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The Chevalley–Shephard–Todd theorem
for finite linearly reductive group schemes

Matthew Satriano

We generalize the classical Chevalley–Shephard–Todd theorem to the case of
finite linearly reductive group schemes. As an application, we prove that every
scheme X which is étale-locally the quotient of a smooth scheme by a finite
linearly reductive group scheme is the coarse space of a smooth tame Artin
stack (as defined by Abramovich, Olsson, and Vistoli), whose stacky structure is
supported on the singular locus of X .

1. Introduction

Given a field k and an action of a finite (abstract) group G on a k-vector space V ,
we obtain a linear action of G on the polynomial ring k[V ]. A central theme in
invariant theory is determining when certain nice properties of a ring with G-action
are inherited by its invariants. In particular, it is natural to ask when k[V ]G is
polynomial. If G acts faithfully on V , we say g ∈ G is a pseudoreflection (with
respect to the action of G on V ) if V g is a hyperplane. The classical Chevalley–
Shephard–Todd theorem states:

Theorem 1.1 [Bourbaki 1968, §5, Theorem 4]. If G→ Autk(V ) is a faithful rep-
resentation of a finite group and the order of G is not divisible by the characteristic
of k, then k[V ]G is polynomial if and only if G is generated by pseudoreflections.

In this paper we generalize this theorem to the case of finite linearly reductive
group schemes. To do so, we first need a notion of pseudoreflection in this setting.

Definition 1.2. Let k be a field and V a finite-dimensional k-vector space with a
faithful action of a finite linearly reductive group scheme G over Spec k. We say
that a subgroup scheme N of G is a pseudoreflection if V N has codimension 1
in V . We define the subgroup scheme generated by pseudoreflections to be the
intersection of the subgroup schemes which contain all of the pseudoreflections
of G. We say G is generated by pseudoreflections if G is the subgroup scheme
generated by pseudoreflections.

MSC2000: primary 14A20; secondary 14L15.
Keywords: Chevalley–Shephard–Todd, pseudoreflection, linearly reductive, tame stacks.
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2 Matthew Satriano

Over algebraically closed fields, Theorem 1.1 generalizes to

Theorem 1.3. Let k be an algebraically closed field and V a finite-dimensional
k-vector space with a faithful action of a finite linearly reductive group scheme G
over Spec k. Then k[V ]G is polynomial if and only if G is generated by pseudo-
reflections.

A more technical version of this theorem holds over fields which are not alge-
braically closed; however, the “only if” direction does not hold for finite linearly
reductive group schemes in general (see Example 2.4). We instead prove the “only
if” direction for the smaller class of stable group schemes, which we now define
(see Proposition 2.2 for examples). Over an algebraically closed field, the class of
stable group schemes coincides with that of finite linearly reductive group schemes.
Recall from [Abramovich et al. 2008, Definition 2.9] that G is called well-split if
it is isomorphic to a semidirect product 1o Q, where 1 is a finite diagonalizable
group scheme and Q is a finite constant tame group scheme; here, tame means that
the degree is prime to the characteristic.

Definition 1.4. A group scheme G over a field k is called stable if the following
two conditions hold:

(a) for all finite field extensions K/k, every subgroup scheme of G K descends to
a subgroup scheme of G;

(b) there exists a finite Galois extension K/k such that G K is well-split.

Remark 1.5. If G is a finite linearly reductive group scheme over a perfect field
k, then [Abramovich et al. 2008, Lemma 2.11] shows that condition (b) is auto-
matically satisfied.

Theorem 1.3 is a special case of the following generalization of the Chevalley–
Shephard–Todd theorem. This is the first main result of this paper.

Theorem 1.6. Let k be a field and V a finite-dimensional k-vector space with a
faithful action of a finite linearly reductive group scheme G over Spec k. If G is
generated by pseudoreflections, then k[V ]G is polynomial. The converse holds if
G is stable.

We also prove a version of this theorem for an action of a finite linearly reductive
group scheme on a smooth scheme.

Definition 1.7. Given a smooth affine scheme U over Spec k with a faithful action
of a finite linearly reductive group scheme G which fixes a field-valued point x ∈
U (K ), we say a subgroup scheme N of G is a pseudoreflection at x if NK is a
pseudoreflection with respect to the induced action of G K on the cotangent space
at x . We define what it means for G to be generated by pseudoreflections at x in
the same manner as in Definition 1.2.
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Theorem 1.6 then has the following corollary.

Corollary 1.8. Let k be a field and let U be a smooth affine k-scheme with a faithful
action by a finite linearly reductive group scheme G over Spec k. Let x ∈ U (K ),
where K/k is a finite separable field extension, and suppose x is fixed by G. If G
is generated by pseudoreflections at x , then U/G is smooth at the image of x. The
converse holds if G is stable.

The second main result of this paper is this:

Theorem 1.9. Let k be a field and let U be a smooth affine k-scheme with a faithful
action by a stable group scheme G over Spec k. Suppose K/k is a finite separable
field extension and G fixes a point x ∈U (K ). Let M =U/G, let M0 be the smooth
locus of M , and let U 0

=U ×M M0. If G has no pseudoreflections at x , then after
possibly shrinking M to a smaller Zariski neighborhood of the image of x , we have
that U 0 is a G-torsor over M0.

In the classical case, Theorem 1.9 follows directly from Corollary 1.8 and the
purity of the branch locus theorem [Grothendieck and Raynaud 1971, X.3.1]. For
us, however, a little more work is needed since G is not necessarily étale.

As an application of Theorem 1.9, we generalize the well-known result (see, for
example, [Vistoli 1989, (2.9)] or [Fantechi et al. 2007, Remark 4.9]) that schemes
with quotient singularities prime to the characteristic are coarse spaces of smooth
Deligne–Mumford stacks. We say a scheme has linearly reductive singularities
if it is étale-locally the quotient of a smooth scheme by a finite linearly reductive
group scheme. We show that every such scheme M is the coarse space of a smooth
tame Artin stack (in the sense of [Abramovich et al. 2008]) whose stacky structure
is supported at the singular locus of M . More precisely,

Theorem 1.10. Let k be a perfect field and M a k-scheme with linearly reductive
singularities. Then it is the coarse space of a smooth tame stack X over k such that
f 0 in the diagram

X0
j0

//

f 0
��

X

f
��

M0
j

// M

is an isomorphism, where j is the inclusion of the smooth locus of M and X0
=

M0
×M X.

This paper is organized as follows. In Section 2, we prove the “if” direction
of Theorem 1.6 and reduce the proof of the “only if” direction to the special case
of Theorem 1.9 in which U = V∨(V ) for some k-vector space V with G-action
(see the section on notation below). This special case is proved in Section 3. The
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key input for the proof is [Iwanari 2009, Theorem 2.3], which we reinterpret in the
language of pseudoreflections. We finish the section by proving Corollary 1.8. In
Section 4, we use Corollary 1.8 to complete the proof of Theorem 1.9. In Section 5,
we prove Theorem 1.10.

Notation. Throughout this paper, k is a field and S = Spec k. If V is a k-vector
space with an action of a group scheme G, then we denote by V∨(V ), or simply
V∨ if V is understood, the scheme Spec k[V ] whose G-action is given by the dual
representation on functor points. Said another way, if G = Spec A is affine and its
action on V is given by the coaction map σ : V −→ V ⊗k A, then the coaction map
k[V ]−→ k[V ]⊗k A defining the G-action on V∨ is given by

∑
aivi 7→

∑
aiσ(vi ).

All Artin stacks X in this paper are assumed to have finite diagonal, so that if X is
locally of finite presentation, it has a coarse space by [Conrad 2004, Theorem 1.1]
(see also [Keel and Mori 1997]). Given a locally finitely presented scheme U with
an action of a finite flat group scheme G, we denote by U/G the coarse space of
the stack [U/G].

If R is a ring and I an ideal of R, then we denote by V (I) the closed subscheme
of Spec R defined by I.

2. Linear actions on polynomial rings

The “if” direction of Theorem 1.6. Our first goal is to prove the “if” direction of
Theorem 1.6. We begin with examples of stable group schemes and with some
basic results about the subgroup scheme generated by pseudoreflections.

Lemma 2.1. Suppose k is perfect and G is a finite linearly reductive group scheme
over S. If the identity component 1 of G is diagonalizable and G/1 is constant,
then there exists a finite linearly reductive group scheme G̃ over Z such that G̃k =

G. If H is a closed subgroup scheme of G, then there exists a closed subgroup
scheme H̃ of G̃ whose pullback to k is H. If H is normal in G, then H̃ is normal
in G̃.

Proof. Let Q = G/1. Since k is perfect, the connected-étale sequence

1−→1−→ G −→ Q −→ 1

is functorially split (see [Tate 1997, 3.7 (IV)]). Since 1 is diagonalizable, it is of
the form Spec k[A], where A is a finitely generated abelian group. Note that as a
scheme G =1×k Q and that its group scheme structure is given by a homomor-
phism:

ε : Q −→Aut(1)= Aut(A).

We can therefore let G̃ = Spec Z[A] ×Z Q with group scheme structure induced
by ε.
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Now let H be a closed subgroup scheme of G. Letting 1′ = H ∩1 and Q′ =
H/1′, we have a commutative diagram

1 // 1 // G // Q // 1

1 // 1′ //

ϕ

OO

H //

OO

Q′ //
ψ

OO

1

with exact rows. Since 1 is connected, we see 1′ is the connected component of
the identity of H . Therefore, the bottom row of the above diagram is the connected-
étale sequence of H , and so

H =1′o Q′,

as k is perfect. Since 1′ is diagonalizable and Q′ is constant, we can define H̃ in
the same way we defined G̃.

We now show that H̃ is a closed subgroup scheme of G̃. Let ∗ denote the action
of Q (resp. Q′) on1 (resp. 1′). Since the splitting of the connected-étale sequence
of a finite group scheme over a perfect field is functorial, we see that for all q ′ ∈ Q′

and local sections δ′ of 1′,

ψ(q ′) ∗ϕ(δ′)= ϕ(q ′ ∗ δ′).

We therefore obtain a closed immersion from H̃ to G̃ whose pullback to k is the
morphism from H to G.

Lastly, we show that if H is normal in G, then H̃ is normal in G̃. Let 1′ =
Spec k[A′], where A′ is a finitely generated abelian group. Showing that H̃ is
normal in G̃ is equivalent to showing that Q′ is normal in Q, and for all local
sections δ ∈1, δ′ ∈1′, q ∈ Q, and q ′ ∈ Q′, we have

q ∗ (δ−1δ′ · (q ′−1
∗ δ)) ∈1′.

We know that Q′ is normal in Q as H is normal in G. To check the latter statement
about local sections, note that it can be reformulated as follows: for every q ∈ Q
and q ′ ∈ Q, the homomorphism

A→ A× A′

a 7→ (q ∗ (a−1
· q ′−1

∗ a), q ∗ ā)

factors through A′; here ā denotes the image of a under the projection from A to
A′. Since this statement makes no reference to the base scheme, it can be checked
over k, where the normality of H in G yields the desired factorization. �

Proposition 2.2. Let G be a finite group scheme over S. Consider the following
conditions:

(1) G is diagonalizable.
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(2) G is a constant group scheme.

(3) k is perfect, the identity component 1 of G is diagonalizable, and G/1 is
constant.

If any of them holds, then G is stable.

Proof. It is clear that finite diagonalizable group schemes and finite constant group
schemes are stable, so we consider the last case. Let Q =G/1. Since k is perfect,
the connected-étale sequence

1−→1−→ G −→ Q −→ 1

is functorially split. Let K/k be a finite extension and let H be a subgroup scheme
of G K . Letting 1′ = H ∩1K and Q′ = H/1′, we have a commutative diagram

1 // 1K // G K // QK // 1

1 // 1′ //

OO

H //

OO

Q′ //

OO

1

with exact rows. Since 1 is connected and has a k-point, [Grothendieck 1967,
4.5.14] shows that1 is geometrically connected. In particular,1K is the connected
component of the identity of G K , and so 1′ is the connected component of the
identity of H . Therefore, the bottom row of the above diagram is the connected-
étale sequence of H . The proposition then follows from Lemma 2.1. �

Lemma 2.3. Let V be a finite-dimensional k-vector space with a faithful action
of a stable group scheme G over S, and let H be the subgroup scheme generated
by pseudoreflections. If K/k is an algebraic extension of fields, then a subgroup
scheme of G K is a pseudoreflection if and only if it descends to a pseudoreflection.
Furthermore, HK is the subgroup scheme of G K generated by pseudoreflections.

Proof. Note first that if P is a subgroup scheme of G K , then there exists a subgroup
scheme P0 of G such that (P0)K = P . If K/k is a finite extension, this follows
from the fact that G is stable. If K/k is an infinite extension, by a standard limit
argument, there exists a finite extension L/k and a subgroup scheme P1 of GL

such that (P1)K = P . We then obtain our desired P0 as L/k is a finite extension.
The first claim of the proposition then follows from the fact that

(VK )
NK = (V N )K

for any subgroup scheme N of G. The second claim follows from the fact that
if P ′ and P ′′ are subgroup schemes of G, then P ′K contains P ′′K if and only if P ′

contains P ′′. �

We remark that even in characteristic zero, Lemma 2.3 is false for general finite
linearly reductive group schemes G, as the following example shows. Note that this
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example also shows that the “only if” direction of Theorem 1.6 and of Corollary 1.8
is false for general finite linearly reductive group schemes.

Example 2.4. Let k be a field contained in R or let k = Fp for p congruent to
3 mod 4. Let K = k(i), where i2

= −1, and let G be the locally constant group
scheme over Spec k whose pullback to Spec K is Z/2×Z/2 with the Galois action
that switches the two Z/2 factors. Let g1 and g2 be the generators of the two Z/2
factors and consider the action

ρ : G K −→ AutK (K 2)

on the K -vector space K 2 given by

ρ(g1) : (a, b) 7→ (−bi, ai), ρ(g2) : (a, b) 7→ (bi,−ai).

Then ρ is Galois-equivariant and hence comes from an action of G on k2. Note that
Z/2×1 and 1×Z/2 are both pseudoreflections of G K , as the subspaces which they
fix are K · (1, i) and K · (1,−i), respectively. Since G K is not a pseudoreflection,
it follows that there are no Galois-invariant pseudoreflections of G K , and hence,
the subgroup scheme generated by pseudoreflections of G is trivial; the subgroup
scheme generated by pseudoreflections of G K , however, is G K .

Corollary 2.5. If V is a finite-dimensional k-vector space with a faithful action of
a stable group scheme G over S, then the subgroup scheme generated by pseudore-
flections is normal in G.

Proof. We denote by H the subgroup scheme generated by pseudoreflections. Let
T be an S-scheme and let g ∈ G(T ). We must show the subgroup schemes HT

and gHT g−1 of GT are equal. To do so, it suffices to check this on stalks and so
we can assume T = Spec R, where R is strictly Henselian. By [Abramovich et al.
2008, Lemma 2.17], we need only show that these two group schemes are equal
over the closed fiber of T , so we can further assume that R= K is a field. Since G
is finite over S, the residue fields of G are finite extensions of k. We can therefore
assume that K/k is a finite field extension.

By Lemma 2.3, we know that HK is the subgroup scheme of G K generated by
pseudoreflections. Note that if N ′ is a pseudoreflection of G K , then gN ′g−1 is as
well since

V gN ′g−1

K = g(V N ′
K ).

As a result, gHK g−1
= HK , which completes the proof. �

Lemma 2.6. Given a finite-dimensional k-vector space V with a faithful action
of a finite linearly reductive group scheme G over S, let {Ni } denote the set of
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pseudoreflections of G and let H be the subgroup scheme generated by pseudore-
flections. Then

k[V ]H =
⋂

i

k[V ]Ni .

Proof. Let R =
⋂

i k[V ]Ni . Consider the functor

F : (k-alg)→ (Groups)

A 7→ {g ∈ G(A) | g(m)= m for all m ∈ R⊗k A}.

Since each k[V ]Ni is finitely generated, we see R is as well. Let r1, . . . , rn be a
finite set of generators for R. We see then that F is representable by the intersection
of the stabilizers Gr j , and so is a closed subgroup scheme of G. Since F contains
every pseudoreflection, we see H ⊂ F . We therefore have the containments

R ⊂ k[V ]F ⊂ k[V ]H ⊂
⋂

i

k[V ]Ni ,

from which the lemma follows. �

If N is any subgroup scheme of G, it is linearly reductive by [Abramovich et al.
2008, Proposition 2.7]. It follows that

V ' V N
⊕ V/V N

as N -representations. If N is a pseudoreflection, then dimk V/V N
= 1. Let v be

a generator of the 1-dimensional subspace V/V N and let σ : V → V ⊗k B be the
coaction map, where N = Spec B. Then via the above isomorphism, σ is given by

V N
⊕ V/V N

→ (V N
⊗k B)⊕ (V/V N

⊗k B)

(w,w′) 7→ (w⊗ 1, w′⊗ b)

for some b ∈ B. It follows that there is a k-linear map h : V → B such that for all
w ∈ V ,

σ(w)− (w⊗ 1)= v⊗ h(w).

If we continue to denote by σ the induced coaction map k[V ] −→ k[V ]⊗k B, we
see that h extends to a k[V ]N -module homomorphism k[V ] −→ k[V ]⊗k B, which
we continue to denote by h, such that for all f ∈ k[V ],

σ( f )− ( f ⊗ 1)= (v⊗ 1) · h( f ).

We are now ready to prove the “if” direction of Theorem 1.6. Our proof is only
a slight variant of the proof of the classical Chevalley–Shephard–Todd theorem
presented in [Smith 1985].
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Proof of “if” direction of Theorem 1.6. Let R = k[V ]G . By Lemma 2.6, we know
that the intersection of the k[V ]N is R, where N runs through the pseudoreflections
of G. By the proposition on [Smith 1985, page 225], to show R is polynomial, we
need only show that k[V ] is a free R-module. By graded Nakayama, the projective
dimension of k[V ] is the smallest integer i such that TorR

i+1(k, k[V ])= 0, where k
is viewed as an R-module via the augmentation map

ε : k[V ]G −→ k[V ] −→ k,

sending all positively graded elements to 0. So we must show TorR
1 (k, k[V ])= 0.

Tensoring the short exact sequence defined by ε with k[V ], we obtain a long
exact sequence

0−→ TorR
1 (k, k[V ])−→ ker ε⊗R k[V ]

φ
−→ R⊗R k[V ]

ε⊗1
−→ k⊗R k[V ] −→ 0.

To show TorR
1 (k, k[V ])= 0, we must prove that φ is injective. We in fact show

φ⊗ 1 : ker ε⊗R k[V ]⊗k C −→ k[V ]⊗k C

is injective for all finite-dimensional k-algebras C . If this is not the case, then the
set

{ξ |C is a finite-dimensional k-algebra, 0 6= ξ ∈ker ε⊗R k[V ]⊗k C, (φ⊗1)(ξ)=0}

is nonempty and we can choose an element ξ of minimal degree, where ker ε is
given its natural grading as a submodule of k[V ] and the elements of C are defined
to be of degree 0. We begin by showing ξ ∈ ker ε⊗R R⊗k C . That is, we show ξ

is fixed by all pseudoreflections.
Let N = Spec B be a pseudoreflection. Let σ : k[V ] −→ k[V ] ⊗ B be the

coaction map. As explained above, we get a k[V ]N -module homomorphism h :
k[V ] −→ k[V ]⊗ B. Note that this morphism has degree −1. Since

(1⊗ σ ⊗ 1)(ξ)− ξ ⊗ 1= (1⊗ h⊗ 1)(ξ) · (1⊗ v⊗ 1⊗ 1),

the commutativity of

ker ε⊗ k[V ]⊗ B⊗C
φ⊗1⊗1 // k[V ]⊗ B⊗C

ker ε⊗ k[V ]⊗C

1⊗σ⊗1
OO

φ⊗1 // k[V ]⊗C

σ⊗1
OO

implies
(φ⊗ 1⊗ 1)(1⊗ h⊗ 1)(ξ) · (v⊗ 1⊗ 1)= 0.

It follows that (1⊗ h ⊗ 1)(ξ) is killed by φ⊗ 1⊗ 1. Since h has degree −1, our
assumption on ξ shows that (1⊗h⊗1)(ξ)= 0. We therefore have (1⊗σ⊗1)(ξ)=
ξ ⊗ 1, which proves that ξ is N -invariant.
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Since G is linearly reductive, we have a section of the inclusion k[V ]G ↪→

k[V ]. We therefore, also obtain a section s of the inclusion j : R ↪→ k[V ]. Let
ψ : ker ε⊗R R −→ R be the canonical map, and consider the diagram

ker ε⊗ k[V ]⊗C
φ⊗1 //

1⊗ j⊗1
��

k[V ]⊗C

j⊗1
��

ker ε⊗ R⊗C
ψ⊗1 //

1⊗s⊗1

OO

R⊗C.

s⊗1

OO

We see that

( j⊗1)(ψ⊗1)(1⊗ s⊗1)(ξ)= (φ⊗1)(1⊗ j⊗1)(1⊗ s⊗1)(ξ)= (φ⊗1)(ξ)= 0.

But j⊗1 and ψ⊗1 are injective, so (1⊗s⊗1)(ξ)= 0. Since ξ ∈ ker ε⊗R R⊗k C ,
it follows that ξ = 0, which is a contradiction. �

Reducing the “only if” direction of Theorem 1.6 to a case of Theorem 1.9. Now
that we have proved the “if” direction of Theorem 1.6, we work toward reducing the
“only if” direction to the special case of Theorem 1.9 where U = V∨. The main
step in this reduction is showing that if G acts faithfully on V , and H denotes
the subgroup scheme generated by pseudoreflections, then the action of G/H on
V∨/H has no pseudoreflections at the origin. In the classical case, the proof of
this statement relies on the fact that G has no pseudoreflections if and only if
V∨→ V∨/G is étale in codimension 1. As the following example illustrates, this
relation between pseudoreflections and ramification no longer holds in our case.

Example 2.7. Let k be a field of characteristic 2 and G =µ2. We define an action
of G on V = kx⊕ky as follows: for every k-scheme T and every section ζ ∈G(T ),
let ζ act on V ⊗k OT by sending x to ζ x and y to ζ y. Then π : V∨→ V∨/G is a
G-torsor away from the one singular point in V∨/G. Hence, π is ramified at every
height 1 prime, but G has no pseudoreflections.

We must therefore take a different approach to showing that the action of G/H on
V∨/H has no pseudoreflections at the origin. Our strategy is to reduce to the clas-
sical case by lifting to characteristic 0. This is carried out after some preliminary
lemmas.

Lemma 2.8. Let G be a finite group scheme which acts faithfully on an affine
scheme U. If H is a normal subgroup scheme of G, then the action of G/H on
U/H is faithful.

Proof. Let X = [U/H ] and let π : U → U/H be the natural map. We must show
that if G ′ is a subgroup scheme of G such that G ′/H acts trivially on U/H , then
G ′ = H . Replacing G by G ′, we can assume G ′ = G.
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Since G acts faithfully on U , there is a nonempty open substack of X which is
isomorphic to its coarse space. That is, we have a nonempty open subscheme V of
U/H over which π is an H -torsor. Let P = V ×U/H U . Since G acts on P over
V , we obtain a morphism

s : G −→Aut(P)= H.

Note that s is a section of the closed immersion H → G, so H = G. �

Lemma 2.9. Let G be a finite flat linearly reductive group scheme over a complete
discrete valuation ring R with residue field k. If G acts linearly on An

R and An
k/Gk

is isomorphic to An
k , then An

R/G is isomorphic to An
R .

Proof. Let m be the maximal ideal of R and let An
R/G = Spec A. Since An

R
is flat over R, it follows that An

R/G is as well (see, for example, [Alper 2008,
Theorem 4.16(ix)]). Since G is linearly reductive,

Spec k×R An
R/G = An

k/Gk .

Choose an isomorphism

ϕ0 : k[x1, . . . , xn] −→ A⊗R k

and let ri ∈ R be an arbitrary lift of ϕ0(xi ). By Nakayama’s lemma, the morphism

ϕ : R[x1, . . . , xn] −→ A

sending xi to ri is surjective. As R is complete, to show ϕ is an isomorphism, we
need only show that the base change ϕm of ϕ to R/m`+1 is an isomorphism for
every `. This follows from the fact that ϕ0 is an isomorphism and A⊗R R/m` is
flat over R/m`. �

Proposition 2.10. Let G be a finite linearly reductive group scheme over S with a
faithful action on a finite-dimensional k-vector space V . Let U = V∨ and let H
be the subgroup scheme of G generated by pseudoreflections. Then the induced
action of G/H on U/H ' An

k has no pseudoreflections at the origin.

Proof. By the “if” direction of Theorem 1.6, we have k[V ]H = k[W ] for some
subvector space W of k[V ]. The proof of [Neusel 2007, Proposition 6.19] shows
that the degrees of the homogeneous generators of k[V ]H are determined. As a
result, the action of G/H on k[W ] is linear. Lemma 2.8 further tells us that this
action is faithful.

Assume that the subgroup scheme H ′′ of G/H generated by pseudoreflections
is nontrivial. Then H ′′ = H ′/H where H ′ is a normal subgroup scheme of G
which properly contains H . To prove G/H has no pseudoreflections at the origin,
it suffices by Lemma 2.3 to replace k by its algebraic closure. By [Abramovich
et al. 2008, Lemma 2.11], we see then that G is the semidirect product of its identity
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component, which is diagonalizable, and a finite constant tame group scheme. The
same is true for H and H ′.

Let R be a complete discrete valuation ring whose residue field is k and whose
fraction field K is of characteristic 0. Lemma 2.1 shows that there exist finite
flat linearly reductive group schemes G̃, H̃ , and H̃ ′ over R whose base changes
to k are G, H , and H ′, respectively. Furthermore, H̃ ′ and H̃ are normal closed
subgroup schemes of G̃, and H̃ is a proper subgroup scheme of H̃ ′. In character-
istic 0, every finite flat group scheme is locally constant, so after replacing R by a
finite extension, we can further assume that G̃ K , H̃K , and H̃ ′K are constant group
schemes.

