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Explicit CM theory for level 2-structures
on abelian surfaces

Reinier Bröker, David Gruenewald and Kristin Lauter

For a complex abelian surface A with endomorphism ring isomorphic to the
maximal order in a quartic CM field K , the Igusa invariants j1(A), j2(A), j3(A)
generate an unramified abelian extension of the reflex field of K . In this paper
we give an explicit geometric description of the Galois action of the class group
of this reflex field on j1(A), j2(A), j3(A). Our description can be expressed by
maps between various Siegel modular varieties, and we can explicitly compute
the action for ideals of small norm. We use the Galois action to modify the
CRT method for computing Igusa class polynomials, and our run time analysis
shows that this yields a significant improvement. Furthermore, we find cycles
in isogeny graphs for abelian surfaces, thereby implying that the ‘isogeny vol-
cano’ algorithm to compute endomorphism rings of ordinary elliptic curves over
finite fields does not have a straightforward generalization to computing endo-
morphism rings of abelian surfaces over finite fields.

1. Introduction

Class field theory describes the abelian extensions of a given number field K . For
K =Q, the Kronecker–Weber theorem tells us that every abelian extension of K is
contained in a cyclotomic extension. In 1900, Hilbert asked for a similar ‘explicit
description’ for higher degree number fields. This is known as Hilbert’s twelvth
problem, and it is still largely unsolved.

Besides K = Q, the answer is only completely known for imaginary quadratic
fields. In this case, the solution is provided by complex multiplication theory; see
for example [Silverman 1994, Chapter 2]. The techniques used can be generalized
to CM fields, that is, imaginary quadratic extensions of totally real fields. However,
for general CM fields we do not always get an explicit description of the maximal
abelian extension. From a computational perspective, the case of general CM fields
is far less developed than the imaginary quadratic case.
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In this article, we solely focus on degree 4 primitive CM fields K . For such
fields, invariants of principally polarized abelian surfaces (p.p.a.s.) with endomor-
phism ring isomorphic to the maximal order OK of K generate a subfield of the
Hilbert class field of the reflex field of K (a degree 4 subfield of the normal closure
of K ). To explicitly compute the resulting extension, we compute an Igusa class
polynomial

PK =
∏

{A p.p.a.s |End(A)=OK }/∼=

(X − j1(A)) ∈Q[X ].

Here, j1 is one of the three Igusa invariants of A. A contrast with the case of
imaginary quadratic fields — where we compute the Hilbert class polynomial —
is that the polynomial PK has rational coefficients that are not integers in general,
and it need not be irreducible over Q.

There are three methods to explicitly compute the polynomial PK : complex an-
alytic evaluation of the invariants [Spallek 1994; van Wamelen 1999; Weng 2003],
the CRT method using finite field arithmetic [Eisenträger and Lauter 2009] and the
computation of a canonical lift [Gaudry et al. 2006; Carls et al. 2008] using p-adic
arithmetic for p=2, 3. However, none of these three approaches exploit the Galois
action of the maximal abelian extension of the reflex field on the set of principally
polarized abelian surfaces with endomorphism ring OK . The goal of this article is
to make this Galois action explicit and give a method to compute it.

Our algorithm to compute the Galois action significantly speeds up the CRT-
approach described in [Eisenträger and Lauter 2009] to compute Igusa class poly-
nomials and it can be used to improve the 3-adic approach [Carls et al. 2008]
as well. The improvement in computing Igusa class polynomials parallels the im-
provements given in [Belding et al. 2008] for computing Hilbert class polynomials.
Our run time analysis is similar to the analysis in [Belding et al. 2008]. Contrary
to the genus 1 algorithm however, the genus 2 algorithm is not quasilinear in the
size of the output. We suggest further refinements that might yield a quasilinear
algorithm as area of further study in Section 6.

Besides speeding up the computation of Igusa class polynomials, our algorithm
gives a method of computing isogenous abelian surfaces over finite fields. Com-
puting an isogeny is a basic computational problem in arithmetic geometry, and we
expect that our algorithm can be used in a variety of contexts, ranging from point
counting on Jacobians of curves to cryptographic protocols.

Our computations naturally lead us to study the (l, l)-isogeny graph of abelian
surfaces over finite fields. For ordinary elliptic curves, the l-isogeny graph looks
like a volcano and this observation forms the heart of the algorithm [Kohel 1996]
to compute the endomorphism ring of an ordinary elliptic curve over a finite field.
We show that for abelian surfaces, the (l, l)-isogeny graph does not have a volcano
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shape. This shows that a straightforward generalization of the elliptic curve algo-
rithm to abelian surfaces does not work.

The structure of this paper is as follows. In Section 2 we recall the basic facts of
complex multiplication theory and background on CM abelian surfaces and their
invariants. In Section 3 we describe the Galois action on the set of isomorphism
classes of abelian surfaces with CM by OK in a geometric way. Our algorithm to
compute this action is intrinsically linked to Siegel modular functions of higher
level. Section 4 gives the definitions and properties of the four Siegel modular
functions that we use. The algorithm to compute the Galois action is detailed in
Section 5 and we apply it in Section 6 to improving the method to compute an
Igusa class polynomial modulo a prime p. We give a detailed run time analysis of
our algorithm in Section 6 as well. We illustrate our approach with various detailed
examples in Section 7. A final Section 8 contains the obstruction to the volcano
picture for abelian surfaces.

2. CM abelian surfaces

2.1. CM theory. In this section we recall the basic facts of CM theory for higher
dimensional abelian varieties. Most of the material presented in this section is
an adaptation to our needs of the definitions and proofs of Shimura’s [1998] and
Lang’s [1983] textbooks.

We fix an embedding of Q ↪→ C. By a real number field, we mean a field
that is fixed by complex conjugation. With this convention, a CM field K is a
totally imaginary quadratic extension of a totally real number field. Let K+ denote
the real quadratic subfield of K , and let n be the degree of K+ over Q. The 2n
embeddings K ↪→Q naturally come in pairs. Indeed, we can choose n embeddings
8= {ϕ1, . . . , ϕn} such that we have Hom(K ,Q)=8∪8. We call such a set 8 a
CM type for K , and we interpret a CM type in the natural way as a map K ↪→Cn .

If 8 cannot be obtained as a lift of a CM type of a CM subfield of K , then
we call 8 primitive. For instance, in the simplest case K+ =Q, CM fields K are
imaginary quadratic and every choice for K ↪→Q determines a primitive CM type.
If K has degree, four then every choice of a CM type is primitive when K does
not contain an imaginary quadratic field. It is not hard to show [Shimura 1998,
Section 8.4] that this occurs exactly for Gal(L/Q)= D4,C4, where L denotes the
normal closure of K . We say that the field K is primitive in this case.

In this article, we will only consider primitive quartic CM fields K . For the
remainder of this section, we fix such a field K . We say that a principally po-
larized abelian surface A/C has CM by the maximal order OK if there exists an
isomorphism OK

∼
−→ End(A). The CM type distinguishes these surfaces. More

precisely, a surface A that has CM by OK has type 8 = {ϕ1, ϕ2} if the complex
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representation RC of the endomorphism algebra End(A)⊗Z Q satisfies

RC
∼= ϕ1⊕ϕ2.

One shows [Lang 1983, Theorem 1.3.6] that a principally polarized abelian surface
that has CM by OK of type 8 is simple, that is, is not isogenous to the product of
elliptic curves.

Let 8 be a CM type for K . For an OK -ideal I , the quotient AI = C2/8(I ) is
an abelian surface of type 8 by [Lang 1983, Theorem 4.1]. This surface need
not admit a principal polarization. The dual variety of AI is given by ÂI =

C2/8(I−1D−1
K ), where

D−1
K = {x ∈ K | TrK/Q(xOK )⊆ Z}

is the inverse different and I denotes the complex conjugate of I . If π ∈ K satisfies
8(π) ∈ (iR>0)

2 and πDK = (I I )−1, then the map AI → ÂI given by

(z1, z2) 7→ (ϕ1(π)z1, ϕ2(π)z2)

is an isomorphism [Shimura 1998, pages 102–104] and AI is principally polariz-
able. All principally polarized abelian surfaces with CM by OK of type8 arise via
this construction.

Let L be the normal closure of K . We extend 8 to a CM type 8′ of L , and we
define the reflex field

K8 =Q
({∑

φ∈8′ φ(x) | x ∈ K
})
.

The CM type on K induces a CM type f8 = {σ−1
|K8
: σ ∈ 8′} of the reflex

field K8. The field K8 is a subfield of L of degree 4. In particular, it equals K
in the case K is Galois. If L/Q is dihedral, then K8 and K are not isomorphic.
However, the two different CM types yield isomorphic reflex fields in this case.
Furthermore, we have

(K8) f8 = K

and the induced CM type on (K8) f8 equals 8.
An automorphism σ of K induces an isomorphism (A,8) ∼−→ (Aσ ,8σ ) of CM

abelian surfaces, where 8σ = {ϕ1σ, ϕ2σ }. Thus two CM types that are complex
conjugates of each other produce the same sets of isomorphism classes of abelian
surfaces. In the Galois case there is only one CM type up to isomorphism and in
the dihedral case there are two distinct CM types.

