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We study cuspidal automorphic representations of unitary groups of 2n variables
with ε-factor −1 and their central L-derivatives by constructing their arithmetic
theta liftings, which are Chow cycles of codimension n on Shimura varieties of
dimension 2n−1 of certain unitary groups. We give a precise conjecture for the
arithmetic inner product formula, originated by Kudla, which relates the height
pairing of these arithmetic theta liftings and the central L-derivatives of certain
automorphic representations. We also prove an identity relating the archimedean
local height pairing and derivatives of archimedean Whittaker functions of cer-
tain Eisenstein series, which we call an arithmetic local Siegel–Weil formula
for archimedean places. This provides some evidence toward the conjectural
arithmetic inner product formula.
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1. Introduction

Rallis [1982] developed a formula, called the Rallis inner product formula, to
determine whether a certain theta lifting is vanishing. It is used to calculate the
Petersson inner product of two automorphic forms on an orthogonal group lifted
from those on a symplectic group through the Weil representation. It turns out,
using the Siegel–Weil formula, that the inner product is related to a diagonal in-
tegral on the doubling symplectic group of the original automorphic forms with
certain Eisenstein series. This doubling method was generalized to other cases
by Gelbart et al. [1987]. If we assume that the automorphic forms we lift are
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cuspidal, this diagonal integral is in fact Eulerian, and decomposes into so-called
local zeta integrals, which are closely related to the L-factors of the corresponding
representations. In fact, Gelbart et al. prove in many cases that when everything is
unramified, the local zeta integral is just the local Langlands L-factor divided by a
product of certain Tate L-factors. Li [1992] extended this result for unitary groups.

Since, at that time, the key ingredient, the Siegel–Weil formula, was only known
“above the convergence line”, which means that the group we lift to should have
a certain larger size than the group we lift from, the inner product formula could
only regard the values of global L-functions at points far to the right of the central
point. For example, if we lift forms from Sp(n) (rank 2n matrices) to O(2m) then
m> 2n+1. In fact, using the nonvanishing result of these L-values, Li [1992] was
able to prove some nonvanishing results for the cohomology of certain arithmetic
quotients, which is an important and well-known application of the inner product
formula. Kudla and Rallis [1994] extended the Siegel–Weil formula with great
generality for symplectic-orthogonal pairs and Ichino [2004; 2007] did that for
unitary pairs using the similar idea of Kudla and Rallis. Now we can extend Rallis’
original inner product formula “below the convergence line” (after regularization if
necessary) which enables us to say some words about the global L-values at other
points, especially the central point 1

2 .
Now let us stick to a special case where the dual pair are unitary groups with

the same even rank, hence the related L-value is the central value. Suppose that
E/F is a quadratic imaginary extension of a totally real field with τ the nontrivial
Galois involution. Let us denote by H ′ ∼= U(n, n)F the unique quasisplit unitary
group of rank 2n (with respect to τ ) and by H another unitary group of the same
rank. Let π be an irreducible cuspidal automorphic representation of H ′ and let f
be a nonzero form inside it. Choosing an auxiliary Schwartz function and using the
Weil representation, we get an automorphic form on H called the (regularized, if
necessary) theta lifting of f . If the global epsilon factor ε( 1

2 , π)= 1, then among
all pure inner forms of H , the theta lifting of forms inside π should always vanish
except for one possible H = H(π). For this unitary group, the only obstruction to
some theta lifting being nonvanishing is that L( 1

2 , π)= 0.
The theory is not complete since we miss another half, ones whose ε( 1

2 , π)=−1.
If this is the case, then L( 1

2 , π) is automatically 0 and all theta lifting to all possi-
ble unitary groups of the same rank should vanish. A great observation of Kudla
[1997; 2002; 2003; Kudla et al. 2006] was that (in the symplectic-orthogonal case)
there should exist some “arithmetic theta lifting” which is a cycle on certain (inte-
gral models of a) Shimura variety and an “arithmetic Siegel–Weil formula”. This
arithmetic Siegel–Weil formula should be related to the central derivative L ′(1

2 , π)

of the global L-function instead of the central value L(1
2 , π) via an arithmetic

analogue of Rallis’ inner product formula (see [Kudla 2003, Section 11]). For this
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direction, a particular form of the arithmetic inner product formula has already been
obtained, for holomorphic cuspidal newforms of PGL(2)Q of weight 2 and level
00(N ) for N square-free with epsilon factor −1, in [Kudla et al. 2006, Theorem
9.2.4], based on a lot of previous work.

In this paper, we will set up a general formulation and a more explicit for-
mulation extending the above line. We will establish the general conjecture of
an explicit form of the arithmetic inner product formula assuming some well-
accepted properties of Arthur packets, the existence of Beilinson–Bloch height
pairing when F 6= Q, and some other auxiliary conjectures when F = Q, all of
which can be proved when n = 1. We also prove some partial results toward
the general arithmetic inner product formula, namely the modularity theorem on
the (noncompactified) generating series and the arithmetic analogue of the local
Siegel–Weil formula at archimedean places. In the second part of this paper [Liu
2011], we will give a full proof of the arithmetic inner product formula for n = 1.

Before we state the main results, we would like to remark that the L-function
appearing here is the so-called doubling L-series defined by Piatetski-Shapiro and
Rallis (see [Harris et al. 1996] for a detailed definition for the unitary group case).
This L-function is conjectured to coincide with the Langlands L-function of the
standard base change BC(π) which is an irreducible automorphic representation
of GL2n,E . Hence the set of central L-derivatives which can be computed by the
arithmetic inner product formula at least contains those L ′(1

2 ,5), where 5 is an
irreducible cuspidal automorphic representation of GL2n,E such that5∨∼=5τ ,5⊗
εE/F is GL2n,F -distinguished, and5ι is the base change of the trivial representation
of U(2n, 0)R for any archimedean place ι, where εE/F is the associated quadratic
character by class field theory. In particular, when n = 1, this set is exactly the
same as the one of central L-derivatives appearing in the (complete version of the)
Gross–Zagier formula recently proved by X. Yuan, S.-W. Zhang and W. Zhang
[Yuan et al. 2011].

More precisely, let E/F , τ , and εE/F be as above and ψ be an additive character
of F\AF , standard at archimedean places, which is used to define Weil representa-
tions and Fourier coefficients. For n ≥ 1, let Hn be the unitary group over F such
that for any F-algebra R, Hn(R)= {h ∈ GL2n(E ⊗F R) | thτwnh = wn} where

wn =

(
1n

−1n

)
.

The center of Hn is the F-torus E×,1=ker[Nm : E×→ F×]. Let π be an irreducible
cuspidal automorphic representation of Hn and π∨ its contragredient. Let χ be a
character of A×E which is trivial on E×A×F . We can associate with χ a sequence
of integers kχ = (k

χ
ι )ι for each archimedean place ι of F whose definition is in

Section 3A. In particular, they are all even integers for this χ .
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By the theta dichotomy proved in [Paul 1998; Gong and Grenié 2011], we get
a factor ε(π, χ) (see Section 2D for a precise definition) which is the product of
the local factors ε(πv, χv) for each place v of F , such that ε(πv, χv) ∈ {±1} and
ε(πv, χv) = 1 for almost all v. Although it is conjectured that this ε(πv, χv) is
related to the local ε-factor in representation theory (see [Harris et al. 1996]), it is
not by our definition. From these local factors, we can construct a hermitian space
V(π, χ) over AE of rank 2n which is coherent (resp. incoherent) if ε(π, χ) = 1
(resp. −1) (for this terminology, see Section 2A). When ε(π, χ) = 1, we get the
usual (extended) Rallis inner product formula. Moreover, we prove in Section 2
that when ε(π, χ)=−1, L( 1

2 , π, χ)= 0.
Now let us assume ε(π, χ)=−1 and further assume that π∞ is a discrete series

of weight (n − kχ/2, n + kχ/2). Careful readers may find that this is not standard
terminology. We will now explain this in a more general situation. We say that
a discrete series representation π of U(r, r)R (r ≥ 1) is of weight (a, b) for some
integers a, b such that a+b is positive if the minimal type of the maximal compact
subgroup U(r)R×U(r)R ⊂U(r, r)R, for which we choose the standard embedding
elaborated at the beginning of Section 4A (although we only write it for r even
there, but it is the same for all r ), is deta1 � det−b

2 , where deti is the determinant
on the i-th U(n)R. One can prove that it is the theta correspondence (under certain
Weil representation) of the trivial representation from U(a + b, 0)R to U(r, r)R.
Finally, the first sentence in the paragraph means that for each ι, πι is a discrete
series of weight (n− k

χ
ι /2, n+ k

χ
ι /2). For π as above, the corresponding V(π, χ)

is incoherent and totally positive definite.
Moreover, for any hermitian space V over AE which is incoherent and totally

positive-definite of rank m ≥ 2, let H=ResAF/AU(V) be the corresponding unitary
group. Then we can construct a projective system of unitary Shimura varieties
(ShK (H))K of dimension m − 1, smooth and quasiprojective over E where K is
a sufficiently small open compact subgroup of H(A f ) (for the construction, see
Section 3A). Let χ be a character of E×\A×E such that χ

∣∣
A×F
= εm

E/F and 1≤ r <m
another integer. For any Schwartz function φ ∈ S(V r )U∞K (see Section 3A for
notation), we can define Kudla’s generating series Zφ(g) for any g∈Hr (AF )which
takes values as formal sums in CHr (Sh(H))C: the inductive limit of Chow groups of
codimension r cycles with complex coefficients on the Shimura varieties. For any
linear functional ` of CHr (Sh(H))C, we can evaluate it on the generating series and
hence obtain a smooth function `(Zφ)(g) on Hr (AF ) provided that it is absolutely
convergent. We prove in Section 3B the following theorem on the modularity of
the generating series:

Theorem 3.5. (1) If `(Zφ)(g) is absolutely convergent, then it is an automorphic
form of Hr (AF ). Moreover, `(Zφ)∞ is in a discrete series representation of
weight ((m+ kχ )/2, (m− kχ )/2).
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(2) If r = 1, then `(Zφ)(g) is absolutely convergent for any `.

There is also a version in the case of symplectic-orthogonal pairs which is proved
in [Yuan et al. 2009]. The proof in the unitary case is similar to that of [Yuan et al.
2009] using the induction process on the codimension. Actually, the proof of the
case r = 1 uses the result in the symplectic-orthogonal case. We will also state
another version for the compactified generating series in Section 3C if the Shimura
varieties are not proper, which happens in particular when F =Q and m > 2, but
so far we are not able to prove it.

For simplicity, let us assume F 6= Q in the following discussion; then ShK (H)

is projective. Let m = 2n. Similarly to [Kudla 2003; Kudla et al. 2006], for any
f ∈ π and Schwartz function φ ∈ S(Vn)U∞K , we construct a cycle 2 f

φ , called
the arithmetic theta lifting, which is a cycle on ShK (H) of codimension n. On
the contragredient side, we also have 2 f ∨

φ∨ for f ∨ ∈ π∨. The definition of 2 f
φ is

basically the integration of f with the generating series, that is,

2
f
φ =

∫
Hn(F)\Hn(AF )

f (g)Zφ(g) dg,

which is a formal sum in CHn(Sh(H))C but whose (Betti) cohomology class is well-
defined. We show in Section 3D that it is cohomologically trivial assuming certain
properties of Arthur packets. Hence we can consider the (conjectural if n > 1)
Beilinson–Bloch height pairing (see [Bloch 1984; Beı̆linson 1987]) 〈2 f

φ ,2
f ∨
φ∨ 〉BB.

Analogous to the coherent case, when V 6=V(π, χ), one easily shows that2 f
φ = 0.

If V∼= V(π, χ), we conjecture the following:

Conjecture 3.11 (arithmetic inner product formula). Let π , χ be as above (in
particular, ε(π, χ) = −1) and V ∼= V(π, χ). Then, for any f ∈ π , f ∨ ∈ π∨ and
any φ, φ∨ ∈ S(Vn)U∞ decomposable, we have

〈2
f
φ ,2

f ∨

φ∨ 〉BB =
L ′(1

2 , π, χ)∏2n
i=1 L(i, εi

E/F )

∏
v

Z∗(0, χv, fv, f ∨v , φv ⊗φ
∨

v ),

where Z∗ are normalized local zeta integrals (see Section 2C) of which almost all
are 1.

We remark that this conjectural arithmetic inner product formula is different
from that of Kudla (see, for example, [Kudla 2003, Section 11]) in the sense that
our arithmetic theta lifting 2 f

φ is canonically defined on the Shimura variety, not
on any integral model. More important, it is cohomologically trivial, at least when
the Shimura variety is proper, hence we can talk about its canonical height through
the conjectural Beilinson–Bloch height pairing.

As we do in [Liu 2011], to prove the arithmetic inner product formula, we in-
troduce analytic kernel functions and geometric kernel functions which carry over
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all cusp forms simultaneously. The former is the derivative of certain Eisenstein
series on the doubling group which deals with derivatives of L-functions, while
the latter is the height pairing of the generating series which deals with that of
the arithmetic theta lifting. Both kernel functions can be essentially decomposed
as a sum of local terms for each place v of F . Hence we should compare them
place by place. At each archimedean place of F , it turns out that we need to
compare the derivatives of certain Whittaker functions with the local height pairing
of special subdomains of the hermitian symmetric domain Dm−1 of U(m−1, 1)R.
Let V be the complex hermitian space of signature (m, 0) and V ′ that of signature
(m − 1, 1). For any nonzero x ∈ V ′, we can associate a hermitian symmetric
subdomain Dx ⊂ Dm−1 and a Green’s function ξ(x) to it (see Section 4B). It is of
codimension 1 if the inner product of x is positive and empty if not. The Green’s
function, originally constructed in [Kudla 1997], is related to the Kudla–Millson
form [1986] and very closely related to derivatives of Whittaker functions. But
this is not the admissible Green’s function used in the Beilinson–Bloch height
pairing (at an archimedean place); instead, they have a certain relation which will
be elaborated in [Liu 2011] when n=1 and we expect that they relate for general n.
For any Ex = (x1, . . . , xm) ∈ V ′m such that x1, . . . , xm are linearly independent, we
get an intersection number H(Ex)∞ (with respect to the Green’s functions ξ(xi )). It
is clear that the moment matrix T (Ex) is in Herm(C): the set of complex hermitian
matrices of rank m, and whose signature is (m − 1, 1). The intersection number
H(Ex)∞ only depends on T = T (Ex); hence it makes sense to write it as H(T )∞.
In Section 4, we prove the following local arithmetic Siegel–Weil formula at an
archimedean place:

Proposition 4.5, Theorem 4.17. Let T ∈ Herm(C) be nonsingular with sign(T )=
(p, q).

(1) ords=0WT (s, e,80)≥ q.

(2) If T is positive definite, that is, q = 0, we have

WT (0, e,80)= γV
(2π)m

2

0m(m)
e−2π tr T .

(3) If T is of signature (m− 1, 1), we have

W ′T (0, e,80)= γV
(2π)m

2

0m(m)
e−2π tr T H(T )∞.

Here, 80
∈S(V m) is the standard Gaussian; WT (0, e,80) is the T-th Whittaker

integral at s = 0 and e ∈ U(m,m)R; γV ∈ {±1} is the Weil constant and 0m(m) is
a product of certain usual gamma functions (see Lemma 4.3).

The study of derivatives of L-functions starts from the celebrated paper [Gross
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and Zagier 1986], which studied the relation between the central derivatives of
Rankin L-series and the heights of Heegner points on modular curves thus obtain-
ing the famous Gross–Zagier formula predicted by the Birch and Swinnerton-Dyer
conjecture. Later, this was generalized to the case of Shimura curves over totally
real fields in [Zhang 2001a; 2001b]. The complete version of the Gross–Zagier
formula has been achieved in [Yuan et al. 2011]. Moreover, Bruinier and Yang
[2009] used regularized theta lifting and related the inner product to L-derivatives
to give another proof of the original Gross–Zagier formula. A certain p-adic (or
rigid analytic) version of the Gross–Zagier formula has been studied in [Bertolini
and Darmon 1997; 1998].

There is another approach to studying L-derivatives via doubling integrals and
in general derivatives of Eisenstein series, discovered by Kudla [1997; 2002; 2003;
Kudla et al. 2006]. He proposed the project of the arithmetic Siegel–Weil formula
and proved a special form of the arithmetic inner product formula with Rapoport
and Yang. Our work follows the second approach, establishing an explicit form
of the arithmetic inner product formula and, together with [Liu 2011], proving the
complete version of the arithmetic inner product formula in the case of unitary
groups of two variables over totally real fields.

For applications of the arithmetic inner product formula, we are able to construct
nontorsion Chow cycles instead of cohomology classes in the classical case if the
central derivative is nonzero. In the case of the Gross–Zagier formula [Gross and
Zagier 1986; Yuan et al. 2011] and the arithmetic triple product formula [Yuan
et al. 2010], we have already seen many interesting and important applications of
nontorsion cycles on certain Shimura varieties.

For the positivity of the global L-function at the central point, which is a con-
sequence of the generalized Riemann hypothesis, it is obvious that the positivity
of normalized local zeta integrals (at the point 0) will imply the positivity of the
central value L(1

2 , π, χ). Moreover, through the arithmetic inner product formula,
the positivity of normalized local zeta integrals plus the (conjectural) positivity of
the Beilinson–Bloch height pairing will imply the positivity of the central derivative
L ′(1

2 , π, χ), which is again a consequence of the generalized Riemann hypothesis!
Now we state the outline of the paper. In Section 2, we review the classical

Siegel–Weil formula; in Section 2A is its generalization of the work of Ichino, and
in Section 2B the doubling integral introduced by Piatetski-Shapiro and Rallis. We
introduce the definition of the L-function and its relation with the local zeta integral
in Section 2C. In Section 2D, we introduce the Rallis inner product formula for
the central L-value in the coherent case. In Section 2E, we derive a formula for
central L-derivatives using derivatives of Eisenstein series in the incoherent case.

In Section 3, we treat the geometric part of the theory. We introduce the notion
of Shimura varieties of unitary groups, Kudla’s special cycle, and generating series
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in Section 3A. Section 3B is devoted to proving Theorem 3.5. We introduce the
canonical smooth compactification in the case of higher dimensions in Section 3C.
In Section 3D, we define the arithmetic theta lifting and formulate the conjecture
above and two auxiliary conjectures.

Section 4 is devoted to proving Proposition 4.5, Theorem 4.17 and hence fin-
ishing the archimedean comparison on the Shimura variety in the global setting.

In the Appendix we calculate the theta correspondence for spherical repre-
sentations at a nonarchimedean place. This result is a key step in the proof of
Proposition 3.9. Our calculation for the unitary case follows exactly that of the
symplectic-orthogonal case which is proved in [Rallis 1984].

The following conventions hold throughout this paper.

• A f = Ẑ⊗Z Q= (lim
←−N

Z/NZ)⊗Z Q is the ring of finite adèles and A=A f ×R

is the ring of full adèles.

• For any number field K , AK = A⊗Q K , A f,K = A f ⊗Q K , K∞ = K ⊗Q R,
and 0K = Gal(K ac/K ) is the Galois group of K .

• As usual, for a subset S of places, −S (resp. −S) means the S-component
(resp. component away from S) for the corresponding (decomposable) adèlic
object; −∞ (resp. − f ) is the infinite (resp. finite) part.

• The symbols Tr and Nm mean the trace (resp. reduced trace) and norm (resp.
reduced norm) if they apply to fields or rings of adèles (resp. simple algebras),
and tr means the trace for matrix and linear transforms.

• 1n and 0n are the n × n identity and zero matrices; tg is the transpose of a
matrix g.

• All (skew-)hermitian spaces and quadratic spaces are assumed to be nonde-
generate.

• For a scheme X over a field K , we let Pic(X) be the Picard group of X over
K , not the Picard scheme.

2. Doubling method

2A. Siegel–Weil formulae. In this section, we will review the classical Siegel–
Weil formula and some generalizations to be used later.

Let F be a totally real field and E a totally imaginary quadratic extension of F .
We denote by τ the nontrivial element in Gal(E/F) and by εE/F :A

×

F /F×→{±1}
the associated character by class field theory. Let 6 (resp. 6 f ; resp. 6∞) be the
set of all places (resp. finite places; resp. infinite places) of F , and 6◦, 6◦f , and
6◦
∞

those of E . We fix a nontrivial additive character ψ of AF/F .
For positive integer r , we denote by Wr the standard skew-hermitian space over

E with respect to the involution τ , which has a skew-hermitian form 〈 · , · 〉 such
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that there is an E-basis {e1, . . . , e2r } satisfying 〈ei , e j 〉 = 0, 〈er+i , er+ j 〉 = 0, and
〈ei , er+ j 〉 = δi j for 1 ≤ i, j ≤ r . Let Hr = U(Wr ) be the unitary group of Wr

which is a reductive group over F . The group Hr (F), in which F can be itself
or its completion at some place, is generated by the standard parabolic subgroup
Pr (F)= Nr (F)Mr (F) and the element wr . More precisely,

Nr (F)=
{

n(b)=
(

1r b
1r

) ∣∣∣∣ b ∈ Herr (E)
}
,

Mr (F)=
{

m(a)=
(

a
taτ,−1

) ∣∣∣∣ a ∈ GLr (E)
}
,

and

wr =

(
1r

−1r

)
.

Here Herr (E)= {b ∈Matr (E) | bτ = tb}.

Degenerate principal series and Eisenstein series. We fix a place v ∈ 6 and sup-
press it from the notation. Thus F = Fv is a local field of characteristic zero,
E = Ev is a quadratic extension of F which may be split, and Hr = Hr,v = Hr (Fv)
is a local reductive group. Also, we denote by Kr its maximal compact subgroup
which is the intersection of Hr with GL2n(OE) (resp. is isomorphic to U(r)×U(r))
if v is finite (resp. if v is infinite). For s ∈ C and a character χ of E×, we denote
by Ir (s, χ)= s-IndHr

Pr
(χ |·|

s+r/2
E ) the degenerate principal series representation (see

[Kudla and Sweet 1997]) of Hr , where s-Ind means the nonnormalized smooth
induction. Precisely, it realizes on the space of Kr -finite functions ϕs on Hr satis-
fying

ϕs(n(b)m(a)g)= χ(det a)|det a|s+r/2
E ϕs(g)

for all g ∈ Hr , m(a) ∈ Mr , and n(b) ∈ Nr . A (holomorphic) section ϕs of Ir (s, χ)
is called standard if its restriction to Kr is independent of s. It is called unramified
if it takes value 1 on Kr .

Now we view F and E as number fields. For a character χ of A×E which is trivial
on E× and s ∈ C, we have an admissible representation Ir (s, χ) =

⊗
′ Ir (s, χv)

of Hr (AF ), where the restricted tensor product is taken with respect to the unram-
ified sections. For any standard section ϕs = ⊗ϕs,v ∈ Ir (s, χ), we can define an
Eisenstein series as

E(g, ϕs)=
∑

γ∈Pr (F)\Hr (F)

ϕs(γ g).

