout this article. Note that G

permutes the components in the direct sum in accordance with the conjugation ac-
tion of G on itself. Thus for each g ∈G, the subgroup Z(g) fixes the g-component
HH

q
(S(V ), S(V )g) setwise. The third isomorphism of (2-2) canonically projects

onto a set of representative summands.
One may use the Koszul resolution for S(V ) to determine each g-component

HH
q
(S(V ), S(V )g) in the last line of (2-2) above. The Koszul resolution, denoted

by K q(S(V )), is given by K0(S(V )) = S(V )e, K1(S(V )) = S(V )e ⊗ V , and for
each p ≥ 2,

K p(S(V ))=
p−2⋂
j=0

S(V )e⊗ (V⊗ j
⊗ R⊗ V⊗(p− j−2)), (2-3)

where R is the subspace of V ⊗ V spanned by all v⊗w−w⊗ v (v,w ∈ V ); see
[Braverman and Gaitsgory 1996], for example. This is a subcomplex of the bar
resolution (2-1) for S(V ). For any choice of basis v1, . . . , vn of V , it is equivalent
to the Koszul resolution corresponding to the regular sequence {vi⊗1−1⊗vi }

n
i=1

in S(V )e:

K p({vi ⊗ 1− 1⊗ vi }
n
i=1)
∼= S(V )e⊗

∧p(V ), (2-4)
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a free S(V )e-resolution of S(V ); see [Weibel 1994, §4.5], for instance. The differ-
entials are given by

dp(1⊗ 1⊗ v j1∧ · · · ∧ v jp)

=

p∑
i=1

(−1)i+1(v ji ⊗ 1− 1⊗ v ji )⊗ (v j1∧ · · · ∧ v̂ ji∧ · · · ∧ v jp). (2-5)

The canonical inclusion of the Koszul resolution (2-3) into the bar resolution (2-1)
for S(V ) is then given on resolution (2-4) by the chain map

8 : S(V )e⊗
∧q
(V )→ S(V )⊗(

q+2) ,

defined by

8p(1⊗ 1⊗ v j1∧ · · · ∧ v jp)=
∑

π∈Symp

sgn(π)⊗ v jπ(1) ⊗ · · ·⊗ v jπ(p) ⊗ 1 (2-6)

for all v j1, . . . , v jp ∈ V , p ≥ 1, where Symp denotes the symmetric group on p
symbols. Note that by its definition, 8 is invariant under the action of GL(V ), i.e.,
h8=8 for all h in GL(V ).

Any chain map 9p : S(V )⊗(p+2)
→ S(V )e ⊗

∧pV from the bar resolution to
the Koszul resolution yields a commutative diagram:

· · · // S(V )⊗4 δ2 //

92
��

S(V )⊗3 δ1 //

91
��

S(V )e m //

=

��

S(V ) //

=

��

0

· · · // S(V )e⊗
∧2V

d2 //

82

OO

S(V )e⊗
∧1V

d1 //

81

OO

S(V )e m //

OO

S(V ) //

OO

0.

(In Definition 4-1, we explicitly define a map 9 depending on a choice of basis
of V .) Such maps 8 and 9 necessarily induce inverse isomorphisms on cohomol-
ogy HH

q
(S(V ),M) for any S(V )-bimodule M upon applying HomS(V )e(−,M).

(Similarly for homology; see Section 6.) Identifying HomS(V )e(S(V )⊗(p+2),M)
with HomC(S(V )⊗p,M) and HomS(V )e(S(V )e⊗

∧pV,M) with HomC(
∧pV,M)

for all p, we obtain the following commutative diagram:

HomC(S(V )⊗p,M)
δ∗p−1 //

8∗p

��

HomC(S(V )⊗(p+1),M)

8∗p+1
��

HomC(
∧pV,M)

d∗p−1 //

9∗p

OO

HomC(
∧p+1V,M)

9∗p+1

OO
(2-7)

The maps 89 and 98 are each homotopic to an identity map by the Comparison
Theorem, and thus 8∗p and 9∗p induce inverse automorphisms on the cohomology
HHp(S(V ),M); see the proof of [Weibel 1994, Lemma 2.4.1]. In this paper, we
primarily consider the S(V )e-modules M = S(V )#G and M = S(V )g for g in G.
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We transfer the map 8 and any chain map 9 to the Hochschild cohomology of
the full skew group algebra, HH

q
(S(V )#G), using the isomorphisms of (2-2). Set

M = S(V )#G and let 8∗ and 9∗ denote the induced maps on the cohomology

HH
q
(S(V ), S(V )#G)∼=

⊕
g∈G

HH
q(

S(V ), S(V )g
)
.

For each g in G, denote the restrictions to HH
q(

S(V ), S(V )g
)

by 8∗g and 9∗g ,
respectively, so that

8∗ =
⊕
g∈G

8∗g and 9∗ =
⊕
g∈G

9∗g .

The maps 8∗ and 9∗ behave nicely with respect to the action of G:

Proposition 2-8. Let 9 be any choice of chain map from the bar resolution (2-1)
to the Koszul resolution (2-4). The cochain maps 8∗ and 9∗ are inverse automor-
phisms on the cohomology HH

q
(S(V ), S(V )#G) converting between expressions

arising from the Koszul resolution and from the bar resolution. In addition,

(1) For any g ∈ G, the maps 8∗g and 9∗g on the cohomology HH
q(

S(V ), S(V )g
)

are invariant under the centralizer Z(g) of g in G, and the maps 8∗ and 9∗

on
⊕

g∈G HH
q(

S(V ), S(V )g
)

are invariant under G;

(2) The maps 8∗ and 9∗ induce inverse automorphisms on the graded vector
space⊕

g∈C

(
HH

q(
S(V ), S(V )g

))Z(g) ∼=

(⊕
g∈G

HH
q
(S(V ), S(V )g)

)G
∼= HH

q
(S(V )#G).