Let m denote the maximal ideal of R and let R` = R/m`. Let G̃`, H̃`, and
H̃ ′` denote the base changes of G̃, H̃ , and H̃ ′ to R`. Choosing a basis for V , we
can identify U with An

k . The G-action on U is then given by a group scheme
homomorphism ϕ0 : G −→GLn,k . By [Grothendieck 1970, Exposé III 2.3], given
a deformation ϕ` : G̃` −→ GLn,R` of ϕ0, the obstruction to deforming ϕ` to a
homomorphism ϕ`+1 : G̃`+1 −→ GLn,R`+1 lies in

H 2(G̃`,Lie(GLn)⊗m`/m`+1),

which vanishes as G̃` is linearly reductive. We therefore obtain a faithful action of
G̃ on An

R lifting the action of G on U .
By Lemma 2.9, we see that An

K /H̃K and An
K /H̃ ′K are polynomial. The classical

Chevalley–Shephard–Todd theorem then shows that there is a pseudoreflection ÑK

of G̃ K which is contained in H̃ ′K but not contained in H̃K . Note that this is not yet
a contradiction as it is not clear that H̃K is the subgroup scheme of G̃ K generated
by pseudoreflections. Let Ñ be the closure of ÑK in G̃. Since G̃ is a finite flat
linearly reductive group scheme over R, we see that Ñ is as well. Since ÑK is a
pseudoreflection, there exists some v=

∑
i ai xi ∈ K [x1, . . . , xn] such that ÑK acts

trivially on K [x1, . . . , xn]/v. After scaling the ai , we can assume a1 ∈ R∗ and all
ai ∈ R. Consider the commutative diagram

0 // vK [x1, . . . , xn] // K [x1, . . . , xn] // K [x1, . . . , xn]/v // 0

0 // vR[x1, . . . , xn] //

OO

R[x1, . . . , xn] //

OO

R[x1, . . . , xn]/v //

ψ

OO

0

of Ñ -comodules. Since the left square is Cartesian, we see that ψ is injective.
It follows that the action of Ñ on the hyperplane defined by v in An

R is trivial.
Reducing mod m, we see that Ñk is a pseudoreflection of G. Furthermore, Ñk is
not contained in H , which is a contradiction. �

Using Lemma 2.8 and Proposition 2.10, we now prove the “only if” direction
of Theorem 1.6, assuming the special case of Theorem 1.9 in which U = V∨.
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Proof of “only if” direction of Theorem 1.6. Let H be the subgroup scheme gener-
ated by pseudoreflections. By the “if” direction, k[V ]H is polynomial and as ex-
plained in the proof of Proposition 2.10, the G/H -action on k[V ]H is linear. Since
G/H acts faithfully on U/H without pseudoreflections at the origin by Lemma 2.8
and Proposition 2.10, and since M =U/G is smooth by assumption, Theorem 1.9
implies that U/H is a G/H -torsor over U/G after potentially shrinking U/G.
Since the origin of U/H is a fixed point, we conclude that G = H . �

3. Theorem 1.9 for linear actions on polynomial rings

In Section 2, we reduced the proof of the “only if” direction of Theorem 1.6 to this
statement:

Proposition 3.1. Let G be a stable group scheme over S which acts faithfully on a
finite-dimensional k-vector space V . Then Theorem 1.9 holds when U = V∨ and
x is the origin.

The proof of this proposition is given in two steps. First we handle the case
when G is diagonalizable, and then we use that for the general case (see page 15).

Reinterpreting a result of Iwanari. The key to proving Proposition 3.1 for diago-
nalizable G is provided by [Iwanari 2009, Theorem 3.3 and Proposition 3.4] after
we reinterpret them in the language of pseudoreflections. We refer the reader to
[Iwanari 2009, pages 4–6] for the basic definitions concerning monoids. We recall
the following definition given as [Iwanari 2009, Definition 2.5].

Definition 3.2. An injective morphism i : P→ F from a simplicially toric sharp
monoid to a free monoid is called a minimal free resolution if i is close and if for
all injective close morphisms i ′ : P→ F ′ to a free monoid F ′ of the same rank as
F , there is a unique morphism j : F→ F ′ such that i ′ = j i .

Given a faithful action of a finite diagonalizable group scheme 1 over S on a
k-vector space V of dimension n, we can decompose V as a direct sum of one-
dimensional1-representations. Therefore, after choosing an appropriate basis, we
have an identification of k[V ] with k[Nn

] and can assume that the 1-action on
U = V∨ is induced from a morphism of monoids

π : F = Nn
−→ A,

where A is the finite abelian group such that 1 is the Cartier dual D(A) of A. We
see then that

U/1= Spec k[P],

where P is the submonoid {p | π(p) = 0} of F . Note that P is simplicially toric
sharp, that i : P→ F is close, and that A = Fgp/ i(Pgp).



14 Matthew Satriano

We now give the relationship between minimal free resolutions and pseudore-
flections.

Proposition 3.3. With notation as above, i : P→ F is a minimal free resolution if
and only if the action of 1 on V has no pseudoreflections.

Proof. If i is not a minimal free resolution, then without loss of generality, i = j i ′,
where i ′ : P→ F is close and injective, and j : F→ F is given by

j (a1, a2, . . . , an)= (ma1, a2, . . . , an),

with m 6= 1. We have then a short exact sequence

0−→ Fgp/ i ′(Pgp)−→ Fgp/ i(Pgp)−→ Fgp/(m, 1, . . . , 1)(Fgp)−→ 0.

Let N be the Cartier dual of Fgp/(m, 1, . . . , 1)(Fgp), which is a subgroup scheme
of 1. Letting {xi } be the standard basis of F , we see that

k[F]N = k[xm
1 , x2, . . . , xn],

and so V N , which is the degree 1 part of k[F]N , has codimension 1 in V . Therefore,
N is a pseudoreflection.

Conversely, suppose N is a pseudoreflection. Since N is a subgroup scheme of
1, it is diagonalizable as well. Let N = Spec k[B], where B is a finite abelian
group, and let ψ : A→ B be the induced map. We see that

V N
=

⊕
i 6= j

kxi

for some j . Without loss of generality, j = 1. It follows then that

{ f ∈ F | ψπ( f )= 0} = (m, 1, . . . , 1)F

for some m dividing |B|. Since the 1 action on V is assumed to be faithful, we
see, in fact, that m = |B|. Therefore, i factors through ·(m, 1, . . . , 1) : F −→ F ,
which shows that i is not a minimal free resolution. �

Having reinterpreted minimal free resolutions, the proof of Proposition 3.1 for
diagonalizable group schemes G follows easily from Iwanari’s work.

Proposition 3.4. Let G =1 be a finite diagonalizable group scheme over S which
acts faithfully on a finite-dimensional k-vector space V . Then Theorem 1.9 holds
when U = V∨ and x is the origin. In this case it is not necessary to shrink M to a
smaller Zariski neighborhood of the image of x.

Proof. Let F and P be as above, and let X = [U/1]. By Proposition 3.3, the
morphism i : P→ F is a minimal free resolution. [Iwanari 2009, Theorem 3.3 (1)
and Proposition 3.4] then show that the natural morphism X×M M0

→ M0 is an
isomorphism. Since X×M M0

= [U 0/1], we see U 0 is a 1-torsor over M0. �
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Finishing the proof. The goal of this subsection is to prove Proposition 3.1. The
main result used in the proof of this proposition, as well as in the proof of Theorem
1.9, is the following.

Proposition 3.5. Let notation and hypotheses be as in Theorem 1.9. Let X =U/1
and G = 1 o Q, where 1 is diagonalizable and Q is constant and tame. If in
addition to assuming that G acts without pseudoreflections at x , we assume that
1 is local and that the base change of U to X sm is a 1-torsor over X sm , then
after possibly shrinking M to a smaller Zariski neighborhood of the image of x ,
the quotient map f : X→ M is unramified in codimension 1.

Proof. Let g be the quotient map U→ X . For every q ∈ Q, consider the Cartesian
diagram

Zq //

��

U
1

��
U

0q // U ×U,

where 0q(u)= (u, qu). We see that Zq is a closed subscheme of U and that Zq(T )
is the set of u ∈U (T ) which are fixed by q . Let Z be the closed subset of U which
is the union of the Zq for q 6= 1. Since the action of G on U is faithful, Z is not
all of U . Let Z ′ be the union of the codimension 1 components of Z . Since f g
is finite, we see that f g(Z ′) is a closed subset of M . Moreover, f g(Z ′) does not
contain the image of x , as G is assumed to act without pseudoreflections at x . By
shrinking M to M− f g(Z ′), we can assume that no nontrivial q ∈ Q acts trivially
on a divisor of U .

Let U = Spec R. The morphism f is unramified in codimension 1 if and only
if the (traditional) inertia groups of all height 1 primes p of R1 are trivial. So, we
must show that if q ∈ Q acts trivially on V (p), then q = 1. Since g is finite, and
hence integral, the going-up theorem shows that

pR =Pe1
1 + · · ·+Pen

n ,

where the Pi are height 1 primes and the ei are positive integers. Note that X is
normal and so the complement of X sm in X has codimension at least 2. As a result,

h :U ×X Spec OX,p −→ Spec OX,p

is a 1-torsor. Since 1 is local, h is a homeomorphism of topological spaces, so
there is exactly one prime P lying over p. We see then that U ×X V (p)= V (Pe)

for some e.
Let V (p)0 be the intersection of V (p) with X sm , and let Z0

=U×X V (p)0. Then
Z0 is a 1-torsor over V (p)0. Since q acts trivially on V (p), we obtain an action of
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q on Z0 over V (p)0, and hence a group scheme homomorphism

ϕ : Q′V (p)0 −→Aut(Z0/V (p)0)=1V (p)0,

where Q′ denotes the subgroup of Q generated by q . Since V (p)0 is reduced,
we see that ϕ factors through the reduction of 1V (p)0 , which is the trivial group
scheme. Therefore, q acts trivially on Z0.

Since the complement of X sm in X has codimension at least 2, and since g
factors as a flat map U → [U/1] followed by a coarse space map [U/1] → X ,
both of which are codimension-preserving (see [Fantechi et al. 2007, Definition 4.2
and Remark 4.3]), we see that the complement of Z0 in V (Pe) has codimension
at least 2. Note that if Y is a normal scheme and W is an open subscheme of Y
whose complement has codimension at least 2, then any morphism from W to an
affine scheme Z extends uniquely to a morphism from Y to Z . Since the action of
q on V (Pe) restricts to a trivial action on Z0, the action of q on V (Pe) is trivial.
Therefore, q acts trivially on a divisor of U , and so q = 1. �

Proof of Proposition 3.1. Let k ′/k be a finite Galois extension such that Gk′ '

1o Q, where 1 is diagonalizable and Q is constant and tame. Let S′ = Spec k ′

and consider the diagram
U ′ //

��

U
��

M ′ //

��

M
��

S′ // S,

where the squares are Cartesian. We denote by x ′ the induced k ′-rational point
of U ′. Since 1 is the product of a local diagonalizable group scheme and a lo-
cally constant diagonalizable group scheme, replacing k ′ by a further extension if
necessary, we can assume that 1 is local.

Since G is stable, Gk′ has no pseudoreflections at x ′. It follows then from
Proposition 3.5 that there exists an open neighborhood W ′ of x ′ such that U ′×M ′

W ′−→W ′ is unramified in codimension 1. Since k ′/k is a finite Galois extension,
replacing W ′ by the intersection of the τ(W ′) as τ ranges over the elements of
Gal(k ′/k), we can assume W ′ is Galois-invariant. Hence, W ′ = W ×M M ′ for
some open subset W of M . We shrink M to W .

To check that U 0 is a G-torsor over M0, we can look étale-locally. We can
therefore assume S = S′. Let X = U/1, and let g : U → X and f : X → M be
the quotient maps. We denote by X0 the fiber product X ×M M0 and by f 0 the
induced morphism X0

→ M0.
By Proposition 3.4, we know that the base change of U to X sm is a1-torsor over

X sm . Since f is unramified in codimension 1, we see that f 0 is as well. Since M0
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is smooth and X0 is normal, the purity of the branch locus theorem [Grothendieck
and Raynaud 1971, X.3.1] implies that f 0 is étale, and hence a Q-torsor. Since X0

is étale over M0, it is smooth. As a result, U 0 is a 1-torsor over X0 from which it
follows that U 0 is a G-torsor over M0. �

This finishes the proof of Proposition 3.1, and hence also of Theorem 1.6. We
conclude this section by proving Corollary 1.8.

Proof of Corollary 1.8. Let U = Spec R and M = U/G. We denote by y the
image of x . Since G being generated by pseudoreflections at x implies that G K

is generated by pseudoreflections at x for arbitrary finite linearly reductive group
schemes G, and since smoothness of M at y can be checked étale-locally, we can
assume that x is k-rational. Let V = mx/m

2
x be the cotangent space of x . As G

is linearly reductive, there is a G-equivariant section of mx → V . This yields a
G-equivariant map Sym•(V )→ R, which induces an isomorphism k[[V ]]−→ ÔU,x

of G-representations. That is, complete locally, we have linearized the G-action.
Since ÔM,y = k[[V ]]G , the corollary follows from Theorem 1.6, as M is smooth at
y if and only if ÔM,y is a formal power series ring over k. �

4. Actions on smooth schemes

Having proved Theorem 1.9 for polynomial rings with linear actions, we now turn
to the general case. We begin with two preliminary lemmas and a technical propo-
sition.

Lemma 4.1. Let U be a smooth affine scheme over S with an action of a finite
diagonalizable group scheme 1. Then there is a closed subscheme Z of U on
which 1 acts trivially, with the property that every closed subscheme Y on which
1 acts trivially factors through Z. Furthermore, the construction of Z commutes
with flat base change on U/1.

Proof. Let U = Spec R and 1 = Spec k[A], where A is a finite abelian group
written additively. The 1-action on U yields an A-grading

R =
⊕
a∈A

Ra.

We see that if J is an ideal of R, then 1 acts trivially on Y = Spec R/J if and
only if J contains the Ra for a 6= 0. Letting I be the ideal generated by the Ra for
a 6= 0, we see that Spec R/I is our desired Z .

We now show that the formation of Z commutes with flat base change. Note
that

U/1= Spec R0.
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Let R′0 be a flat R0-algebra and let R′ = R′0 ⊗R0 R. The induced 1-action on
Spec R′ corresponds to the A-grading

R′ =
⊕
a∈A

(R′0⊗R0 Ra).

Since R′0 is flat over R0, we see that I⊗R0 R′0 is an ideal of R′, and one easily
shows that it is the ideal generated by the R′0⊗R0 Ra for a 6= 0. �

Recall that if G is a group scheme over a base scheme B which acts on a B-
scheme U , and if y : T→U is a morphism of B-schemes, then the stabilizer group
scheme G y is defined by the Cartesian diagram

G y //

��

G×B U
ϕ

��
T

y×y // U ×B U,

where ϕ(g, u) = (gu, u). If U is separated over B, then G y is a closed subgroup
scheme of GT .

Lemma 4.2. Let B be a scheme and G a finite flat group scheme over B. If G acts
on a B-scheme U , then U →U/G is a G-torsor if and only if the stabilizer group
schemes G y are trivial for all closed points y of U.

Proof. The “only if” direction is clear. To prove the “if” direction, it suffices to
show that the stabilizer group schemes G y are trivial for all scheme-valued points
y : T →U . This is equivalent to showing that the universal stabilizer Gu is trivial,
where u :U→U is the identity map. Since Gu is a finite group scheme over U , it
is given by a coherent sheaf F on U . The support of F is a closed subset, and so to
prove Gu is trivial, it suffices to check this on stalks of closed points. Nakayama’s
lemma then shows that we need only check the triviality of Gu on closed fibers.
That is, we need only check that the G y are trivial for closed points y of U . �

Proposition 4.3. Let U be a smooth affine scheme over S with a faithful action of
a stable group scheme G fixing a k-rational point x. If N has a pseudoreflection
at x , then there is an étale neighborhood T −→ U/G of x and a divisor D of UT

defined by a principal ideal on which NT acts trivially.

Proof. Let M = U/G and let y be the image of x in M . As in the proof of
Corollary 1.8, we have an isomorphism k[[V ]] −→ ÔU,x of G-representations,
where V = mx/m

2
x . If N is a pseudoreflection at x , then there is some v ∈ V

such that N acts trivially on the closed subscheme of Spec k[[V ]] defined by the
prime ideal generated by v.

Consider the contravariant functor F which sends an M-scheme T to the set of
divisors of UT defined by a principal ideal on which NT acts trivially. As F is
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locally of finite presentation and U ×M Spec ÔM,y = Spec ÔU,x , Artin’s approxi-
mation theorem [Artin 1969] finishes the proof. �

We are now ready to prove Theorem 1.9. Our method of proof is similar to that
of Proposition 3.1; we first prove the theorem in the case that G is diagonalizable
and then make use of this case to prove the theorem in general.

Proposition 4.4. Theorem 1.9 holds when G =1 is a finite diagonalizable group
scheme.

Proof. Let g : U → M be the quotient map. Since any subgroup scheme N of
1 is again finite diagonalizable, Lemma 4.1 shows that for every N , there exists
a closed subscheme Z N of U on which N acts trivially, with the property that
every closed subscheme Y on which N acts trivially factors through Z N . Let Z
be the union of the finitely many closed subsets Z N for N 6= 1. Since the action
of 1 on U is faithful, Z has codimension at least 1. Let Z ′ be the union of all
irreducible components of Z which have codimension 1. Since 1 acts without
pseudoreflections at x , we see x /∈ Z ′. Note that g(Z ′) is closed as g is proper.
Since the construction of Z commutes with flat base change on M and since flat
morphisms are codimension-preserving, replacing M with M − g(Z ′), we can as-
sume that there are no nontrivial subgroup schemes of 1 which fppf locally on M
act trivially on a divisor of U .

By Lemma 4.2, to show U 0 is a 1-torsor over M0, it suffices to show that for
every closed point y of U which maps to M0, the stabilizer group scheme 1y is
trivial. Fix such a closed point y and let T = Spec k(y). Since T is fppf over S, we
see from Proposition 4.3 that the closed subgroup scheme1y of1T acts faithfully
on UT without pseudoreflections at the k(y)-rational point y′ of UT induced by y.
Since y maps to a smooth point of M , it follows that y′ maps to a smooth point
of MT . Corollary 1.8 then shows that 1y is generated by pseudoreflections. Since
1y has no pseudoreflections, it is therefore trivial. �

Proof of Theorem 1.9. If G =1o Q, where 1 is diagonalizable and Q is constant
and tame, then letting Z ′ be as in Proposition 4.4 and letting U , X , f , and g be
as in the proof of Proposition 3.1, the proof of Proposition 4.4 shows that after
replacing M by M− f g(Z ′), the base change of U to X sm is a 1-torsor over X sm .
As in the proof of Proposition 3.1, we can then reduce the general case to the case
when G = 1o Q, where 1 is local diagonalizable and Q is constant tame. The
last paragraph of the proof of Proposition 3.1 then shows that U 0 is a G-torsor
over M0. �

5. Schemes with linearly reductive singularities

Let k be a perfect field of characteristic p.
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Definition 5.1. We say a scheme M over S has linearly reductive singularities if
there is an étale cover {Ui/Gi → M}, where the Ui are smooth over S and the Gi

are linearly reductive group schemes which are finite over S.

Note that if M has linearly reductive singularities, then it is automatically normal
and, in fact, Cohen–Macaulay by [Hochster and Roberts 1974, page 115].

Our goal in this section is to prove Theorem 1.10, which generalizes the re-
sult that every scheme with quotient singularities prime to the characteristic is the
coarse space of a smooth Deligne–Mumford stack. We remark that in the case of
quotient singularities, the converse of the analogous theorem is true as well; that is,
every scheme which is the coarse space of a smooth Deligne–Mumford stack has
quotient singularities. It is not clear, however, that the converse of Theorem 1.10
should hold. We know from [Abramovich et al. 2008, Theorem 3.2] that X is
étale-locally [V/G0], where G0 is a finite flat linearly reductive group scheme
over V/G0, but V need not be smooth and G0 need not be the base change of a
group scheme over S. On the other hand, Proposition 5.2 below shows that X is
étale-locally [U/G] where U is smooth and G is a group scheme over S, but here
G is not finite.

Before proving Theorem 1.10, we begin with a technical proposition followed
by a series of lemmas.

Proposition 5.2. Let X be a tame stack over S with coarse space M. Then there
exists an étale cover T → M such that

X×M T = [U/Gr
m,T o H ],

where H is a finite constant tame group scheme and U is affine over T . Further-
more, Gr

m,T o H is the base change to T of a group scheme Gr
m,S o H over S, so

X×M T = [U/Gr
m,S o H ].

Proof. [Abramovich et al. 2008, Theorem 3.2] shows that there exists an étale
cover T → M and a finite flat linearly reductive group scheme G0 over T acting
on a finite finitely presented scheme V over T such that

X×M T = [V/G0].

By [Abramovich et al. 2008, Lemma 2.20], after replacing T by a finer étale cover
if necessary, we can assume there is a short exact sequence

1−→1−→ G0 −→ H −→ 1,

where 1 = Spec OT [A] is a finite diagonalizable group scheme and H is a finite
constant tame group scheme. Since 1 is abelian, the conjugation action of G0 on
1 passes to an action

H −→ Aut(1)= Aut(A).
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Choosing a surjection F→ A in the category of Z[H ]-modules from a free module
F yields an H -equivariant morphism 1 ↪→ Gr

m,T . Using the H -action on Gr
m,T ,

we define the group scheme Gr
m,T o G0 over T . Note that there is an embedding

1 ↪→ Gr
m,T o G0

sending δ to (δ, δ−1), which realizes1 as a normal subgroup scheme of Gr
m,T oG0.

We can therefore define

G := (Gr
m,T o G0)/1.

One checks that there is a commutative diagram

1 // 1 //

��

G0
//

��

H //

id
��

1

1 // Gr
m,T

// G
π // H // 1,

where the rows are exact and the vertical arrows are injective.
We show that, étale-locally on T , there is a group scheme-theoretic section of

π , so that G = Gr
m,T o H . Let P be the sheaf on T such that for any T -scheme

W , P(W ) is the set of group scheme-theoretic sections of πW : GW → HW . Note
that the sheaf Hom(H,G) parametrizing group scheme homomorphisms from H
to G is representable since it is a closed subscheme of G×|H | cut out by suitable
equations. We see that P is the equalizer of the two maps

Hom(H,G)
p1 //
p2

// H×|H |,

where p1(φ)= (πφ(h))h and p2(φ)= (h)h . That is, there is a Cartesian diagram

P //

��

Hom(H,G)
(p1,p2)��

H×|H |
1 // H×|H |× H×|H |.

Since H is separated over T , we see that P is a closed subscheme of Hom(H,G).
In particular, it is representable and locally of finite presentation over T . Further-
more, P→ T is surjective as [Abramovich et al. 2008, Lemma 2.16] shows that it
has a section fppf locally. To show P has a section étale locally, by [Grothendieck
1967, 17.16.3], it suffices to prove P is smooth over T .

Given a commutative diagram

X0 = Spec A/I //

��

P

��
X = Spec A //

66lllll
T,
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with I a square zero ideal, we want to find a dotted arrow making the diagram
commute. That is, given a group scheme-theoretic section s0 : GW0 → HW0 of
πW0 , we want to find a group scheme homomorphism s : GW → HW which pulls
back to s0 such that πW ◦ s is the identity. Note first that any group scheme ho-
momorphism s which pulls back to s0 is automatically a section of πW since H
is a finite constant group scheme and πW ◦ s pulls back to the identity over W0.
By [Grothendieck 1970, Exposé III 2.3], the obstruction to lifting s0 to a group
scheme homomorphism lies in

H 2(H,Lie(G)⊗I),

which vanishes as H is linearly reductive. This proves the smoothness of P .
To complete the proof of the lemma, let U := V ×G0 G and note that

X×M T = [V/G0] = [U/G].

Since V is finite over T and G is affine over T , it follows that U is affine over T
as well. Replacing T by a finer étale cover if necessary, we have

X×M T = [U/Gr
m,T o H ].

Lastly, the scheme underlying Gr
m,T o H is Gr

m,T×T H and its group scheme struc-
ture is determined by the action H → Aut(Gr

m,T ). Since Aut(Gr
m,T ) = Aut(Zr ),

we can use this same action to define the semidirect product Gr
m,S o H and it is

clear that this group scheme base changes to Gr
m,T o H . �

Lemma 5.3. If V is a smooth S-scheme with an action of finite linearly reductive
group scheme G0 over S, then [V/G0] is smooth over S.

Proof. Let X= [V/G0]. To prove X is smooth, it suffices to work étale-locally on
S, where, by [Abramovich et al. 2008, Lemma 2.20], we can assume G0 fits into
a short exact sequence

1−→1−→ G0 −→ H −→ 1,

where 1 is a finite diagonalizable group scheme and H is a finite constant tame
group scheme. Let G be obtained from G0 as in the proof of Proposition 5.2 and
let U = V ×G0 G. Since X= [U/G], it suffices to show U is smooth over S. The
action of G0 on V ×G, given by g0 · (v, g)= (vg0, g0g), is free as the G0-action
on G is free. As a result, U = [(V × G)/G0] and G/G0 = [G/G0]. Since the
projection map p : V ×G→ G is G0-equivariant, we have a Cartesian diagram

V ×G
p //

��

G

��
U

q // G/G0.
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Since p is smooth, q is as well. Since G → [G/G0] = G/G0 is flat and G is
smooth, [Grothendieck 1967, 17.7.7] shows that G/G0 is smooth, and so U is as
well. �

Lemma 5.4. Let X be a smooth S-scheme and i : U ↪→ X an open subscheme
whose complement has codimension at least 2. Let P be a G-torsor on U , where
G = Gr

m o H and H is a finite constant étale group scheme. Then P extends
uniquely to a G-torsor on X.

Proof. The structure map from P to U factors as P → P0 → U , where P is a
Gr

m-torsor over P0 and P0 is an H -torsor over U . Since the complement of U in X
has codimension at least 2, we have π1(U ) = π1(X) and so P0 extends uniquely
to an H -torsor Q0 on X . Let i0 : P0 ↪→ Q0 be the inclusion map. Since Q0 is
smooth and the complement of P0 in Q0 has codimension at least 2, the natural
map Pic(Q0)→Pic(P0) is an isomorphism. It follows that any line bundle over P0

can be extended uniquely to a line bundle over Q0. We can therefore inductively
construct a unique lift of P over X . �

Our proof of the following lemma closely follows that of [Fantechi et al. 2007,
Theorem 4.6].

Lemma 5.5. Let f : Y→ M be an S-morphism from a smooth tame stack Y to
its coarse space which pulls back to an isomorphism over the smooth locus M0 of
M. If h :X→ M is a dominant, codimension-preserving morphism (see [Fantechi
et al. 2007, Definition 4.2]) from a smooth tame stack, then there is a morphism
g : X→ Y, unique up to unique isomorphism, such that f g = h.

Proof. We show that if such a morphism g exists, then it is unique. Suppose
g1 and g2 are two such morphisms. We see then that g1

∣∣
h−1(M0)

= g2
∣∣
h−1(M0)

.
Since h is dominant and codimension-preserving, h−1(M0) is open and dense in X.
[Fantechi et al. 2007, Proposition 1.2] shows that if X and Y are Deligne–Mumford
with X normal and Y separated, then g1 and g2 are uniquely isomorphic. The
proof, however, applies equally well to tame stacks since the only key ingredient
used about Deligne–Mumford stacks is that they are locally [U/G] where G is a
separated group scheme.

