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Renormalization and quantum field theory
Richard E. Borcherds

The aim of this paper is to describe how to use regularization and renormaliza-
tion to construct a perturbative quantum field theory from a Lagrangian. We
first define renormalizations and Feynman measures, and show that although
there need not exist a canonical Feynman measure, there is a canonical orbit
of Feynman measures under renormalization. We then construct a perturbative
quantum field theory from a Lagrangian and a Feynman measure, and show that
it satisfies perturbative analogues of the Wightman axioms, extended to allow
time-ordered composite operators over curved spacetimes.

1. Introduction

We give an overview of the construction of a perturbative quantum field theory
from a Lagrangian. We start by translating some terms in physics into mathematical
terminology.

Definition 1. Spacetime is a smooth finite-dimensional metrizable manifold M ,
together with a “causality” relation 6 that is closed, reflexive, and transitive. We
say that two points are spacelike separated if they are not comparable; in other
words, if neither x 6 y nor y 6 x .

The causality relation a 6 b means informally that a occurs before b. The
causality relation will often be constructed in the usual way from a Lorentz metric
with a time orientation, but since we do not use the Lorentz metric for anything else
we do not bother to give M one. The Lorentz metric will later appear implicitly in
the choice of a cut propagator, which is often constructed using a metric.

Definition 2. The sheaf of classical fields 8 is the sheaf of smooth sections of
some finite-dimensional super vector bundle over spacetime.
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When the sheaf of classical fields is a supersheaf, one uses the usual conventions
of superalgebra: in particular the symmetric algebras used later are understood
to be symmetric algebras in the superalgebra sense, and the usual superalgebra
minus signs should be inserted into formulas whenever the order of two terms is
exchanged.

As usual, a global section of a sheaf of things is called a thing, so a classical
field ϕ is a global section of the sheaf 8 of classical fields, and so on. (A subtle
point is sometimes things called classical fields in the physics literature are better
thought of as sections of the dual of the sheaf of classical fields; in practice this
distinction does not matter because the sheaf of classical fields usually comes with
a bilinear form giving a canonical isomorphism with its dual.)

Definition 3. The sheaf of derivatives of classical fields or simple fields is the sheaf
J8=Hom(J,8), where J is the sheaf of jets of M and the Hom is taken over the
smooth functions on M , equal to the inverse limit of the sheaves of jets of finite
order of M , as in [Grothendieck 1967, 16.3].

Definition 4. The sheaf of (polynomial) Lagrangians or composite fields S J8 is
the symmetric algebra of the sheaf J8 of derivatives of classical fields.

Its sections are (polynomial) Lagrangians, in other words polynomial in fields
and their derivations, so for example λϕ4

+ m2ϕ2
+ ϕ∂2

i ϕ is a Lagrangian, but
sin(ϕ) is not.

Perturbative quantum field theories depend on the choice of a Lagrangian L ,
which is the sum of a free Lagrangian L F that is quadratic in the fields, and an
interaction Lagrangian L I ∈ S J8⊗C[[λ1, . . . , λn]] whose coefficients are infini-
tesimal, in other words elements of a formal power series ring C[[λ1, . . . , λn]] over
the reals with constant terms 0.

Definition 5. The sheaf of Lagrangian densities or local actions ωS J8=ω⊗S J8
is the tensor product of the sheaf S J8 of Lagrangians and the sheaf ω of smooth
densities (taken over smooth functions on M).

For a smooth manifold, the (dualizing) sheaf ω of smooth densities (or smooth
measures) is the tensor product of the orientation sheaf with the sheaf of differ-
ential forms of highest degree, and is noncanonically isomorphic to the sheaf of
smooth functions. Densities are roughly “things that can be locally integrated”.
For example, if M is oriented, then (λϕ4

+ m2ϕ2
+ ϕ∂2

i ϕ)d
nx is a Lagrangian

density.
We use 0 and 0c to stand for spaces of global and compactly supported sec-

tions of a sheaf. These will usually be spaces of smooth functions (or compactly
supported smooth functions) in which case they are topologized in the usual way
so that their duals are compactly supported distributions (or distributions) taking
values in some sheaf.
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Definition 6. A (nonlocal) action is a polynomial in local actions, in other words
an element of the symmetric algebra S0ωS J8 of the real vector space 0ωS J8
of local actions.

We do not complete the symmetric algebra, so expressions such as eiλL are not
in general nonlocal actions, unless we work over some base ring in which λ is
nilpotent.

We will use ∗ for complex conjugation and for the antipode of a Hopf algebra
and for the adjoint of an operator and for the anti-involution of a ∗-algebra. The
use of the same symbol for all of these is deliberate and indicates that they are all
really special cases of a universal “adjoint” or “antipode” operation that acts on
everything: whenever two of these operations are defined on something they are
equal, so can all be denoted by the same symbol.

The quantum field theories we construct depend on the choice of a cut propagator
1 that is essentially the same as the 2-point Wightman distribution

1(ϕ1, ϕ2)=

∫
x,y
〈0|ϕ1(x)ϕ2(y)|0〉dxdy

Definition 7. A propagator 1 is a continuous bilinear map 0cω8×0cω8→ C.

• 1 is called local if 1( f, g)=1(g, f ) whenever the supports of f and g are
spacelike separated.

• 1 is called Feynman if it is symmetric: 1( f, g)=1(g, f ).

• 1 is called Hermitian if 1∗ = 1, where 1∗ is defined by 1∗( f ∗, g∗) =
1(g, f )∗ (with a change in order of f and g).

• 1 is called positive if 1( f ∗, f )> 0 for all f .

• 1 is called cut if it satisfies the following “positive energy” condition: at each
point x of M there is a partial order on the cotangent space defined by a proper
closed convex cone Cx , such that if (p, q) is in the wave front set of1 at some
point (x, y) ∈ M2 then p 6 0 and q > 0. Also, as a distribution, 1 can be
written in local coordinates as a boundary value of something in the algebra
generated by smooth functions and powers and logarithms of polynomials (the
boundary values taken so that the wave front sets lie in the regions specified
above). Moreover if x = y then p+ q = 0.

A propagator can also be thought of as a complex distribution on M×M taking
values in the dual of the external tensor product J8 � J8. In particular it has
a wave front set (see [Hörmander 1990]) at each point of M2, which is a cone
in the imaginary cotangent space of that point. If A and B are in 0c8, then
1(A, B) is defined to be a compactly supported distribution on M × M , defined
by 1(A, B)( f, g)=1(A f, B f ) for f and g in 0ω.
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The key point in the definition of a cut propagator is the condition on the wave
front sets, which distinguishes the cut propagators from other propagators such as
Feynman propagators or advanced and retarded propagators that can have more
complicated wave front sets. For most common cut propagators in Minkowski
space, this follows from the fact that their Fourier transforms have support in the
positive cone. The condition about being expressible in terms of smooth functions
and powers and logs of polynomials is a minor technical condition that is in practice
satisfied by almost any reasonable example, and is used in the proof that Feynman
measures exist.

If (p1, . . . pn) is in the imaginary cotangent space of a point of Mn , then we
write (p1, . . . pn)> 0 if p j > 0 for all j , and call it positive if it is not zero.

Example 8. Over Minkowski space, most of the usual cut propagators are positive
(except for ghost fields), local, and Hermitian. Most of the ideas for the proof
of this can be seen for the simplest case of the propagator for massive Hermitian
scalar fields. Using translation invariance, we can write 1(x, y) = 1(x − y) for
some distribution 1 on Minkowski spacetime. Then the Fourier transform of this
in momentum space is a rotationally invariant measure supported on one of the
two components of vectors with p2

= m2. This propagator is positive because
the measure in momentum space is positive. It satisfies the wave front set part of
the cut condition because the Fourier transform has support in the positive cone,
and explicit calculation shows that it can be written in terms of powers and logs of
polynomials. It satisfies locality because it is invariant under rotations that preserve
the direction of time, and under such rotations any space-like vector is conjugate to
its negative, so 1(x)=1(−x) whenever x is spacelike, in other words 1(x, y)=
1(y, x) whenever x and y are spacelike separated. The corresponding Feynman
propagator is given by 1/(p2

+m2
+ iε) where the iε indicates in which direction

one integrates around the poles, so the cut propagator is just the residue of the
Feynman propagator along one of the 2 components of the 2-sheeted hyperboloid
p2
= m2.
For other fields such as spinor fields in Minkowski space, the sheaf of classical

fields will usually be some sort of spin bundle. The propagators can often be
expressed in terms of the the propagator for a scalar field by acting on it with
polynomials in momentum multiplied by Dirac’s gamma matrices γ µ, for example
i(γ µ pµ+m)/(p2

−m2). Unfortunately there are a bewildering number of different
notational and sign conventions for gamma matrices.

Compactly supported actions give functions on the space 08 of smooth fields,
by integrating over spacetime M . A Feynman measure is a sort of analogue of
Haar measure on a finite-dimensional real vector space. We can think of a Haar
measure as an element of the dual of the space of continuous compactly supported
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functions. For infinite-dimensional vector spaces there are usually not enough
continuous compactly supported functions, but instead we can define a measure
to be an element of the dual of some other space of functions. We will think of
Feynman measures as something like elements of the dual of all functions that
are given by free field Gaussians times a compactly supported action. In other
words a Feynman measure should assign a complex number to each compactly
supported action, formally representing the integral over all fields of this action
times a Gaussian ei L F , where we think of the action as a function of classical fields
(or rather sections of the dual of the space of classical fields, which can usually
be identified with classical fields). Moreover the Feynman measure should satisfy
some sort of analogue of translation invariance.

