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Let G be a connected linear algebraic group over a field k. We say that G is
toric-friendly if for any field extension K/k and any maximal K -torus T in G the
group G(K ) acts transitively on (G/T )(K ). Our main result is a classification
of semisimple (and under certain assumptions on k, of connected) toric-friendly
groups.

Introduction

Let k be a field and X be a homogeneous space of a connected linear algebraic
group G defined over k. The first question one usually asks about X is whether or
not it has a k-point. If the answer is “yes”, then one often wants to know whether
or not the set X (k) of k-points of X forms a single orbit under the group G(k).

In this paper we shall focus on the case where the geometric stabilizers for
the G-action on X are maximal tori of Gk := G ×k k (here k stands for a fixed
algebraic closure of k). Such homogeneous spaces arise, in particular, in the study
of the adjoint action of a connected reductive group G on its Lie algebra or of the
conjugation action of G on itself; see [Colliot-Thélène et al. 2011]. It is shown
in Corollary 4.6 of the same reference (see also [Kottwitz 1982, Lemma 2.1]) that
every homogeneous space X of this type has a k-point, assuming that G is split and
char(k)= 0. Therefore it is natural to ask if this point is unique up to translations
by G(k).

Definition 0.1. Let k be a field. We say that a connected linear k-group G is
toric-friendly if for every field extension K/k the following condition is satisfied:

(∗) For every maximal K -torus T of G K :=G×k K , the group G(K ) has only one
orbit in (G K /T )(K ); equivalently, the natural map π :G(K )→ (G K /T )(K )
is surjective.
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Examining the cohomology exact sequence associated to the K -subgroup T of
G K [Serre 1994, I.5.4, Proposition 36], we see that G is toric-friendly if and only if
ker[H 1(K , T )→ H 1(K ,G)]=1 for every field extension K/k and every maximal
K -torus T of G K .

Observe that G is toric-friendly if and only if condition (∗) of Definition 0.1 is
satisfied for all finitely generated extensions K/k.

We are interested in classifying toric-friendly groups. In Section 1 we partially
reduce this problem to the case where the group is semisimple. The rest of this pa-
per will be devoted to proving the following classification theorem for semisimple
toric-friendly groups.

Main Theorem 0.2. Let k be a field. A connected semisimple k-group G is toric-
friendly if and only if G is isomorphic to a direct product

∏
i RFi/k G ′i , where each

Fi is a finite separable extension of k and each G ′i is an inner form of PGL ni ,Fi for
some integer ni .

Notation. Unless otherwise specified, k will denote an arbitrary field. For any field
K we denote by Ks a separable closure of K .

By a k-group we mean an affine algebraic group scheme over k, not necessarily
smooth or connected. However, when talking of a reductive or semisimple k-group,
we implicitly assume smoothness and connectedness.

Let S be a k-group. We denote by H i (k, S) the i-th flat cohomology set for
i = 0, 1 [Waterhouse 1979, 17.6]. If S is abelian, we denote by H i (k, S) the
i-th flat cohomology group for i ≥ 0 [Berhuy et al. 2007, Appendix B]. There
are exact sequences for flat cohomology similar to those for Galois cohomology,
[Waterhouse 1979, 18.1; Berhuy et al. 2007, Appendix B]. When S is smooth, the
flat cohomology H i (k, S) can be identified with Galois cohomology.

1. First reductions

Lemma 1.1. Let 1 → U → G
ϕ
−−→ G ′ → 1 be an exact sequence of smooth

connected k-groups, where U is unipotent. We assume that U is k-split, that is, has
a composition series over k whose successive quotients are isomorphic to Ga,k .
Then G is toric-friendly if and only if G ′ is toric-friendly.

Proof. Choose a field extension K/k and a maximal K -torus T ⊂ G K . Set T ′ =
ϕ(T ) ⊂ G ′K , then T ′ is a maximal torus of G ′K . The map ϕT

: T → T ′ is an
isomorphism, because T ∩UK = 1 (as UK is unipotent). Conversely, let us start
from a maximal torus T ′ of G ′K . The preimage

H = ϕ−1(T ′)⊂ G K
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of T ′ is smooth and connected, so any maximal torus T of H maps isomorphically
onto T ′ and therefore it is maximal in G K .

Now we have a commutative diagram

H 1(K , T ) //

ϕT
∗

��

H 1(K ,G)

ϕ∗

��
H 1(K , T ′) // H 1(K ,G ′)

Since ϕT
: T → T ′ is an isomorphism of tori, the left vertical arrow ϕT

∗
is an

isomorphism of abelian groups. On the other hand, by [Sansuc 1981, Lemma 1.13],
the right vertical arrow ϕ∗ is a bijective map. We see that the top horizontal arrow
in the diagram is injective if and only if the bottom horizontal arrow is injective,
which proves the lemma. �

Let k be a perfect field and G be a connected k-group. Recall that over a perfect
field the unipotent radical of G makes sense; that is, the “geometric” unipotent
radical over an algebraic closure is defined over k, by Galois descent. We denote
the unipotent radical of G by Ru(G).

Corollary 1.2. Let k be a perfect field, G be a connected k-group, and Ru(G) be
its unipotent radical. Then G is toric-friendly if and only if the associated reductive
k-group G/Ru(G) is toric-friendly.