By uniqueness, to show the existence of g, we can assume by Proposition 5.2
that Y=[U/G], where U is smooth and affine, and G=Gr

moH , where H is a finite
constant tame group scheme. Let p :V→X be a smooth cover by a smooth scheme.
Since smooth morphisms are dominant and codimension-preserving, uniqueness
implies that to show the existence of g, we need only show there is a morphism
g1 : V → Y such that f g1 = hp. So, we can assume X= V .

Given a stack Z over M , let Z0
= M0

×M Z. Given a morphism π : Z1→ Z2

of M-stacks, let π0
: Z0

1 → Z0
2 denote the induced morphism. Since f 0 is an
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isomorphism, there is a morphism g0
: V 0
→ Y0 such that f 0g0

= h0. It follows
that there is a G-torsor P0 over V 0 and a G-equivariant map from P0 to U 0 such
that the diagram

P0 //

��
U 0

��
V 0

��

// Y0

'xx
M0

commutes and the square is Cartesian. By Lemma 5.4, P0 extends to a G-torsor
P over V .

Note that if X is a normal algebraic space and i :W ↪→ X is an open subalgebraic
space whose complement has codimension at least 2, then any morphism from W
to an affine scheme Y extends uniquely to a morphism X → Y . As a result, the
morphism from P0 to U 0 extends to a morphism q : P→U . Consider the diagram

G× P
id×q //

��

G×U

��
P

q // U,

where the vertical arrows are the action maps. Precomposing either of the two
maps in the diagram from G × P to U by the inclusion G × P0 ↪→ G × P yields
the same morphism. That is, the two maps from G × P to U are both extensions
of the same map from G × P0 to the affine scheme U , and hence are equal. This
shows that q is G-equivariant, and therefore yields a map g : V → Y such that
f g = h. �

Proof of Theorem 1.10. We begin with the following observation. Suppose U is
smooth and affine over S with a faithful action of a finite linearly reductive group
scheme G over S. Let y be a closed point of U mapping to x ∈U/G. After making
the étale base change Spec k(y)→ S, we can assume y is a k-rational point. Let
G y be the stabilizer subgroup scheme of G fixing y. Since

U/G y −→U/G

is étale at y, replacing U/G by an étale cover, we can further assume that G fixes
y. Then by Corollary 1.8, we can assume G has no pseudoreflections at y, and,
hence, Theorem 1.9 shows that after shrinking U/G about x , we can assume that
the base change of U to the smooth locus of U/G is a G-torsor.

We now turn to the proof. Since M has linearly reductive singularities, there is
an étale cover {Ui/Gi→M}, where Ui is smooth and affine over S and Gi is a finite
linearly reductive group scheme over S which acts faithfully on Ui . By the above
discussion, replacing this étale cover by a finer étale cover if necessary, we can
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assume that the base change of Ui to the smooth locus of Ui/Gi is a Gi -torsor. Let
Mi =Ui/Gi and Xi = [Ui/Gi ]. We see that the Xi are locally the desired stacks,
so we need only glue the Xi . Let Mi j = Mi ×M M j and let Vi → Xi be a smooth
cover. Since Mi j is the coarse space of both Xi×Mi Mi j and X j×M j Mi j , and since
coarse space maps are dominant and codimension-preserving, Lemma 5.5 shows
that there is a unique isomorphism of Xi ×Mi Mi j and X j ×M j Mi j . Identifying
these two stacks via this isomorphism, let Ii j be the fiber product over the stack of
Vi×Mi Mi j and V j×M j Mi j . We see then that we have a morphism Ii j→Ui×M U j .
This yields a groupoid ∐

Ii j −→
∐

Ui ×M U j ,

which defines our desired glued stack X. Note that X is smooth and tame by
[Abramovich et al. 2008, Theorem 3.2]. �
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The minimal resolution conjecture for
points on del Pezzo surfaces

Rosa M. Miró-Roig and Joan Pons-Llopis

Mustat,ă (1997) stated a generalized version of the minimal resolution conjecture
for a set Z of general points in arbitrary projective varieties and he predicted
the graded Betti numbers of the minimal free resolution of IZ . In this paper,
we address this conjecture and we prove that it holds for a general set Z of
points on any (not necessarily normal) del Pezzo surface X ⊆ Pd — up to three
sporadic cases — whose cardinality |Z | sits into the interval [PX (r − 1),m(r)]
or [n(r), PX (r)], r ≥ 4, where PX (r) is the Hilbert polynomial of X , m(r) :=
1
2 dr2
+

1
2r(2− d) and n(r) := 1

2 dr2
+

1
2r(d − 2). As a corollary we prove: (1)

Mustat,ă’s conjecture for a general set of s ≥ 19 points on any integral cubic
surface in P3; and (2) the ideal generation conjecture and the Cohen–Macaulay
type conjecture for a general set of cardinality s ≥ 6d+1 on a del Pezzo surface
X ⊆ Pd .

1. Introduction

Given a general set Z of s distinct points in Pn it is a long-standing problem in
algebraic geometry to find out the exact shape of the minimal free resolution of its
saturated ideal IZ . It is well-known that it has to be of the form

0→ Fn→ · · · → F1→ IZ → 0

with
Fi ∼= R(−r − i)bi,r ⊕ R(−r − i + 1)bi,r−1,

where R is the coordinate ring of Pn and r is the unique nonnegative integer such
that

(r+n−1
n

)
≤ s <

(r+n
n

)
. Moreover,

bi+1,r−1− bi,r =

(
r + i − 1

i

)(
r + n
n− i

)
− s

(
n
i

)
.

The first author was partially supported by MTM2010-15256. The second author was supported by
the research project MTM2009-06964.
MSC2000: primary 13D02; secondary 13D40, 14M05.
Keywords: minimal free resolutions, del Pezzo surfaces, G-liaison.
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The minimal resolution conjecture (MRC, for short) stated in [Lorenzini 1993]
says that this resolution has no ghost terms, that is, bi+1,r−1bi,r = 0 for all i . The
MRC is known to hold for n ≤ 4 [Gaeta 1951; Ballico and Geramita 1986; Walter
1995] and for large values of s for any n [Hirschowitz and Simpson 1996] but it is
false in general: Eisenbud, Popescu, Schreyer and Walter showed that it fails for
any n ≥ 6, n 6= 9 (see [Eisenbud et al. 2002]).

Besides MRC, two weaker conjectures have been stated concerning the initial
and ending terms of the minimal free resolution of an ideal of points: the ideal
generation conjecture (IGC for short), which says that the minimal number of
generators of the ideal of a general set of points will be as small as possible; this
conjecture can be translated in terms of the Betti numbers saying that b1,r b2,r−1=0.
At the other extreme of the resolution the Cohen–Macaulay type conjecture (CMC
for short) affirms that the canonical module ExtnR(R/IZ , R(−n − 1)) has as few
generators as possible, i.e., bn−1,r bn,r−1 = 0.

Mustat,ă [1998] introduced a generalized version of MRC for points in arbitrary
projective varieties (see Section 2 for a precise statement). Roughly speaking, it
says that given a projective variety X ⊆Pn , the minimal free resolution of the ideal
of any general set of points on X is determined by the resolution of the ideal of X .
When X = Pn , this formulation coincides with the original Lorenzini’s statement.
Giuffrida, Maggioni and Ragusa proved that this generalized conjecture holds for
any general set of points when X is a smooth quadric surface in P3 [Giuffrida
et al. 1996]. Casanellas [2009] proved that this conjecture holds for some special
cardinalities of sets of general points on a smooth cubic surface. In [Miró-Roig
and Pons-Llopis 2012] we showed that it also holds for any general set of at least
19 points on a smooth cubic surface in P3; Migliore and Patnott have been able to
prove this for sets of general distinct points of any cardinality on a cubic surface
X ⊆P3 given that X is smooth or has at most isolated double points [Migliore and
Patnott 2011, Theorem 1]. For the case of nonreduced 0-dimensional schemes see
[Miró-Roig and Pons-Llopis 2012].

The goal of this paper it to prove MRC for general points on a del Pezzo sur-
face (X,OX (1)), i.e., an integral arithmetically Gorenstein (not necessarily normal)
surface with a very ample line bundle OX (1) such that its dualizing sheaf verifies
ωX ∼= OX (−1). This kind of variety has been studied thoroughly by Fujita [1990]
in connection with his theory of 1-genus. He defines the 1-genus of a polarized
variety (X,OX (1)) of dimension n as 1(X,OX (1)) := n+OX (1)n−h0(X,OX (1)).
In his terminology, del Pezzo varieties are ACM varieties of 1-genus one.

The main technique used in this paper is the theory of Gorenstein liaison (see
Section 2 for a brief account). Roughly speaking, knowing that two sets of points
are G-linked will allow to pass from the minimal resolution of the ideal of one of
them to the resolution of the other one (mapping cone procedure). Then once MRC
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is known to hold for a general set of d + 2 points on a del Pezzo surface X ⊆ Pd

an induction process will provide us with our main theorems (4.2, 4.3 and 4.4).
Let us briefly explain how this paper is organized. In Section 2 we introduce

the background and main techniques needed, including general facts on del Pezzo
surfaces and basic results on G-liaison. In Section 3 we establish MRC for sets of
general points of two specific cardinalities,

m(r) := 1
2 dr2
+

1
2r(2− d) and n(r) := 1

2 dr2
+

1
2r(d − 2),

with r ≥ 2, on a del Pezzo surface X ⊂ Pd (up to four sporadic cases). We first
establish the result for m(2) points on X , which gives the initial step of our in-
duction (Lemma 3.5). An easy remark gives us that if n(r) general points on X
have the expected resolution then n(r)+ 1 general points do as well. Then, using
G-liaison, we prove that if m(r) general points on a del Pezzo surface X satisfy
MRC then so do n(r) general points (Proposition 3.6). Finally, again using G-
liaison, we show that if n(r)+1 general points on a del Pezzo surface satisfy MRC
then so do m(r + 1) (Proposition 3.8). Section 4 contains the main results of this
paper: namely that MRC holds on a del Pezzo surface (up to three of the four
sporadic cases just mentioned) for general sets of points whose cardinality falls
in the intervals [PX (r − 1),m(r)] and [n(r), PX (r)] for any r ≥ 4 = reg X + 1,
with PX (r) the Hilbert polynomial (see Theorem 4.2). As a corollary, we will
get that Mustat,ă’s conjecture holds for any general set of at least 19 points on a
cubic surface in P3 (Theorem 4.4) and the ideal generation conjecture as well as
the Cohen–Macaulay type conjecture holds for any general set of at least 6d + 1
points on a del Pezzo surface in Pd (Theorem 4.3).

2. Preliminaries

We work over an algebraically closed field k of characteristic zero. We set R =
k[X0, . . . , Xn] and denote the associated projective space by Pn

:=Proj(R). Given
closed subschemes Y ⊆ X ⊆ Pn , we denote the ideal sheaf of Y in X by IY |X

and the homogeneous saturated ideal by IY |X := H0
∗
(X,IY |X ) (or simply IY when

X = Pn). We denote by RX the homogeneous coordinate ring of X , defined as
k[X0, . . . , Xn]/IX . For any coherent sheaf E on X we denote the twisted sheaf
E⊗ OX (l) by E(l). As usual, Hi (X,E) stands for the i-th cohomology group and
hi (X,E) for its dimension. We use the notation Hi

∗
(E) for the graded R-module⊕

l∈Z Hi (Pn
k ,E(l)) and ωX will stand for the dualizing sheaf. The Hilbert function

and Hilbert polynomial of X are denoted, respectively, by HX (t) and PX (t)∈Q[t].
The regularity of X is defined to be that of IX ; i.e., reg X ≤ m if and only if
Hi (Pn,IX (m − i)) = 0 for i ≥ 1. By [Eisenbud 2005, Chapter IV, Theorem 4.2]
we know that PX (t)= HX (t) for any t ≥ reg X−1+δ−n, where δ is the projective
dimension of RX . By a variety we mean an integral and proper scheme over k.



30 Rosa M. Miró-Roig and Joan Pons-Llopis

Definition 2.1. Let X ⊆ Pn be a subscheme with minimal graded free resolution

F• : 0→ Fn+1
dn+1
−→ Fn→ · · · → F1

d1
−→ F0

d0
−→ R/IX → 0.

The graded Betti numbers bi j (X) are defined by

Fi =
⊕
j∈Z

R(−i − j)bi j (X), i.e., bi j (X)= dimk Tori (R/IX , k)i+ j

and the Betti diagram of X has in the (i, j)-th position the Betti number bi j (X).

Remark 2.2. The free resolution F• is minimal if, after choosing basis of Fi , the
matrices representing di do not have any nonzero scalar.

Mustat,ă [1998] predicted the minimal free resolution of a general set of points
Z in an arbitrary projective variety X ; he proved that the first rows of the Betti
diagram of Z coincide with the Betti diagram of X and that there are two extra
nontrivial rows at the bottom. He also gave lower bounds for the Betti numbers
in these last two rows and the minimal resolution conjecture (MRC) for points on
a projective variety states that these lower bounds are attained for a general set of
points. Let us recall it.

Theorem 2.3 [Mustat,ǎ 1998]. Let X ⊆ Pn be a projective variety with dim X ≥ 1
and reg X =m. Let s be an integer with PX (r−1)≤ s< PX (r) for some r ≥m+1
and let Z be a set of s general points on X. If

0→ Fn→ Fn−1→ · · · → F2→ F1→ R→ R/IX → 0

is a minimal free R-resolution of R/IX , then R/IZ has a minimal free R-resolution
of the type

0→ Fn ⊕ R(−r − n+ 1)bn,r−1 ⊕ R(−r − n)bn,r

→ · · · → F2⊕ R(−r − 1)b2,r−1 ⊕ R(−r − 2)b2,r

→ F1⊕ R(−r)b1,r−1 ⊕ R(−r − 1)b1,r → R→ R/IZ → 0;

moreover,

bi+1,r−1(Z)−bi,r (Z)=
dim X−1∑

l=0

(−1)l
(

n−l−1
i−l

)
1l+1 PX (r+l)−

(
n
i

)
(s−PX (r−1)).

The minimal resolution conjecture (MRC for short) says that bi+1,r−1 · bi,r = 0
for i = 1, . . . , n− 1. Related to it are two weaker conjectures that deal only with
a part of the minimal resolution of a general set of points: the ideal generation
conjecture (IGC for short), which says that the minimal number of generators of
the ideal of a general set of points will be as small as possible; this conjecture can
be translated in terms of the Betti numbers saying that b1,r b2,r−1 = 0. At the other
extreme of the resolution the Cohen–Macaulay type conjecture (CMC for short)



The minimal resolution conjecture for points on del Pezzo surfaces 31

affirms that the canonical module ExtnR(R/IZ , R(−n − 1)) has as few generators
as possible, i.e., bn−1,r bn,r−1 = 0.

One of the main tools used in this paper is Gorenstein liaison theory. We recall
its main features, of this theory referring the reader to [Kleppe et al. 2001] for a
complete account.

Definition 2.4. A closed subscheme X ⊆ Pn of dimension r is said to be Arith-
metically Cohen–Macaulay (briefly, ACM) if its homogeneous coordinate ring RX

is a Cohen–Macaulay ring or, equivalently, dim RX = depth RX .

Thanks to the graded version of the Auslander–Buchsbaum formula (for any
finitely generated R-module M):

pd(M)= n+ 1− depth(M),

we deduce that a subscheme X ⊆Pn is ACM if and only if the projective dimension
of RX is equal to the codimension of X ; i.e.,

pd(RX )= codim X. (2-1)

Hence, if X ⊆ Pn is a codimension c ACM subscheme, a graded minimal free
R-resolution of IX is of the form:

0→ Fc→ Fc−1→ · · · → F1→ IX → 0

where Fi =
⊕

j∈Z R(− j)βi, j , i = 1, . . . , c.

Definition 2.5. If X ⊆ Pn is an ACM subscheme then, the rank of the last free R-
module in a minimal free R-resolution of IX is called the Cohen–Macaulay type
of X .

Definition 2.6. A codimension c subscheme X of Pn is arithmetically Gorenstein
(briefly AG) if its homogeneous coordinate ring RX is a Gorenstein ring or, equiva-
lently, its saturated homogeneous ideal, IX , has a minimal free graded R-resolution
of the following type:

0→ R(−t)→
αc−1⊕
i=1

R(−nc−1,i )→ · · · →
α1⊕

i=1
R(−n1,i )→ IX → 0.

In other words, an AG scheme is an ACM scheme with Cohen–Macaulay type 1.

Any zero-dimensional scheme is ACM. For varieties of higher dimension we
have the following characterization:

Lemma 2.7. If dim X ≥ 1, then X ⊆ Pn is ACM if and only if Hi
∗
(IX ) = 0 for

1≤ i ≤ dim X.

The following remark will be used without further mention throughout the paper:
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Remark 2.8. Let X ⊆ Pn be an ACM variety of dimension ≥ 1 and let Y ⊆ X be
any subvariety. Then the saturated ideal IY |X equals IY |Pn/IX |Pn .

Definition 2.9. Two subschemes X1 and X2 of Pn are directly Gorenstein linked
(directly G-linked for short) by an AG scheme G ⊆ Pn if IG ⊆ IX1 ∩ IX2 and

[IG : IX1] = IX2, [IG : IX2] = IX1 .

We say that X2 is residual to X1 in G. When G is a complete intersection we talk
about a C I -link.

When X1 and X2 do not share any component, being directly G-linked by an
AG scheme G is equivalent to G = X1 ∪ X2.

Usually it is not easy to find out AG schemes to work with. The following
theorem gives a useful way to construct them. Notice that, since we will want
to work with varieties that can even be nonnormal, we will have to work in the
framework of generalized divisors as introduced in [Hartshorne 1994; 2007]. The
only general requirements to be fulfilled in order to work in this context are that
the schemes satisfy conditions S2 and G1.

Definition 2.10. A subscheme X ⊆Pn satisfies the condition Gr if every localiza-
tion of RX of dimension ≤ r is a Gorenstein ring. Usually this property is quoted
as “Gorenstein in codimension ≤ r”, i.e., the non locally Gorenstein locus has
codimension ≥ r + 1. In particular, G0 is generically Gorenstein.

Theorem 2.11 (compare [Kleppe et al. 2001, Lemma 5.4]). Let S⊆Pn be an ACM
scheme satisfying condition G1. Denote by KS the canonical divisor and by HS a
general hyperplane section of S. Then any effective divisor in the linear system
|m HS − KS| is arithmetically Gorenstein.

The main feature of G-liaison exploited in this paper is that through the mapping
cone procedure it is possible to pass from the free resolution of a scheme X1 to the
free resolution of its residual X2 on an arithmetically Gorenstein scheme. Let us
recall how it works [Weibel 1994]:

Lemma 2.12 (mapping cone procedure). Let

0→ M
α
−→ N → P→ 0

be a short exact sequence of finitely generated R-modules and let us consider free
resolutions

e• : 0→ Gn+1
en+1
−→ Gn→ · · ·

e1
−→ G0

e0
−→ M→ 0

and
d• : 0→ Fn+1

dn+1
−→ Fn→ · · ·

d1
−→ F0

d0
−→ N → 0.
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Then the morphism α lifts to a morphism between the resolutions α• : e•→ d•
and a (not necessarily minimal) free resolution for P is

0→ Gn+1
cn+2
→ Gn ⊕ Fn+1

cn+1
→ · · ·

c3
→ G1⊕ F2

c2
→ G0⊕ F1

c1
→ F0

c0
→ P→ 0,

where

ci+1 =

(
−ei 0
αi di+1

)
for 1≤ i ≤ n.

Lemma 2.13. Let V1, V2 ⊆ Pn be two ACM schemes of codimension c directly
G-linked by an AG scheme W . Let the minimal free resolutions of IV1 and IW be

0→ Fc
dc
−→ Fc−1

dc−1
−→ · · · F1

d1
−→ IV1 → 0

and
0→ R(−t)

ec
−→ Gc−1

ec−1
−→ · · ·G1

e1
−→ IW → 0

respectively. Then the functor Hom(−, R(−t)) applied to a free resolution of
IV1/IW gives a (not necessarily minimal) resolution of IV2 :

0→ F∨1 (−t)→ F∨2 (−t)⊕G∨1 (−t)→ · · · → F∨c (−t)⊕G∨c−1(−t)→ IV2 → 0.

Let us finish this section introducing the family of varieties that we deal with
throughout this paper.

Definition 2.14. A del Pezzo surface is a nondegenerate 2-dimensional projective
variety X ⊆Pd that is locally Gorenstein and such that its canonical sheaf verifies
ωX ∼= OX (−1).

As examples of del Pezzo surfaces, we can consider any integral cubic surface
in P3 or any complete intersection of two quadrics in P4. Notice that there exists
a more general definition of del Pezzo surface for which it is only required that
ω−1

X is ample. Smooth surfaces with ample anticanonical sheaf are classically
classified; see, for example, [Manin 1986, Chapter IV, Theorems 24.3 and 24.4] or
[Dolgachev 2010, Corollary 8.1.17].

Any del Pezzo surface X ⊆ Pd satisfies deg(X) = d = codim(X)+ 2. Recall
that given a nondegenerate projective variety X ⊆Pd it always holds that1(X) :=
deg X+dim X−h0(OX (1))≥ 0. It is a classical result the classification of minimal
varieties, i.e., varieties for which there is equality in the previous expression (see,
for instance, [Dolgachev 2010, Theorem 8.1.1]). Moreover, in the setting of his
theory of 1-genus, Fujita has also a satisfactory classification of quasiminimal
varieties, i.e., varieties X satisfying 1(X) = 1. In his terminology, del Pezzo
surfaces correspond to quasiminimal surfaces with sectional genus one (i.e., the
arithmetic genus of a general hyperplane section is one). For more details see
[Fujita 1990].
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Any del Pezzo surface is ACM [Fujita 1990, (6.4)]. Therefore, according to
[Hoa 1993, Theorem 1], the minimal free resolution of the coordinate ring of a del
Pezzo surface X ⊆ Pd has the form:

0→ R(−d)→ R(−d + 2)αd−3 → · · · → R(−2)α1 → R→ RX → 0 (2-2)

where

αi = i
(

d − 1
i + 1

)
−

(
d − 2
i − 1

)
for 1≤ i ≤ d − 3.

Notice that X turns out to be AG and, in particular, αi = αd−2−i for all i =
1, . . . , d − 2.

3. The minimal resolution conjecture for sets of m(r) and n(r) general points

The goal of this section is to prove MRC for general sets of points of two specific
cardinalities

m(r) := 1
2 dr2
+

1
2r(2− d) and n(r) := 1

2 dr2
+

1
2r(d − 2)

on a del Pezzo surface X . Since the structure of our proof requires that X contains
at least a line L and moreover that the elements of the linear system |L + r H |
satisfy condition G1 in order to apply the theory of generalized divisors, we need
to exclude the four cases X ∼= P2, X ∼= P1

×P1, X ∼= F2 := P(OP1 ⊕ OP1(−2)),
and X the Bordello surface, a complete intersection of two quadrics on P4 with a
double line. Therefore, in this section X ⊆Pd will stand for any del Pezzo surface
as was defined in Definition 2.14 except the four aforementioned sporadic cases.
The Hilbert polynomial and the regularity of X can be easily computed using (2-2):
PX (r)= 1

2 d(r2
+ r)+ 1 and reg X = 3. Notice that

PX (r − 1) < m(r) < n(r) < PX (r). (3-1)

We also set the following notation.

(i) L is any line on X .

(ii) H denotes a general hyperplane section of X .

(iii) If C is a curve on X , HC will be a general hyperplane section of C and KC

the canonical divisor on C .

The strategy for finding the minimal free resolution for a general set of points
with cardinality n(r) or m(r), for r ≥ 2, is as follows. First we establish the
result for m(2) = d + 2 points, which gives the starting point for our induction
process. Then, using G-liaison, we prove that if m(r) general points on any del
Pezzo surface satisfy MRC then so do n(r) general points. Next we observe that if
n(r) general points on X have the expected minimal free resolution then n(r)+ 1
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general points do as well. And, finally, we show that if n(r)+ 1 general points on
a del Pezzo surface satisfy MRC then so do m(r + 1).

We will prove the result via a series of lemmas and propositions. Since the
shape of the minimal free resolution of the homogeneous ideal IX |P3 of a del Pezzo
surface of degree 3 is slightly different from that of a del Pezzo surface of degree
d ≥ 4 we need to consider the two cases separately in some arguments. We will
give complete proofs in the case of degree d ≥ 4. The concrete arguments on the
case of degree 3 are analogous but much easier to write down and will therefore
be left to the reader.

Lemma 3.1. Let X ⊆ Pd be any del Pezzo surface of degree d ≥ 4 and take C ∈
|(r + ε)H |, r ≥ 2, ε ∈ {0, 1}. Then, any effective divisor G in the linear system
|r HC | is AG and it has a minimal free resolution of the following form:

0→ R(−2r−d−ε)→ R(−2r−d+2−ε)αd−3⊕R(−r−d)2−ε⊕R(−r−d−1)ε

→ · · · → Mi → R(−2r−ε)⊕R(−r−2)(2−ε)α1⊕R(−r−3)εα1

→ M1 := R(−r)2−ε⊕R(−r−1)ε→ IG|X → 0,

where Mi := R(−2r − i+1− ε)αi−2⊕ R(−r − i)(2−ε)αi−1⊕ R(−r − i−1)εαi−1 for
i = 3, . . . , d − 2 and αi = i

(d−1
i+1

)
−
(d−2

i−1

)
for 1≤ i ≤ d − 3.

Proof. A curve C in |(r + ε)H | has saturated ideal IC |X =H0
∗
(OX (−r − ε)). From

(2-2) we have

0→ OPd (−d)→ OPd (−d+2)αd−3→· · ·→ OPd (−2)α1→ OPd → OX→ 0, (3-2)

with αi = i
(d−1

i+1

)
−
(d−2

i−1

)
for 1 ≤ i ≤ d − 3. Twisting (3-2) with OPd (−r − ε) and

taking global sections we get the minimal graded free resolution of IC |X :

0→ R(−r−d−ε)→ · · · → R(−r−(i+ε))αi−1

→ · · · → R(−r−2−ε)α1 → R(−r−ε)→ IC |X → 0.

Now we can apply the horseshoe lemma to the exact sequence

0→ IX |Pd → IC |Pd → IC |X → 0

to obtain the minimal free resolution of IC |Pd :

0→ R(−r−d−ε)→ R(−r−d+2−ε)αd−3⊕R(−d)→ · · ·

→ Ti := R(−r−i−ε)αi−1⊕R(−(i+1))αi → · · ·

→ R(−r−ε)⊕R(−2)α1 → IC |Pd → 0.