The space ei L F S0cωS J8 is a free rank 1 module over S0cωS J8 generated by
the basis element ei L F , which can be thought of either as a formal symbol or a
formal power series. Its elements can be thought of as representing functions of
classical fields that are given by a polynomial times the Gaussian ei L F , and will
be the functions that the Feynman measure is defined on. The symmetric algebra
S0cωS J8 is topologized as the direct sum of the spaces Sn0cωS J8, each of
which is topologized by regarding it as a space of smooth test functions over Mn .

For the definition of a Feynman measure we need to extend the propagator 1 to
a larger space as follows. We think of the propagator 1 as a map taking 0c J8⊗
0c J8 to distributions on M×M . We then extend it a map from0c S J8×0c S J8 to
distributions on M×M by putting 1(a1 · · · an, b1 · · · bn)=

∑
σ∈Sn

1(a1, bσ(1))×
· · · ×1(a1, bσ(n)) where the sum is over all elements of the symmetric group Sn

(and defining it to be 0 for arguments of different degrees). Finally we extend
it to a map from Sm0c S J8× Sn0c S J8 to distributions on Mm

× Mn using the
“bicharacter” property: in other words 1(AB,C)=

∑
1(A,C ′)1(B,C ′′) where

the coproduct of C is
∑

C ′⊗C ′′, and similarly for 1(A, BC).

Definition 9. A Feynman measure is a continuous linear map

ω : ei L F S0cωS J8→ C.

The Feynman measure is said to be associated with the propagator 1 if it satisfies
the following conditions:

• Smoothness on the diagonal: Whenever (p1, . . . , pn) is in the wave front set
of ω at the point (x, . . . , x) on the diagonal, then p1+ · · ·+ pn = 0

• Nondegeneracy: there is a smooth nowhere vanishing function g such that
ω(ei L Fv) is

∫
M gv for v in 0cωS0 J8= 0cω.

• Gaussian condition, or weak translation invariance: For A ∈ Sm0cωS J8,
B ∈ Sn0cωS J8, with both sides interpreted as distributions on Mm+n , we
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have
ω(AB)=

∑
ω(A′)1(A′′, B ′′)ω(B ′)

whenever there is no element in the support of A that is 6 some element of
the support of B. Here

∑
A′ ⊗ A′′ ∈ S0cωS J8 ⊗ S0c S J8 is the image

of A under the map Sm0cωS J8→ Sm0cωS J8⊗ Sm0c S J8 induced by the
coaction ωS J8→ωS J8⊗S J8 of S J8 on ωS J8, and similarly for B. The
product on the right is a product of distributions, using the extended version
of 1 defined just before this definition.

We explain what is going on in this definition. We would like to define the value
of the Feynman measure to be a sum over Feynman diagrams, formed by joining
up pairs of fields in all possible ways by lines, and then assigning a propagator
to each line and taking the product of all propagators of a diagram. This does
not work because of ultraviolet divergences: products of propagators need not be
defined when points coincide. If these products were defined then they would
satisfy the Gaussian condition, which then says roughly that if the vertices are
divided into two disjoint subsets a and b, then a Feynman diagram can be divided
into a subdiagram with vertices a, a subdiagram with vertices b, and some lines
between a and b. The value ω(AB) of the Feynman diagram would then be the
product of its value ω(A′) on a, the product 1(A′′, B ′′) of all the propagators of
lines joining a and b, and its value ω(B ′) on b. The Gaussian condition need not
make sense if some point of a is equal to some point of b because if these points are
joined by a line then the corresponding propagator may have a bad singularity, but
does make sense whenever all points of a are not ≤ all points of b. The definition
above says that a Feynman measure should at least satisfy the Gaussian condition
in this case, when the product is well defined.

Unfortunately the standard notation ω for a dualizing sheaf, such as the sheaf of
densities, is the same as the standard notation ω for a state in the theory of operator
algebras, which the Feynman measure will be a special case of. It should be clear
from the context which meaning of ω is intended.

If ω is a Feynman measure and A ∈ ei L F Sn0cωS J8 then ω(A) is a complex
number, but can also be considered as the compactly supported density on Mn

taking a smooth f to ω(A)( f ) = ω(A f ). The integral of this density ω(A) over
spacetime is just the complex number ω(A).

Since ei L F S0cωS J8 is a coalgebra (where elements of 0cωS J8 are primitive
and ei L F is grouplike), the space of Feynman measures is an algebra, whose product
is called convolution.

The nondegeneracy condition just excludes some uninteresting degenerate cases,
such as the measure that is identically zero, and the function g appearing in it
is usually normalized to be 1. The condition about smoothness on the diagonal
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implies that the product on the right in the Gaussian condition is defined. This is
because ω has the property that if an element (p1, . . . pn) of the wave front set
of some point is nonzero then its components cannot all be positive and cannot
all be negative. This shows that the wave front sets are such that the product of
distributions is defined.

If A is in ei L F S0cωS J8, then ω(A) can be thought of as a Feynman integral

ω(A)=
∫

A(ϕ)Dϕ,

where L F is a quadratic action with cut propagator1, and where A is considered to
be a function of fields ϕ. The integral is formally an integral over all classical fields.
The Gaussian condition is a weak form of translation invariance of this measure un-
der addition of classical fields. Formally, translation invariance is equivalent to the
Gaussian condition with the condition about supports omitted and cut propagators
replaced by Feynman propagators, but this is not well defined because the Feynman
propagators can have such bad singularities that their products are sometimes not
defined when two spacetime points coincide.

The Feynman propagator 1F of a Feynman measure ω is defined to be the
restriction of ω to 0cω8×0cω8. It is equal to the cut propagator at “time-ordered”
points (x, y)∈M2 where x 
 y, but will usually differ if x 6 y. As it is symmetric,
it is determined by the cut propagator except on the diagonal of M×M . Unlike cut
propagators, Feynman propagators may have singularities on the diagonal whose
wave front sets are not contained in a proper cone, so that their products need not
be defined.

Any symmetric algebra SX over a module X has a natural structure of a com-
mutative and cocommutative Hopf algebra, with the coproduct defined by making
all elements of X primitive (in other words, 1x = x ⊗ 1 + 1 ⊗ x for x ∈ X ).
In other words, SX is the coordinate ring of a commutative affine group scheme
whose points form the dual of X under addition. For general results about Hopf
algebras see [Abe 1980]. Similarly S J8 is a sheaf of commutative cocommutative
Hopf algebras, with a coaction on itself and the trivial coaction on ω, and so has
a coaction on SωS J8, preserving the coproduct of SωS J8. It corresponds to the
sheaf of commutative affine algebraic groups whose points correspond to the sheaf
J8 under addition.

Definition 10. A renormalization is an automorphism of SωS J8 preserving its
coproduct and the coaction of S J8. The group of renormalizations is called the
ultraviolet group.

The justification for this rather mysterious definition is Theorem 15, which
shows that renormalizations act simply transitively on the Feynman measures asso-
ciated to a given local cut propagator. In other words, although there is no canonical
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Feynman measure on the space of classical fields, there is a canonical orbit of such
measures under renormalization.

More generally, renormalizations are global sections of the sheaf of renormal-
izations (defined in the obvious way), but we will make no use of this viewpoint.

The (infinite-dimensional) ultraviolet group really ought to be called the “renor-
malization group”, but unfortunately this name is already used for a quite different
1-dimensional group. The “renormalization group” is the group of positive real
numbers, together with an action on Lagrangians by “renormalization group flow”.
The relation between the renormalization group and the ultraviolet group is that
the renormalization group flow can be thought of as a nonabelian 1-cocycle of
the renormalization group with values in the ultraviolet group, using the action of
renormalizations on Lagrangians that will be constructed later.

The ultraviolet group is indirectly related to the Hopf algebras of Feynman di-
agrams introduced in [Kreimer 1998] and applied to renormalization in [Connes
and Kreimer 2000], though this relation is not that easy to describe. First of all
their Hopf algebras correspond to Lie algebras, and the ultraviolet group has a
Lie algebra, and these two Lie algebras are related. There is no direct relation
between Connes and Kreimer’s Lie algebras and the Lie algebra of the ultraviolet
group, in the sense that there seems to be no natural homomorphism in either
direction. However there seems to be a sort of intermediate Lie algebra that has
homomorphisms to both. This intermediate Lie algebra (or group) can be defined
using Feynman diagrams decorated with smooth test functions rather than the sheaf
SωS J8 used here. Unfortunately all my attempts to explain the product of this Lie
algebra explicitly have resulted in an almost incomprehensible combinatorial mess
so complicated that it is unusable. Roughly speaking, the main differences between
the ultraviolet group and the intermediate Lie algebra is that the Lie algebra of the
ultraviolet group amalgamates all Feynman diagrams with the same vertices while
the intermediate Lie algebra keeps track of individual Feynman diagrams, and the
main difference between the intermediate Lie algebra and Kreimer’s algebra is that
the intermediate Lie algebra is much fatter than Kreimer’s algebra because it has
infinite-dimensional spaces of smooth functions in it. In some sense Kreimer’s
algebra could be thought of as a sort of skeleton of the intermediate Lie algebra.

