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Geometry of quiver Grassmannians of
Kronecker type and applications to cluster

algebras
Giovanni Cerulli Irelli and Francesco Esposito

We study quiver Grassmannians associated with indecomposable representations
(of finite dimension) of the Kronecker quiver. We find a cellular decomposition
for them and we compute their Betti numbers. As an application, we find a
geometric realization for the atomic basis of cluster algebras of type A(1)1 found
by Sherman and Zelevinsky (who called it the canonical basis) and those of type
A(1)2 found in an earlier paper of the first author.

1. Introduction

Cluster algebras are commutative Z-subalgebras of the field of rational functions
in a finite number of indeterminates which have been introduced and studied in
[Fomin and Zelevinsky 2002; 2003a; 2007; Berenstein et al. 2005]. To every quiver
Q without loops and 2-cycles it is associated a coefficient-free cluster algebra AQ .
In [Caldero and Chapoton 2006; Caldero and Keller 2006; 2008; Derksen et al.
2010] the authors describe the cluster variables of AQ via a map, called the Caldero–
Chapoton map, between the representations of Q and the field of rational functions
in n variables (we address the reader to the survey [Keller 2010]). This map is
defined in terms of the Euler–Poincaré characteristic of some complex projective
varieties attached to every finite-dimensional representation M of Q and called
quiver Grassmannians. By definition, the quiver Grassmannian Gre(M) consists
of all subrepresentations of M of dimension vector e. These varieties have been
considered in, for example, [Caldero and Keller 2008; Caldero and Keller 2006;
Caldero and Reineke 2008; Hernandez and Leclerc 2010, §12.3; Nakajima 2011].
In this paper we obtain more geometric information about them in the case of the
Kronecker quiver. In [Caldero and Zelevinsky 2006] the authors compute the Euler–
Poincaré characteristic of quiver Grassmannians associated with the Kronecker
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quiver and they conjecture the existence of a cellular decomposition which we
find here. In [Cerulli Irelli 2011b] (see also [Poettering 2010]) a torus action on
some quiver Grassmannians has been found and this allows to produce a cellular
decomposition of them in the case they are smooth.

In order to get more concrete results, such as an explicit computation of Poincaré
polynomials, we restrict our attention to the case of the Kronecker quiver. So
in this paper we study quiver Grassmannians associated with finite-dimensional
representations of the Kronecker quiver. A finite-dimensional representation of
the Kronecker quiver (called from now on a Q-representation) is a quadruple
M = (M1,M2,ma,mb), where M1 and M2 are finite-dimensional complex vector
spaces and ma,mb : M1 → M2 are two linear maps between them. Given two
nonnegative integers e1 and e2, the variety Gr(e1,e2)(M) is defined as the set

{(N1, N2) ∈ Gre1(M1)×Gre2(M2) : ma(N1)⊂ N2, mb(N1)⊂ N2},

where Gre(V ) denotes the Grassmannian of e-dimensional vector spaces in a vector
space V . This is a projective variety which is in general not smooth. When M1 =

M2 = Cn and ma = Id is the identity matrix and mb = Jn(0) is an indecomposable
nilpotent Jordan block, the representation M is regular indecomposable and we
denote it by Rn . The corresponding quiver Grassmannians X =Gr(e1,e2)(Rn) are the
main subjects of this paper. We concentrate on Rn because it is an indecomposable
(finite-dimensional) nonrigid Q-representation; all the other indecomposable (finite-
dimensional) Q-representations have either the same quiver Grassmannians as Rn

or they are rigid and hence their quiver Grassmannians are smooth and our results
are already known for them (see Section 2.1). In Section 2.2 we find that a one-
dimensional torus T acts on X . We provide a stratification of X (see Section 2.5)

X = X0 ⊇ X1 ⊇ · · · ⊇ Xs (1)

for s =min(e1, n− e2) into closed subvarieties Xk ' Gr(e1−k,e2−k)(Rn−2k). More-
over Xk+1 is the singular locus of Xk and the difference Xk \ Xk+1 is a smooth
quasiprojective variety which is not complete. As a consequence of the stratification
(1) we get that X is smooth if and only if s = 0, i.e., either e1 = 0 or e2 = n,
in which cases the quiver Grassmannian specializes to an usual Grassmannian of
vector subspaces.

In Section 2.6 we prove that Białynicki-Birula’s theorem on cellular decomposi-
tion of smooth projective varieties applies to Xk \ Xk+1; hence we can prove that X
has a decomposition

X =
⋃

L∈X T

X L

into attracting sets
X L := {N ∈ X : limλ→0 tλN = L}
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of T -fixed points L , and theses sets are affine spaces. In Section 2.7 we describe
the cell X L : if L is indecomposable then X L is the orbit of L by the action of a
unipotent group; if L = L ′⊕ L ′′, with L ′ of “lower weight” than L ′′, we have

dim X L ′⊕L ′′ = dim X L ′ + dim X L ′ −〈dim L ′,dim L ′′〉,

where 〈 · , · 〉 denotes the Euler form associated with the Kronecker quiver. As a
consequence of this formula we are able to compute the Poincaré polynomials of
the quiver Grassmannians associated with every finite-dimensional indecomposable
representation of the Kronecker quiver: for n ≥ 0 let Pn (resp. In) be the indecom-
posable preprojective of dimension vector (n, n+ 1) (resp. (n+ 1, n)). As usual
we denote by PX (t) :=

∑
i dim H i (X)t i the Poincaré polynomial of the complex

projective variety X . Denoting by Grt(s) the Grassmannian of t-dimensional vector
subspaces of an s-dimensional vector space, we have (see Section 2.8)

PGre(Rn)(t)= PGr(e2−e1)(e2)(t)PGr(e2−e1)(n−e1)(t),

PGre(Pn)(t)= PGre1 (e2−1)(t)PGr(e2−e1)(n+1−e1)(t),

PGre(In)(t)= PGre1 (e2+1)(t)PGr(e2−e1)(n−e1)(t),

(2)

where e := (e1, e2) denotes a dimension vector.
Szanto [2011] computed the polynomials which count the number of Fq -points

of the quiver Grassmannians associated with indecomposable (finite-dimensional)
Q-representations. The polynomials he finds are precisely the ones we find: the
Poincaré polynomials. This result is expected and should follow by standard
technique in `-adic cohomology of schemes. It would deserve to be analyzed in more
detail. In particular it would be interesting to know if the cellular decomposition
continues to hold in positive characteristic.

In Section 3 we consider the (coefficient-free) cluster algebra A of type A(1)1 . The
cluster variables of A are the rational functions xm , m ∈Z, of the field F=Q(x1, x2)

recursively generated by the relation

xk xk+2 = x2
k+1+ 1.