2.2. Igusa invariants. Any principally polarized abelian surface over C is of the
form Aτ = C2/(Z2

+Z2τ), where τ is an element of the Siegel upper half plane

H2 = {τ ∈Mat2(C) | τ symmetric, =(τ ) positive definite}.
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The moduli space A2 of principally polarized abelian surfaces is 3-dimensional.
We are mostly interested in the subspace M2 ⊂ A2 of Jacobians of curves. The
structure of M2 is well known; we recall it for convenience. Let

Y 2
= a6 X6

+ · · ·+ a0 = f (X)

be a genus 2 curve and write α1, . . . , α6 for the roots of f . For simplifying notation,
let (i j) denote the quantity (αki − αk j ) for a given ordering of the roots. The
Igusa–Clebsch invariants I2, I4, I6, I10 (denoted by A, B,C, D in [Igusa 1960,
Section 3]) are defined by

I2 = a2
6

∑
15

(12)2(34)2(56)2,

I4 = a4
6

∑
10

(12)2(23)2(31)2(45)2(56)2(64)2,

I6 = a6
6

∑
60

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2,

I10 = a10
6

∑
i< j

(i j)= a10
6 disc( f ),

where we sum over all root orderings {αki } that give distinct summands; the sub-
script indicates the number of terms we sum over.

Theorem 2.1. The moduli space M2 is isomorphic to

{[I2 : I4 : I6 : I10] ∈ P3
w(C) | I10 6= 0},

where P3
w denotes weighted projective space with weights 2, 4, 6 and 10.

Proof. See [Igusa 1960]. �

We note that the condition I10 6= 0 ensures that the polynomial f defining the
genus 2 curve is separable.

Instead of working with a subset of weighted projective space, many people
work with an affine subspace of M2. This nonweighted subspace is given by

( j1, j2, j3)=
( I 5

2

I10
,

I4 I 3
2

I10
,

I6 I 2
2

I10

)
.

The functions ji are commonly called the Igusa functions. We remark that there
are various definitions of these functions and there are different opinions for which
choice is the best. Our functions are the same as those in [van Wamelen 1999],
for example. They have the property that for τ, τ ′ corresponding to Jacobians of
curves, the equality ji (τ ) = ji (τ ′) 6= 0 for i = 1, 2, 3 implies that C and C ′ are
isomorphic. A detailed description on computing ji (τ ) for a point τ ∈ H2 can be
found in [Dupont 2006; Weng 2003].
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A weak version of the main theorem of complex multiplication theory is that,
for a primitive quartic CM field K , the Igusa invariants of an abelian variety with
CM by OK generate an unramified abelian extension of a reflex field of K . More
precisely, we have the following result.

Theorem 2.2 [Spallek 1994, Theorem 5.8]. Let (K ,8) be a primitive quartic CM
type. Let I be an OK -ideal with the property that there exists a principal polariza-
tion on AI = C2/8(I ). Then the field K8( j1(AI ), j2(AI ), j3(AI )) is a subfield of
the Hilbert class field of K8. The polynomial

PK =
∏

A

(X − j1(A)),

with A ranging over the isomorphism classes of principally polarized abelian sur-
faces with endomorphism ring OK , has rational coefficients. The same is true for
the polynomials QK and RK for the j2 and j3-invariants.

We will see in Corollary 3.3 that, for any primitive CM type 8, there always
exists an OK -ideal I such that AI is principally polarizable.

3. CM action

Throughout this section, we let K be a fixed primitive quartic CM field. We also
fix a CM type 8 : K ↪→ C2 and let A/C be a principally polarized abelian surface
that has complex multiplication by OK of CM type 8.

3.1. Galois action of the class group. We define a group C(K ) as

{(a, α) | a a fractional OK -ideal with aa= (α) and α ∈ K+ totally positive}/∼,

where two pairs (a, α) and (b, β) are equivalent if and only if there exists a unit
u ∈ K ∗ with b = ua and β = uūα. The multiplication is defined componentwise,
and (OK , 1) is the neutral element of C(K ).

The group C(K ) naturally acts on the finite set S(K ,8) of isomorphism classes
of principally polarized abelian surfaces that have CM by OK of a given type 8.
Indeed, any such surface is given by an ideal I determining the variety and a ‘8-
positive’ element π ∈ K giving the principal polarization. We now put

(a, α) · (I, π)= (aI, απ) for (a, α) ∈ C(K ).

By [Shimura 1998, Section 14.6], the action of C(K ) on S(K ,8) is transitive and
free. In particular, we have |C(K )| = |S(K ,8)|.

The structure of the group C(K ) is best described by the following theorem.
Denote by Cl+(OK+) the narrow class group of OK+ and write (O∗K+)

+ for the
group of totally positive units of OK+ .
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Theorem 3.1. Let K be a primitive quartic CM field. Then the sequence

1−→ (O∗K+)
+/NK/K+(O

∗

K )
u 7→(OK ,u)
−−−−−−→ C(K )

(a,α) 7→a
−−−−−→Cl(OK )

NK/K+
−−−−→Cl+(OK+)−→ 1

is exact.

Proof. The exactness at (O∗K+)
+/NK/K+(O

∗

K ) is [Shimura 1998, Section 14.5]. It
remains to show that the sequence is exact at Cl+(OK+). To prove this, we first
prove1 that there is a finite prime that is ramified in K/K+.

Suppose that K/K+ is unramified at all finite primes. By genus theory, we then
have K = K+(

√
n) with n ∈Z. However, K then has Q(

√
n) as quadratic subfield

and K is a biquadratic field. This contradicts our assumption that K is primitive.
Because there is a finite prime of K+ that ramifies in K , the extensions K/K+

and H+(K+)/K+ are linearly disjoint. Here, H+ denotes the narrow Hilbert class
field. By Galois theory, we then have

Gal(H(K )/K )� Gal(K H+(K+)/K ) ∼−→Gal(H+(K+)/K+). �

Remark 3.2. The surjectivity of the last arrow was also proved in [Kohel 2008,
Lemma 2.1] under the assumption that there exists a finite prime that ramifies in
K/K+. Our proof shows in fact that such a prime always exists.

Corollary 3.3. Let K be a primitive quartic CM field. The set S(K ) of isomor-
phism classes of principally polarized abelian surfaces with CM by OK has cardi-
nality

|S(K )| =
{
|C(K )| if Gal(K/Q)∼= C4,

2|C(K )| if Gal(K/Q)∼= D4.

Proof. By Theorem 3.1, the cardinality |S(K ,8)| = |C(K )| is independent of the
choice of a CM type8. If we let n denote the number of CM types up to conjugacy,
then the theorem follows immediately from the equality

|S(K )| = n|S(K ,8)|. �

The Galois group Gal(K8( j1(A))/K8) acts in the following way on the set
S(K ,8). With f8 the CM type on K8 induced by 8, we define N8 : K8→ K by

N8(x)=
∏
ϕ∈ f8

ϕ(x).

For an OK8
-ideal I , the OK -ideal N8(I ) is called the typenorm of I . We get a

natural map m : Cl(OK8
)→ C(K ) defined by

m(p)= (N8(p), NK8/Q(p)) for degree 1 prime representatives p.

1We thank Everett Howe for suggesting this argument.
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The Galois group of K8( j1(A))/K8 is a quotient of Gal(H(K8)/K8)∼=Cl(OK8
),

and by [Shimura 1998, Section 15.2], the induced map

m : Gal(K8( j1(A))/K8)→ C(K )

is injective. This describes the Galois action. Indeed, the group C(K ) acts on the
set of all principally polarized abelian surfaces that have CM by OK , and m maps
the Galois group injectively into C(K ). In Example 7.2 we will see that the natural
map Cl(OK8

)→ C(K ) need not be injective.
The typenorm can be defined in a slightly different way as well. If K/Q is

Galois with Gal(K/Q)= 〈σ 〉, then for8= {1, σ } we have N8(p)= p1+σ 3
. If K is

not Galois, then we have N8(p) = NL/K (pOL). We will use this description both
for actual computations and in the proof of Lemma 6.5.

In the remainder of Section 3.1, we provide the theoretical framework that will
allow us to explicitly compute the CM action. Let I be a OK8

-ideal of norm l. We
assume for simplicity that l is prime. We have m(I )= (N8(I ), l)= (J, l)∈ C(K ),
where J is an OK -ideal of norm l2.

Lemma 3.4. Let I be an OK8
-ideal of prime norm l with typenorm N8(I ) =

J ⊂ OK . Then J divides (l)⊂ OK .

Proof. This follows from the relation N8(I )N8(I )= NK8/Q(I )= l. �

For an OK -ideal M , we define the M-torsion of the abelian surface A by

A[M] = {P ∈ A(C) | for all α ∈ M : α(P)= 0}.

We assume here that we have fixed an isomorphism End(A) ∼−→OK , meaning that
M is an End(A)-ideal as well. If M is generated by an integer n, then A[M] equals
the n-torsion A[n].

Lemma 3.4 implies that A[J ] is a 2-dimensional subspace of the l-torsion A[l]
of A. The polarization of A induces a symplectic form on A[l], and A[l] is a
symplectic vector space of dimension 4 over the finite field Fl . By CM theory we
know that the quotient A/A[J ] is again a principally polarized abelian surface. By
[Mumford 1970, Section 23], this implies that A[J ] is an isotropic 2-dimensional
subspace of A[l], that is, the symplectic form vanishes on A[J ]. We recall that an
isogeny A→ B between principally polarized abelian surfaces whose kernel is a 2-
dimensional isotropic subspace of A[l] is called an (l, l)-isogeny, and A→ A/A[J ]
is an example of an (l, l)-isogeny.

The moduli space of all pairs (A,G), with A a principally polarized abelian
surface over C and G a 2-dimensional isotropic subspace of A[l], can be described
by an ideal V (l) ⊂ Q[X1, Y1, Z1, X2, Y2, Z2]. More precisely, the variety corre-
sponding to V (l) equals the Siegel modular variety Y (2)0 (l) studied, for example,
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in [Bröker and Lauter 2009]. As a complex Riemann surface, we have

Y (2)0 (l)= 0(2)0 (l) \H2,

with
0
(2)
0 (l)=

{(
a b
c d

)
∈ Sp4(Z) | c ≡ 02 mod l

}
.