All reasonable Feynman measures for a given free field theory are equivalent up
to renormalization, but it is not easy to show that at least one exists. We do this by
following the usual method of constructing a perturbative quantum field theory in
physics. We first regularize the cut local propagator which produces a meromorphic
family of Feynman measures, following Etingof [1999, pages 597–607] in using
Bernstein’s theorem [1972] on the analytic continuation of powers of a polynomial
to construct the regularization. We then use an infinite renormalization to eliminate
the poles of the regularized Feynman measure in order of their complexity.
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A quantum field theory satisfying the Wightman axioms [Streater and Wightman
2000, §3.1] is determined by its Wightman distributions, which are given by linear
maps ωn : T n0cω8→ C from the tensor powers of the space of test functions for
each n. We will follow H. J. Borchers [1962] in combining the Wightman distribu-
tions into a Wightman functional ω : T0cω8→C on the tensor algebra T0cω8 of
the space 0cω8 of test functions (which is sometimes called a Borchers algebra or
Borchers-Uhlmann algebra or BU-algebra). In order to accommodate composite
operators we extend the algebra T0cω8 to the larger algebra T0cωS J8, and to
accommodate time ordered operators we extend it further to TS0cωS J8. In this
set up it is clear how to accommodate perturbative quantum field theories: we just
allow ω to take values in a space of formal power series C[[λ]] = C[[λ1, λ2, . . .]]

rather than C. For regularization ω sometimes takes values in a ring of mero-
morphic functions. There is one additional change we need: it turns out that the
elements of 0cωS J8 do not really represent operators on a space of physical states,
but are better thought of as operators that map a space of incoming states to a space
of outgoing states, and vice versa. If we identify the space of incoming states
with the space of physical states, this means that only products of an even number
of operators of S0cωS J8 act on the space of physical states. So the functional
defining a quantum field theory is really defined on the subalgebra T0S0cωS J8
of even degree elements.

So the main goal of this paper is to construct a linear map from T0S0cωS J8
to C[λ] from a given Lagrangian, and to check that it satisfies analogues of the
Wightman axioms.

The space of physical states of the quantum field theory can be reconstructed
from ω as follows.

Definition 11. Let ω : T → C be an R-linear map between real ∗-algebras.

• ω is called Hermitian if ω∗ = ω, where ω∗(a∗)= ω(a)∗

• ω is called positive if it maps positive elements to positive elements, where
an element of a ∗-algebra is called positive if it is a finite sum of elements of
the form a∗a.

• ω is called a state if it is positive and normalized by ω(1)= 1

• The left, right, or 2-sided kernel of ω is the largest left, right or 2-sided ideal
closed under * on which ω vanishes.

• The space of physical states of ω is the quotient of T by the left kernel of ω.
Its sesquilinear form is 〈a, b〉 = ω(a∗b), and its vacuum vector is the image
of 1.

• The algebra of physical operators of ω is the quotient of T by the 2-sided
kernel of ω.
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The algebra of physical operators is a ∗-algebra of operators with a left action
on the physical states. If ω is positive or Hermitian then so is the sesquilinear form
〈 , 〉. When ω is Hermitian and positive and C is the complex numbers the left
kernel of ω is the set of vectors a with ω(a∗a)= 0, and the definition of the space
of physical states is essentially the GNS construction and is also the main step of
the Wightman reconstruction theorem. In this case the completion of the space of
physical states is a Hilbert space.

The maps ω we construct are defined on the real vector space T0S0cωS J8 and
will initially be R-linear. It is often convenient to extend them to be C[[λ]]-linear
maps defined on T0S0cωS J8⊗C[[λ]], in which case the corresponding space of
physical states will be a module over C[[λ]] and its bilinear form will be sesquilinear
over C[[λ]].

The machinery of renormalization and regularization has little to do with per-
turbation theory or the choice of Lagrangian: instead, it is needed even for the
construction of free field theories if we want to include composite operators. The
payoff for all the extra work needed to construct the composite operators in a free
field theory comes when we construct interacting field theories from free ones. The
idea for constructing an interacting field theory from a free one is simple: we just
apply a suitable automorphism (or endomorphism) of the algebra T0S0cωS J8 to
the free field state ω to get a state for an interacting field. For example, if we
apply an endomorphism of the sheaf ωS J8 then we get the usual field theories of
normal ordered products of operators, which are not regarded as all that interesting.
For any Lagrangian L there is an infinitesimal automorphism of T0S0cωS J8 that
just multiplies elements of S0cωS J8 by i L , which we would like to lift to an
automorphism ei L . The construction of an interacting quantum field theory from a
Feynman measure ω and a Lagrangian L is then given by the natural action e−i Lω

of the automorphism e−i L on the state ω. The problem is that ei L I is only defined
if the interaction Lagrangian has infinitesimal coefficients, due to the fact that we
only definedω on polynomials times a Gaussian, so this construction only produces
perturbative quantum field theories taking values in rings of formal power series.
This is essentially the problem of lifting a Lie algebra elements L I to a group
element ei L I , which is trivial for operators on finite-dimensional vector spaces, but
a subtle and hard problem for unbounded operators such as L I that are not self
adjoint. This construction works provided the interacting part of the Lagrangian
not only has infinitesimal coefficients but also has compact support. We show that
the more general case of Lagrangians without compact support can be reduced
to the case of compact support up to inner automorphisms, at least on globally
hyperbolic spacetimes, by showing that infrared divergences cancel.

Up to isomorphism, the quantum field theory does not depend on the choice
of a Feynman measure or Lagrangian, but only on the choice of a propagator. In
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particular, the interacting quantum field theory is isomorphic to a free one. This
does not mean that interacting quantum field theories are trivial, because this iso-
morphism does not preserve the subspace of simple operators, so if one only looks
at the restriction to simple operators, as in the Wightman axioms, one no longer
gets an isomorphism between free and interacting theories. The difference between
interacting and free field theories is that one chooses a different set of operators to
be the “simple” operators corresponding to physical fields.

The ultraviolet group also has a nonlinear action on the space of infinitesimal
Lagrangians. A quantum field theory is determined by the choice of a Lagrangian
and a Feynman measure, and this quantum field theory is unchanged if the Feynman
measure and the Lagrangian are acted on by the same renormalization. This shows
why the choice of Feynman measure is not that important: if one chooses a different
Feynman measure, it is the image of the first by a unique renormalization, and by
applying this renormalization to the Lagrangian one still gets the same quantum
field theory.

Roughly speaking, we show that these quantum field theories ei L Iω satisfy the
obvious generalizations of Wightman axioms whenever it is reasonable to expect
them to do so. For example, we will show that locality holds by showing that the
state vanishes on the “locality ideal” of Definition 32, the quantum field theory
is Hermitian if we start with Hermitian cut propagators and Lagrangians, and we
get a (positive) state if we start with a positive (non-ghost) cut propagator. We
cannot expect to get Lorentz invariant theories in general as we are working over
a curved spacetime, but if we work over Minkowski space and choose Lorentz
invariant cut propagators then we get Lorentz invariant free quantum field theo-
ries. In the case of interacting theories Lorentz invariance is more subtle, even
if the Lagrangian is Lorentz invariant. Lorentz invariance depends on the can-
cellation of infrared divergences as we have to approximate the Lorentz invariant
Lagrangian by non-Lorentz-invariant Lagrangians with compact support, and we
can only show that infrared divergences cancel up to inner automorphisms. This
allows for the possibility that the vacuum is not Lorentz invariant, in other words
Lorentz invariance may be spontaneously broken by infrared divergences, at least
if the theory has massless particles. (It seems likely that if there are no massless
particles then infrared divergences cancel and we recover Lorentz invariance, but
I have not checked this in detail.)

In the final section we discuss anomalies. Fujikawa [1979] observed that anom-
alies arise from the lack of invariance of Feynman measures under a symmetry
group, and we translate his observation into mathematical language.

The definitions above generalize to the relative case where spacetime is replaced
by a morphism X→ Y , whose fibers can be thought of as spacetimes parametrized
by Y . For example, the sheaf of densities ω is replaced by the dualizing sheaf or
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complex ωX/Y . We will make no serious use of this generalization, though the
section on regularization could be thought of as an example of this where Y is the
spectrum of a ring of meromorphic functions.

2. The ultraviolet group

We describe the structure of the ultraviolet group, and show that it acts simply
transitively on the Feynman measures associated with a given propagator.

Theorem 12. The map taking a renormalization ρ : SωS J8 → SωS J8 to its
composition with the natural map SωS J8→ S1ωS0 J8= ω identifies renormal-
izations with the elements of Hom(SωS J8,ω) that vanish on S0ωS J8 and that
are isomorphisms when restricted to ω = S1ωS0 J8.

Proof. This is a variation of the dual of the fact that endomorphisms ρ of a
polynomial ring R[x] correspond to polynomials ρ(x), given by the image of the
polynomial x under the endomorphism ρ. It is easier to understand the dual result
first, so suppose that C is a cocommutative Hopf algebra and ω is a vector space
(with C acting trivially on ω). Then the symmetric algebra SωC = S(ω⊗C) is
a commutative algebra acted on by C , and its endomorphisms (as a commutative
algebra) correspond exactly to elements of Hom(ω, SωC) because any such map
lifts uniquely to a C-invariant map from ω to ωC , which in turn lifts to a unique
algebra homomorphism from SωC to itself by the universal property of symmet-
ric algebras. This endomorphism is invertible if and only if the map from ω to
ω = S1ωC0 is invertible, where C0 is the vector space generated by the identity
of C .