It is not hard to see that every pair {xk, xk+1} of consecutive cluster variables is a
free-generating system for the field F and hence F=Q(xk, xk+1) and every cluster
variable can be expressed as a rational function in every such pair (which are called
the clusters of A). Every cluster variable is a Laurent polynomial in every cluster of
A; this is the Laurent phenomenon proved in [Fomin and Zelevinsky 2002]. In this
case the Caldero–Chapoton map M 7→ CC(M) associates to a Q-representation M
of dimension vector (d1, d2) the Laurent polynomial
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CC(M) :=
∑

e χ(Gre(M))x
2(d2−e2)
1 x2e1

2

xd1
1 xd2

2

. (3)

Caldero and Keller [2008] proved that the map M 7→CC(M) restricts to a bijection
between the indecomposable rigid Q-representations M (i.e., Ext1(M,M)= 0) and
the cluster variables of A different from x1 and x2. Moreover it has the property
that CC(M ⊕ N )= CC(M)CC(N ), under which cluster monomials not divisible
by x1 or x2, i.e., monomials of the form xa

k xb
k+1 for k ∈ Z \ {1, 2} and a, b ≥ 0, are

in bijection with rigid Q-representations.
Sherman and Zelevinsky [2004] introduced distinguished elements {zn : n ≥ 0}

of F recursively defined by

z0 = 2, z1 = x0x3− x1x2, zn+1 = z1zn − zn−1 for n ≥ 1, (4)

and proved that the set

B := {cluster monomials} ∪ {zn : n ≥ 1}

is a Z-basis of A such that positive linear combinations of its elements coincide
with the set of all positive elements of A, that is, elements that are positive Laurent
polynomials in every cluster of A. Such a basis is now called an atomic basis
of A, though Sherman and Zelevinsky called it a canonical basis. The terminology
changed after the relationship between this basis and Lusztig’s canonical basis was
better understood; see [Lampe 2011; Geiß et al. 2012]. We give a new geometric
realization of B by using the Caldero–Chapoton map: cluster monomials are
images of rigid representations and quiver Grassmannians associated with rigid
quiver representations are smooth [Caldero and Reineke 2008]. With this in mind
we prove in Section 3 that

zn =

∑
e χ(Gre(Rn)

sm)x2(n−e2)
1 x2e1

2

xn
1 xn

2

for every n ≥ 1, where Gre(Rn)
sm
:= X0 \ X1 denotes the smooth part of Gre(Rn).

A similar construction can be made in a cluster algebra A2 of type A(1)2 . These
cluster algebras are studied in [Cerulli Irelli 2009] and some results are recalled
in Section 3.2: the atomic basis of A2 consists of cluster monomials together with
elements {unw

k, unzk
: k ≥ 0, n ≥ 1} where w and z are two cluster variables and

the un are defined similarly to (4) as follows:

u0 = 2, u1 = zw− 2, un+1 = u1un − un−1 for n ≥ 1. (5)

We prove that un is obtained by evaluating the Caldero–Chapoton map at the
smooth part of the regular indecomposable representation of a quiver of type A(1)2
of dimension vector (n, n, n) that lies in a homogeneous tube.
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2. Geometric structure of quiver Grassmannians

Let

Q := 1
a //

b
// 2

be the Kronecker quiver. As usual, we denote a complex Q-representation M =
(M1,M2,ma,mb) as follows:

M = M1

ma //
mb

// M2 .

A subrepresentation N of M consists of vector subspaces N1 and N2 of M1 and
M2 respectively such that ma(N1)⊂ N2 and mb(N1)⊂ N2. We call

dim(M) := (dim M1, dim M2)

the dimension vector of M . A morphism g : M → M ′ from a Q-representation
M to a Q-representation M ′ is a pair (g1, g2) of linear maps g1 : M1→ M ′1 and
g2 : M2 → M ′2 such that m′a ◦ g1 = g2 ◦ ma and m′b ◦ g1 = g2 ◦ mb. The set of
Q-representations form a category which is an abelian Krull–Schmidt category via
the natural notions of direct sums, kernel and cokernel (see [Assem et al. 2006],
for example). The classification of finite-dimensional Q-representations which are
indecomposable — that is, not direct sums of nontrivial subrepresentations — goes
back to [Kronecker 1890]. Here is their complete list.

There are the indecomposable preprojectives

Pn = kn
ϕ1

//

ϕ2

// kn+1,

for n ≥ 0, where k = C denotes the field of complex numbers, kn and kn+1 denote
complex vector spaces endowed respectively with linear bases {v(1)1 , . . . , v

(1)
n } and

{v
(2)
1 , . . . , v

(2)
n+1}, and ϕ1, ϕ2 are the immersions in the vector subspace of kn+1

spanned by {v(2)1 , . . . , v
(2)
n } and {v(2)2 , . . . , v

(2)
n+1}, respectively.

There are the indecomposable regulars

Rn(λ)= kn
Id //

Jn(λ)

// kn , Rn(∞)= kn
Jn(0) //

Id
// kn ,

where λ ∈ k, Jn(λ) denotes the n-th indecomposable Jordan block of eigenvalue λ
and Id is the identity matrix (in the introduction we used the notation Rn := Rn(0)).

Finally, there are the indecomposable preinjectives

In = kn+1
ϕt

2 //

ϕt
1

// kn

for n ≥ 0, where ϕt
1 and ϕt

2 are transposes of the matrices ϕ1 and ϕ2 defined above.
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For an indecomposable Q-representation M we denote by Bi = {v
(i)
k }, where

i = 1, 2, the basis of Mi with respect to which M has the previous presentation. All
other finite-dimensional Q-representations are direct sums of these ones. Direct
sums of indecomposable preprojectives (resp. regulars, preinjectives) are called
preprojective (resp. regular, preinjective) Q-representations.

Given nonnegative integers e1 and e2 and a Q-representation M we consider the
variety

Gre(M) := {N ≤Q M : dim(N )= (e1, e2)},

called the e= (e1, e2)-quiver Grassmannian of M (here N ≤Q M means that N is
a subrepresentation of M). This is closed inside the product Gre1(M1)×Gre2(M2)

of usual Grassmannians of vector subspaces and so is a complex projective variety.
In [Caldero and Reineke 2008] it is shown that the tangent space TN (Gre(M)) at a
point N of Gre(M) equals:

TN (Gre(M))= Hom(N ,M/N ). (6)

The following inequalities hold for Z := Gre(M):

〈e, d−e〉 ≤ dim Z ≤ dim TN (Z)≤ 〈e, d−e〉 + dim Ext1(M,M), (7)

where 〈(a, b)t , (c, d)t 〉 := ac+ bd − 2ad is the Euler form of Q and d := dim M ,
so that dim(M/N ) = d − e. In particular, if M is rigid (Ext1(M,M) = 0), then
all the quiver Grassmannians associated with it are smooth (see [Derksen et al.
2010, Proposition 3.5] for a generalization of this result) and they have dimension
dim Gre(M)= 〈e, d− e〉. It is known that the rigid Q-representations are

P⊕a
n ⊕ P⊕b

n+1, I⊕a
n ⊕ I⊕b

n+1

for all n ≥ 0 and a, b ≥ 0.