If we specialize V (l) at a point (X1, Y1, Z1) = ( j1(A), j2(A), j3(A)), the re-
sulting ideal V ′(l) is 0-dimensional. The corresponding variety is a union of
points corresponding to the ‘(l, l)-isogenous abelian surfaces’. Since there are
[Sp4(Z) : 0

(2)
0 (l)] = (l4

−1)/(l−1) isotropic subspaces of dimension 2 in A[l] by
[Bröker and Lauter 2009, Lemma 6.1], there are exactly (l4

− 1)/(l− 1) solutions
to the system of equations given by V ′. By construction, the triple

( j1(A/J ), j2(A/J ), j3(A/J ))

is one of the solutions. There are l3
+ l2
+ l other solutions, and we will see in

Section 6 that for CM computations it is relatively easy to determine which of the
solutions come from the typenorm of an OK8

-ideal.
Unfortunately, the ideal V (l) can only be computed for very small l. Indeed,

the only case that has been done is l = 2 [Dupont 2006, Section 10.4.2] and it
takes roughly 50 megabytes to store the 3 generators of V . By [Bröker and Lauter
2009], knowing the ideal V (l) for some prime l implies that we have an equation
for the Humbert surface of discriminant l2. Since computing Humbert surfaces is
a traditionally hard problem, we do not expect that much progress can be made in
computing V (l) for primes l > 2.

3.2. Richelot isogeny. Although one could use the ideal V (2) from [Dupont 2006,
Section 10.4.2] to compute (2, 2)-isogenies, there is a more efficient way. This
alternative, known as the Richelot isogeny, is classical and we recall it here for
convenience. Let K be a field of characteristic different from 2, and let C/K be
a nonsingular genus 2 curve. We can choose an equation Y 2

= f (X) for C , with
f ∈ K [X ] a monic polynomial of degree 6. Any factorization f = ABC into three
monic degree 2 polynomials defines a genus 2 curve C ′ given by

1Y 2
= [A, B][A,C][B,C],

where 1 is the determinant of A, B,C with respect to the basis 1, X, X2, and
[A, B] = A′B − AB ′ with A′ the derivative of A. This new curve is nonsingular
precisely when 1 is nonzero.

One proves [Bost and Mestre 1988] that C and C ′ are (2, 2)-isogenous. It is not
hard to see that there are exactly 15= (24

−1)/(2−1) different curves C ′ that can
be obtained this way. It follows that this construction gives all (2, 2)-isogenous
Jacobians Jac(C ′).
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4. Smaller functions

The Igusa functions introduced in Section 2 are ‘too large’ to be practical in our
computation of the CM action: currently we cannot compute an ideal describing
the variety Y 2

0 (l) for primes l > 2. In this section we introduce smaller functions
f1, . . . , f4 that are more convenient from a computational perspective. For N > 1,
we define the congruence subgroup of level N as the kernel of the reduction map
Sp4(Z)→ Sp4(Z/NZ), denoted by 0(N ).

For x, y ∈ {0, 1}2, define the functions θx,y : H2→ C by

θx,y(τ )=
∑
n∈Z2

expπ i
(
(n+ 1

2 x)T τ(n+ 1
2 x)+ (n+ 1

2 x)T y
)
. (4-1)

The functions θx,y are known as the theta constants and arise naturally from the
construction of theta functions [Igusa 1964]. The equality θx,y(τ )=(−1)x

T yθx,y(τ )

shows that only 10 of the 16 theta constants are nonzero.
The fourth powers of the functions θx,y are Siegel modular forms of weight 2

for the congruence subgroup 0(2)⊂ Sp4(Z). The Satake compactification X (2) of
the quotient 0(2)\H2 has a natural structure of a projective variety, and the fourth
powers θ4

x,y define an embedding of X (2) into projective space.

Theorem 4.1 [van der Geer 1982, Theorem 5.2]. Let M2(0(2)) denote the C-
vector space of all Siegel modular forms of weight 2 for the congruence sub-
group 0(2). Then the space M2(0(2)) is 5-dimensional and is spanned by the
ten modular forms θ4

x,y . Furthermore, the map X (2)→ P4
⊂ P9 defined by the

functions θ4
x,y is an embedding. The image is the quartic threefold in P4 defined by

u2
2− 4u4 = 0 with uk =

∑
x,y

θ4k
x,y .

The Igusa functions j1, j2, j3 can be readily expressed in terms of θ4
x,y ; see for

example [Igusa 1967, page 848]. Thus we have an inclusion

C( j1, j2, j3)⊆ C(θ4
x,y/θ

4
x ′,y′)

where we include all quotients of theta fourth powers. The functions θ4
x,y/θ

4
x ′,y′ are

rational Siegel modular functions of level 2. Whereas ( j1(τ ), j2(τ ), j3(τ )) depends
only on the Sp4(Z)-equivalence class of τ ∈ H2, a value (θ4

x,y(τ )/θ
4
x ′,y′(τ ))x,x ′,y,y′

depends on the 0(2)-equivalence class of τ . Since the affine points of 0(2)\H2 ⊂

X (2) correspond to isomorphism classes of pairs (A, {P1, P2, P3, P4}) consisting
of a principally polarized 2-dimensional abelian variety A together with a basis
{P1, P2, P3, P4} of the 2-torsion, the functions θ4

x,y/θ
4
x ′,y′ not only depend on the

abelian variety in question but also on an ordering of its 2-torsion. For every
isomorphism class Sp4(Z)τ of abelian varieties, there are [Sp4(Z) : 0(2)] = 720
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values for the tuple (θ4
x,y(τ )/θ

4
x ′,y′(τ ))x,x ′,y,y′ . The functions θ4

x,y/θ
4
x ′,y′ are smaller

than the Igusa functions in the sense that their Fourier coefficients are smaller. A
natural idea is to get even smaller functions by considering the quotients θx,y/θx ′,y′

themselves instead of their fourth powers.
We define the four functions f1, f2, f3, f4 : H2→ C by

f1 = θ(0,0),(0,0) f2 = θ(0,0),(1,1) f3 = θ(0,0),(1,0) f4 = θ(0,0),(0,1),

with θ(x,y),(x ′,y′) = θx,y/θx ′,y′ . We stress that the particular choice of the ‘theta
constants’ is rather arbitrary; our only requirement is that we define 4 different
functions. The three quotients f1/ f4, f2/ f4, f3/ f4 are rational Siegel modular
functions.

Theorem 4.2. If τ, τ ′ ∈H2 satisfy ( f1(τ ), . . . , f4(τ ))= ( f1(τ
′), . . . , f4(τ

′)), then
we have ( j1(τ ), j2(τ ), j3(τ ))= ( j1(τ ′), j2(τ ′), j3(τ ′)). Furthermore, the quotients
f1/ f4, f2/ f4, f3/ f4 are invariant under the subgroup 0(8).

Proof. The vector space M2(0(2)) is spanned by { f 4
1 , . . . f 4

4 , g4
}, where g =

θ(0,1),(0,0). The relation in Theorem 4.1, together with the five linear relations
between the θ4

x,y from Riemann’s theta formula [Igusa 1964, page 232], yield that
g4 satisfies a degree 4 polynomial P over L = C( f1, f2, f3, f4). The polynomial
P factors over L as a product of the 2 irreducible quadratic polynomials

P−, P+ = T 2
− ( f 4

1 − f 4
2 + f 4

3 − f 4
4 )T + ( f 2

1 f 2
3 ± f 2

2 f 2
4 )

2.

By looking at the Fourier expansions of f1, . . . , f4 and g, we see that g4 is a root
of P−. Hence, the extension L(g4)/L is quadratic and generated by a root of P−.

For each of the 2 choices of a root of P−, the other 5 fourth powers of theta
functions will be uniquely determined. Indeed, the fourth powers are functions on
the space M2(0(2)) and this space is 5-dimensional by Theorem 4.1. This means
that we get a priori two Igusa triples ( j1, j2, j3) for every tuple ( f1, f2, f3, f4).
However, a close inspection of the formulas expressing the Igusa functions in terms
of theta fourth powers yields that these Igusa triples coincide. Hence, the triple
( j1, j2, j3) does not depend on the choice of a root of P−. This proves the first
statement in the theorem.

The second statement follows immediately from a result of Igusa, who proves
in [Igusa 1964, page 242] that the field M generated by all theta quotients is in-
variant under a group that contains 0(8). Since the field C( f1/ f4, f2/ f4, f3/ f4) is
a subfield of M , Theorem 4.2 follows. �

Since the functions f1/ f4, f2/ f4, f3/ f4 are invariant under 0(8), the moduli
interpretation is that they depend on an abelian variety together with a level 8-
structure. Let Stab( f ) be the stabilizer of f1/ f4, f2/ f4, f3/ f4 inside the symplectic
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group Sp4(Z). We have inclusions

0(8)⊂ Stab( f )⊂ Sp4(Z)

and the quotient Y ( f ) = Stab( f ) \H2 has a natural structure of a quasiprojective
variety by the Baily–Borel theorem [1966]. However, this variety is not smooth.

We let

H∗2 = {τ ∈ H2 | τ is not Sp4(Z)-equivalent to a diagonal matrix}

be the subset of H2 of those τ that do not correspond to a product of elliptic curves
with the product polarization. The argument in [Runge 1993, Section 5] shows that
G=0(8)/Stab( f ) acts freely on Y (8). By [Mumford 1970, Chapter 2, Section 7],
the quotient

Y ( f )∗ = Stab( f ) \H∗2

is a smooth variety.

Lemma 4.3. The map Y ( f )∗→ Y (1) induced by the inclusion Stab( f )→ Sp4(Z)

has degree 23040= 32 · 720.