To prove the theorem, we just take the dual of this result, with C now given
by S J8. There is one small modification we need to make in taking the dual
result: we need to add the condition that the element of Hom(SωC, ω) vanishes
on S0ωC in order to get an endomorphism of SωC ; this is related to the fact
that endomorphisms of the polynomial ring R[x] correspond to polynomials, but
continuous endomorphisms of the power series ring R[[x]] correspond to power
series with vanishing constant term. �

The ultraviolet group preserves the increasing filtration S6mωS J8 and so has a
natural decreasing filtration by the groups G>n , consisting of the renormalizations
that fix all elements of S6nωS J8. The group G = G>0 is the inverse limit of the
groups G/G>n , and the commutator of G>m and G>n is contained in G>m+n , so
in particular G>1 is an inverse limit of nilpotent groups G>1/G>n . The group G>n

is a semidirect product G>n+1Gn of its normal subgroup G>n+1 with the group
Gn , consisting of elements represented by elements of Hom(SωS J8,ω) that are
the identity on S1ωS J8 if n > 0, and vanish on SmωS J8 for m > 1, m 6= n+ 1.
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Lemma 13. The group G is . . .G2G1G0 in the sense that any element of G can
be written uniquely as an infinite product . . . g2g1g0 with gi ∈ Gi , and conversely
any such infinite product converges to an element of G.

Proof. The convergence of this product follows from the facts that all elements gi

preserve any space S6mωS J8, and all but a finite number act trivially on it. The
fact that any element can be written uniquely as such an infinite product follows
from the fact that G/G>n is essentially the product Gn−1 . . .G2G1G0. �

The natural map
S0ωS J8→ 0SωS J8

is not an isomorphism, because on the left the symmetric algebra is taken over the
reals, while on the right it is essentially taken over smooth functions on M .

Lemma 14. The action of renormalizations on 0SωS J8 lifts to an action on
S0cωS J8 that preserves the coproduct, the coaction of 0S J8, and the product
of elements with disjoint support.

Proof. A renormalization is given by a linear map from 0c SωS J8 to 0cω, which
by composition with the map S0cωS J8→ 0SωS J8 and the “integration over
M” map 0cω → R lifts to a linear map from S0cωS J8 to R. This linear map
has the special property that the product of any two elements with disjoint sup-
port vanishes, because it is multilinear over the ring of smooth functions. As in
Theorem 12, the linear map gives an automorphism of S0cωS J8 preserving the
coproduct and the coaction of 0S J8. As the linear map vanishes on products of
disjoint support, the corresponding renormalization preserves products of elements
with disjoint support. �

In general, renormalizations do not preserve products of elements of S0cωS J8
that do not have disjoint support; the ones that do are those in the subgroup G0.

Theorem 15. The group of complex renormalizations acts simply transitively on
the Feynman measures associated with a given cut local propagator.

Proof. We first show that renormalizations ρ act on Feynman measures ω asso-
ciated with a given local cut propagator. We have to show that renormalizations
preserve nondegeneracy, smoothness on the diagonal, and the Gaussian property.
The first two of these are easy to check, because the value of ρ(ω) on any element
is given by a finite sum of values of ω on other elements, so is smooth along the
diagonal.

To check that renormalizations preserve the Gaussian property

ω(AB)=
∑

ω(A′)1(A′′, B ′′)ω(B ′)
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we recall that renormalizations ρ preserve products with disjoint support and also
commute with the coaction of S J8. Since A and B have disjoint supports we have
ρ(AB) = ρ(A)ρ(B). Since ρ commutes with the coaction of S J8, the image of
ρ(A) under the coaction of S J8 is

∑
ρ(A′)⊗A′′, and similarly for B. Combining

these facts with the Gaussian property for ρ(A)ρ(B) shows that

ω(ρ(AB))=
∑

ω(ρ(A′))1(A′′, B ′′)ω(ρ(B ′));

in other words, the renormalization ρ preserves the Gaussian property.
To finish the proof, we have to show that for any two normalized smooth Feyn-

man measures ω and ω′ with the same cut local propagator, there is a unique
complex renormalization g taking ω to ω′. We will construct g = . . . g2g1g0

as an infinite product, with the property that gn−1 . . . g0ω coincides with ω′ on
ei L F S6n0cωS J8. Suppose that g0, . . . , gn−1 have already been constructed. By
changing ω to gn−1 . . . g0ω we may as well assume that they are all 1, and that
ω and ω′ coincide on ei L F S6n0cωS J8. We have to show that there is a unique
gn ∈ Gn such that gnω and ω′ coincide on eL F Sn+10cωS J8.

The difference ω − ω′, restricted to ei L F Sn+10cωS J8, is a continuous linear
function on ei L F Sn+10cωS J8, which we think of as a distribution. Moreover,
since both ω and ω′ are determined off the diagonal by their values on elements of
smaller degree by the Gaussian property, this distribution has support on the diago-
nal of Mn+1. Since ω and ω′ both have the property that their wave front sets on the
diagonal are orthogonal to the diagonal, the same is true of their difference ω−ω′,
so the distribution is given by a map ei L F Sn+10cωS J8→ω. By Theorem 12 this
corresponds to some renormalization gn ∈ Gn , which is the unique element of Gn

such that gnω and ω′ coincide on ei L F Sn+10cωS J8. �

3. Existence of Feynman measures

We now show (see Theorem 21) the existence of at least one Feynman measure
associated to any cut local propagator, by using regularization and renormalization.
Regularization means that we construct a Feynman measure over a field of mero-
morphic functions, which will usually have poles at the point we are interested in,
and renormalization means that we eliminate these poles by acting with a suitable
meromorphic renormalization.

Lemma 16. If f1, . . . , fm are polynomials in several variables, then there are
nonzero (Bernstein-Sato) polynomials bi and differential operators Di such that

bi (s1, . . . , sm) f1(z)s1 . . . fm(z)sm = Di (z)
(

fi (z) f1(z)s1 . . . fm(z)sm
)
.

Proof. Bernstein’s proof [1972] of this theorem for the case m = 1 also works
for any m after making the obvious minor changes, such as replacing the field of
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rational functions in one variable s1 by the field of rational functions in m variables.
�

Corollary 17. If f1, . . . , fm are polynomials in several variables then for any
choice of continuous branches of the multivalued functions, f1(z)s1 . . . fm(z)sm can
be analytically continued from the region where all s j have positive real part to a
meromorphic distribution-valued function for all complex values of s1, . . . , sm .

Proof. This follows by using the functional equation of Lemma 16 to repeatedly
decrease each s j by 1, just as in Bernstein’s proof for the case m = 1. �

Theorem 18. Any cut local propagator 1 has a regularization, in other words
a Feynman measure with values in a ring of meromorphic functions whose cut
propagator at some point is 1.

Proof. The following argument is inspired by the one in [Etingof 1999]. By using a
locally finite smooth partition of unity, which exists since we assume that spacetime
is metrizable, we can reduce to showing that a regularization exists locally. If a
local propagator is smooth, it is easy to construct a Feynman measure for it, just by
defining it as a sum of products of Feynman propagators. Now suppose we have a
meromorphic family of local propagators 1d depending on real numbers di , given
in local coordinates by a finite sum of boundary values of terms of the form

s(x, y)p1(x, y)d1 . . . pk(x, y)dk log(pk+1(x, y)) . . .

where s is smooth in x and y, and the pi are polynomials, and where we choose
some branch of the powers and logarithms in each region where they are nonzero.
In this case the Feynman measure can also be defined as a meromorphic function
of d for all real d . To prove this, we can forget about the smooth function s as
it is harmless, and we can eliminate the logarithmic terms by writing log(p) as
dpt/dt at t = 0. For any fixed number of fields with derivatives of fixed order, the
corresponding distribution is defined when all variables di have sufficiently large
real part, because the product of the propagators is smooth enough to be defined in
this case. But this distribution is given in local coordinates by the product the di ’th
powers of polynomials of x and y. By Bernstein’s Corollary 17 these products
can be continued as a meromorphic distribution-valued function of the di to all
complex di .

This gives a Feynman measure with values in the field of meromorphic functions
in several variables, and by restricting functions to the diagonal we get a Feynman
measure whose value are meromorphic functions in one variable. �

Example 19 (dimensional regularization). Over Minkowski space of dimension
d , there is a variation of the construction of a meromorphic Feynman measure,
which is very similar to dimensional regularization. In dimensional regularization,
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one formally varies the dimension of spacetime, to get Feynman diagrams that are
meromorphic functions of the dimension of spacetime. One way to make sense
out of this is to keep the dimension of spacetime fixed, but vary the propagator of
the free field theory, by considering it to be a meromorphic function of a complex
number d . The propagator for a Hermitian scalar field, considered as a distribution
of z in Minkowski space, can be written as a linear combination of functions of
the form

Kd/2−1 (c
√
(z, z) )

√
(z, z) d/2−1 ,

where Kν(z) is a multivalued modified Bessel function of the third kind, and where
we take a suitable choice of branch (depending on whether we are considering a cut
or a Feynman propagator). A similar argument using Bernstein’s theorem shows
that this gives a Feynman measure that is analytic in d for d with large real part
and that can be analytically continued as a meromorphic function to all complex d .
This gives an explicit example of a meromorphic Feynman measures for the usual
propagators in Minkowski space.

Theorem 20. Any meromorphic Feynman measure can be made holomorphic by
acting on it with a meromorphic renormalization.