The series is absolutely convergent if <(s) > r/2 and has a meromorphic contin-
uation to the entire complex plane which is holomorphic at s = 0 (see [Tan 1999,
Proposition 4.1]).
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Hermitian spaces, Weil representations, and theta functions. Let us have a quick
review of the classification of (nondegenerate) hermitian spaces. Suppose v ∈ 6 f

and E is nonsplit at v. Then, up to isometry, there are two different hermitian
spaces over Ev of dimension m ≥ 1: V±, defined by

ε(V±)= εE/F
(
(−1)m(m−1)/2 det V±

)
=±1.

Suppose v∈6 f and E is split at v. Then, up to isometry, there is only one hermitian
space V+ over Ev of dimension m. Suppose v ∈6∞. Then, up to isometry, there
are m + 1 different hermitian spaces over Ev of dimension m: Vs with signature
(s,m − s) where 0 ≤ s ≤ m. In the latter two cases, we can still define ε(V ) in
the same way. In the global case, up to isometry, all hermitian spaces V over E of
dimension m are classified by signatures at infinite places and det V ∈ F×/NmE×;
particularly, V is determined by all Vv=V⊗F Fv. In general, we will also consider
a hermitian space V over AE of rank m. In this case, V is nondegenerate if there
is a basis under which the representing matrix is invertible in GLm(AE). For any
place v ∈ 6, we let Vv = V⊗AF Fv, V f = V⊗AF A f,F , and define 6(V) = {v ∈
6 | ε(Vv)=−1}, which is a finite set, and ε(V)=

∏
ε(Vv). We say V is coherent

(resp. incoherent) if the cardinality of 6(V) is even (resp. odd), that is, ε(V) = 1
(resp. −1). By the Hasse principle, there is a hermitian space V over E such that
V∼= V ⊗F AF if and only if V is coherent. These two terminologies are introduced
in the orthogonal case in [Kudla and Rallis 1994]; see also [Kudla 1997].

We fix a place v ∈ 6 and suppress it from the notation. For a hermitian space
V of dimension m with hermitian form ( · , · ) and a positive integer r , we can
construct a symplectic space W =ResE/F Wr⊗E V of dimension 4rm over F with
the skew-symmetric form 1

2 TrE/F 〈 · , · 〉
τ
⊗( · , · ). We let H =U(V ) be the unitary

group of V and S(V r ) the space of Schwartz functions on V r . Given a character
χ of E× satisfying χ

∣∣
F× = ε

m
E/F , we have a splitting homomorphism

ı̃(χ,1) : Hr × H →Mp(W)

lifting the natural map ı : Hr × H → Sp(W) (see [Harris et al. 1996, Section 1]).
We thus have a Weil representation (with respect to ψ) ωχ = ωχ,ψ of Hr × H on
the space S(V r ). Explicitly, for φ ∈ S(V r ) and h ∈ H ,

• ωχ (n(b))φ(x)= ψ(tr bT (x))φ(x),

• ωχ (m(a))φ(x)= |det a|m/2E χ(det a)φ(xa),

• ωχ (wr )φ(x)= γV φ̂(x), and

• ωχ (h)φ(x)= φ(h−1x),

where T (x)= 1
2

(
(xi , x j )

)
1≤i, j≤r is the moment matrix of x , γV is the Weil constant

associated to the underlying quadratic space of V (and also ψ), and φ̂ is the Fourier
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transform
φ̂(x)=

∫
V r
φ(y)ψ

( 1
2 TrE/F (x, ty)

)
dy

using the self-dual measure dy on V r with respect toψ . Taking the restricted tensor
product over all local Weil representations, we get a global S(V r ) :=

⊗
′ S(V r

v ) as
a representation of Hr (AF )× H(AF ).

Now for V over E , χ a character of A×E /E× such that χ
∣∣
A×F
= εm

E/F , and φ ∈
S(V r ), we define the theta function

θ(g, h;φ)=
∑

x∈V r (E)

ωχ (g, h)φ(x),

which is a smooth, slowly increasing function of Hr (F)\Hr (AF )×H(F)\H(AF ),
and consider the integral

IV (g, φ)=
∫

H(F)\H(AF )

θ(g, h;φ) dh

if it is absolutely convergent. Here we normalize dh so that vol(H(F)\H(AF ))=1.
It is absolutely convergent for all φ if m > 2r or V is anisotropic.

Siegel–Weil formulae. It is easy to see that ϕφ,s(g)=ωχ (g)φ(0)λPr (g)
s−(m−r)/2 is

a standard section in Ir (s, χ) for any φ∈S(V r ), where λPr (g)=λPr (n(b)m(a)k)=
|det a|E under the Iwasawa decomposition with respect to Pr . Hence we can define
an Eisenstein series E(s, g, φ)= E(g, ϕφ,s) and we have:

Theorem 2.1 (Siegel–Weil formula). Let s0 = (m− r)/2,

(1) If m > 2r , E(s0, g, φ) is absolutely convergent and

E(s0, g, φ)= IV (g, φ).

(2) If r < m ≤ 2r and V is anisotropic, E(s, g, φ) is holomorphic at s0 and

E(s, g, φ)
∣∣
s=s0
= IV (g, φ).

(3) If m = r and V is anisotropic, E(s, g, φ) is holomorphic at s0 = 0 and

E(s, g, φ)
∣∣
s=0 = 2IV (g, φ).

In the above theorem, (1) is the classical Siegel–Weil formula. (2) and (3) are
certain generalizations which appear in [Ichino 2007, Theorem 1.1] and [Ichino
2004, Theorem 4.2], respectively. In the following, we simply write E(s0, g, φ)
for E(s, g, φ)

∣∣
s=s0

if it is holomorphic at s0.

Remark 2.2. In case (3), if V is isotropic, we still have a (regularized) Siegel–
Weil formula. But then since the theta integral IV (g, φ) is not necessarily conver-
gent, a regularization process must be applied. The inner product introduced in
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the next section also requires a regularization process. Since the classical inner-
product formula is not the purpose of this paper, we will always assume that V
is anisotropic for simplicity, or pretend that the regularization process has been
applied for general V in the following discussion.

2B. Doubling integrals. In this section, we will review the method of doubling
integrals which is first introduced in [Gelbart et al. 1987].

We now let m = 2n and r = n with n ≥ 1 and suppress n from the notation,
except that we will use H ′ instead of Hn , P ′ instead of Pn , N ′ instead of Nn , and
K′ instead of Kn . Hence χ

∣∣
A×F
= 1. Let π =

⊗
′
πv be an irreducible cuspidal

automorphic representation of H ′(AF ) contained in L2(H ′(F)\H ′(AF )) and π∨

realizes on the space of complex conjugation of functions in π .
We denote by (−W ) the skew-hermitian space over E with the form −〈 · , · 〉.

Hence we can find a basis {e−1 , . . . , e−2n} satisfying 〈e−i , e−j 〉 = 0, 〈e−r+i , e−r+ j 〉 = 0,
and 〈e−i , e−n+ j 〉=−δi j for 1≤ i ≤ n. Let W ′′=W⊕(−W ) be the direct sum of two
skew-hermitian spaces. There is a natural embedding ı : H ′×H ′ ↪→U(W ′′) which
is, under the basis {e1, . . . , e2n} of W and {e1, . . . , en; e−1 , . . . , e−n ; en+1, . . . , e2n;

−e−n+1, . . . ,−e−2n} of W ′′, given by ı(g1, g2)= ı0(g1, g∨2 ), where

g1 =

(
a1 b1

c1 d1

)
, g2 =

(
a2 b2

c2 d2

)
, g∨ =

(
1n

−1n

)
g
(

1n

−1n

)−1

,

and

ı0(g1, g2)=


a1 b1

a2 b2

c1 d1

c2 d2

 .
For a complete polarization W ′′ =W ′⊕W ′, where W ′ = spanE {e1, . . . , en; e−1 ,

. . . , e−n } and W ′ = spanE {en+1, . . . , e2n;−e−n+1, . . . ,−e−2n}, there is a Weil repre-
sentation of U(W ′′), denoted by ω′′χ (with respect to ψ), on the space S(V 2n), such
that ı∗ω′′χ ∼= ωχ,ψ �χω∨χ,ψ , which is realized on the space S(V n)⊗S(V n). Here
we realize the contragredient representation ω∨χ,ψ on the space S(V n) through the
bilinear pairing

〈φ, φ∨〉 =

∫
V n(AE )

φ(x)φ∨(x) dx

for φ, φ∨ ∈ S(V n). Then ω∨χ,ψ is identified with ωχ−1,ψ−1 .
For φ ∈ S(V n) and f ∈ π ,

θ
f
φ (h)=

∫
H ′(F)\H ′(AF )

θ(g, h;φ) f (g) dg
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is a well-defined, slowly increasing function on H(F)\H(AF ), where dg=⊗′dgv
such that K′v gets volume 1 for any v ∈6. Similarly, for φ∨ ∈S(V n) and f ∨ ∈π∨,
we have θ f ∨

φ∨ . One should be careful that in the contragredient case, the Weil
representation used to form the theta function should also be ω∨χ . We have

〈θ
f
φ , θ

f ∨

φ∨ 〉H :=

∫
H(F)\H(AF )

θ
f
φ (h)θ

f ∨

φ∨ (h) dh

=

∫
H(F)\H(AF )

∫
[H ′(F)\H ′(AF )]2

θ(g1, h;φ) f (g1)θ(g2, h;φ∨)

× f ∨(g2) dg1 dg2 dh

=

∫
H(F)\H(AF )

∫
[H ′(F)\H ′(AF )]2

θ(ı(g1, g2), h;φ⊗φ∨)

× f (g1) f ∨(g2)χ
−1(det g2) dg1 dg2 dh

=

∫
[H ′(F)\H ′(AF )]2

f (g1) f ∨(g2)χ
−1(det g2)

×

∫
H(F)\H(AF )

θ(ı(g1, g2), h;φ⊗φ∨) dh dg1 dg2. (2-1)

We assume that V is anisotropic; then the inside integral in the last step is absolutely
convergent and by Theorem 2.1(3), we have

(2-1)= 1
2

∫
[H ′(F)\H ′(AF )]2

f (g1) f ∨(g2)χ
−1(det g2)E(0, ı(g1, g2), φ⊗φ

∨) dg1dg2.

It should be mentioned that the Eisenstein series on U(W ′′) appearing above
is formed with respect to the parabolic subgroup P fixing the subspace W ′ (with
maximal unipotent subgroup N ), that is,

E(s, g,8)= E(g, ϕ8,s)=
∑

γ∈P(F)\U(W ′′)(F)

ω′′χ (γ g)8(0)λP(γ g)s

for g ∈ U(W ′′)(AF ), 8 ∈ S(V 2n), and <(s) > n. The coset P(F)\U(W ′′)(F) can
be canonically identified with the space of isotropic n-planes in W ′′. Under the
right action of H ′(F)× H ′(F) through ı , the orbit of an n-plane Z is determined
by the invariant d = dim(Z ∩W )= dim(Z ∩ (−W )). Let γd be a representative of
the corresponding double coset where 0≤ d ≤ n. In particular, we take

γ0 =


1n

1n

−1n 1n

1n 1n

 and γn = 14n

(see [Kudla and Rallis 2005]). Let Std be the stabilizer of Pγd ı(H ′ × H ′) in
H ′× H ′. In particular St0 =1(H ′) is the diagonal. Hence for a standard section
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ϕs ∈ I2n(s, χ) and <(s) > n,∫
[H ′(F)\H ′(AF )]2

f (g1) f ∨(g2)χ
−1(det g2)E(ı(g1, g2), ϕs) dg1dg2

=

∫
[H ′(F)\H ′(AF )]2

( f ⊗ f ∨χ−1)(g)
∑

γ∈P(F)\U(W ′′)(F)

ϕs(γ ı(g)) dg

=

n∑
d=0

∫
Std (F)\H ′(AF )2

( f ⊗ f ∨χ−1)(g)ϕs(γd ı(g)) dg. (2-2)

When d > 0, Std has a nontrivial unipotent radical. Since f and f ∨ are cuspidal,
we have

(2-2)=
∫
1(H ′(F))\H ′(AF )2

( f ⊗ f ∨χ−1)(g)ϕs(γ0ı(g)) dg

=

∫
H ′(F)\H ′(AF )

∫
H ′(AF )

f (g1g2) f ∨(g1)χ
−1(det g1)

×ϕs(γ0ı(g1g2, g1)) dg1dg2

=

∫
H ′(F)\H ′(AF )

∫
H ′(AF )

π(g2) f (g1) f ∨(g1)χ
−1(det g1)

×ϕs(p(g1)γ0ı(g2, 1)) dg1dg2, (2-3)

where p(g1)γ0=γ0ı(g1, g1) having the property that under the Levi decomposition
p(g1)= n(b)m(a) ∈ P(AF ), we have det a = det g1. Hence

(2-3)=
∫

H ′(AF )

∫
H ′(F)\H ′(AF )

π(g2) f (g1) f ∨(g1) dg1ϕs(γ0ı(g2, 1)) dg2

=

∫
H ′(AF )

〈π(g) f, f ∨〉ϕs(γ0ı(g, 1)) dg

=

∏
v∈6

∫
H ′v

〈πv(gv) fv, f ∨v 〉ϕs,v(γ0ı(gv, 1)) dgv,

where we assume f , f ∨ and ϕs are all decomposable. In summary, we have:

Proposition 2.3. Let f , f ∨ and ϕs be as above. For <(s) > n, the integral∫
[H ′(F)\H ′(AF )]2

f (g1) f ∨(g2)χ
−1(det g2)E(ı(g1, g2), ϕs) dg1dg2

=

∏
v∈6

∫
H ′v

〈πv(gv) fv, f ∨v 〉ϕs,v(γ0ı(gv, 1)) dgv,

which defines an element in

HomH ′(AF )×H ′(AF )(I2n(s, χ), π∨�χπ)=
⊗
v

HomH ′v×H ′v (I2n(s, χv), π∨v �χvπv).
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2C. Local zeta integrals. In this section, we will study the local functional we
finally found in the last section.

Fix a finite place v of F and suppress it from the notation. For f ∈ π , f ∨ ∈ π∨,
and holomorphic section ϕs ∈ I2n(s, χ), define the local zeta integral

Z(χ, f, f ∨, ϕs)=

∫
H ′
〈π(g) f, f ∨〉ϕs(γ0ı(g, 1)) dg,

which is absolutely convergent when <(s) > 2n. In [Harris et al. 1996, Section 6],
the family of good sections is introduced. For any good section, the zeta integral
Z(χ, f, f ∨, ϕs) is a rational function in q−s , where q is the cardinality of the
residue field of F . In particular, it has a meromorphic continuation to the entire
complex plane. Consider the family of zeta integrals

{Z(χ, f, f ∨, ϕs) | f ∈ π, f ∨ ∈ π∨, ϕs is good}

and the fractional ideal I of the ring C[qs, q−s
] in its fraction field generated by

the above family. In fact, I is generated by 1/P(q−s), for a unique polynomial
P(X) ∈ C[X ] such that P(0)= 1. We let

L
(
s+ 1

2 , π, χ
)
=

1
P(q−s)

be the local doubling L-series of Piatetski-Shapiro and Rallis. The same construc-
tion can also be applied to the archimedean case.

Now suppose E/F is unramified (including split) at v and ψ , χ , and π are also
unramified. Let f0 ∈ π

K′ , f ∨0 ∈ π
∨,K′ , and 〈 f0, f ∨0 〉 = 1, ϕ0

s be the unramified
standard section. Then the calculation in [Gelbart et al. 1987] and [Li 1992] (see
Theorem 3.1 of the latter reference) shows that

Z(χ, f0, f ∨0 , ϕ
0
s )=

L(s+ 1
2 , π, χ)

b2n(s)
,

where

bm(s)=
m−1∏
i=0

L(2s+m− i, εi
E/F ) (2-4)

is a product of local Tate factors. For the general case,

b2n(s)Z(χ, f, f ∨, ϕs)

L(s+ 1
2 , π, χ)

admits a meromorphic extension to the entire complex plane which is holomorphic
at s = 0. Moreover, the normalized zeta integral

Z∗(χ, f, f ∨, ϕs) :=
b2n(s)Z(χ, f, f ∨, ϕs)

L(s+ 1
2 , π, χ)

∣∣∣∣
s=0

(2-5)
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defines a nonzero element in HomH ′×H ′(I2n(0, χ), π∨ � χπ) (see [Harris et al.
1996, Proof of (1) of Theorem 4.3]).

Remark 2.4. It is conjectured (see, for example, [Harris et al. 1996]) that for all
irreducible admissible representations π of H ′ and characters χ of E×, we have

L(s, π, χ)= L(s,BC(π)⊗χ).

This is known when E/F , χ , and π are all unramified due to [Li 1992] and (the
similar argument for unitary groups in) [Kudla and Rallis 2005, Section 5]. It is
also known when n = 1 due to [Harris 1993].

For further discussion, we need to recall a result on the degenerate principal
series. In the following, we will use the notation H ′′ instead of U(W ′′) for short
and recall our embedding ı : H ′ × H ′ ↪→ H ′′. Let V be a hermitian space of
dimension 2n over E . Then ϕφ(g) = ωχ (g)φ(0) defines an H ′′-intertwining map
S(V 2n)→ I2n(0, χ) whose image R(V, χ) is isomorphic to S(V 2n)H . Recall that
we denote by V± the two nonisometric hermitian spaces of dimension 2n when v
is finite nonsplit, by V+ the only hermitian space of dimension 2n when v is finite
split (up to isometry), and by Vs (0 ≤ s ≤ 2n) the 2n + 1 nonisometric hermitian
spaces of dimension 2n when v is infinite.

Proposition 2.5. (1) If v is finite nonsplit, R(V+, χ) and R(V−, χ) are irredu-
cible and inequivalent and I2n(0, χ)= R(V+, χ)⊕ R(V−, χ).

(2) If v is finite split, R(V, χ) is irreducible and I2n(0, χ)= R(V+, χ).

(3) If v is infinite, R(Vs, χ) are irreducible and inequivalent and I2n(0, χ) =⊕2n
s=0 R(Vs, χ).

Proof. (1) is [Kudla and Sweet 1997, Theorem 1.2], (2) is [Kudla and Sweet 1997,
Theorem 1.3], and (3) is [Lee 1994, Section 6, Proposition 6.11]. �

2D. Central special values of L-functions. In this section, we will make a con-
nection between the theta lifting θ f

φ defined in Section 2B and the central special
value of the L-function of the representation π .

Recall that we have an irreducible unitary cuspidal automorphic representation
π of H ′ = Hn and a hermitian space V over E of dimension 2n. One key question
in the theory of theta lifting is whether θ f

φ is nonvanishing. A sufficient condition
is to look at the local invariant functional as follows.

First, we have the following theta dichotomy.

Proposition 2.6. For any nonsplit place v ∈6, HomH ′v×H ′v (R(Vv, χv), π
∨
v �χvπv)

is nonzero for exactly one hermitian space Vv (up to isometry) over Ev of dimen-
sion 2n, which we denote by V (πv, χv).
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Proof. If v is (real) archimedean, this is [Paul 1998, Theorem 2.9]. If v is nonar-
chimedean, it is due to [Gong and Grenié 2011, Theorem 2.10] and the nonvanish-
ing of Z∗. �

In Proposition 2.3, if we let ϕs = ϕφ⊗φ∨,s and denote Z∗(s, χv, fv, f ∨v , φv ⊗
φ∨v )= Z∗(χv, fv, f ∨v , ϕφv⊗φ∨v ,s), then both sides have meromorphic continuations
to the entire complex plane that are actually holomorphic at the point s = 0; that
is, we have

〈θ
f
φ , θ

f ∨

φ∨ 〉H =
L( 1

2 , π, χ)

2
∏2n

i=1 L(i, εi
E/F )

∏
v∈S

Z∗(0, χv, fv, f ∨v , φv ⊗φ
∨

v ), (2-6)

in which the product of normalized zeta integrals can actually be taken over a finite
set S by the unramified calculation. In particular, for v 6∈ S, Vv∼=V (πv, χv), that is,
θχv (π

∨
v , Vv) 6= 0. Then one necessary condition for θ f

φ to be nonvanishing for some
f and φ is that each local (normalized) zeta integral is not identically zero, which
exactly means Vv ∼= V (πv, χv) for all v ∈ 6. Let V(π, χ) be the hermitian space
over AE such that V(π, χ)v ∼= V (πv, χv) and let ε(πv, χv) = ε(V (πv, χv)) and
ε(π, χ)=

∏
ε(πv, χv). If ε(π, χ)=−1. Then V(π, χ) is incoherent, hence for any

V , the (possibly regularized) theta lifting θ f
φ is always vanishing. If ε(π, χ) = 1,

then V(π, χ) ∼= V (π, χ)⊗F AF for some V (π, χ) over E . Assume V (π, χ) is
anisotropic. Then there exist some f ∈ π and φ ∈ S(V (π, χ)n) such that θ f

φ 6= 0
if and only if L( 1

2 , π, χ) 6= 0.
We want to give another interpretation for the formula (2-6) when ε(π, χ)= 1,

which is crucial for our proof in [Liu 2011]. For this purpose, let us assume the
following conjecture raised by Kudla and Rallis (see [Harris et al. 1996]):

dim HomH ′v×H ′v (I2n(0, χv), π∨v �χvπv)= 1 (2-7)

for all components πv of π . This is proved in [Liu 2011, Section 6B] when n = 1.
Let V = V (π, χ) and R(V, χ)=

⊗
′ R(Vv, χv); the functional

β( f, f ∨, φ, φ∨) := 〈θ f
φ , θ

f ∨

φ∨ 〉H

defines an element in

HomH ′(AF )×H ′(AF )(R(V, χ), π
∨�χπ)=

⊗
v

HomH ′v×H ′v (R(Vv, χv), π
∨

v �χvπv).

On the other hand, the functional

α( f, f ∨, φ, φ∨) :=
∏
v

Z∗(0, χv, fv, f ∨v , φv ⊗φ
∨

v )

(when everything is decomposable, otherwise we take the linear combination) also
defines an element in

⊗
HomH ′v×H ′v (R(Vv, χv), π

∨
v �χvπv) which is nonzero. But
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by our assumption (2-7), this space is of dimension one. Hence β is a constant
multiple of α. This constant, by (2-6), is

β

α
=

L( 1
2 , π, χ)

2
∏2n

i=1 L(i, εi
E/F )

.

In some sense, the vanishing of L( 1
2 , π, χ) is the obstruction for β to be a nontrivial

global invariant functional. This kind of formulation is first observed in [Yuan et al.
2011; 2010].

2E. Vanishing of central L-values. In this section, we will prove that the central
L-value L(1

2 , π, χ) vanishes when ε(π, χ)=−1.
By Proposition 2.5, we have a decomposition of H ′′(AF )-admissible represen-

tation
I2n(0, χ)=

⊕
V

R(V, χ)=
⊕

V

⊗′

v
R(Vv, χv),

where the direct sum is taken over all (isometry classes of) hermitian spaces over
AE of rank 2n and each R(V, χ) is irreducible. Recall the group H ′′ = U(W ′′)
and its standard parabolic subgroup P fixing W ′ whose unipotent radical is N as
in Section 2B. First, we need some lemmas for local representations.

Fix any place v and suppress it from the notation. For T ∈ Her2n(E), let �T =

{x ∈ V 2n
| T (x)= T } and define a character ψT of N ∼= Her2n(E) by ψT (n(b))=

ψ(tr T b).