2.1. Action of a group on quiver Grassmannians. Let M be a Q-representation
of dimension vector d = (d1, d2). We consider the group

N(M) :=
{
(A, B)∈

2∏
i=1

GLdi (Mi ) :ma A= Bma, mb A= λBmb for some λ∈C∗
}
.

Note that the automorphism group of M is a closed subgroup of N(M) (for λ= 1).
The group N(M) acts on Gre(M) as follows (A, B) · (N1, N2) := (AN1, B N2).

Lemma 1. (1) For every n ≥ 0, N(Pn)' C∗×C∗.

(2) For every n ≥ 0, N(In)' C∗×C∗.

Proof. It follows easily from the definition that N(Pn) consists of diagonal matrices
(A, B) of the form

A = diag(a, aλ, . . . , aλn−1), B = diag(a, aλ, . . . , aλn)



Quiver Grassmannians of Kronecker type and cluster algebras 783

for a, λ ∈ C∗. Similarly for N(In). �

Proposition 2. Let M be a rigid Q-representation. Then every quiver Grassman-
nian Gre(M) associated with M has a cellular decomposition.

Proof. The variety Gre(M) is smooth and N(M)⊃ C∗ =: T . The torus T acts with
finitely many fixed points. It follows hence by Białynicki–Birula results [Białynicki-
Birula 1973] (see also [Chriss and Ginzburg 1997, §2.4]) that it has a cellular
decomposition into attracting sets of its T -fixed points. �

In the rest of the paper we mainly concentrate on the quiver Grassmannians
associated with indecomposable regular Q-representations.

2.2. The variety X = Gre(Rn). From now on we will focus on quiver Grassman-
nians associated with indecomposable regular Q-representations. It is not hard to
show that Gre(Rn(λ))= Gre(Rn(µ)) for every λ,µ ∈ k ∪ {∞} (see [Cerulli Irelli
2011b], for example) and hence we consider the variety X := Gre(Rn) (recall that
our convention is Rn := Rn(0)). It follows from the definition that

X = {N1 ⊂ N2 ⊂ kn
: Jn(0)N1 ⊂ N2, dim Ni = ei , i = 1, 2}

and hence X is a closed subvariety of a partial flag variety. In this paper we use the
convention that

J = Jn(0) is a lower triangular matrix. (8)

The group N := N(Rn) is given by

N := {A ∈ GLn(C) : AJ A−1
= λJ, for some λ ∈ C∗},

where J := Jn(0) and it acts on X as A · (N1, N2)= (AN1, AN2).

Lemma 3. The group N is the semidirect product

N=U o T × Z ,

where U is the unipotent radical of N of unipotent lower triangular Toeplitz matrices,
given by

U :=
{

1n +
n−1∑
i=1

ai J i
n(0) : ai ∈ C

}
,

T is the one-dimensional torus T = {tλ : λ ∈ C∗}, where tλ is the diagonal matrix
tλ := diag(1, λ, λ2, . . . , λn−1), and Z consists of central elements {a01n : a0 ∈ C∗}.

Proof. Every element of UT Z belongs to N. Conversely, let A ∈N. Then it is easy
to see that the columns a1, . . . , an of A satisfy the relation ak+1 = J ak and hence
A ∈UT Z . It is now easy to see that U is normal in UT Z . �
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For example for n = 5, an element A of the group U and an element tλ of T have
the form

A =


1 0 0 0 0
a1 1 0 0 0
a2 a1 1 0 0
a3 a2 a1 1 0
a4 a3 a2 a1 1

 tλ =


1 0 0 0 0
0 λ 0 0 0
0 0 λ2 0 0
0 0 0 λ3 0
0 0 0 0 λ4

 (9)

for a1, a2, a3, a4 ∈ C and λ ∈ C∗.
Let X T

:= {N ∈ X : t N = N for all t ∈ T }. Clearly L ∈ X T if and only if L is a
coordinate subrepresentation of Rn , i.e., both L1 and L2 are coordinate subspaces
of kn . In the next section we will encode this information in a combinatorial tool
which is called the coefficient quiver of Rn .

We conclude this section by pointing out the useful isomorphism

ϕn : Gre→ Gre∗(Rn), ϕn(N )= N 0, (10)

where (e1, e2)
∗
:= (n− e2, n− e1) and N 0

:= { f ∈ R∗n : f (v) = 0 for all v ∈ N }
by using the identification Rn ' R∗n . The torus T acts on R∗n with contragredient
action and this gives an action on Gre∗(R∗n). Under the identification Rn ' R∗n
these two actions differ by a character and so the identification Gre(R∗n)'Gre(Rn)

is T -equivariant. It is an easy check that isomorphism (10) is T -equivariant and
involutive.

2.3. The coefficient quiver of Rn. Following [Ringel 1998] we associate to a Q-
representation M with linear basis B a quiver 0(M,B) called the coefficient quiver
of M in the basis B. By definition, 0(M,B) has the elements of B as vertices
and there is an arrow labeled by a (resp. b) between two vertices v and v′ if the
coefficient of v′ in ma(v) (resp. mb(v)) is nonzero. We call 0(M,B) the coefficient
quiver of M in the basis B. When the basis B of M is clear from the definition of
M we simply write 0(M) for 0(M,B). Here are the coefficient quivers of some
indecomposable Q-representations for n = 4 in the basis defined in Section 2:

1(1)

a||
b

""
2(1)

a||
b

""
3(1)

a||
b

""
4(1)

a||
b

""0(P4)=

1(2) 2(2) 3(2) 4(2) 5(2)

1(1)

a||
b

""
2(1)

a||
b

""
3(1)

a||
b

""
4(1)

a||
b

""
5(1)

a||0(R5)=

1(2) 2(2) 3(2) 4(2) 5(2)

1(1)

b
""

2(1)

a||
b

""
3(1)

a||
b

""
4(1)

a||
b

""
5(1)

a||0(I4)=

1(2) 2(2) 3(2) 4(2)
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Here k(i), for i = 1, 2, denotes the vertex corresponding to v(i)k . Note that we use
the convention (8).

In all these cases a one-dimensional torus T acts on all the associated quiver
Grassmannians and the fixed points of this action are in bijection with successor
closed subquivers of the corresponding coefficient quiver (i.e., subquivers γ such
that if v is a vertex of γ and α : v→ v′ is an arrow with source v then α is an arrow
of γ ).

Let us consider 0(Rn). In Lemma 3 we have seen that the torus T acts on X
by λ · v(i)k = λ

k−1v
(i)
k (i = 1, 2, k ∈ [1, n]). For every r ≥ 1 there exists a unique

regular subrepresentation of Rn isomorphic to Rr and it has the property that,

if N ∈ X is such that lim
λ→0

tλN = Rr , then N = Rr . (11)

Indeed this subrepresentation is coordinate and lies in the extreme right-hand side
of 0(Rn). In particular the basis elements that generate Rr have maximal weights.