Proof. This is essentially the result that a bare quantum field theory can be made
finite by an infinite renormalization. Suppose that ω is a meromorphic Feynman
measure. Using the same idea as in Theorem 15 we will construct a meromorphic
renormalization g= . . . g2g1g0 as an infinite product, but this time we choose gn ∈

Gn to kill the singularities of order n+1. The key point is to prove that these lowest
order singularities are “local”, meaning that they have support on the diagonal.
(In the special case of translation-invariant theories on Minkowski spacetime this
becomes the usual condition that they are “polynomials in momentum”, or more
precisely that their Fourier transforms are essentially polynomials in momentum on
the subspace with total momentum zero). The locality follows from the Gaussian
property of ω, which determines ω at each order in terms of smaller orders except
on the diagonal. In particular if ω is nonsingular at all orders at most n, then the
singular parts of the order n+ 1 terms all have support on the diagonal. Since the
difference is smooth along the diagonal, we can find some gn ∈ Gn that kills off
the order n + 1 singularities, as in Theorem 15. Since renormalizations preserve
the Gaussian property we can keep on repeating this indefinitely, killing off the
singularities in order of their order. �

The famous problem of “overlapping divergences” is that the counterterms for
individual Feynman diagrams used for renormalization sometimes contain non-
polynomial (logarithmic) terms in the momentum, which bring renormalization to
a halt unless they miraculously cancel when summed over all Feynman diagrams.
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This problem is avoided in the proof above because by using the ultraviolet group
we only need to handle the divergences of lowest order at each step, where it is
easy to see that the logarithmic terms cancel.

Theorem 21. Any cut local propagator has an associated Feynman measure.

Proof. This follows from Theorem 18, which uses regularization to show that there
is a meromorphic Feynman measure, and Theorem 20 which uses renormalization
to show that the poles of this can be eliminated. �

4. Subgroups of the ultraviolet group

There are many additional desirable properties that one can impose on Feynman
measures, such as being Hermitian, or Lorentz invariant, or normal ordered, and
there is often a subgroup of the ultraviolet group that acts transitively on the mea-
sures with the given property. We give several examples of this.

Example 22. A Feynman measure can be normalized so that on S10cωS
0
J8 =

0cω its value is given by integrating over spacetime (in other words g = 1 in
Definition 9), by acting on it by a unique element of the ultraviolet group con-
sisting of renormalizations in G0 that are trivial on ωS>0 J8. This group can
be identified with the group of nowhere vanishing smooth complex functions on
spacetime. The complementary normal subgroup of the ultraviolet group consists
of the renormalizations that fix all elements of ωS0 J8 = ω, and this acts simply
transitively on the normalized Feynman measures. In practice almost any natural
Feynman measure one constructs is normalized.

Example 23 (normal ordering). In terms of Feynman diagrams, “normal ordering”
means roughly that Feynman diagrams with an edge from a vertex to itself are
discarded. We say that a Feynman measure is normally ordered if it vanishes on
0cωS>0 J8. Informally, ωS>0 J8 corresponds to Feynman diagrams with just
one point and edges from this point to itself. We will say that a renormalization
is normally ordered if it fixes all elements of ωS>0 J8. The subgroup of normally
ordered renormalizations acts transitively on the normally ordered Feynman mea-
sures. The group of all renormalizations is the semidirect product of its normal
subgroup G>0 of normally-ordered renormalizations with the subgroup G0 pre-
serving all products. For any renormalization, there is a unique element of G0 that
takes it to a normally ordered renormalization. The Feynman measures constructed
by regularization (in particular those constructed by dimensional regularization) are
usually normally ordered if the spacetime has positive dimension, but are usually
not for 0-dimensional spacetimes. This is because the propagators tend to contain
a factor such as (x − y)−2d which vanishes for large −d when x = y, and so van-
ishes on Feynman diagrams with just one point for all d by analytic continuation.
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So for most purposes we can restrict to normally-ordered Feynman measures and
normally-ordered renormalizations, at least for spacetimes of positive dimension.

Example 24 (normalization of Feynman propagators). In general a renormaliza-
tion fixes the cut propagator but can change the Feynman propagator, by adding a
distribution with support on the diagonal. However there is often a canonical choice
of Feynman propagator: the one with a singularity on the diagonal of smallest
possible order, which will often also be a Green function for some differential
operator. We can add the condition that the Feynman propagator of a Feynman
measure should be this canonical choice; the subgroup of renormalizations fixing
the Feynman propagator, consisting of renormalizations fixing S2ωJ8, acts simply
transitively on these Feynman measures.

Example 25. [simple operators] More generally, there is a subgroup consisting of
renormalizations ρ such that ρ(aB)= ρ(a)ρ(B) whenever a is simple (involving
only one field), but where B is arbitrary. This stronger condition is useful because
it says (roughly) that simple operators containing only one field do not get renor-
malized; see the discussion in Section 6. We can find a set of Feynman measures
acted on simply transitively by this group by adding the condition that

ω(aB)=
∑

1F (aB1)ω(B2)

whenever a is simple and
∑

B1 ⊗ B2 is the coproduct of B. This relation holds
whenever a and B have disjoint supports by definition of a Feynman measure, so
the extra condition says that it also holds even when they have overlapping supports.
The key point is that the product of distributions above is always defined because
any nonzero element of the wave front set of 1F is of the form (p,−p). This
would not necessarily be true if a were not simple because we would get products
of more than 1 Feynman propagator whose singularities might interfere with each
other. In terms of Feynman diagrams, this says that vertices with just one edge are
harmless: more precisely, with this normalization, adding a vertex with just one
edge to a Feynman diagram has the effect of multiplying its value by the Feynman
propagator of the edge. As this condition extends the Gaussian property to more
Feynman diagrams, it can also be thought of as a strengthening of the translation
invariance property of the Feynman measure.

Example 26 (Dyson condition). Classically, Lagrangians were called renormaliz-
able if all their coupling constants have nonnegative mass dimension. The filtration
on Lagrangian densities by mass dimension induces a similar filtration on Feynman
measures and renormalizations. The Feynman measures of mass dimension60 are
acted on simply transitively by the renormalizations of mass dimension60. This is
useful, because the renormalizations of mass dimension at most 0 act on the spaces
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of Lagrangian densities of mass dimension at most 0, and these often form finite-
dimensional spaces, at least if some other symmetry conditions such as Lorentz
invariance are added. For example, in dimension 4 the density has dimension −4,
so the (Lorentz-invariant) terms of the Lagrangian density of mass dimension at
most 0 are given by (Lorentz invariant) terms of the Lagrangian of mass dimension
at most 4, such as ϕ4, ϕ2, ∂ϕ∂ϕ, and so on: the usual Lorentz-invariant even terms
whose coupling constants have mass dimension at least 0. For example, we get a
three-dimensional space of theories of the form λϕ4

+mϕ2
+ z∂ϕ∂ϕ in this way,

giving the usual ϕ4 theory in 4 dimensions.

Example 27 (boundary terms). The Feynman measures constructed in Section 3
have the property that they vanish on “boundary terms”. This means that we
quotient the space of local Lagrangians 0cωS J8 by its image under the action
of smooth vector fields such as ∂/∂xi , or in other words we replace a spaces of
n-forms by the corresponding de Rham cohomology group. These measures are
acted on simply transitively by renormalizations corresponding to maps that vanish
on boundary terms. This is useful in gauge theory, because some symmetries such
as the BRST symmetry are only symmetries up to boundary terms.

Example 28 (symmetry invariance). Given a group (or Lie algebra) G such as a
gauge group acting on the sheaf 8 of classical fields and preserving a given cut
propagator, the subgroup of G-invariant renormalizations acts simply transitively
on the G-invariant Feynman measures with given cut propagator. In general there
need not exist any G-invariant Feynman measure associated with a given cut local
propagator, though if there is then G-invariant Lagrangians lead to G-invariant
quantum field theories. The obstructions to finding a G-invariant measure are
cohomology classes called anomalies, and are discussed further in Section 7.

Example 29 (Lorentz invariance). An important case of invariance under sym-
metry is that of Poincare invariance for flat Minkowski space. In this case the
spacetime M is Minkowski space, the Lie algebra G is that of the Poincare group
of spacetime translations and Lorentz rotations, and the cut propagator is one of
the standard ones for free field theories of fields of finite spin. Then dimensional
regularization is invariant under G, so we get a Feynman measure invariant under
the Poincare group, and in particular there are no anomalies for the Poincare al-
gebra. The elements of the ultraviolet group that are Poincare invariant act simply
transitively on the Feynman measures for this propagator that are Poincare invari-
ant. If we pick any such measure, then we get a map from invariant Lagrangians
to invariant quantum field theories.

Example 30 (Hermitian conditions). The group of complex renormalizations has
a real form, consisting of the subgroup of (real) renormalizations. This acts sim-
ply transitively on the Hermitian Feynman measures associated with a given cut
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local propagator. The Hermitian Feynman measures (or propagators) are not the
real-valued ones, but satisfy a more complicated Hermitian condition described in
Definition 36.

5. The free quantum field theory

We extend the Feynman measure ω : ei L F S0cωS J8 → C, which is something
like a measure on classical fields, to ω : T ei L F S0cωS J8→ C. This extension,
restricted to the even degree subalgebra T0ei L F S0cωS J8, is the free quantum field
theory. We check that it satisfies analogues of the Wightman axioms.

Formulas involving coproducts can be confusing to write down and manipulate.
They are much simpler for the “grouplike” elements g satisfying 1(g) = g ⊗ g,
η(g) = 1, which form a group in any cocommutative Hopf algebra. One problem
is that most of the Hopf algebras we use do not have enough grouplike elements
over fields: in fact for symmetric algebras the only grouplike element is the iden-
tity. However they have plenty of grouplike elements if we add some nilpotent
elements to the base field, such as exp(λa) for any primitive a and nilpotent λ (in
characteristic 0). We will adopt the convention that when we talk about grouplike
elements, we are tacitly allowing extensions of the base ring by nilpotent elements.