Proof. As explained after Diagram (2-7), the maps 8∗g and 9∗g are inverse isomor-
phisms on the cohomology HH

q(
S(V ), S(V )g

)
. By its definition, 8 is invariant

under the action of GL(V ), and so the map 8∗ on HH
q
(S(V ), S(V )#G) is in-

variant under G, and the map 8∗g on HH
q(

S(V ), S(V )g
)

is invariant under Z(g).
Fix some h in Z(g) and consider the map h(9∗g ). As maps on the cohomology
HH

q(
S(V ), S(V )g

)
,

1 = h(8∗g 9
∗

g ) =
h(8∗g)

h(9∗g ) = 8∗g
h(9∗g ),

thus h(9∗g ) is also inverse to 8∗g. Hence h(9∗g )=9
∗
g (since the inverse is unique)

as maps on cohomology, for all h in Z(g), and 9∗g is also Z(g)-invariant. Thus
statement (1) holds. As a consequence, we may restrict both 8∗g and 9∗g to the
graded vector space

(
HH

q
(S(V ), S(V )g)

)
Z(g). Applying the isomorphisms (2-2),

we obtain (2). �

The cohomology HH
q
(S(V ), S(V )#G) arising from the Koszul resolution (2-4)

of S(V ) may be viewed as a set of vector forms on V tagged by group elements
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of G. Indeed, we identify HomC(
∧pV, S(V )g) with S(V )g ⊗

∧pV ∗ for each g
in G, and recognize the set of cochains derived from the Koszul resolution as (see
Diagram (3-3) below)

C
q
:=

⊕
g∈G

C
q
g, where C p

g := S(V )g⊗
∧pV ∗ . (2-9)

3. Quantum differentiation and a combinatorial converter map

One generally uses the Koszul resolution of S(V ) to compute Hochschild coho-
mology, but some of the algebraic structure of its cohomology is defined using
the bar resolution instead. We thus define automorphisms of cohomology which
convert between resolutions. In Equation (2-6), we defined the familiar inclusion
map 8 from the Koszul resolution to the bar resolution. But in order to transfer
algebraic structure, we need chain maps in both directions. In Section 4, we shall
construct explicit chain maps 9 from the bar resolution to the Koszul resolution,
which will then induce cochain maps 9∗. These maps 9 are somewhat unwieldy,
however. Thus, in this section, we first define a more elegant and handy map ϒ on
cochains using quantum differential operators (alternatively, Demazure operators).
In Theorem 5-1, we prove that ϒ = 9∗ as maps on cocycles, for our specific
construction of a chain map 9 from the bar resolution to the Koszul resolution of
S(V ). This implies that the map ϒ is itself a cochain map, and that ϒ is in fact
equal to9∗ on cohomology, for any choice of chain map9 from the bar resolution
to the Koszul resolution of S(V ). This development allows us to deduce important
properties of the expedient map ϒ (useful for computations) from the elephantine
map 9∗. In this section, we work over the complex numbers C.

Given any basis v1, . . . , vn of V , and any complex number ε 6= 1, we define
the ε-quantum partial differential operator with respect to v := vi as the scaled
Demazure (BGG) operator ∂v,ε : S(V )→ S(V ) given by

∂v,ε( f ) = (1− ε)−1 f − s f
v

=
f − s f
v− sv

, (3-1)

where s ∈GL(V ) is the reflection whose matrix with respect to the basis v1, . . . , vn

is diag(1, . . . , 1, ε, 1, . . . , 1)with ε in the i th slot. Set ∂v,ε=∂/∂v, the usual partial
differential operator with respect to v, when ε = 1.

Remark 3-2. The quantum partial differential operator ∂v,ε above coincides with
the usual definition of quantum partial differentiation: One takes the ordinary par-
tial derivative with respect to v but instead of multiplying each monomial by its
degree k in v, one multiplies by the quantum integer [k]ε , where

[k]ε := 1+ ε+ ε2
+ · · ·+ εk−1.
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Let us check explicitly that these two definitions coincide. For v = v1, ε 6= 1,

∂v,ε(v
k1
1 v

k2
2 · · · v

kn
n )=

(v
k1
1 v

k2
2 · · · v

kn
n )−

s(v
k1
1 v

k2
2 · · · v

kn
n )

v1− sv1

=
v

k1
1 v

k2
2 · · · v

kn
n − ε

k1v
k1
1 v

k2
2 · · · v

kn
n

v1− εv1

=
(1− εk1)v

k1
1 v

k2
2 · · · v

kn
n

(1− ε)v1

= [k1]ε v
k1−1
1 v

k2
2 · · · v

kn
n .

We are now ready to construct the map ϒ taking vector forms (tagged by group
elements) to twisted quantum differential operators. We define ϒ on cochains C q
(see (2-9)) so that the following diagram commutes for M = S(V )#G:

HomC(S(V )⊗p,M)
δ∗p−1 //

8∗p��

HomC(S(V )⊗(p+1),M)

8∗p+1��⊕
g∈G

S(V )g⊗
∧pV ∗ d∗p−1 //

ϒp

OO

⊕
g∈G

S(V )g⊗
∧p+1V ∗

ϒp+1

OO

(3-3)

First, some notation. For g in G, fix a basis Bg = {v1, . . . , vn} of V consisting of
eigenvectors of g with corresponding eigenvalues ε1, . . . , εn . Decompose g into
a product of reflections diagonal in this basis: Let g = s1 · · · sn where each si is
either the identity or a reflection defined by siv j = v j for j 6= i and sivi = εivi . Let
∂i := ∂vi ,εi , the quantum partial derivative (see Definition (3-1)) with respect to Bg.