Roughly speaking, the flow for λ→ 0 goes from right to left in 0(Rn). For
example the line 〈v(2)1 + v

(2)
2 〉 generated by the vector v(2)1 + v

(2)
2 goes to the line

generated by v(2)1 as follows:

lim
λ→0

λ · (〈v
(2)
1 + v

(2)
2 〉)= lim

λ→0
(〈v

(2)
1 + λv

(2)
2 〉)= 〈v

(2)
1 〉.

2.4. Action of the torus on Hom-spaces. Let L and L ′ be indecomposable Q-
representations. As we have seen in the previous sections, the torus T = {tλ :
λ ∈ C∗} acts on the quiver Grassmannians associated with them. The action of T
naturally extends to the vector space Hom(L , L ′) as follows: for f ∈ Hom(L , L ′),
(tλ f )(l) := tλ f (tλ−1l). Following [Crawley-Boevey 1989] we endow the vector
space Hom(L , L ′) with a distinguished basis. Since Hom( · , · ) is additive, we
assume that both L and L ′ are indecomposable. Let 0(L) and 0(L ′) denote the
coefficient quiver of L and L ′ respectively. We consider the set CB(L , L ′) of
triples (γ, α, γ ′) such that γ is a connected predecessor closed subquiver of 0(L)
(meaning that for every vertex v of γ , every arrow c : v′→ v with target v belongs
to γ ), γ ′ is a successor closed subquiver of 0(L ′), and α : γ0→ γ ′0 is a bijection
from the set γ0 of vertices of γ to the set γ ′0 of vertices of γ ′, such that for every
arrow

v
(1)
k

a // v
(2)
k

of γ there is an arrow

α(v
(1)
k )

a // α(v
(2)
k )

of γ ′ with the same label, and likewise with a replaced by b.
The next proposition is a special case of [Crawley-Boevey 1989], so we omit its

proof (which is quite simple in this case).
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Proposition 4. Consider the map B : CB(L , L ′)→Hom(L , L ′) that associates to
(γ, α, γ ′) the homomorphism

fγ γ ′(v)=
{
α(v) if v ∈ γ0,

0 otherwise.

The image of B is a basis of Hom(L , L ′) which we call C B-basis (for Crawley-
Boevey).

The proposition is illustrated in the figure below, which shows an element of
the C B-basis of Hom(R3, R3). The circles (resp. bullets) highlight a predecessor
(successor) closed subquiver γ (resp. γ ′) of 0(R3). The dotted arrows show the
corresponding fγ γ ′ .

1◦
a
��

b
��

,,2◦
a
��

b
��

,,3
a
��

1
a
��

b
��

2•
a
��

b
��

3•
a
��

1◦ 222◦ 223 1 2• 3•

The torus T acts diagonally on the elements of the C B-basis of Hom(L , L ′) as
follows: If (γ, α, γ ′) ∈ CB(L , L ′) and the vertices of γ have consecutive weights
k, k+ 1, . . . and the vertices of γ ′ have consecutive weights k ′, k ′+ 1, . . . then

tλ fγ γ ′ = λk′−k fγ γ ′

and we say that fγ γ ′ has weight k ′−k. For example, the morphism illustrated above
has weight 1. We denote by Hom(L , L ′)+ the vector subspace of Hom(L , L ′)
spanned by C B-basis elements with positive weight.

As an application of Proposition 4 we compute the dimension of the Hom-spaces
between indecomposable Q-representations. It is known (and not difficult to prove
by using Proposition 4) that Hom(Rs, Pl) = Hom(Is, Pl) = Hom(Is, Rl) = 0 for
all s, l ≥ 0. Hence we consider the remaining cases.

Lemma 5. For every l, s ≥ 0 we have

dim Hom(Ps,Pl)= [l − s+ 1]+, (12)

dim Hom(Ps,Rl)= l, (13)

dim Hom(Ps, Il )= l + s, (14)

dim Hom(Rs,Rl)=min(s, l), (15)

dim Hom(Rs, Il )= s, (16)

dim Hom( Is , Il )= [s− l + 1]+, (17)

where [b]+ := max(b, 0).
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We conclude this section by pointing out that the action of the torus T on
Hom(L , L ′) induces an action of the torus on the space Ext1(L , L ′). With respect
to this action long exact sequences in cohomology are T -equivariant.

2.5. Stratification of X. Every subrepresentation N of Rn is of the form N =
P ⊕ Rr where P is preprojective and Rr , for r ≥ 0, is either zero or an indecom-
posable regular Q-representation. Similarly the quotient Rn/N = Rr ′ ⊕ I where
Rr ′ , for r ′ ≥ 0, is either zero or regular indecomposable and I is preinjective. This
allows us to give the following definition.

Definition 6. Let N ∈ X with N = P⊕Rr and Rn/N = Rr ′⊕ I with P preprojective,
I preinjective and some r, r ′ ≥ 0. We define the integer

KN = KN (X) :=min(r, r ′)

It is easy to see that KN = dim Ext1(N , Rn/N ). Indeed

dim Ext1(N , Rn/N )= dim Ext1(Rr , Rr ′)= dim Hom(Rr ′, Rr )=min(r, r ′)

where in the first equality we use the well-known fact that

Ext1(R, I )= Ext1(P, R)= Ext1(P, I )= 0

for every preprojective P , regular R and preinjective I Q-representations; in the
second equality we use the AR-formula (see [Assem et al. 2006], for example); in
the last equality we use (15). In particular it is known that

〈dim N ,dim N ′〉 = dim Hom(N , N ′)− dim Ext1(N , N ′)

and in view of (6) we get that for every N ∈ X the dimension of the tangent space
TN (X) at N equals

dim TN (X)= 〈e, nδ− e〉+ KN . (18)

where δ := (1, 1)t . Equation (18) implies that a point N ∈ X is smooth if and only
if either N or Rn/N do not have a regular direct summand.

The next theorem provides a stratification of X and it is essential for our proof
of the existence of a cellular decomposition of X . Let us define the strata.

Definition 7. For every integer k ≥ 0 define the set

Xk = Xk(X) := {N ∈ X : KN ≥ k}

where KN is given in Definition 6.

Theorem 8. (1) The set Xk+1 is a closed T -stable subvariety of Xk . Moreover
there is a T -equivariant isomorphism

Xk ' Gr(e1−k,e2−k)(Rn−2k). (19)
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(2) The subvarieties Xk’s provide a stratification of X

X = X0 ⊃ X1 ⊃ · · · ⊃ Xs (20)

where s = min(e1, n− e2).

(3) The variety Xk \ Xk+1 is smooth (inside Xk) and

lim
λ→0

tλN ∈ Xk \ Xk+1 for all N ∈ Xk \ Xk+1.