Lemma 2.7. (1) Suppose v is finite, let S(V 2n)N ,ψT (resp. R(V, χ)N ,ψT ) be the
twisted Jacquet module of S(V 2n) (resp. R(V, χ)) associated to N and the
character ψT .

(a) The quotient map S(V 2n)→ S(V 2n)N ,ψT can be realized by the restric-
tion S(V 2n)→ S(�T );

(b) If T is nonsingular, then

dim R(V, χ)N ,ψT =

{
1 if �T 6=∅,
0 otherwise.

(2) Suppose v is infinite, that is, E/F = C/R and T is nonsingular, the space of
H-invariant tempered distribution T on S(V 2n) such that

T (ωχ (X)8)= dψT (X)T (8)

for X ∈ n= Lie N is of dimension 1 (resp. 0) if �T 6=∅ (resp. �T =∅).

Proof. (1) is [Rallis 1987, Lemma 4.2], (2) is [Rallis 1987, Lemma 4.2], and [Kudla
and Rallis 1994, Proposition 2.9]. �
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We now construct the twisted Jacquet module R(V, χ)N ,ψT or the invariant dis-
tribution explicitly if it is not trivial. For a standard section ϕs ∈ I2n(s, χ), define
the Whittaker integral

WT (g, ϕs)=

∫
N
ϕs(wng)ψT (n)−1 dn,

where w = w2n and dn is self-dual with respect to ψ . The integral WT (g, ϕs) is
absolutely convergent when <(s) > n. It is easy to see that WT (e, · ) : I2n(s, χ)→
CN ,ψT is an N -intertwining map. Let WT (s, g,8)=WT (g, ϕ8,s) for 8∈S(V 2n).
We have

Lemma 2.8. Assume T is nonsingular.

(1) WT (g, ϕs) is entire.

(2) The integral 8 7→WT (0, e,8) realizes the surjective N-intertwining map

S(V 2n)→ R(V, χ)→ R(V, χ)N ,ψT

or the invariant distribution in Lemma 2.7(2).

Proof. (1) is [Karel 1979, Corollary 3.6.1] for v finite and [Wallach 1988, Theorem
8.1] for v infinite; (2) is [Kudla and Rallis 1994, Proposition 2.7]. �

Lemma 2.9. Suppose v is finite, E/F , ψ , and χ are all unramified, and V = V+.
Then for 80 the characteristic function of (3+)2n for a self-dual OE -lattice 3+

and T ∈ Her2n(OF ) with det T ∈ O×F , we have

WT (s, e,80)= b2n(s)−1.

Proof. This is [Tan 1999, Proposition 3.2]. �

Now suppose we are in the global situation. We denote by A(H ′′) the space of
automorphic forms of H ′′. For T ∈ Her2n(F), define the T-th Fourier coefficient
of f (g) ∈A(H ′′) as

WT (g, f )=
∫

N (F)\N (AF )

f (ng)ψT (n)−1 dn.

For any hermitian space V over AE of rank 2n, we have a series of linear maps

Es : R(V, χ)→A(H ′′)

8 7→ E(s, g,8)= E(g, ϕ8,s)

for s near 0. It is an H ′′(AF )-intertwining map exactly when s = 0. Then for T
nonsingular (and s near 0), we have

ET (s, g,8) :=WT (g, Es(8))=
∏
v∈6

WT (s, gv,8v). (2-8)
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Lemma 2.10. For any H ′′(AF )-intertwining operator E : R(V, χ)→ A(H ′′), if
WT (g, · ) ◦ E vanishes for all nonsingular T , then E= 0.

Proof. Fix a finite place v; by Lemma 2.7(1), we can find a section80=8v,08
v
∈

S(V2n) with nonzero projection in R(V, χ) such that 8v,0 ∈ S(V2n
v )reg, the set

consisting of functions supporting in the set {x ∈ V2n
v | det T (x) 6= 0}. For any

gv ∈ evH ′′(Av
F ), the functional8v 7→WT (0, gv,8v8v) factors through the twisted

Jacquet module S(V2n
v )Nv,ψT . If T is singular, then by our choice of 8v,0 and

Lemma 2.7(1-a), WT (0, gv,8v,08v)= 0. Similarly, WT (0, g,8v,08v)= 0 for all
g∈ PvH ′′(Av

F ) since Pv keeps the set S(V2n
v )reg. For T nonsingular, WT ≡0 by the

assumption. Hence E(80)(g) = 0 for g ∈ PvH ′′(Av
F ). It follows that E(80) = 0

and E= 0 by our choice of 80 and the irreducibility of R(V, χ). �

Proposition 2.11. (1) If V is incoherent, then HomH ′′(AF )(R(V, χ),A(H ′′)) has
dimension 0.

(2) If V is coherent, then HomH ′′(AF )(R(V, χ),A(H ′′)) has dimension 1 and E0

given above is a nontrivial element.

Proof. For (1), assume that E is a nontrivial intertwining map. By Lemma 2.10,
there is a nonsingular T ∈ Her2n(F) such that WT (g, · ) ◦ E does not vanish. By
parts (1-b) and (2) of Lemma 2.7, T is representable by Vv for any v ∈6; that is,
�T 6=∅. But then V will be coherent which is a contradiction.

For (2), assume E and E′ are both nontrivial intertwining maps. By Lemma 2.10,
there is a nonsingular T such that WT (g, · )◦E does not vanish. By parts (1-b) and
(2) of Lemma 2.7, or the general fact that the Whittaker model with respect to a
generic character is unique, there exists c∈C such that WT (g, · )◦E′= cWT (g, · )◦
E. Furthermore, c is independent of nonsingular T since all of those which can be
represented by V are in a single M(F)-orbit under the conjugation action on N (F).
Then by Lemma 2.10, E′−cE= 0, that is, dim HomH ′′(AF )(R(V, χ),A(H ′′))≤ 1.

For the rest, we need to prove that E0 is actually nontrivial. Choose a non-
singular T ∈ Her2n(F) such that it is representable by V which exists since V is
coherent. By (2-8) and Lemmas 2.8(2) and 2.9, we can find a suitable 8 such that
WT (0, e,8) 6= 0; hence E0 6= 0. �

Now we can state our main result in this section.

Theorem 2.12. If ε(π, χ)=−1, then L
( 1

2 , π, χ
)
= 0.

Proof. Let V= V(π, χ); then it is incoherent. We can choose suitable fv, f ∨v , φv,
and φ∨v when one of E , ψ , χ , and π is ramified at v, such that

Z∗(0, χv, fv, f ∨v , φv ⊗φ
∨

v ) 6= 0.

Let f , f ∨, φ, and φ∨ be global vectors with these subscribed local components
and unramified ones at the places where E , ψ , χ , and π are unramified. Then from
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Proposition 2.3 (after analytic continuation), we have∫
[H ′(F)\H ′(AF )]2

f (g1) f ∨(g2)χ
−1(det g2)E(0, ı(g1, g2), φ⊗φ

∨) dg1dg2

=
L(1

2 , π, χ)∏2n
i=1 L(i, εi

E/F )

∏
v∈S

Z∗(0, χv, fv, f ∨v , φv ⊗φ
∨

v ).

But E0 is zero on R(V, χ) by Proposition 2.11(1). We have E(0, ı(g1, g2), φ ⊗

φ∨)≡ 0. Hence L( 1
2 , π, χ)= 0 by our choices and the fact that the Tate L-values

appearing here are finite. �

Since L(1
2 , π, χ)= 0, it leads us to consider its derivative at this point. In fact,

we have∫
[H ′(F)\H ′(AF )]2

f (g1) f ∨(g2)χ
−1(det g2)

d
ds

∣∣∣
s=0

E(s, ı(g1, g2), φ⊗φ
∨) dg1dg2

=
d
ds

∣∣∣
s=0

∫
[H ′(F)\H ′(AF )]2

f (g1) f ∨(g2)χ
−1(det g2)

×E(s, ı(g1, g2), φ⊗φ
∨) dg1dg2

=
d
ds

∣∣∣
s=0

L(s+ 1
2 , π, χ)∏2n

i=1 L(2s+ i, εi
E/F )

∏
v∈S

Z∗(s, χv, fv, f ∨v , φv ⊗φ
∨

v )

=
L ′(1

2 , π, χ)∏2n
i=1 L(i, εi

E/F )

∏
v∈S

Z∗(0, χv, fv, f ∨v , φv ⊗φ
∨

v )

+L
(1

2
, π, χ

) d
ds

∣∣∣
s=0

∏
v∈S Z∗(s, χv, fv, f ∨v , φv ⊗φ

∨
v )∏2n

i=1 L(2s+ i, εi
E/F )

=
L ′(1

2 , π, χ)∏2n
i=1 L(i, εi

E/F )

∏
v∈S

Z∗(0, χv, fv, f ∨v , φv ⊗φ
∨

v ). (2-9)

We call E ′(0, g,8)= (d/ds)
∣∣
s=0 E(s, g,8) the analytic kernel function associated

to the test function 8 ∈ S(V2n).
Recall that for T ∈ Her2n(F), we let

ET (s, g,8)=WT (g, Es(8))

for s near 0. If T is nonsingular, then

WT (g, Es(8))=
∏
v∈6

WT (s, gv,8v)

if 8=
⊗
8v is decomposable. Hence,

E(s, g,8)=
∑

T sing.

ET (s, g,8)+
∑

T nonsing.

∏
v∈6

WT (s, gv,8v).
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Taking the derivative at s = 0, we have

E ′(0, g,8)=
∑

T sing.

E ′T (0, g,8)+
∑

T nonsing.

∑
v∈6

W ′T (0, gv,8v)
∏
v′ 6=v

WT (0, gv′,8v′)

=

∑
T sing.

E ′T (0, g,8)+
∑
v∈6

∑
T nonsing.

W ′T (0, gv,8v)
∏
v′ 6=v

WT (0, gv′,8v′).

But we have
∏
v′ 6=v WT (0, gv,8v) 6= 0 only if Vv′ represents T for all v′ 6= v by

Lemma 2.7(1-b). Since V is incoherent, Vv cannot represent T . For T nonsingular,
there are only finitely many v ∈ 6 such that T is not represented by Vv, that is,
there does not exist x1, . . . , x2n ∈ Vv whose moment matrix is T . We denote the
set of such v by Diff(T,V). Then

E ′(0, g,8)=
∑

T sing.

E ′T (0, g,8)+
∑
v∈6

Ev(0, g,8),

where

Ev(0, g,8)=
∑

Diff(T,V)={v}

W ′T (0, gv,8v)
∏
v′ 6=v

WT (0, gv′,8v′). (2-10)

In fact, the second sum is only taken over those v which are nonsplit in E .

3. Arithmetic theta lifting

3A. Shimura varieties of unitary groups and special cycles. In this section, we
will recall the notion of Shimura varieties of unitary groups and Kudla’s special
cycles on them. We fix an additive character ψ : F\AF → C such that ψι is
the standard t 7→ e2π i t (t ∈ Fι = R) for any ι ∈ 6∞ until the end of this paper.
The basic references for this section are [Kudla and Millson 1990; Kottwitz 1992;
Kudla 1997].

Shimura varieties of unitary groups. Let m ≥ 2 and 1 ≤ r < m be integers. Let
V be a totally positive-definite incoherent hermitian space over AE of rank m. Let
H = ResAF/AU(V) be the unitary group which is a reductive group over A and
Hder
= ResAF/ASU(V) its derived subgroup. Let T∼= ResAF/A A

×,1
E be the maximal

abelian quotient of H which is also isomorphic to its center. Let T ∼= ResF/Q E×,1

be the unique (up to isomorphism) Q-torus such that T ×Q A ∼= T. Then T has
the property that T (Q) is discrete in T (A f ). For any open compact subgroup K
of H(A f ), there is a Shimura variety ShK (H) of dimension m−1 defined over the
reflex field E . For any embedding ι◦ : E ↪→ C over ι ∈ 6∞, we have the ι◦-adic
uniformization

ShK (H)
an
ι◦
∼= H (ι)(Q)\

(
D(ι◦)
×H(A f )/K

)
.
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We briefly explain the notation above. Let V (ι) be the nearby E-hermitian space
of V at ι, that is, V (ι) is the unique E-hermitian space (up to isometry) such that
V (ι)
v
∼= Vv for v 6= ι but V (ι)

ι is of signature (m − 1, 1) and H (ι)
= ResF/QU(V (ι)).

We identify H (ι)(A f ) and H(A f ) through the corresponding hermitian spaces. Let
D(ι◦) be the symmetric hermitian domain consisting of all negative C-lines in V (ι)

ι

whose complex structure is given by the action of Fι⊗F E , which is isomorphic to C

via ι◦. The group H (ι)(Q) diagonally acts on D(ι◦) and H(A f )/K via the obvious
way. In fact, D(ι◦) is canonically identified with the H ι(R)-conjugacy class of the
Hodge map h(ι) :S= ResC/RGm,C→ H (ι)

R
∼= U(m−1, 1)R×U(m, 0)d−1

R given by

h(ι)(z)=
((

1m−1

z̄/z

)
, 1m, . . . , 1m

)
.

From now on, we assume that K is contained in the principal congruence sub-
group for N ≥ 3. Then ShK (H) is a quasiprojective nonsingular E-scheme. It is
proper if and only if F 6=Q or F=Q, m=2, and6(V)'6∞. The set of geometric
connected components of ShK (H) can be identified with T (Q)\T (A f )/ det(K ).

For any other open compact subgroup K ′ ⊂ K , we have an étale covering map
πK ′

K : ShK ′(H)→ ShK (H). Let Sh(H) be the projective system of these ShK (H).
On each ShK (H), we have a Hodge bundle LK ∈ Pic(ShK (H))Q which is ample.
They are compatible under pull-backs of πK ′

K , and hence define an element L ∈

Pic(Sh(H))Q := lim
−→K

Pic(ShK (H))Q.

Special cycles. Let V1 be an E-subspace of V f = V⊗AF A f,F . We say that V1

is admissible if ( · , · )
∣∣
V1

takes values in E and for any nonzero x ∈ V1, (x, x) is
totally positive. We have

Lemma 3.1. V1 is admissible if and only if for any ι∈6∞, there is an h∈Hder(A f )

such that hV1 ⊂ V (ι)
⊂ V f and is totally positive definite.

Proof. One direction is obvious. For the other direction, let us assume that V1 is
admissible and fix any ι. Take v1 ∈ V1 with nonzero norm. Then q(v1)=

1
2(v1, v1)

is locally a norm for the hermitian form on V (ι) by the definition of admissibility
and the fact about signatures of V and V (ι). Thus it is a norm for some v ∈ V (ι) by
the Hasse–Minkowski theorem. Now we apply Witt’s theorem to find an element
h1 ∈ U(V f ) = H(A f ) such that h1v1 = v as elements in V f . Choose any vector
v′ ∈ 〈v〉⊥ ⊂ V (ι) with nonzero norm. Let h′ ∈H(A f ) fixing 〈v′〉⊥ and multiplying
(det h1)

−1 in the A f,E -line spanned by v′. Then h′h1v1 = h′v = v for h = h′h1 ∈

SU(V f )= Hder(A f ).
Replacing V1 by hV1 we can assume that v1 = v ∈ V f . Since dim V1 < m, we

can use induction on r by considering the orthogonal complement of v in V1 and
V (ι) to find an h ∈ Hder(A f ) such that hV1 ⊂ V (ι)

⊂ V f . �



872 Yifeng Liu

For admissible V1, let V1 be a totally positive-definite (incoherent) hermitian
space over AE such that V1, f ∼= V⊥1 ⊂ V f . Let H1 be the corresponding unitary
group. We have a finite morphism between Shimura varieties

ςV1 : ShK1(H1)−→ ShK (H), (3-1)

where K1 = K ∩ H1(A f ), such that the image of the map is represented, under
the uniformization at some ι, by the points (z, h1h) ∈D(ι◦)

×H(A f ) where h is as
in Lemma 3.1 (with respect to ι), z ⊥ hV1, and h1 fixes all elements in hV1. The
image defines a Kudla’s special cycle Z(V1)K ∈ CHr (ShK (H))Q. It only depends
on the class K V1.

For x ∈ V r
f , let Vx be the E-subspace of V f generated by the components of x .

We define

Z(x)K =

{
Z(Vx)K c1(L

∨

K )
r−dimE Vx if Vx is admissible,

0 otherwise.

Generating series. First, we need a restriction of the space S(V r
ι ) of Weil repre-

sentation when ι is infinite. We define a subspace S(V r
ι )

Uι⊂S(V r
ι )which consists

of functions of the form

P(T (x))e−2π tr T (x),

where P is a polynomial function on Herr (C). It is a (Lie Hr,ι,Kr,ι)-module gen-
erated by the Gaussian

φ0
∞
(x)= e−2π tr T (x).

Let S(V r )U∞= (
⊗

ι∈6∞
S(V r

ι )
Uι)⊗S(V r

f ) and S(V r )U∞K
= (
⊗

ι∈6∞
S(V r

ι )
Uι)⊗

S(V r
f )

K for an open compact subgroup K of H(A f ). Recall that we have a Weil
representation ωχ of Hr (AF ), where χ : E×\A×E → C× such that χ

∣∣
A×F
= εm

E/F .
Associated to this χ , we get a sequence kχ = (k

χ
ι )ι∈Z6∞ determined by χι(z)= zk

χ
ι

for z ∈ E×,1ι = C×,1, hence m and k
χ
ι have the same parity.

For φ ∈ S(V r )U∞K , we define Kudla’s generating series to be

Zφ(g)=
∑

x∈K\V r
f

ωχ (g)φ(T (x), x)Z(x)K

as a series with values in CHr (ShK (H))C for g ∈ Hr (AF ). Here for φ = φ∞φ f ,
we denote φ(T (x), x) = φ∞(y)φ f (x) for any y ∈ V r

∞
with T (y) = T (x) which

does not depend on the choice of y. This makes sense since Z(x)K 6= 0 only for
Vx admissible and hence T (x) is totally semipositive definite. It is easy to see that
Zφ(g) is compatible under pull-backs of πK ′

K , hence defines a series with values in
CHr (Sh(H))C := lim

−→K
CHr (ShK (H))C.
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3B. Modularity of the generating series. In this section, we are going to prove
the modularity of the generating series. This is the only section where we use
Shimura varieties of orthogonal groups.

Shimura varieties of orthogonal groups. The AF -module V is also a totally positive
definite quadratic space over AF of rank 2m with quadratic form 1

2 TrAE/AF ( · , · ).
Then its discriminant is rational and it is incoherent. Let G=ResAF/AGSpin(V) be
the special Clifford group of V with adjoint (quotient) group Gad

=ResAF/ASO(V)

and the derived subgroup Gder
=ResAF/ASpin(V). For any open compact subgroup

K ′ of G(A f ), there is a Shimura variety ShK ′(G) defined over the reflex field F such
that, for any embedding ι : F ↪→ C, we have the following ι-adic uniformization:

ShK ′(G)
an
ι
∼= G(ι)(Q)\

(
D′(ι)×G(A f )/K ′

)
,

where the notation is similarly defined as in the unitary case. In particular, now
the symmetric hermitian domain D′(ι) consists of all oriented negative definite
2-planes in V (ι)

ι . We denote the corresponding Hodge bundles by L′K ′ , special
cycles Z ′(x)K ′ for x ∈ V r

f and the generating series Z ′φ(g
′) for φ ∈ S(V r )U∞K ′

and g′ ∈ Gr (A f ) (see [Yuan et al. 2009]). Here we introduce the standard skew-
symmetric F-space W ′r (comparing to the space Wr in Section 2A) which has
a basis {e1, . . . , e2r } with symmetric form 〈ei , e j 〉 = 0, 〈er+i , er+ j 〉 = 0, and
〈ei , er+ j 〉 = δi j for 1≤ i, j ≤ r , and Gr = Sp(W ′r ) which is an F-reductive group.
Similarly, when defining the generating series, we have used the Weil representa-
tion ω (with respect to ψ) of Gr (AF )×G(A) on S(V r ).

Pull-back formulae. In this subsection, we will fix an embedding ι◦ : E ↪→C over ι
and suppress the latter from the notation of nearby objects: V =V (ι), H=H (ι),D=

D(ι◦), . . . . Hence we have our usual notions of Shimura variety ShK (H, X) (resp.
ShK ′(G, X ′) with a connected component X+ of X ′) which is defined (to be pre-
cise) over ι◦(E) (resp. ι(F)). The neutral component is the connected Shimura vari-
ety Sh◦K (H

der, X) (resp. Sh◦K ′(G
der, X+) attached to the connected Shimura datum

(H der, X) (resp. (Gder, X+)) which is defined over EK (resp. EK ′), a finite abelian
extension of ι(F) in C. The canonical embedding H der ↪→Gder (see Remark 3.3(a))
between reductive groups and the embedding D ↪→ D′ by forgetting the E-action
define an injective map of connected Shimura data (H der, X)→ (Gder, X+) which
hence gives an embedding iK ′ : Sh◦K (H

der, X) ↪→ Sh◦K ′(G
der, X+) which is defined

over EK providing K∩H der(A f )= K ′∩H der(A f ) and K ′ is sufficiently small. Let
Z(x)◦K (resp. Z ′(x)◦K ′ , Zφ(g)◦, Z ′φ(g

′)◦) be the restriction of Z(x)K (resp. Z ′(x)K ′ ,
Zφ(g), Z ′φ(g

′)) to the neutral component.

Proposition 3.2. Assume K ′ is small enough and K ∩H der(A f )= K ′∩H der(A f ).
For x ∈ V f , the pull-back of the special divisor i∗K ′Z

′(x)◦K ′ is the sum of Z(x1)
◦

K
indexed by the classes x1 in K\K ′x , both considered as elements in Chow groups.
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Proof. If x = 0, the only class in K\K ′x is x1 = 0; the proposition follows from
the compatibility of Hodge bundles under pull-backs induced by maps between
(connected) Shimura data. Now we assume that 〈x, x〉∈ E which is totally positive.
Suppose that (z, h) ∈ D× H der(A f ) represents a C-point in the scheme-theoretic
intersection Sh◦K (H

der, X)∩ Z ′(x1)
◦

K ′ for some x1 ∈ K ′x . Let g ∈G(A f ) such that
gx1 = x ′1 ∈ V ⊂ V f . Then z ⊥ γ x ′1 for some γ ∈ G(Q) and h ∈ γG(A f )x ′1 gk ′

for some k ′ ∈ K ′, where G(A f )x ′1 is the subgroup of G(A f ) fixing x ′1. We now
show that γG(A f )x ′1 gk ′ ∩ H der(A f ) = G(A f )γ x ′1γ gk ′ ∩ H der(A f ) 6= ∅, that is,
G(A f )γ x ′1 ∩H der(A f )k ′−1g−1γ−1

6=∅ which is true by Lemma 3.1. Hence (z, h)
represents a C-point in the special cycle Z(h−1 E〈γ gx1〉)

◦

K of Sh◦K (H
der, X). If we

write h = g1γ gk ′ with some g1 ∈ G(A f )γ x ′1 , then

h−1 E〈γ gx1〉 = E〈h−1γ gx1〉 = E〈k ′−1g−1γ−1g−1
1 γ gx1〉 = E〈k ′−1x1〉.