Proof. The map factors as Y ( f )∗ → Y (2)→ Y (1); thus it suffices to determine
the degrees of each part. The degree of the map Y ( f )∗ → Y (2) can be seen
from the proof of Theorem 4.2: given a projective tuple ( f 4

4 , f 4
2 , f 4

3 , f4, g4) rep-
resenting a point Q of Y (2), over a splitting field there are 43

= 64 projective
tuples ( f1, f2, f3, f4) and exactly half of these satisfy P− = 0 and hence are valid
preimages of Q. Thus Y ( f )∗→ Y (2) has degree 32. The degree of Y (2)→ Y (1)
equals [Sp4(Z) : 0(2)] = 720. This completes the proof. �

From a tuple ( f1(τ ), . . . , f4(τ )), the proof of Theorem 4.2 shows how to compute
an Igusa triple ( j1(τ ), j2(τ ), j3(τ )). For convenience, we make this explicit in the
next subsection.

4.1. Transformation formulas. As in the proof of Theorem 4.2, let g= θ(0,1),(0,0).
Now g4 is a root of the quadratic polynomial P−. From values ( f1, f2, f3, f4), we
can pick any root of P− as a value for g4. The functions { f 4

1 , . . . f 4
4 , g4
} form a

basis of M2(0(2)). Define new functions xi by

x1 =− f 4
1 + 2 f 4

2 − f 4
3 + 2 f 4

4 + 3g4,

x2 =− f 4
1 + 2 f 4

2 − f 4
3 − f 4

4 ,

x3 =− f 4
1 − f 4

2 − f 4
3 + 2 f 4

4 ,

x4 = 2 f 4
1 − f 4

2 − f 4
3 − f 4

4 ,

x5 =− f 4
1 − f 4

2 + 2 f 4
3 − f 4

4 ,

x6 = 2 f 4
1 − f 4

2 + 2 f 4
3 − f 4

4 − 3g4.
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The xi are called level 2 Satake coordinate functions. In terms of these functions
we obtain a model for X [2] embedded in P5 given by

s1 = 0 and s2
2 − 4s4 = 0,

where sk =
∑6

i=1 xk
i are the k-th power sums.

The action of Sp4(Z)/0(2) on xi (τ ) is equivalent to that of Sym({x1, . . . , x6})

permuting the coordinates. Thus we can write level 1 modular functions as sym-
metric functions of the xi , and the Igusa–Clebsch invariants from Section 2.2 are
given by

I2 =
5(48s6− 3s3

2 − 8s2
3)

3(12s5− 5s2s3)
,

I4 = 3−1s2
2 ,

I6 = 3−2(3I2 I4− 2s3),

I10 = 2−23−65−1(12s5− 5s2s3),

from which we can compute absolute Igusa invariants ( j1, j2, j3).
Conversely, if ( ji (τ )) corresponds to the Jacobian of a curve, then we can com-

pute a value for ( f1(τ ), . . . , f4(τ )) as follows. First we compute the Igusa–Clebsch
invariants, then we apply the transformation

s2 = 3I4,

s3 = 3/2(I2 I4− 3I6),

s5 = 5/12s2s3+ 35
· 5I10,

s6 = 27/16I 3
4 + 1/6s2

3 + 36/22 I2 I10,

after which we can compute the level 2 Satake coordinate functions as the roots
x1, . . . , x6 of the Satake sextic polynomial

X6
−

1
2 s2 X4

−
1
3 s3 X3

+
1
16 s2

2 X2
+ ( 1

6 s2s3−
1
5 s5)X + ( 1

96 s3
2 +

1
18 s2

3 −
1
6 s6)

with coefficients in Q(s2, s3, s5, s6). One choice for f 4
1 , f 4

2 , f 4
3 , f 4

4 is given by

f 4
1 = (−x2− x3− x5)/3,

f 4
2 = (−x3− x4− x5)/3,

f 4
3 = (−x2− x3− x4)/3,

f 4
4 = (−x2− x4− x5)/3.

Finally, we extract fourth roots to find values for ( f1(τ ), . . . , f4(τ )) satisfying
P− = 0. It is easy to find a solution to P− = 0: if ( f1, . . . , f4) is not a solution,
then (

√
−1 f1, . . . , f4) is a solution.
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The coefficients of the Satake sextic polynomial are in Z[12 ,
1
3 , I2, I4, I6, I10].

In particular, this means that our transformation formulas are also valid over finite
fields of characteristic greater than 3.

5. The CM action and level structure

We let Stab( f ) be the stabilizer of the three quotients f1/ f4, f2/ f4, f3/ f4 defined
in Section 4. By Theorem 4.2, we have 0(8) ⊆ Stab( f ). For a prime l > 2, we
now define

Y ( f ; l)∗ = (Stab( f )∩0(2)0 (l)) \H∗2

which we view as an equality of Riemann surfaces. By the Baily–Borel theorem,
the space Y ( f ; l)∗ has a natural structure of a variety. Since we restricted to H∗2,
the variety is affine. Just like in the case l = 1 from Section 4, Y ( f ; l)∗ is smooth.

The moduli interpretation of Y ( f ; l)∗ is the following. Points are isomorphism
classes of triples (A,G, L), where A is a principally polarized complex abelian sur-
face, G is a 2-dimensional isotropic subspace of A[l], and L is a level 8-structure.
The notion of isomorphism is that (A,G, L) and (A′,G ′, L ′) are isomorphic if
and only if there is an isomorphism ϕ : A→ A′ of principally polarized abelian
surfaces that satisfies ϕ(G)= G ′ and ϕ(L)= L ′.

Lemma 5.1. The map Y ( f ; l)∗ → Y ( f )∗ that is induced by the inclusion map
(Stab( f )∩0(2)0 (l))→ Stab( f ) has degree (l4

− 1)/(l − 1) for primes l > 2.

Proof. This is clear: the choice of a level 8-structure L is independent of the choice
of a subspace of the l-torsion for l > 2. �

Besides the map Y ( f ; l)∗ → Y ( f )∗ from the lemma, we also have a map
Y ( f ; l)∗ → Y ( f )∗ given by (A,G, L) 7→ (A/G, L ′). Indeed, the isogeny ϕ :
A→ A/G induces an isomorphism A[8] → (A/G)[8] and we have L ′ = ϕ(L).
As was explained in Section 3.2, this map also has degree (l4

−1)/(l−1). Putting
all the varieties together, the picture is as follows.

Y ( f ; l)∗

s

yy

t

%%

{{ ##

Y ( f )∗

f
��

Y ( f )∗

f
��

Y (1) Y (1)

��
A3

OO

A3
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The map s sends (A,G, L) ∈ Y ( f ; l)∗ to (A, L) ∈ Y ( f )∗ and t is the map
induced by the isogeny A→ A/G. This diagram allows us to find all the abelian
surfaces that are (l, l)-isogenous to a given surface A, where we assume that A
is the Jacobian of a genus 2 curve. Indeed, we first map the Igusa invariants
( j1(A), j2(A), j3(A)) to a point in Y (1), say given by the Igusa–Clebsch invariants.
We then choose (A, L) on Y ( f )∗ lying over this point. Although there are 23040
choices for L , it does not matter which one we choose. Above (A, L), there are
(l4
−1)/(l−1) points in Y ( f ; l)∗ and via the map t :Y ( f ; l)∗→Y ( f )∗ we map all

of these down to Y ( f )∗. Forgetting the level 8-structure now yields (l4
−1)/(l−1)

points in Y (1). If A is simple, that is, not isogenous to a product of elliptic curves,
then we can transform these into absolute Igusa invariants.

Assuming we can compute an ideal

V ( f ; l)⊂Q[W1, X1, Y1, Z1,W2, X2, Y2, Z2]

defining the quasiprojective variety Y ( f ; l)∗, we derive the following algorithm to
compute all (l, l)-isogenous abelian surfaces.

Algorithm 5.2. Input: A Jacobian A/C of a genus 2 curve given by its Igusa
invariants, and the ideal V ( f ; l) defining Y ( f ; l)∗.

Output: The Igusa invariants of all principally polarized abelian surfaces that are
(l, l)-isogenous to A.

(1) Compute Igusa–Clebsch invariants (I2, I4, I6, I10) ∈ C4 corresponding to A.

(2) Choose an element ( f1, f2, f3, f4)∈Y ( f )∗ that maps to (I2, I4, I6, I10) using
the method described in Section 4.1.

(3) Specialize the ideal V ( f ; l) in (W1, X1, Y1, Z1) = ( f1, f2, f3, f4) and solve
the remaining system of equations.

(4) For each solution found in the previous step, compute the corresponding point
in Y (1) using the method given in Section 4.1.

5.1. Computing V ( f ; l). In this subsection, we use an algorithm of Gruenewald
[2008] to compute the ideal V ( f ; l) needed in Algorithm 5.2. Our approach only
terminates in a reasonable amount of time in the simplest case l = 3.

The expression for the theta constants in (4-1) can be written in terms of the
individual matrix entries, and with some minor modifications we can represent it
as a power series with integer coefficients. Writing τ =

(
τ1 τ2
τ2 τ3

)
∈ H2, we have

θ(a,b),(c,d)(τ )= (−1)
ac+bd

2
∑

(x1,x2)∈Z2

(−1)x1c+x2d p(2x1+a)2q(2x1+a+2x2+b)2r (2x2+b)2

∈ Z[[p, q, r ]],
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where p = e2π i(τ1−τ2)/8, q = e2π iτ2/8 and r = e2π i(τ3−τ2)/8. We see that it is easy
to compute Fourier expansions for the Siegel modular forms fi .