Definition 3-4. We define a resolution converter map ϒ from the dual Koszul
complex to the dual bar complex with coefficients in S(V )#G:

ϒp : C p
→ HomC(S(V )⊗p, S(V )#G) .

Let g lie in G with basis Bg = {v1, . . . , vn} of V as above. Let

α = fgg⊗ v∗j1 ∧ · · · ∧ v
∗

jp

with fg ∈ S(V ) and 1≤ j1 < . . . < jp ≤ n. Define ϒ(α) : S(V )⊗p
→ S(V )#G by

ϒ(α)( f1⊗ · · ·⊗ f p)=

( p∏
k=1

s1s2···s jk−1(∂ jk fk)

)
fgg .

By Theorem 5-1 below, ϒ is a cochain map. Thus ϒ induces a map on the coho-
mology HH

q
(S(V ), S(V )#G)∼=

⊕
g∈GHH

q
(S(V ), S(V )g), which we denote by ϒ
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as well. For each g in G, let ϒg denote the restriction to C q
g and the restriction to

HH
q
(S(V ), S(V )g), so that

ϒ =
⊕
g∈G

ϒg.

Remark 3-5. For each g in G, the cochain map ϒg =ϒg,B depends on the chosen
basis B = Bg of eigenvectors of g. But we shall see (in Corollary 5-3 below) that
the induced automorphism on cohomology HH

q(
S(V ), S(V )g

)
does not depend

on the choice of basis. This will imply that as an automorphism of HH
q
(S(V )#G),

the map ϒ does not depend on choices of bases of V used in its definition.

Example 3-6. Let G = Z/2Z× Z/2Z be the Klein four-group consisting of ele-
ments 1, g, h, gh. Let V =C3 with basis v1, v2, v3 on which G acts by gv1=−v1,
gv2 = v2, gv3 = −v3, hv1 = −v1, hv2 = −v2, hv3 = v3. Let α = fh h̄ ⊗ v∗1 ∧ v

∗

2
for some fh ∈ S(V ). Write h = s1s2, a product of reflections with s1v1 = −v1,
s2v2 =−v2. Then ϒ(α) is the function on S(V )⊗2 given by

ϒ(α)( f1⊗ f2)= (∂1 f1)(
s1∂2 f2) fh h̄

for all f1, f2 ∈ S(V ). For example, ϒ(α)(v1⊗v2)= fh h̄ while ϒ(α)(v2⊗v1)= 0.

Remark 3-7. The mapϒ transforms any decomposable vector form into a (twisted)
quantum operator characterizing the same subspace: For the fixed basis Bg =

{v1, . . . , vn} and α = fgg⊗ v∗j1 ∧ · · · ∧ v
∗

jp
in C p

g (with j1 < . . . < jp), we have

ϒ(α)(vi1 ⊗ · · ·⊗ vi p)= 0 unless i1 = j1, . . . , i p = jp .

Generally, ϒ(α)( f1⊗ · · ·⊗ f p)= 0 whenever ∂

∂v jk
( fk)= 0 for some k.

The next proposition explains how ϒ depends on our choices of bases as a map
on cochains.

Proposition 3-8. The maps ϒg,B on cochains, for g in G, satisfy the following
change of basis rule: For any a in G,

aϒg,B = ϒaga−1, aB .

In particular, for a in the centralizer Z(g), aϒg,B = ϒg, aB .

Proof. One may check directly from (3-1) that quantum partial differentiation
obeys the following transformation law: For all v in V and ε in C,

a∂v,ε = ∂ av,ε ,

where a∂v,ε differentiates with respect to a basis B and ∂ av,ε with respect to aB.
Let B = {v1, . . . , vn} be a basis of V of eigenvectors of g with corresponding

eigenvalues ε1, . . . , εn . Decompose g as a product of diagonal reflections si in
GL(V ) (for i = 1, . . . , n) in this basis; we retain the notation before Definition 3-4.
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Let g′= aga−1, B ′= aB, v′i =
avi , s ′i = asi a−1, and ∂ ′i =

a∂i . Then the s ′i similarly
decompose g′ in the basis B ′ with ∂ ′i = ∂v′i ,εi .

Consider α = fg ⊗ v
∗

j1 ∧ · · · ∧ v
∗

jp
in C p. For all fi in S(V ),

a(ϒg,B(α)
)
( f1⊗ . . .⊗ f p)=

a(ϒg,B(α)(
a−1

f1⊗ · · ·⊗
a−1

f p)
)

=
a( s1···s j1−1∂ j1(

a−1
f1) · · ·

s1···s jp−1(∂ jp(
a−1

f p)) fg g
)

=
s′1···s

′

j1−1(a∂ j1 f1) · · ·
s′1···s

′

jp−1(a∂ jp f p)
afg g′

=
s′1···s

′

j1−1(∂ ′j1 f1) · · ·
s′1···s

′

jp−1(∂ ′jp
f p)

afg g′

= ϒg′,B ′(
aα)( f1⊗ . . .⊗ f p) ,

and the result follows. �

The above proposition can also be seen using Definition 4-1 below of the chain
map 9B , Theorem 5-1 below equating ϒg,B and 9B , and the straightforward fact
that 9B has a similar change of basis property.