Proof. We consider two subvarieties of X :

X ′k(X) := {N ∈ Gre(Rn) : Rk is a subrepresentation of N } (21)

for k ∈ [0, e1], and

X ′′k (X) := {N ∈ Gre(Rn) : Rk is a quotient of Rn/N } (22)

for k ∈ [0, n− e2]. It follows from the definitions that

Xk = X ′k ∩ X ′′k . (23)

We now collect some properties of X ′k and X ′′k .

Lemma 9. (1) The isomorphism ϕn defined in (10) induces an isomorphism

X ′k(Gre(Rn))' X ′′k (Gre∗(Rn)),

and hence also
X ′′k (Gre(Rn))' X ′k(Gre∗(Rn)).

(2) For every k ∈ [0, e1], X ′k(X) is a T -stable subvariety of X. For every N ∈
X ′k(X), limλ→0 tλN ∈ X ′k(X). There is a T -equivariant isomorphism

X ′k(X)' Gre−kδ(Rn−k). (24)

(3) For every k ∈ [0, n − e2], X ′′k (X) is a T -stable subvariety of X. For every
N ∈ X ′′k (X), limλ→0 tλN ∈ X ′′k (X). There is a T -equivariant isomorphism

X ′′k (X)' Gre(Rn−k). (25)

Proof. Part (1) is a straightforward check. Part (3) follows from part (1) by using
the isomorphism (10). Part (2) follows from property (11) of Rk . It remains to
check (24). We consider the map

8 : X ′k(X)→ Gre−kδ(Rn−k) given by 8(N )= (N/Rk).

Since there is a unique exact sequence of regular Q-representations

0 // Rk
ιk // Rn

πn−k // Rn−k // 0 (26)

the map 8 is well defined and bijective. �
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We now conclude the proof of Theorem 8. Everything follows from Lemma 9 by
(23) except the smoothness of Xk \ Xk+1. To prove smoothness notice that it is
sufficient to prove smoothness of X0 \ X1 by (19), since KN (Xk) = KN (X)− k.
By (18) X0 \ X1 is the smooth locus of X . �

Corollary 10. The variety X = Gre(Rn) is smooth if and only if e1 = 0 (in which
case X ' Gre2(k

n)) or e2 = n (in which case X ' Gre1(k
n)).

Proof. By Theorem 8, X is smooth if and only if X = X0 if and only if s =
min(e1, n− e2)= 0. �

Corollary 11. The quiver Grassmannian Gr(e1,e2)(Rn) has dimension

dim Gr(e1,e2)(Rn)= 〈e, nδ− e〉 = (e2− e1)(n− (e2− e1))

Proof. In X =Gre(Rn) one can always find a smooth point, i.e., a subrepresentation
N of Rn such that either N or Rn/N do not have a regular direct summand. It
follows that X0 \ X1 is nonempty and hence the result follows from (18). �

2.6. Cellular decomposition of X. In this section we provide a cellular decom-
position of X = Gre(Rn). Following [Białynicki-Birula 1973] (see also [Chriss
and Ginzburg 1997]), for every fixed point L ∈ X T we consider its attracting set,
defined as

X L := {N ∈ X : limλ→0 tλN = L}. (27)

In particular, L ∈ X L for every L ∈ X T .

Theorem 12. For every L ∈ X T the corresponding attracting set X L is an affine
space and X L ' TL(X L)' T+L (X) := Hom(L , Rn/L)+. Moreover

X =
⋃

L∈X T

X L .

Proof. The results from [Białynicki-Birula 1973] on cellular decomposition of a
projective variety X continue to hold if the variety is smooth but only quasiprojective,
provided that the action of the torus is such that limλ→0 tλN belongs to X for every
N ∈ X . This is an easy consequence of Hironaka’s resolution of singularities. In
view of Theorem 8 we apply this to X0 \ X1 and we get the result. �

2.7. Description of the cells. In this section we describe the cell X L associated with
every L ∈ X T (see Theorem 12). Given integers r ∈ [0, n−1] and k ∈ [1, n−r ], we
denote by k(Pr ) the indecomposable preprojective subrepresentation of Rn of dimen-
sion vector (r, r + 1) generated by v(1)k , v

(1)
k+1, . . . , v

(1)
k+r−1 and v(2)k , v

(2)
k+1, . . . , v

(2)
k+r

if r ≥ 1 and by v(2)k if r = 0. For example, the following figure shows the subrepre-
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sentation 2(P1) of R5:

1(1)

a}}
b

!!
2(1)

a}}
b

!!
3(1)

a}}
b

!!
4(1)

a}}
b

!!
5(1)

a}}
1(2) 2(2) 3(2) 4(2) 5(2)

Theorem 13. (1) If L ∈ X T is indecomposable then X L = UL. In particular if
L = k(Pe1) then dim X L = n− k.

(2) If L = L ′⊕ L ′′ with Hom(L ′, L ′′)+ = Hom(L ′, L ′′) then

dim X L = dim X L ′ + dim X L ′′ −〈dim L ′, dim L ′′〉. (28)

Proof. (1) The unipotent group U defined in Lemma 3 is a subgroup of dimension
n − 1 of the group of n × n unipotent lower triangular matrices. Let L be an
indecomposable subrepresentation of Rn of dimension vector e. If L = Rr then
e = (r, r) and L1 = L2 is the vector subspace of kn spanned by the last r basis
vectors of Rn . In particular, AL = L for every A ∈ U. On the other hand we
have already noticed that regular subrepresentations have property (11) and hence
X L = {L} and we get X L = UL if L is regular. Let L be an indecomposable
preprojective subrepresentation of Rn . Then e2 = e1 + 1 and we assume that
L = k(Pe1) for some k ∈ [1, n− e1]. It is easy to see that dim UL = n− k. Indeed
the stabilizer of L under the action of U equals the stabilizer of the line generated
by v(2)k and hence it has dimension k− 1. For example in (9) the stabilizer of the
third basis vector is generated by a3 and a4 and has dimension two. We now prove
that dim X L = n−k and since UL ⊂ X L and they are both affine spaces, we get the
equality. By Theorem 12 we have to compute dim T+L (X)= dim Hom(L , Rn/L)+.
Since L = k(Pe1) is indecomposable the quotient Rn/L is the direct sum of at most
two indecomposables as follows

Rn/L = Rk−1⊕ It

where t = n− k− e1. We have

Hom(L , Rn/L)+ = Hom(Pe1, It).

In view of (14), dim Hom(L , Rn/L)+ = e1+ t = n− k and we are done.