This sequence shows that C ⊆ Pd is an arithmetically Gorenstein variety with
canonical module KC := Extd−1

R (R/IC , R(−d − 1))= RC(r − 1+ ε). Therefore
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IG|C = H 0
∗
(OC(−r)) = KC(−2r + 1− ε). We apply Hom(−, R(−d − 1)) to the

previous sequence and we get a graded minimal free resolution of KC :

0→ R(−d−1)→ R(r−d−1+ε)⊕R(−d+1)αd−3 → · · ·

→ T ′i → · · · → R(−1)⊕R(r−3+ε)α1 → R(r−1+ε)→ KC → 0,

where T ′i := T∨d−i (−d−1)= R(r − i − ε)αi−1⊕ R(−i)αi−2 for i = 3, . . . , d−2. If
we twist the previous sequence by −2r + 1− ε we get the minimal resolution of
IG|C :

0→ R(−2r−d−ε)→ R(−r−d)⊕R(−2r−d+2−ε)αd−3→· · ·→ T ′i (−2r+1−ε)

→ · · · → R(−2r−ε)⊕R(−r−2)α1 → R(−r)→ IG|C → 0.

Finally, we can apply the horseshoe lemma to the short exact sequence

0→ IC |X → IG|X → IG|C → 0

to recover the resolution of IG|X :

0→ R(−2r−d−ε)→ R(−2r−d+2−ε)α1⊕R(−r−d)2−ε⊕R(−r−d−1)ε

→ · · · → Mi → · · · → R(−2r−ε)⊕R(−r−2)(2−ε)α1⊕R(−r−3)εα1

→ R(−r)2−ε⊕R(−r−1)ε→ IG|X → 0,

where Mi := R(−2r− i+1−ε)αi−2⊕ R(−r− i)(2−ε)αi−1⊕ R(−r− i−1)εαi−1 for
i = 3, . . . , d − 2. �

Lemma 3.2. Let X⊆P3 be a del Pezzo surface of degree 3 and take C ∈|(r+ε)H |,
r ≥ 2, ε ∈ {0, 1}. Then, any effective divisor G in the linear system |r HC | is AG
and it has a minimal free resolution of the form

0→ R(−2r−3−ε)→ R(−2r−ε)⊕R(−r−3)2−ε⊕R(−r−4)ε

→ R(−r)2−ε⊕R(−r−1)ε→ IG|X → 0.

Proof. This is completely analogous to Lemma 3.1. See also [Casanellas 2009,
Proposition 3.5]. �

Lemma 3.3. Let X ⊆ Pd be a del Pezzo surface and let L ⊆ X be a line on it.
Take C ∈ |L + r H |, r ≥ 2, and let G be any effective divisor in the linear system
|2r HC−KC |. Then, G is arithmetically Gorenstein and the minimal free resolution
of IG|C has the form

0→ R(−2r−d−1)→ R(−2r−d+1)α1⊕R(−r−d)d−1
→ · · ·

→ R(−2r−i)αd−i⊕R(−r−i−1)(
d−1
d−i)+αd−i−1 → · · ·

→ R(−2r−1)⊕R(−r−3)(
d−1
d−2)+αd−3 → R(−r−1)⊕R(−r−2)→ IG|C → 0,
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with αi = i
(d−1

i+1

)
−
(d−2

i−1

)
for 1≤ i ≤ d − 3.

Proof. Let L ⊆ X be any line. Its ideal as a subvariety of Pd has a resolution

0→ R(−d + 1)→ · · · → R(−i)(
d−1

i )→ · · · → R(−1)d−1
→ IL|Pd → 0.

Using the mapping cone procedure for the exact sequence 0→ IX |Pd → IL|Pd →

IL|X → 0 we get

0→R(−d)⊕R(−d+1)→· · ·→R(−i)(
d−1

i )+αi−1→· · ·→R(−1)d−1
→ IL|X→0

with αi = i
(d−1

i+1

)
−
(d−2

i−1

)
for 1 ≤ i ≤ d − 3. Therefore, C ∈ |L + r H | has the

minimal graded free resolution

0→ R(−r−d)⊕R(−r−d+1)→ · · · → R(−r−i)(
d−1

i )+αi−1

→ · · · → R(−r−1)d−1
→ IC |X → 0. (3-3)

Now the horseshoe lemma applied to 0→ IX |Pd → IC |Pd → IC |X → 0 gives us

0→ R(−r−d)⊕R(−r−d+1)→ R(−r−d+2)(
d−1
d−2)+αd−3⊕R(−d)

→ · · · → R(−r−i)(
d−1

i )+αi−1⊕R(−(i+1))αi → · · · →

R(−r−1)d−1
⊕R(−2)α1 → IC |Pd → 0.

Since C is ACM we can apply Hom(−, R(−d − 1)) to get a resolution of KC :

0→ R(−d−1)→ R(−d+1)α1⊕R(r−d)d−1

→ · · · → R(r−i−1)(
d−1
d−i)+αd−i−1⊕R(−i)αd−i → · · · →

R(r−3)(
d−1
d−2)+αd−3⊕R(−1)→ R(r−1)⊕R(r−2)→ KC → 0.

Now, since G ∈ |2r HC − KC | we have

0→ R(−2r−d−1)→ R(−2r−d+1)α1⊕R(−r−d)d−1

→ · · · → R(−2r−i)αd−i⊕R(−r−i−1)(
d−1
d−i)+αd−i−1 → · · · →

R(−2r−1)⊕R(−r−3)(
d−1
d−2)+αd−3 → R(−r−1)⊕R(−r−2)→ IG|C → 0.

�

Lemma 3.4. Let X ⊆ P3 be an integral cubic surface and let L ⊆ X be a line
on it. Take C ∈ |L + r H |, r ≥ 2, and let G be any effective divisor in the linear
system |2r HC − KC |. Then, G is arithmetically Gorenstein and the minimal free
resolution of IG|C has the following form:

0→R(−2r−4)→ R(−2r−1)⊕R(−r−3)2→R(−r−1)⊕R(−r−2)→ IG|C→0

Proof. This is completely analogous to Lemma 3.3. �
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Lemma 3.5. A general set Z of m(2) = d + 2 points on any del Pezzo surface
X ⊆ Pd has a minimal free resolution of the type

0→ R(−d − 2)→ R(−d)γd−1 → · · · → R(−3)γ2 → R(−2)2d−1
→ IZ |X → 0,

with

γi =

1∑
l=0

(−1)l
(

d − l − 1
i − l

)
1l+1 HX (2+ l)−

(
d
i

)
(m(2)− HX (1)).

Proof. A general set Z of d+2 points on X is in linearly general position (i.e., any
subset of Z of d + 1 points spans Pd ). It is well-known that such a Z is AG with
minimal free resolution

0→ R(−d−2)→ R(−d)ρd−1 → R(−d+1)ρd−2

→ · · · → R(−3)ρ2 → R(−2)ρ1 → IZ |Pd → 0,

where ρi = i
(d+1

i+1

)
−
( d

i−1

)
for 1 ≤ i ≤ d − 1. We now apply the mapping cone

procedure to 0→ IX → IZ → IZ |X → 0 to obtain a free resolution of IZ |X :

0→ R(−d−2)→ R(−d)ρd−1+1
→ R(−d+1)ρd−2 → R(−d+2)ρd−3−αd−3

→ · · · → R(−3)ρ2−α2 → R(−2)ρ1−α1 → IZ |X → 0,

with αi = i
(d−1

i+1

)
−
(d−2

i−1

)
for 1 ≤ i ≤ d − 3. Since there are no ghost terms on the

previous exact sequence, it is minimal and the coefficients are forced to be given
by the formula from the statement. �

Once we have fixed the starting point of the induction we can deal with the
different steps of the procedure.

Fix an integer r ≥ 2 and let Zm(r) and Zn(r) be general sets of points on X of
cardinality m(r) and n(r) respectively. We show that they are directly G-linked
by an effective divisor G linearly equivalent to r HC , where C is a curve in the
linear system |r HX |. Two issues need to be checked. First, we must show that
h0(OX (r)) > m(r), to guarantee the existence of a curve C in the linear system
|r HX | such that Zm(r) lies on C . Secondly, we need to verify that n(r) > pa(C),
to be able to apply Riemann–Roch Theorem for (singular) curves, which assures
that there exists an effective divisor Zn(r) of degree n(r) such that Zm(r) + Zn(r)

is linearly equivalent to a divisor r HC . Notice that, thanks to [Eisenbud 2005,
Chapter IV, Theorem 4.2], PX (r)= HX (r)= h0(OX (r)) for any r ≥ 1.

Regarding the first issue, we have h0(OX (r)) = PX (r) > m(r) by construction
and by (3-1).

Regarding the second issue, consider the exact sequence

0→ OX (−r)→ OX → OC → 0.
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Applying the functor of global sections we have

0= H 1(X,OX )→ H 1(C,OC)→ H 2(X,OX (−r))→ H 2(X,OX )= 0

and therefore pa(C) = h1(OC) = h2(OX (−r)) = h0(OX (r − 1)), where the last
equality holds by Serre duality and taking into account that ωX ∼= OX (−1). Then,
since

n(r)= dr2
−m(r) > PX (r − 1)= h0(OX (r − 1))= pa(C),

we are done.
Since this construction can also be performed starting from a general set Zn(r)

of n(r) points we see that a general set of m(r) points is G-linked to a general set
of n(r) points and vice versa. This yields:

Proposition 3.6. Fix r≥2 and assume that the ideal IZm(r)|X of m(r) general points
on a del Pezzo surface X ⊆ Pd has the minimal free resolution

0→ R(−r−d)r−1
→ R(−r−d+2)γd−1,r−1

→ · · · → R(−r−1)γ2,r−1 → R(−r)(d−1)r+1
→ IZm(r)|X → 0,

with

γi,r−1 =

1∑
l=0

(−1)l
(

d − l − 1
i − l

)
1l+1 PX (r + l)−

(
d
i

)
(m(r)− PX (r − 1)).

Then the ideal IZn(r)|X of n(r) general points has the minimal free resolution

0→ R(−r−d)(d−1)r−1
→ R(−r−d+1)βd−1,r

→ · · · → R(−r−2)β2,r → R(−r)r+1
→ IZn(r)|X → 0,

with

βi,r =

1∑
l=0

(−1)l+1
(

d − l − 1
i − l

)
1l+1 PX (r + l)+

(
d
i

)
(n(r)− PX (r − 1)).

Conversely, if n(r) general points on a del Pezzo surface X ⊆Pd have the expected
resolution then m(r) general points do as well.

Proof. As mentioned before, we give the complete proof in the case d ≥ 4. The
case d = 3 is completely analogous using Lemma 3.2 instead of Lemma 3.1. So
suppose that d ≥ 4. We will check that if m(r) general points have the expected
resolution then so do n(r) and we leave to the reader the converse (which is proved
analogously). By the preceding discussion, m(r) and n(r) general points on X are
G-linked by G ∈ |r HC |, where C is a curve in the linear system |r H |. Thanks to
Lemma 3.1 we know the resolution of IG|X and hence we can apply the mapping
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cone procedure to the commutative diagram

R(−2r−d) //

��

R(−r−d)r−1

��

R(−2r−d+2)α1⊕R(−r−d)2 //

��

R(−r−d+2)γd−1

��

...

��

...

��

R(−2r−i+1)αd−i⊕R(−r−i)2αi−1 //

��

R(−r−i+1)γi

��

...

��

...

��

R(−2r)⊕R(−r−2)2α1 //

��

R(−r−1)γ2

��

R(−r)2 //

��

R(−r)(d−1)r+1

��

0 −→ IG|X //

��

IZm(r)|X −→ IZm(r)|G −→ 0.

��

0 0

Since IG|X ⊆ IZm(r)|X , we can take as part of the generators of IZm(r)|X the gen-
erators of IG|X and therefore the matrix defining the first horizontal map contains
nonzero scalar entries. So the repeated elements can be split off. Therefore we get

0→ R(−r−d)(d−1)r−1
→ R(−r−d+1)βd−1,r

→ · · · → R(−2)α1⊕R(−r)r+1
→ IZn(r)|Pd → 0.

The mapping cone procedure applied to the exact sequence 0→ IX → IZn(r) →

IZn(r)|X → 0 then gives the desired minimal resolution for IZn(r)|X . �

Lemma 3.7. Let X ⊂ Pd be any del Pezzo surface. Fix r ≥ 2 and assume that
the ideal IZn(r)|X of a set Zn(r) of n(r) general points on X ⊆ Pd has the expected
minimal free graded resolution then a set of n(r)+ 1 general points do as well.

Proof. Since IZn(r)|X has the expected minimal free resolution, we know that IZn(r)|X

is generated by r+1 forms of degree r . Moreover, we know that there are no linear
relations among them. We take a general point p∈ X and set Z := Zn(r)∪{p}. Since
IZ |X ⊂ IZn(r)|X , we can take the r generators of IZ |X in degree r to be a subset of the
generators of IZn(r)|X in degree r ; in particular, they do not have linear syzygies.
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We must add d generators of degree r + 1 in order to get a minimal system of
generators of IZ |X . Hence the first module in the minimal free resolution of IZ |X

is R(−r)r ⊕ R(−r − 1)d which forces the remaining part of the resolution. �

Proposition 3.8. Let X ⊆ Pd be a del Pezzo surface. Fix r ≥ 2 and assume that
the ideal IZ p(r)|X of p(r) := n(r) + 1 general points on X has the minimal free
resolution

0→ R(−r−d)(d−1)r
→ R(−r−d+1)δd−1,r

→ · · · → R(−r−2)δ2,r → R(−r)r⊕R(−r−1)d → IZ p(r)|X → 0,

with

δi,r =

1∑
l=0

(−1)l+1
(

d − l − 1
i − l

)
1l+1 HX (r + l)+

(
d
i

)
(p(r)− HX (r − 1)).

Then the ideal IZm(r+1)|X of m(r+1) general points has the minimal free resolution

0→ R(−r−d−1)r → R(−r−d+1)γd−1,r

→ · · · → R(−r−2)γ2,r → R(−r−1)(d−1)r+d
→ IZm(r+1)|X → 0,

with

γi,r =

1∑
l=0

(−1)l
(

d − l − 1
i − l

)
1l+1 HX (r + 1+ l)−

(
d
i

)
(m(r + 1)− HX (r)).

Proof. Let Z p(r) be a set of p(r) general points with resolution as in the statement.
Let us consider the linear system |L + r H |. Since dim |L + r H | ≥ dim |r H | =
h0(OX (r))− 1 = PX (r)− 1 > p(r), we can find a curve C ∈ |L + r H | passing
through these p(r) points. As it is shown in [Pons-Liopis 2011, Chapter II] we can
suppose that C verifies condition G1. Notice that deg(C) = 1+ rd and pa(C) =
d
(r

2

)
+ r . Since pa(C) < m(r + 1) we can find an effective divisor Zm(r+1) of

degree m(r + 1) such that Z p(r) and Zm(r+1) are G-linked by a divisor of degree
p(r)+m(r + 1)= dr2

+ dr + 2= deg(2r HC − KC). This will allowed us to find
the resolution of Im(r+1)|X . First of all, let us find the minimal free resolution of the
ideal Ip(r)|C from the exact sequence 0→ IC |X → Ip(r)|X → Ip(r)|C → 0 through
the mapping cone procedure, with the resolution of IC |X as it was found in (3-3).
It turns out to be

0→ R(−r−d)(d−1)r+1
→ R(−r−d+1)cd−1,r

→ · · · → R(−r−2)c2,r → R(−r)r⊕R(−r−1)→ Ip(r)|C → 0.

Since we have already found out the minimal free resolution of IG|C (Lemma 3.3)
we can use the mapping cone procedure applied to the sequence 0 → IG|C →

Ip(r)|C → Ip(r)|G→ 0 to get
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0→ R(−2r−d−1)→ R(−r−d)(d−1)r+d
⊕R(−2r−d+1)α1

→ · · · → R(−r−i)di,r⊕R(−2r−i+1)αd−i+1 → · · · →

R(−r−2)d2,r → R(−r)r → IZ p(r)|G→ 0.

(If d = 3 we have instead 0→ R(−2r − 4)→ R(−r − 3)2r+2
⊕ R(−2r − 1)→

R(−r − 2)d2,r → R(−r)r → IZ p(r)|G→ 0.)
Finally we obtain the minimal free resolution of Im(r+1)|Pd :

0→ R(−r−d−1)r → R(−r−d+1)γd−1,r → R(−r−d+2)γd−2,r⊕R(−d)

→ · · · → R(−r−i)γi,r⊕R(−i)αi → · · · →

R(−r−1)(d−1)r+d
⊕R(−2)α1 → IZm(r+1)|Pd → 0

(0→ R(−r − 4)r → R(−r − 2)γ2,r → R(−r − 1)2r+3
⊕ R(−3)→ IZm(r+1)|P3 → 0

if d = 3) from which it is straightforward to recover the predicted resolution of
IZm(r+1)|X . �

We are now ready to prove the main theorem of this section:

Theorem 3.9. Let X ⊆ Pd be a del Pezzo surface. We have:

(1) Let Zn(r) ⊆ X be a general set of n(r) points, r ≥ 2. Then the minimal graded
free resolution of IZn(r)|X has the form

0→ R(−r−d)(d−1)r−1
→ R(−r−d+1)βd−1,r → R(−r−d+2)βd−2,r

→ · · · → R(−r−2)β2,r → R(−r)r+1
→ IZn(r)|X → 0,

with

βi,r =

1∑
l=0

(−1)l+1
(

n− l − 1
i − l

)
1l+1 HX (r + l)+

(
n
i

)
(n(r)− HX (r − 1)).

(2) Let Zm(r)⊆ X be a general set of m(r) points, r ≥ 2. Then its minimal graded
free resolution has the form

0→ R(−r−d)r−1
→ R(−r−d+2)γd−1,r−1

→ · · · → R(−r−1)γ2,r−1 → R(−r)(d−1)r+1
→ IZm(r)|X → 0,

with

γi,r−1 =

1∑
l=0

(−1)l
(

n− l − 1
i − l

)
1l+1 PX (r + l)−

(
n
i

)
(m(r)− PX (r − 1)).

In particular, Mustat,ă’s conjecture works for n(r) and m(r), r ≥ 4, general
points on a del Pezzo surface X ⊆ Pd .
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Proof. Lemma 3.5 establishes the result for a set of m(2) general points, the starting
point of our induction process. Therefore, the result about the resolution of IZn(r)|X

and IZm(r)|X follows using Lemma 3.7, Propositions 3.6 and 3.8 and applying in-
duction. �

4. Main theorem

In this last section, we are going to prove that MRC holds for a general set of points
Z on a del Pezzo surface (excluding three of the four sporadic cases pointed out at
the beginning of the previous section: X ∼=P1

×P1, X ∼= F2 :=P(OP1⊕OP1(−2)),
and X the Bordello surface) when the cardinality of Z falls in intervals of the form
[PX (r−1),m(r)] or [n(r), PX (r)], r ≥ 4. So for the rest of the paper X will denote
any del Pezzo surface excluding these three particular surfaces. We will use the
fact that we already know that n(r) and m(r) general points on a del Pezzo surface
satisfy MRC together with the following lemma which controls how the bottom
lines of the Betti diagram of a set of general points on a projective variety change
when we add another general point. This lemma will turn out to be a cornerstone
in our proof of MRC for del Pezzo surfaces:

Lemma 4.1. Let X ⊆ Pn be a projective variety with dim X ≥ 2, reg X = m and
with Hilbert polynomial PX . Let s be an integer with PX (r − 1) ≤ s < PX (r) for
some r ≥ m + 1, let Z be a set of s general points on X and let P ∈ X \ Z be a
general point. We have

(i) bi,r−1(Z)≥ bi,r−1(Z ∪ P) for every i .

(ii) bi,r (Z)≤ bi,r (Z ∪ P) for every i .

Proof. See [Mustat,ǎ 1998, Proposition 1.7.]. �

We are now ready to state the main result of this paper:

Theorem 4.2. Let X ⊆ Pd be a del Pezzo surface. Let r satisfy r ≥ reg X + 1= 4.
Then for a general set of points Z on X such that PX (r − 1) ≤ |Z | ≤ m(r) or
n(r)≤ |Z | ≤ PX (r) the minimal resolution conjecture is true.

Proof. First of all we want to point out that the result was already known in the
cases |Z | = PX (r − 1) and |Z | = PX (r)− 1 [Mustat,ǎ 1998, Examples 1 and 2].

On the other hand, the results about Ulrich bundles proved in [Pons-Liopis 2011,
Chapter II] and Serre’s correspondence allows us to deal with the case of X ∼= P2.
So let X be any other del Pezzo surface. Let Z ′ be a general set of points of
cardinality |Z ′| = n(r) and add general points to Z ′ in order to get a set of points Z
of cardinality n(r)≤ |Z | ≤ PX (r). By Theorem 3.9 we have that bi,r−1(Z ′)= 0 for
all i = 2, . . . , d . Therefore we can apply Lemma 4.1 to deduce that bi,r−1(Z)= 0
for all i = 2, . . . , d . Thus, by semicontinuity, MRC holds for a general set of |Z |
points.
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Now if |Z | ≤ m(r), we can add general points to Z in order to have a general
set Z ′ including Z and such that |Z ′| = m(r). Again from the previous Theorem
we have that bi,r (Z ′)= 0 for all i = 1, . . . , d−1. So we can use again Lemma 4.1
to deduce that bi,r (Z) = 0 for all i = 1, . . . , d − 1 and therefore MRC holds for
Z . �

As a consequence of Theorem 3.9 we will prove that the number of generators
of the ideal of a general set of points on a del Pezzo surface is as small as possible
and so it is the number of generators of its canonical module as well. In fact, we
have:

Theorem 4.3. Let X ⊆ Pd be a del Pezzo surface. Then for a general set of points
Z on X such that |Z | ≥ PX (3) the Cohen–Macaulay type conjecture and the ideal
generation conjecture are true.

Proof. Let Z be a general set of points on our del Pezzo surface X . If it is the case
that n(r) ≤ |Z | ≤ m(r + 1) the result has been proved on the previous theorem.
So we can assume that m(r) < |Z | < n(r) for some r . We know that MRC holds
for a general set |Z ′| of n(r) points on X , Z ⊆ Z ′ and in particular b1,r (Z ′) = 0.
Applying Lemma 4.1 inductively we see that b1,r (Z) = 0. Analogously, since
MRC holds for a general set Z ′′ of m(r) points, bd,r−1(Z ′′) = 0 with Z ′′ ⊆ Z .
Applying once again the same lemma we see that bd,r−1(Z)= 0. �

In the particular case of the cubic surface, since the minimal free resolution of
its points has length three, we recover one of the main results of [Miró-Roig and
Pons-Llopis 2012] (see also [Migliore and Patnott 2011; Casanellas 2009]):

Theorem 4.4. Let X ⊆ P3 be an integral cubic surface (i.e., a del Pezzo surface
of degree three). Then the minimal resolution conjecture holds for a general set of
points on X of cardinality ≥ PX (3)= 19.

Proof. By Theorem 4.3 we know that any set Z of general points on X verify the
Cohen–Macaulay type conjecture and the ideal generation conjecture. But since
the codimension is three there is no further term on the resolution left to consider
so the general MRC also holds. �
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L-series of Artin stacks over finite fields
Shenghao Sun

We develop the notion of stratifiability in the context of derived categories and
the six operations for stacks. Then we reprove the Lefschetz trace formula for
stacks, and give the meromorphic continuation of L-series (in particular, zeta
functions) of Fq -stacks. We also give an upper bound for the weights of the
cohomology groups of stacks, and an “independence of `” result for a certain
class of quotient stacks.

1. Introduction

In topology there is the famous Lefschetz–Hopf trace formula, which roughly says
that if f : X → X is an endomorphism of a compact connected oriented space
X with isolated fixed points, then the number of fixed points of f , counted with
multiplicity, is equal to the alternating sum of the traces of f ∗ on the singular
cohomology groups H i (X,Q).

There is also a trace formula in algebraic geometry, for schemes over finite
fields, due to Grothendieck. It says that if X0 is a scheme over Fq , separated and
of finite type, and Fq is the q-geometric Frobenius map, then

#X0(Fq)=

2 dim X0∑
i=0

(−1)i Tr(Fq , H i
c (X,Q`)),

where H i
c (X,Q`) is the `-adic cohomology with compact support. In fact he

proved the trace formula for an arbitrary constructible sheaf, see [Grothendieck
1965, Verdier 1967, Deligne 1977].

Behrend conjectured the trace formula for smooth algebraic stacks over Fq in
his thesis and [Behrend 1993], and proved it in [Behrend 2003]. However, he
used ordinary cohomology and arithmetic Frobenius (rather than compact support
cohomology and geometric Frobenius) to prove the “dual statement,” probably
because at that time the theory of dualizing complexes of algebraic stacks, as
well as compact support cohomology groups of stacks, were not developed. Later
Laszlo and Olsson [2008a; 2008b] developed the theory of the six operations for

MSC2010: primary 14F20; secondary 14F05, 19F27.
Keywords: l-adic cohomology, algebraic stack, Lefschetz trace formula, L-function.
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algebraic stacks, which makes it possible to reprove the trace formula, and remove
the smoothness assumption in Behrend’s result. Also we will work with a fixed
isomorphism of fields ι :Q`−→

∼ C, namely we will work with ι-mixed complexes,
rather than mixed ones, and this is a more general setting (see Remark 2.8.1).

Once we have the trace formula, we get a factorization of the zeta function
into a possibly infinite product of L-factors, and from this one can deduce the
meromorphic continuation of the zeta functions, generalizing a result of Behrend
[1993, 3.2.4]. Furthermore, to locate the zeros and poles of the zeta functions, we
give a result on the weights of cohomology groups of stacks.

We briefly mention the technical issues. As pointed out in [Behrend 2003], a
big difference between schemes and stacks is the following. If

f : X0→ Y0

is a morphism of Fq -schemes of finite type, and K0 ∈ Db
c (X0,Q`), then f∗K0

and f!K0 are also bounded complexes. Since often we are mainly interested in
the simplest case when K0 is a sheaf concentrated in degree 0 (for instance, the
constant sheaf Q`), and Db

c is stable under f∗ and f!, it is enough to consider Db
c

only. But for a morphism
f : X0→ Y0

of Fq -algebraic stacks of finite type, f∗ and f! do not necessarily preserve bound-
edness. For instance, the cohomology ring H∗(BGm,Q`) is the polynomial ring
Q`[T ] with deg(T )= 2. So for stacks we have to consider unbounded complexes,
even if we are only interested in the constant sheaf Q`. In order to define the trace of
the Frobenius on cohomology groups, we need to consider the convergence of the
complex series of the traces. This leads to the notion of an ι-convergent complex
of sheaves (see Definition 4.1).