4. Chain maps from the bar to the Koszul resolution

In this section, we define specific chain maps 9B from the bar resolution of S(V )
to its Koszul resolution (see (2-1) and (2-4)) depending on bases B of V . By the
Comparison Theorem, the resulting maps (9B)

∗ on cohomology do not depend
on the choice of B. In particular, we consider cohomology with coefficients in
S(V )g and write 9∗g,B for the induced map (9B)

∗
g on HH

q(
S(V ), S(V )g

)
. We

shall show in Theorem 5-1 below that 9∗g,B = ϒg,B (recall Definition 3-4) for
any choice B of basis of V consisting of eigenvectors of g used to define both
maps. This will imply (see Corollary 5-3) that as maps on cohomology, ϒg and ϒ
are automorphisms independent of choices of bases B used to define them at the
cochain level. In this section, we work over any base field.

First, we introduce some notation. Let ` denote an n-tuple ` := (`1, . . . , `n).
Let v` be the monomial v` := v`1

1 · · · v
`n
n where v1, . . . , vn is a chosen basis of V .

Sometimes we further abbreviate a p-tuple `1, . . . , `p of n-tuples by ` when no
confusion will arise.

Definition 4-1. Let V be a vector space over an arbitrary field, and let B =
{v1, . . . , vn} be a basis of V . Define an S(V )e-map 9B from the bar resolution
to the Koszul resolution, 9B : S(V )⊗( q+2)

→ S(V )e ⊗
∧q
(V ) , as follows. Let

(9B)0 be the identity map. For each p ≥ 1, define (9B)p by

(9B)p(1⊗ v`
1
⊗ · · ·⊗ v`

p
⊗ 1)

=

∑
1≤i1<···<i p≤n

∑
0≤ai j<`

j
i j

vQ(`;i1,...,i p)⊗ v Q̂(`;i1,...,i p)⊗ vi1∧ · · · ∧ vi p , (4-2)
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where the second sum ranges over all ai1, . . . , ai p such that 0 ≤ ai j < `
j
i j

for each
j ∈ {1, . . . , p} and the functions Q and Q̂ (indicating monomial degree) depend
also on the choices ai j (this dependence is suppressed in the notation for brevity):

Q(`1, . . . , `p
; i1, . . . , i p)i =

{
ai + `

1
i + · · ·+ `

j−1
i if i = i j ,

`1
i + · · ·+ `

j
i if i j < i < i j+1,

where we set i0 = 0 and i p+1 = n + 1 for convenience. We define the n-tuple
Q̂(`; i1, . . . , i p) to be complementary to Q(`; i1, . . . , i p) in the sense that

vQ(`;i1,...,i p) v Q̂(`;i1,...,i p) vi1 · · · vi p = v
`1
· · · v`

p
.

We simply write Q̂ when it is clear with respect to which Q(`; i1, . . . , i p) it is
complementary.

For small values of p, the formula for (9B)p is less cumbersome. In particular,
for p = 1, 2, such formulas were given in [Witherspoon 2006, (4.9), (4.10)]. We
repeat them here:

91(1⊗ v
`1
1 · · · v

`n
n ⊗ 1)=

n∑
i=1

`i∑
t=1

v
`i−t
i v

`i+1
i+1 · · · v

`n
n ⊗ v

`1
1 · · · v

`i−1
i−1 v

t−1
i ⊗ vi ,

92(1⊗ v
`1
1 · · · v

`n
n ⊗ v

m1
1 · · · v

mn
n ⊗ 1)

=

∑
1≤i< j≤n

m j∑
r=1

`i∑
t=1

(
v
`i−t
i v

`i+1
i+1 · · · v

` j−1
j−1v

` j+m j−r
j v

` j+1+m j+1
j+1 · · · v`n+mn

n

⊗ v
`1+m1
1 · · · v

`i−1+mi−1
i−1 v

mi+t−1
i v

mi+1
i+1 · · · v

m j−1
j−1 v

r−1
j ⊗ vi ∧ v j

)
.

Example 4-3. To illustrate, we compute 92 on a few monomials of small degree:

92(1⊗ v1⊗ v2⊗ 1)= 1⊗ 1⊗ v1 ∧ v2,

92(1⊗ v1v2⊗ v
3
2 ⊗ 1)= (v3

2 ⊗ 1+ v2
2 ⊗ v2+ v2⊗ v

2
2)⊗ v1 ∧ v2,

92(1⊗ v1v2⊗ v
2
2v3⊗ 1)= (v2

2v3⊗ 1+ v2v3⊗ v2)⊗ v1 ∧ v2

+ 1⊗ v1v
2
2 ⊗ v2 ∧ v3+ v2⊗ v

2
2 ⊗ v1 ∧ v3.

Theorem 4-4. For each choice of basis B of V , the map 9B of Definition 4-1 is a
chain map.

We defer the proof of Theorem 4-4 to the Appendix as it is rather technical.

5. Merits of the combinatorial converter map

In the previous two sections, we examined two maps ϒg,B and 9∗g,B which con-
vert between cochain complexes: They each transform cochains procured from
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the Koszul resolution (2-4) of S(V ) into cochains procured from the bar resolu-
tion (2-1) of S(V ) (see Definitions 3-4 and 4-1). In this section, we show that the
two mapsϒg,B and9∗g,B are identical on cochains, and hence also on cohomology,
for any g in G and any basis B consisting of eigenvectors of g. This will imply
that ϒ is itself a cochain map. We deduce other salient properties of the map ϒ
using this connection between ϒ and 9. We take our ground field to be C in this
section.

Theorem 5-1. Let g be in G and let B be a basis of V consisting of eigenvectors
of g. Then

ϒg,B =9
∗

g,B

as maps on cochains. Thus ϒg,B is a cochain map.