One of the surfaces (l, l)-isogenous to C2/(Z2
+ Z2

· τ) is C2/(Z2
+ Z2

· lτ),
and we want to find a relation between the fi and the functions fi (lτ). The expan-
sion for fi (lτ) can be constructed easily from the Fourier expansion of fi (τ ) by
replacing p, q, r with pl, ql, r l .

Starting with n = 2, we compute all homogeneous monomials of degree n in
fi (τ ), fi (lτ) represented as truncated power series and then use exact linear alge-
bra to find linear dependencies between them. In this manner we obtain a basis
for the degree n homogeneous component of the relation ideal. We then check
experimentally whether our list of relations generate V ( f ; l) or not by computing
the degree of the projection maps. If one of the projection maps has degree larger
than l3

+ l2
+ l + 1, then more relations are required, in which case we increment

n by 1 and repeat the procedure. We stop once we have found sufficiently many
relations to generate V ( f ; l).

Using this method we computed the ideal V ( f ; 3). The (3, 3)-isogeny relations
in V ( f ; 3) are given by 85 homogeneous polynomials of degree six. The whole
ideal takes 35 kilobytes to store in a text file; see the online supplement. The
individual relations are fairly small, having at most 40 terms. Furthermore, the
coefficients are 7-smooth and bounded by 200 in absolute value, which makes
them amenable for computations.

However, we have not rigorously proven that the ideal V ( f ; 3) is correct. To
do this we would need to show that our 85 polynomials define relations between
Siegel modular forms rather than just truncated Fourier expansions. From the
work of Poor and Yuen [2000] there is a computable bound for which a truncated
Fourier expansion uniquely determines the underlying Siegel modular form. Thus
with high enough precision our relations are able to be proven. A Gröbner basis
computation in Magma [Bosma et al. 1997] informs us that the projection maps
have the expected degree 40; hence we have obtained enough relations. Under the
assumption that these relations hold, the ideal V ( f ; 3) is correct.

Our (3, 3)-isogeny relations hold for all Jacobians of curves. We remark that
if we restrict ourselves to CM-abelian surfaces defined over unramified extensions
of Z3, then there are smaller (3, 3)-isogeny relations; see [Carls et al. 2008]. These
smaller relations cannot be used however to improve the ‘CRT-algorithm’ as in
Section 6.3.

6. The CM action over finite fields

6.1. Reduction theory. The theory we developed in Sections 3 through 5 uses the
complex analytic definition of abelian surfaces and the Riemann surfaces Y (2)0 (l)
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and Y ( f ; l)∗. We now explain why we can use the results in positive character-
istic as well. Firstly, if we take a prime p that splits completely in K , then by
[Goren 1997, Theorems 1 and 2] the reduction modulo p of an abelian surface
A/H(K8) with endomorphism ring OK is ordinary. The reduced surface again
has endomorphism ring OK .

Furthermore, one can naturally associate an algebraic stack A00(p) to Y (2)0 (l)
and prove that the structural morphism A00(p)→ Spec(Z) is smooth outside l; see
[Chai and Norman 1990, Corollary 6.1.1]. In more down-to-earth computational
terminology, this means the moduli interpretation of the ideal V ⊂Q[X1, . . . , Z2]

remains valid when we reduce the elements of V modulo a prime p 6= l.
The reduction of Y ( f ; l)∗ is slightly more complicated. The map Y (8l) →

Y ( f ; l)∗ is finite étale by [Katz and Mazur 1985, Theorem A.7.1.1], where we
now view the affine varieties Y ( f ; l)∗ and Y (8l) as schemes. It is well known that
Y (N ) is smooth over Spec(Z[1/N ]) for N ≥3, so in particular, the scheme Y ( f ; l)∗

is smooth over Spec(Z[1/(2l)]). Again, this means that the moduli interpretation
for the ideal V ( f ; l)⊂Q[W1, . . . , Z2] remains valid when we reduce the elements
of V ( f ; l) modulo a prime p - 2l.

We saw at the end of Section 4 that our transformation formulas are valid modulo
p for primes p > 3. Putting this all together, we obtain the following result:

Lemma 6.1. Let l be prime, and let p - 6l be a prime that splits completely in a
primitive CM field K . On input of the Igusa invariants of a principally polarized
abelian surface A/Fp with End(A)= OK and the ideal V ( f ; l)⊂ Fp[W1, . . . , Z2],
Algorithm 5.2 computes the Igusa invariants of all (l, l)-isogenous abelian sur-
faces.

6.2. Finding (l, l)-isogenous abelian surfaces. Now fix a primitive quartic CM
field K , and let p - 6l be a prime that splits completely in the subfield

K8( j1(A), j2(A), j3(A))

of the Hilbert class field of K8. By the choice of p, the Igusa invariants of an
abelian surface A/Fp with End(A)=OK are defined over the prime field Fp. More-
over, p splits in K8 and as it splits in its normal closure L it will split completely
in K ; hence Lemma 6.1 applies.

Algorithm 5.2 applied to the point ( j1(A), j2(A), j3(A)) and the ideal V ( f ; l)
yields (l4

−1)/(l−1) triples of Igusa invariants. All these triples are Igusa invariants
of principally polarized abelian surfaces with endomorphism algebra K ; some
are defined over the prime field Fp and some are not. However, since p splits
completely in the field of moduli K8( j1(A), j2(A), j3(A)), the Igusa invariants of
the surfaces that have endomorphism ring OK are defined over the field Fp.
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Algorithm 6.2. Input: The Igusa invariants of a simple principally polarized
abelian surface A/Fp with End(A)=OK , and the ideal V ( f ; l)⊂ Fp[W1, . . . , Z2].
Here, l is a prime such that there exists a prime ideal in K8 of norm l. Furthermore,
we assume that p - 6l.

Output: The Igusa invariants of all principally polarized abelian surfaces A′/Fp

with End(A′)= OK that are (l, l)-isogenous to A.

(1) Apply Algorithm 5.2 to A and V ( f ; l). Let S be the set of all Igusa invariants
that are defined over Fp.

(2) For each ( j1(A′), j2(A′), j3(A′)) ∈ S, construct a genus 2 curve C having
these invariants using Mestre’s algorithm; see [Mestre 1991; Cardona and
Quer 2005].

(3) Apply the Freeman–Lauter algorithm [2008] to test whether Jac(C) has endo-
morphism ring OK . Return the Igusa invariants of all the curves that pass this
test.

We can predict beforehand how many triples will be returned by Algorithm 6.2.
We compute the prime factorization

(l)= pe1
1 . . . p

ek
k

of (l) in K8. Say that we have n ≤ 4 prime ideals p1, . . . , pn of norm l in this
factorization, disregarding multiplicity. For each of these ideals pi we compute the
typenorm map m(pi ) ∈ C(K ). The size of

{m(p1), . . . ,m(pn)} ⊂ C(K ).

equals the number of triples computed by Algorithm 6.2.

Remark 6.3. Step 1 of the algorithm requires working in an extension of Fp. The
degree of this extension depends on the splitting behavior of 2 in OK . An upper
bound is given by 4[Fp(A[2]) :Fp]≤24, where Fp(A[2]) denotes the field obtained
by adjoining the coordinates of all 2-torsion points of A.

6.3. Igusa class polynomials. The CRT algorithm [Eisenträger and Lauter 2009]
for computing the Igusa class polynomials PK , QK , RK ∈ Q[X ] of a primitive
quartic CM field K also computes the reductions of these 3 polynomials modulo
primes p which split completely in the Hilbert class field of K8. The method
suggested in [Eisenträger and Lauter 2009] loops over all p3 possible Igusa invari-
ants and runs an endomorphism ring test for each triple ( j1(A′), j2(A′), j3(A′)), to
see if A′ has endomorphism ring OK .

We propose two main modifications to this algorithm. Firstly, we only demand
that the primes p split completely in the subfield K8( j1(A), j2(A), j3(A)) of the
Hilbert class field of K8 that we obtain by adjoining the Igusa invariants of an
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abelian surface A that has CM by OK . To find such primes, we simply loop over
p= 5, 7, 11 . . . , and for the primes (p)=P1P2P3P4⊂OK8

that split completely
in K8 we test if

m(P1)= (µ)⊂ OK and N (P1)= µµ,

withµ the complex conjugate ofµ. By [Shimura 1998, Section 15.3, Theorem 1], a
prime p satisfying these conditions splits completely in K8( j1(A), j2(A), j3(A)).
It includes the primes that split completely in the Hilbert class field of K8.

Our second modification is a big improvement in computing the Igusa class poly-
nomial modulo p. Instead of looping over all O(p3) curves, we exploit the Galois
action in a similar vein as in [Belding et al. 2008]. Below we give the complete
algorithm to compute PK , RK , QK modulo a prime p meeting our conditions.

Step 1. Compute the class group

Cl(OK8
)= 〈p1, . . . , pk〉 (6-1)

of the reflex field, where we take degree 1 prime ideals pi . For each of the ideals
pi of odd norm NK8/Q(pi ) = li , compute the ideal V ( f ; li ) describing the Siegel
modular variety Y ( f ; li )

∗.

Step 2. Find an abelian surface A/Fp that has endomorphism ring isomorphic
to OK , as follows. We factor (p)⊆ OK into primes P1,P1,P2,P2 and compute a
generator π for the principal ideal P1P2. We compute the minimal polynomial fπ
of π over Q. We try random curves C/Fp until we find a curve with

#C(Fp) ∈ {p+ 1±TrK/Q(π)} and # Jac(C) ∈ { fπ (1), fπ (−1)}. (6-2)

By construction, such a curve C has endomorphism algebra K . We test whether
Jac(C) has endomorphism ring OK using the algorithm of Freeman and Lauter
[2008]. If it does, continue with Step 3, otherwise try more random curves C until
we find one for which its Jacobian has endomorphism ring OK .