Proof. Since k is perfect, the smooth connected unipotent k-group Ru(G) is k-split
[Borel 1991, Theorem 15.4], and the corollary follows from Lemma 1.1. �

Let k be a field. We recall that a k-group G is called special if H 1(K ,G) = 1
for every field extension K/k. This notion was introduced by J.-P. Serre [1958].
Semisimple special groups over an algebraically closed field were classified by
A. Grothendieck [1958]; we shall use his classification later on.

Recall that a k-torus T is called quasitrivial, if its character group X(T ) is a per-
mutation Galois module. Split tori and, more general, quasitrivial tori are special.

Proposition 1.3. Let 1→C→G
ϕ
−−→G ′→ 1 be an exact sequence of k-groups,

where G and G ′ are reductive, and C ⊂ G is central, hence of multiplicative type
(not necessarily connected or smooth).

(a) If G is toric-friendly, so is G ′.

(b) If C is a special k-torus, then G is toric-friendly if and only if G ′ is toric-
friendly.

Proof. Let K/k be a field extension. The map T 7→ T ′ := ϕ(T ) is a bijection
between the set of maximal K -tori T ⊂G K and the set of maximal K -tori T ′⊂G ′K
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(the inverse map is T ′ 7→ T := ϕ−1(T ′)). For such T and T ′ = ϕ(T ) we have
commutative diagrams

G K
ϕ //

π

��

G ′K

π ′

��

G(K )
ϕ //

π

��

G ′(K )

π ′

��
G K /T

ϕ∗

∼=

// G ′K /T ′ (G K /T )(K )
ϕ∗

∼=

// (G ′K /T ′)(K )

where ϕ∗ : G K /T
∼
→ G ′K /T ′ is an isomorphism of K -varieties, and the induced

map on K -points ϕ∗ : (G K /T )(K )→ (G ′K /T ′)(K ) is a bijection. Now, if G is
toric-friendly, then the map π :G(K )→ (G K /T )(K ) is surjective, and we see from
the right-hand diagram that then the map π ′ : G ′(K )→ (G ′K /T ′)(K ) is surjective
as well. This shows that G ′ is toric-friendly, thus proving (a).

To prove (b), assume that G ′ is toric-friendly and C is a special k-torus. Then
the map π ′ :G ′(K )→ (G ′K /T ′)(K ) is surjective (because G ′ is toric-friendly) and
the map ϕ : G(K )→ G ′(K ) is surjective (because C is special). We see from the
right-hand diagram that the map π : G(K )→ (G K /T )(K ) is surjective as well.
Hence G is toric-friendly. �

We record the following immediate corollary of Proposition 1.3(b).

Corollary 1.4. Let G be a reductive k-group. Suppose that the radical R(G) is a
special k-torus (in particular, this condition is satisfied if R(G) is a quasitrivial
k-torus). Then G is toric-friendly if and only if the semisimple group G/R(G) is
toric-friendly. �

The next result follows from Corollaries 1.2 and 1.4. It partially reduces the
problem of classifying toric-friendly groups G to the case where G is semisimple.

Corollary 1.5. Let k be a perfect field. Let G be a connected k-group containing
a split maximal torus. Then G is toric-friendly if and only if the semisimple group
G/R(G) is toric-friendly. �

The following two lemmas will be used to reduce the problem of classifying
adjoint semisimple toric-friendly groups G to the case where G is an absolutely
simple adjoint k-group.

Lemma 1.6. A direct product G=G ′×k G ′′ of connected k-groups is toric-friendly
if and only if both G ′ and G ′′ are toric-friendly.

Proof. Let K/k be a field extension. Let T ′ ⊂ G ′K and T ′′ ⊂ G ′′K be maximal K -
tori, then T := T ′×K T ′′ ⊂G K is a maximal K -torus, and every maximal K -torus
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in G K is of this form. The commutative diagram

G(K )

��

G ′(K )×G ′′(K )

��
(G K /T )(K ) (G ′K /T ′)(K )× (G ′′K /T ′′)(K )

shows that every K -point of G K /T lifts to G if and only if every K -point of G ′K /T ′

lifts to G ′ and every K -point of G ′′K /T ′′ lifts to G ′′. �

Lemma 1.7. Let l/k be a finite separable field extension, G ′ a connected l-group,
and G = Rl/k G ′. Then G is toric-friendly if and only if G ′ is toric-friendly.

Proof. Let K/k be a field extension. Then l ⊗k K = L1× · · · × Lr , where L i are
finite separable extensions of K . It follows that G K =

∏
i RL i/K G ′L i

. Let T ⊂G K

be a maximal K -torus, then T =
∏

i RL i/K T ′i , where T ′i is a maximal L i -torus of
G ′L i

for each i . We have

G(K )= G K (K )=
(∏

i

RL i/K G ′L i

)
(K )=

∏
i

G ′L i
(L i )=

∏
i

G ′(L i )

and similarly (G K /T )(K )=
∏

i (G
′

L i
/T ′i )(L i ), yielding a commutative diagram

G(K )

��

∏
i G ′(L i )

��
(G K /T )(K )

∏
i (G
′

L i
/T ′i )(L i )

If G ′ is toric-friendly, then the right vertical arrow in the diagram is surjective,
hence the left vertical arrow is surjective and G is toric-friendly.