(2) There are short exact sequences

0 // L ′ // Rn/L ′′ // Rn/(L ′⊕ L ′′) // 0

and

0 // L ′′ // Rn/L ′ // Rn/(L ′⊕ L ′′) // 0



Quiver Grassmannians of Kronecker type and cluster algebras 791

We apply the functors Hom(L ′′,− ) and Hom(L ′,− ) to the previous short exact
sequences, then take the positive part (the part spanned by C B-basis elements with
positive weight) and we get the exact sequences (see Theorem 12)

0 // 0 // TL ′′(X L ′′) // Hom(L ′′, Rn/L) // 0

and

0 // Hom(L ′, L ′′) // TL ′(X L ′) // Hom(L ′, Rn/L) // Ext1(L ′, L ′′)+ // 0.

Indeed, we have

Ext1(L ′′, L ′)+ = 0= Ext1(L ′, Rn/L ′)+, (29)

Ext1(L ′, L ′′)+ = Ext1(L ′, L ′′). (30)

This is because, if Hom(M, L)+ = 0 then Ext1(M, L)+ = 0; indeed one can
always take a minimal T -equivariant injective resolution of L and apply the functor
Hom(M,− ). By summing up we get the short exact sequence

0 // Hom(L ′, L ′′) // TL ′(X L ′)⊕ TL ′′(X L ′′) // TL(X L) // Ext1(L ′, L ′′) // 0

Since for every fixed point L , dim X L = dim TL(X L) we get (28). �

2.8. Betti numbers. We now use the results of the previous sections in order to
compute the Betti numbers of X = Gre(Rn). Since X has a cellular decomposition
(Theorem 12) the odd cohomology spaces of X are zero and the 2i-th Betti number
b2i = b2i (X) := dim H 2i (X) equals the number of cells of dimension i .

Before stating the main result of this section we start with the special case
e2 = e1+ 1.

Theorem 14. Let X = Gr(e1,e1+1)(Rn). The even Betti numbers of X are

b2i =


i + 1 if 0≤ i ≤ s,
s+ 1 if s ≤ i ≤ n− 1− s,
n− i if n− 1− s ≤ i ≤ n− 1,

(31)

where s =min(e1, n− 1− e1) (see Theorem 8(2)).
The Poincaré polynomial PX (t) :=

∑dim X
i=0 bi t i of X equals

PX (t1/2)=

(
te1+1
−1

t−1

)(
tn−e1−1

t−1

)
(32)

Proof. For k ∈ [0, e1], consider the variety X ′k defined in (21) and the difference

Y ′k = Y ′k(X) := X ′k(X) \ X ′k+1(X). (33)
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By definition, N ∈ Yk if N = Rk ⊕ P for some (indecomposable) preprojective P .
Since X is union of the Y ′k and each Y ′k is a union of cells (Theorem 12) we get

dim H i (X)=
e1∑

k=0

dim H i
c (Y
′

k), (34)

where H i
c (Y
′

k) is the i-th cohomology space of Y ′k with compact support and its
dimension equals the number of cells of dimension i/2. In particular dim H i

c (Y
′

k)=0
for i odd. We prove that

dim H 2i
c (Y

′

k)=

{
1 if i ∈ [e1−k, n−k−1],
0 otherwise.

(35)

and hence (31) follows from (34). From the definition it follows that

Y ′k(X)' Y ′0(Gr(e1−k,e1+1−k)(Rn−k)). (36)

The elements of Y ′0(Gr( f1, f1+1)(Rm)) are all the indecomposable preprojective sub-
representations of Rm of dimension vector ( f1, f1 + 1) and hence they are all
isomorphic to P f1 . For i ∈ [1,m− f1], Theorem 13(1) gives dim X i (P f1 )

= m− i ,
which is in [ f1,m − 1]; hence for every ` ∈ [ f1,m − 1] there is a unique cell of
dimension `. For m = n− k and f1 = e1− k we get (35). �

Notice that (32) can be written as PX (t)= PGr1(e2)(t)PGr1(n−e1)(t), where e2 =

e1+ 1. Surprisingly, this turns out to be a general fact, which we state as the main
result of this section:

Theorem 15. Let X = Gr(e1,e2)(Rn). The Poincaré polynomial PX (t) of X equals

PX (t)= PGr(e2−e1)(e2)(t)PGr(e2−e1)(n−e1)(t). (37)

Proof. We proceed by induction on n ≥ e1 ≥ 0. For e1 = 0, X ' Gre2(n) and (37)
follows. Let 1≤ e1 ≤ e2. The variety X can be decomposed as

X = Y ′0(X)∪ X ′1(X)

where Y ′0=Y ′0(X) consists of all preprojective subrepresentations of Rn in X and X ′1
consists of subrepresentations of Rn in X having a nonzero regular subrepresentation
(see (21) and (33)). Moreover, by (24), X ′1(X) ' Gr(e1−1,e2−1)(Rn−1) and hence
we have

PX (t)= PY ′0(t)+ PGr(e1−1,e2−1)(Rn−1)(t). (38)

By the inductive hypothesis (37) holds if and only if

PY ′0(t)=
(
PGr(e2−e1)(e2)(t)− PGr(e2−e1)(e2−1)(t)

)
PGr(e2−e1)(n−e1)(t). (39)

Hence we prove (39).
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We make the following choice: we fix a linear basis {v1, . . . , vs} of a vector space
of dimension s and we let the torus act on Grt(s) by tλvi = λ

ivi . We consider the
vector subspace of ke2 generated by v2, . . . , ve2 and the corresponding embedding
Gr(e2−e1)(e2 − 1) ⊂ Gr(e2−e1)(e2). With this choice the difference Gr(e2−e1)(e2) \

Gr(e2−e1)(e2− 1) is T -stable and for every point W of it, limλ→0 tλW still belongs
to it. The right-hand side of (39) is the Poincaré polynomial (with respect to the
cohomology with compact support) of the smooth projective variety

G :=
(
Gr(e2−e1)(e2) \Gr(e2−e1)(e2− 1)

)
×Gr(e2−e1)(n− e1).

The one-dimensional torus T acts on G and the attracting sets of the T -fixed points
form a cellular decomposition of G. We prove that there exists a bijection between
the cells of Y ′0 of dimension k and the cells of G of dimension k.

A point of Y ′0 is a direct sum of precisely (e2−e1) indecomposable preprojective
subrepresentations of Rn (this follows by considering their dimension vectors). The
T -fixed points have the form

L := k1(Pr1)⊕ k2(Pr2)⊕ · · ·⊕ k(e2−e1)
(Pr(e2−e1)

),

where r1+· · ·+re2−e1 = e1, ri ≥ 0 and k(Pr ) has the same meaning as in Section 2.7.
In view of Theorem 13 and of (12) the dimension of the attracting cell of L equals

dim X L = n(e2− e1)−

e2−e1∑
i=1

ki − (e2− e1)
2
+

e2−e1∑
i=1

i∑
j=1

(r j − ri + 1).