Step 3. Let A/Fp be the surface found in Step 2. The group G =m(Cl(OK8
)) acts

in a natural way on A and we compute the set

G · ( j1(A), j2(A), j3(A))⊆ S(K )

as follows. For x =m(I ) we write I =
∏

i p
ai
i . The action of p1 is computed using

Algorithm 6.2 in case the norm of p1 is odd and by applying a Richelot isogeny
(see Section 3.2) if p1 has norm 2. By successively applying the action of p1, we
compute the action of pa1

1 . We then continue with the action of p2, and so on. This
allows us to compute the action of x on the surface A, and doing this for all x we
compute the set G · ( j1(A), j2(A), j3(A)). This part of the algorithm is analogous
the one in [Belding et al. 2008].
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Step 4. In contrast to genus 1 and the algorithm in [Belding et al. 2008], it is
unlikely that all surfaces with endomorphism ring OK are found. This is partly
because we only find surfaces having the same CM type as the initial surface A,
so in the dihedral case we are missing surfaces with the second CM type. Even in
the cyclic case where there are |C(K )| isomorphism classes, it is possible that the
map

m : Cl(OK8
)→ C(K )

is not surjective, meaning that we do not find all surfaces of a given CM type. The
solution is simple: compute the cardinality of S(K ) using Corollary 3.3, and if the
number of surfaces found is less than |S(K )|, go back to Step 2.

Step 5. Once we have found all surfaces with endomorphism ring OK , expand

PK mod p =
∏

{A p.p.a.s.|End(A)=OK }/∼=

(X − j1(A)) ∈ Fp[X ]

and likewise for QK and RK . The main difference with the method of [Eisenträger
and Lauter 2009] is that we do not find all roots of PK by a random search: we
exploit the Galois action.

6.4. Run time analysis. We proceed with the run time analysis of the algorithm
to compute the Igusa class polynomials using the ‘modified CRT-approach’ from
Section 6.3. The input of the algorithm is a degree four CM field K . The dis-
criminant D of K can be written as D1 D2

0 , with D0 the discriminant of the real
quadratic subfield K+ of K . We will give the run time in terms of D1 and D0.

First we analyze the size of the primes p used in the algorithm. The primes we
use split completely in a subfield S = K8( ji (A)) of the Hilbert class field of the
reflex field K8 of K . If GRH holds, then there exists [Lagarias and Odlyzko 1977]
an effectively computable constant c> 0, independent of K , such that the smallest
such prime p satisfies

p ≤ c · (log|disc(S/Q)|)2,

where disc(S/Q) denotes the discriminant of the extension S/Q. Since S is a
totally unramified extension of K8, we have

disc(S/Q)1/[S:Q] = disc(K8/Q)
1/[K8:Q]

and we derive disc(S/Q) = disc(K8/Q)
[S:K8]. Theorem 3.1 yields the bound

[S : K8] ≤ 4h−(K ), where h−(K )= |Cl(OK )|/|Cl(OK+)| denotes the relative class
number of K . Using the bound (see [Louboutin 2003])

h−(K )= Õ(
√

D1 D0), (6-3)
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we derive that the smallest prime p is of size Õ(D1 D0). Here, the Õ-notation
indicates that factors that are of logarithmic order in the main term have been
disregarded.

The Igusa class polynomials have rational coefficients, and at the moment the
best known bound for the logarithmic height of the denominator of a coefficient is
Õ(D3/2

1 D5/2
0 ). This bound is proven in [Streng 2010, Section 2.9] and is based on

the denominator bounds in [Goren and Lauter 2010]. A careful analysis [Streng
2010, Section 2.11] yields that each coefficient of PK , RK , QK has logarithmic
height Õ(D3/2

1 D5/2
0 ) as well. A standard argument as in [Belding et al. 2008,

Lemma 5.3] shows that the Õ(D3/2
1 D5/2

0 ) primes that we need can be taken to be
of size Õ(D2

1 D3
0) if GRH holds true. We find these primes in time Õ(D2

1 D3
0). We

remark that better bounds on the denominators of the coefficients translate into
better bounds on the size of the primes we need.

If GRH holds true, then the ideals pi in Step 1 can be chosen to have norm at most
12(log D1 D2

0)
2 by [Bach 1990]. Since the method from Section 5 for computing

the ideal V ( f ; N (pi )) is heuristic, we will rely on the following heuristic for our
analysis.

Heuristic 6.4. Given a prime l > 2, we can compute generators for the ideal
V ( f ; l) in time polynomial in l.

At the moment, our computation of V ( f ; l) only terminates in a reasonable
amount of time for l = 3. However, in theory we only spend heuristic time
(log D1 D2

0)
n in Step 1 for some n ≥ 2 that is independent of D1 and D0. This

is negligible compared to other parts of the algorithm.
We continue with the analysis of computing PK mod p. As we think that the

bound p = Õ(D2
1 D3

0) is too pessimistic, we will do the analysis in terms of both
p and D1, D0. First we analyze the time spent on the random searches to find
abelian surfaces with endomorphism ring OK . Every time we leave Step 2, we
compute a factor F |PK mod p of the (first) Igusa class polynomial. Let k ≤
2[C(K ) : m(Cl(OK8

))] be the number of factors F we need to compute. The first
time we invoke Step 2, we will with probability 1 compute a new factor F1 of PK .
The second time we call Step 2 we need to ensure that we compute a different
factor F2 |PK . Hence, we expect that we need to call Step 2 k/(k − 1) times to
compute F2. We see that we expect that we have to do Step 2

k(1+ 1/2+ · · ·+ 1/k)= Õ(k)

times to compute all factors F1, . . . , Fk .

Lemma 6.5. We have [C(K ) : m(Cl(OK8
))] ≤ 2 · 26ω(D) for any primitive quartic

CM field K , where ω(D) denotes the number of prime divisors of D.
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Proof. We will bound the index of the image of the map m̃ : Cl(OK8
)→ Cl(OK )

inducing m. By Theorem 3.1, this index differs by at most a factor

|(O∗K+)
+/NK/K+(O

∗

K )| ≤ 2

from [C(K ) : m(Cl(OK8
))].

If K/Q is dihedral with normal closure L , then the image of the norm map
NL/K : Cl(OL)→ Cl(OK ) has index at most 2 by class field theory. In the cyclic
case, it is not hard to check that =(m̃) contains the squares. It suffices to bound
the 2-torsion Cl(OK ) in this case. The 2-rank of Cl(OK ) is determined by genus
theory. Using a combination of group cohomology and Nakayama’s lemma, one
can show [Rosen 2011] that the 2-rank is at most 6t , with t the number of primes
that ramify in the cyclic CM extension K/Q. The lemma follows. �

We remark that outside a zero-density subset of very smooth integers, we have
ω(n)<2 log log n and we can then absorb the factor Õ(26ω(D))=26ω(D)Õ(log(D))
into the Õ-notation.

The probability that one of the random searches performed in this step will yield
an abelian surface Jac(C) with endomorphism ring OK is bounded from below by

h−(K )/p3
= �̃(

√
D1 D0/p3)

where we have used the effective lower bound h−(K ) = �̃(
√

D1 D0) proved in
[Louboutin 2003]. We therefore expect that we have to compute the number of
points on C and on Jac(C) for

Õ(p3/
√

D1 D0)

curves C/Fp. Since point counting on genus 2 curves is polynomial time by
[Pila 1990], this takes time Õ(p3/

√
D1 D0).

For all the curves C/Fp that satisfy equation (6-2), we have to check whether
we have End(Jac(C))∼=OK or not. The probability that End(Jac(C)) is isomorphic
to OK is bounded from below by

h−(K )∑
O h(O)

, (6-4)

where the sum ranges over all orders O⊆ OK that contain Z[π, π ]. Assuming mild
ramification conditions on the prime 2, there are only O(log n) orders O ⊆ OK of
index n; see [Nakagawa 1996, Corollary 1]. We assume the following heuristic.

Heuristic 6.6. For any quartic CM field K , there are O(log n) orders O ⊆ OK of
index n.

Justification of heuristic. As indicated in [Nakagawa 1996], the splitting condition
on 2 is purely technical and should not affect the result. �
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We can bound the class number h(O) by 2[OK : Z[π, π ]]h(OK ) by [Stevenhagen
2008, Theorem 6.7]. It follows that we can bound the probability in (6-4) by

�

(
1

[OK : Z[π, π ]]1+εh(OK+)

)
,

where we have used the bound nε for the number of divisors of n. Using the index
bound

[OK : Z[π, π ]] ≤
16p2

D0
√

D1

from [Freeman and Lauter 2008, Proposition 6.1], we expect that we have to do

O
(26ω(D) p2+2ε√D0

(
√

D1 D0)1+ε

)
endomorphism ring computations.

At the moment, the only known algorithm [Freeman and Lauter 2008] to test
whether End(Jac(C))∼=OK holds has a run time Õ(p18), and one application of this
algorithm dominates the computation of PK ∈Q[X ]. To make the run time analysis
of our algorithm easier once a better algorithm to compute End(Jac(C)) has been
found, we will use the bound O(X) for the run time to compute End(Jac(C)). In
total, we see that we spend

Õ(26ω(D)(p3/
√

D1 D0+ (p2+2ε
√

D0/(
√

D1 D0)
1+ε)X))

time in all calls of Step 2.
The action of pi on A/Fp in Step 3 is computed in polynomial time in the norm li

of pi . As li is, under GRH, of polynomial size in log(D1 D2
0), we spend time

Õ(
√

D1 D0)

for every time we call Step 3. We call Step 3 as often as Step 2, so in total we
spend time Õ(26ω(D)√D1 D0) in Step 3.