Another issue is the following. In the scheme case one considers bounded
complexes, and for any bounded complex K0 on a scheme X0, there exists a
stratification of X0 that “trivializes the complex K0” (that is, the restrictions of all
cohomology sheaves Hi K0 to each stratum are lisse). But in the stack case we have
to consider unbounded complexes, and in general there might be no stratification
of the stack that trivializes every cohomology sheaf. This leads to the notion of
a stratifiable complex of sheaves (see Definition 3.1). We need the stratifiability
condition to control the dimensions of cohomology groups (see Lemma 3.10). All
bounded complexes are stratifiable by Lemma 3.4 (v).

Also we will have to impose the condition of ι-mixedness, due to unbounded-
ness. For bounded complexes on schemes, the trace formula can be proved without
using this assumption, although the conjecture of Deligne [1980, 1.2.9] that all
sheaves are ι-mixed is proved by Laurent Lafforgue, see Remark 2.8.1.
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We briefly introduce the main results of this paper.

Fixed point formula.

Theorem 1.1. Let X0 be an Artin stack of finite type over Fq , and let [X0(Fq)] be
the set of isomorphism classes of the groupoid of Fq -points of X0. Then the series∑

n∈Z

(−1)n Tr(Fq , H n
c (X,Q`)),

regarded as a complex series via ι, is absolutely convergent, and its limit is “the
number of Fq -points of X0”, namely

#X0(Fq) :=
∑

x∈[X0(Fq )]

1
# Autx Fq

.

Here Fq denotes the q-geometric Frobenius. To generalize, one wants to impose
some condition (P) on complexes K0 ∈ D−c (X0,Q`) such that:

(1) The condition (P) is preserved by f!.

(2) If a complex K0 satisfies (P), then the “naive local terms” are well-defined.

(3) Trace formula holds in this case.

The condition (P) on K0 turns out to be a combination of three parts: ι-conver-
gence (which implies (2) for K0), ι-mixedness and stratifiability (which, together
with the first part, implies (2) for f!K0). See Theorem 4.2 for the general statement.
These conditions are due to Behrend [2003].

Meromorphic continuation. The rationality in Weil conjecture was first proved
by Dwork, namely the zeta function Z(X0, t) of every variety X0 over Fq is a
rational function in t . Later, this was reproved using the fixed point formula
[Grothendieck 1965, Illusie 1977]. Following Behrend [1993, 3.2.3], we define
the zeta functions of stacks as follows.

Definition 1.2. For an Fq -algebraic stack X0 of finite type, define the zeta function

Z(X0, t)= exp
(∑
v≥1

tv

v

∑
x∈[X0(Fqv )]

1
# Autx Fqv

)
,

as a formal power series in the variable t .

Notice that in general, the zeta function is not rational (see Section 7). Behrend
[1993, 3.2.4, 3.2.5] proved that if X0 is a smooth algebraic stack, and it is a quotient
of an algebraic space by a linear algebraic group, then its zeta function Z(X0, t) is a
meromorphic function in the complex t-plane; if X0 is a smooth Deligne–Mumford
stack, then Z(X0, t) is a rational function. These results can be generalized as
follows.
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Theorem 1.3. For every Fq -algebraic stack X0 of finite type, its zeta function
Z(X0, t) defines a meromorphic function in the whole complex t-plane. If X0 is
Deligne–Mumford, then Z(X0, t) is a rational function.

See Proposition 7.3.1 and Theorem 8.1 for the general statement.

A theorem of weights. One of the main results in [Deligne 1980] is that if X0 is
an Fq -scheme, separated and of finite type, and F0 is an ι-mixed sheaf on X0 of
punctual ι-weights ≤w ∈R, then for every n, the punctual ι-weights of H n

c (X,F)

are ≤ w+ n. The cohomology groups are zero unless 0 ≤ n ≤ 2 dim X0. We will
see in Remark 7.2.1 that the upper bound w + n for the punctual ι-weights does
not work in general for algebraic stacks. We will give an upper bound that applies
to all algebraic stacks. Deligne’s upper bound of weights still applies to stacks for
which all the automorphism groups are affine.

Theorem 1.4. Let X0 be an Fq -algebraic stack of finite type, and let F0 be an
ι-mixed sheaf on X0, with punctual ι-weights ≤ w, for some w ∈ R. Then the
ι-weights of H n

c (X,F) are ≤ dim X0 +
n
2 +w, and they are congruent mod Z to

weights that appear in F0. If n > 2 dim X0, then H n
c (X,−) = 0 on sheaves. If for

all points x ∈X(F) in the support of F, the automorphism group schemes Autx are
affine, then the ι-weights of H n

c (X,F) are ≤ n+w.

Organization. In Section 2 we review some preliminaries on derived categories
of `-adic sheaves on algebraic stacks over Fq and ι-mixed complexes, and show
that ι-mixedness is stable under the six operations.

In Section 3 we develop the notion of stratifiable complexes in the context of
Laszlo and Olsson’s `-adic derived categories, and prove its stability under the six
operations.

In Section 4 we discuss convergent complexes, and show that they are preserved
by f!. In Section 5 we prove the trace formula for stacks. These two theorems
are stated and proved in [Behrend 2003] in terms of ordinary cohomology and
arithmetic Frobenius, and the proof we give here uses geometric Frobenius.

In Section 6 we discuss convergence of infinite products of formal power series,
which will be used in the proof of the meromorphic continuation. In Section 7 we
give some examples of zeta functions of stacks, and give the functional equation
of the zeta functions and independence of ` of Frobenius eigenvalues for proper
varieties with quotient singularities in Proposition 7.3.2.

In Section 8 and Section 9, we prove the meromorphic continuation and the
weight theorem respectively. Finally in Section 10 we discuss “independence of
`” for stacks, and prove Proposition 10.5 that for the quotient stack [X0/G0], where
X0 is a proper smooth variety and G0 is a linear algebraic group acting on X0, the
Frobenius eigenvalues on its cohomology groups are independent of `.
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Notation and conventions.

1.5.1. We fix a prime power q = pa and an algebraic closure F of the finite field
Fq with q elements. Let F or Fq be the q-geometric Frobenius, namely the q-th
root automorphism on F. Let ` be a prime number, ` 6= p, and fix an isomorphism
of fields Q` −→

ι
C. For simplicity, let |α| denote the complex absolute value |ια|,

for α ∈Q`.

1.5.2. In this paper, by an Artin stack (or an algebraic stack) over a base scheme S,
we mean an S-algebraic stack in the sense of M. Artin [Laumon and Moret-Bailly
2000, 4.1] of finite type. When we want the more general setting of Artin stacks
locally of finite type, we will mention that explicitly.

1.5.3. Objects over Fq will be denoted with an index 0. For instance, X0 will denote
an Fq -Artin stack; if F0 is a lisse-étale sheaf (or more generally, a Weil sheaf 2.4)
on X0, then F denotes its inverse image on X := X0⊗Fq F.

1.5.4. For a field k, let Gal k denote its absolute Galois group Gal(ksep/k). By a
variety over k we mean a separated reduced k-scheme of finite type. Let W (Fq) be
the Weil group FZ

q of Fq .

1.5.5. For a profinite group H , by Q`-representations of H we always mean finite-
dimensional continuous representations (see [Deligne 1980], 1.1.6), and denote by
RepQ`

H the category of such representations.

1.5.6. For a scheme X , we denote by |X | the set of its closed points. For a category
C we write [C] for the collection of isomorphism classes of objects in C. For
example, if v ≥ 1 is an integer, then [X0(Fqv )] denotes the set of isomorphism
classes of Fqv -points of the stack X0. This is a finite set.

For x ∈ X0(Fqv ) we will write k(x) for the field Fqv . For an Fq -scheme X0

(always of finite type) and x ∈ |X0|, we denote by k(x) the residue field of x .
In both cases, let d(x) be the degree of the field extension [k(x) : Fq ], and let
N (x) = qd(x)

= #k(x). Also in both cases let x : Spec Fqv → X0 (or X0) be the
natural map (v = d(x)), although in the second case the map is defined only up to
an automorphism in Gal(k(x)/Fq). Given a K0 ∈ Dc(X0,Q`) (see Section 2), the
pullback x∗K0 ∈ Dc(Spec k(x),Q`)= Dc(RepQ`

Gal k(x)) gives a complex Kx of
representations of Gal k(x), and we let Fx be the geometric Frobenius generator
Fqd(x) of this group, called “the local Frobenius”.

1.5.7. Let V be a finite dimensional Q`-vector space and ϕ an endomorphism of
V . For a function f : Q`→ C, we denote by

∑
V,ϕ f (α) the sum of values of f

in α, with α ranging over all the eigenvalues of ϕ on V with multiplicities. For
instance,

∑
V,ϕ α = Tr(ϕ, V ).
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A 0× 0-matrix has trace 0 and determinant 1. For K ∈ Db
c (Q`) and an endo-

morphism ϕ of K , we define, following Deligne [1977],

Tr(ϕ, K ) :=
∑
n∈Z

(−1)n Tr(H n(ϕ), H n(K )), and

det(1−ϕt, K ) :=
∏
n∈Z

det(1− H n(ϕ)t, H n(K ))(−1)n .

For unbounded complexes K we use similar notations if the series (respectively
the infinite product) converges (converges term by term; see Definition 6.2).

1.5.8. For a map f : X→Y and a sheaf F on Y , we sometimes write H n(X,F) for
H n(X, f ∗F). We write H n(X) for H n(X,Q`), and hn(X,F) for dim H n(X,F),
and similarly for H n

c (X) and hn
c (X,F).

1.5.9. For an Fq -algebraic stack X0 and a Weil complex K0 on X0, by R0(X0, K0)

(respectively R0c(X0, K0)) we mean Ra∗K0 (respectively Ra!K0), where the mor-
phism a : X0→ Spec Fq is the structural map.

The derived functors R f∗, R f!, L f ∗ and R f ! are usually abbreviated as f∗, f!,
f ∗ and f !. But we reserve⊗,Hom and Hom for the ordinary sheaf tensor product,
sheaf Hom and Hom group, respectively, and use ⊗L , RHom and RHom for their
derived functors.

2. Derived category of `-adic sheaves and mixedness

We briefly review the definition in [Laszlo and Olsson 2008a; 2008b] for derived
category of `-adic sheaves on stacks. Then we show that ι-mixedness is stable un-
der the six operations. As a consequence of Lafforgue’s result from Remark 2.8.1,
this is automatic, but we still want to give a much more elementary argument.
The proof works for mixed complexes as well, see Remark 2.12. One can also
generalize the structure theorem of ι-mixed sheaves in [Deligne 1980] to algebraic
stacks as in Remark 2.7.1.

2.1. Let3 be a complete discrete valuation ring with maximal ideal m and residual
characteristic `. Let 3n =3/m

n+1, and let 3• be the pro-ring (3n)n . We take the
base scheme S to be a scheme that satisfies the following condition:

(LO): S is noetherian, affine, excellent, finite-dimensional, in which ` is invert-
ible, and all S-schemes of finite type have finite `-cohomological dimension.

We denote by X,Y, . . . Artin stacks locally of finite type over S.
Consider the ringed topos A=A(X) :=Mod(XN

lis-ét,3•) of projective systems
(Mn)n of Ab(Xlis-ét) such that Mn is a 3n-module for each n, and the transition
maps are3-linear. An object M ∈A is said to be AR-null, if there exists an integer
r > 0 such that for every integer n, the composed map Mn+r → Mn is the zero
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map. A complex K in A is called AR-null, if all cohomology systems Hi (K ) are
AR-null; it is called almost AR-null, if for every U in Lis-ét(X) (assumed to be of
finite type over S), the restriction of Hi (K ) to Ét(U ) is AR-null. Let D(A) be the
ordinary derived category of A. See [Laumon and Moret-Bailly 2000, 18.1.4] for
the definition of constructible sheaves on Xlis-ét.

Definition 2.2. An object M = (Mn)n ∈A is adic if all the Mn’s are constructible,
and for every n, the natural map

3n ⊗3n+1 Mn+1→ Mn

is an isomorphism. It is called almost adic if all the Mn’s are constructible, and
for every object U in Lis-ét(X), the restriction M |U is AR-adic, that is, there exists
an adic NU ∈Mod(U N

ét ,3•) and a morphism NU → M |U with AR-null kernel and
cokernel.

A complex K in A is a λ-complex if Hi (K ) ∈ A are almost adic for all i . Let
Dc(A) be the full triangulated subcategory of D(A) consisting of λ-complexes, and
let Dc(X,3) be the quotient of Dc(A) by the thick full subcategory of those which
are almost AR-null. This is called the derived category of 3-adic sheaves on X.

Remark 2.2.1. (i) Dc(X,3) is a triangulated category with a natural t-structure,
and its heart is the quotient of the category of almost adic systems in A by the thick
full subcategory of almost AR-null systems. One can use this t-structure to define
the subcategories D†

c (X,3) for †=±, b.
If X/S is of finite type (in particular, quasi-compact), it is clear that K ∈Dcart(A)

is AR-null if it is almost AR-null. Also if M ∈ A is almost adic, the adic system
NU and the map NU → M |U in the definition above are unique up to unique
isomorphism, for each U , so by [Laumon and Moret-Bailly 2000, 12.2.1] they
give an adic system N of Cartesian sheaves on Xlis-ét, and an AR-isomorphism
N→ M . This shows that an almost adic system is AR-adic, and it is clear [Illusie
1977, p. 234] that the natural functor

3-Sh(X)→ heart Dc(X,3)

is an equivalence of categories, where 3-Sh(X) denotes the category of 3-adic (in
particular, constructible) systems.

(ii) Dc(X,3) is different from the ordinary derived category of Mod(Xlis-ét,3)

with constructible cohomology; the latter can be denoted by Dc(X,3). Here
Mod(Xlis-ét,3) denotes the abelian category of 3X-modules, not adic sheaves
3-Sh(X).

(iii) When S = Spec k for k a finite field or an algebraically closed field, and
X = X is a separated S-scheme, [Laszlo and Olsson 2008b, 3.1.6] gives a natural
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equivalence of triangulated categories between Db
c (X,3) and Deligne’s definition

Db
c(X,3) in [Deligne 1980, 1.1.2].

2.3. Let π : XN
lis-ét → Xlis-ét be the morphism of topoi where π−1 takes a sheaf

F to the constant projective system (F)n , and π∗ takes a projective system to the
inverse limit. This morphism induces a morphism of ringed topoi

(π∗, π∗) : (X
N
lis-ét,3•)→ (Xlis-ét,3).

The functor Rπ∗ :Dc(A)→D(X,3) vanishes on almost AR-null objects [Laszlo
and Olsson 2008b, 2.2.2], hence factors through Dc(X,3). In [ibid., 3.0.8], the
normalization functor is defined to be

K 7→ K̂ := Lπ∗Rπ∗K : Dc(X,3)→ D(A).

This functor plays an important role in defining the six operations (ibid.). For
instance:

• For F ∈ D−c (X,3) and G ∈ D+c (X,3), RHom(F,G) is defined to be the image
of RHom3•(F̂, Ĝ) in Dc(X,3).

• For F,G ∈ D−c (X,3), the derived tensor product F ⊗L G is defined to be the
image of F̂ ⊗L

3•
Ĝ.

• For a morphism f : X→Y and F ∈ D+c (X,3), the derived direct image f∗F is
defined to be the image of f N

∗
F̂ .

Let Eλ be a finite extension of Q` with ring of integers Oλ. Following Laszlo
and Olsson [2008b] we define Dc(X, Eλ) to be the quotient of Dc(X,Oλ) by the
full subcategory consisting of complexes K such that, for every integer i , there
exists an integer ni ≥ 1 such that Hi (K ) is annihilated by λni . Then we define

Dc(X,Q`)= 2-colimEλ Dc(X, Eλ),

where Eλ ranges over all finite subextensions of Q`/Q`, and the transition functors
are

Eλ′ ⊗Eλ − : Dc(X, Eλ)→ Dc(X, Eλ′)

for Eλ ⊂ Eλ′ .

2.4. From now on in this section, S = Spec Fq . We recall some notions of weights
and mixedness from [Deligne 1980], generalized to Fq -algebraic stacks.

2.4.1. Frobenius endomorphism. For an Fq -scheme X0, let FX0 : X0 → X0 be
the morphism that is identity on the underlying topological space and q-th power
on the structure sheaf OX0 ; this is an Fq -morphism. Let FX : X→ X be the induced
F-morphism FX0 × idF on X = X0⊗ F.
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By functoriality of the maps FX0 , we can extend it to stacks. For an Fq -algebraic
stack X0, define FX0 : X0→ X0 to be such that for every Fq -scheme X0, the map

FX0(X0) : X0(X0)→ X0(X0)

sends x to x ◦ FX0 . We also define FX : X→ X to be FX0 × idF. This morphism
is a universal homeomorphism, hence F∗X and FX∗ are quasi-inverse to each other,
and F∗X ' F !X, FX∗ ' FX!.

2.4.2. Weil complexes. A Weil complex K0 on X0 is a pair (K , ϕ), where K is in
Dc(X,Q`) and ϕ : F∗X K → K is an isomorphism. A morphism of Weil complexes
on X0 is a morphism of complexes on X commuting with ϕ. We also call K0 a Weil
sheaf if K is a sheaf. Let W (X0,Q`) be the category of Weil complexes on X0; it
is a triangulated category with the standard t-structure, and its core is the category
of Weil sheaves. There is a natural fully faithful triangulated functor

Dc(X0,Q`)→W (X0,Q`).

The usual six operations are well-defined on Weil complexes.

• Verdier duality. The Weil complex structure on DX K is given by the inverse of
the isomorphism

DX K
Dϕ
−−→ DX F∗X K −→∼ F∗X DX K .

• Tensor product. Let K0 and L0 be two Weil complexes such that K ⊗L L (which
is K ⊗ L since they are of Q`-coefficients) is constructible. This is the case when
they are both bounded above. The Weil complex structure on K ⊗ L is given by

F∗X(K ⊗ L)−→∼ F∗X K ⊗ F∗X L −−−−−→
ϕK⊗ϕL K ⊗ L .

• Pullback. This is clear:

F∗X f ∗K −→∼ f ∗F∗Y K −−−−→
f ∗ϕ

f ∗K .

Here f : X0→ Y0 is an Fq -morphism and (K , ϕ) is a Weil complex on Y0.

• Pushforward. Let f : X0 → Y0 and K0 ∈ W+(X0,Q`). The Weil complex
structure on f∗K is given by

F∗Y f∗K −→ f∗F∗X K −−−−→
f ∗ϕ

f∗K ,

where the first arrow is an isomorphism, because it is adjoint to

f∗K → FY∗ f∗F∗X K ' f∗FX∗F∗X K

obtained by applying f∗ to the adjunction morphism K → FX∗F∗X K , which is an
isomorphism.
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• The remaining cases f !, f! and RHom follow from the previous cases.

In this article, when discussing stacks over Fq , by a “sheaf” or “complex of
sheaves,” we usually mean a “Weil sheaf” or “Weil complex,” whereas a “lisse-
étale sheaf or complex” will be an ordinary constructible Q`-sheaf or complex on
the lisse-étale site of X0.

For x ∈ X0(Fqv ), it is a fixed point of FvX, hence there is a “local Frobenius
automorphism” Fx : Kx → Kx for every Weil complex K0, defined to be

Kx ' KFX(x) = (F
∗

X K )x
ϕ
−→ Kx .

2.4.3. ι-Weights and ι-mixedness. Recall that ι is a fixed isomorphism Q`→ C.
For α ∈ Q

∗

` , let wq(α) := 2 logq |ια|, called the ι-weight of α relative to q . For a
real number β, a sheaf F0 on X0 is said to be punctually ι-pure of weight β, if for
every integer v ≥ 1 and every x ∈X0(Fqv ), and every eigenvalue α of Fx acting on
Fx , we have wN (x)(α) = β. We say F0 is ι-mixed if it has a finite filtration with
successive quotients punctually ι-pure, and the weights of these quotients are called
the punctual ι-weights of F0. A complex K0 ∈ W (X0,Q`) is said to be ι-mixed
if all the cohomology sheaves Hi K0 are ι-mixed. Let Wm(X0,Q`) (respectively
Dm(X0,Q`)) be the full subcategory of ι-mixed complexes in W (X0,Q`) (respec-
tively Dc(X0,Q`)).

One can also define punctually pure sheaves, mixed sheaves and mixed com-
plexes for algebraic stacks.

2.4.4. Twists. For b∈Q
∗

` , let Q
(b)
` be the Weil sheaf on Spec Fq of rank one, where

F acts by multiplication by b. This is an étale sheaf if and only if b is an `-adic unit
[Deligne 1980, 1.2.7]. For an algebraic stack X0/Fq , we also denote by Q

(b)
` the

inverse image on X0 of the above Weil sheaf via the structural map. If F0 is a sheaf
on X0, we denote by F(b)

0 the tensor product F0⊗Q
(b)
` , and say that F(b)

0 is deduced
from F0 by a generalized Tate twist. Note that the operation F0 7→ F(b)

0 adds the
weights by wq(b). For an integer d , the usual Tate twist Q`(d) is Q

(q−d )

` . We
denote by 〈d〉 the operation (d)[2d] on complexes of sheaves, where [2d] means
shifting 2d to the left. Note that ι-mixedness is stable under the operation 〈d〉.

Lemma 2.5. Let X0 be an Fq -algebraic stack.

(i) If F0 is an ι-mixed sheaf on X0, then so is every subquotient of F0.

(ii) If 0→ F′0 → F0 → F′′0 → 0 is an exact sequence of sheaves on X0, and F′0
and F′′0 are ι-mixed, then so is F0.

(iii) The full subcategory Wm(X0,Q`) (respectively Dm(X0,Q`)) of W (X0,Q`)

(respectively Dc(X0,Q`)) is a triangulated subcategory with induced standard t-
structure.
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(iv) If f is a morphism of Fq -algebraic stacks, then f ∗ on complexes of sheaves
preserves ι-mixedness.

(v) If j :U0 ↪→ X0 is an open immersion and i : Z0 ↪→ X0 is its complement, then
K0 ∈W (X0,Q`) is ι-mixed if and only if j∗K0 and i∗K0 are ι-mixed.

Proof. (i) If F0 is punctually ι-pure of weight β, then so is every subquotient of it.
Now suppose F0 is ι-mixed and F′0 is a subsheaf of F0. Let W be a finite filtration

0⊂ · · · ⊂ Fi−1
0 ⊂ Fi

0 ⊂ · · · ⊂ F0

of F0 such that GrW
i F0 :=Fi

0/F
i−1
0 is punctually ι-pure for every i . Let W ′ be the

induced filtration W ∩F′0 of F′0. Then GrW ′
i F′0 is the image of

Fi
0 ∩F′0 ⊂ Fi

0 � GrW
i F0,

so it is punctually ι-pure. Let F′′0 = F0/F
′

0 be a quotient of F0, and let W ′′ be the
induced filtration of F′′0, namely (F′′0)

i
:= Fi

0/(F
i
0 ∩F′0). Then

GrW ′′
i F′′0 = Fi

0/(F
i−1
0 +Fi

0 ∩F′0),

which is a quotient of Fi
0/F

i−1
0 =GrW

i F0, so it is punctually ι-pure. Hence every
subquotient of F0 is ι-mixed.

(ii) Let W ′ and W ′′ be finite filtrations of F′0 and F′′0 respectively, such that GrW ′
i F′0

and GrW ′′
i F′′0 are punctually ι-pure for every i . Then W ′ can be regarded as a finite

filtration of F0 such that every member of the filtration is contained in F′0, and W ′′

can be regarded as a finite filtration of F0 such that every member contains F′0.
Putting these two filtrations together, we get the desired filtration for F0.

(iii) Being a triangulated subcategory means [Deligne 1977, p. 271] that if the
sequence K ′0→ K0→ K ′′0 → K ′0[1] is an exact triangle in W (X0,Q`), and two of
the three complexes are ι-mixed, then so is the third. By the rotation axiom of a
triangulated category, we can assume K ′0 and K ′′0 are ι-mixed. We have the exact
sequence

· · · −→Hn K ′0 −→Hn K0 −→Hn K ′′0 −→ · · · ,

and by (i) and (ii) we see that Hn K0 is ι-mixed.
Wm(X0,Q`) has the induced t-structure because if K0 is ι-mixed, then its trun-

cations τ≤n K0 and τ≥n K0 are ι-mixed.

(iv) On sheaves, f ∗ preserves stalks, so it is exact and preserves punctual ι-purity
on sheaves. Let f : X0 → Y0. Given an ι-mixed sheaf F0 on Y0, let W be
a finite filtration of F0 such that each GrW

i F0 is punctually ι-pure. Then f ∗W
gives a finite filtration of f ∗F0 and each Gr f ∗W

i f ∗F0 = f ∗GrW
i F0 is punctually

ι-pure. So the sheaf f ∗F0 is ι-mixed. For an ι-mixed complex K0 on Y0, note that
Hn( f ∗K0)= f ∗Hn(K0), hence f ∗K0 is ι-mixed.
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(v) One direction follows from (iv). For the other direction, note that j! and i∗
are exact and preserve punctual ι-purity on sheaves. If F0 is an ι-mixed sheaf on
U0, with a finite filtration W such that each GrW

i F0 is punctually ι-pure, then for
the induced filtration j!W of j!F0, we see that Gr j!W

i j!F0 = j!GrW
i F0 is punctu-

ally ι-pure, so j!F0 is ι-mixed. For an ι-mixed complex K0 on U0, we use that
Hn( j!K0) = j!Hn(K0). Similarly i∗ also preserves ι-mixedness on complexes.
Finally the result follows from (iii) and the exact triangle

j! j∗K0 −→ K0 −→ i∗i∗K0 −→ . �

To show that ι-mixedness is stable under the six operations, we need to show that
ι-mixedness of complexes on stacks can be checked locally on their presentations.
To descend a filtration on a presentation to the stack, we generalize the structure
theorem of ι-mixed sheaves to algebraic spaces. Recall the following theorem of
Deligne [1980, 3.4.1].

Theorem 2.6. Let F0 be an ι-mixed sheaf on a scheme X0 over Fq .

(i) F0 has a unique decomposition F0 =
⊕

b∈R/Z F0(b), called the decomposition
according to the weights mod Z, such that the punctual ι-weights of F0(b) are
all in the coset b. This decomposition, in which almost all the F0(b) are zero, is
functorial in F0. Note that each F0(b) is deduced by twist from an ι-mixed sheaf
with integer punctual weights.