Proof. We check thatϒg,B and9∗g,B agree on cochains: Let α= fgg⊗v∗j1∧· · ·∧v
∗

jp

be a cochain in C p
g with fg ∈ S(V ) and j1 < . . . < jp, where B = {v1, . . . , vn}. Let

f1 = v
`1
, . . . , f p = v

`p

be monomials in S(V ). Without loss of generality, it suffices to show that 9∗g,B(α)
and ϒg,B(α) agree on f1⊗· · ·⊗ f p, since such elements form a basis for S(V )⊗p.
By Definition 4-1,

9∗g,B(α)( f1⊗ · · ·⊗ f p)

= α(9g,B( f1⊗ · · ·⊗ f p))

= α(9g,B(v
`1

1
1 · · · v

`1
n

n ⊗ · · ·⊗ v
`

p
1

1 · · · v
`

p
n

n ))

= α

( ∑
1≤i1<···<i p≤n

∑
0≤ aik<`

k
ik

vQ(`;i1,...,i p)⊗ v Q̂(`;i1,...,i p)⊗ vi1∧ · · · ∧ vi p

)
.

Since α has exterior part v∗j1 ∧ · · · ∧ v
∗

jp
, each summand is zero save one (the

summand with ik = jk for k = 1, . . . p). Then

9∗g,B(α)( f1⊗ · · ·⊗ f p)

=

∑
0≤a jk<`

k
jk

vQ(`; j1,..., jp) fgg v Q̂(`; j1,..., jp)

=

∑
0≤a jk<`

k
jk

( p∏
t=1

ε
(`t

jt
−a jt−1)+`t+1

jt
···+`

p
jt

jt

∏
it−1<i<it

ε
`t

i+···+`
p
i

i

)
vQ(`; j1,..., jp)v Q̂(`; j1,..., jp) fgg.

Recall that, by definition, vQ(`; j1,..., jp)v Q̂(`; j1,..., jp)v j1 · · · v jp = v
`1
· · · v`

p
. Thus

the factor vQ(`; j1,..., jp)v Q̂(`; j1,..., jp) fgg in each term of the above sum does not de-
pend on the values of a jk , and we may move the summation symbol inside the
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parentheses. Simplifying, we obtain( p∏
t=1

[`t
jt ]ε jt

ε
`t+1

jt
+···+`

p
jt

jt

∏
it−1<i<it

ε
`t

i+···+`
p
i

i

)
vQ(`; j1,..., jp)v Q̂(`; j1,..., jp) fgg

=

( p∏
k=1

s1···s jk−1(∂ jk fk)

)
fgg

= ϒg,B(α)( f1⊗ · · ·⊗ f p),

by Definition 3-4. Hence ϒg,B =9
∗

g,B as maps on cochains. �

As a consequence, we obtain a statement about any chain map 9 from the bar
resolution to the Koszul resolution, at the level of cohomology, which has further
implications for the map ϒ :

Corollary 5-2. Let9 be any chain map from the bar resolution (2-1) to the Koszul
resolution (2-4) for S(V ). Then:

(1) ϒg =9
∗
g as maps on the cohomology HH

q
(S(V ), S(V )g), for all g in G.

(2) ϒ =9∗ as maps on

HH
q
(S(V ), S(V )#G)∼=

⊕
g∈G

HH
q(

S(V ), S(V )g
)

and on its G-invariant subalgebra,

HH
q
(S(V ), S(V )#G)G ∼= HH

q
(S(V )#G).

Proof. We constructed a specific choice of chain map 9B in Definition 4-1 above
from the bar to the Koszul resolution of S(V ). Since 9 and 9B are homotopic by
the Comparison Theorem,9∗g =9

∗

g,B as maps on cohomology HH
q(

S(V ), S(V )g
)
.

But 9∗g,B = ϒg,B for any choice of g and B by Theorem 5-1, and hence 9∗ = ϒ .
By Proposition 2-8, these maps preserve G-invariant subspaces, and so 9∗ = ϒ
on HH

q
(S(V )#G) as well. �

Corollary 5-3. Let g ∈ G. On the cohomology HH
q
(S(V ), S(V )g), the map ϒg =

ϒg,B is independent of choice of basis B of eigenvectors of g used in its definition.
Hence, as a map on the cohomologies HH

q
(S(V ), S(V )#G) and HH

q
(S(V )#G),

ϒ is independent of the choices of bases used in its definition.

Proof. By Corollary 5-2, ϒg =9
∗
g on cohomology for any choice of chain map 9

from the bar complex to the Koszul complex of S(V ), independent of the choice of
basis of eigenvectors of g used to define ϒg. Hence, ϒ is independent of choices
of bases. �

Corollary 5-4. The maps ϒ and 8∗ are inverse isomorphisms on the cohomology
HH

q
(S(V ), S(V )#G) and on its G-invariant subalgebra HH

q
(S(V ), S(V )#G)G ∼=

HH
q
(S(V )#G).
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Proof. Again, in Corollary 5-2, we found that ϒ = 9∗ on cohomology for any
chain map 9 from the bar to the Koszul complex. But any such 9 induces an
automorphism on cohomology inverse to 8∗ by the Comparison Theorem. �

This corollary actually follows from a stronger fact: ϒ is a right-sided inverse
to 8∗ on cochains, not merely on cohomology, for any choice of bases {Bg}g∈G

defining ϒ . Indeed, a calculation shows directly that 8∗ϒ = 1 on cochains C q.
We can see this fact yet another way. One can check that 9B8= 1 on chains, and
therefore 8∗g(9B)

∗
g = 1 on cochains, for every B and g. In Theorem 5-1, we saw

that ϒg,B = (9B)
∗
g = 9

∗

g,B as maps on cochains, for all g in G and for any basis
B of eigenvectors of g, and hence 8∗ϒ = 1 as a map on cochains.