The time spent in Step 4 is negligible, and the time spent in Step 5 is Õ(
√

D1 D0).
Combining all five steps, we see that we compute PK mod p in time

Õ(26ω(D)(p3/
√

D1 D0+ (p2+2ε
√

D0/(
√

D1 D0)
1+ε)X +

√
D1 D0)). (6-5)

Theorem 6.7. If GRH and Heuristic assumptions 6.4, 6.6 hold true, then we can
compute the polynomials PK , QK , RK in probabilistic time

Õ(26ω(D)(D7
1 D11

0 + X D5+ε
1 D8+2ε

0 )).

Here, X denotes the run time of an algorithm that, given A/Fp, decides whether
End(A) is isomorphic to OK or not.
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Proof. Substitute p = Õ(D2
1 D3

0) in equation (6-5) to get the time per prime. The
result follows from the fact that we need to compute PK , RK , QK modulo p for
Õ(D3/2

1 D5/2
0 ) primes. �

We conclude this section with some remarks on the run time of our algorithm. At
the moment, the main bottleneck is checking whether End(A)∼= OK holds or not.
In Section 8 we show that a straightforward generalization of Kohel’s algorithm
[2008] is impossible and that a new approach is needed.

From a practical point of view, we are limited by the fact that we can only
compute the ideal V ( f ; 3) in a reasonable amount of time. By only using the
primes lying over 2 and 3, we only use a subgroup of the group C(K ) giving the
Galois action.

Even when these two problems are solved, there is a bottleneck not present in
the genus 1 algorithm from [Belding et al. 2008]. The random searches take time
Õ(p3/

√
D1 D0); even for the smallest prime p this is of size Õ(D5/2

1 D5/2
0 ).

Doing only the random searches for this prime already takes more time than it
takes to write down the output PK , QK , RK ∈ Q[X ]. Hence, our algorithm is at
the moment not quasilinear in the size of the output.

As noted in [Gruenewald 2010, Section 6], we can speed up this step of the
algorithm by first computing a model for the Humbert surface describing all prin-
cipally polarized abelian surfaces that have real multiplication by the quadratic
subfield K+ of K . We then perform our random search on this two-dimensional
subspace of the three-dimensional moduli space. The time for the random searches
would, for the smallest prime p, drop to

Õ(D3/2
1 D3/2

0 ).

Although this is less than the size of the output, our algorithm is not quasilinear
once all primes p are taken into account.

To get a quasilinear algorithm, we think one should do the random searches on
a one-dimensional subspace of the moduli space. This approach is an object of
further study.

7. Examples and applications

In this section we illustrate our algorithm by computing the Igusa class polynomials
modulo primes p for various CM fields. We point out the differences with the
analogous genus 1 computations.

Example 7.1. In the first example we let K = Q[X ]/(X4
+ 185X2

+ 8325) be a
cyclic CM field of degree 4. All CM types are equivalent in this case, and the reflex
field of K is K itself. The discriminant of K equals 52

·373, and the real quadratic
subfield of K is K+ = Q(

√
37). An easy computation shows that the narrow
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class group of K+ is trivial. In particular, all ideal classes of K are principally
polarizable, and we have

C(K )∼= Cl(OK ).

We compute Cl(OK )=Z/10Z= 〈p3〉, where p3 is a prime lying over 3. The prime
ideal p3 has norm 3, and its typenorm N8(p3) generates a subgroup of order 5 in
Cl(OK ).

The smallest prime that splits in the Hilbert class field of K is p = 271. We
illustrate our algorithm by computing the Igusa class polynomials for K modulo
this prime. First we do a ‘random search’ to find a principally polarized abelian
surface over Fp with endomorphism ring OK in the following way. We factor
(p)⊂ OK into primes P1,P1,P2,P2 and compute a generator π of the principal
OK -ideal P1P2. The element π has minimal polynomial

f = X4
+ 9X3

+ 331X2
+ 2439X + 73441 ∈ Z[X ].

If the Jacobian Jac(C) of a hyperelliptic curve C has endomorphism ring OK , then
the Frobenius morphism of Jac(C) is a root of either f (X) or f (−X). With the
factorization

f = (X − τ1)(X − τ2)(X − τ3)(X − τ4) ∈ K [X ],

a necessary condition for Jac(C) to have endomorphism ring OK is

#C(Fp) ∈ {p+ 1± (τ1+ τ2+ τ3+ τ4)} = {261, 283}

and

# Jac(C)(Fp) ∈ { f (1), f (−1)} = {71325, 76221}.

We try random values ( j1, j2, j3)∈ F3
p and write down a hyperelliptic curve C with

those Igusa invariants using Mestre’s algorithm [Mestre 1991; Cardona and Quer
2005]. If C satisfies the 2 conditions above, then we check whether Jac(C) has
endomorphism ring OK using the algorithm in [Freeman and Lauter 2008]. If it
passes this test, we are done. Otherwise, we select a new random value ( j1, j2, j3).

We find that w0 = (133, 141, 89) is a set of invariants for a surface A/Fp with
endomorphism ring OK . We apply Algorithm 6.2 tow0. The Igusa–Clebsch invari-
ants corresponding to w0 are [133, 54, 82, 56]. With the notation from Section 4,
we have s2 = 162, s3 = 106, s5 = 128, s6 = 30. The Satake sextic polynomial

S= X6
+ 190X4

+ 55X3
+ 82X2

+ 18X + 63 ∈ Fp[X ]
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factors over Fp5 and we write Fp5 = Fp(α), where α satisfies α5
+ 2α+ 265 = 0.

We express the 6 roots of S in terms of α and pick

f 4
1 = 147α4

+ 147α3
+ 259α2

+ 34α+ 110,

f 4
2 = 176α4

+ 211α3
+ 14α2

+ 134α+ 190,

f 4
3 = 163α4

+ 93α3
+ 134α2

+ 196α+ 115,

f 4
4 = 226α4

+ 261α3
+ 99α2

+ 9α+ 27

as values for the fourth powers of our Siegel modular functions. The fourth roots
of ( f 4

1 , f 4
2 , f 4

3 , f 4
4 ) are all defined over Fp10 , but the proof of Theorem 4.2 shows

that not every choice corresponds to the Igusa invariants of A. We pick fourth roots
(r1, r2, r3, r4) such that the polynomial P− from Section 4 vanishes when evaluated
at (T, f1, f2, f3, f4)= (θ

4
(0,1),(0,0), r1, r2, r3, r4). Here, θ4

(0,1),(0,0) is computed from
the Igusa–Clebsch invariants. For an arbitrary choice of fourth roots for r1, r2, r3,
there are two solutions ±r4 to P− = 0. Indeed, if we take Fp10 = Fp(β) with
β10
+β6
+133β5

+10β4
+256β3

+74β2
+126β+6=0, then the tuple (r1, r2, r3, r4)

given by

r1 = 179β9
+ 69β8

+ 203β7
+ 150β6

+ 29β5
+ 258β4

+ 183β3
+ 240β2

+ 255β + 226,

r2 = 142β9
+ 105β8

+ 227β7
+ 244β6

+ 72β5
+ 155β4

+ 2β3
+ 129β2

+ 137β + 23,

r3 = 63β9
+ 112β8

+ 132β7
+ 244β6

+ 94β5
+ 40β4

+ 191β3
+ 263β2

+ 85β + 70,

r4 = 190β9
+ 41β8

+ 62β7
+ 170β6

+ 151β5
+ 240β4

+ 270β3
+ 56β2

+ 16β + 257

is a set of invariants for A together with some level 8-structure.
Next we specialize our ideal V ( f ; 3) at (W1, X1, Y1, Z1) = (r1, r2, r3, r4) and

we solve the remaining system of 85 equations in 4 unknowns. Let (r ′1, r
′

2, r
′

3, r
′

4)

be the solution where

r ′1 = 184β9
+48β8

+99β7
+83β6

+20β5
+232β4

+16β3
+223β2

+85β+108.

The quadruple (r ′1, r
′

2, r
′

3, r
′

4) are invariants of an abelian surface A′ together with
level 8-structure that is (3, 3)-isogenous to A. To map this quadruple to the Igusa
invariants of A′, we compute a root of the quadratic polynomial

P−(T, r ′1, r
′

2, r
′

3, r
′

4).

This root is a value for θ4
(0,1),(0,0). Since we now know all theta fourth powers, we

can apply the formulas relating theta functions and Igusa functions in Section 4.1
to find the Igusa triple (238, 10, 158).

In total, we find 16 Igusa triples defined over Fp. All these triples are Igusa in-
variants of surfaces that have endomorphism algebra K . To check which ones have
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endomorphism ring OK , we apply the algorithm of Freeman and Lauter [2008]. We
find that only the four triples

(253, 138, 96), (257, 248, 58), (238, 10, 158), (140, 159, 219)

are invariants of surfaces with endomorphism ring OK . The fact that we find 4 new
sets of invariants should come as no surprise. Indeed, there are 4 ideals of norm 3
lying over 3 in OK and each ideal gives us an isogenous surface.

Since the typenorm map m : Cl(OK )→ C(K ) is not surjective, we are forced
to do a second random search to find a ‘new’ abelian surface with endomorphism
ring OK . We apply our isogeny algorithm to w1 = (74, 125, 180) as before, and
we again find 4 new sets of invariants:

(174, 240, 246), (193, 85, 15), (268, 256, 143), (75, 263, 182).

In the end we expand the Igusa polynomials

PK = X10
+ 92X9

+ 72X8
+ 217X7

+ 98X6

+ 195X5
+ 233X4

+ 140X3
+ 45X2

+ 123X + 171,

QK = X10
+ 232X9

+ 195X8
+ 45X7

+ 7X6

+ 195X5
+ 173X4

+ 16X3
+ 33X2

+ 247X + 237,

RK = X10
+ 240X9

+ 57X8
+ 213X7

+ 145X6

+ 130X5
+ 243X4

+ 249X3
+ 181X2

+ 134X + 81

modulo p = 271.