Hence the scheme-theoretic intersection is indexed by the classes x1 in K\K ′x .
This is also true in the Chow group since the intersection is proper. �

Remark 3.3. (a) The canonical embedding H der ↪→Gder is given in the following
way: first, we have an embedding H der ↪→ H ↪→Gad by forgetting the E-action on
V = V (ι). Since H der is simply connected, we have a canonical lifting H der ↪→G.
Since H der has no nontrivial abelian quotient, the image is in fact contained in Gder.

(b) In the proof of Proposition 3.2, we can still use the adèlic description of the
C-points of Sh◦K (H

der, X) (resp. Sh◦K ′(G
der, X+)) which is compatible with that

of ShK (H) (resp. ShK ′(G)) since H der (resp. Gder) is semisimple, of noncompact
type, and simply connected.

The group Gr is canonically embedded in Hr by identifying the basis 〈e1, . . . ,e2r〉

of W ′r and Wr and hence ωχ
∣∣
Gr
= ω. From Proposition 3.2, we have

Corollary 3.4. Let r = 1 and K , K ′ as in Proposition 3.2. Then i∗K ′Z
′
φ(g
′)◦ =

Zφ(g′)◦ for g′ ∈ G1(AF ) and φ ∈ S(V)U∞K ′ .

Modularity. For a linear functional ` ∈ CHr (Sh(H))∗
C

, we have a complex-valued
series

`(Zφ)(g)=
∑

x∈K\V r
f

ωχ (g)φ(T (x), x)`(Z(x)K )

for any K such that φ is invariant under K (which is of course independent of such
choice). Our main theorem in this section is this:

Theorem 3.5 (modularity of the generating series). (1) If `(Zφ)(g) is absolutely
convergent, then it is an automorphic form of Hr (AF ). Moreover, `(Zφ)∞ is
in a discrete series representation of weight ((m+ kχ )/2, (m− kχ )/2).

(2) If r = 1, then `(Zφ)(g) is absolutely convergent for any `.
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Proof. (1) We proceed as in [Yuan et al. 2009, Section 4]. First, we can assume
that φ = φ0

∞
⊗ φ f since other cases will follow from the (Lie Hr,∞,Kr,∞)-action.

Assuming the absolute convergence of `(Zφ)(g), we only need to check the auto-
morphy, that is, the invariance under left translation of Hr (F). The weight part is
clear.

It is easy to check the invariance under n(b) and m(a). For b ∈ Herr (E), the
matrix bT (x) is F-rational if Z(x)K 6= 0, hence `(Zφ)(n(b)g) = `(Zφ)(g) for all
g ∈ Hr (AF ). For a ∈ GLr (E), we have Z(xa)K = Z(x)K , hence

`(Zφ)(m(a)g)= `(Zφ)(g).

Since Hr (F) is generated by n(b), m(a) and wr,r−1, where

wr,d =


1d

1r−d

1d

−1r−d

 , 0≤ d ≤ r, (3-2)

we only need to check that `(Zφ)(wr,r−1g)= `(Zφ)(g) for all g∈Hr (AF ). Assum-
ing this for r = 1 (see Lemma 3.6), we now prove it for general r > 1, following
[Yuan et al. 2009; Zhang 2009].

Recall that we have assumed that φ = φ0
∞

and we suppress ` from the notation
for simplicity. Then for K sufficiently small, we have

Zφ(wr,r−1g)=
∑

x∈K\V r
f

ωχ (wr,r−1g)φ(T (x), x)Z(x)K

=

∑
x∈K\Vr−1

f

∑
y∈Kx\V f

ωχ(wr,r−1g)φ(T(x, y), (x, y))Z((x, y))K , (3-3)

where Kx is the stabilizer of x in K , and

(3-3)=
∑

x∈K\Vr−1
f

∑
y1∈Kx\V

x
f

∑
y2∈Vx

ωχ (wr,r−1g)

×φ(T (x, y1+ y2), (x, y1+ y2))Z((x, y1+ y2))K , (3-4)

where V x
f is the orthogonal complement of Vx = E〈x〉 in V f . Recall the morphism

ςVx in (3-1); we have

(3-4)=
∑

x∈K\Vr−1
f

∑
y1∈Kx\V

x
f

∑
y2∈Vx

ωχ (wr,r−1)(ωχ (g)φ)(T (x, y1+ y2), (x, y1+ y2))

× ςVx
∗

Z(y1)Kx . (3-5)
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Applying the case r = 1 to the special cycle Z(Vx)Kx , we have

(3-5)=
∑

x∈K\Vr−1
f

∑
y1∈Kx\V

x
f

∑
y2∈Vx

ωχ (wr,r−1)ω̂χ (g)φ
y1
(T (x, y1+ y2), (x, y1+ y2))

× ςVx
∗

Z(y1)Kx , (3-6)

where the superscript y1 means taking the Fourier transformation with respect to
the y1 coordinate. Applying the Poisson formula (recall that φ∞ is the Gaussian),
we have

(3-6)=
∑

x∈K\Vr−1
f

∑
y1∈Kx\V

x
f

∑
y2∈Vx

ωχ (wr,r−1)ω̂χ (g)φ
y1,y2

(T (x, y1+y2), (x, y1+y2))

×ςVx
∗

Z(y1)Kx

=

∑
x∈K\Vr−1

f

∑
y1∈Kx\V

x
f

∑
y2∈Vx

ωχ (wr,r−1)ω̂χ (g)φ
y
(T (x, y1+ y2), (x, y1+ y2))

×ςVx
∗

Z(y1)Kx

=

∑
x∈K\Vr−1

f

∑
y1∈Kx\V

x
f

∑
y2∈Vx

ωχ (g)φ(T (x, y1+ y2), (x, y1+ y2))ς
Vx
∗

Z(y1)Kx

=

∑
x∈K\V r

f

ωχ (g)φ(T (x), x)Z(x)K = Zφ(g).

This finishes the proof of (1).
(2) follows from the argument in Lemma 3.6, following Corollary 3.4 and [Yuan

et al. 2009, Theorem 1.3], which uses the result in [Kudla and Millson 1990]. �

Lemma 3.6. If r = 1, then `(Zφ)(w1g)= `(Zφ)(g) for all g ∈ H1(AF ).

Proof. We suppress ` from the notation. Further, we fix any ι◦ ∈6◦
∞

over ι ∈6∞
and suppress them as in the previous subsection. It is clear that we only need to
prove that Zφ(w1g)= Zφ(g) for g ∈ G1(A f ) since G1(A∞,F )K1,∞ = H1(A∞,F ).
As before, we assume that φ∞ is the Gaussian and K is sufficiently small. Recall
that π0(ShK (H, X)ι,C)∼= T (Q)\T (A f )/ det(K ). We have the following inclusion:

CH1(ShK (H, X))C ↪→
⊕

{t}∈T (Q)\T (A f )/ det(K )

CH1(ShK (H, X){t})C, (3-7)

where ShK (H, X){t} is the (canonical model of the) corresponding (geometric)
connected component. Let h ∈ H(A f ) such that det(h)= t and let Th be the Hecke
operator. Then Th : ShK h (H, X)→ ShK (H, X) induces

T ◦h : Sh◦K h (H der, X)= ShK h (H, X){1}
∼
−→ ShK (H, X){h} ↪→ ShK (H, X),
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where K h
= hK h−1. We have T ◦,∗h Zφ(g) = Zφ(g)◦ which is the image of Zφ(g)

under the projection to CH1(ShK (H, X){t})C under (3-7). Here Zφ(g)◦ is the gen-
erating series on Sh◦K h (H der, X). Now shrinking K h if necessary such that we can
apply Corollary 3.4, we have Zφ(g)◦= i∗K ′Z

′

φ(g)
◦ for g∈G1(A f ). Applying [Yuan

et al. 2009, Theorem 1.2 or Theorem 1.3], we conclude that Zφ(w1g)◦ = Zφ(g)◦.
The lemma follows by (3-7). �

3C. Smooth compactification of unitary Shimura varieties. In this section, we
introduce the canonical smooth compactification of the unitary Shimura varieties
if they are not proper and the compactified generating series on them.

Let m≥ 2 be an integer, E =Q(
√
−D)⊂C for some square-free integer D> 0,

let OE be its ring of integers, and let τ be the nontrivial Galois involution on E .
Let (V, ( · , · )) be a hermitian space of dimension m over E whose signature is
(m−1, 1). If m = 2, we further assume that det V ∈NmE×. Let H =U(V ) be the
unitary group; we have the Hodge map h : S→ HR

∼= U(m− 1, 1)R given by

h(z)=


1
. . .

1
z̄/z

 .
Then we have the notion of the Shimura variety ShK (H, h) for any open compact
subgroup K of H(A f ). For K sufficiently small, it is smooth and quasiprojective
but nonproper over E of dimension m − 1. Hence we need to construct a smooth
compactification of ShK (H, h) such that we can do height pairing. When m = 2,
it is trivial since we only need to add cusps. When m = 3 and H is quasisplit,
a canonical smooth compactification (even of the integral model) has been con-
structed in [Larsen 1992]. In fact, the same construction works in the more general
case (just for compactification of the canonical model), namely any H appearing
here. We should mention that, if the signature of V is (a, b) such that a ≥ b > 1
or V is over a totally real field but not Q and indefinite at any archimedean place,
then we should not hope that there exists a canonical smooth compactification.

Now let us assume m > 2. Since we are going to use modular interpretations,
we should work with the group of unitary similitude. For any v,w ∈ V ,

(v,w)′ = TrE/Q(
√
−D(v,w))

defines an alternating form of V satisfying (ev,w)= (v, eτw) for any e ∈ E . Let
G H = GU(V ) such that for any Q-algebra R,

G H(R)= {h ∈ GLm(E ⊗Q R) | (hv, hw)′ = λ(h)(v,w)′ for some λ(h) ∈ R×}

and the Hodge map Gh : S→ G HR
∼= GU(m− 1, 1)R is given by
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Gh(z)=


z
. . .

z
z̄

 .
For any sufficiently small open compact subgroup K of G H(A f ), we have the
Shimura variety ShK (G H,Gh)which is smooth and quasiprojective but nonproper
over E of dimension m−1. Although we don’t have a map between Shimura data,
ShK∩H(A f )(H, h) and ShK (G H,Gh) have the same neutral component for suffi-
ciently small K . Hence it is the same to give a canonical smooth compactification
of ShK (G H,Gh) instead of the original one. In fact, ShK (G H,Gh) is a moduli
space of abelian varieties of certain PEL type. We fix a lattice VZ of V such that
VZ ⊂ V⊥Z and let VẐ = VZ ⊗ Ẑ. Then ShK represents the following functor: for
any (S, s) where S is a connected, locally noetherian E-scheme with a geometric
point s, ShK (G H,Gh)(S, s) is the isomorphism classes of quadruples (A, θ, i, η̄),
where

• A is an abelian scheme over S of dimension m;

• θ : A→ A∨ is a polarization;

• i : OE ↪→ End(A) such that tr(i(e); LieS(A)) = (m − 1)e+ eτ and θ ◦ i(e) =
i(eτ )∨ ◦ θ for all e ∈ OE ;

• η̄ is a π1(S, s)-invariant K-class of OE ⊗ Ẑ-linear symplectic similitude η :
VẐ→ Hét

1 (As, Ẑ), where the pairing on the latter space is the θ -Weil pairing;
hence the degree of θ is [V⊥Z : VZ].

Here in the third condition, 1∈ OE goes to the identity endomorphism and we view
(m− 1)e+ eτ as a constant section of OS via the structure map E→ OS .

In the theory of toroidal compactification (see [Ash et al. 1975]), we need to
choose a rational polyhedral cone decomposition. But in our case, we only have
one unique choice, namely a torus in an affine line. We claim that there is a scheme
Sh∼K (G H,Gh) with these properties:

• Sh∼K (G H,Gh) is smooth and proper over E .

• ĩK : ShK (G H,Gh) ↪→ Sh∼K (G H,Gh) is an open immersion and for K ′ ⊂ K
there is a morphism π̃K ′

K such that the diagram

ShK ′(G H,Gh)

πK ′
K ��

ĩK ′ // Sh∼K ′(G H,Gh)

π̃K ′
K��

ShK (G H,Gh)
ĩK

// Sh∼K (G H,Gh)

commutes.
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• The boundary GYK = Sh∼K (G H,Gh) − ShK (G H,Gh) is a smooth divisor
defined over E and each geometric component is isomorphic to an extension
of an abelian variety of dimension m− 2 by a finite group.

The boundary part GYK parametrizes the degeneration of abelian varieties with the
above PEL data. We consider a semiabelian variety G with i : OE ↪→ End(G) such
that tr(i(e); Lie(G))= (m− 1)e+ eτ ; then for any e ∈ OE , we have the following
commutative diagram:

0 // T
t // G

α //

i(e)
��

A // 0

0 // T
t // G

α // A // 0.

Then the composition α ◦ i(e) ◦ t is trivial. Thus i induces actions of OE on both
torus part T and abelian variety part A. Suppose X (T )= Zr with r > 0. Then r is
even since E is quadratic imaginary. Further assuming tr(i(e); Lie(T ))= ae+beτ ,
we have a+b= r and a= b. Hence there is only one possibility, namely a= b= 1
and r = 2. Then T is of rank 2 and A is an abelian variety of dimension m−2 such
that OE acts on A and tr(i(e); Lie(A)) = (m − 2)e. Let A1 be an elliptic curve of
CM type (OE , e 7→ e). Then A is isogenous to Am−2

1 . Each geometric point s of
GYK corresponds to a semiabelian variety Gs = (Ts ↪→ Gs → As) as above with
certain level structure which will be defined later. For two geometric points s, s ′

in the same geometric connected component, the abelian variety part As ∼= As′ and
the rank 1 OE -modules X (Ts) and X (Ts′) are isomorphic. It is easy to see that if
A and T are fixed, then the set of such G, up to isomorphism, is parametrized by
X (T )⊗OE A which is an abelian variety of dimension m− 2.

To include the level structure, we only stick in one geometric component since it
is same to others. This means that we fix T and A with OE -actions but, of course,
not G. Let us fix a maximal isotropic subspace W of VZ. Then W is of rank
1. We have a filtration 0 ⊂ W ⊂ W⊥ ⊂ VZ. Let BW be the subgroup of H(A f )

that preserves this filtration, NW ⊂ BW that acts trivially on the associated graded
modules, and UW ⊂ NW that acts trivially on W⊥ and VW = NW/UW . We also fix
a generator w of W . On the other hand, fix an OE ⊗ Ẑ generator wT of Hét

1 (T, Ẑ)

and a polarization θA : A → A∨ such that there exists a symplectic similitude
between Hét

1 (A, Ẑ) and VW ⊗ Ẑ. For a sufficiently small open compact subgroup
K ⊂ H(A f ), let NW,K = NW ∩ K , UW,K = UW ∩ K , and VW,K = NW,K /UW,K .
Then the level structure of (G, T ↪→G→ A) with respect to K is a VW,K -class of
isomorphisms W⊥⊗Ẑ→Hét

1 (G, Ẑ)which sendsw towT and induces a symplectic
similitude between VW ⊗ Ẑ and Hét

1 (A, Ẑ)=Hét
1 (G, Ẑ)/OE ·wT . We conclude that

any geometric component of GYK is isomorphic to (a connected component of)
an extension of X (T )⊗OE A by VW/VW,H for some T and A as above. There is a
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universal object π : G→ Sh∼K (G H,Gh) which is a semiabelian scheme of relative
dimension m.

Now we come back to the Shimura variety ShK := ShK (H, h). As we have said,
the canonical smooth compactification above gives a canonical smooth compacti-
fication for ShK , which we denote by Sh∼K , YK = Sh∼K − ShK ; then they will have
the same property as above. We also apply the notation above to the trivial case
m = 2. We let L∼K be the line bundle on Sh∼K induced from

∧m
π∗�G/Sh∼K (G H,Gh)

on Sh∼K (G H,Gh) which is an extension of the Hodge bundle LK on ShK (see
Section 3A). By the canonicality of the compactification, (L∼K )K defines an element
in Pic(Sh∼)C = lim

−→K
Pic(Sh∼K )C. We also need to extend special cycles and hence

the generating series. For 1 ≤ r < m and x ∈ V r
f := V r

⊗Q A f , we define the
compactified special cycle as

Z(x)∼K =
{

Z(Vx)
∼

K c1(L
∼,∨
K )r−dimE Vx if Vx is admissible,

0 otherwise,

where Z(Vx)
∼

K is just the Zariski closure of Z(Vx)K in Sh∼K . We define the com-
pactified generating series by formal series in CHr (Sh∼)C = lim

−→K
CHr (Sh∼K )C:

Z∼φ (g)=


∑

x∈K\V r
f

ωχ (g)φ(T (x), x)Z(x)∼K if m > 2,∑
x∈K\V f

ωχ (g)φ(T (x), x)Z(x)∼K+W0
( 1

2 , g, φ
)
c1(L

∼,∨
K ) if r=1,m=2,

for g ∈ Hr (A) and φ ∈ S(V r )U∞ . Here, W0(s, g, φ) =
∏
v W0(s, gv, φv), which

is holomorphic at s = 1
2 . Moreover, we define the following positive partial com-

pactified generating series as

Z∼φ,+(g)=
∑

x∈K\V r
f

T (x)�0r

ωχ (g)φ(T (x), x)Z(x)∼K ,

where the sum is taken over all x such that T (x) is totally positive definite. We
would like to propose the following conjecture on the modularity of the compacti-
fied generating series:

Conjecture 3.7. Let ` be a linear functional on CHr (Sh∼)C such that `(Z∼φ )(g)
is absolutely convergent. Then if 1 ≤ r ≤ m − 2, `(Z∼φ )(g) is a holomorphic
automorphic form of Hr (AF ); if r = 1,m = 2, `(Z∼φ )(g) is an automorphic form
of H1(AF ), not necessarily holomorphic; in general, if r = m − 1, `(Z∼φ,+)(g)
is the sum of the positive-definite Fourier coefficients of an automorphic form of
Hm−1(AF ).

The case m = 2 (r = 1) will be proved in [Liu 2011, Section 3B] and is actually
not far from Theorem 3.5 as we point out there.
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Fix a rational prime `. There are class maps cl : CHr (Sh∼K )C → H2r
ét
(Sh∼K ×E

Eac,Z`(r))0E ⊗Z` C compatible under π̃K ′
K , which induces cl : CHr (Sh∼)C →

H2r
ét
(Sh∼×E Eac,Z`(r))0E⊗Z` C⊂H2r

B (Sh∼,C) (the Betti cohomology) where the
two cohomology groups are defined as inductive limits as K varies. Let H•Y (Sh∼,C)

= lim
−→K

H•YK
(Sh∼K (C),C) be the inductive limit of cohomology groups with support

in YK as K varies. Then since Y is a smooth divisor, we have H•Y (Sh∼,C) ∼=

H•−2
B (Y,C)= lim

−→K
H•−2

B (YK (C),C).
On the other hand, let us denote by Sh#

K the Baily–Borel compactification of
ShK . Hence we have the commutative diagram

Sh∼K
jK // Sh#

K ,

ShK
R2

ĩK
ee

+ �

i#
K

99

which is compatible when K varies, and, more importantly, Hecke equivariant.
We also denote by IH•(Sh#,C) = lim

−→K
IH•(Sh#

K (C),C) the inductive limit of the
intersection cohomology groups. Then by [Beı̆linson et al. 1982, Théorème 6.2.5],
we have the exact sequence

H•Y (Sh∼,C) // H•B(Sh∼,C)
j∗ // IH•(Sh#,C) // 0. (3-8)

Let H•∂(Sh∼) be the image of the first map which is isomorphic to a quotient of
H•−2

B (Y,C).

3D. Arithmetic theta lifting and inner product formula. We next define the arith-
metic theta lifting and prove its cohomological triviality under certain assumptions.
We then formulate the conjectural arithmetic inner product formula in general.

Arithmetic theta lifting. We assume Conjecture 3.7 and the following assumptions
on A-packets which are a certain part of the Langlands–Arthur conjecture (see
[Arthur 1984; 1989]); they should be proved by a similar method to that in [Arthur
2012] (which handles the case of symplectic and orthogonal groups):

• A-packets are defined for all unitary groups U(m)/F . We denote by AP(U(m)AF)

the set of A-packets of U(m) and by AP(U(m)AF )disc⊂AP(U(m)AF ) the subset
of discrete A-packets.

• If 51 and 52 are in AP(U(m)AF )disc such that for almost all v ∈6, 51,v and
52,v contain the same unramified representation, then 51 =52.

• Let U(m)∗ be the quasisplit unitary group. Then we have the correspondence
between A-packets of inner forms: JL : AP(U(m)AF )disc→ AP(U(m)∗AF

)disc.
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Definition 3.8. Let π be an irreducible cuspidal automorphic representation of
Hr (AF ) realized in L2(Hr (F)\Hr (AF )). We assume that 1 ≤ r ≤ m − 2 or r =
1,m = 2. For any φ ∈ S(V r )U∞ and any cusp form f ∈ π , the integral

2
f
φ =

{∫
Hr (F)\Hr (AF )

f (g)Zφ(g) dg ∈ CHr (Sh)C if Sh is proper,∫
Hr (F)\Hr (AF )

f (g)Z∼φ (g) dg ∈ CHr (Sh∼)C otherwise,

is called the arithmetic theta lifting of f which is a (formal sum of) codimension
r cycle(s) on a certain (compactified) Shimura variety of dimension m−1. Its co-
homology class (restricted to Sh) is well-defined due to [Kudla and Millson 1990].
The original idea of this construction comes from Kudla; see [Kudla 2003, Section
8] or [Kudla et al. 2006, Section 9.1]. He constructed the arithmetic theta series as
an Arakelov divisor on a certain integral model of a Shimura curve.

In the following discussion, let m = 2n and r = n. Let π be an irreducible
cuspidal automorphic representation of Hn(AF ), χ a character of E×A×F\A

×

E such
that π∞ is a discrete series representation of weight (n − kχ/2, n + kχ/2), and
ε(π, χ)=−1. Then the (equal-rank) theta correspondence of πι (under ωχ ) is the
trivial representation of U(2n, 0)R for any archimedean place ι. Hence V(π, χ)

is a totally positive-definite incoherent hermitian space over AE . Now we fix an
incoherent hermitian space V which is totally positive-definite of rank 2n and let
(ShK )K be the associated Shimura varieties.

We fix an embedding ι◦ : E ↪→C inducing ι : F ↪→C if F 6=Q. Then similarly we
have the class map cl : CH•(ShK )C→H2•

B (ShK ,ι◦(C),C). By a theorem in [Zucker
1982, Section 6] concerning the L2-cohomology and the intersection cohomology,
we have a (compatible system of) Hecke equivariant isomorphisms:

H•(2)(ShK )=

{
H•B(ShK ,ι◦(C),C) if ShK is proper,
IH•(Sh#

K ,C) otherwise.

We let
H•(2)(Sh)= lim

−→
K

H•(2)(ShK ).

In the nonproper case, we compose the map j∗ in (3-8) to get a class map still
denoted by cl : CH•(Sh∼)→ H2•

(2)(Sh).