Recall that T ei L F S0cωS J8 is the tensor algebra of ei L F S0cωS J8, with the
product denoted by ⊗ to avoid confusing it with the product of S0c S J8. We
denote the identity of S0c S J8 by 1, and the identity of TS0cωS J8 by 1T . The
involution ∗ is defined by (A1 ⊗ · · · ⊗ An)

∗
= A∗n ⊗ · · · ⊗ A∗1, and ∗ is −1 on

0cωS J8.

Theorem 31. If ω : ei L F S0cωS J8→ C is a Feynman measure, there is a unique
extension of ω to T ei L F S0cωS J8 such that:

• (Gaussian condition) If A, B1, . . . , Bm are grouplike then

e−i L Fω(A⊗ Bm ⊗ · · ·⊗ B1)

=

∑
e−i L Fω(A⊗ 1⊗ · · ·⊗ 1)1(A, Bm . . . B1)e−i L Fω(Bm ⊗ · · ·⊗ B1).

(Both sides are considered as densities, as in Definition 9.)

• e−i L Fω(A⊗ A⊗ 1⊗ · · · ⊗ 1) = 1 for A grouplike (Cutkosky condition; see
[’t Hooft 1994, Section 6]).

Proof. We first check that all the products of distributions are well defined by
examining their wave front sets. All the distributions appearing have the property
that their wave front sets have no positive or negative elements. This follows by
induction on the complexity of an element: if all smaller elements have this prop-
erty, it implies that the products defining it are well defined, and also implies that
it has the same property.
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The existence and uniqueness ofω follow because the Cutkosky condition defines
it on elements of the form A ⊗ 1 ⊗ 1 ⊗ · · · ⊗ 1 in terms of those of the form
A⊗1⊗· · ·⊗1, and the Gaussian condition then determines it on all elements. �

We can also define ω directly as follows. When the propagator is sufficiently
regular then the Gaussian condition means that we can writeω on ei L F S0cωS J8 as
a sum over all ways of joining up the fields of an element of ei L F S0cωS J8 in pairs,
where we take the propagator of each pair and multiplying these together. This is
of course essentially the usual sum over Feynman diagrams. A minor difference is
that we do not distinguish between “internal” vertices associated with a Lagrangian
and integrated over all spacetime, and “external” vertices associated with a field
and integrated over a compact set: all vertices are associated with a composite
operator that may be a Lagrangian or a simple field or a more general composite
operator, and all vertices are integrated over compact sets as all coefficients are
assumed to have compact support.

Similarly we can define the extension of ω to T ei L F S0cωS J8 by writing the
distributions defining ω as a sum over more complicated Feynman diagrams whose
vertices are in addition labeled by nonnegative integers, in such a way that

• the propagators from Ai to Ai are Feynman propagators,

• the propagators from Ai to A j for i < j are cut propagators 1, with positive
wave front sets on i and negative wave front sets on j , and

• the diagram is multiplied by a factor of (−1)deg(A2 A4 A6... ) (in other words, we
apply ∗ to A2, A4, . . . .)

In general, if the propagator is not sufficiently regular (so that products of prop-
agators might not be defined when some points coincide), we can construct ω by
regularization and renormalization as in Section 3, which preserves the conditions
defining ω.

Now we show that ω satisfies the locality property of quantum field theories
(operators with spacelike-separated supports commute) by showing that it vanishes
on the following locality ideal.

Definition 32. We denote by T0S0cωS J8 the subalgebra of even degree elements
of TS0cωS J8. The locality ideal is the 2-sided ideal of T0S0cωS J8 spanned by
the coefficients of elements of the form

· · ·⊗Y1⊗ AB D⊗DBC⊗ Xn⊗· · ·⊗ X1 − · · ·⊗Y1⊗ AD⊗DC⊗ Xn⊗· · ·⊗ X1

(for A,C ∈ S0cωS J8 and B, D ∈ S0cωS J8[[λ]] with B, D grouplike) if n is
even and there are no points in the support of B that are 6any points in the support
of A or C , or if n is odd and there are no points in the support of B that are >any
points in the support of A or C .
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The algebra T0ei L F S0cωS J8 and its locality ideal are defined in the same way.

Remark 33. The map ω on T0ei L F S0cωS J8 depends on the choice of Feynman
measure. We can define a canonical map independent of the choice of Feynman
measure by taking the underlying ∗-algebra to have elements represented by pairs
(ω, A) for a Gaussian measure ω and A ∈ T0ei L F S0cωS J8, where we identify
(ω, A) with (ρω, ρA) for any renormalization ρ. The canonical state, also denoted
by ω, then takes an element represented by (ω, A) to ω(A).

Theorem 34. ω vanishes on the locality ideal.

Proof. We use the notation of Definition 32. We prove this for elements with n
even; the case n odd is similar. We can assume that the propagator1 is sufficiently
regular, as we can obtain the general case from this by regularization and renor-
malization. We will first do the special case when D = 1. We can assume that
B = b1 . . . bk is homogeneous of some order k and write BI for

∏
j∈I bj . If k = 0

then the result is obvious as B is constant and both sides are the same, so we can
assume that k > 0. We show that if k > 0 then ω vanishes on∑

I∪J={1,...k}

(−1)|I | · · · ⊗ Y1⊗ ABI ⊗ BJ C ⊗ Xn ⊗ · · ·⊗ X1

by showing that the terms cancel out in pairs. This is because if j is the index for
which the support of bj is maximal then ω has the same value on

· · · ⊗ Y1⊗ ABI bj ⊗ BJ C ⊗ Xn ⊗ · · ·⊗ X1

and
· · · ⊗ Y1⊗ ABI ⊗ bj BJ C ⊗ Xn ⊗ · · ·⊗ X1.

Now we do the case of general D. We can assume that the support of D is either
6 all points of the support of B or there are no points of it that are 6 any points
in the support of A or C . In the first case the result follows from the special case
D = 1 by replacing A and C by AD and C D. In the second case it follows from 2
applications of the special case D = 1, replacing B by D and B D, that both terms
are equal to · · · ⊗ Y1⊗ A⊗C ⊗ Xn ⊗ · · ·⊗ X1 and are therefore equal. �

This proof, in the special case that ω vanishes on B⊗B−1⊗1 for B grouplike, is
more or less the proof of unitarity of the S-matrix using the “largest time equation”
given in [’t Hooft 1994, Section 6]. The locality ideal is not the largest ideal on
which ω vanishes, as ω also vanishes on A⊗ 1⊗ 1⊗ B − A⊗ B; in other words
we can cancel pairs 1⊗ 1 wherever they occur.

Theorem 35. Elements of T0S0c S J8 with spacelike-separated supports commute
modulo the locality ideal.
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Proof. It is sufficient to prove this for grouplike degree 2 elements, as if two even
degree elements have spacelike-separated supports then they are polynomials in
degree 2 elements with spacelike separated supports. We will work modulo the
locality ideal. Suppose that the supports of the grouplike elements W⊗ X⊗ Z and
Y are spacelike-separated. Then applying Theorem 34 twice gives

W ⊗ X ⊗ Y Z =W Y ⊗ XY ⊗ Y Z =W Y ⊗ X ⊗ Z

Applying this 4 times for various values of W , X , Y , and Z shows that if A⊗ B
and C ⊗ D are grouplike and have spacelike separated supports, then

A⊗ B⊗C ⊗ D = AC ⊗ B⊗ I ⊗ D = AC ⊗ I ⊗ I ⊗ B D = AC ⊗ D⊗ I ⊗ B

= C ⊗ D⊗ A⊗ B,

so A⊗ B and C ⊗ D commute. �

Now we study when the quantum field theory ω is Hermitian, and show that we
can find a Hermitian quantum field theory associated to any Hermitian local cut
propagator, and show that the group of real renormalizations acts transitively on
them.

Definition 36. We say that a Feynman measure ω is Hermitian if its extension to
TS0cωS J8 is Hermitian when restricted to the even subalgebra T0S0cωS J8.

Lemma 37. If the local cut propagator 1 is Hermitian, then it has a Hermitian
Feynman measure associated with it.

Proof. We can assume that the regularization of 1 is also Hermitian, by replacing
it by the average of itself and its Hermitian conjugate. We can check directly
that the meromorphic family of Feynman measures associated to this Hermitian
regularization is Hermitian on T0S0cωS J8 (but not on the whole of TS0cωS J8);
in other words ω(An⊗· · ·⊗A1)=ω(A∗1⊗· · ·⊗A∗n)

∗ if n is even. For example, we
get a sign factor of−1deg(A2)+deg(A4)+... in the definition ofω on the first term, a sign
factor of −1deg(A1)+deg(A3)+... form the definition of ω for the second term, whose
quotient is the factor −1deg(A1)+deg(A2)+... coming from the action of ∗ on An ⊗

· · · ⊗ A1 because n is even. We can then renormalize using real renormalizations
to eliminate the poles, and the resulting Feynman measure will be Hermitian. �

Lemma 38. If a Feynman measure ω is Hermitian and ρ is a complex renormal-
ization, then ρ(ω) is Hermitian if and only if ρ is real. In particular the subgroup
of (real) renormalizations acts simply transitively on the Hermitian Feynman mea-
sures associated with a given cut local propagator.