(ii) If the punctual weights of F0 are integers and F0 is lisse, F0 has a unique
finite increasing filtration W by lisse subsheaves, called the filtration by punctual
weights, such that GrW

i F0 is punctually ι-pure of weight i . This filtration is functo-
rial in F0. More precisely, any morphism between ι-mixed lisse sheaves of integer
punctual weights is strictly compatible with their filtrations by punctual weights.

(iii) If F0 is lisse and punctually ι-pure, and X0 is normal, then the sheaf F on X
is semisimple.

Remark 2.6.1. (i) If C is an abelian category and D is an abelian full subcategory
of C, and C is an object in D, then every direct summand of C in C lies in D (or
isomorphic to some object in D). This is because the kernel of the composition

A⊕ B
prA
−−→ A

i A
↪−→ A⊕ B

is B. So direct summands of a lisse sheaf are lisse. If F0 in Theorem 2.6 (i) is
lisse, then each F0(b) is lisse.

(ii) If the Q`-sheaf F0 is defined over some finite subextension Eλ of Q`/Q`, then
its decomposition in Theorem 2.6 (i) and filtration in Theorem 2.6 (ii) are defined
over Eλ. This is because the Eλ-action commutes with the Galois action.
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(iii) Deligne [1980] made the assumption that all schemes are separated, at least
in order to use Nagata compactification to define f!. After the work of Laszlo
and Olsson [2008a, 2008b], one can remove this assumption, and many results in
[Deligne 1980], for instance this one and (3.3.1), remain valid. For [Deligne 1980,
3.4.1] one can take a cover of a not necessarily separated scheme X0 by open
affines (which are separated), and use the functoriality to glue the decomposition
or filtration on intersections.

Lemma 2.7. Let X0 be an Fq -algebraic space, and F0 an ι-mixed sheaf on X0.

(i) F0 has a unique decomposition F0 =
⊕

b∈R/Z F0(b), the decomposition ac-
cording to the weights mod Z, with the same property as in Theorem 2.6 (i). This
decomposition is functorial in F0.

(ii) If the punctual ι-weights of F0 are integers and F0 is lisse, F0 has a unique
finite increasing filtration W by lisse subsheaves, called the filtration by punctual
weights, with the same property as in Theorem 2.6 (ii). This filtration is functorial
in F0.

Proof. Let P : X ′0→ X0 be an étale presentation, and let F′0= P∗F0, which is also
ι-mixed by Lemma 2.5 (iv). Let X ′′0 be the fiber product

X ′′0 X ′0×X0 X ′0 X ′0

X ′0 X0.

=
p1

p2 P

P

Then X ′′0 is an Fq -scheme of finite type.

(i) Applying Theorem 2.6 (i) to F′0 we get a decomposition F′0 =
⊕

b∈R/Z F′0(b).
For j = 1, 2, applying p∗j we get a decomposition

p∗j F
′

0 =
⊕

b∈R/Z

p∗j F
′

0(b).

Since p∗j preserves weights, by the uniqueness in Theorem 2.6 (i), this decom-
position is the decomposition of p∗j F

′

0 according to the weights mod Z. By the
functoriality in Theorem 2.6 (i), the canonical isomorphismµ : p∗1F′0→ p∗2F′0 takes
the form

⊕
b∈R/Z µb, where µb : p∗1F′0(b)→ p∗2F′0(b) is an isomorphism satisfying

cocycle condition as µ does. Therefore the decomposition F′0 =
⊕

b∈R/Z F′0(b)
descends to a decomposition F0 =

⊕
b∈R/Z F0(b). We still need to show each

direct summand F0(b) is ι-mixed.
Fix a coset b and consider the summand F0(b). Twisting it appropriately, we

can assume that its inverse image F′0(b) is ι-mixed with integer punctual ι-weights.
By Lemma 2.5 (v) and noetherian induction, we can shrink X0 to a nonempty
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open subspace and assume F0(b) is lisse. Then F′0(b) is also lisse, and applying
Theorem 2.6 (ii) we get a finite increasing filtration W ′ of F′0(b) by lisse subsheaves
F′0(b)

i , such that each GrW ′
i F′0(b) is punctually ι-pure of weight i . Pulling back

this filtration via p j , we get a finite increasing filtration p∗j W ′ of p∗j F
′

0(b), and
since

Gr
p∗j W ′

i p∗j F
′

0(b)= p∗j GrW ′
i F′0(b)

is punctually ι-pure of weight i , it is the filtration by punctual weights given by
Theorem 2.6 (ii), hence it is functorial. It follows that the canonical isomorphism
µb : p∗1F′0(b)→ p∗2F′0(b)maps p∗1F′0(b)

i isomorphically onto p∗2F′0(b)
i , satisfying

cocycle condition. Therefore the filtration W ′ of F′0(b) descends to a filtration W of
F0(b), and P∗GrW

i F0(b)= GrW ′
i F′0(b) is punctually ι-pure of weight i . Note that

P is surjective, so every point x ∈ X0(Fqv ) can be lifted to a point x ′ ∈ X ′0(Fqnv )

after some base extension Fqnv of Fqv . This shows GrW
i F0(b) is punctually ι-

pure of weight i , therefore F0(b) is ι-mixed. This proves the existence of the
decomposition in (i).

For uniqueness, let F0 =
⊕

F̃0(b) be another decomposition with the desired
property. Then their restrictions to X ′0 are both equal to the decomposition of F′0,
which is unique Theorem 2.6 (i), so they are both obtained by descending this
decomposition, and so they are isomorphic, that is, for every coset b there exists
an isomorphism making the diagram commute:

F0(b) F̃0(b)

F0.

∼

For functoriality, let G0=
⊕

G0(b) be another ι-mixed sheaf with decomposition
on X0, and let ϕ : F0→ G0 be a morphism of sheaves. Pulling ϕ back via P we
get a morphism ϕ′ : F′0→ G′0 on X ′0, and the diagram

p∗1F′0 p∗2F′0

p∗1G′0 p∗2G′0

µF0

p∗1ϕ
′ p∗2ϕ

′

µG0

commutes. By Theorem 2.6 (i) ϕ′=
⊕
ϕ′(b) for morphisms ϕ′(b) :F′0(b)→G′0(b),

and the diagram
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p∗1F′0(b) p∗2F′0(b)

p∗1G′0(b) p∗2G′0(b)

can

p∗1ϕ
′ p∗2ϕ

′

can

commutes for each b. It follows that the morphisms ϕ′(b) descend to morphisms
ϕ(b) : F0(b)→ G0(b) such that ϕ =

⊕
ϕ(b).

(ii) The proof is similar to part (i). Applying Theorem 2.6 (ii) to F′0 on X ′0 we get a
finite increasing filtration W ′ of F′0 by lisse subsheaves F′i0 with desired property.
Pulling back this filtration via p j : X ′′0 → X ′0 we get the filtration by punctual
weights of p∗j F

′

0. By functoriality in Theorem 2.6 (ii), the canonical isomorphism
µ : p∗1F′0→ p∗2F′0 maps p∗1F′i0 isomorphically onto p∗2F′i0 satisfying cocycle con-
dition, therefore the filtration W ′ descends to a finite increasing filtration W of F0

by certain subsheaves Fi
0. By Olsson [2007, 9.1] they are lisse subsheaves.

For uniqueness, if W̃ is another filtration of F0 by certain subsheaves F̃i
0 with

desired property, then their restrictions to X ′0 are both equal to the filtration W ′ by
punctual weights, which is unique Theorem 2.6 (ii), so they are both obtained by
descending this filtration W ′, and therefore they are isomorphic.

For functoriality, let G0 be another lisse ι-mixed sheaf with integer punctual ι-
weights, and let V be its filtration by punctual weights, and let ϕ : F0→ G0 be a
morphism. Pulling ϕ back via P we get a morphism ϕ′ : F′0→ G′0 on X ′0, and the
diagram

p∗1F′0 p∗2F′0

p∗1G′0 p∗2G′0

µF0

p∗1ϕ
′ p∗2ϕ

′

µG0

commutes. By Theorem 2.6 (ii) we have ϕ′(F′i0 )⊂ G′i0 , and the diagram

p∗1F′i0 p∗2F′i0

p∗1G′i0 p∗2G′i0

µF0

p∗1ϕ
′ p∗2ϕ

′

µG0

commutes for each i . Let ϕ′i :F′i0→G′i0 be the restriction of ϕ′. Then they descend
to morphisms ϕi

: Fi
0→ Gi

0, which are restrictions of ϕ. �

Remark 2.7.1. One can prove a similar structure theorem of ι-mixed sheaves on
algebraic stacks over Fq : the proof of Lemma 2.7 carries over verbatim to the
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case of algebraic stacks, except that for a presentation X ′0→ X0, the fiber product
X ′′0 = X ′0×X0 X ′0 may not be a scheme, so we use the case for algebraic spaces and
replace every “2.6” in the proof by “2.7”. It turns out that Theorem 2.6 (iii) also
holds for algebraic stacks, as a consequence of the proof of Theorem 1.4. As we
will not use these results in this paper, we do not give the proof in detail here, but
refer to [Sun 2012, 2.1].

Proposition 2.8. Let X0 be an Fq -algebraic stack, and let P : X0 → X0 be a
presentation (that is, a smooth surjection with X0 a scheme). Then a complex
K0 ∈W (X0,Q`) is ι-mixed if and only if P∗K0 (respectively P !K0) is ι-mixed.

Proof. We consider P∗K0 first. The “only if” part follows from Lemma 2.5 (iv).
For the “if” part, since P∗ is exact on sheaves and so Hi (P∗K0)= P∗Hi (K0), we
reduce to the case when K0 =F0 is a sheaf. So we assume the sheaf F′0 := P∗F0

on X0 is ι-mixed, and want to show F0 is also ι-mixed. The proof is similar to the
argument in Lemma 2.7.

Let X ′′0 be the fiber product

X ′′0 X0×X0 X0 X0

X0 X0.

=
p1

p2 P

P

Then X ′′0 is an algebraic space of finite type. Applying Theorem 2.6 (i) to F′0 we
get a decomposition F′0 =

⊕
b∈R/Z F′0(b). For j = 1, 2, applying p∗j we get a

decomposition

p∗j F
′

0 =
⊕

b∈R/Z

p∗j F
′

0(b),

which is the decomposition of p∗j F
′

0 according to the weights mod Z. By the
functoriality in Lemma 2.7 (i), the canonical isomorphism µ : p∗1F′0→ p∗2F′0 takes
the form

⊕
b∈R/Z µb, where µb : p∗1F′0(b)→ p∗2F′0(b) is an isomorphism satis-

fying cocycle condition as µ does. Therefore the decomposition of F′0 descends
to a decomposition F0 =

⊕
b∈R/Z F0(b). The ι-weights of the local Frobenius

eigenvalues of F0(b) at each point of X0 are in the coset b. Next we show that
F0(b)’s are ι-mixed.

Replacing F0 by a direct summand F0(b) and then twisting it appropriately, we
may assume its inverse image F′0 is ι-mixed with integer punctual ι-weights. By
Lemma 2.5 (v) we can shrink X0 to a nonempty open substack and assume F0 is
lisse. Then F′0 is also lisse, and applying Theorem 2.6 (ii) we get a finite increasing
filtration W ′ of F′0 by lisse subsheaves F′i0 , such that each GrW ′

i F′0 is punctually
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ι-pure of weight i . Pulling back this filtration via p j , we get a finite increasing
filtration p∗j W ′ of p∗j F

′

0, and since

Gr
p∗j W ′

i p∗j F
′

0 = p∗j GrW ′
i F′0

is punctually ι-pure of weight i , it is the filtration by punctual weights given by
Lemma 2.7 (ii). By functoriality, the canonical isomorphism µ : p∗1F′0 → p∗2F′0
maps p∗1F′i0 isomorphically onto p∗2F′i0 , satisfying cocycle condition. Therefore
the filtration W ′ of F′0 descends to a filtration W of F0, and P∗GrW

i F0 = GrW ′
i F′0

is punctually ι-pure of weight i . Since π is surjective, GrW
i F0 is also punctually

ι-pure of weight i , therefore F0 is ι-mixed.
Next we consider P !K0. We know that P is smooth of relative dimension d, for

some function d : π0(X0)→ N. Let X0
0 be a connected component of X0. Since

π0(X0) is finite, X0
0 is both open and closed in X0, so

f : X0
0

j
−→ X0

P
−→ X0

is smooth of relative dimension d(X0
0). Then P∗K0 is ι-mixed if and only if

f ∗K0 = j∗P∗K0 is ι-mixed for the inclusion j of every connected component,
if and only if f !K0 = f ∗K0〈d(X0

0)〉 is ι-mixed, if and only if P !K0 is ι-mixed,
since f ! = j !P ! = j∗P !. �

Remark 2.8.1. As a consequence of Lafforgue’s theorem on the Langlands cor-
respondence for function fields and a Ramanujan–Petersson type of result, one
deduces that all complexes on any Fq -algebraic stack is ι-mixed, for any ι. To
see this, by Proposition 2.8 and Lemma 2.5 (ii,v), we reduce to the case of an
irreducible lisse sheaf on a smooth (in particular, normal) Fq -scheme. By [Deligne
1980, 1.3.6] we reduce to the case where the determinant of the lisse sheaf has
finite order, and Lafforgue’s result [Laumon 2002, 1.3] applies. In the following,
when we want to emphasize the assumption of ι-mixedness, we will still write
Wm(X0,Q`)

′′, although it equals the full category W (X0,Q`).

Next we show the stability of ι-mixedness, first for a few operations on com-
plexes on algebraic spaces, and then for all the six operations on stacks. Denote
by DX0 or just D the dualizing functor RHom(−, KX0), where KX0 is a dualizing
complex on X0 [Laszlo and Olsson 2008b, §7].

2.9. Recall [Kiehl and Weissauer 2001, II 12.2] that, for Fq -schemes and bounded
complexes of sheaves on them, the operations f∗, f!, f ∗, f !, D and −⊗L

− all
preserve ι-mixedness. Since we are working with Q`-coefficients, ⊗L

=⊗.

Lemma 2.10. Let f : X0→ Y0 be a morphism of Fq -algebraic spaces. Then the
operations −⊗−, DX0, f∗ and f! all preserve ι-mixedness, namely, they induce
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functors

−⊗− :W−m (X0,Q`)×W−m (X0,Q`)−→W−m (X0,Q`),

D :Wm (X0,Q`)−→Wm (X0,Q`)
op,

f∗ :W+m (X0,Q`)−→W+m (Y0,Q`),

f! :W−m (X0,Q`)−→W−m (Y0,Q`).

Proof. We will reduce to the case of unbounded complexes on schemes, and then
prove the scheme case. Let P : X ′0→ X0 be an étale presentation.

Reduction for ⊗. For objects K0 and L0 in W−m (X0,Q`), we have that

P∗(K0⊗ L0)= (P∗K0)⊗ (P∗L0),

and the reduction follows from Proposition 2.8.
Reduction for D. For K0 ∈ Wm(X0,Q`), we have P∗DK0 = D P !K0, so the

reduction follows from Proposition 2.8.
Reduction for f∗ and f!. By definition [Laszlo and Olsson 2008b, 9.1] we have

f∗ = D f!D, so it suffices to prove the case for f!. Let K0 ∈ W−m (X0,Q`), and let
P ′ : Y ′0→ Y0 and X ′0→ X0×Y0 Y ′0 be étale presentations:

X ′0 (X0)Y ′0 Y ′0

X0 Y0.

P

f ′

h P ′

f

g

By smooth base change [Laszlo and Olsson 2008b, 12.1] we get P ′∗ f!K0= f ′
!
h∗K0.

Replacing f by f ′ we can assume Y0 is a scheme. Let j : U0→ X0 be an open
dense subscheme [Knutson 1971, II 6.7], with complement i : Z0→ X0. Applying
f! to the exact triangle

j! j∗K0 −→ K0 −→ i∗i∗K0 −→

we get
( f j)! j∗K0 −→ f!K0 −→ ( f i)!i∗K0 −→

By Lemma 2.5 (iii) and noetherian induction, we can replace X0 by U0, and reduce
to the case where f is a morphism between schemes.

This finishes the reduction to the case of unbounded complexes on schemes, and
now we prove this case.

For the Verdier dual DX0 , since the dualizing complex K X0 has finite quasi-
injective dimension, for every K0 ∈ Wm(X0,Q`) and every integer i , there exist
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integers a and b such that

Hi (DX0 K0)'Hi (DX0τ[a,b]K0),

and by 2.9, we see that DX0 K0 is ι-mixed.
Next we prove the case of ⊗. For K0 and L0 ∈W−m (X0,Q`), we have

Hr (K0⊗ L0)=
⊕

i+ j=r

Hi (K0)⊗H j (L0).

The result follows from 2.9.
Finally we prove the case of f∗ and f!. Let K0 ∈ W+m (X0,Q`). Then we have

the spectral sequence

E i j
2 = Ri f∗(H j K0)H⇒ Ri+ j f∗K0,

and the result follows from 2.9 and Lemma 2.5 (i,ii). The case for f! = D f∗D also
follows. �

Finally we prove the main result of this section. This generalizes [Behrend 2003,
6.3.7].

Theorem 2.11. Let f : X0→ Y0 be a morphism of Fq -algebraic stacks. Then the
operations f∗, f!, f ∗, f !, DX0,−⊗− and RHom(−,−) all preserve ι-mixedness,
namely, they induce functors

f
∗
:W+m (X0,Q`)−→W+m (Y0,Q`), f

!
:W−m (X0,Q`)−→W−m (Y0,Q`),

f ∗ :Wm (Y0,Q`)−→Wm (X0,Q`), f ! :Wm (Y0,Q`)−→Wm (X0,Q`),

RHom(−,−) :W−m (X0,Q`)
op
×W+m (X0,Q`)−→W+m (X0,Q`),

⊗ :W−m (X0,Q`)×W−m (X0,Q`)−→W−m (X0,Q`),

D :Wm(X0,Q`)−→Wm(X0,Q`)
op.

Proof. Recall from [Laszlo and Olsson 2008b, 9.1] that we have f! := D f∗D and
f ! :=D f ∗D. By [ibid., 6.0.12, 7.3.1], for K0∈W−(X0,Q`) and L0∈W+(X0,Q`),
we have

D(K0⊗ DL0)= RHom(K0⊗ DL0, KX0)= RHom(K0, RHom(DL0, KX0))

= RHom(K0, DDL0)= RHom(K0, L0).

Therefore it suffices to prove the result for f∗, f ∗, D and −⊗−. The case of f ∗

is proved in Lemma 2.5 (iv).
For D: Let P : X0→X0 be a presentation. Since P∗D= D P !, the result follows

from Proposition 2.8 and Lemma 2.10.
For ⊗: Since we have P∗(K0⊗ L0) = P∗K0⊗ P∗L0, the result follows from

Proposition 2.8 and Lemma 2.10.
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For f∗ and f!: We will start with f!, in order to use smooth base change to reduce
to the case when Y0 is a scheme, and then turn to f∗ in order to use cohomological
descent.

Let K0 ∈W−m (X0,Q`), and let P : Y0→Y0 be a presentation and the following
diagram be 2-Cartesian:

(X0)Y0 Y0

X0 Y0

f ′

P ′ P
f

We have [ibid., 12.1] that P∗ f!K0 = f ′
!

P ′∗K0, so by 2.8 we can assume Y0 = Y0

is a scheme.
Now we switch to f∗, where f :X0→ Y0, and K0 ∈W+m (X0,Q`). Let X0→X0

be a presentation. Then it gives a strictly simplicial smooth hypercover X0,• of X0:

X0,n := X0×X0 · · · ×X0 X0︸ ︷︷ ︸
n+1 factors

,

where each X0,n is an Fq -algebraic space of finite type. Let fn : X0,n→ Y0 be the
restriction of f to X0,n . Then we have the spectral sequence [Laszlo and Olsson
2008b, 10.0.9]

E i j
1 = R j fi∗(K0|X0,i )H⇒ Ri+ j f∗K0.

Since fi ’s are morphisms of algebraic spaces, the result follows from Lemma 2.10
and Lemma 2.5 (i, ii). �

Remark 2.12. In fact, we can take the dualizing complex KX0 to be mixed, and
results in this section hold (and can be proved verbatim) for mixed complexes. In
particular, mixedness is preserved by the six operations and the Verdier dualizing
functor for stacks (if we take a mixed dualizing complex).

3. Stratifiable complexes

In this section, we use the same notations and hypotheses in 2.1. For the purpose
of this article, it suffices to take S to be Spec k for an algebraically closed field k
of characteristic not equal to `, but we want to work in the general setting (namely,
that of any scheme that satisfies (LO)) for future applications; for instance, when
proving the generic base change. Let X,Y, . . . be S-algebraic stacks of finite type.
By “sheaves” we mean “lisse-étale sheaves”. “Locally constant constructible” is
abbreviated as “lcc”. A stratification S of an S-algebraic stack X is a finite set of
disjoint locally closed substacks that cover X. If F is a lcc (3n)X-module, a decom-
position series of F is a filtration by lcc 3X-subsheaves, such that the successive
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quotients are simple 3X-modules. Note that the filtration is always finite, and
the simple successive quotients, which are (30)X-modules, are independent (up
to order) of the decomposition series chosen. They are called the Jordan–Hölder
components of F.

Definition 3.1. (i) A complex K = (Kn)n ∈Dc(A) is said to be stratifiable if there
exists a pair (S,L), where S is a stratification of X and L is a function that assigns
to every stratum U ∈ S a finite set L(U) of isomorphism classes of simple (that is,
irreducible) lcc 30-modules on Ulis-ét, such that for each pair (i, n) of integers the
restriction of the sheaf Hi (Kn) ∈ Modc(Xlis-ét,3n) to each stratum U ∈ S is lcc,
with Jordan–Hölder components (as a 3U-module) contained in L(U). We say
that the pair (S,L) trivializes K (or K is (S,L)-stratifiable), and denote the full
subcategory of (S,L)-stratifiable complexes by DS,L(A). The full subcategory of
stratifiable complexes in Dc(A) is denoted by Dstra

c (A).

(ii) Let Dstra
c (X,3) be the essential image of Dstra

c (A) in Dc(X,3), and we call the
objects of Dstra

c (X,3) stratifiable complexes of sheaves.

(iii) Let Eλ be a finite extension of Q` with ring of integers Oλ. Then the definition
above applies to 3 = Oλ. Let Dstra

c (X, Eλ) be the essential image of Dstra
c (X,Oλ)

in Dc(X, Eλ). Finally we define

Dstra
c (X,Q`)= 2-colimEλ Dstra

c (X, Eλ).

Remark 3.1.1. (i) This notion is due to Beilinson, Bernstein and Deligne [1982],
and Behrend [2003] used it to define his derived category for stacks. Many results
in this section are borrowed from [Behrend 2003], but reformulated and reproved
in terms of the derived categories defined in [Laszlo and Olsson 2008b].

(ii) Let F be a 3n-sheaf trivialized by a pair (S,L), and let G be a subquotient
sheaf of F. Then G is not necessarily trivialized by (S,L). But if G is lcc on each
stratum in S, then it is necessarily trivialized by (S,L).

3.2. We say that the pair (S′,L′) refines the pair (S,L), if S′ refines S, and for
every V ∈ S′, U ∈ S and L ∈ L(U), such that V ⊂ U, the restriction L|V is
trivialized by L′(V). Given a pair (S,L) and a refined stratification S′ of S, there
is a canonical way to define L′ such that (S′,L′) refines (S,L): for every V ∈S′,
we take L′(V) to be the set of isomorphism classes of Jordan–Hölder components
of the lcc sheaves L|V for L ∈ L(U), where U ranges over all strata in S that
contains V. It is clear that the set of all pairs (S,L) form a filtered direct system.

A pair (S,L) is said to be tensor closed if for every U ∈ S and L ,M ∈ L(U),
the sheaf tensor product L ⊗30 M has Jordan–Hölder components in L(U).

For a pair (S,L), a tensor closed hull of this pair is a tensor closed refinement.

Lemma 3.3. Every pair (S,L) can be refined to a tensor closed pair (S′,L′).
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Proof. First we show that for a lcc sheaf of sets F on Xlis-ét, there exists a finite
étale morphism f : Y → X of algebraic S-stacks such that f −1F is constant.
Consider the total space [F] of the sheaf F. Precisely, this is the category fibered
in groupoids over (Aff/S) with the underlying category described as follows. Its
objects are triples (U ∈obj(Aff/S), u ∈obj X(U ), s ∈ (u−1F)(U )), and morphisms
from (U, u, s) to (V, v, t) are pairs ( f :U→V, α :v f ⇒u) such that t is mapped to
s under the identification α : f −1v−1F∼= u−1F. The map (U, u, s) 7→ (U, u) gives
a map g : [F]→X, which is representable finite étale (because it is so locally). The
pullback sheaf g−1F on [F] has a global section, so the total space breaks up into
two parts, one part being mapped isomorphically onto the base [F]. By induction
on the degree of g we are done.

Next we show that for a fixed representable finite étale morphism Y→X, there
are only finitely many isomorphism classes of simple lcc 30-sheaves on X that
become constant when pulled back to Y. We can assume that both X and Y are
connected. By the following Lemma 3.3.1, we reduce to the case where Y→ X

is Galois with group G, for some finite group G. Then simple lcc 30-sheaves on
X that become constant on Y correspond to simple left 30[G]-modules, which are
cyclic and hence isomorphic to30[G]/I for left maximal ideals I of30[G]. There
are only finitely many such ideals since 30[G] is a finite set.

Also note that a lcc subsheaf of a constant constructible sheaf on a connected
stack is also constant. Let L be a lcc subsheaf on X of the constant sheaf associated
to a finite set M . Consider their total spaces. We have an inclusion of substacks
i : [L] ↪→

∐
m∈M Xm , where each part Xm is identified with X. Then i−1(Xm)→Xm

is finite étale, and is the inclusion of a substack, hence is either an equivalence or
the inclusion of the empty substack, since X is connected. It is clear that L is also
constant, associated to the subset of those m ∈ M for which i−1(Xm) 6=∅.

Finally we prove the lemma. Refining S if necessary, we assume all strata are
connected stacks. For each stratum U ∈ S, let Y→ U be a representable finite
étale morphism, such that all sheaves in L(U) become constant on Y. Then define
L′(U) to be the set of isomorphism classes of simple lcc 30-sheaves on Ulis-ét

which become constant on Y. For any L and M ∈L′(U), since all lcc subsheaves
of L⊗30 M are constant on Y, we see that L⊗30 M has Jordan–Hölder components
in L′(U) and hence (S,L′) is a tensor closed refinement of (S,L). �

Lemma 3.3.1. Let Y→ X be a representable finite étale morphism between con-
nected S-algebraic stacks. Then there exists a morphism Z→ Y, such that Z is
Galois over X, that is, it is a G-torsor for some finite group G.