Proposition 3.9. The class cl(2 f
φ ) = 0 in H2n

(2)(Sh), that is, if Sh is proper (resp.
nonproper), 2 f

φ is cohomologically trivial (resp. such that cl(2 f
φ ) ∈ H2n

∂ (Sh∼)).

Proof. If Sh is nonproper, we can assume n> 1. By our definition of the arithmetic
theta lifting, for φ = φ∞φ f with fixed φ∞, cl(2 f

φ ) defines an element in

HomHn(A f,F )

(
S(Vn

f )⊗π f ,H2n
(2)(Sh)

)
,

where Hn(A f,F ) acts trivially on the L2-cohomology.
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Let V (ι) be the nearby hermitian space of V at ι (see Section 3A) and H (ι)
=

U(V ι). Then since Z∼ω(h)φ(g) = T ∗h Z∼φ (g) for all h ∈ H (ι)(A f,F ) where Th is the
Hecke operator of h, we see that cl(2 f

φ ) in fact defines an element

H2,φ∞ ∈ HomHn(A f,F )×H (ι)(A f,F )

(
S(Vn

f )⊗π f ,H2n
(2)(Sh)

)
= HomHn(A f,F )×H (ι)(A f,F )

(
S(Vn

f ), π
∨

f ⊗H2n
(2)(Sh)

)
,

where Hn(A f,F )× H (ι)(A f,F ) acts on S(Vn
f ) through the Weil representation ωχ

and H (ι)(A f,F ) acts on H2•
(2)(Sh) through Hecke operators and on π f trivially. As

an H (ι)(A f,F )-representation, we have the following well-known decomposition
(see, for example, [Borel and Wallach 2000, Chapter XIV]):

H2n
(2)(Sh)=

⊕
σ

mdisc(σ )H
2n(Lie H (ι)

∞
, K H (ι)

∞
; σ∞

)
⊗ σ f ,

where the direct sum is taken over all irreducible discrete automorphic representa-
tions of H (ι)(AF ). If the invariant functional H2,φ∞ 6= 0, then some σ f with

mdisc(σ )H
2n(Lie H (ι)

∞
, K H (ι)

∞
; σ∞

)
6= 0

is the theta correspondence θ(π∨f ) of π∨f .
We define a character χ̃ of E×,1\A×,1E in the following way. For any x ∈ A

×,1
E ,

we can write x = e/eτ for some e ∈ A×E and define χ̃(x) = χ(e) which is well-
defined since χ

∣∣
A×F
= 1.

For all finite places v such that v - 2 and ψv, χv, and πv are unramified, we
have H (ι)

v
∼= Hn,v. Let 6 ∈ AP(H (ι)

AF
)disc be the A-packet containing σ and 5 ∈

AP(Hn,AF )disc containing π . Then by Corollary A.6, we have that for v as above,
JL(6)v = JL(6v) = 6v and 5v ⊗ χ̃v contain the same unramified representation,
hence JL(6) and 5⊗ χ̃ coincide. In particular,

JL(6∞)= JL(6)∞ =5∞⊗ χ̃∞,

which implies that 6∞ is a discrete series L-packet (see [Adams 2011]). This
contradicts our assumption since for any discrete series representation σ∞, we can
have H•(Lie H (ι)

∞, K H (ι)
∞
; σ∞) 6= 0 only in the middle dimension, which is 2n − 1,

not 2n (see [Borel and Wallach 2000, Chapter II, Theorem 5.4]). Thus H2,φ∞ = 0
and we prove the proposition. �

The proposition says that 2 f
φ is automatically cohomologically trivial at least

in the proper case.

Conjecture 3.10. When Sh is nonproper, cl(2 f
φ ) ∈ H2n

∂ (Sh∼) is 0 for any cusp
form f ∈ π and φ as above.
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When n=1, this is proved in [Liu 2011] just by computing the degree of the gen-
erating series which is the linear combination of an Eisenstein series and (possibly)
an automorphic character (that is, one-dimensional automorphic representation) of
H1(A). Hence cl(2 f

φ ) is zero since f is cuspidal. For the general case, we believe
that the same phenomenon will happen.

Main conjecture. Let us assume Conjecture 3.10 and the existence of Beilinson–
Bloch height pairing on smooth proper schemes over number fields. Then 2 f

φ is
cohomologically trivial and we let

〈2
f
φ ,2

f ∨

φ∨ 〉
K
BB

be the Beilinson–Bloch height on ShK (resp. Sh∼K ) if it is proper (resp. nonproper)
for sufficiently small K . Let vol(K ) be the volume with respect to the Haar measure
defined in the proof of Theorem 4.20. Then

〈2
f
φ ,2

f ∨

φ∨ 〉BB := vol(K )〈2 f
φ ,2

f ∨

φ∨ 〉
K
BB

is a well-defined number which is independent of K .
If V�V(π, χ), then 〈2 f

φ ,2
f ∨
φ∨ 〉BB=0 for any f , f ∨ and φ, φ∨ since otherwise,

it defines a nonzero functional

γ ( f, f ∨, φ, φ∨) ∈ HomHn(A f,F )×Hn(A f,F )(R(V f , χ f ), π
∨

f �χ f π f )

which contradicts the fact that the latter space is zero. This will imply that, assum-
ing the conjecture that the Beilinson–Bloch height pairing is nondegenerate, any
arithmetic theta lifting 2 f

φ = 0.
If V∼= V(π), we have the following main conjecture:

Conjecture 3.11 (arithmetic inner product formula). Let π be an irreducible cusp-
idal automorphic representation of Hn(AF ), χ a character of E×A×F\A

×

E such that
π∞ is a discrete series representation of weight (n−kχ/2, n+kχ/2), ε(π, χ)=−1,
and V ∼= V(π, χ). Then, for any f ∈ π , f ∨ ∈ π∨, and any φ, φ∨ ∈ S(Vn

f )
U∞

decomposable, we have

〈2 f
φ ,2

f ∨

φ∨ 〉BB =
L ′( 1

2 , π, χ)∏2n
i=1 L(i, εi

E/F )

∏
v

Z∗(0, χv, fv, f ∨v , φv ⊗φ
∨

v ),

where in the last product almost all factors are 1.

We remark that when n = 1, the height pairing 〈2 f
φ ,2

f ∨
φ∨ 〉BB is just the Néron–

Tate height pairing, hence is defined without any assumption.
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4. Comparison at infinite places

4A. Archimedean Whittaker integrals. In this section, we will calculate certain
Whittaker integrals WT (s, g,8) and their first derivatives (at s = 0) at an archi-
medean place.

Elementary reductions. We fix an archimedean place ι : F ↪→ C and suppress it
from the notation. Hence we have H ′ ∼= U(n, n) and H ′′ ∼= U(2n, 2n) with para-
bolic subgroup P , V ∼= Vι the standard positive definite 2n-dimensional complex
hermitian space, and χ a character of C× which is trivial on R×. In this section, we
write a∗ instead of taτ for a complex matrix. Recall that we are always writing the
elements in H ′′ in matrix form with respect to the basis {e1, . . . , en; e−1 , . . . , e−n ;
en+1, . . . , e2n;−e−n+1, . . . ,−e−2n} under which P is the standard maximal parabolic
subgroup. The map

U(2n)×U(2n)−→ H ′′ ∼= U(2n, 2n)

(k1, k2) 7−→ [k1, k2] :=
1
2

(
k1+ k2 −ik1+ ik2

ik1− ik2 k1+ k2

)
is an isomorphism onto its image which is a maximal compact subgroup of H ′′,
denoted by K. Let80 be the standard Gaussian in S(V 2n) and χ(z)= z2` (|z| = 1)
for some ` ∈ Z. Then ωχ ([k1, k2])8

0
= (det k1)

n+`(det k2)
−n+`80. Our first goal

is to analyze the integral

WT (s, g,80)=

∫
Her2n(C)

ϕ80,s(wn(u)g)ψT (n(u))−1 du (4-1)

for T ∈ Her2n(C) and <(s) > n, where du is the self-dual measure with respect to
(the standard) ψ . Write g = n(b)m(a)[k1, k2] under the Iwasawa decomposition.
Then

(4-1)=
∫

Her2n(C)

ωχ (wn(u)n(b)m(a)[k1, k2])8
0(0)

×λP(wn(u)n(b)m(a)[k1, k2])
sψ(− tr T u) du

= ψ(tr T b)(det k1)
n+`(det k2)

−n+`

×

∫
Her2n(C)

ωχ (wn(u)m(a))80(0)λP(wn(u)m(a))sψ(− tr T u) du. (4-2)

Since wn(u)m(a) = wm(a)n(a−1ua∗,−1) = m(a∗,−1)wn(a−1ua∗,−1) and after
changing variable du = |det a|2n

C
d(a−1ua∗,−1), we have

(4-2)= ψ(tr T b)|det a|n−s
C
χ(det a)(det k1)

n+`(det k2)
−n+`

×

∫
Her2n(C)

ωχ (wn(u))80(0)λP(wn(u))sψ(− tr a∗T au) du
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=ψ(tr T b)|det a|n−s
C
χ(det a)(det k1)

n+`(det k2)
−n+`Wa∗T a(s, e,80). (4-3)

Hence we only need to consider WT (s, e,80). From now on, we will not restrict
ourselves to considering the case of dimension 2n. Let m ≥ 1 be an integer, V
the totally positive-definite complex hermitian space of dimension m, and 80 the
standard Gaussian. For T ∈ Herm(C), we can still consider WT (s, e,80) which
has the usual integral presentation for <(s) > m/2.

Lemma 4.1. For u ∈Herm(C), ωχ (wn(u))80(0)= γV det(1m− iu)m , where γV is
the Weil constant.

Proof. By definition,

γ−1
V ωχ(wn(u))80(0)=

∫
V m
ωχ(n(u))80(x) dx=

∫
V m
ψ(tr uT(x))80(x) dx, (4-4)

where γV is the Weil constant. Write u = k diag[. . . , u j , . . . ]k∗ with u j ∈ R ( j =
1, . . . ,m) and k ∈ U(m). Then

(4-4)=
∫

V m
ψ(tr kdiag[. . . , u j , . . . ]k∗T (x)kk−1)80(x) dx

=

∫
V m
ψ(tr diag[. . . , u j , . . . ]T (xk))e−2π tr T (x) dx .

(4-5)

Changing the variable x 7→ xk and using tr T (x)= tr T (xk), we have

(4-5)=
∫

V m
exp(2π i tr diag[. . . , u j , . . . ]T (x)− 2π tr T (x)) dx

=

m∏
j=1

∫
V

exp(2π iu j T (x j )− 2πT (x j )) dx j .

(4-6)

We identify V with Cm and ( · , · ) with the usual hermitian form on Cm , and
then the self-dual measure dx j on V is just the usual Lebesgue measure dx on
Cm ∼= R2m . Hence

(4-6)=
m∏

j=1

∫
R2m

e−π(1−iu j )‖x‖2 dx =
m∏

j=1

(∫
∞

−∞

e−π(1−iu j )t2
dt
)2m

=

m∏
j=1

(1− iu j )
−m
= det(1m − iu)−m . �

Lemma 4.2. For u ∈ Herm(C), λP(wn(u))= det(1m + u2)−1.

Proof. We have

wn(u)
(

i1m

1m

)
=

(
1m

−1m

)(
1m u

1m

)(
i1m

1m

)
=

(
1m

−i1m − u

)
.
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Then,
1m(−i1m − u)−1

=−u(1m + u2)−1
+ i(1m + u2)−1.

Hence λP(wn(u))= det(1m + u2)−1 which is a positive real number. �

Combining Lemmas 4.1 and 4.2, we have for <(s) > m/2,

γ−1
V WT (s, e,80)=

∫
Herm(C)

ψ(− tr T u) det(1m + iu)−s det(1m − iu)−s−m du.

Now we proceed as in [Shimura 1982, Case II]. First, we need to introduce some
new notation which may be different from that in [Shimura 1982]. Let

Her+m(C)= {x ∈ Herm(C) | x > 0},

hm = {x + iy | x ∈ Herm(C), y ∈ Her+m(C)},

h′m = {x + iy | x ∈ Her+m(C), y ∈ Herm(C)}.

Lemma 4.3 (Siegel; see [Shimura 1982, Section 1]). (1) For z ∈ h′m and <(s) >
m− 1, we have∫

Her+m(C)

e− tr(zx) det(x)s−m dx = 0m(s) det(z)−s,

where dx is induced from the self-dual measure on Herm(C) and

0m(s)= (2π)m(m−1)/2
m−1∏
j=0

0(s− j).

(2) For x ∈ Herm(C), b ∈ Her+m(C) and <(s) > 2m− 1, we have

0m(s)
∫

Herm(C)

e2π i tr(ux) det(b+2π iu)−s du=
{

e− tr(xb) det(x)s−m if x ∈Her+m(C),

0 if x 6∈Her+m(C).

Now for <(s) > m− 1, by Lemma 4.3(1),

γ−1
V WT (s, e,80)=

∫
Herm(C)

ψ(− tr T u)
1

0m(s)

×

∫
Her+m(C)

e− tr(1m+iu)x det(x)s−m det(1m − iu)−s−m dx du

=
1

0m(s)

∫
Her+m(C)

e− tr x det(x)s−m

×

∫
Herm(C)

e−i tr(x+2πT )u det(1m − iu)−s−m du dx . (4-7)

Apply Lemma 4.3(2) with b = 1m , x = x + 2πT , and s = s +m, and perform
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the change of variable u 7→ −u/(2π) to obtain

(4-7)=
1

0m(s)
×

∫
x>0,x+2πT>0

e− tr x det(x)s−m

×
(2π)m

2

0m(s+m)
e− tr(x+2πT ) det(x + 2πT )s dx . (4-8)

We change the variable x 7→ x/π + T ,

(4-8)=
(2π)m

2
π2ms

0m(s)0m(s+m)

∫
x>−T,x>T

e− tr 2πx det(x+T )s det(x − T )s−m dx

=
(2π)m

2
π2ms

0m(s)0m(s+m)
η(2π1m, T ; s+m, s), (4-9)

where the function η(g, h;α, β) for g ∈ Her+m(C), h ∈ Herm(C), <(α)� 0, and
<(β) � 0 is introduced in [Shimura 1982, (1.26)]. In what follows, we as-
sume that T is nonsingular with sign(T ) = (p, q) for p + q = m. We write
T = kdiag[t1 . . . , tp,−tp+1, . . . ,−tm]k∗ with k ∈ U(m), t j ∈ R>0 and let a =
kdiag[. . . , t1/2

j , . . . ]. Then T = aεp,qa∗ where εp,q = diag[1p,−1q ]. It is easy to
see that we have

η(g, T ;α, β)= |det T |α+β−mη(a∗ga, εp,q;α, β), (4-10)

η(g, εp,q;α, β)= 2m(α+β−m)e− tr gζp,q(2g;α, β). (4-11)

We introduce ζp,q as in [Shimura 1982, (4.16)]. For g ∈ Her+m(C) and p+ q = m,
let εp = diag[1p, 0q ] and ε′q = diag[0p, 1q ]. Then

ζp,q(g;α, β)=
∫

X p,q

e− tr(gx) det(x + εp)
α−m det(x + ε′q)

β−m dx,

where X p,q := {x ∈ Herm(C) | x + εp > 0, x + ε′q > 0} with the measure induced
from the self-dual one on Herm(C). Then Xm,0 = Her+m(C). If q = 0, we simply
write ζm = ζm,0.

Analytic continuation. Following [Shimura 1982, (4.17)], we let

ωp,q(g;α, β)= 0q(α− p)−10p(β − q)−1det+(εp,q g)β−q/2

× det−(εp,q g)α−p/2ζp,q(g;α, β), (4-12)

where det± denotes the absolute value of the product of positive or negative eigen-
values (equal to 1 if there are no such eigenvalues) of a nonsingular element in
Herm(C). It is proved in [Shimura 1982, Section 4] that ωp,q(g;α, β) can be
continued as a holomorphic function in (α, β) to the whole C2 and satisfies the



Arithmetic theta lifting and L-derivatives for unitary groups, I 889

functional equation ωp,q(g;m − β,m − α) = ωp,q(g;α, β). Also, if q = 0, we
simply write ωm = ωm,0.

Lemma 4.4. If q = 0, then ωm(g;m, β)= ωm(g;α, 0)= 1.

Proof. The integral defining ζm(g;m, β),∫
Her+m(C)

e− tr(gx) det(x)β−m dx,

is absolutely convergent for <(β) > m − 1 and is equal to 0m(β) det(g)−β by
Lemma 4.3(1). Hence ωm(g;m, β)≡ 1, which proves the lemma by the functional
equation. �

Proposition 4.5. Let T ∈ Herm(C) be nonsingular with sign(T )= (p, q).

(1) ords=0WT (s, e,80)≥ q.

(2) If T is positive definite, that is, q = 0, then

WT (0, e,80)= γV
(2π)m

2

0m(m)
e−2π tr T .

Proof. (1) Combining (4-9), (4-10), (4-11), and (4-12), we have

γ−1
V WT (s, e,80)=

0q(m+ s− p)0p(s− q)
0m(s)0m(s+m)

(2π)m
2
+2ms
|det T |2se−2π tr(a∗a)

× det+(4πT )q/2−sdet−(4πT )p/2−m−sωp,q(4πa∗a;m+ s, s). (4-13)

All terms except the gamma factors are holomorphic for any s ∈ C. But

0q(m+s− p)0p(s−q)
0m(s)0m(s+m)

=
(2π)−pq−m(m−1)/2

0(s) · · ·0(s−q+1)×0(s+m) · · ·0(s+m− p+1)
.

Hence ords=0WT (s, e,80)≥−ords=00(s) · · ·0(s− q + 1)= q .
(2) If T is positive definite, then tr(a∗a)= tr T . By (4-13) and Lemma 4.4, we

have

γ−1
V WT (0, e,80)=

(2π)m
2

0m(m)
e−2π tr Tωm(4πa∗a;m, 0)=

(2π)m
2

0m(m)
e−2π tr T . �

The case q = 1. By Proposition 4.5(1), the T-th coefficient will not contribute to
the analytic kernel function E ′(0, g,8) if sign(T ) = (p, q) with q ≥ 2. For this
reason, we now focus on the case q = 1, that is, the functions ζm−1,1(g;α, β)
and ωm−1,1(g;α, β). We can assume that g = diag[a, b] with a ∈ Her+m−1(C) and
b ∈ R>0. We write elements in X in the form(

x z
z∗ y

)
, x ∈ Herm−1(C), y ∈ R, z ∈Matm−1,1(C).
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Then (see [Shimura 1982, p. 288])

X ={(x, y, z) | x > 0, y > 0, x + 1m−1 > zy−1z∗, y+ 1> z∗x−1z}

= {(x, y, z) | x+1m−1 > 0, y+1> 0, x > z(y+1)−1z∗, y > z∗(x+1m−1)
−1z}.

We have

ζm−1,1(g;α, β)

=

∫
X

e− tr(ax)−by det
(

x + 1m−1 z
z∗ z

)α−m

det
(

x z
z∗ y+ 1

)β−m

dx dy dz, (4-14)

where we use the self-dual measure dx on Herm−1(C), the Lebesgue measure dy
on R, and dz = 2m−1

× the Lebesgue measure on Matm−1,1(C). Now we make a
change of variables as in [Shimura 1982, p. 289] as follows. Put

f = (x + 1m−1)
−1/2z(y+ 1)−1/2.

Then 1m−1 − f f ∗ > 0. Put r = (1 − f ∗ f )1/2 and s = (1m−1 − f f ∗)1/2; also
w= s−1 f = f r−1, u= x−ww∗, and v= y−w∗w. The map (x, y, z) 7→ (u, v, w)
maps X bijectively onto Y =Her+m−1(C)×R>0×Matm−1,1(C). Then the Jacobian

∂(x, y, z)
∂(u, v, w)

= det(1m−1+ x)(1+ y)m−1(1+w∗w)−m

for the measure ∂(u, v, w) on Y induced from that on Herm−1(C)×R×Matm−1,1(C)

as an open subset. We have

det
(

x + 1m−1 z
z∗ y

)
= det(u+ 1m−1+ww

∗)v det(1m−1ww
∗)−1,

det
(

x z
z∗ y+ 1

)
= (v+ 1+w∗w) det(u) det(1m−1ww

∗)−1.

We obtain that

(4-14)=
∫

Y
e− tr(au+aww∗)−(bv+bw∗w) det(1m−1+ww

∗)m−α−β

× det(u+1m−1+ww
∗)α−m+1 det(u)β−m

×(v+1+w∗w)β−1vα−m dudvdw

=

∫
Matm−1,1(C)

e− tr(aww∗)−bw∗wζ1(b(1+w∗w);β, α−m+ 1)

×

∫
Her+m−1(C)

e− tr(au) det(u+ 1m−1+ww
∗)α−m−1 det(u)β−m dudw. (4-15)

On the other hand, again by (4-10), (4-11), and (4-12), we have

γ−1
V WT (s,e,80)=

(2π)m
2
+2ms
|det T |2s

0m(s)0m(s+m)
e−2π tr(a∗a)ζm−1,1(4πa∗a;m+s,s). (4-16)
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Assuming T ∼ diag[a1, . . . , am−1,−b] with a j , b ∈ R>0, then a∗a = diag[a1, . . . ,

am−1, b]. By (4-16) and Proposition 4.5(1),

γ−1
V W ′T (0, e,80)= lim

s→0

(2π)m
2

s0m(s)0m(m)

× e−2π(a1+···+am−1+b)ζm−1,1(4πdiag[a1, . . . , am−1, b];m, s). (4-17)

Plugging in (4-15) for (α, β)= (m, s):

(4-17)= lim
s→0

2m−1(2π)m
2

s0m(s)0m(m)
e−2π(a1+···+am−1+b)

×

∫
Cm−1

e−4π [(a1+am)w1w̄1+···+(am−1+am)wm−1w̄m−1]ζ1(4πb(1+w∗w); 0, 1)

×

∫
Her+m−1(C)

e−4π tr diag[a1,...,am−1]u

× det(u+ 1m−1+ww
∗) det(u)s−m dudw1 · · · dwm−1. (4-18)

It is easy to see that

ζ1(4πb(1+w∗w); 0, 1)=−e4πb(1+w∗w)Ei(−4πb(1+w∗w)), (4-19)

where Ei is the classical exponential integral

Ei(z) := −
∫
∞

1

ezt

t
dt.

The main difficulty is calculating the inside integral, the one over Her+m−1(C).
We temporarily let g0 = 4πdiag[a1, . . . , am−1] and consider the integral∫

Her+m−1(C)

e− tr(ug0) det(u+ 1m−1+ww
∗) det(u)s−m du. (4-20)

We define a differential operator 1= det
(
∂

∂g jk

)m−1

j,k=1
. Then

1e− tr(ug)
= (−1)m−1 det(u)e− tr(ug).