Proof. This follows from ρ(ω)∗ = ρ∗(ω∗), and the fact that complex renormal-
izations act simply transitively on Feynman measures associated with a given cut
local propagator. �
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Next we show that ω is a state (in other words the space of physical states is
positive definite) when the cut propagator 1 is positive, by using a representation
of the physical states as a space of distributions. We define the space Hn of n-
particle states to be the space of continuous linear maps Sn0ω8→C (considered
as compactly supported symmetric distributions on Mn) whose wave front sets
have no positive or negative elements, with a sesquilinear form given by

〈a, b〉 =
∫

x,y∈Mn
a(x1, . . . )

∏
j

1(x j , y j )b(y j , . . . )
∗dxdy.

This is similar to the usual definition of the inner product on the space of states
of a free field theory, except that we are using distributions rather than smooth
functions. We check this is well defined. To show the product of distributions in
the integral is defined we need to check that no sum of nonzero elements of the
wave front sets is zero, and this follows because nonzero elements of the wave
front set of the product of propagators are of the form (p, q) with p> 0 and q < 0,
but a and b by assumption have no positive or negative elements in their wave front
sets. The integral over Mn is well defined because a and b have compact support.

Lemma 39. There is a map f from T0S0cωS J8 to the orthogonal direct sum⊕
Hn with

ω(AB)= 〈 f (A∗), f (B)〉.

Proof. By Theorem 31, ω(AB) is given by∑
ω(A′)1(A′′, B ′′)ω(B ′)

where
∑

A′⊗ A′′ is the image of A under the coaction of 0c S J8. This is equal
to 〈 f (A∗), f (B)〉 if we define f (A) as follows. Suppose that

A = A11 A12 · · · ⊗ A21 A22 . . . ,

and let the image of A jk under the coaction of 0c S J8 be
∑

A′jk ⊗ A′′jk . Then
ω(A′11 A′12 · · · ⊗ A′21 A′22 . . . .) can be regarded as a distribution on Mn , where n
is the total number of elements A jk . On the other hand, A′′11 A′′12 . . . A′′21 A′′22 . . .

is a function on Mm , where m is the sum of the degree of the elements A′′jk , in
other words the number of fields occurring in them. There is also a map from
m to n, which induces a map from Mn to Mm , and so by push-forward of den-
sities a map from densities on Mn to densities on Mm . The image f (A) is then
given by taking the push-forward from Mn to Mm of the compactly supported
distribution ω(A′11 A′12 · · · ⊗ A′21 A′22 . . . .) on Mn , multiplying by the function
A′′11 A′′12 . . . A′′21 A′′22 . . . on Mm , symmetrizing the result, and repeating this for each
summand of

∑
A′jk ⊗ A′′jk . �
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Corollary 40. If the cut local propagator 1 is positive, then

ω : T ei L F S0cωS J8→ C

is a state.

Proof. This follows from the previous lemma, because if 1 is positive then so is
the sesquilinear form 〈 , 〉 on Hn , and therefore ω(A∗A)= 〈 f (A), f (A)〉> 0. �

6. Interacting quantum field theories

We construct the quantum field theory of a Feynman measure and a compactly
supported Lagrangian, by taking the image of the free field theory ω under an
automorphism ei L I where L I is the interaction part of the Lagrangian. This auto-
morphism is only well defined if the interaction Lagrangian L I has infinitesimal
coefficients, so the interacting quantum field theories we construct are perturbative
theories taking values in rings of formal power series C[λ] = C[λ1, . . . ] in the
coupling constants λ1, . . . . (By “infinitesimal” we mean elements of formal power
series rings with vanishing constant term.) We then lift the construction to all
actions (possible without compact support) by showing that infrared divergences
cancel up to inner automorphisms.

Lemma 41. The Hopf algebra S0cωS J8 acts on the algebra T0S0cωS J8, and
maps the locality ideal to itself. Group-like Hermitian elements of the Hopf algebra
S0cωS J8[[λ]] preserve the subset of positive elements, and therefore act on the
space of states of T0S0cωS J8[[λ]].

Proof. Group-like elements are algebra automorphisms, and if they are also Hermit-
ian they commute with the involution ∗. In particular grouplike Hermitian elements
preserve the set of positive elements (generated by positive linear combinations of
elements of the form a∗a), and so map positive linear forms to positive linear
forms. �

Definition 42. The quantum field theory of a Lagrangian L = L F + L I , where
L I has compact support and infinitesimal coefficients, is e−i Lω : T0S0cωS J8→
C[[λ]].

The Hopf algebra S0cωS J8 acts on the vector space S0cωS J8 by multiplica-
tion, so grouplike elements of the form ei L F+i L I take S0cωS J8 to ei L F S0cωS J8
and T0S0cωS J8 to T0ei L F S0cωS J8. Since ω is in the dual of T0ei L F S0cωS J8,
this shows that e−i Lω is in the dual of T0S0cωS J8.

Corollary 43 (locality). Elements of T0S0cωS J8 with spacelike-separated sup-
ports commute when acting on the space of physical states of e−i Lω.
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Proof. By Theorem 34 the operators of the locality ideal act trivially on the space
of physical states of ω. Since e−i L preserves the locality ideal, the locality ideal
also acts trivially on the space of physical states of e−i Lω. By Theorem 35 this
implies that operators with spacelike separated supports commute on this space. �

This constructs the quantum field theory of a Lagrangian whose interaction part
has compact support (and is infinitesimal). We now extend this to the case when
the interaction part need not have compact support. We do this by using a cutoff
function to give the Lagrangian compact support, and then we then try to show
that the result is independent of the choice of cutoff function, provided it is 1 in a
sufficiently large region. To do this we need to assume that spacetime is globally
hyperbolic, and we also find that the result is not quite independent of the choice
of cutoff.

If f is a smooth function on M then multiplication by f is a linear transforma-
tion of 0ωS J8 and therefore induces a homomorphism of S0ωS J8, denoted by
A→ A f . If A = ei L is grouplike, then A f

= ei L f . If f has compact support then
so does A f so that A f ω is defined. We try to extend the definition of A f ω to more
general functions f in the hope that we can take f to be close to 1.

Lemma 44. Suppose that f and g are compactly supported smooth functions on
M and n is even. If f = g on the past of A1 . . . An then (modulo the locality ideal)

e−i L F A f ω(An ⊗ · · ·⊗ A1)= e−i L F Agω(An ⊗ · · ·⊗ A1)

If f = g on the future of A1 . . . An then

e−i L F A f ω(An ⊗ · · ·⊗ A1)= e−i L F Agω(Ag− f
⊗ 1⊗ An ⊗ · · ·⊗ A1⊗ 1⊗ Ag− f )

Proof. We work modulo the locality ideal. The first equality follows from

A− f An ⊗ · · ·⊗ A− f A1 = A−g An ⊗ · · ·⊗ A−g A1

which in turn follows from Theorem 34 by repeatedly inserting A f−g
⊗ A f−g

(using the fact that n is even). The second equality follows in the same way from

A− f
⊗ A− f

⊗ A− f An ⊗ · · ·⊗ A− f A1⊗ A− f
⊗ A− f

= A− f
⊗ A−g

⊗ A−g An ⊗ · · ·⊗ A−g A1⊗ A−g
⊗ A− f . �

This lemma shows that the restriction of A f ω to arguments with support in some
fixed compact subset of M is almost independent of the choice of f provided that
f is 1 on the convex hull of the argument: different choices of f are related by
a locally inner automorphism of T0S0cωS J8, given by conjugation by elements
of the form 1⊗ Ah . If the spacetime is globally hyperbolic in the sense that the
convex hull of a compact set is contained in a compact set, then we can always find
a suitable f that is 1 on the convex hull X of the argument, so we can construct



Renormalization and quantum field theory 653

the interacting quantum field theory. The result does not depend on the choice
of cutoff f on the future of X , but does depend slightly on the choice of cutoff
in the past of X . The choice of cutoff in the past corresponds to choices of the
vacuum: roughly speaking, we turn off the interaction in the distant past, which
gives different vacuums. More precisely, if we have two different cutoffs f and g
then their vacuums, which are the images of ei(L F+ f L I ) and ei(L F+gL I ) will differ by
a factor of ei( f−g)L I . This does not change the observable physics, because all these
choices of cutoffs give isomorphic quantum field theories. However it does cause
difficulties in constructing a Lorentz invariant theory, because the choice of cutoff
in the past is not Lorentz invariant, so the vacuums are also not Lorentz invariant,
or in other words Lorentz invariance may be spontaneously broken. Presumably in
theories with a mass gap one can take the limit as the cutoff in the past tends to time
−∞ and get a Lorentz invariant vacuum, but in theories with massless particles
such as QED there is an obstruction to constructing a Lorentz invariant vacuum:
Lorentz invariance might be spontaneously broken by infrared divergences. This
is a well known problem, which is not worth worrying about too much, because
the physical universe is not globally Lorentz invariant.

The time-ordered operator T (A) of an element A ∈ S0cωS J8 is defined to be
1⊗ A. This has the property that

T (An . . . A1)= 1⊗ An . . . A1 = 1⊗ An ⊗ · · ·⊗ 1⊗ A1 = T (An) . . . T (A1)

whenever the composite fields Ai ∈0cωS J8 are in order of increasing time of their
supports. This formula is sometimes used as a “definition” of the time-ordered
product T (An . . . A1), though this does not define it when some of the factors
have overlapping supports, and in general the time-ordered product depends on
the choice of a Feynman measure ω. The scattering matrix S of the quantum field
theory is S = T (ei L I )= 1⊗ ei L I ; this is essentially the LSZ reduction formula of
Lehmann, Symanzik, and Zimmermann [Lehmann et al. 1955].