Proof. Assume X is nonempty, and take a geometric point x → X. Let C be the
category FÉt(X) of representable finite étale morphisms to X, and let

F : C→ FSet
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be the fiber functor to the category of finite sets, namely F(Y) = HomX(x,Y).
Note that this Hom, which is a priori a category, is a finite set, since Y→ X is
representable and finite. Then one can verify that (C, F : C→ FSet) satisfies the
axioms of Galois formalism in [Grothendieck and Raynaud 1971, Exp. V, 4], and
use the consequence g) on p. 121 in (loc. cit.) For the reader’s convenience, we
follow Olsson’s suggestion and explain the proof briefly. Basically, we will verify
certain axioms of (G1)–(G6), and deduce the conclusion as in (loc. cit.).

First note that C, which is a priori a 2-category, is a 1-category. This is because
for any 2-commutative diagram

Y Z

X

f

where Y and Z are in C, the morphism f is also representable (and finite étale),
so HomX(Y,Z) is discrete. By definition, the functor F preserves fiber-products,
and F(X) is a one-point set.

Let f :Y→Z be a morphism in C, then it is finite étale. So if the degree of f is
1, then f is an isomorphism. This implies that the functor F is conservative, that
is, f is an isomorphism if F( f ) is. In particular, f is a monomorphism if and only
if F( f ) is. This is because f is a monomorphism if and only if p1 :Y×Z Y→Y

is an isomorphism, and F preserves fiber-products.
Since f :Y→ Z is finite étale, its image stack Y′ ⊂ Z is both open and closed,

hence Y′→ Z is a monomorphism that is an isomorphism onto a direct summand
of Z (that is, Z=Y′

∐
Y′′ for some other open and closed substack Y′′⊂Z). Also,

since Y→Y′ is epic and finite étale, it is strictly epic, that is, for every Z ∈C, the
diagram

Hom(Y′,Z)→ Hom(Y,Z)⇒ Hom(Y×Y′ Y,Z)

is an equalizer.
Every object Y in C is artinian: for a chain of monomorphisms

· · · → Yn→ · · · → Y2→ Y1→ Y,

we get a chain of injections

· · · → F(Yn)→ · · · → F(Y1)→ F(Y),

which is stable since F(Y) is a finite set, and so the first chain is also stable since
F is conservative.

Since F is left exact and every object in C is artinian, by [Grothendieck 1960,
3.1] the functor F is strictly pro-representable, that is, there exists a projective
system P = {Pi ; i ∈ I } of objects in C indexed by a filtered partially ordered set I ,
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with epic transition morphisms ϕi j : Pj → Pi (i ≤ j), such that there is a natural
isomorphism of functors

F −→∼ Hom(P,−) := colimI Hom(Pi ,−).

Let ψi : P→ Pi be the canonical projection in the category Pro(C) of pro-objects
of C. We may assume that every epimorphism Pj → Z in C is isomorphic to
Pj

ϕi j
−→ Pi for some i ≤ j . This is because one can add Pj→Z into the projective

system P without changing the functor it represents. Also one can show that the
Pi ’s are connected [Grothendieck 1960], and morphisms in C between connected
stacks are strictly epic.

Given Y ∈C, now we show that there exists an object Z→X that is Galois and
factors through Y. Since F(Y) is a finite set, there exists an index j ∈ I such that
all maps P→ Y factors through P −→ψj Pj . This means that the canonical map

P→ YJ
:= Y×X · · · ×X Y︸ ︷︷ ︸

#J factors

, where J := F(Y)= HomPro(C)(P,Y)

factors as

P
ψ j
−→ Pj

A
−→ YJ .

Let Pj→ Pi
B
→YJ be the factorization of A into a composition of an epimorphism

and a monomorphism B. We claim that Pi is Galois over X.
Since F(Pi ) is a finite set, there exists an index k ∈ I such that all maps P→ Pi

factors through P −→ψk Pk . Fix any v : Pk→ Pi . To show Pi is Galois, it suffices to
show that Aut(Pi ) acts on F(Pi )= Hom(Pk, Pi ) transitively, that is, there exists a
σ ∈ Aut(Pi ) making the triangle commute:

Pk Pi

Pi

v

ϕik
σ

For every u ∈ J = Hom(Pi ,Y), we have u ◦ v ∈ Hom(Pk,Y), so there exists a
u′ ∈ Hom(Pi ,Y) making the diagram commute:

Pk Pi

Pi Y.

v

ϕik u

u′

Since v is epic, the function u 7→ u′ : J → J is injective, hence a bijection. Let
α : YJ

→ YJ be the isomorphism induced by the map u 7→ u′. Then the diagram
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PiPk YJ

Pi YJ

Bv

α

B

ϕik

commutes. By the uniqueness of the factorization of the map Pk → YJ into the
composition of an epimorphism and a monomorphism, there exists a σ ∈ Aut(Pi )

such that σ ◦ v = ϕik . This finishes the proof. �

We give some basic properties of stratifiable complexes.

Lemma 3.4. (i) Dstra
c (A) (respectively Dstra

c (X,3)) is a triangulated subcategory
of Dc(A) (respectively Dc(X,3)) with the induced standard t-structure.

(ii) If f :X→Y is an S-morphism, then f ∗ :Dc(A(Y))→Dc(A(X)) (respectively
f ∗ : Dc(Y,3)→ Dc(X,3)) preserves stratifiability.

(iii) If S is a stratification of X, then K ∈ Dc(A(X)) is stratifiable if and only if
K |V is stratifiable for every V ∈ S.

(iv) Let P : X → X be a presentation, and let K = (Kn)n ∈ Dc(A(X)). Then K is
stratifiable if and only if P∗K is stratifiable.

(v) Dstra
c (X,3) contains Db

c (X,3), and the heart of Dstra
c (X,3) is the same as that

of Dc(X,3) in Remark 2.2.1 (i).

(vi) Let K ∈ Dc(A) be a normalized complex [Laszlo and Olsson 2008b, 3.0.8].
Then K is trivialized by a pair (S,L) if and only if K0 is trivialized by this pair.

(vii) Let K ∈ Dstra
c (A). Then its Tate twist K (1) is also stratifiable.

Proof. (i) To show Dstra
c (A) is a triangulated subcategory, it suffices to show

[Deligne 1977, p. 271] that for every exact triangle K ′ → K → K ′′ → K ′[1]
in Dc(A), if K ′ and K ′′ are stratifiable, so also is K .

Using refinement we may assume that K ′ and K ′′ are trivialized by the same
pair (S,L). Consider the cohomology sequence of this exact triangle at level n,
restricted to a stratum U ∈S. By Olsson [2007, 9.1], to show that a sheaf is lcc on
U, one can pass to a presentation U of the stack U. Then by Milne [2008, 20.3]
and the five-lemma, we see that the Hi (Kn)’s are lcc on U, with Jordan–Hölder
components contained in L(U). Therefore Dstra

c (A) (and hence Dstra
c (X,3)) is a

triangulated subcategory.
The t-structure is inherited by Dstra

c (A) (and hence by Dstra
c (X,3)) because, if

K ∈ Dc(A) is stratifiable, so also are its truncations τ≤r K and τ≥r K .

(ii) The functor f ∗ is exact on the level of sheaves, and takes a lcc sheaf to a lcc
sheaf. If (Kn)n ∈ Dc(A(Y)) is trivialized by (S,L), then ( f ∗Kn)n is trivialized
by ( f ∗S, f ∗L), where f ∗S= { f −1(V )|V ∈ S} and ( f ∗L)( f −1(V )) is the set of
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isomorphism classes of Jordan–Hölder components of f ∗L , L ∈L(V ). The case
of Dc(−,3) follows easily.

(iii) The “only if” part follows from (ii). The “if” part is clear: if (SV ,LV ) is a
pair on V that trivializes (Kn|V )n , then the pair (SX,L) on X, where SX = ∪SV

and L= {LV }V∈S, trivializes (Kn)n .

(iv) The “only if” part follows from (ii). For the “if” part, assume P∗K is trivialized
by a pair (SX ,LX ) on X . Let U ∈ SX be an open stratum, and let V ⊂ X be
the image of U [Laumon and Moret-Bailly 2000, 3.7]. Recall that for every T in
Aff/S, V (T ) is the full subcategory of X(T ) consisting of objects x that are locally
in the essential image of U (T ), that is, such that there exists an étale surjection
T ′→ T in Aff/S and u′ ∈U (T ′), such that the image of u′ in X(T ′) and x |T ′ are
isomorphic. Then V is an open substack of X (hence also an algebraic stack) and
P|U :U→ V is a presentation. Replacing P : X→ X by P|U :U→ V and using
noetherian induction and (iii), we may assume SX = {X}.

It follows from a theorem of Gabber [Illusie et al. 2008] that P∗ takes a bounded
complex to a bounded complex. In fact, using base change by P , we may assume
that P : Y→ X is a morphism from an S-algebraic space Y to an S-scheme X . Let
j : U → Y be an open dense subscheme of Y with complement i : Z → Y . For a
bounded complex L of 3n-sheaves on Y , we have the exact triangle

(Pi)∗i !L −→ P∗L −→ (P j)∗ j∗L −→ .

Gabber’s theorem implies that (P j)∗ j∗L is bounded, since P j :U → X is a mor-
phism between schemes. Note that the dualizing functor preserves boundedness,
so does i ! = DZ i∗DY , and therefore we may assume that (Pi)∗i !L is bounded by
noetherian induction. It follows that P∗L is bounded.

Now take a pair (S,L) on X that trivializes all P∗L’s, for L ∈LX ; this is possible
since each P∗L is bounded and LX is a finite set. We claim that K is trivialized
by (S,L).

For each sheaf F on X, the natural map F → R0 P∗P∗F is injective. This
follows from the sheaf axioms for the lisse-lisse topology, and the fact that the
lisse-étale topos and the lisse-lisse topos are the same. Explicitly, to verify the
injectivity on XU → U , for any u ∈ X(U ), since the question is étale local on U ,
one can assume P : XU → U has a section s : U → XU . Then the composition
FU → R0 P∗P∗FU → R0 P∗R0s∗s∗P∗FU = FU of the two adjunctions is the
adjunction for P ◦ s = id, so the composite is an isomorphism, and the first map is
injective.

We take F to be the cohomology sheaves Hi (Kn). Since P∗Hi (Kn) is an it-
erated extension of sheaves in LX , we see that P∗P∗Hi (Kn), and in particular
R0 P∗P∗Hi (Kn), are trivialized by (S,L) by (i). Since Hi (Kn) is lcc [Olsson
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2007, 9.1], by Remark 3.1.1 (ii) we see that Hi (Kn) (hence K ) is trivialized by
(S,L).

(v) By part (i) and Remark 2.2.1 (i) it is enough to show that all adic systems
M = (Mn)n ∈ A are stratifiable. By (iv) we may assume X = X is an S-scheme.
Since X is noetherian, there exists a stratification [Illusie 1977, VI, 1.2.6] of X
such that M is lisse on each stratum. By (iii) we may assume M is lisse on X .

Let L be the set of isomorphism classes of Jordan–Hölder components of the
30-sheaf M0. We claim that L trivializes Mn for all n. Suppose it trivializes Mn−1

for some n≥1. Consider the sub-3n-modules λMn⊂Mn[λ
n
]⊂Mn , where Mn[λ

n
]

is the kernel of the map λn
: Mn→ Mn . Since M is adic, we have exact sequences

of 3X -modules

0 λMn Mn M0 0,

0 Mn[λ
n
] Mn λn Mn 0,

0 λn Mn Mn Mn−1 0.

The natural surjection Mn/λMn → Mn/Mn[λ
n
] implies that L trivializes λn Mn ,

and therefore it also trivializes Mn . By induction on n we are done.
Since Db

c ⊂ Dstra
c ⊂ Dc, and Db

c and Dc have the same heart, it is clear that Dstra
c

has the same heart as them.

(vi) Applying−⊗L
3n

Kn to the following exact sequence, viewed as an exact triangle
in D(X,3n)

0−→3n−1
17→λ
−−−→3n −→30 −→ 0,

we get an exact triangle by Laszlo and Olsson [2008b, 3.0.10]

Kn−1 −→ Kn −→ K0 −→ .

By induction on n and Remark 3.4.1 below, we see that K is trivialized by (S,L)

if K0 is.

(vii) Let K = (Kn)n . Recall that the Tate twist K (1) is defined to be the system
(Kn(1))n , where Kn(1) = Kn ⊗

L
3n
3n(1). Note that the sheaf 3n(1) is a flat 3n-

module: to show that −⊗3n 3n(1) preserves injections, one can pass to stalks at
geometric points, over which we have a trivialization 3n '3n(1).

Suppose K is (S,L)-stratifiable. Using the isomorphism

Hi (Kn)⊗3n 3n(1)=Hi (Kn ⊗
L
3n
3n(1)),

it suffices to show the existence of a pair (S,L′) such that for each U ∈ S, the
Jordan–Hölder components of the lcc sheaves L ⊗3n 3n(1) lie in L′(U), for all
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L ∈ L(U). Since L is a 30-module, we have

L ⊗3n 3n(1)= (L ⊗3n 30)⊗3n 3n(1)= L ⊗3n (30⊗3n 3n(1))

= L ⊗3n 30(1)= L ⊗30 30(1),

and we can take L′(U) to be a tensor closed hull of {30(1), L ∈ L(U)}. �

Remark 3.4.1. In fact the proof of Lemma 3.4 (i) shows that DS,L(A) is a trian-
gulated subcategory with induced standard t-structure, for each fixed pair (S,L).
Let DS,L(X,3) be the essential image of DS,L(A) in Dc(X,3), and this is also a
triangulated subcategory with induced standard t-structure.

Also if E i j
r H⇒ En is a spectral sequence in the category A(X), and the E i j

r ’s
are trivialized by (S,L) for all i, j , then all the En’s are trivialized by (S,L).

We denote by D†,stra
c (X,3), for † = ±, b, the full subcategory of †-bounded

stratifiable complexes, using the induced t-structure.
The following is a key result for showing the stability of stratifiability under

the six operations later. Recall that M 7→ M̂ = Lπ∗Rπ∗M is the normalization
functor, where π :XN

→X is the morphism of topoi in [Laszlo and Olsson 2008b,
2.1], mentioned in 2.3.

Proposition 3.5. For a pair (S,L) on X, if M ∈DS,L(A), then M̂ ∈DS,L(A), too.
In particular, if K ∈ Dc(X,3), then K is stratifiable if and only if its normalization
K̂ ∈ Dc(A) is stratifiable.

Proof. First, we will reduce to the case where M is essentially bounded (that
is, Hi M is AR-null for |i | � 0). Let P : X → X be a presentation. The `-
cohomological dimension of Xét is finite, by the assumption (LO) on S. Therefore,
by Laszlo and Olsson [2008b, 2.1.i], the normalization functor for X has finite
cohomological dimension, and the same is true for X since P∗M̂ = P̂∗M , by
[ibid., 2.2.1, 3.0.11]. This implies that for each integer i , there exist integers a and
b with a ≤ b, such that Hi (M̂)=Hi (τ̂[a,b]M). Since τ[a,b]M is also trivialized by
(S,L), we may assume M ∈ Db

S,L(A(X)).
Since M̂ is normalized, by Lemma 3.4 (vi), it suffices to show that (M̂)0 is

trivialized by (S,L). Using projection formula and the flat resolution of 30

0−→3
λ
−→3

ε
−→30 −→ 0,

we have [ibid., p.176]

(M̂)0 =30⊗
L
3 Rπ∗M = Rπ∗(π∗30⊗

L
3•

M),

where π∗30 is the constant projective system defined by 30. Let C ∈ D(A) be
the complex of projective systems π∗30 ⊗

L
3•

M ; it is a λ-complex, and we have
Cn =30⊗

L
3n

Mn ∈ Dc(X,30).
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Recall [Illusie 1977, V, 3.2.3] that a projective system (Kn)n ringed by 3• in an
abelian category is AR-adic if and only if

• it satisfies the condition (MLAR) [Illusie 1977, V, 2.1.1], hence (ML), and denote
by (Nn)n the projective system of the universal images of (Kn)n;

• there exists an integer k≥0 such that the projective system (Ln)n := (Nn+k⊗3n)n

is adic.

Moreover, (Kn)n is AR-isomorphic to (Ln)n . Now for each i , the projective
system Hi (C) is AR-adic Remark 2.2.1 (i). Let N i

= (N i
n)n be the projective

system of the universal images of Hi (C), and choose an integer k ≥ 0 such that the
system L i

= (L i
n)n = (N

i
n+k⊗3n)n is adic. Since N i

n+k ⊂Hi (Cn+k) is annihilated
by λ, we have L i

n = N i
n+k , and the transition morphism gives an isomorphism

L i
n ' L i

n ⊗3n 3n−1 −→
∼ L i

n−1.

This means the projective system L i is the constant system π∗L i
0. By Laszlo and

Olsson [2008b, 2.2.2] we have Rπ∗Hi (C) ' Rπ∗L i , which is just L i
0 by [ibid.,

2.2.3].
The spectral sequence

R jπ∗H
i (C)H⇒Hi+ j ((M̂)0)

degenerates to isomorphisms L i
0 'Hi ((M̂)0), so we only need to show that L i

0 is
trivialized by (S,L). Using the periodic 3n-flat resolution of 30

· · · −→3n
λ
−→3n

λn

−→3n
λ
−→3n

ε
−→30 −→ 0,

we see that 30⊗
L
3n

H j (Mn) is represented by the complex

· · · −→H j (Mn)
λn

−→H j (Mn)
λ
−→H j (Mn)−→ 0,

so Hi (30⊗
L
3n

H j (Mn)) are trivialized by (S,L), for all i, j . Since M is essentially
bounded, we have the spectral sequence

Hi (30⊗
L
3n

H j (Mn))H⇒Hi+ j (Cn),

from which we deduce (by Remark 3.4.1) that the Hi (Cn)’s are trivialized by
(S,L). The universal image N i

n is the image of Hi (Cn+r )→ Hi (Cn) for some
r � 0, therefore the N i

n’s (and hence the L i
n’s) are trivialized by (S,L).

For the second claim, let K ∈ Dc(X,3). Since K is isomorphic to the image of
K̂ under the localization Dc(A)→ Dc(X,3) [Laszlo and Olsson 2008b, 3.0.14],
we see that K is stratifiable if K̂ is. Conversely, if K is stratifiable, which means
that it is isomorphic to the image of some M ∈ Dstra

c (A), then K̂ = M̂ is also
stratifiable. �
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3.5.1. For K ∈ Dc(X,3), we say that K is (S,L)-stratifiable if K̂ is, and then
Proposition 3.5 implies that K ∈ DS,L(X,3) (see Remark 3.4.1) if and only if K
is (S,L)-stratifiable.

Corollary 3.6. (i) If S is a stratification of X, then K ∈ Dc(X,3) is stratifiable if
and only if K |V is stratifiable for every V ∈ S.

(ii) Let K ∈ Dc(X,3). Then K is stratifiable if and only if its Tate twist K (1) is.

(iii) Let P : X→X be a presentation, and let K ∈ Dc(X,3). Then K is stratifiable
if and only if P∗K (respectively P !K ) is stratifiable.

Proof. (i) The “only if” part follows from Lemma 3.4 (ii). For the “if” part, we
first prove the following.

Lemma 3.6.1. For an S-algebraic stack X locally of finite type, let

N
u
−→ M −→ C −→ N [1]

be an exact triangle in Dc(A), where N is a normalized complex and C is almost
AR-null. Then the morphism u is isomorphic to the natural map M̂→ M.

Proof. Consider the following diagram

N̂ M̂ Ĉ N̂ [1]

N̂ M C N [1].

û

u
'

Since C is almost AR-null, we have Ĉ = 0 by Laszlo and Olsson [2008b, 2.2.2],
and so û is an isomorphism. �

Now let f :V→X be a morphism of S-algebraic stacks, and let M ∈Dc(A(X)).
We claim that f ∗M̂ ' f̂ ∗M . Applying f ∗ to the exact triangle

M̂ −→ M −→ C −→

we get
f ∗M̂ −→ f ∗M −→ f ∗C −→ .

By Laszlo and Olsson [2008a, 4.3.2], M̂n = hocolimN τ≤N M̂n , and −⊗L
3n
3n−1

and f ∗ preserve homotopy colimit because they preserve infinite direct sums. Now
that τ≤N M̂n and 3n−1 are bounded above complexes, we have

f ∗(τ≤N M̂n ⊗
L
3n
3n−1)' f ∗τ≤N M̂n ⊗

L
3n
3n−1

(see the proof of [ibid., 4.5.3]). Hence applying f ∗ to the isomorphism

M̂n ⊗
L
3n
3n−1 −→ M̂n−1
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we get an isomorphism

f ∗M̂n ⊗
L
3n
3n−1 −→ f ∗M̂n−1,

and by [ibid., 3.0.10], f ∗M̂ is normalized. Also it is clear that f ∗C is AR-null.
By Lemma 3.6.1 we have f ∗M̂ ' f̂ ∗M .

Therefore, the “if” part follows from Lemma 3.4 (iii) and Proposition 3.5, since
K̂ |V ' (̂K |V ).

(ii) This follows from Lemma 3.4 (vii), since K̂ (1)= K̂ (1).

(iii) For P∗K , the “only if” part follows from Lemma 3.4 (ii), and the “if” part fol-
lows from Lemma 3.4 (iv) and Proposition 3.5, since P∗ K̂ = (̂P∗K ) [ibid., 2.2.1,
3.0.11].

Since P is smooth of relative dimension d, for some function d : π0(X)→ N,
we have P !K ' P∗K (d)[2d], so by (ii), P∗K is stratifiable if and only if P !K
is. �

Before proving the main result of this section, we prove some special cases.

3.7. Let f : X → Y be a morphism of S-schemes. Then the 3n-dualizing com-
plexes K X,n and KY,n of X and Y respectively have finite quasi-injective dimen-
sions, and are bounded by some integer independent of n. Together with the
base change theorem for f!, we see that there exists an integer N > 0 depending
only on X, Y and f , such that for any integers a, b and n with n ≥ 0 and any
M ∈D[a,b]c (X,3n), we have f∗M ∈D[a,b+N ]

c (Y,3n). This implies that for each n,
the functor (defined using K -injective resolutions, see [Spaltenstein 1988, 6.7])

f∗ : D(X,3n)→ D(Y,3n)

restricts to
f∗ : Dc(X,3n)→ Dc(Y,3n).

Moreover, for M ∈D(A(X)) with constructible H j (Mn)’s (for all j and n) and for
each i ∈ Z, there exist integers a < b such that

Ri f∗M ' Ri f∗τ[a,b]M.

In particular, if M is a λ-complex on X , then Ri f∗M is AR-adic for each i , and
hence f∗M = ( f∗Mn)n is a λ-complex on Y .

This enables us to define

f∗ : Dc(X,3)→ Dc(Y,3)

to be K 7→ Q f∗ K̂ , where Q : Dc(A(Y ))→ Dc(Y,3) is the localization functor.
It agrees with the definition in [Laszlo and Olsson 2008b, 8] when restricted to
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D+c (X,3), and for each i ∈ Z and K ∈ Dc(X,3), there exist integers a < b such
that Ri f∗K ' Ri f∗τ[a,b]K .

Lemma 3.8. (i) If f : X → Y is a morphism of S-schemes, and K ∈ Dc(X,3) is
trivialized by ({X},L) for some L, then f∗K is stratifiable.

(ii) Let X be an S-algebraic stack that has a connected presentation (that is, there
exists a presentation P : X→X with X a connected S-scheme). Let KX and K ′X be
two3-dualizing complexes on X, and let D and D′ be the two associated dualizing
functors, respectively. Let K ∈ Dc(X,3). If DK is trivialized by a pair (S,L),
where all strata in S are connected, then D′K is trivialized by (S,L′) for some
other L′. In particular, for stacks with connected presentation, the property of the
Verdier dual of K being stratifiable is independent of the choice of the dualizing
complex.

(iii) Let X be an S-algebraic stack that has a connected presentation, and assume
that the constant sheaf 3 on X is a dualizing complex. If K ∈ Dc(X,3) is trivial-
ized by a pair ({X},L), then DX K is trivialized by ({X},L′) for some L′.

Proof. (i) Since f∗K is the image of f∗ K̂ , it suffices to show that f∗ K̂ is stratifiable.
Since f∗L is bounded for each L ∈ L, there exists a pair (SY ,LY ) on Y that
trivializes f∗L , for all L ∈ L. We claim that this pair trivializes Ri f∗ K̂n , for each
i and n.

Since Ri f∗ K̂n = Ri f∗τ[a,b] K̂n for some a < b, and τ[a,b] K̂n is trivialized by
({X},L), we may assume K̂n is bounded. The claim then follows from the spectral
sequence

R p f∗Hq((K̂ )n)H⇒ R p+q f∗((K̂ )n)

and Remark 3.4.1.

(ii) Recall that the dualizing complex KX (respectively K ′X) is defined to be the
image of a normalized complex KX,• (respectively K ′X,•), where each KX,n (re-
spectively K ′X,n) is a 3n-dualizing complex. See [ibid., 7.2.3, 7.2.4].

Let P : X→X be a presentation where X is a connected scheme. Then we have

P∗RHom(KX,n, K ′X,n)= RHom(P∗KX,n, P∗K ′X,n)= RHom(P !KX,n, P !K ′X,n).

Since P !KX,n and P !K ′X,n are 3n-dualizing complexes on X , by [Illusie 1977,
Exp. I, 2], we see that P∗RHom(KX,n, K ′X,n) (and hence RHom(KX,n, K ′X,n)) is
cohomologically concentrated in one degree, therefore it is quasi-isomorphic to
this nontrivial cohomology sheaf, once it has been appropriately shifted. So let
RHom(KX,n, K ′X,n) ' Ln[rn] for some sheaf Ln and integer rn . Since P∗Ln is
invertible and hence lcc (see [Illusie 1977, p. 19]), the sheaf Ln is lcc [Olsson
2007, 9.1].
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For every stratum U∈S, let L0(U) be the union of L(U) and the set of isomor-
phism classes of the Jordan–Hölder components of the lcc sheaf L0|U. Since all
strata in S are connected, there exists a tensor closed hull of (S,L0) of the form
(S,L′), that is, they have the same stratification S.

By Laszlo and Olsson [2008b, 4.0.8], the system

(Ln[rn])n = RHom((KX,n)n, (K ′X,n)n)

is normalized, so by Lemma 3.6.1, D̂′KX= (Ln[rn])n , and by Lemma 3.4 (vi), it is
trivialized by (S,L′). Since DK is trivialized by (S,L′), so also is D′K , because
D̂′K ' D̂K ⊗L D̂′KX.