Example 7.2. In the previous example, all the prime ideals of K lying over 3 gave
rise to an isogenous abelian surface. This phenomenon does not always occur.
Indeed, let K be a primitive quartic CM field and let p1, . . . , pn be the prime
ideals of norm 3. If we have a principally polarized abelian surface A/Fp with
endomorphism ring OK , then the number of (3, 3)-isogenous abelian surfaces with
the same endomorphism ring equals the cardinality of

{m(p1), . . . ,m(pn)}.

There are examples where this set has less than n elements.
Take the cyclic field K =Q[X ]/(X4

+219X2
+10512). The class group of K is

isomorphic to Z/2Z×Z/2Z. The prime 3 ramifies in K , and we have (3)= p2
1p

2
2.

The primes p1 and p2 in fact generate Cl(OK ). It is easy to see that for this field
we have

m(p1)= m(p2) ∈ C(K ),

so we only find one isogenous surface.
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Example 7.3. Our algorithm is not restricted to cyclic CM fields. In this example
we let K =Q[X ]/(X4

+ 22X2
+ 73) be a CM field with Galois group D4. There

are 2 equivalence classes of CM types. We fix a CM type 8 : K → C2 and let K8

be the reflex field for 8. We have K8 =Q[X ]/(X4
+ 11X2

+ 12), and K and K8

have the same Galois closure L .
Since the real quadratic subfield K+ = Q(

√
3) has narrow class group Z/2Z,

the group C(K ) fits in an exact sequence

1−→ Z/2Z−→ C(K )−→ Z/4Z−→ Z/2Z−→ 1

and a close inspection yields C(K )∼=Z/4Z. The prime 3 factors as (3)= p1p2p
2
3 in

the reflex field, and we have Cl(OK8
)=Z/4Z=〈[p1]〉. The element m(p1)∈C(K )

has order 4, and under the map

C(K )
f
−→ Cl(OK )= Z/4Z,

the element f (m(p1)) has order 2. We see that even though the ideal NL/K (p1OL)

has order 2 in the class group, the typenorm of p1 has order 4.
Of the 4 ideal classes of K , only 2 ideal classes are principally polarizable

for 8. The other 2 ideal classes are principally polarizable for ‘the other’ CM
type. Furthermore, the two principally polarizable ideal classes each have two
principal polarizations.

The prime p = 1609 splits completely in the Hilbert class field of K8. As
in Example 7.1, we do a random search to find that a surface A/Fp with Igusa
invariants w0 = (1563, 789, 704) ∈ F3

p has endomorphism ring OK . We apply
Algorithm 6.2 to this point. As output, we get w0 again and two new points

w1 = (1396, 1200, 1520) and w2 = (1350, 1316, 1483).

The fact that we find w0 again should come as no surprise since m(p3) ∈ C(K ) is
the trivial element. The points w1 and w2 correspond to p1 and p2.

As expected we compute that the cycle

w0 = (1563, 789, 704)
p1
−→ (1396, 1200, 1520)

p1
−→ (1276, 1484, 7)

p1
−→ (1350, 1316, 1483)

p1
−→ w0

has length 4. To find the full Igusa class polynomials modulo p, we do a second
random search. The remaining 4 points are (782, 1220, 257), (1101, 490, 1321),
(577, 35, 471), (1154, 723, 1456).

8. Obstruction to isogeny volcanoes

For an ordinary elliptic curve E/Fp over a finite field, Kohel [1996] introduced
an algorithm to compute the endomorphism ring End(E), which has recently been
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improved in [Bisson and Sutherland 2011]. One first computes the endomorphism
algebra K by computing the trace of the Frobenius morphism π of E . If the index
[OK : Z[π ]] is only divisible by small primes l, then Kohel’s algorithm uses the
l-isogeny graph to determine the endomorphism ring. The algorithm depends on
the fact that the graph of l-isogenies looks like a volcano, and one can quotient by
subgroups of order l to move down the volcano until one hits the bottom. We refer
to [Fouquet and Morain 2002; Kohel 1996] for the details of this algorithm. This
approach succeeds because of the following fact.

Lemma 8.1. Let E , E ′/Fp be two ordinary elliptic curves whose endomorphism
rings are isomorphic to the same order O in an imaginary quadratic field K . Let
l 6= p be a prime such that the index [OK : O] is divisible by l. Then there are no
isogenies of degree l between E and E ′.

Proof. This result is well known. Since the proof helps us understand what goes
wrong in dimension 2, we give the short proof. Suppose that there does exist an
isogeny ϕ : E → E ′ of degree l. By the Deuring lifting theorem [Lang 1987,
Theorem 13.14], we can lift ϕ to an isogeny ϕ̃ : Ẽ→ Ẽ ′ defined over the ring class
field for O. By CM theory, we can write Ẽ ′ = C/I with I an invertible O-ideal
of norm l. But since l divides the index [OK : O], there are no invertible ideals of
norm l. �

Unlike the elliptic curve case, there are a greater number of possibilities for the
endomorphism ring of an (l, l)-isogenous abelian surface A/Fp. Necessarily, the
order must contain Z[π, π ], where π corresponds to the Frobenius endomorphism
of A. Let ϕ : A→ A′ be an (l, l)-isogeny of principally polarized abelian surfaces
where O = End(A) contains O′ = End(A′). Since ϕ splits multiplication by l, it
follows that Z+ lO⊆ O′ ⊆ O and hence O′ has index dividing l3 in O. In addition,
since the Z-rank is greater than two, it is possible to have several nonisomorphic
suborders of O having the same index.

A natural question is whether the ‘volcano approach’ for elliptic curves can be
generalized to ordinary principally polarized abelian surfaces A/Fp. The exten-
sion of Schoof’s algorithm [Pila 1990] enables us to compute the endomorphism
algebra K = End(A)⊗Z Q, and the problem is to compute the subring End(A)=
O ⊆ OK . By working with explicit l-torsion points for primes l |[OK : Z[π, π ]],
one can determine this subring [Eisenträger and Lauter 2009; Freeman and Lauter
2008]. This approach requires working over large extension field of Fp and a
natural question is whether we can generalize the volcano algorithm directly by
using (l, l)-isogenies between abelian surfaces. However, the statement analogous
to Lemma 8.1 — there are no (l, l)-isogenies between A and A′ if End(A) and
End(A′) have isomorphic endomorphisms rings whose conductor in OK divides l —
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does not hold in general. This is a theoretical obstruction to a straightforward
generalization of the algorithm for elliptic curves.

The next example shows that the analogue of Lemma 8.1 for abelian surfaces
fails.

Example 8.2. In Example 7.3 we found the point (782, 1220, 257)∈ F3
1609. Below

we depict the connected component of the (3, 3)-isogeny graph. The white dots
represent surfaces with endomorphism ring OK , and the black dots correspond to
surfaces whose endomorphism ring is nonmaximal. The lattice of suborders of OK

of 3-power index that contain Z[π, π ] is completely described by the indices of
the suborders in this case. We have Z[π, π ] ⊂ O27 ⊂ O9 ⊂ O3 ⊂ OK , where the
subscript denotes the index in OK .

The leaf nodes all have endomorphism ring O27 and the remaining eight black
vertices have endomorphism ring O3. We observe that there are cycles in this graph
other than at the ‘surface’ of the volcano. �

The reason that cycles can occur is the following. Just like in Lemma 8.1, we
can lift an isogeny ϕ : A→ A′ to characteristic zero. By CM theory, we can now
write Ã=C2/8(I ) for some invertible O-ideal I . The isogenous surface Ã′ equals
C2/8(a−1 I ) for an invertible O-ideal a of norm l2. The difference from the elliptic
curve case is that there do exist invertible O-ideals of norm l2. Hence, the isogeny
graph for abelian surfaces need not look like a ‘volcano’.

Another ingredient of the endomorphism ring algorithm for elliptic curves can
fail. In the elliptic curve case, the following property of the l-isogeny graph is
essential. Suppose that E/Fp has endomorphism ring O and let ϕ : E→ E ′ be an
isogeny from E to an elliptic curve with endomorphism ring of index l. If ϕ is
defined over Fp, then all l + 1 isogenies of degree l are defined over Fp.

The analogous statement for dimension 2 is that all (l, l)-isogenies are defined
over Fp as soon as there is one (l, l)-isogeny ϕ : A→ A′ that is defined over Fp.
Here, A′ is an abelian surface with endomorphism ring of index dividing l3. This
statement is not true, as the following example shows.

Example 8.3. Consider the cyclic quartic CM field K =Q[X ]/(X4
+12X2

+18),
which has class number 2. The Igusa class polynomials have degree 2 and over F127
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we find the corresponding moduli points w0= (118, 71, 63) and w1= (98, 82, 56).
The isogeny graph is not regular:

The white dots represent the points having maximal endomorphism ring. There
are 7 points isogenous to w0, which includes w1. One cannot identify w1 from the
graph structure alone. This demonstrates that the isogeny graph is insufficient to
determine the endomorphism rings; the polarized CM lattices are also required. �

The shape of this graph can be explained as follows. Let π ∈ OK correspond
to the Frobenius morphism of a surface A belonging to the vertex w1. If A′ is
(l, l)-isogenous to A, then A′ is defined over Fp if and only if its endomorphism
ring contains π . Since there are several orders of index dividing l3 in OK , it can
happen that π is contained in some of them, and not in others. In our example, the
black points all have the same endomorphism ring O′ with π ∈ O′. The 33 other
isogenous surfaces have an endomorphism ring that contains π3, but not π .
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