Conversely, assume that G is toric-friendly. Let L/ l be a field extension and
T ′ ⊂ G ′L a maximal L-torus. Set K := L and T := T ′ in the diagram above. Then
we can identify L with one of L i in the decomposition l⊗k K = L1×· · ·× Lr , say
with L1. In this way we identify G ′L with G ′L1

and G ′L/T ′ with G ′L1
/T ′1. Since G

is toric-friendly, the left vertical arrow in the diagram is surjective, hence the right
vertical arrow is also surjective. This means that the map G ′(L i )→ (G ′L i

/T ′i )(L i )

is surjective for each i and in particular, for i = 1. Consequently, the map G ′(L)→
(G ′L/T ′)(L) is surjective, and G ′ is toric-friendly, as desired. �

2. The elementary obstruction

2.1. Let K be a field and X be a smooth geometrically integral K -variety. Write
g=Gal(Ks/K ), where Ks is a fixed separable closure of K . Recall from [Colliot-
Thélène and Sansuc 1987, Definition 2.2.1] that the elementary obstruction ob(X)
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is the class in Ext1g(Ks(X)∗/K ∗s , K ∗s ) of the extension

1→ K ∗s → Ks(X)∗→ Ks(X)∗/K ∗s → 1.

In particular, ob(X)= 0 if and only if this extension of g-modules splits. If X has a
K -point, then ob(X)= 0 [Colliot-Thélène and Sansuc 1987, Proposition 2.2.2(a)].
Conversely, if Y is a T -torsor over K for some K -torus T , and ob(Y )= 0, then Y
has a K -point, by Lemma 2.1(iv) of [Borovoi et al. 2008]. However, if X is an H -
torsor over K for some simply connected semisimple K -group H , then ob(X)= 0
even when X has no K -points; see Lemma 2.2(viii) of that same reference. (The
standing assumption in [Borovoi et al. 2008] is that char(K ) = 0; however, the
proofs of Lemmas 2.1(iv) and 2.2(viii) go through in arbitrary characteristic.)

The following key lemma was suggested to us by J.-L. Colliot-Thélène.

Lemma 2.2. Let K be a field, T be a K -torus, H be a simply connected semisimple
K -group, X be a H-torsor over K and Y be a T -torsor over K . If Y has an F-point
over the function field F = K (X) of X , then Y has a K -point.

Proof. Since H is simply connected, ob(X) = 0; see Section 2.1 above. Suppose
Y has an F-point. This means that there exist a K -rational map X 99K Y . By
[Wittenberg 2008, Lemma 3.1.2], if we have a K -rational map X 99K Y between
smooth geometrically integral K -varieties, then ob(X) = 0 implies ob(Y ) = 0.
Since T is a K -torus, if ob(Y ) = 0, then Y (K ) 6= ∅; see Section 2.1 above. Thus
in our situation Y has a K -point, as claimed. �

Lemma 2.3. Let k be a field. Assume we have a commutative diagram of k-groups

S

��

// T

��
H // G

where G is a smooth connected k-group, the vertical map T → G is the inclusion
of a maximal k-torus T into G, and H is semisimple and simply connected. If there
exists a field extension K/k such that the map

H 1(K , S)→ H 1(K , T )

is nontrivial, then G is not toric-friendly.

Proof. Choose K and s ∈ H 1(K , S) such that the image t ∈ H 1(K , T ) of s in
H 1(K , T ) is nontrivial. Let h ∈ H 1(K , H) be the image of s ∈ H 1(K , S) in
H 1(K , H), and let g ∈ H 1(K ,G) be the image of t (and of h) in H 1(K ,G), as
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shown in the commutative diagram below:

H 1(K , S)

��

// H 1(K , T )

��

s //

��

t

��

H 1(K , H) // H 1(K ,G) h // g

Let X be an H -torsor over K representing h and let F = K (X) be the function field
of X . We denote by hF the image of h in H 1(F, H), and similarly we define sF ,
tF , and gF . Clearly X has an F-point, hence hF = 1 in H 1(F, H) and therefore
gF = 1 in H 1(F,G). On the other hand, by Lemma 2.2, tF 6= 1. We conclude that
the kernel of the natural map H 1(F, T )→ H 1(F,G) contains tF 6= 1 and hence,
is nontrivial. This implies that G is not toric-friendly. �

2.4. Let G be a reductive k-group. Let Gss be the derived group of G (it is
semisimple), and let Gsc be the universal cover of Gss (it is semisimple and simply
connected). Consider the composed homomorphism f : Gsc� Gss ↪→ G.

Let K/k be a field extension. There is a canonical bijective correspondence
T ↔ T sc between the set of maximal K -tori T ⊂ G K and the set of maximal K -
tori T sc

⊂ Gsc. Starting from a maximal K -torus T ⊂ G K , we define a maximal
K -torus T sc

:= f −1(T ) ⊂ Gsc
K . Conversely, starting from a maximal K -torus

T sc
⊂Gsc

K , we define a maximal K -torus T := f (T sc) ·R(G)K ⊂G K , where R(G)
is the radical of G.