We consider the set α(e, k, n) which parametrizes the T -fixed points of Y ′0 whose
attracting set has dimension k, i.e.,

α(e, k, n) :=
{
(k1, k2, . . . , ke2−e1, r1, r2, . . . , re2−e1) :

1≤ k1≤ k1+r1< k2≤ k2+r2< · · ·< ke2−e1 ≤ ke2−e1+re2−e1 ≤ n,

r1+ r2+ · · ·+ re2−e1 = e1, ri ≥ 0,

n(e2−e1)−
∑e2−e1

i=1 ki−(e2−e1)
2
+
∑e2−e1

i=1
∑i

j=1(r j−ri+1)= k
}
.

Now consider the T -fixed points of G and their attracting sets. The T -fixed
points of Grt(s) consist of coordinate vector subspaces of dimension t and they are
naturally parametrized by tuples (a1, . . . , at) of integers 1≤ a1 < · · ·< at ≤ s. The
corresponding cell O(a1,...,at ) has dimension

s− a1− (t − 1)+ s− a2− (t − 2)+ · · · s− at = ts−
t∑

i=1

ai −

t−1∑
i=1

i.

The T -fixed points of Gr(e2−e1)(e2) \ Gr(e2−e1)(e2 − 1) are the coordinate vector
subspaces of ke2 containing v1. Hence the following set parametrizes the cells of G
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of dimension k:

β(e, k, n) :=
{
(a1, a2, . . . , ae2−e1, b2, b3, . . . , be2−e1) :

1≤ a1 < a2 < · · ·< ae2−e1 ≤ n− e1, 2≤ b2 < · · ·< be2−e1 ≤ e2,

n(e2− e1)−
∑e2−e1

i=1 ai −
∑e2−e1

i=2 bi + (e2− e1− 1)= k
}
.

We consider the map β(e, k, n)→ α(e, k, n) defined by

a1 7→ k1, ai 7→ ki − r1− r2− · · ·− ri−1, bi 7→
i−2∑
j=0

r(e2−e1− j)+ i,

for i ∈ [2, e2−e1]. It is straightforward to verify that this map is a bijection between
β(e, k, n) and α(e, k, n). It follows that Y ′0 and G have the same Betti numbers and
hence (39) follows. �

Corollary 16. The Poincaré polynomial of a quiver Grassmannian associated with
the indecomposable preprojective Pn and the indecomposable preinjective In , where
n ≥ 0, are given by

PGre(Pn)(t)= PGre1 (e2−1)(t)PGr(e2−e1)(n+1−e1)(t), (40)

PGre(In)(t)= PGre1 (e2+1)(t)PGr(e2−e1)(n−e1)(t). (41)

Proof. Equality (41) follows from (40) by the isomorphism

Gr(e1,e2)(In)' Gr(n−e2,n+1−e1)(Pn).

Hence we prove (40). As in the proof of Theorem 15, let Y ′0 = Y ′0(Gre(Rn+1))

be the subvariety of Gre(Rn+1) of all preprojective subrepresentations of Rn+1 of
dimension vector e and let

G ′ := Gr(e2−e1)(e2) \Gr(e2−e1)(e2− 1)

with the convention that Gr(e2−e1)(e2−1) consists of all the elements of Gr(e2−e1)(e2)

not containing the first basis vector (as in the proof of Theorem 15). In view of (39)
it is sufficient to prove the equalities

PG ′(t)= t2e1 PGr(e2−e1−1)(e2−1)(t), (42)

PY ′0(t)= t2e1 PGre(Pn)(t). (43)

The proof of (42) is similar to the proof of Theorem 15: there is an obvious
bijection between the cells of G ′ of dimension k and the cells of Gr(e2−e1)(e2−1) of
dimension k− e1. Let us prove (43). Let L ∈ Y ′0. Then L is a sum of preprojective
subrepresentations of Rn+1 and L is a subrepresentation of Pn ≤Q Rn+1. By looking
at the quotients Rn+1/L and Pn/L and using Lemma 5 one gets

dim Hom(L , Rn+1/L)+ = dim Hom(L , Pn/L)++ e1.
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Hence the cells of Y ′0 of dimension k are in bijection with the cells of Gre(Pn) of
dimension k− e1 and (43) holds. �

Since χ(X)= PX (1) for a projective variety X and χ(Grt(s))=
(s

t

)
, we recover

the following result, of which alternative proofs have also appeared in [Cerulli Irelli
2011b; Zelevinsky 2007; Szanto 2011; Poettering 2010].

Corollary 17 [Caldero and Zelevinsky 2006].

χ(Gre(Rn))=
(e2

e1

)( n−e1
e2−e1

)
, (44)

χ(Gre(Pn))=
(e2−1

e1

)(n+1−e1
e2−e1

)
, (45)

χ(Gre(In))=
(e2+1

e1

)( n−e1
e2−e1

)
. (46)

3. Applications to cluster algebras

To a finite quiver Q without loops and 2-cycles is associated a (coefficient-free)
cluster algebra AQ ([Fomin and Zelevinsky 2002]; see also [Fomin and Zelevinsky
2003b] and [Keller 2010] for excellent surveys). This is a Z-subalgebra of the field F

of rational functions in n variables (n being the number of vertices of Q), generated
by its cluster variables. The cluster variables are grouped into free-generating sets
of F called clusters. The cluster monomials are monomials in cluster variables
belonging to the same cluster. An atomic basis of AQ is a Z-basis B of it such that
the positive linear combinations of elements of B coincide with the semiring of
positive elements of AQ (elements that are positive Laurent polynomials in every
cluster of AQ); see [Sherman and Zelevinsky 2004]. The existence of such a basis
has been proved only in a few cases:

• If Q is of type ADE , cluster monomials form an atomic basis of AQ [Cerulli
Irelli 2011a; Cerulli Irelli and Labardini-Fragoso 2011].

• When Q is the Kronecker quiver, atomic bases exist coefficients and consist
of cluster monomials together with extra elements {zn : n ≥ 1} [Sherman and
Zelevinsky 2004].

• when Q is of type A(1)2 , the atomic bases of AQ have been found in [Cerulli
Irelli 2009] (for every choice of the coefficients) and consist of cluster mono-
mials together with some extra elements {un : n ≥ 1} possibly multiplied by
particular cluster variables.

We notice that under the Caldero–Keller bijection, cluster monomials correspond,
via the Caldero–Chapoton map, to rigid Q-representations and the quiver Grass-
mannians associated with rigid representations are smooth. In the next two sections
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we propose a “truncation” of the Caldero–Chapoton map that gives a geometric
realization of the extra elements {zn}, {un}.

3.1. Type A(1)
1 . Let F= Q(x1, x2) be the field of rational functions in two indepen-

dent variables x1 and x2 with rational coefficients. We recursively define elements
{xk : k ∈ Z} of F by

xk xk+2 = x2
k+1+ 1, k ∈ Z.