6. Hochschild homology

Our chain maps 9B of Definition 4-1 are useful in settings other than the co-
homology of S(V )#G. In this section, we obtain induced maps on Hochschild
homology, and compare our induced maps on homology and cohomology with
those in the literature. The Hochschild-Kostant-Rosenberg Theorem states that for
smooth commutative algebras, Hochschild homology is isomorphic to the module
of differential forms (i.e., the exterior algebra generated by the Kähler differen-
tials); e.g., see [Weibel 1994, §9.4.2]. For noncommutative algebras, Hochschild
homology provides a generalization of the notion of “differential forms”. It is
interesting to note that for some types of algebras (in particular for S(V )#G),
Hochschild homology and cohomology are dual (see [van den Bergh 1998] for
the general theory and [Farinati 2005] for the case S(V )#G). In this section, we
work over an arbitrary field initially, then over C in Theorem 6-4.

Let M be any S(V )e-module. Then 9B induces an isomorphism on Hochschild
homology

HH q(S(V ),M) := TorS(V )eq (S(V ),M)

and on Hochschild cohomology

HH
q
(S(V ),M) := Ext

q
S(V )e(S(V ),M)

by applying the functors M ⊗S(V )e − and HomS(V )e(−,M), respectively, to the
bar resolution (2-1) and to the Koszul resolution (2-4). This approach to obtaining
maps on homology and cohomology has advantages over previous approaches in
the literature which we explain now.

We obtain a map on Hochschild homology HH q(S(V )) := HH q(S(V ), S(V )),
denoted by (9B)∗, by setting M = S(V ). At the chain level,

(9B)∗ : S(V )⊗ S(V )⊗
q
−→ S(V )⊗

∧q
(V ) .
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A computation similar to that in the proof of Theorem 5-1 yields the following
explicit formula for (9B)∗, valid over any ground field:

Theorem 6-1. Let B = {v1, . . . , vn} be a basis of V . Then as an automorphism on
HH q(S(V )) at the chain level,

(9B)∗( f0⊗ f1⊗ · · ·⊗ f p)=
∑

1≤i1<···<i p≤n

f0
∂ f1

∂vi1

· · ·
∂ f p

∂vi p

⊗ vi1∧ · · · ∧ vi p (6-2)

for all f0, f1, . . . , f p ∈ S(V ).

Proof. Without loss of generality, assume that f1, . . . , f p are monomials, say

fk = v
`k
= v

`k
1

1 · · · v
`k

n
n

for some n-tuple `k
= (`k

1, . . . , `
k
n). Then

(9B)∗( f0⊗ v
`1
⊗ · · ·⊗ v`

p
)

= f09B(1⊗ v`
1
⊗ · · ·⊗ v`

p
)

= f0

( ∑
1≤i1<···<i p≤n

∑
0≤ai j<`

j
i j

vQ(`;i1,...,i p)⊗ v Q̂(`;i1,...,i p)⊗ vi1∧ · · · ∧ vi p

)
=

∑
1≤i1<···<i p≤n

∑
0≤ai j<`

j
i j

vQ(`;i1,...,i p) f0 v
Q̂(`;i1,...,i p)⊗ vi1∧ · · · ∧ vi p

=

∑
1≤i1<···<i p≤n

∑
0≤ai j<`

j
i j

f0 v
Q(`;i1,...,i p)v Q̂(`;i1,...,i p)⊗ vi1∧ · · · ∧ vi p

=

∑
1≤i1<···<i p≤n

∑
0≤ai j<`

j
i j

f0 v
`1
· · · v`

p
v−1

i1
· · · v−1

i p
⊗ vi1∧ · · · ∧ vi p

=

∑
1≤i1<···<i p≤n

`1
i1
· · · `

p
i p

f0 v
`1
· · · v`

p
v−1

i1
· · · v−1

i p
⊗ vi1∧ · · · ∧ vi p ,

where the product v`
1
· · · v`

p
v−1

i1
· · · v−1

i p
is computed in the ring of Laurent poly-

nomials in v1, . . . , vn . (Since 0≤ ai j < `
j
i j

, the result lies in S(V ) when the corre-
sponding sum is nonempty.) The expression above is precisely that claimed in the
theorem. �

In case the ground field is C or R, by the above theorem, our map (9B)∗ is
precisely the map J of [Halbout 2001]. Halbout gave an explicit homotopy s
showing that J is a homotopy inverse to the canonical embedding of the de Rham
complex into the Hochschild complex. In contrast, we see immediately that (9B)∗

induces an isomorphism on homology since 9B is itself a chain map.
For comparison, we give the map on Hochschild cohomology HH

q
(S(V )); this

is simply the case g = 1 of Definition 3-4, by Theorem 5-1:
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Theorem 6-3. Let B = {v1, . . . , vn} be a basis of V . Then as an automorphism on
HH

q
(S(V )) at the chain level,

(9B)
∗(α)( f1⊗ · · ·⊗ f p)= f0

∂ f1

∂v j1
· · ·

∂ f p

∂v jp

,

when α = f0⊗ v
∗

j1 ∧ · · · ∧ v
∗

jp
∈ HomC(S(V )⊗

∧pV, S(V )), f0, . . . , f p ∈ S(V ).