Hence

(4-20)= etr(1m−1+ww
∗)g0

×

∫
Her+m−1(C)

e− tr(u+1m−1+ww
∗)g0 det(u+ 1m−1+ww

∗) det(x)s−m du

= (−1)m−1etr(1m−1+ww
∗)g0

×

∫
Her+m−1(C)

1
∣∣
g=g0

e− tr(u+1m−1+ww
∗)g det(x)s−m du. (4-21)
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We can exchange 1 and the integration by analytic continuation; then

(4-21)= (−1)m−1etr(1m−1+ww
∗)g01

∣∣
g=g0

∫
Her+m−1(C)

e− tr(u+1m−1+ww
∗)g det(x)s−m du

= (−1)m−1etr(1m−1+ww
∗)g01

∣∣
g=g0

(
e− tr(1m−1+ww

∗)gζm−1(g;m− 1, s− 1)
)

= (−1)m−1etr(1m−1+ww
∗)g01

∣∣
g=g0

(
e− tr(1m−1+ww

∗)g det(g)1−s0m−1(s− 1)
)

= (−1)m−10m−1(s− 1)etr(1m−1+ww
∗)g01

∣∣
g=g0

×
(
e− tr(1m−1+ww

∗)g det(g)1−s). (4-22)

We plug (4-19) and (4-22) in (4-18):

(4-18)= lim
s→0

0m−1(s− 1)(−2)m−1(2π)m
2

s0m(s)0m(m)
e−2π tr T

×

∫
Cm−1

e−4π(a1w1w̄1+···+am−1wm−1w̄m−1)etr(1m−1+ww
∗)g01

∣∣
g=g0

×
(
e− tr(1m−1+ww

∗)g det(g)
)
(−Ei)(−4πb(1+w∗w)) dw1 · · · dwm−1

=
(2π)m

2
(−2)m−1

0m(m)(2π)m−1 e−2π tr T
∫

Cm−1
e−4π(a1w1w̄1+···+am−1wm−1w̄m−1)

×etr(1m−1+ww
∗)g01

∣∣
g=g0

(
e− tr(1m−1+ww

∗)g det(g)
)

×(−Ei)(−4πb(1+w∗w)) dw1 · · · dwm−1. (4-23)

Now we make a change of variables. Let

Dm−1 = {z = (z1, . . . , zm−1) ∈ Cm−1
| zz̄ := z1 z̄1+ · · ·+ zm−1 z̄m−1 < 1}

be the open unit disc in Cm−1. Then the map

w j =
z j

(1− zz̄)1/2
, j = 1, . . . ,m− 1 (4-24)

is a C∞-homeomorphism from Cm−1 to Dm−1. To calculate the Jacobian, let w j =

u j + v j i and z j = x j + y j i be the corresponding real and imaginary parts. Then

∂u j

∂xk
=

x j xk

(1−zz̄)3/2
, k 6= j;

∂u j

∂x j
=

x2
j

(1−zz̄)3/2
+

1
(1−zz̄)1/2

;
∂u j

∂yk
=

x j yk

(1−zz̄)3/2
;

∂v j

∂yk
=

y j yk

(1−zz̄)3/2
, k 6= j;

∂v j

∂y j
=

y2
j

(1−zz̄)3/2
+

1
(1−zz̄)1/2

;
∂v j

∂xk
=

y j xk

(1−zz̄)3/2
.
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Let c j = x j and cm−1+ j = y j for j = 1, . . . ,m − 1. Then by Lemma 4.6(2)
below with n = 2m+ 2, c = t(c1, . . . , c2m−2), and ε = 1− zz̄,

∂(u1, v1, . . . , um−1, vm−1)

∂(x1, y1, . . . , xm−1, ym−1)

=
∂(u1, . . . , um−1; v1, . . . , vm−1)

∂(x1, . . . , xm−1; y1, . . . , ym−1)

= (1− zz̄)−3(m−1) det((1− zz̄)12m−2+ cc∗)

= (1− zz̄)−3(m−1)(1− zz̄)2m−3(1− zz̄+ x2
1 + · · ·+ x2

m−1+ y2
1 + · · ·+ y2

m−1)

= (1− zz̄)−m . (4-25)

Lemma 4.6. Let c ∈Matn×1(C). Then

(1) det(1n + cc∗)= 1+ c∗c and

(2) for ε > 0, det(ε1n + cc∗)= εn−1(ε+ c∗c).

Proof. (1) is [Shimura 1982, Lemma 2.2]. Since it is not difficult, we will give a
proof here, following Shimura. We claim that det(1n + scc∗) = 1+ sc∗c for all
c ∈ R. Since they are both polynomials in s, we only need to prove this for s < 0.
We have(

1n −
√
−sc
1

)(
1n

√
−sc

√
−sc∗ 1

)(
1n

−
√
−sc∗ 1

)
=

(
1n + scc∗

1

)
,(

1n

−
√
−sc∗ 1

)(
1n

√
−sc

√
−sc∗ 1

)(
1n −

√
−sc
1

)
=

(
1n

1+ sc∗c

)
.

Hence det(1n + scc∗)= 1+ sc∗c. (2) follows from (1) immediately. �

Now we write the Lebesgue measure dz1 · · · dzm−1 in the differential form of
degree (m− 1,m− 1) on Dm−1 which is

dz1 · · · dzm−1 =
1

(−2i)m−1� :=
1

(−2i)m−1

m−1∧
j=1

dz j ∧ dz̄ j ,

where in the latter we view dz j as a (1, 0)-form, not the Lebesgue measure any-
more. By (4-25), we have

(4-23)=
(2π)m

2

0m(m)(2π i)m−1 e−2π tr T
∫

Dm−1

e−4π(a1w1w̄1+···+am−1wm−1w̄m−1)(1− zz̄)−m

×etr(1m−1+ww
∗)g01

∣∣
g=g0

(
e− tr(1m−1+ww

∗)g det(g) j
)
(−Ei)(−4πb(1+w∗w))�, (4-26)

where w j are as in (4-24). The final step is finished by the following lemma.
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Lemma 4.7. For g0 = 4πdiag[a1, . . . , am−1],

1
∣∣
g=g0

(
e− tr(1m−1+ww

∗)g det(g)
)
= e− tr(1m−1+ww

∗)g

×

∑
1≤s1<···<st≤m−1

(−4π)t(m− 1− t)!(as1 · · · ast )(1+ws1w̄s1 + · · ·+wst w̄st ),

where the sum is taken over all subsets of {1, . . . ,m− 1}.

Proof. Let u jk = −(1+w j w̄k) and g = (g jk)
m−1
j,k=1 be the matrix variables. For

short, we also use |g| to indicate the determinant of the square matrix g. For subsets
I, J ⊂ {1, . . . ,m− 1} of the same cardinality, we denote by gJ,K (resp. g J,K ) the
(square) matrix obtained by keeping (resp. omitting) the rows indexed in J and
the columns indexed in K . Let Sm−1 be the group of (m − 1)-permutations; for
σ ∈ Sm−1 and a subset J = { j1< · · ·< jt } ⊂ {1, . . . ,m−1}, let εJ (σ )∈ {±1} be a
factor which only depends on J and σ . This factor comes from the combinatorics
in taking successive partial derivatives. In our application, we only need to know
its value in the case σ maps J to itself. In this case, let σJ be the restriction of σ
to J . Then εJ (σ )= (−1)|σJ |. Now we compute

∂

∂g1,σ (1)
etr(ug)

|g| = uσ(1),1etr(ug)
|g| + ε{1}(σ )etr(ug)

|g{1},{σ(1)}|,

∂

∂g2,σ (2)

∂

∂g1,σ (1)
etr(ug)

|g| = uσ(2),2uσ(1),1etr(ug)
|g|+ε{2}(σ )uσ(1),1etr(ug)

|g{2},{σ(2)}|

+ε{1}(σ )uσ(2),2etr(ug)
|g{1},{σ(1)}| + ε{1,2}(σ )etr(ug)

|g{1,2},{σ(1),σ (2)}|.

By induction, we have

∂

∂gm−1,σ (m−1)
· · ·

∂

∂g1,σ (1)
etr(ug)

|g| =
∑

1≤ j1<···< jt≤m−1

ε{ j1,..., jt }(σ )uσ(sm−1−t ),sm−1−t

· · · uσ(s1),s1etr(ug)
|g{ j1,..., jt },{σ( j1),...,σ ( jt )}|,

where {s1 < · · · < sm−1−t } is the complement of { j1, . . . , jt }. Summing over σ ,
we have

1
∣∣
g=g0

etr(ug)
|g|= etr(ug0)

∑
σ∈Sm−1

(−1)|σ |
∑

1≤ j1<···< jt≤m−1

ε{ j1,..., jt }(σ )uσ(sm−1−t ),sm−1−t

· · · uσ(s1),s1 |g
{ j1,..., jt },{σ( j1),...,σ ( jt )}
0 |.

Changing the order of summation, since g0 is diagonal, we have

1
∣∣
g=g0

etr(ug)
|g|

= etr(ug0)
∑

J={ j1<···< jt }

∑
σ(J )=J

(−1)|σ |(−1)|σJ |uσ(sm−1−t ),sm−1−t · · · uσ(s1),s1 |g
J,J
0 |
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= etr(ug0)
∑

J={ j1<···< jt }

t !|g J,J
0 |

∑
σ ′:J→J

(−1)|σ
′
|uσ(sm−1−t ),sm−1−t · · · uσ(s1),s1

=etr(ug0)
∑

J={ j1<···< jt }

t !|g J,J
0 ||u

J,J
|=etr(ug0)

∑
J ′={s1<···<st }

(m−1−t)!|(g0)J ′,J ′ ||u J ′,J ′ |.

The lemma follows by Lemma 4.6(1). �

In conclusion, using (4-26), we obtain our main result.

Proposition 4.8. For T ∼ diag[a1, . . . , am−1,−b] of signature (m−1, 1), we have

W ′T (0, e,80)= γV
(2π)m

2

0m(m)(2π i)m−1 e−2π tr T
∫

Dm−1

e−4π(a1w1w̄1+···+am−1wm−1w̄m−1)

×

∑
1≤s1<···<st≤m−1

(−4π)t(m− 1− t)!(as1 · · · ast )(1+ws1w̄s1 + · · ·+wst w̄st )

× (−Ei)(−4πb(1+w∗w))(1− zz̄)−m�,

where w j are C∞-functions in z as in (4-24) and � is the volume form in z.

4B. An archimedean local height function. In this section, we will introduce a
notion of height on the symmetric domain which will finally contribute to the local
height pairing at an archimedean place. We will also prove some important proper-
ties of this height. A basic reference for archimedean Green’s currents and height
pairing is [Soulé 1992, Chapter II].

Green’s functions. We still let m ≥ 2 be an integer and V ′ the complex hermitian
space of signature (m − 1, 1). We identify V ′ with Cm equipped with the her-
mitian form (z, z′) = z1 z̄′1 + · · · + zm−1 z̄′m−1 − zm z̄′m for z = (z1, . . . , zm) and
z′ = (z′1, . . . , z′m) in Cm . The hermitian domain D of U(V ′)∼= U(n− 1, 1) can be
identified with the (m− 1)-dimensional complex open unit disc Dm−1 through

z = [z1 : · · · : zm] ∈ D 7→

(
z1

zm
, . . . ,

zm−1

zm

)
∈ Dm−1

and we will not distinguish them anymore. Given any x 6= 0 ∈ V ′r (1≤ r ≤m−1)
with nonsingular moment matrix T (x), let Dx be the subspace of Dm−1 consisting
of lines perpendicular to all components in x which is nonempty if and only if
T (x) is positive definite. Now suppose r = 1, for z ∈ Dm−1, and let x = xz + x z

be the orthogonal decomposition with respect to the line z, that is, xz ∈ z and
x z
⊥ z. Let R(x, z) = −(xz, xz) which is nonnegative since z is negative definite

and R(x, z)= 0 if and only if x = 0 or z ∈ Dx . Explicitly, let x = (x1, . . . , xm)∈ V ′

and z = (z1, . . . , zm−1) ∈ Dm−1; then

R(x, z)=
(x1 z̄1+ · · ·+ xm−1 z̄m−1− xm)(x̄1z1+ · · ·+ x̄m−1zm−1− x̄m)

1− zz̄
,
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where we recall that zz̄ = z1 z̄1+ · · ·+ zm−1 z̄m−1. We define

ξ(x, z)=−Ei(−2πR(x, z)).

For each x 6=0∈V ′, ξ(x, · ) is a smooth function on Dm−1−Dx and has logarithmic
growth along Dx if not empty. Hence we can view it as a current [ξ(x, · )] on D. On
the other hand, we recall the Kudla–Millson form ϕ ∈ [S(V ′r )⊗ Ar,r (Dm−1)]

U(V ′)

(1 ≤ r ≤ m − 1) constructed in [Kudla and Millson 1986] and let ω(x, · ) =
e2π tr T (x)ϕ(x, · ). Then we have

Proposition 4.9. Let x 6= 0 ∈ V ′, as currents; we have

ddc
[ξ(x)] + δDx = [ω(x)].

Proof. We will only give a proof for m = 2 since the proof for general m is similar
but involves tedious computations.

First, we prove that ddcξ(x)= ω(x) holds away from Dx . Let x = (x1, x2) and
z ∈ D1− Dx . Sometimes we simply write R for R(x). We have the formula

ddcξ(x)= 1
2π i

{e−2πR

R2 (R∂∂̄R− ∂R ∧ ∂̄R)− 2π e−2πR

R
∂R ∧ ∂̄R

}
. (4-27)

Computing each term, we have

R(x, z)=
(x1 z̄− x2)(x̄1z− x̄2)

1− zz̄
,

∂̄R =
x1(x̄1z− x̄2)(1− zz̄)+ (x1 z̄− x2)(x̄1z− x̄2)z

(1− zz̄)2
dz̄,

∂R =
x̄1(x1 z̄− x2)(1− zz̄)+ (x1 z̄− x2)(x̄1z− x̄2)z̄

(1− zz̄)2
dz,

∂∂̄R =
(

x1 x̄1

1− zz̄
+

x1 z̄(x̄1z− x̄2)+ (x1 z̄− x2)(2x̄1z− x̄2)+ 2Rzz̄
(1− zz̄)2

)
dz ∧ dz̄,

∂R ∧ ∂̄R =
(

x1 x̄1 R
1− zz̄

+
x̄1z(x1 z̄− x2)R+ x1 z̄(x̄1z− x̄2)R+ R2zz̄

(1− zz̄)2

)
dz ∧ dz̄.

Hence,

R∂∂̄R−∂R∧∂̄R=
(
(x1 z̄−x2)(x̄1z−x̄2)R

(1−zz̄)2
−

R2zz̄
(1−zz̄)2

)
dz∧dz̄=R2 dz∧ dz̄

(1−zz̄)2
(4-28)
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and

∂R ∧ ∂̄R = (x1 x̄1(1−zz̄)+ x̄1z(x1 z̄−x2)+x1 z̄(x̄1z−x̄2)+Rzz̄)
R dz∧dz̄
(1−zz̄)2

= (x1 x̄1+ x̄1zx2+ x1 z̄ x̄2+ x1 x̄1zz̄)
R dz ∧ dz̄
(1− zz̄)2

= ((x, x)+ (x̄1z− x̄2)(x1 z̄− x2)+ Rzz̄)
R dz ∧ dz̄
(1− zz̄)2

= (R(x, z)+ (x, x))
R dz ∧ dz̄
(1− zz̄)2

.

(4-29)

Plugging in (4-28) and (4-29), we have

(4-27)=
(
1− 2π(R(x, z)+ (x, x))

)
e−2πR(x,z) dz ∧ dz̄

2π i(1− zz̄)2
= ω(x, z).

The rest is the same as the proof of Proposition 11.1 of [Kudla 1997], from Lemma
11.2 on page 606. We omit it. �

The proposition says that ξ(x) is a Green’s function of logarithmic type for Dx .
Now we consider x = (x1, . . . , xr ) ∈ V ′r with nonsingular moment matrix T (x).
Then using the star product of the Green’s current, we have a Green’s current
4x := [ξ(x1)] ∗ · · · ∗ [ξ(xr )] for Dx and as currents of degree (r, r) and

ddc([ξ(x1)] ∗ · · · ∗ [ξ(xr )])+ δDx = [ω(x1)∧ · · · ∧ω(xr )] = [ω(x)].

A height function. For x = (x1, . . . , xm) ∈ V ′m with nonsingular moment matrix
T (x), we define the height function

H(x)∞ := 〈1, 4x 〉 = 〈1, [ξ(x1)] ∗ · · · ∗ [ξ(xm)]〉.

Since ξ(hx, hz) = ξ(x, z) for h ∈ U(V ′), the height function satisfies H(hx)∞ =
H(x)∞ and thus only depends on the (nonsingular) moment matrix T (x). We
sometimes simply write H(T )∞ for this function. Our main result is this:

Proposition 4.10 (invariance under U(m)). The height function H(T )∞ only de-
pends on the eigenvalues of T , that is, for any k ∈ U(m), H(kT k∗)∞ = H(T )∞.

Proof. We prove this by induction on m. We will treat the case m = 2 in the next
subsection. Now suppose m ≥ 3 and the proposition holds for m− 1. Since U(m)
is generated by the elements(

k ′

1

)
, k ′ ∈ U(m− 1)

and elements of the form k= (ki, j )
m
i, j=1 with entries ki,σ (i) ∈U(1) and zero for oth-

ers for some σ ∈ Sm . We only need to prove that H((x ′k ′, xm))∞ = H((x ′, xm))∞
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where x = (x ′, xm) ∈ V ′m−1
⊕ V ′ = V ′m with T (x)= T . By definition,

H((x ′, xm))∞=
〈
1, [ξ(x1)]∗ . . .∗[ξ(xm−1)]

∣∣
Dxm

〉
+

∫
Dm−1

ω(x1)∧ . . .∧ω(xm−1)∧ξ(xm)

=H(x ′)∞+
∫

Dm−1

ω(x ′)∧ ξ(xm).

By induction, H(x ′k ′)∞ = H(x ′)∞. Moreover, ω(x ′) = ω(x ′k ′), by [Kudla and
Millson 1986, Theorem 3.2(ii)]. Hence H((x ′k ′, xm))∞ = H((x ′, xm))∞. �

Invariance under U(2): A calculus exercise. Now we consider the case m = 2.
Suppose

T =
(

d1 m
m̄ d2

)
, d1, d2 ∈ R.

Choose a complex number ε with norm 1 such that ε2m ∈ R. Then(
ε

ε−1

)(
d1 m
m̄ d2

)(
ε

ε−1

)∗
=

(
d1 ε2m
ε2m d2

)
∈ Sym2(R).

Now we write the elements of SO(2) in the form

kθ :=
(

cos θ sin θ
−sin θ cos θ

)
, θ ∈ R

and write T [θ ] = kθT k∗θ . Since ξ(εx)= ξ(x) for any x ∈ V ′, we have reduced the
problem to proving this:

Proposition 4.11. For any T ∈ Sym2(R), we have H(T [θ ])∞ = H(T )∞.

Proof. The proof is similar to that in [Kudla 1997, Section 13]. Here is the idea.
We construct a differentiable map

α : R× D1→ Her2(C)
det=0

and a 2-form 4 on the latter space such that the integration of α∗θ1
(4)−α∗θ0

(4) on
D1 calculates the difference H(T [θ1])∞− H(T [θ0])∞, where αθ = α(θ, · ). Then
we try to apply Stokes’ theorem. The difficulty is that α∗(4) has singularities
along the real axis, hence a limit process should be taken to get the correct result.
The difference between our proof and Kudla’s is that we have different symmetric
domains. Although they are conformal to each other, we need to take different
2-forms and limits of the integration domains.

Suppose that T = diag[a,−b] with a, b > 0. Let

T [θ ] =
(

d1,θ mθ

mθ d2,θ

)
∈ Sym2(R)
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and let x0 = (
√

2a, 0) ∈ V ′, y0 = (0,
√

2b) ∈ V ′. For θ ∈ R, let

xθ = x0kθ = (x1,θ , x2,θ )= cos θ · x0− sin θ · y0,

yθ = y0kθ = (y1,θ , y2,θ )= sin θ · x0+ cos θ · y0.

We have dxθ/dθ =−yθ , dyθ/dθ = xθ , and H(T [θ ])∞= H((xθ , yθ ))∞. Let zx,θ =

x2,θ/x1,θ and zy,θ = y2,θ/y1,θ ). Then Dxθ = [zx,θ , 1] and Dyθ = [zy,θ , 1], if not
empty. We make the convention that if |z| ≥ 1, then f (z) is 0 for any function f .

Lemma 4.12 [Kudla 1997, Lemma 11.4]. We have

H((xθ , yθ ))∞ = ξ(xθ , zy,θ )+

∫
D1

ξ(yθ )ω(xθ )

= ξ(yθ , zx,θ )+

∫
D1

ξ(xθ )ω(yθ )

= ξ(xθ , zy,θ )+ ξ(yθ , zx,θ )−

∫
D1

dξ(xθ )∧ dcξ(yθ ).

We now write x = (x1, x2) ∈ V ′, y = (y1, y2) ∈ V ′ and R1 = R(x), R2 = R(y)
and consider the following integral in general:

I (T )= I ((x, y)) := −
∫

D1

dξ(x)∧ dcξ(y)

=−
1

4π i

∫
D1

(∂ + ∂̄)ξ(x)∧ (∂ − ∂̄)ξ(y)

=−
i

4π

∫
D1

∂ξ(x)∧ ∂̄ξ(y)+ ∂ξ(y)∧ ∂̄ξ(x)

=−
i

4π

∫
D1

e−2π(R1+R2)

R1 R2
(∂R1 ∧ ∂̄R2+ ∂R2 ∧ ∂̄R1).

For z ∈ D1, letting x(z) = (1− zz̄)−1/2(z, 1) ∈ V ′ and M = (x, x(z))(y, x(z)),
we have

Lemma 4.13. Let 2m = (x, y). Then

∂R1 ∧ ∂̄R2+ ∂R2 ∧ ∂̄R1 = 2(R1 R2+ m̄M +m M)
dz ∧ dz̄
(1− zz̄)2

,

∂R1 ∧ ∂̄R2− ∂R2 ∧ ∂̄R1 = 2(m̄M −mM)
dz ∧ dz̄
(1− zz̄)2

.

Proof. By definition,

R1 =
(x1 z̄− x2)(x̄1z− x̄2)

1− zz̄
.

Hence,

∂R1 =
(x1 z̄− x2)x̄1+ z̄ R1

1− zz̄
dz
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and similarly for ∂R2, ∂̄R1, and ∂̄R2. We compute

∂R1 ∧ ∂̄R2

= {(x1z̄−x2)(ȳ1z− ȳ2)x̄1y1+(ȳ1z− ȳ2)y1z̄ R1+(x1z̄−x2)x̄1z R2+zz̄ R1R2}
dz∧dz̄
(1−zz̄)2

= {(x1 z̄−x2)(ȳ1z− ȳ2)x̄1 y1+(ȳ1z− ȳ2)y2 R1+(x1 z̄−x2)x̄1z R2+R1 R2}
dz∧dz̄
(1−zz̄)2

=

{
(x1 z̄−x2)(ȳ1z− ȳ2)

(
x̄1 y1+

y2(x̄1z−x̄2)

1−zz̄

)
+(x1 z̄−x2)x̄1z R2+R1 R2

}
dz∧dz̄
(1−zz̄)2

=

{
(x1 z̄−x2)(ȳ1z− ȳ2)

x̄1 y1−x̄2 y2−x̄1z(y1 z̄−y2)

1−zz̄
H(x1 z̄−x2)x̄1z R2+R1 R2

}
×

dz∧dz̄
(1−zz̄)2

= (2m̄M+R1 R2)
dz∧dz̄
(1−zz̄)2

.