Proposition 2.5. Let G be a reductive k-group. Let Gsc and f : Gsc
→ G be as in

Section 2.4 above. Let K/k be a field extension, T ⊂ G K be a maximal K -torus
of G K , and set T sc

= f −1(T ) ⊂ Gsc
K as above. If the natural map H 1(K , T sc)→

H 1(K , T ) is nontrivial, then G is not toric-friendly.

Proof. Immediate from Lemma 2.3. �

Proposition 2.6. Let G be a semisimple k-group, f : Gsc
→ G be the universal

covering and C := ker( f ). Then the following conditions are equivalent:

(a) G is toric-friendly.

(b) The map H 1(K , T sc)→ H 1(K , T ) is trivial (identically zero) for every field
extension K/k and every maximal K -torus T sc of Gsc. Here T := f (T sc).

(c) The map H 1(K ,C)→ H 1(K , T sc) is surjective for every field extension K/k
and every maximal K -torus T sc of Gsc.

(d) The connecting homomorphism ∂T : H 1(K , T )→ H 2(K ,C) is injective for
every field extension K/k and every maximal K -torus T of G.

(e) The natural map H 1(K , T )→ H 1(K ,G) is injective for every field extension
K/k and every maximal K -torus T of G.



368 Mikhail Borovoi and Zinovy Reichstein

Proof. (a)⇒ (b) by Proposition 2.5. Examining the cohomology sequence

H 1(K ,C)→ H 1(K , T sc)→ H 1(K , T )→ H 2(K ,C)

associated to the exact sequence 1→C→ T sc
→ T → 1 of k-groups, we see that

(b), (c) and (d) are equivalent.
(d)⇒ (e): The diagram

1 // C // T sc //
_�

��

T //
_�

��

1

1 // C // Gsc // G // 1

of K -groups induces compatible connecting morphisms

H 1(K , T )

��

∂T

&&
H 2(K ,C)

H 1(K ,G)

∂G
88

Suppose α, β ∈ H 1(K , T ) map to the same element in H 1(K ,G). Then the di-
agram above shows that ∂T (α) = ∂T (β) in H 2(K ,C). Part (d) now tells us that
α = β.

(e)⇒ (a) is obvious, since (a) is equivalent to the assertion that H 1(K , T )→
H 1(K ,G) has trivial kernel for every K and T ; see Definition 0.1. �

Corollary 2.7. With the assumptions and notation of Proposition 2.6, if G is toric-
friendly and quasisplit, then

(a) the map H 1(K ,Gsc)→ H 1(K ,G) is trivial for every K/k,

(b) the map H 1(K ,C)→ H 1(K ,Gsc) is surjective for every K/k,

(c) the connecting map ∂G : H 1(K ,G)→ H 2(K ,C) has trivial kernel for every
K/k.

Proof. Examining the cohomology sequence

H 1(K ,C)→ H 1(K ,Gsc)→ H 1(K ,G)→ H 2(K ,C)

associated to the exact sequence 1→C→ Gsc
→ G→ 1, we see that (a), (b) and

(c) are equivalent.
To prove (a), recall that since G K is quasisplit, by a theorem of Steinberg [1965,

Theorem 1.8] every x sc
∈ H 1(K ,Gsc) lies in the image of the map H 1(K , T sc)→
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H 1(K ,Gsc) for some maximal K -torus T sc of Gsc
K . Since G is toric-friendly, by

Proposition 2.6 the map H 1(K , T sc) → H 1(K , T ) is trivial. The commutative
diagram

H 1(K , T sc)

��

// H 1(K , T )

��
H 1(K ,Gsc) // H 1(K ,G)

now shows that the image of x sc in H 1(K ,G) is 1. Thus the map H 1(K ,Gsc)→

H 1(K ,G) is trivial. �

Theorem 2.8. Let G be a split semisimple k-group and f :Gsc
→G be its universal

covering map. If G is toric-friendly, then Gsc is special.

Proof. Let T sc be a split maximal torus of Gsc. Recall that T sc is special (as is any
split torus). Set C = ker f , then C ⊂ T sc. For any field extension K/k, the map
H 1(K ,C)→ H 1(K ,Gsc) factors through H 1(K , T sc)= 1 and hence is trivial. By
Corollary 2.7(b) this map is also surjective. This shows that H 1(K ,Gsc) = 1 for
every K/k, that is, Gsc is special. �

Remark 2.9. Our proof of Theorem 2.8 goes through for any (not necessarily split)
semisimple k-group G, as long as Gsc contains a special maximal k-torus T sc. In
particular, Theorem 2.8 remains valid for any quasisplit semisimple k-group G,
in view of Lemma 2.10 below. This lemma is a special case of [Colliot-Thélène
et al. 2004, Lemma 5.6]; however, for the sake of completeness we supply a short
self-contained proof.

Lemma 2.10. Let G be a semisimple, simply connected, quasisplit k-group over a
field k. Let B ⊂ G be a Borel subgroup defined over k, and let T ⊂ B ⊂ G be a
maximal k-torus of G contained in B. Then T is a quasitrivial k-torus.