Now we restrict our choice of field again to C. Let M = S(V )#G, and note that
Hochschild homology decomposes just as does Hochschild cohomology:

HH q(S(V )#G)∼= HH q(S(V ), S(V )#G)G ∼=
(⊕

g∈G

HH q(S(V ), S(V )g)
)G

(see [Farinati 2005; Ştefan 1995]). Thus one is interested in the components
HH q(S(V ), S(V )g) = TorS(V )eq (S(V ), S(V )g), for each g in G. A calculation
similar to that in the proof of Theorem 5-1 yields the explicit formula in the next
theorem for the induced map

(9B)∗ : S(V )g⊗ S(V )⊗
q
→ S(V )g⊗

∧q
(V ) .

Note that quantum differential operators surface (compare with Definition 3-4 of
ϒ , which is equal to 9∗B by Theorem 5-1). We have not found these maps in the
literature on Hochschild homology.

For g in G, let B = {v1, . . . , vn} be a basis of V consisting of eigenvectors of g
with corresponding eigenvalues ε1, . . . , εn . Write g= s1 · · · sn where siv j = v j for
j 6= i and sivi = εivi . Recall the quantum partial differential operators ∂i := ∂vi ,εi

of Definition (3-1).

Theorem 6-4. Let g ∈ G and let B = {v1, . . . , vn} be a basis of V consisting of
eigenvectors for g. Then as an automorphism on HH q(S(V ), S(V )g) at the chain
level,

(9B)∗( f0g⊗ f1⊗· · ·⊗ f p)=
∑

1≤i1<···<i p≤n

f0

( p∏
k=1

s1s2···sik−1 (∂ik fk)

)
g⊗vi1∧· · ·∧vi p

for all f0, f1, . . . , f p ∈ S(V ).

We make a few final comments about the appearance of our chain maps 9B in
Hochschild cohomology. Again let M = S(V )#G, and consider the map (9B)

∗ on
the Hochschild cohomology HH

q
(S(V ), S(V )#G) for any basis B of V . We ob-

served (as a consequence of Theorem 5-1 and Definition 3-4) that (9B)
∗ is given by

quantum partial differential operators. The reader should compare with maps given
in [Halbout and Tang 2010]: these authors define functions directly on cochain
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complexes (without first defining chain maps on resolutions) and then must prove
that these functions are cochain maps. Again, our approach presents an advantage:
We instead define one primitive chain map 9B from which induced cochain maps
effortlessly spring. For example, (9B)

∗
=ϒ is automatically a cochain map since

9B is a chain map by Theorem 4-4. The reader is cautioned that Halbout and Tang
[2010] work only over R, in which case Hochschild cohomology has a specialized
description (V and V ∗ are G-isomorphic in that setting, simplifying some aspects
of homology and cohomology).

Appendix: Proof of Theorem 4-4

Let V be a finite-dimensional vector space over any field. Fix a basis

B = {v1, . . . , vn}

of V . Recall Definition 4-1 of the linear map9=9B from the bar resolution (2-1)
to the Koszul resolution (2-4) of S(V ). We prove that 9 is a chain map, that is,
9p−1δp = dp9p for all p ≥ 1.

A straightforward but tedious calculation shows that 90δ1 = d191, and we as-
sume from now on that p ≥ 2.

We first compute

dp9p(1⊗ v`
1
⊗ · · ·⊗ v`

p
⊗ 1).

For each j ∈ N, let δ[ j] : N→ {0, 1} be the Kronecker delta function defined by

(δ[ j])i = δ[ j](i)=
{

1 if i = j
0 if i 6= j.

Then

dp9p(1⊗ v`
1
⊗ · · ·⊗ v`

p
⊗ 1)

= dp

( ∑
1≤i1<···<i p≤n

∑
0≤ai j<`

j
i j

vQ(`;i1,...,i p)⊗ v Q̂(`;i1,...,i p)⊗ vi1∧ · · · ∧ vi p

)

=

∑
1≤i1<···<i p≤n

∑
0≤ai j<`

j
i j

p∑
m=1

(−1)m+1
(
vQ+δ[im ]⊗ v Q̂

⊗ vi1∧ · · · ∧ v̂im∧ · · · ∧ vi p

−vQ
⊗v Q̂+δ[im ]⊗vi1∧· · ·∧v̂im∧· · ·∧vi p

)
,

where Q = Q(`; i1, . . . , i p) and Q̂ = Q̂(`; i1, . . . , i p) are determined by the ai j

as in Definition 4-1. Now fix m in the above expression. The factors vQ+δ[im ] and
vQ differ only in the power of vim . In the sum, the power aim ranges over the set
{0, . . . , `m

im
− 1}, and thus the corresponding terms cancel except for the first term
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when aim = `
m
im
−1 and the second term when aim = 0. After all such cancellations,

for each m = 1, . . . , p, what remains is

∑
1≤i1<···<i p≤n

p∑
m=1

∑
0≤ ai j<`

j
i j

(−1)m+1
(
vRm(`;i1,...,i p)⊗v R̂m

⊗vi1∧· · ·∧ v̂im∧· · ·∧vi p

−vSm(`;i1,...,i p)⊗v Ŝm
⊗vi1∧· · ·∧v̂im∧· · ·∧vi p

)
,

where the rightmost sum is over ai , . . . , âim , . . . , ai p and (abusing notation, as R, S
depend on fewer ai j’s than Q)

Rm(`; i1, . . . , i p)i =

{
`1

im
+ · · ·+ `m

im
if i = im,

Q(`; i1, . . . , i p)i if i 6= im,

Sm(`; i1, . . . , i p)i =

{
`1

im
+ · · ·+ `m−1

im
if i = im,

Q(`; i1, . . . , i p)i if i 6= im,

and R̂m, Ŝm are defined by the equations

vRm(`;i1,...,i p)v R̂m(`;i1,...,i p)vi1 · · · v̂im · · · vi p = v
`1
· · · v`

p
,

vSm(`;i1,...,i p)v Ŝm(`;i1,...,i p)vi1 · · · v̂im · · · vi p = v
`1
· · · v`

p
.