The lemma follows from a similar calculation for ∂R2 ∧ ∂̄R1. �

We define a morphism α :R×D1−→Her2(C)
det=0 between two 3-dimensional

real analytic spaces where

α(θ, z)=
(

R1 M
M R2

)
=

(
(xθ , x(z))(xθ , x(z)) (xθ , x(z))(yθ , x(z))

(xθ , x(z))(yθ , x(z)) (yθ , x(z))(yθ , x(z))

)
and αθ := α(θ, · ). By an easy computation, we see that

d R1

dθ
=−(M +M),

d R2

dθ
= M +M, d M

dθ
= R1+ R2. (4-30)

Hence R1+ R2 and M −M , which are the values at θ = 0, are independent of θ :

R1+ R2 =
2azz̄+2b

1−zz̄
=−2a+

2(a+ b)
1− zz̄

, M −M =
2
√

ab(z− z̄)
1− zz̄

. (4-31)

By Lemma 4.13 and the fact that 2mθ = (xθ , yθ ) ∈ R, we have

I (T [θ ])=− i
2π

∫
D1

e−2π(R1+R2)

R1 R2
(R1 R2+m(M +M))

dz ∧ dz̄
(1− zz̄)2

=

(
−

i
2π

∫
D1

e−2π(R1+R2)
dz ∧ dz̄
(1− zz̄)2

)
+

(
−

i
2π

∫
D1

e−2π(R1+R2)

R1 R2
m(M +M)

dz ∧ dz̄
(1− zz̄)2

)
=: I ′(T [θ ])+ I ′′(T [θ ]). (4-32)
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By (4-31), the integral I ′(T [θ ]) is independent of θ ; hence we now only consider
the second one, I ′′(T [θ ]). We define a differential form of degree two on (the
smooth locus of) Her2(C)

det=0:

4=−
i

4π
e−2π(R1+R2)

R1 R2

M +M

M −M
d R1 ∧ d R2

which has singularities along R1 R2(M −M)= 0.

Lemma 4.14. (1) For a fixed θ ∈ R,

α∗θ (4)=−
i

2π
e−2π(R1+R2)

R1 R2
m(M +M)

dz ∧ dz̄
(1− zz̄)2

;

(2) On Her2(C)
det=0, we have

d4= i
π

e−2π(R1+R2)

(M −M)2(M +M)
d(M −M)∧ d R1 ∧ d R2.

Proof. (1) follows from Lemma 4.13. For (2), by the relation

(M +M)2− (M −M)2 = 4R1 R2,

we have
d

d(M −M)

M +M

M −M
=−

4R1 R2

(M −M)2(M +M)
. �

Let D+1 = {z ∈ D1 | =(z) ≥ 0}. Since α∗θ (4)/dz ∧ dz̄ is invariant under z 7→ z̄,
by (4-32) and Lemmas 4.12 and 4.14(1), we have

H(T [θ1])∞− H(T [θ0])∞

= ξ(xθ1, zy,θ1)+ξ(yθ1, zx,θ1)−ξ(xθ0, zy,θ0)−ξ(yθ0, zx,θ0)+ I (T [θ ])− I (T [θ0])

= ξ(xθ1, zy,θ1)+ξ(yθ1, zx,θ1)−ξ(xθ0, zy,θ0)−ξ(yθ0, zx,θ0)+ I ′′(T [θ ])− I ′′(T [θ0])

= ξ(xθ1, zy,θ1)+ξ(yθ1, zx,θ1)−ξ(xθ0, zy,θ0)−ξ(yθ0, zx,θ0)+

∫
D1

α∗θ1
(4)−

∫
D1

α∗θ0
(4)

= ξ(xθ1, zy,θ1)+ξ(yθ1, zx,θ1)−ξ(xθ0, zy,θ0)−ξ(yθ0, zx,θ0)

+2
∫

D+1

α∗θ1
(4)−2

∫
D+1

α∗θ0
(4). (4-33)

We see that the form α∗θ (4) has (possible) singularities when R1 R2 = 0, that is,
the (possible) points zx,θ , zy,θ . An easy calculation shows that

zx,θ =
x2,θ

x1,θ
=− tan θ ·

√
b
a
∈ R, zy,θ =

y2,θ

y1,θ
= cot θ ·

√
b
a
∈ R.
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Now we assume that [θ0, θ1] ⊂ (0, π/2). Then 0 will not be a singular point for
θ ∈ [θ0, θ1]. Our goal is to calculate the value∫

D+1

α∗θ0
(4)−

∫
D+1

α∗θ1
(4).

For any ε > 0 small enough, let B1,ε be the (oriented) path {z = reiε
| r ∈ [0, 1)}

from r = 0 to r = 1, B2,ε the path {z= rei(π−ε)
| r ∈ [0, 1)} from r = 1 to r = 0, and

Dε ⊂ D+1 the area containing points on or above the lines B1,ε and B2,ε . By our
assumption, α∗θ (4) is nonsingular on Dε for any θ ∈ [θ0, θ1]. By Stokes’ theorem
and the fact that e−2π(R1+R2) decays rapidly as |z| goes to 1, we have∫
[θ0,θ1]×Dε

α∗(d4)=
∫

Dε

α∗θ1
(4)−

∫
Dε

α∗θ0
(4)+

∫
[θ0,θ1]×(B2,ε+B1,ε)

α∗(4). (4-34)

Lemma 4.15.
∫
[θ0,θ1]×Dε

α∗(d4)= 0.

Proof. By (4-30) and (4-31), we have

d R1 = ∂R1+ ∂̄R1− (M +M) dθ,

d R2 = ∂R2+ ∂̄R2+ (M +M) dθ,

d(M −M)= 2
√

ab
(
∂

z− z̄
1− zz̄

+ ∂̄
z− z̄

1− zz̄

)
.

Hence

α∗(d(M −M)∧ d R1 ∧ d R2)

= 2
√

ab(M +M)
(
∂

z− z̄
1− zz̄

∧ ∂̄(R1+ R2)− ∂(R1+ R2)∧ ∂̄
z− z̄

1− zz̄

)
= 4
√

ab(a+ b)(M +M)
(
∂

z− z̄
1− zz̄

∧ ∂̄
1

1− zz̄
− ∂

1
1− zz̄

∧ ∂̄
z− z̄

1− zz̄

)
and by Lemma 4.14(2),

α∗(d4)=
4i
√

ab(a+ b)
π

e−2π(R1+R2)

(M −M)2

(
∂

z− z̄
1−zz̄

∧ ∂̄
1

1−zz̄
− ∂

1
1−zz̄

∧ ∂̄
z− z̄
1−zz̄

)
=

4i
√

ab(a+ b)
π

e−2π(R1+R2)

(M −M)2
z+ z̄

(1−zz̄)3
dz ∧ dz̄.

Since z 7→ −z̄ keeps the domain [θ0, θ1] × Dε and maps α∗(d4)/dz ∧ dz̄ to its
negative, the integral is zero. �



Arithmetic theta lifting and L-derivatives for unitary groups, I 903

Hence by (4-34),∫
D+1

α∗θ0
(4)−

∫
D+1

α∗θ1
(4)= lim

ε→0

∫
Dε

α∗θ0
(4)− lim

ε→0

∫
Dε

α∗θ1
(4)

= lim
ε→0

∫
[θ0,θ1]×(B1,ε+B2,ε)

α∗(4). (4-35)

A simple computation shows that on [θ0, θ1]× (B2,ε + B1,ε),

α∗(4)=
−i(a+ b)

π

e−2π(R1+R2)

R1 R2

(M +M)2

M −M

r
(1− r2)2

dr ∧ dθ

=
−i(a+ b)

π

e−2π(R1+R2)(M −M)
R1 R2

r
(1− r2)2

dr ∧ dθ

+
−4i(a+ b)

π

e−2π(R1+R2)

M −M

r
(1− r2)2

dr ∧ dθ.

Since the integrations of the second form on the two paths cancel each other, we
have

(4-35)=
∫ θ1

θ0

dθ ·
−i(a+b)

π
lim
ε→0

∫
B1,ε+B2,ε

e−2π(R1+R2)(M−M)
R1 R2

r
(1−r2)2

dr

=

∫ θ1

θ0

dθ ·
4
√

ab(a+b)
π

lim
ε→0

sin ε
∫

B1,ε+B2,ε

e−2π(R1+R2)

R1 R2

r2

(1−r2)3
dr.

(4-36)
To proceed, we need the following lemma.

Lemma 4.16. Let f (r) be a C∞-function on [0, 1) which is rapidly decreasing as
r→ 1. Then for any c1, c2, d1, d2 > 0,

lim
ε→0+

∫ 1

0

sin ε
(c2

1r2+ c2
2− 2c1c2r cos ε)(d2

1r2+ d2
2 + 2d1d2r cos ε)

f (r) dr

=


πc1

c2(c1d2+ c2d1)2
f
(c2

c1

)
, c1 > c2,

0, c1 ≤ c2.

Proof. The case c1≤ c2 follows from the fact that f is rapidly decreasing. To prove
the first case, we only need to prove that

lim
ε→0+

∫ 1

0

sin ε
c2

1r2+ c2
2− 2c1c2r cos ε

dr = π

c1c2
. (4-37)
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The integral of the left-hand side of (4-37) (for small ε > 0) equals

sin ε
∫ 1

0

1
(c1r − c2 cos ε)2+ c2

2(1− cos ε)

=
sin ε

c1c2
√

1− cos ε

∫ c1−c2 cos ε
c2
√

1−cos ε

−
cos ε
√

1−cos ε

1(c1r−c2 cos ε
c2
√

1−cos ε

)2
+ 1

d
c1r − c2 cos ε

c2
√

1− cos ε

=
sin ε

c1c2
√

1− cos ε

(
arctan

c1r − c2 cos ε

c2
√

1− cos ε
+ arctan

cos ε
√

1− cos ε

)
.

Let ε→ 0+, and the limit is π/c1c2. �

Applying the lemma, we have

(4-36)=
∫ θ1

θ0

√
ab(a+b)

(
e−2πR1(zy,θ )

R1(zy,θ )

y1,θ y2,θ

d2
2,θ
+

e−2πR2(zx,θ )

R2(zx,θ )

x1,θ x2,θ

d2
1,θ

)
dθ.

(4-38)
But

d R1(zy,θ )

dθ
=

d
dθ
(R1(zy,θ )+ R2(zy,θ ))=

4(a+ b)r
(1− r2)2

∣∣∣∣
r=y2,θ/y1,θ

·
d

dθ

(
y2,θ

y1,θ

)
= 2
√

ab(a+ b)
y1,θ y2,θ

d2
2,θ

,

d R2(zx,θ )

dθ
= 2
√

ab(a+ b)
x1,θ x2,θ

d2
1,θ

.

Hence

(4-38)= 1
2

(∫ R1(zy,θ1 )

R1(zy,θ0 )

e−2πR1(zy,θ )

R1(zy,θ )
d R1(zy,θ )+

∫ R2(zx,θ1 )

R2(zx,θ0 )

e−2πR2(zx,θ )

R2(zx,θ )
d R2(zx,θ )

)
=

1
2
(ξ(xθ1, zy,θ1)+ ξ(yθ1, zx,θ1)− ξ(xθ0, zy,θ0)− ξ(yθ0, zx,θ0))

which, by (4-33), implies that

H(T [θ1])∞− H(T [θ0])∞ = 0

for [θ0, θ1] ∈ (0, π/2). The same argument works for other intervals and the con-
stancy of H(T [θ ])∞ for all θ ∈ R follows from the continuity. This finishes the
proof of Proposition 4.11. �

4C. An arithmetic local Siegel–Weil formula. In this section, we will find a re-
lation between derivatives of Whittaker functions and the height functions defined
above. Further, we will prove a local arithmetic analogue of the Siegel–Weil for-
mula at an archimedean place for general dimensions.
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Comparison on the hermitian domain. We are going to prove a relation between
W ′T (0, e,80) and H(T )∞. Now suppose T ∼ diag[a1, . . . , am−1,−b] which is
hermitian of signature (m − 1, 1). By Proposition 4.10, H(T )∞ only depends on
a1, . . . , am−1, b. Hence, if we let x j = (. . . ,

√
2a j , . . . ) ∈ Cm ∼= V ′ with the j-th

entry
√

2a j and all others zero for j = 1, . . . ,m − 1 and xm = (0, . . . , 0,
√

2b),
then H(T )∞ = H((x1, . . . , xm))∞. Since (xm, xm) < 0, we have Dxm =∅ and

H(T )∞ =
∫

Dm−1

ω(x1)∧ · · · ∧ω(xm−1)∧ ξ(xm).

Our main result is the following local arithmetic Siegel–Weil formula at an archi-
medean place:

Theorem 4.17. For T ∈ Herm(C) of signature (m− 1, 1), we have

W ′T (0, e,80)= γV
(2π)m

2

0m(m)
e−2π tr T H(T )∞.

Proof. By the above discussion, we can assume T = diag[a1, . . . , am−1,−b] and,
by Proposition 4.8, we need to prove that

(2π i)m−1
∫

Dm−1

ω(x1)∧· · ·∧ω(xm−1)∧ξ(xm)=

∫
Dm−1

e−4π(a1w1w̄1+···+am−1wm−1w̄m−1)

×

∑
1≤s1<···<st≤m−1

(−4π)t(m− 1− t)!(as1 · · · ast )(1+ws1w̄s1 + · · ·+wst w̄st )

× (−Ei)(−4πb(1+w∗w))(1− zz̄)−m�. (4-39)

By definition and (4-24), we have

R j (z) := R(x j , z)=
2a j z j z̄ j

1− zz̄
= 2a jw j w̄ j , j = 1, . . . ,m− 1,

Rm(z) := R(xm, z)= −2b
1−zz̄

=−2b(1+w∗w).

Hence ξ(xm)=−Ei(−4πb(1+w∗w)). Now we need an explicit formula for ω(x j ).
By (4-27), we need to calculate ∂̄R j , ∂R j , and ∂∂̄R j for j = 1, . . . ,m − 1. We
have

(1− zz̄)R j = 2a j z j z̄ j

H⇒ ∂̄(1− zz̄)R j + (1− zz̄)∂̄R j = 2a j z j dz̄ j , (4-40)

H⇒ ∂̄R j =
2a j z j dz̄ j + R j ∂̄(zz̄)

1− zz̄
. (4-41)

Similarly,

∂R j =
2a j z̄ j dz j + R j∂(zz̄)

1− zz̄
. (4-42)
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Differentiating (4-40) again and plugging in (4-41) and (4-42), we have

∂∂̄(1− zz̄)R j + ∂R j ∂̄(1− zz̄)+ ∂(1− zz̄)∂̄R j + (1− zz̄)∂∂̄R j = 2a j dz j dz̄ j

which implies that

R j =
1

(1− zz̄)2
(
2a j (1− zz̄) dz j dz̄ j + 2a j z̄ j dz j ∂̄(zz̄)+ 2a j z j∂(zz̄) dz̄ j

+ 2R j∂(zz̄)∂̄(zz̄)+ R j (1− zz̄)∂∂̄(zz̄)
)
. (4-43)

Taking the wedge of (4-41) and (4-42), we have

∂R j ∧ ∂̄R j

=
4a2

j z j z̄ j dz j dz̄ j+2a j R j z̄ j dz j ∂̄(zz̄)+2a j R j z j∂(zz̄)dz̄ j+R2
j∂(zz̄)∂̄(zz̄)

(1− zz̄)2
. (4-44)

Combining (4-43) and (4-44), we have

1
R2

j
(R j∂∂̄R j − ∂R j ∧ ∂̄R j )=

∂(zz̄)∂̄(zz̄)
(1− zz̄)2

+
∂∂̄(zz̄)
1− zz̄

. (4-45)

For simplicity, we make some substitutions. Let

ω = ∂(zz̄)∂̄(zz̄)+ (1− zz̄)∂∂̄(zz̄),

ω j = (1− zz̄)z̄ j dz j dz̄ j + z̄ j dz j ∂̄(zz̄)+ z j∂(zz̄)dz̄ j

+w j w̄ j∂(zz̄)∂̄(zz̄), j = 1, . . . ,m− 1.

Then 2π iω(x j )=−∂∂̄ξ(x j )= e−4πa jw j w̄ j (ω−4πa jω j )(1− zz̄)2. Hence to prove
(4-39), we only need to prove the following equality between (m−1,m−1)-forms
on Dm−1:

m−1∧
j=1

(ω− 4πa jω j )

=

∑
s1<···<st

(−4π)t(m− 1− t)!(as1 · · · ast )(1+ws1w̄s1 + · · ·+wst w̄st )(1− zz̄)m−2�

which follows from the claim that for any subset {s1 < · · ·< st } ⊂ {1, . . . ,m−1},
we have

ωs1 ∧ · · · ∧ωst ∧ω
m−1−t

= (m− 1− t)!(1+ws1w̄s1 + · · ·+wst w̄st )(1− zz̄)m−2�. (4-46)

This will be proved in the next lemma where, without loss of generality, we assume
that s j = j . The theorem follows. �
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Lemma 4.18. Let w j , �, ω, and ω j be as above; for any integer 0 ≤ t ≤ m − 1,
we have the following equality between (m− 1,m− 1)-forms:( t∧

j=1

ω j

)
∧ωm−1−t

= (m− 1− t)!
(

1+
t∑

j=1

w j w̄ j

)
(1− zz̄)m−2�.

Proof. For j = 1, . . . ,m− 1, we let

σ j = z̄ j dz j ∂̄(zz̄), σ ′j = z j∂(zz̄) dz̄ j , δ j = (1− zz̄) dz j dz̄ j .

Then
m−1∑
k=1

σk =

m−1∑
k=1

σ ′k, ω =

m−1∑
k=1

(σk + δk), ω j = δ j + σ j + σ
′

j +w j w̄ j

m−1∑
k=1

σk,

and
σ j ∧ σ j = 0, σ ′j ∧ σ

′

j = 0, δ j ∧ δ j = 0.

We introduce the (m− 1)× (m− 1) matrix

Z =


z̄1z1 z̄2z1 · · · z̄m−1z1

z̄1z2 z̄2z2 · · · z̄m−1z2
...

...
. . .

...

z̄1zm−1 z̄2zm−1 · · · z̄m−1zm−1


and recall the notation Z J,K (see the proof of Lemma 4.7) for subsets J, K ⊂
{1, . . . ,m − 1} with |J | = |K |. It is easy to see that |Z J,K | 6= 0 only if |J | ≤ 1
where |Z{ j},{k}| = z̄ j zk and |Z∅,∅| = 1.

Now we consider three subsets I, J, K ⊂ {1, . . . ,m−1} with |I |+ |J |+ |K | =
m− 1. Writing

σI =
∧
i∈I

σi

and similarly for σ ′J and δK , we have the following equalities

σIσ
′

J δK :=σI∧σ
′

J∧δK=

{
εI,J,K |Z I,J∪K ||Z I∪K ,J |(1− zz̄)|K |�, (I ∪ J )∩ K=∅,
0, (I ∪ J )∩ K 6=∅,

where εI,J,K ∈ {±1} is a factor only depending on I, J, K . This is not zero only if
|I | ≤ 1 and |J | ≤ 1. Explicitly,

σIσ
′

J δK =


z̄i zi z̄ j z j (1− zz̄)m−3�, i 6= j, I = {i}, J = { j}, K = I ∪ J ,

−z̄i z j z̄ j zi (1− zz̄)m−3�, i 6= j, I = J = {i}, K = I ∪ { j},

z̄i zi (1− zz̄)m−2�, I ∪ J = {i}, K = {i},

(1− zz̄)m−1�, I = J =∅, K = {1, . . . ,m− 1}.
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Now we compute( t∧
j=1

ω j

)
∧ωm−1−t

=

t∧
j=1

(
δ j + σ j + σ

′

j +w j w̄ j

m−1∑
k=1

σk

)
∧

(m−1∑
k=1

σk +

m−1∑
k=1

δk

)m−1−t

=

( ∑
LtMtNtP={1,...,t}

δLσMσ
′

NwPw̄P

(m−1∑
k=1

σk

)|P|)

×

( ∑
Q⊂1,...,m−1
|Q|≤m−1−t

(m− 1− t)!
(m− 1− t − |Q|)!

(m−1∑
k=1

σk

)m−1−t−|Q|

δQ

)

=

∑
L ,M,N ,P,Q

(m−1−t)!
(m−1−t−|Q|)!

δL∪QσMσ
′

NwPw̄P

(m−1∑
k=1

σk

)|P|+m−1−t−|Q|

=:

∑
L ,M,N ,P,Q

TL ,M,N ,P,Q, (4-47)

where wP =
∏

p∈P wp and similarly for w̄P . We now classify and calculate all
the terms TL ,M,N ,P,Q which are not zero. It is easy to see that |Q| ≥ m − 2− t if
TL ,M,N ,P,Q 6= 0. We now list all cases where TL ,M,N ,P,Q may not be zero.

Case I: |Q| = m− 1− t . Then |P| ≤ 1:

Case I-1: |P| = 0. Then Q = {t + 1, . . . ,m− 1} and |M | ≤ 1, |N | ≤ 1:

Case I-1a: M = {m} and N = {n} for m 6= n ∈ {1, . . . , t}. Then the sum
of corresponding terms is

∑
TL ,M,N ,P,Q = (m− 1− t)!

t∑
m,n=1
m 6=n

zm z̄mzn z̄n(1− zz̄)m−3�. (4-48)

Case I-1b: M ∪N = {m} for 1≤m ≤ t . Then the sum of corresponding
terms is∑

TL ,M,N ,P,Q = 2(m− 1− t)!
t∑

m=1

zm z̄m(1− zz̄)m−2�. (4-49)

Case I-1c: M = N =∅. The corresponding term is

TL ,M,N ,P,Q = T{1,...,t},∅,∅,∅,{t+1,...,m−1} = (m− 1− t)!(1− zz̄)m−1�. (4-50)
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Case I-2: |P| = 1. Then M = N = ∅. Suppose P = {p} for 1 ≤ p ≤ t .
Then Q = {p, t + 1, . . . ,m− 1}− {q} for some q inside. The sum of the
corresponding terms is∑

TL ,M,N ,P,Q= (m−1−t)!
t∑

p=1

wpw̄p

(
z p z̄ p+

m−1∑
q=t+1

zq z̄q

)
(1−zz̄)m−2�. (4-51)

Case II: |Q|=m−2−t . Then M=N = P=∅ and |Q|={t+1, . . . ,m−1}−{q}
for some q inside. The sum of the corresponding terms is

∑
TL ,M,N ,P,Q = (m− 1− t)!

m−1∑
q=t+1

zq z̄q(1− zz̄)m−2�. (4-52)

Taking the sum from (4-48) to (4-52), we have

(4-47)= (m− 1− t)!(1− zz̄)m−2�

{
t∑

p=1

wpw̄p

(
z p z̄ p +

m−1∑
q=t+1

zq z̄q

)

+

∑ t
m,n=1
m 6=n

zm z̄mzn z̄n

1− zz̄
+ 2

t∑
m=1

zm z̄m +

m−1∑
q=t+1

zq z̄q + (1− zz̄)

}

= (m− 1− t)!(1− zz̄)m−2�

{
1+

t∑
m=1

zm z̄m

+

∑t
m,n=1
m 6=n

zm z̄mzn z̄n +
∑t

p=1 z p z̄ p
(
z p z̄ p +

∑m−1
q=t+1 zq z̄q

)
1− zz̄

}

= (m− 1− t)!(1− zz̄)m−2�

∑t
m=1 zm z̄m

1− zz̄

= (m− 1− t)!(1+
t∑

j=1

w j w̄ j )(1− zz̄)m−2�.