Proof. We write k for a fixed algebraic closure of k. Let X∨(T ) denote the group
of cocharacters of T . Let R∨ = R∨(Gk, Tk) ⊂ X∨(T ) denote the coroot system
of Gk with respect to Tk , and let 5∨ ⊂ R∨ denote the basis of R∨ corresponding
to B. The Galois group Gal(ks/k) acts on X∨(T ). Since T , G, and B are defined
over k, the subsets R∨ and 5∨ of X∨(T ) are invariant under this action. Since
G is simply connected, 5∨ is a Z-basis of X∨(T ). Thus Gal(ks/k) permutes the
Z-basis 5∨ of X∨(T ); in other words, T is a quasitrivial torus. �

Remark 2.11. A similar assertion for adjoint quasisplit groups was proved by G.
Prasad [1989, Proof of Lemma 2.0].

3. Examples in type A

Let k be a field and A a central simple k-algebra of dimension n2. We write GL1,A

for the k-group with GL1,A(R)= (A⊗k R)∗ for any unital commutative k-algebra
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R (here ( )∗ denotes the group of invertible elements). The k-group GL1,A is an
inner form of GL n,k .

Let K be a field. Recall that an n-dimensional commutative étale K -algebra is
a finite product E =

∏
i L i , where each L i is a finite separable field extension of

K and
∑

i [L i : K ] = n. For such E =
∏

i L i we define a K -torus RE/K Gm,E :=∏
i RL i/K Gm,L i , then (RE/K Gm,E)(K ) = E∗. Clearly the K -torus RE/K Gm,E is

quasitrivial.

Proposition 3.1. Let k be a field, and let A/k be a central simple k-algebra of
dimension n2.

(a) The k-group G = GL1,A is toric-friendly.

(b) The k-group PGL1,A := GL1,A/Gm,k is toric-friendly.

(c) In particular, GL n,k and PGL n,k are toric-friendly.

Proof. (a) Let K/k be a field extension and let

T ⊂ G K = GL1,A⊗kK

be a maximal K -torus. Let E be the centralizer of T in A⊗kK . An easy calculation
over a separable closure Ks of K shows that E is an n-dimensional commutative
étale K -subalgebra of A ⊗k K and that T = RE/K Gm,E . It follows that T is
quasitrivial, hence special. Since all maximal K -tori T ⊂ G K are special, G is
toric-friendly.

(b) follows from (a) and Corollary 1.4. To deduce (c) from (a) and (b), set
A = Mn(k) (the matrix algebra). �

We now come to the main result of this section, which asserts that a toric-friendly
semisimple groups of type A is necessarily an adjoint group.

Proposition 3.2. Let k be a field. Consider a k-group G = (SL n1×· · ·×SL nr )/C ,
where C ⊂µ :=µn1×· · ·×µnr is a central subgroup of Gsc

= SL n1×· · ·×SL nr ,
not necessarily smooth. If C 6= µ, then G is not toric-friendly.

Before proceeding with the proof, we fix some notation. Let L/K be a finite
separable field extension of degree n. Set

R1
L/K (Gm) := ker[NL/K : RL/K Gm,L → Gm,K ],

where NL/K is the norm map. Clearly R1
L/K (Gm) can be embedded into SL n,K

as a maximal K -torus. The embedding K ↪→ L induces an embedding µn,K ↪→

R1
L/K Gm , where n = [L : K ].
The following two lemmas are undoubtedly known. We include short proofs

below because we have not been able to find appropriate references.
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Lemma 3.3. There is a commutative diagram

K ∗/K ∗n
∼= //

��

H 1(K , µn)

��
K ∗/NL/K (L∗)

∼= // H 1(K , R1
L/K Gm)

(1)

where the horizontal arrows are canonical isomorphisms, the right vertical arrow
is induced by the embedding µn ↪→ R1

L/K Gm , and the left vertical arrow is the
natural projection.

Proof. Apply the flat cohomology functor to the commutative diagram of commu-
tative K -groups

1 // µn,K //
_�

��

Gm,K
n //

_�

��

Gm,K //

id
��

1

1 // R1
L/K Gm // RL/K Gm

NL/K // Gm,K // 1

and use Hilbert’s Theorem 90. �

Lemma 3.4. Suppose r | n. Then there is a commutative diagram

K ∗/K ∗n
∼= //

��

H 1(K , µn)

(n/r)∗
��

K ∗/K ∗r
∼= // H 1(K , µr ) ,

where the horizontal arrows are canonical isomorphisms, the right vertical arrow
is induced by the homomorphismµn

n/r
−−→µr given by x 7→ xn/r , and the left vertical

arrow is the natural projection.

Proof. Similar to that of Lemma 3.3, using the commutative diagram

1 // µn //

n/r
��

Gm
n //

n/r

��

Gm //

id

��

1

1 // µr // Gm
r // Gm // 1 �

Example 3.5. The group G = SL n,k (n ≥ 2) is not toric-friendly.

Proof. Since SL n is special, it suffices to construct an extension K/k and a max-
imal K -torus T := R1

L/K (Gm) such that H 1(K , T ) 6= 1. In view of Lemma 3.3 it
suffices to show that NL/K (L∗) 6= K ∗ for some field extension K/k and some finite
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separable field extension L/K of degree n. This is well known; see for example
the proof of [Rowen 1980, Proposition 3.1.46]. We include a short proof below
as a way of motivating a related but more complicated argument at the end of the
proof of Proposition 3.2.