Consider the leftmost sum over 1≤ i1 < · · ·< i p ≤ n. If we replace a given im

in Sm by im + 1 in Rm (provided im + 1< im+1), keeping the others fixed, then

Sm(`; i1, . . . , i p)= Rm(`; i1, . . . , im−1, im + 1, im+1, . . . , i p).

We thus have further cancellation, with the remaining terms coming from the first
summand when im = im−1+ 1 and the second summand when im = im+1− 1:

p∑
m=1

∑
1≤i1<···<ı̂m<···<i p≤n

∑
0≤ai j<`

j
i j

(−1)m+1

(
vRm(`;i1,...,im−1,im−1+1,im+1,...,i p)⊗ v R̂m

⊗ vi1∧ · · · ∧ v̂im∧ · · · ∧ vi p

− vSm(`;i1,...,im−1,im+1−1,im+1,...,i p)⊗ v Ŝm
⊗ vi1∧ · · · ∧ v̂im∧ · · · ∧ vi p

)
,

where the rightmost sum is over all such ai1, . . . , âim , . . . , ai p .
Now consider the middle sum above ranging over all 1≤ i1 < · · ·< ı̂m < · · ·<

i p ≤ n. If m = 1, this sum does not include i2 = 1, due to the left out entry ı̂m .
Similarly, if m = p, this sum does not include i p−1 = n. For the sake of later
comparison, we add and subtract terms in the m = 1 summand, corresponding to
i2 = 1, and in the m = p summand, corresponding to i p−1 = n. These added and
subtracted terms may be written with either notation, R or S, so that the result
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looks the same as above except that now we include summands corresponding to
m = 1, i2 = 1 and to m = p, i p−1 = n.

We next combine some of the terms. Consider the terms arising from a pair of
subsequent indices m and m+1 in the leftmost sum. We pair each summand of type
Sm with a summand of type Rm+1. Fix an integer i and collect those summands
(in the m-th sum) with Sm-exponent for which im+1 = i and those summands (in
the (m + 1)-st sum) with Rm+1-exponent for which im = i . Note that all these
summands share the same sign. We compare the exponents

Sm(`; i1, . . . , im−1, im+1− 1, im+1, . . . , i p)

and

Rm+1(`; i1, . . . , im, im + 1, im+2, . . . , i p)

when im = i = im+1 and see that the power of vi ranges from `1
i + · · · + `

m−1
i to

`1
i + · · · + `

m−1
i + `m

i − 1 and then again from `1
i + · · · + `

m−1
i + `m

i to `1
i + · · · +

`m
i +`

m+1
i −1 in this collection. Hence, we can simply rewrite the partial sum over

this collection using the exponent

Q(`1, . . . , `m−1, `m
+ `m+1, `m+2, . . . , `p

; i1, . . . , ı̂m+1, . . . , i p)

instead. We obtain the following, in which the m = 1 (unmatched R1) and m = p
(unmatched S p) sums have been singled out:∑
1≤i2<···<i p≤n

∑
0≤ ai j<`

j
i j

(for j∈{2,...,p})

vQ(`2,··· ,`p
;i2,··· ,i p)+`

1
⊗ v Q̂

⊗ vi2∧ · · · ∧ vi p

+

p−1∑
m=1

(−1)m
∑

1≤i1<···<ı̂m<···<i p≤n

∑
0≤ ai j<`

j
i j
(for j∈{1,...,m−1})

0≤ aim+1≤ `
m
im+1
+`m+1

im+1
−1

0≤ ai j<`
j+1
i j

(for j∈{m+2,...,p})

vQ(`1,...,`m−1,`m
+`m+1,`m+2,...,`p

;i1,...,ı̂m ,...,i p)⊗ v Q̂
⊗ vi1∧ · · · ∧ v̂m ∧ · · · ∧ vi p

+ (−1)p
∑

1≤i1<···
<i p−1≤n

∑
0≤ ai j<`

j
i j

(for j∈{1,...,p−1})

vQ(`1,··· ,`p−1
;i2,··· ,i p−1)⊗ v Q̂+`p

⊗ vi1∧ · · · ∧ vi p−1 .

Now relabel indices so that each sum is taken over 1≤ i1 < · · ·< i p−1 ≤ n. We
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obtain∑
1≤i1<···<i p−1≤n

∑
0≤ ai j<`

j
i j

vQ(`2,··· ,`p
;i1,··· ,i p−1)+`

1
⊗ v Q̂

⊗ vi1∧ · · · ∧ vi p−1

+

p−1∑
m=1

(−1)m
∑

1≤i1<···<i p−1≤n

∑
0≤ ai j<`

j
i j
(for j∈{1,...,m−1})

0≤ aim≤ `
m
im+`

m+1
im −1

0≤ ai j<`
j+1
i j

(for j∈{m+1,...,p})

vQ(`1,...,`m−1,`m
+`m+1,`m+2,...,`p

;i1,...,i p−1)⊗ v Q̂
⊗ vi1∧ · · · ∧ vi p−1

+ (−1)p
∑

1≤i1<···<i p−1≤n

∑
0≤ ai j<`

j
i j

vQ(`1,··· ,`p−1
;i2,··· ,i p−1)⊗ v Q̂+`p

⊗ vi1∧ · · · ∧ vi p−1

= 9p−1(δp(1⊗ v`
1
⊗ · · ·⊗ v`

p
⊗ 1)).

This finishes the proof of Theorem 4-4.
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