This finishes the proof of the lemma. �

Remark 4.19. W. Zhang has proved Theorem 4.17 independently (unpublished)
using a similar method, assuming invariance under U(2) (Proposition 4.11).

Comparison on the Shimura variety. Now we use the previous results to compute
the archimedean local height pairing on the unitary Shimura varieties with respect
to suitable Green’s currents. Let n ≥ 1 be a positive integer. We recall the notation
for groups in Section 2B and the notation for Shimura varieties in Section 3A
with m = 2n and r = n. We let MK be the variety ShK (H) for simplicity. For
decomposable φi = φ

0
∞
φi, f with the Gaussian φ0

∞
at infinite places and φi, f ∈
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S(Vn
f )

K (i=1, 2) such that φ1,v⊗φ2,v ∈S(V2n
v )reg for some v∈6 f , the generating

series Zφ1(g1) and Zφ2(g2), defined by the Weil representation ωχ,ψ with standard
ψ∞, will not intersect on MK providing gi ∈ P ′vH ′(Av

F ). For any infinite place ι◦ ∈
6◦
∞

over ι∈6∞, we will attach a Green’s current 4φi (gi )ι◦ to Zφi (gi )∈CHn(MK )

and consider the local height pairing

vol(K )〈(Zφ1(g1),4φ1(g1)ι◦), (Zφ2(g2),4φ2(g2)ι◦)〉MK .

Our main theorem is the following:

Theorem 4.20. Let φi , gi (i = 1, 2) and ι◦, ι be as above. Then there is a unique
Haar measure on H(A f ) which only depends on ψ f such that

Eι(0, ı(g1, g∨2 ), φ1⊗φ2)=−2vol(K )〈(Zφ1(g1),4φ1(g1)ι◦), (Zφ2(g2),4φ2(g2)ι◦)〉MK

where Eι is given in (2-10) and vol(K ) is the volume of K determined by this
measure.

Proof. We can assume that K =
∏

Kv is decomposable and sufficiently small. To
do this, we consider the uniformization of MK at ι◦ and suppress the superscript
(ι) for the nearby objects such as H , D, and V . We have

(MK )
an
ι◦
∼= H(Q)\(D× H(A f )/K )=

∐
{h}

MK ,{h},

and MK ,{h} = 0{h}\D is a geometric connected component with 0{h} := H(Q)∩
hK h−1 viewed as a subgroup of H(Q), where {h} goes through the double cosets
H(Q)\H(A f )/K .

By our assumption on φi and gi , we may write the generating series in the
following way:

Zφi (gi )=
∑

Ti∈Her+n (E)

∑
hi∈HxTi

(A f )\H(A f )/K

ωχ (gi )φi (Ti , h−1
i xTi )Z(h

−1
i xTi )K

for i = 1, 2, where Her+n (E) is the set of totally positive-definite hermitian matrices
in Hern(E) and xTi ∈ V n is any element (if it exists) such that T (xTi ) = Ti since
H(Q) acts transitively on �T := {x ∈ V n

| T (x) = T } for T ∈ Her+n (E). By
definition,

Z(h−1
i xTi )K =

∑
h

ZxTi ,h,

where ZxTi ,h is a cycle in CHn(MK ,{h}) represented by the points (z, h)with z∈DxTi

and the sum takes over a set of representatives h in the double coset

HxTi
(Q)\HxTi

(A f )hi K/K .
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Then we have

Zφi (gi )=
∑

Ti∈Her+n (E)

∑
hi∈HxTi

(Q)\H(A f )/K

ωχ (gi )φi (Ti , h−1
i xTi )ZxTi ,hi .

Writing gi,ι=n(bi)m(ai)[ki,1, ki,2] for the Iwasawa decomposition as in Section 4A,
let4xi ai ,hi be the (n−1, n−1)Green’s current of Dxi ai on the hermitian symmetric
domain (D, h)⊂ D× H(A f )/K . We define a current

4φi (gi )ι◦ =
∑

xi

∑
hi∈H(Q)\H(A f )/K

ωχ (gi )φi (T (xi ), h−1
i xi )4xi ai ,hi

on D× H(A f )/K , where xi is taken over all elements in V n whose components
are linearly independent. It It projects to a current on H(Q)\D×H(A f )/K , which
is a Green’s current for Zφi (gi ). Then we have

〈(Zφ1(g1),4φ1(g1)ι◦), (Zφ2(g2),4φ2(g2)ι◦)〉MK

=

∑
x1,x2

∑
h∈H(Q)\H(A f )/K

ω′′χ (ı(g1, g∨2 ))φ1⊗φ2
(
T (x1)⊕T (x2), (h−1x1, h−1x2)

)
×

∫
H(Q)\(D×H(A f )/K )

4x1a1,h ∗4x2a2,h

=

∑
T

∑
h∈H(A f )/K

ω′′χ (ı(g1, g∨2 ))φ1⊗φ2(T, h−1xT )H(a∗T a)∞

=

∑
T

H(a∗T a)∞
∏
v∈6∞

ω′′χv (ı(g1,v, g∨2,v))8
0
v(T )

×

∏
v∈6 f

∑
hv∈Hv/Kv

ω′′χv (ı(g1,v, g∨2,v))φ1,v ⊗φ2,v(h−1
v xT ), (4-53)

where the sum is taken over all nonsingular T ∈Her2n(E) that are moment matrices
of some xT ∈ V 2n and a = a1⊕ a2 ∈ GL2n(C). We compute for each v.

Case I: v = ι, by (4-3) and Theorem 4.17 for the coefficient a∗T a, we have

H(a∗T a)∞ω′′χι(ı(g1,ι, g∨2,ι))8
0
ι (T )= γ

−1
Vι

02n(2n)
(2π)4n2 W ′T (0, ı(g1,ι, g∨2,ι),8

0
ι ).

Recalling the local Tate factors (2-4), we have

H(a∗T a)∞ω′′χι(ı(g1,ι, g∨2,ι))8
0
ι (T )= γ

−1
Vι

b2n,ι(0)W ′T (0, ı(g1,ι, g∨2,ι),8
0
ι ). (4-54)

Case II: v ∈6∞, v 6= ι. By (4-3) and Proposition 4.5(2), we have

ω′′χv (ı(g1,v, g∨2,v))8
0
v(T )= γ

−1
Vv

b2n,v(0)WT (0, ı(g1,v, g∨2,v),8
0
v). (4-55)

Case III: v ∈ 6 f . Recalling the set �T defined in Section 2E, it is easy to see
that �T 6=∅ is a single orbit of the left translation by Hv whose stabilizer at
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any point is trivial. Hence any Haar measure d ′hv on Hv induces a measure
d ′x on �T . We have∑

hv∈Hv/Kv

ω′′χv (ı(g1,v, g∨2,v))φ1,v ⊗φ2,v(h−1
v xT )

= vol′(Kv)
−1
∫

Hv
ω′′χv (ı(g1,v, g∨2,v))φ1,v ⊗φ2,v(h−1

v xT ) d ′hv,

where vol′(Kv) is the volume of Kv under the measure d ′hv. By [Rallis 1987,
Lemma 4.2], we can choose a unique measure d ′hv such that

WT (0, ı(g1,v, g∨2,v), φ1,v ⊗φ2,v)=WT
(
0, e, ω′′χv (ı(g1,v, g∨2,v))φ1,v ⊗φ2,v

)
= γVvb2n,v(0)−1

∫
Hv
ω′′χv (ı(g1,v, g∨2,v))φ1,v ⊗φ2,v(h−1

v xT ) d ′hv. (4-56)

By Lemma 2.9, for almost all v, we have vol′(Kv)= 1.

Now taking the product of (4-54), (4-55), and (4-56), we have

(4-53)=−b2n(0)vol′(K )−1 Eι(0, ı(g1, g∨2 ), φ1⊗φ2).

Now we take the modified measure (2b2n(0))−1∏
v∈6 f

d ′hv under which we have
the desired identity in Theorem 4.20. �

Appendix: Theta correspondence of spherical representations

In this appendix, we consider the theta correspondence of spherical representations
for unitary groups since we cannot find literature in this case. We follow [Rallis
1984] where the symplectic-orthogonal case was discussed.

Let F/Qp be a finite field extension with p 6=2 and E/F an unramified quadratic
field extension with Gal(E/F)= {1, τ }. Let OF (resp. OE ) be the ring of integers
of F (resp. E), $ a uniformizer of OF , and q the cardinality of OF/$OF . Let ψ
be the unramified additive character of F which determines an additive character
of E by composing with 1

2 TrE/F . Let dx be the Haar measure of E which is self-
dual with respect to ψ ◦ 1

2 TrE/F and d×x = dx/|x |E the Haar measure of E×,
normalized such that |$ |E = q−2.

Let n,m ≥ 1 be two integers and r = min{m, n}. Let (Wn, 〈 · , · 〉) be a skew
hermitian space over E whose skew hermitian form is given by(

1n

−1n

)
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under the basis {e1, . . . , en; e∗1, . . . , e∗n} and (Vm, ( · , · )) a hermitian space over E
whose hermitian form is given by (

1m

1m

)
under the basis { f1, . . . , fm; f ∗1 , . . . , f ∗m}. Let H ′n = U(Wn), Hm = U(Vm) and
K ′n = U(Wn) ∩ GL2n(OE), Km = U(Vm) ∩ GL2m(OE) be hyperspecial maximal
compact subgroups. We have a Weil representation ω = ω1,ψ of H ′n × Hm on the
space of Schwartz functions S(V n

m) defined as

• ω

((
A

t Aτ,−1

))
φ(x)= |det A|mEφ(x A),

• ω

((
1n B

1n

))
φ(x)= ψ(tr BT (x))φ(x),

• ω

((
1n

−1n

))
φ(x)= φ̂(x),

• ω(h)φ(x)= φ(h−1x),

where φ∈S(V n
m), A∈GLn(E), B∈Hern(E), h∈Hm , and φ̂ is the Fourier transform

with respect to ψ ◦ 1
2 TrE/F and dx .

Let W ∗n,i = spanE {e∗i+1, . . . , e∗n} for 0≤ i ≤ n and V ∗m, j = spanE { f ∗j+1, . . . , f ∗m}
for 0 ≤ j ≤ m. Then we have filtration of the maximal isotropic subspaces W ∗n,0
and V ∗m,0:

W ∗n,0 ⊃W ∗n,1 ⊃ · · · ⊃W ∗n,n = {0}, V ∗m,0 ⊃ V ∗m,1 ⊃ · · · ⊃ V ∗m,m = {0}.

Then, up to conjugacy, the maximal parabolic subgroups of H ′n×Hm are precisely
those subgroups P ′n,i× Pm, j consisting of elements (h′, h) stabilizing the subspace
W ∗n,i ⊗ V ∗m, j . Let N ′n,i × Nm, j be its unipotent radical. Also the Levi factor of
P ′n,i× Pm, j is isomorphic to (GLn−i (E)×H ′i )×(GLm− j (E)×H j ). We also define
the algebraic closed subsets 6t of V n

m for 0≤ t ≤ n to be

6t = {x = (x1, . . . , xn) ∈ V n
m | (xi , x j )= 0 for t + 1≤ j ≤ n}.

We say that a function φ ∈ S(V n
m) is spherical if it is invariant under the action of

K ′n × Km . Then we have

Lemma A.1. Let φ be a spherical function in S(V n
m) such that for any h′ ∈ H ′n ,

ω(h′)φ vanishes on the subset 60, then ω(h′)φ vanishes identically.

Proof. The proof follows exactly that of [Rallis 1984, Proposition 2.2]. �

Now we identify V n
m with Mat2m×n(E) via the basis { f1, . . . , fm; f ∗1 , . . . , f ∗m}.

Then as a GLn(E)× Hm-module, the action is given by (A, h).X = h X A−1. We
have the following version of [Rallis 1984, Lemma 3.1]:
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Lemma A.2. Let 6(i)0 = {X ∈ 60 | rank(X) = i}. Then 6(i)0 (if nonempty) is an
orbit under GLn(E)× Hm and 60 is a disjoint union of orbits of the form 6

(i)
0 for

i = 0, 1, . . . , r where 6(r)0 is the unique open one.

Let us review some facts about spherical representations of H ′n×Hm . Consider
the minimal parabolic subgroup B ′n × Bm,r of H ′n × Hm defined as follows. Let

B ′n =
{(

A
t Aτ,−1

)(
1n B

1n

) ∣∣∣∣ A is lower triangular and B is hermitian
}
,

which has a decomposition B ′n = T ′n ·U
′
n , with

T ′n = {diag[t1, . . . , tn, tτ,−1
1 , . . . , tτ,−1

n ] | ti ∈ E×}

and U ′n the unipotent radical of B ′n . Let

Bm,r =

{(
A

t Aτ,−1

)(
1m B

1m

) ∣∣∣∣ A =
(

A1 A2

A3

)}
,

where A1 ∈ Matr×r (E) is lower triangular, A3 ∈ Mat(m−r)×(m−r)(E) is upper tri-
angular, A2 ∈Matr×(m−r)(E), and B is skew-hermitian. We have a decomposition
Bm,r = Tm ·Um,r where Tm = T ′m and Um,r is the unipotent radical of Bm,r .

For ν = (ν1, . . . , νn) ∈ Cn , we define the space I ′(ν) consisting of all locally
constant functions ϕ : H ′n→ C satisfying

ϕ(h′ · t ′ · u′)= δ′−1/2
n (t ′)

n∏
i=1

|t ′i |
νi
E ϕ(h

′)

for all h′ ∈ H ′n , t ∈ T ′n and u′ ∈ U ′n where δ′n is the modulus function of B ′n . We
have δ′n(t

′) =
∏n

i=1|t
′

i |
2i−1
E . These I ′(ν) give all spherical principal series of H ′n .

Let S(H ′n//K ′n) be the spherical Hecke algebra of H ′n . Then we have the Fourier–
Satake isomorphism FS :S(H ′n//K ′n)→C[X1, X−1

1 , . . . , Xn, X−1
n ]

W (H ′n) such that
for any f ′ ∈ S(H ′n//K ′n),

FS( f ′)(q2ν1, q−2ν1, . . . , q2νn , q−2νn )= traceI ′(ν)( f ′).

For µ= (µ1, . . . , µm) ∈ Cm , we define the space I (µ) consisting of all locally
constant functions ϕ : Hm→ C satisfying

ϕ(h · t · u)= δ−1/2
m,r (t)

m∏
j=1

|t j |
µ j
E ϕ(h)

for all h ∈ Hm , t ∈ Tm , and u ∈ Um,r , where δm,r is the modulus function of
Bm,r . We have δm,r (t) =

∏r
j=1|t j |

2m−2r+2 j−1
E

∏m
j=r+1|t j |

2m−2 j+1
E . These I (µ)

give all spherical principal series of Hm . Let S(Hm//Km) be the spherical Hecke
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algebra of Hm . Then we have the Fourier–Satake isomorphism FS :S(Hm//Km)→

C[X1, X−1
1 , . . . , Xm, X−1

m ]
W (Hm) such that for any f ∈ S(Hm//Km),

FS( f )(q2µ1, q−2µ1, . . . , q2µm , q−2µm )= traceI (µ)( f ).

Now we are going to construct a certain explicit intertwining operator from
S(V n

m) to I ′(ν)⊗ I (µ). To do this, we introduce the subgroup Yr = Ar · Lr of
GLr (E), where

Ar = {diag[a1, . . . , ar ] | ai ∈ E×}, Lr =


 1

. . .

li j 1

 ∣∣∣∣∣∣ li j ∈ E

 .
It has a right invariant measure given by

dyr =

r∏
i=1

|ai |
2i−(r+1)
E d×ai

∏
1≤ j<i≤r

d̃li, j ,

where d̃li, j is a certain measure on Lr normalized as in [Rallis 1984, p. 490]. For
σ = (σ1, . . . , σr ) ∈ Cr such that <(σi )� 0, the integral

Zσ (φ)=
∫

Yr

φ

((
yr 0
0 0

)) r∏
i=1

|ai |
σ
E dyr

is absolutely convergent. We define a functional Zσ sending φ to the function
(h′, h) 7→ Zσ (ω(h′−1, h−1)φ). It is a nonzero H ′n × Hm-intertwining map from
S(V n

m) to S(H ′n × Hm); moreover:

Lemma A.3. For <(σi )� 0, the image of the above intertwining map Zσ lies in
I ′(ν)⊗ I (µ) where

ν =
(
2+ σ1−m− 3

2 , . . . , 2r + σr −m− 3
2 , (r + 1)−m− 1

2 , . . . , n−m− 1
2

)
,

µ=
(
−2− σ1+m+ 3

2 , . . . ,−2r + σr +m+ 3
2 ,−(r + 1)+m+ 1

2 , . . . ,
1
2

)
.

Proof. We have

Zσ(φ)(h′t ′u′, htu)=
∫

Yr

ω(u′−1t ′−1h′−1, u−1t−1h−1)φ

((
yr
)) r∏

i=1

|ai |
σ
E dyr

=

∫
Yr

ω(t ′−1h′−1, t−1h−1)φ

((
yr
)) r∏

i=1

|ai |
σ
E dyr

=

∫
Yr

|det t ′|−m
E ω(h′−1, h−1)φ

(
t
(

yr
)

t ′−1
) r∏

i=1

|ai |
σ
E dyr . (A.1)
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Changing the variable yr 7→ y′′r = diag[t1, . . . , tr ]yr , we have

r∏
i=1

|ai |
σ
E dyr =

r∏
i=1

|ti |
r−3i−σi+2
E

r∏
i=1

|ti ai |
σ
E dy′′r .

Changing the variable yr 7→ y′r = diag[t ′−1
1 , . . . , t ′−1

r ], then

r∏
i=1

|ai |
σ
E dyr =

r∏
i=1

|ti |
i+σi−1
E

r∏
i=1

|t ′−1
i ai |

σ
E dy′r .

Hence

(A.1)=
r∏

i=1

|t ′i |
i+σi−m−1
E

n∏
i=r+1

|t ′i |
−m
E

r∏
j=1

|t j |
r−3 j−σ j+2
E

×

∫
Yr

ω(h′−1, h−1)φ

((
yr
)) r∏

i=1

|ai |
σ
E dyr

=

r∏
i=1

|t ′i |
i+σi−m−1
E

n∏
i=r+1

|t ′i |
−m
E

r∏
j=1

|t j |
r−3 j−σ j+2
E Zσ (φ)(h′, h). �

From this lemma, it is easy to see the following. If m≥n=r , there is a surjective
homomorphism 8m,n : S(Hm//Km)→ S(H ′n//K ′n) which has the property

Zσ ◦ (8m,n( f )− f )= 0

for all f ∈ S(Hm//Km) and <(σi )� 0. Using the Fourier–Satake isomorphism,
the map 8m,n is given by

C[X1, X−1
1 , . . . , Xm, X−1

m ]
W (Hm) −→ C[X1, X−1

1 , . . . , Xn, X−1
n ]

W (H ′n),

where
logq X j 7→ logq X j , j = 1, . . . , n,

logq X j 7→ 2m− 2 j + 1, j = n+ 1, . . . ,m.

In particular, when m = n, 8m,n is the identity map.
If n>m=r , similarly there is a surjective homomorphism8′n,m :S(H

′
n//K ′n)→

S(Hm//Km) which has the property

Zσ ◦ ( f ′−8′n,m( f ′))= 0

for all f ′ ∈ S(H ′n//K ′n) and <(σi )� 0. Using the Fourier–Satake isomorphism,
the map 8′n,m is given by

C[X1, X−1
1 , . . . , Xn, X−1

n ]
W (H ′n) −→ C[X1, X−1

1 , . . . , Xm, X−1
m ]

W (Hm),
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where
logq X i 7→ logq X i , i = 1, . . . ,m,

logq X i 7→ 2m− 2i + 1, i = m+ 1, . . . , n.

In fact, we have

Lemma A.4. Let φ ∈ S(V n
m) be spherical and Zσ (φ) ≡ 0 for all σ ∈ Cr with

<(σi )� 0. Then ω(h′)φ vanishes on 60 for all h′ ∈ H ′n .

Proof. It suffices to show that ω(h′)φ vanishes on 6(r)0 since it is dense open in
60. Since 6(r)0 is a GLn(E)× Hm-orbit, we only need to show that

ω(h′, h)φ
((

1r
))
≡ 0

for all (h′, h). But we can write h′ = b′k ′ with b′ ∈ B ′n , k ′ ∈ K ′n , and h = bk with
b ∈ B ′m,r and k ∈ Km . Then since φ is spherical, we have

ω(h′, h)φ
((

1r
))
= ω(b′, b)φ

((
1r

))
= φ

((
X
))

with X ∈ Matr×r (E). Hence the lemma follows from [Rallis 1984, Lemma 5.2]
for k = E . �

Combining Lemmas A.1, A.3, and A.4, we have

Proposition A.5. The ideal

In,m = { f ∈ S(H ′n//K ′n)⊗S(Hm//Km) | ω( f )≡ 0}

is generated by

{8m,n( f )− f | f ∈ S(Hm//Km)} (resp. { f ′−8′n,m( f ′) | f ′ ∈ S(H ′n//K ′n)})

if m ≥ n (resp. m < n).

We have a similar result for the Weil representation of GLn(F)× GLm(F) on
S(Matm×n(F)) given by ω(g′, g)φ(x)=φ(g−1xg′) (see [Rallis 1984, Section 6]).
Without lost of generality, we assume that n ≥ m; then the ideal

Jn,m = { f ∈ S(GLn(F)//GLn(OF ))⊗S(GLm(F)//GLm(OF )) | ω( f )≡ 0}

is generated by

{ f −9n,m( f ) | f ∈ S(GLn(F)//GLn(OF ))}.

In terms of the Fourier–Satake isomorphism, the surjective homomorphism 9n,m

is given by

C[X1, X−1
1 , . . . , Xn, X−1

n ]
W (GLn(F)) −→ C[X1, X−1

1 , . . . , Xm, X−1
m ]

W (GLm(F)),
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where
logq X i 7→ − logq X i +

n−m
2

, i = 1, . . . ,m,

logq X i 7→ −i + n+1
2
, i = m+ 1, . . . , n.

Corollary A.6. (1) If π is an unramified irreducible admissible representation
of H ′n , then the theta correspondence of π to Hn ∼= H ′n is nontrivial and
isomorphic to π , that is, θ1(π, Vn)= π .

(2) If π is an unramified irreducible admissible representation of GLn(F) and χ
an unramified character of F×, then the theta correspondence of π to GLn(F)
through the Weil representationωχ, whereωχ(g′, g)φ(x)=χ(det g′)φ(g−1xg′)
for φ ∈ S(Matn×n(F)), is nontrivial and isomorphic to π∨⊗χ .
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