Let A be the Z-subalgebra of F generated by all the xk’s (k ∈ Z). By [Sherman and
Zelevinsky 2004] the algebra A is the coefficient–free cluster algebra associated
with the Kronecker quiver. The pairs {xk, xk+1}, k ∈ Z, are free generating sets of
F and form the clusters of A. Monomials xa

k xb
k+1, a, b ≥ 0, k ∈ Z, are called the

cluster monomials of A.
Caldero and Zelevinsky [2006] defined the rational function

sn := CC(Rn)

for every n ≥ 1, where Rn is a regular indecomposable Q-representation of dimen-
sion (n, n). They have proved that the set S := {cluster monomials} ∪ {sn : n ≥ 1}
is a Z-basis of A.

The atomic basis B defined in the introduction and the basis S are related by
(see [Caldero and Zelevinsky 2006])

zn = sn − sn−2 (47)

for n ≥ 1 and the convention that s−k = 0 for k > 0, s0 := 1.

Theorem 18. The element zn has the Laurent expansion

zn =

∑
e χ(Gre(Rn)

Sm)x2(n−e2)
1 x2e1

2

xn
1 xn

2
(48)

where Gre(Rn)
Sm denotes the smooth part of Gre(Rn).

Proof. In view of Theorem 8, Gre(Rn)
Sm
= X0 \ X1 where X0 = Gre(Rn) and

X1 = Gr(e1−1,e2−1)(Rn−2) and hence

χ(Gre(Rn)
Sm)= χ(Gre(Rn))−χ(Gr(e1−1,e2−1)(Rn−2)).

It is now easy to check that the right-hand side of (48) satisfies (47). �

3.2. Type A(1)
2 . We now briefly recall the construction of the atomic basis of cluster

algebras of type A(1)2 from [Cerulli Irelli 2009]. Let F=Q(x1, x2, x3) be the field
of rational functions in three (commuting) independent variables x1, x2 and x3 with
rational coefficients. Recursively define elements xm ∈F for m ∈ Z by the relation

xm xm+3 = xm+1xm+2+ 1. (49)
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Define also the elements w, z ∈ F by

w =
x1+ x3

x2
, z =

x1x2+ x2x3+ 1
x1x3

. (50)

The (coefficient–free) cluster algebra A of type A(1)2 is the Z-subalgebra of F

generated by all the xm’s, w and z (see also [Fomin and Zelevinsky 2002, Example
7.8]). This is the cluster algebra A=AQ2 associated with the affine quiver

2
��

Q2 : 1

@@

// 3
(51)

of type A(1)2 . The elements xm , m ∈ Z, w and z are the cluster variables of A.
The sets {xm, xm+1, xm+2}, {x2m, z, x2m+2} and {x2m−1, w, x2m+1}, m ∈ Z, are the
clusters of A. The cluster monomials are monomials in cluster variables belonging
to the same cluster. The exchange graph of A is the brick wall shown here:

• • •

w
• • •

• •

x−1

• •

x1

• •

x3

• •

x5

• •

x7

• • •

•

x−2

•

x0

•

x2

z
•

x4

•

x6

•

x8

•

It has clusters as vertices and an edge between two vertices if the corresponding
clusters share precisely two cluster variables. In this figure the cluster variables of
a cluster C label the regions surrounding the vertex corresponding to C.

Define elements un , n ≥ 0, of F by the recursion

u0 = 2, u1 = zw− 2, un+1 = u1un − un−1 for n ≥ 1. (52)

In [Cerulli Irelli 2009] it is shown that the set

B = {cluster monomials} ∪ {unw
k, unzk

: n ≥ 1, k ≥ 0} (53)

is an atomic basis of A. We now realize the elements un as images of the Caldero–
Chapoton map. Recall that for a representation M of the quiver Q2 of (51) the
Caldero–Chapoton map CC(M) is the following (see [Caldero and Zelevinsky
2006]):

CC(M)=
∑

e χ(Gre(M))x
d2+d3−e2−e3
1 xd3−e3+e1

2 xe1+e2
3

xd1
1 xd2

2 xd3
3
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where (d1, d2, d3) is the dimension vector of M . For every n ≥ 1 let Rn,2 be the
indecomposable regular Q2-representation in an homogeneous tube, i.e.,

kn
=

!!
Rn,2 = kn

= ==

Jn(0)
// kn

where Jn(0) denotes the n× n indecomposable nilpotent Jordan block.

Theorem 19. For every n ≥ 1,

un =

∑
e χ(Gre(Rn,2)

Sm)x2n−e2−e3
1 xn−e3+e1

2 xe1+e2
3

xn
1 xn

2 xn
3

(54)

where Gre(Rn,2)
Sm denotes the smooth part of the quiver Grassmannian Gre(Rn,2),

e := (e1, e2, e3).

Proof. Let u′n denote the right-hand side of (54). We prove that {u′n} satisfies (52).
We consider the fibration of projective varieties

f : Gr(e1,e2,e3)(Rn,2)→ Gr(e1,e3)(Rn)

taking (N1, N2, N3) to (N1, N3); its fiber is Gr(e2−e1)(e3− e1). In particular

Gr(e1,e2,e3)(Rn,2)
Sm
= f −1 (Gr(e1,e3)(Rn)

Sm) .
Using this it is straightforward to check that

u′n = zn(x1w
−1/2, x3w

−1/2) (55)

where the right-hand side means that (48) should be computed with the substitutions
x1 7→ x1w

−1/2 and x2 7→ x3w
−1/2, and w−1/2 is a formal variable whose square is

w−1. The defining equations (4) yield

u′1 = z1(x1w
−1/2, x3w

−1/2)=
x2

1 + x2
3 +w

x1x2
= zw− 2

and u′n+1 = u′1u′n − u′n−1, so u′n = un for every n ≥ 1. �

4. Conclusions

The study of quiver Grassmannians from a geometric point of view has provided
interesting information about cluster algebras. After this study it is natural to define
the following slight modification of the Caldero–Chapoton map: for k ≥ 0,

CC(k)(M) :=
∑

e χ(Gre(M)(k))x
2(d2−e2)
1 x2e1

2

xd1
1 xd2

2

, (56)
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where
Gre(M)(k) := {N ∈ Gre(M) : dim Ext1(N ,M/N )= k}.

In the case of the Kronecker quiver the map CC(0)(M) is defined by the smooth
part of the quiver Grassmannians associated with M . This is not a general fact and
it is studied in [Cerulli Irelli et al. 2012]. In that paper we study the relationship
between the maps CC(k) and the transverse quiver Grassmannian introduced in
[Dupont 2010].

We notice that for a rigid representation M we have CC(0)(M)=CC(M). More-
over it is easy to check that if Ext1(M, N )= Ext1(N ,M)= 0 then CC0(M⊕N )=
CC0(M)CC0(N ). In particular the elements unw and unz of the basis (53) are
CC0(Rn,2⊕W ) and CC0(Rn,2⊕Z) where W and Z are the indecomposable regular
rigid Q2-representations. We trust that this approach can help in the determination
of atomic bases of cluster algebras of affine type of higher rank.
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