Let L := k(x1, . . . , xn), where x1, . . . , xn are independent variables, and K :=
L0, where 0 is the cyclic group of order n that acts on L by cyclically permuting
x1, . . . , xn . For 0 6= a ∈ k[x1, . . . , xn], let deg(a) ∈ N denote the degree of a as a
polynomial in x1, . . . , xn . If a ∈ k(x1, . . . , xn) is of the form a= b/c with nonzero
b, c ∈ k[x1, . . . , xn], then we define deg(a) = deg(b) − deg(c). This yields the
usual degree homomorphism deg : L∗→ Z. Since NL/K (a)=

∏
γ∈0 γ (a), we see

that deg(NL/K (a)) = n deg(a) is divisible by n, for every a ∈ L∗. On the other
hand, s1 = x1 + · · · + xn ∈ K has degree 1. This shows that NL/K (L∗) 6= K ∗, as
claimed. �

3.6. Proof of Proposition 3.2. Let K/k be a field extension. For each i=1, . . . , r ,
let L i be a separable field extension of degree ni over K , and let T =T1×· · ·×Tr be
a maximal K -torus of Gsc, where Ti := R1

L i/K (Gm). By Proposition 2.6 it suffices
to show that the composition

H 1(K ,C)→ H 1(K , µ)→ H 1(K , T ) (2)

is not surjective for some choice of extensions K/k and L i/Ki . Since C $µ, there
exist a prime p and a nontrivial character χ : µ→ µp such that χ(C) = 1. By
Proposition 1.3(a) we may assume that C = ker( χ). For notational simplicity, let
us suppose that n1, . . . , ns are divisible by p and ns+1, . . . , nr are not, for some
0≤ s ≤ r . Then it is easy to see that χ is of the form

χ(c1, . . . , cr )= cd1n1/p
1 · · · c dsns/p

s

for some integers d1, . . . , ds . Since χ is nontrivial on µ, we have s ≥ 1 and di is
not divisible by p for some i = 1, . . . , s, say for i = 1. That is, we may assume
that d1 is not divisible by p.

Lemma 3.3 gives a concrete description of the second map in (2). To determine
the image of the map H 1(K ,C)→ H 1(K , µ), we examine the cohomology exact
sequence

H 1(K ,C) // H 1(K , µ)
χ∗ // H 1(K , µp)

∏r
i=1 K ∗/K ∗ni

χ∗ // K/K ∗p

induced by the exact sequence 1→ C→ µ
χ
−→ µp→ 1. The image of H 1(K ,C)

in H 1(K , µ) is the kernel of χ∗. By Lemma 3.4, χ∗ maps the class of (a1, . . . , ar )
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in H 1(K , µ)=
∏r

i=1 K ∗/K ∗ni to the class of ad1
1 · · · a

ds
s in H 1(K , µp)= K/K ∗p.

In other words, the image of H 1(K ,C) in H 1(K , µ) is the subgroup of classes of
r -tuples (a1, . . . , ar ) in H 1(K , µ) =

∏r
i=1 K ∗/K ∗ni such that ad1

1 . . . ads
s ∈ K ∗p.

Hence, the image of H 1(K ,C) in H 1(K , T ) =
∏r

i=1 K ∗/NL i/K (L∗i ) consists of
classes of r -tuples (a1, . . . , ar ) such that ad1

1 . . . ads
s ∈ K ∗p.

It remains to construct a field extension K/k, separable field extensions L i/K of
degree ni for i = 1, . . . , r , and an element α ∈ H 1(K , T )=

∏r
i=1 K ∗/NL i/K (L∗i ),

which cannot be represented by (a1, . . . , ar ) ∈ (K ∗)r such that ad1
1 · · · a

ds
s ∈ K ∗p.

This will show that the map H 1(K ,C)→ H 1(K , T ) is not surjective, as claimed.
Set L := k(x1, . . . , xn), where n = n1 + · · · + nr and x1, . . . , xn are indepen-

dent variables. The symmetric group Sn acts on L by permuting these variables;
we embed Sn1 × · · · × Snr into Sn in the natural way, by letting Sn1 permute the
first n1 variables, Sn2 permute the next n2 variables, etc. Set K := L Sn1×···×Snr ,
s1 := x1+ · · ·+ xn ∈ K and

L1 := K (x1), L 2 := K (xn1+1), . . . Lr := K (xn1+···+nr−1+1) .

Clearly [L i : K ] = ni . We claim the class of (s1, 1, . . . , 1) in
∏r

i=1K ∗/NL i/K (L∗i )
cannot be represented by any (a1, . . . , ar ) ∈ (K ∗)r with ad1

1 · · · a
ds
s ∈ K ∗p.

Let deg : L∗ → Z be the degree map, as in Example 3.5. Arguing as we did
there, we see that deg(NL i/K (a)) is divisible by ni for every i = 1, . . . , r and every
a ∈ L∗i . In particular, (a1, . . . , ar ) 7→ deg(ai ) + ni Z is a well-defined function∏r

i=1 K ∗/NL i/K (L∗i )→ Z/ni Z, and consequently,

f (a1, . . . , an) := d1 deg(a1)+ · · ·+ ds deg(as)+ pZ

is a well-defined function H 1(K , T )→ Z/pZ. We have

f (a1, . . . , an)= deg(ad1
1 · · · a

ds
s ).