We now show that if we change the Feynman measure, then we still get an
isomorphic quantum field theory provided we make a suitable change in the La-
grangian. If we change ω to a different Feynman measure for the same cut local
propagator, these will differ by a unique renormalization ρ; in other words the other
Feynman measure will be ρω. The quantum field theory e−i Lω changes under this
renormalization of ω by

e−i Lω(A1⊗ · · · )= ω(ei L A1⊗ . . . )= ρ(ω)(ρ(ei L A1)⊗ · · · )

= ρ(e−i L)ρ(ω)
(
ρ(e−i L)ρ(ei L A1)⊗ · · ·

)
,

so the quantum field theory stays the same under renormalization by ρ if we trans-
form the Lagrangian by

i L→ log(ρ(exp(i L)),
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which is a nonlinear transformation because renormalizations need not commute
with products or exponentiation, and change the operators An by

An→ ρ(e−i L)ρ(ei L An).

If An is a simple operator and ρ satisfies the condition of Example 25, then

ρ(ei L An)= ρ(ei L)ρ(An)= ρ(ei L)An,

so in this special case An is unchanged, or in other words simple operators are
not renormalized. The behavior of composite operators under renormalization can
be quite complicated when expanded out in terms of fields. The usual Wightman
distributions used to construct a quantum field theory use only simple operators,
so the only effect of renormalization on Wightman distributions comes from the
nonlinear transformation of the Lagrangian. This nonlinear transformation of La-
grangians is the usual action of renormalizations on Lagrangians used in physics
texts to convert an infinite “bare” Lagrangian L to a finite physical one L0; the
bare and physical Lagrangians are related by i L0= log(ρ(exp(i L)), where ρ is an
infinite renormalization taking an infinite Feynman measure, such as the one given
by dimensional regularization, to a finite one.

The orbit of a Lagrangian under this nonlinear action of the ultraviolet group is in
general infinite-dimensional. It can sometimes be cut down to a finite-dimensional
space as follows. As in Example 26, we cut down to the group of renormalizations
of mass dimension at most 0, which acts on the space of Lagrangians whose cou-
pling constants all have mass dimension at least 0. If we also add the condition
that the Lagrangian is Lorentz invariant, then we sometimes get finite-dimensional
spaces of Lagrangians. The point is that the classical fields themselves tend to
have positive mass dimension, so if the coupling constants all have nonnegative
mass dimension then the fields appearing in any term of the Lagrangian have total
mass at most d (canceling out the −d coming from the density) which severely
limits the possibilities. At one time the Lagrangians with all coupling constants of
nonnegative mass dimension were called renormalizable Lagrangians, though now
all Lagrangians are regarded as renormalizable in a more general sense where one
allows an infinite number of terms in the Lagrangian.

7. Gauge invariance and anomalies

If a Lagrangian is invariant under some group, this does not imply that the quantum
field theories we construct from it are also invariant, because as pointed out in
[Fujikawa 1979] we also need to choose a Feynman measure and there may not be
an invariant way of doing this. The obstructions to finding an invariant quantum
field theory lie inside certain cohomology groups and are called anomalies. We
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show that if these anomalies vanish then we can construct invariant quantum field
theories.

Suppose that a group G acts on S J8 and preserves the set of Feynman mea-
sures with given cut local propagator, and suppose that we have chosen one such
Feynman measure ω. In practice we often start with an action of a Lie algebra or
superalgebra, such as that generated by the BRST operator, which can be turned
into a group action in the usual way by working over a ring with nilpotent elements.
If g ∈ G then gω is another Feynman measure with the same propagator, so

ω = ρggω

for a unique renormalization ρg. This defines a nonabelian 1-cocycle: ρgh =

ρgg(ρh), where g(ρh)= gρhg−1. Since ω is invariant under ρgg, we find that

ω(ei L A1)= ω(ρgg(ei L A1))= ω
(
ei Le−i Lρgg(ei L A1)

)
,

so that e−Lω is invariant under the transformation that takes arguments A1 to
e−i Lρgg(ei L A1). This transformation fixes 1 if ei L is fixed by ρgg. If in addition
ρgg(ei L A1) = ρgg(ei L)ρgg(A1) (which is not automatic as ρg need not preserve
products) then A1 is taken to ρgg(A1) by this transformation.

This shows that we really want a Lagrangian L such that ei L is invariant un-
der the modified action ei L

→ ρgg(ei L). This is not the same as asking for
ρgg(i L)= i L because ρg need not preserve products (although g usually does). In
practice we usually have a Lagrangian L with L (and ei L ) invariant under G, and the
problem is whether it can be modified to L ′ so that ei L ′ is invariant under the twisted
action. The powers of L span a coalgebra all of whose elements are G-invariant.
Conversely, given a coalgebra C all of whose elements are invariant under some
group action, there is a canonical G-invariant grouplike element associated to this
coalgebra with coefficients in the dual algebra of C . So a fundamental question
is whether the maximal coalgebra in the space of G-invariant classical actions is
isomorphic to the maximal coalgebra in the space of actions invariant under the
twisted action of G.

The simplest case is when one can find a G-invariant Feynman measure, in
which case the cocycle is trivial and the twisted action of G is the same as the
untwisted action. In terms of the cocycle above, ρω is invariant for some renor-
malization ω if and only if ρg = ρ

−1g(ρ) for all g (where g(ρ)= gρg−1), in other
words there is an invariant measure ω if and only if the cocycle is a coboundary.
This case happens, for example, when spacetime M is Minkowski space and G
is the Lorentz or Poincare group (or one of their double covers). Dimensional
regularization in this case is automatically G-invariant, and so gives a G-invariant
Feynman measure.
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In the case of BRST operators, there need not be any G-invariant Feynman mea-
sure. In this case the following theorem shows that one can find suitable coalgebras
provided that certain obstructions, called anomalies, all vanish. The renormaliza-
tions ρg need not preserve products in S0ωS J8, but do preserve the coproduct
and also fix all elements of 0ωS J8 if they are normalized as in Example 25. So
we have an action of G on the space V = 0ωS J8, which lifts to two different
actions of the coalgebra SV, the first σ1(g) preserving the product, and the second
σ2(g)= ρgσ1(g) given by twisting the first by the cocycle ρg.

Theorem 45. Suppose that V is a real vector space acted on by a group G, and
there are two extensions σ1. σ2 of this action to the coalgebra SV . If the cohomol-
ogy group H 1(G, V ) vanishes then the maximal coalgebras in SV whose elements
are fixed by these 2 actions of G are isomorphic under an isomorphism fixing the
elements of V .

Proof. We construct an isomorphism f from the maximal coalgebra in the space
of σ1-invariant elements to the maximal coalgebra in the space of σ2-invariant
elements by induction on the degree of elements. We start by taking f to be the
identity map on elements of degree at most 1. We can assume that the 2 actions
coincide on elements of degree less than n, and have to find an isomorphism f
making them the same on elements of degree n, which we will do by adding ele-
ments of V to a basis of the elements of degree n. Suppose that a is an element
of degree n > 1 contained in a coalgebra of G-invariant elements. We want to find
v ∈ V so that

σ1(g)(a+ v)= σ2(g)(a)+ v

or equivalently
σ1(g)(v)− v = σ2(g)(a)− a.

The right hand side, as a function of g, is a 1-coboundary of an element a ∈ SV ,
and therefore a 1-cocycle. We show that the right hand side is in V . We have

1(a)= a⊗ 1+ 1⊗ a+
∑

i

bi ⊗ ci

for some elements bi and ci of degrees less than n invariant under G (for both
actions, which coincide on elements of degree less than n). Applying σ2 we find
that 1(σ2(g)a)= σ2(g)a⊗ 1+ 1⊗ σ2(g)a+

∑
i bi ⊗ ci , so subtracting these two

identities shows that σ2(g)(a)− a is a primitive element of SV and therefore in
V . Therefore the right hand side, as a function of g, is a 1-cocycle with values
in V . The solvability of the condition for v says exactly that this expression is
the coboundary of some element v ∈ V . In other words the obstruction to finding
a suitable v is exactly an element of the cohomology group H 1(G, V ), so as we
assume this group vanishes we can always solve for v. �
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Example 46. We take V to be 0ωS J8, and G to be some group acting on V . Then
the spaces of classical and quantum actions are coalgebras acted on by G, whose
primitive elements can be identified with V . If H 1(G, 0ωS J8) vanishes, then the
maximal G-invariant coalgebra in the coalgebra of classical actions is isomorphic
to the maximal G-invariant coalgebra in the coalgebra of quantum actions. So if
L is a G-invariant classical Lagrangian, then eL is a G-invariant classical action,
so gives a G-invariant quantum action. One cannot get a G-invariant quantum
action by exponentiating a G-invariant quantum Lagrangian because the space of
quantum actions does not in general have a G-invariant product.

Example 47. Sometimes the group G only fixes classical Lagrangians up to bound-
ary terms, in other words the Lagrangian is a G-invariant element of 0ωS J8/D.
In this case one replaces the cohomology group H 1(G, 0ωS J8) by

H 1(G, 0ωS J8/D).

The element ei L F lies in the completion of S0ωS J8 and is fixed by the zeroth
order part of the BRST operator. So the BRST operator acts on ei L F S0ωS J8.

The groups H 1(G, 0ωS J8) and H 1(G, 0ωS J8/D) (and their variations for
Poincare invariant Lagrangians) for the BRST operators of gauge theories have
been calculated in many cases, at least for the case of Minkowski space (see [Bar-
nich et al. 2000], for example) and are sometimes zero, in which case corresponding
invariant quantum field theories exist.
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