If ad1
1 · · · a

ds
s ∈ K ∗p, then f (a1, . . . , ar ) = 0 in Z/pZ. On the other hand, since

deg(1)=0, deg(s1)=1 and d1 is not divisible by p, we conclude that f (s1,1, . . . ,1)
is nonzero in Z/pZ. This proves the claim and the proposition. �

4. Groups of type Cn and outer forms of An

Proposition 4.1. No absolutely simple k-group of type Cn (n ≥ 2) is toric-friendly.

Proof. Clearly we may assume that k is algebraically closed. We may also assume
that G is adjoint, see Proposition 1.3(a). We see that G=PSp2n and Gsc

=Sp2n . By
Example 3.5, SL 2 is not toric-friendly. This means that there exist a field extension
K/k, a maximal K -torus S⊂ SL 2,K , and a cohomology class aS ∈ H 1(K , S) such
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that aS 6= 1. We consider the standard embedding

(SL 2)
n
= (Sp2)

n ↪→ Sp2n, n ≥ 2.

Set T sc
= Sn

⊂ (Sp2)
n
⊂ Sp2n = Gsc. Let ι : S ↪→ T sc

= Sn be the embedding
as the first factor. Set asc

= ι∗(aS) ∈ H 1(K , T sc). Let T be the image of T sc in
G = PSp2n , and let a be the image of asc in H 1(K , T ).

Now observe that the homomorphism

χ : T sc
= Sn

→ S, (x1, . . . , xn) 7→ x1x−1
2 ,

factors through T (recall that n ≥ 2). Since χ ◦ ι= idS , we see that a 6= 1. On the
other hand, the image of asc in H 1(K ,Gsc) is 1 (because Gsc

= Sp2n is special),
hence a ∈ ker[H 1(K , T )→ H 1(K ,G)], and we see that G = PSp2n is not toric-
friendly. �

Proposition 4.2. No absolutely simple k-group of outer type An (n ≥ 2) is toric-
friendly.

Lemma 4.3. Let k be a field, K/k a separable quadratic extension, and D/K a
central division algebra of dimension r2 over K with an involution σ of the second
kind (i.e., σ acts nontrivially on K and trivially on k). Then there exists a finite
separable field extension F/k such that K F := K ⊗k F is a field and D⊗K KF is
split, that is, KF -isomorphic to the matrix algebra Mr (KF ).

Proof of the lemma. Since there are no nontrivial central division algebras over
finite fields, we may assume that k and K are infinite. Let

H = {x ∈ D | xσ = x}

denote the k-space of Hermitian elements of D. Consider the embedding D ↪→

Mr (Ks) induced by an isomorphism D⊗K Ks ∼= Mr (Ks), where Ks is a separable
closure of K . An element x of D is called semisimple regular if its image in
D⊗K Ks ∼=Mr (Ks) is a semisimple matrix with r distinct eigenvalues. A standard
argument using an isomorphism D ⊗k Ks ∼= Mr (Ks)× Mr (Ks) shows that there
is a dense open subvariety Hreg in the space H , consisting of semisimple regular
elements. Clearly Hreg is defined over k and contains k-points.

Let x ∈ Hreg(k) ⊂ D be a semisimple regular Hermitian element. Let L be
the centralizer of x in D. Since x is Hermitian (σ -invariant), the k-algebra L is
σ -invariant. Since x is semisimple and regular, the algebra L is a commutative
étale K -subalgebra of D of dimension r over K , as is easily seen by passing to
Ks . Clearly L is a field, [L : K ] = r , and L is separable over k. Since L ⊂ D and
[L : K ] = r , the field L is a splitting field for D; see, for example, [Pierce 1982,
Corollary 13.3].
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Since L ⊃ K , we see that σ acts nontrivially on L . Let F = L〈σ 〉 denote the
subfield of L consisting of elements fixed by σ . Then [L : F] = 2 and [F : k] = r .
Clearly F is separable over k. Since F ∩ K = k and F K = L , we conclude that
L = K ⊗k F := KF . This completes the proof of the lemma. �

4.4. Proof of Proposition 4.2. By Proposition 1.3(a) we may assume that G is
adjoint. By Lemma 4.3 there is a finite separable field extension F/k such that
G F ∼= PSU(Ln+1, h), where L/F is a separable quadratic extension and h is a
Hermitian form on Ln+1. It suffices to prove that G F = PSU(Ln+1, h) is not toric-
friendly.

Set S = R1
L/F Gm . We set Gsc

F = SU(Ln+1, h). We may assume that h is a
diagonal form [Knus 1991, Proposition 6.2.4(1); Scharlau 1985, Theorem 7.6.3].
Consider the diagonal torus Sn+1

⊂U(Ln+1, h) and set T sc
= Sn+1

∩SU(Ln+1, h).
We claim that there exists a field extension K/F such that H 1(K , S) 6= 1. In-

deed, take K = F((t)), the field of formal Laurent series over F . Then by [Serre
1968, Proposition V.2.3(c)], H 1(K , S)∼= H 1(F, S)×Z/2Z 6= 1.

Now let aS ∈ H 1(K , S), aS 6= 1, and consider the embedding

ι : S ↪→ T sc
⊂ Sn+1, x 7→ (x, x−1, 1, . . . , 1).

Set asc
= ι∗(aS) ∈ H 1(K , T sc). Let T be the image of T sc in G F = PSU(Ln+1, h)

and a be the image of asc in H 1(K , T ).
Note that the homomorphism

χ : T sc
→ S, (x1, . . . , xn, xn+1) 7→ x1x−1

3 ,

factors through T (recall that n ≥ 2). Since χ ◦ ι= idS , we see that a 6= 1. Now by
Proposition 2.5, G F and hence G are not toric-friendly. �

5. Classification of semisimple toric-friendly groups

Lemma 5.1. Let k be an algebraically closed field. If a semisimple k-group G is
toric-friendly, then it is adjoint of type A, that is, G ∼=

∏
i PGL ni for some integers

ni ≥ 2.

Proof. First assume that G is simple. By Theorem 2.8 the simply connected cover
Gsc of G is special. By a theorem of Grothendieck [1958, Theorem 3], Gsc is
special if and only if G is of type An , n ≥ 1 or Cn , n ≥ 2. Proposition 4.1 rules out
the second possibility. Thus G is of type A.

Now let G be semisimple. By Proposition 1.3(a), Gad is toric-friendly. Write
Gad
=
∏

i Gi , where each Gi is an adjoint simple group, then by Lemma 1.6 each
Gi is toric-friendly. As we have seen, this implies that each Gi is of type A, that
is, isomorphic to PGL ni for some ni . By Proposition 3.2, G is adjoint, that is,
G = Gad

=
∏

i PGL ni . �
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5.2. Proof of the Main Theorem 0.2. If G is toric-friendly, then clearly Gk is
toric-friendly, where k is an algebraic closure of k. By Lemma 5.1, G is adjoint of
type A. Write G =

∏
i RFi/k G ′i , where each Fi/k is a finite separable extension

and G ′i is a form of PGL ni ,Fi . By Lemmas 1.6 and 1.7, each G ′i is toric-friendly,
and by Proposition 4.2, G ′i is an inner form of PGL ni ,Fi .

Conversely, by Proposition 3.1 an inner form G ′i of PGL ni ,Fi is toric-friendly.
By Lemmas 1.6 and 1.7, the product G =

∏
i RFi/k G ′i is toric-friendly. �

Corollary 5.3. Let G be a nontrivial semisimple k-group. Then there exist a
field extension K/k and a maximal K -torus T ⊂ G that is not special. Equiv-
alently, there exist a field extension K/k and a maximal K -torus T of G such that
H 1(K , T ) 6= 1.

Proof. Assume the contrary, that is, that for any field extension K/k, any maximal
K -torus T ⊂ G K is special. We may and shall assume that G is split. Recall
that for a (quasi)split group, by [Steinberg 1965, Theorem 11.1], every element of
H 1(K ,G) lies in the image of the map H 1(K , T )→ H 1(K ,G) for some maximal
K -torus T of G. Thus, under our assumption we have H 1(K ,G) = 1 for every
field extension K/k, that is, G is special. By [Grothendieck 1958, Theorem 3],
this is only possible if G is simply connected and has components only of types
A and C . On the other hand, G is clearly toric-friendly (see Definition 0.1), and
by the Main Theorem 0.2 no nontrivial simply connected semisimple group can be
toric-friendly, a contradiction. �

The next result follows immediately from the Main Theorem 0.2 and Corol-
lary 1.4.

Corollary 5.4. Let G be a split reductive k-group. The group G is toric-friendly if
and only if it satisfies these two conditions:

(a) the center Z(G) of G is a k-torus, and

(b) the adjoint group Gad
:=G/Z(G) is a direct product of simple adjoint groups

of type A. �

Note that in condition (a) we allow the trivial k-torus {1}.
By Corollary 1.4 if G is a reductive k-group such that G/R(G) is toric-friendly

and R(G) is special, then G is toric-friendly. The example below shows that when
G/R(G) is toric-friendly but R(G) is not special, G need not be toric-friendly.

Example 5.5. Let k=R, G=U2, the unitary group in two complex variables. Then
Z(G) is the group of scalar matrices in G, it is connected, hence R(G) = Z(G)
and G/R(G) = Gad

= PSU2. Since PSU2 is an inner form of PGL 2,R, by the
Main Theorem 0.2 it is toric-friendly. However, the group G = U2 is not toric-
friendly. This does not contradict Corollary 1.4, because R(G) = Z(G) is not
special: H 1(R, Z(G))= R∗/NC/R(C

∗)∼= Z/2Z.
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To show that G=U2 is not toric-friendy, set S= R1
C/RGm . Let T be the diagonal

maximal R-torus of U2. Set Gsc
= SU2, T sc

= T ∩SU2, then T sc ∼= S.
Let asc

∈ H 1(R, T sc) be the cohomology class of the cocycle given by the ele-
ment −1 ∈ T sc(R) of order 2. Let a ∈ H 1(R, T ) be the image of asc in H 1(R, T ).
Clearly a 6= 1. By Proposition 2.5, G is not toric-friendly. �
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