(iii) The assumption implies in particular that X is connected, so by (ii), the ques-
tion is independent of the choice of the dualizing complex. By definition, K̂ is triv-
ialized by ({X},L), so are truncations of K̂ . The essential image of RHom(K̂ ,3•)
in Dc(X,3) is DK , so by 3.5.1 it suffices to show that RHom(K̂ ,3•)∈D{X},L′(A)

for some L′.
Since X is quasi-compact, each3n-dualizing complex is of finite quasi-injective

dimension, so for each integer i , there exist integers a and b such that

Hi RHom(K̂n,3n)=Hi RHom(τ[a,b] K̂n,3n).

Using truncation triangles, we may further replace τ[a,b] K̂n by the cohomology
sheaves H j K̂n , and hence by their Jordan–Hölder components. Therefore, it suf-
fices to find an L′ that trivializes Hi RHom(L ,30), for all i ∈ Z and L ∈ L. Note
that RHom(L ,30) = Hom(L ,30) = L∨ is a simple 30-sheaf, so one can take
L′ = {L∨|L ∈ L}. �

Remark 3.8.1. For any S-algebraic stack X, the Verdier dual of a complex K in
Dc(X,3) being stratifiable or not is independent of the choice of the dualizing
complex. Let KX and K ′X be two dualizing complexes on X, defining dualizing
functors D and D′, respectively. Let P : X→X be a presentation, let K X = P !KX

and let K ′X = P !K ′X, defining dualizing functors DX and D′X on X , respectively.
Suppose DK is stratifiable. To show D′K is also stratifiable, by Corollary 3.6 (iii)
it suffices to show P !D′K = D′X P∗K is stratifiable. Since DX P∗K = P !DK
is stratifiable by assumption, we may assume X = X is a scheme. Since X is
noetherian, it has finitely many connected components, each of which is both open
and closed. Then the result follows from Corollary 3.6 (i) and Lemma 3.8 (ii).

Next we prove the main result of this section.

Theorem 3.9. Let f : X→ Y be a morphism of S-algebraic stacks. Then the op-
erations f∗, f!, f ∗, f !, DX,−⊗

L
− and RHom(−,−) all preserve stratifiability,
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namely, they induce functors

f∗ : D+,stra
c (X,3)−→ D+,stra

c (Y,3), f! : D−,stra
c (X,3)−→ D−,stra

c (Y,3),

f ∗ : Dstra
c (Y,3)−→ Dstra

c (X,3), f ! : Dstra
c (Y,3)−→ Dstra

c (X,3),

RHom(−,−) : D−,stra
c (X,3)op

× D+,stra
c (X,3)−→ D+,stra

c (X,3),

⊗
L
: D−,stra

c (X,3)× D−,stra
c (X,3)−→ D−,stra

c (X,3),

D : Dstra
c (X,3)−→ Dstra

c (X,3)op.

Proof. We may assume all stacks involved are reduced.
We consider the Verdier dual functor D first. Let P : X→ X be a presentation.

Since P∗D = D P !, by Corollary 3.6 (iii) we can assume X = X is a scheme. Let
K be a complex on X trivialized by (S,L). Refining if necessary, we may assume
all strata in S are connected and regular. Let j : U → X be the immersion of an
open stratum in S with complement i : Z→ X . Shrinking U if necessary, we may
assume there is a dimension function on U [Riou 2007, Définition 2.1], hence by
a result of Gabber [ibid., Théorème 0.2], the constant sheaf 3 on U is a dualizing
complex. Consider the exact triangle

i∗DZ (K |Z )−→ DX K −→ j∗DU (K |U )−→ .

By Lemma 3.8 (iii) we see that DU (K |U ) is trivialized by ({U },L′) for some
L′, so j∗DU (K |U ) is stratifiable by Lemma 3.8 (i). By noetherian induction we
may assume DZ (K |Z ) is stratifiable, and it is clear that i∗ preserves stratifiability.
Therefore by Lemma 3.4 (i), DX K is stratifiable.

The case of f ∗ (and hence f !) is proved in Lemma 3.4 (ii).
Next we prove the case of ⊗L . For i = 1, 2, let Ki ∈ D−c (X,3), trivialized

by (Si ,Li ). Let (S,L) be a common tensor closed refinement (by Lemma 3.3)
of (Si ,Li ), i = 1, 2. The total tensor product K1 ⊗

L K2 is defined to be the
image in Dc(X,3) of K̂1⊗

L
3•

K̂2, which by Laszlo and Olsson [2008b, 3.0.10] is
normalized, so it suffices to show (by Lemma 3.4 (vi)) that

K̂1,0⊗
L
30

K̂2,0 = K̂1,0⊗30 K̂2,0

is trivialized by (S,L). This follows from

Hr (K̂1,0⊗30 K̂2,0)=
⊕

i+ j=r

Hi (K̂1,0)⊗30 H j (K̂2,0)

and the assumption that (S,L) is tensor closed.
The case of RHom(K1, K2)= D(K1⊗

L DK2) follows.
Finally we prove the case of f∗ and f!. Let f : X→ Y be a morphism of S-

algebraic stacks, and let K ∈ D−S,L(X,3) for some pair (S,L). We want to show
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f!K is stratifiable. Let j :U→ X be the immersion of an open stratum in S, with
complement i : Z→ X. From the exact triangle

( f j)! j∗K −→ f!K −→ ( f i)!i∗K −→

we see that it suffices to prove the claim for f j and f i . By noetherian induction
we can replace X by U. By Corollary 3.6 (iii) and smooth base change [Laszlo and
Olsson 2008b, 12.1], we can replace Y by a presentation Y , and by Corollary 3.6 (i)
and [ibid., 12.3] we can shrink Y to an open subscheme. After these reductions,
we assume that Y=Y is a regular irreducible affine S-scheme that has a dimension
function on it, that K is trivialized by ({X},L), and that the relative inertia stack
I f := X×1,X×Y X,1 X is flat and has components over X [Behrend 2003, 5.1.14].
Therefore by [ibid., 5.1.13], f factors as

X
g
−→ Z

h
−→ Y,

where g is gerbe-like and h is representable (see [ibid., 5.1.3–5.1.6] for relevant
notions). So we reduce to two cases: f is representable, or f is gerbe-like.

Case when f is representable. By shrinking the S-algebraic space X we can
assume X= X is a regular connected scheme that has a dimension function, so that
the constant sheaf 3 on X is a dualizing complex. By Lemma 3.8 (iii) we see that
DK is trivialized by some ({X},L′), and by Lemma 3.8 (i), f∗DK is stratifiable.
Therefore f!K = D f∗DK is also stratifiable.

Case when f is gerbe-like. In this case f is smooth [Behrend 2003, 5.1.5],
hence étale locally on Y it has a section. Replacing Y by an étale cover, we may
assume that f is a neutral gerbe, so f : B(G/Y )→Y is the structural map, for some
flat group space G of finite type over Y [Laumon and Moret-Bailly 2000, 3.21]. By
[ibid., 5.1.1] and Corollary 3.6 (i) we may assume G is a Y -group scheme. Next
we reduce to the case when G is smooth over Y .

By assumption Y is integral. Let k(Y ) be the function field of Y and k(Y ) an
algebraic closure. Then Gk(Y ),red is smooth over k(Y ), so there exists a finite ex-
tension L over k(Y ) such that GL ,red is smooth over L . Let Y ′ be the normalization
of Y in L , which is a scheme of finite type over S, and the natural map Y ′→ Y is
finite surjective. It factors through Y ′→ Z → Y , where Z is the normalization of
Y in the separable closure of k(Y ) in L = k(Y ′). So Z → Y is generically étale,
and Y ′→ Z is purely inseparable, hence a universal homeomorphism, so Y ′ and
Z have equivalent étale sites. Replacing Y ′ by Z and shrinking Y we can assume
Y ′→ Y is finite étale. Replacing Y by Y ′ (by Corollary 3.6 (ii)) we assume Gred

over Y has smooth generic fiber, and by shrinking Y we assume Gred is smooth
over Y .

Gred is a subgroup scheme of G [Grothendieck and Demazure 1970, Exposé
VIA, 0.2]; we write h : Gred ↪→ G for the associated closed immersion. Then
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Bh : B(Gred/Y )→ B(G/Y ) is faithful and hence representable. It is also radicial:
consider the diagram where the square is 2-Cartesian

Y G/Gred Y

B(Gred/Y ) B(G/Y ).

i g

P

Bh

The map i is a nilpotent closed embedding, so g is radicial. Since P is faithfully
flat, Bh is also radicial. This shows that

(Bh)∗ : D−c (B(G/Y ),3)→ D−c (B(Gred/Y ),3)

is an equivalence of categories. Replacing G by Gred we assume G is smooth over
Y , and hence P : Y → B(G/Y ) is a connected presentation.

Let d be the relative dimension of G over Y . By assumption, the constant sheaf
3 on Y is a dualizing complex, and so f !3 = 3〈−d〉 (and hence the constant
sheaf3 on X) is a dualizing complex on X. By Lemma 3.8 (iii), we see that DK is
trivialized by a pair of the form ({X},L′). To show f!K is stratifiable is equivalent
to showing that D f!K = f∗DK is stratifiable. So replacing K by DK , it suffices
to show that f∗K is stratifiable, where K ∈ D+

{X},L(X,3) for some L.
Consider the strictly simplicial smooth hypercover associated to the presentation

P : Y → B(G/Y ), and let fi :
∏

i G→ Y be the structural map. As in the proof
of Lemma 3.8 (i), it suffices to show the existence of a pair (SY ,LY ) on Y that
trivializes Rn f∗L , for all L ∈ L and n ∈ Z. From the spectral sequence [Laszlo
and Olsson 2008b, 10.0.9]

E i j
1 = R j fi∗ f ∗i P∗L H⇒ Ri+ j f∗L ,

we see that it suffices for the pair (SY ,LY ) to trivialize all the E i j
1 -terms. Assume

i ≥ 1. If we regard the map fi :
∏

i G→ Y as the product map∏
i

f1 :
∏

i

G→
∏

i

Y,

where the products are fiber products over Y , then we can write f ∗i P∗L as

f ∗1 P∗L �30 30 �30 · · ·�30 30.

Note that the scheme Y satisfies the condition (LO). By Künneth formula [Laszlo
and Olsson 2008b, 11.0.14] we have

fi∗ f ∗i P∗L = f1∗ f ∗1 P∗L ⊗30 f1∗30⊗30 · · · ⊗30 f1∗30.
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Since f1∗ f ∗1 P∗L and f1∗30 are bounded complexes (by a theorem of Gabber [Il-
lusie et al. 2008]), there exists a tensor closed pair (SY ,LY ) that trivializes them,
for all L ∈ L. The proof is finished. �

Consequently, the theorem also holds for Q`-coefficients.
Finally we give a lemma which will be used in the next section. This will play

the same role as [Behrend 2003, 6.3.16].

Lemma 3.10. Let X be a connected variety over an algebraically closed field k
of characteristic not equal to `, and let L be a finite set of isomorphism classes
of simple lcc 30-sheaves on X. Then there exists an integer d (depending only on
L) such that, for every lisse 3-adic sheaf F on X trivialized by L, and for every
integer i , we have

dimE H i
c (X,F⊗3 E)≤ d · rankE(F⊗3 E),

where E is the fraction field of 3.

Proof. Since L is finite and 0 ≤ i ≤ 2 dim X , there exists an integer d > 0 such
that dim30 H i

c (X, L)≤ d · rank30 L , for every i and every L ∈L. For a short exact
sequence of lcc 30-sheaves

0−→ G′ −→ G−→ G′′ −→ 0

on X , the cohomological sequence

· · · −→ H i
c (X,G′)−→ H i

c (X,G)−→ H i
c (X,G′′)−→ · · ·

implies that dim30 H i
c (X,G)≤ dim30 H i

c (X,G′)+dim30 H i
c (X,G′′). So it is clear

that if G is trivialized by L, then dim30 H i
c (X,G)≤ d · rank30 G, for every i .

Since we only consider F⊗3 E , we may assume F = (Fn)n is flat, of some
constant rank over 3 (since X is connected), and this 3-rank is equal to

rank30 F0 = rankE(F⊗3 E).

Recall that H i
c (X,F) is a finitely generated 3-module [Illusie 1977, VI, 2.2.2], so

by Nakayama’s lemma the minimal number of generators of the module is at most
dim30(30 ⊗3 H i

c (X,F)). Similar to ordinary cohomology groups [Milne 2008,
19.2], we have an injection

30⊗3 H i
c (X,F) ↪→ H i

c (X,F0)

of 30-vector spaces. Therefore, dimE H i
c (X,F⊗3 E) is less than or equal to the

minimal number of generators of H i
c (X,F) over 3, which is at most

dim30(30⊗3 H i
c (X,F))≤ dim30 H i

c (X,F0)

≤ d · rank30 F0 = d · rankE(F⊗3 E). �
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4. Convergent complexes and finiteness

We return to Fq -algebraic stacks X0,Y0, . . . of finite type. A complex K0 in
W (X0,Q`) is said to be stratifiable if K on X is stratifiable, and we denote by
W stra(X0,Q`) the full subcategory of such complexes. Note that if K0 is a lisse-
étale complex, and it is stratifiable on X0, then it is geometrically stratifiable (that
is, K on X is stratifiable). In turns out that in order for the trace formula to hold,
it suffices to make this weaker assumption of geometric stratifiability. So we will
only discuss stratifiable Weil complexes. Again, by a sheaf we mean a Weil Q`-
sheaf.

Definition 4.1. (i) Let K ∈ Dc(Q`) and ϕ : K → K an endomorphism. The pair
(K , ϕ) is said to be an ι-convergent complex (or just a convergent complex, since
we fixed ι) if the complex series in two directions∑

n∈Z

∑
Hn(K ),Hn(ϕ)

|α|s

is convergent, for every real number s > 0. In this case let Tr(ϕ, K ) be the abso-
lutely convergent complex series∑

n

(−1)nιTr(H n(ϕ), H n(K ))

or its limit.

(ii) Let K0 ∈ W−(X0,Q`). We call K0 an ι-convergent complex of sheaves (or
just a convergent complex of sheaves), if for every integer v ≥ 1 and every point
x ∈ X0(Fqv ), the pair (Kx , Fx) is a convergent complex. In particular, all bounded
complexes are convergent.

(iii) Let K0 ∈W−(X0,Q`) be a convergent complex of sheaves. Define

cv(X0, K0)=
∑

x∈[X0(Fqv )]

1
# Autx Fqv

Tr(Fx , Kx) ∈ C,

and define the L-series of K0 to be the formal power series

L(X0, K0, t)= exp
(∑
v≥1

cv(X0, K0)
tv

v

)
∈ C[[t]].

The zeta function Z(X0, t) in Definition 1.2 is a special case of this definition
as Z(X0, t)= L(X0,Q`, t). It has rational coefficients.

Notation 4.1.1. We sometimes write cv(K0) for cv(X0, K0), if it is clear that K0

is on X0. We also write cv(X0) for cv(X0,Q`).
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Remark 4.1.2. (i) Behrend [2003, 6.2.3] defined convergent complexes with re-
spect to arithmetic Frobenius elements, and our definition is for geometric Frobe-
nius, and it is essentially the same as Behrend’s definition, except we work with
ι-mixed Weil complexes (which means all Weil complexes, by Remark 2.8.1) for
an arbitrary isomorphism ι : Q` → C, while Behrend [2003] works with pure
or mixed lisse-étale sheaves with integer weights. Also our definition is a little
different from that in [Olsson 2008a]; the condition there is weaker.

(ii) Recall that Autx is defined to be the fiber over x of the inertia stack I0→ X0.
It is a group scheme of finite type [Laumon and Moret-Bailly 2000, 4.2] over k(x),
so Autx k(x) is a finite group.

(iii) If we have the following commutative diagram

Spec Fqvd Spec Fqv

X0,

x ′
x

then (Kx , Fx) is convergent if and only if (Kx ′, Fx ′) is convergent, because we have
Fx ′ = Fd

x and s 7→ sd : R>0
→ R>0 is a bijection. In particular, for a lisse-étale

complex of sheaves, the property of being a convergent complex is independent
of q and the structural morphism X0→ Spec Fq . Also note that, for every integer
v ≥ 1, a complex K0 on X0 is convergent if and only if K0 ⊗ Fqv on X0 ⊗ Fqv is
convergent.

We restate the main theorem in [Behrend 2003] using compactly supported co-
homology as follows. It generalizes Theorem 1.1. We will prove it in this section
and the next.

Theorem 4.2. Let f : X0 → Y0 be a morphism of Fq -algebraic stacks, and let
K0 ∈W−,stra

m (X0,Q`) be a convergent complex of sheaves. Then:

(i) (Finiteness) f!K0 is a convergent complex of sheaves on Y0.

(ii) (Trace formula) cv(X0, K0)= cv(Y0, f!K0) for every integer v ≥ 1.

First we give a few lemmas.

Lemma 4.3. Let

K ′ K K ′′ K ′[1]

K ′ K K ′′ K ′[1].

ϕ′ ϕ ϕ′′ ϕ′[1]

be an endomorphism of an exact triangle K ′→ K → K ′′→ K ′[1] in D−c (Q`). If
any two of the three pairs (K ′, ϕ′), (K ′′, ϕ′′) and (K , ϕ) are convergent, then so is
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the third, and
Tr(ϕ, K )= Tr(ϕ′, K ′)+Tr(ϕ′′, K ′′).

Proof. By the rotation axiom we can assume (K ′, ϕ′) and (K ′′, ϕ′′) are convergent.
We have the exact sequence

· · · −→ H n(K ′)−→ H n(K )−→ H n(K ′′)−→ H n+1(K ′)−→ · · · .

Since H n(K ) is an extension of a subobject of H n(K ′′) by a quotient object of
H n(K ′), we have ∑

Hn(K ),ϕ

|α|s ≤
∑

Hn(K ′),ϕ′
|α|s +

∑
Hn(K ′′),ϕ′′

|α|s

for every real s > 0, so (K , ϕ) is convergent.
Since the series

∑
n∈Z(−1)n

∑
Hn(K ),ϕ ια converges absolutely, we can change

the order of summation, and the second assertion follows if we split the long exact
sequence above into short exact sequences. �

Corollary 4.4. If K ′0→ K0→ K ′′0 → K ′0[1] is an exact triangle in W−(X0,Q`),
and two of the three complexes K ′0, K ′′0 and K0 are convergent complexes, then so
is the third, and cv(K0)= cv(K ′0)+ cv(K ′′0 ).

Proof. For every x ∈ X0(Fqv ), we have an exact triangle

K ′x −→ Kx −→ K ′′x −→

in D−c (Q`), equivariant under the action of Fx . Then apply Lemma 4.3. �

Lemma 4.5. Theorem 4.2 holds for f : Spec Fqd → Spec Fq .

Proof. We have an equivalence of triangulated categories

W−(Spec Fq ,Q`)−→
∼ D−c (RepQ`

G),

where G is the Weil group FZ of Fq . Let H be the subgroup FdZ, the Weil group
of Fqd . Since f : Spec Fqd → Spec Fq is finite, we have f! = f∗, and it is the
induced-module functor

HomQ`[H ]

(
Q`[G],−

)
: D−c (RepQ`

H)−→ D−c (RepQ`
G),

which is isomorphic to the coinduced-module functor Q`[G] ⊗Q`[H ]−. In partic-
ular, f! is exact on the level of sheaves.

Let A be a Q`-representation of H , and B = Q`[G] ⊗Q`[H ] A. Let x1, . . . , xm

be an ordered basis for A with respect to which Fd is an upper triangular matrixα1 ∗ ∗

. . . ∗

αm
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with eigenvalues α1, . . . , αm . Then B has an ordered basis

1⊗ x1, F ⊗ x1, · · · , Fd−1
⊗ x1,

1⊗ x2, F ⊗ x2, · · · , Fd−1
⊗ x2,

...
...

. . .
...

1⊗ xm, F ⊗ xm, · · · , Fd−1
⊗ xm,

with respect to which F is the matrix

M1 ∗ ∗

. . . ∗

Mm

 , where Mi =


0 · · · 0 αi

1
. . . 0 0
. . .

. . .
...

1 0

 .
The characteristic polynomial of F on B is

∏m
i=1(t

d
−αi ).

Let K0 be a complex of sheaves on Spec Fqd . The eigenvalues of the Frobenius
F on Hn( f!K )= f!Hn(K ) are all the d-th roots of the eigenvalues of Fd on Hn(K ),
so for every s > 0 we have∑

n

∑
Hn( f!K ),F

|α|s = d
∑

n

∑
Hn(K ),Fd

|α|s/d .

This shows that f!K0 is a convergent complex on Spec Fq if and only if K0 is a
convergent complex on Spec Fqd .

Next we prove

cv(Spec Fqd , K0)= cv(Spec Fq , f!K0)

for every v≥ 1. Since H n( f!K )= f!H n(K ), and both sides are absolutely conver-
gent series so that one can change the order of summation without changing the
limit, it suffices to prove it when K = A is a single representation concentrated in
degree 0. Let us review this classical calculation. Use the notation above. For each
i , fix a d-th root α1/d

i of αi , and let ζd be a primitive d-th root of unity. Then the
eigenvalues of F on B are ζ k

d α
1/d
i , for i = 1, . . . ,m and k = 0, . . . , d − 1.

If d - v, then HomFq (Fqd , Fqv )=∅, so cv(Spec Fqd , A)= 0. On the other hand,

cv(Spec Fq , f!A)= Tr(Fv, B)=
∑
i,k

ζ vk
d α

v/d
i =

∑
i

α
v/d
i

d−1∑
k=0

ζ vk
d = 0.

If d|v, then HomFq (Fqd , Fqv )= HomFq (Fqd , Fqd )= Z/dZ. So

cv(Fqd , A)= d Tr(Fv, A)= d
∑

i

α
v/d
i .
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On the other hand,

cv(Fq , B)= Tr(Fv, B)=
∑
i,k

ζ vk
d α

v/d
i =

∑
i,k

α
v/d
i = d

∑
i

α
v/d
i . �

Next, we consider BG0, for a finite group scheme G0 over Fq .

Lemma 4.6. Let G0 be a finite Fq -group scheme, and let F0 be a sheaf on BG0.
Then H r

c (BG,F)= 0 for all r 6= 0, and H 0
c (BG,F)' H 0(BG,F) has dimension

at most rank(F). Moreover, the set of ι-weights of H 0
c (BG,F) is a subset of the

ι-weights of F0.

Proof. By [Olsson 2008a, 7.12–7.14] we can replace G0 by its maximal reduced
closed subscheme, and assume G0 is reduced, hence étale. Then G0 is the same as a
finite group G(F) with a continuous action of Gal(Fq) [Milne 2012, XII, 2.11]. We
will also write G for the group G(F), if there is no confusion. Since Spec F→ BG
is surjective, we see that there is no nontrivial stratification on BG. In particular,
all sheaves on BG are lisse, and they are just Q`-representations of G.

BG is quasi-finite and proper over F, with finite diagonal, so by [Olsson 2008a,
5.8], H r

c (BG,F) = 0 for all r 6= 0. From [ibid., 5.1], we see that if F is a sheaf
on BG corresponding to the representation V of G, then H 0

c (BG,F) = VG and
H 0(BG,F)= V G , and there is a natural isomorphism

v 7→
∑
g∈G

gv : VG −→ V G .

Therefore
h0

c(BG,F)= dim VG ≤ dim V = rank(F),

and the weights of VG form a subset of the weights of V (counted with multiplic-
ities). �

4.7. (i) If k is a field, by a k-algebraic group G we mean a smooth k-group scheme
of finite type. If G is connected, then it is geometrically connected [Grothendieck
and Demazure 1970, Exposé VIA, 2.1.1].

(ii) For a connected k-algebraic group G, let a : BG → Spec k be the structural
map. Then

a∗ :3-Sh(Spec k)−→3-Sh(BG)

is an equivalence of categories. This is because
•BG has no nontrivial stratifications (it is covered by Spec k which has no non-

trivial stratifications), and therefore
• any constructible 3-adic sheaf on BG is lisse, given by an adic system (Mn)n

of sheaves on Spec k with G-actions, and these actions are trivial since G is con-
nected, see [Behrend 2003, 5.2.9].



L-series of Artin stacks over finite fields 89

(iii) Let G0 be a connected Fq -algebraic group. By a theorem of Lang [1956,
Theorem 2], every G0-torsor over Spec Fq is trivial, with automorphism group G0,
therefore

cv(BG0)=
1

cv(G0)
=

1
#G0(Fqv )

.

Recall the following theorem of Borel as in [Behrend 2003, 6.1.6].

Theorem 4.8. Let k be a field and G a connected k-algebraic group. Consider the
Leray spectral sequence given by the projection f : Spec k→ BG,

Ers
2 = H r (BGk)⊗ H s(Gk)H⇒Q`.

Let N s
= E0,s

s+1 ⊂ H s(Gk) be the transgressive subspaces, for s ≥ 1, and let N be
the graded Q`-vector space

⊕
s≥1 N s . We have:

(a) N s
= 0 if s is even.

(b) The canonical map
∧

N→H∗(Gk) is an isomorphism of graded Q`-algebras.

(c) The spectral sequence above induces an epimorphism of graded Q`-vector
spaces H∗(BGk)� N [−1]. Any section induces an isomorphism

Sym∗(N [−1])−→∼ H∗(BGk).

Remark 4.8.1. (i) The Ers
2 -term in Theorem 4.8 should be H r (BGk, Rs f∗Q`),

and Rs f∗Q` is a constructible sheaf on BG. By 4.7 (ii), the sheaf Rs f∗Q` is
isomorphic to a∗ f ∗Rs f∗Q`= a∗H s(Gk), where a : BG→ Spec k is the structural
map and H s(Gk) is the Gal(k)-module regarded as a sheaf on Spec k. Therefore
by projection formula, Ers

2 = H r (BGk)⊗ H s(Gk).

(ii) Since the spectral sequence converges to Q` sitting in degree 0, all Ers
∞

are
zero, except E00

∞
. For each s ≥ 1, consider the differential map

d0,s
s+1 : E

0,s
s+1 −→ E s+1,0

s+1

on the (s+1)st page. This map must be injective (respectively surjective) because
it is the last possibly nonzero map from E0,s

∗
(respectively into E s+1,0

∗
). Therefore,

it is an isomorphism. Here N s
= E0,s

s+1 is a subspace of E0,s
2 = H s(Gk), and E s+1,0

s+1
is a quotient of E s+1,0

2 = H s+1(BGk). We get the surjection H s+1(BGk)→ N s

by using the isomorphism d0,s
s+1.

4.8.2. Let G0 be a connected Fq -algebraic group of dimension d . We intend to ap-
ply Theorem 4.8 to investigate the compact support cohomology groups H∗c (BG).

We have graded Galois-invariant subspaces N =
⊕

r≥1 N r
⊂
⊕

r≥0 H r (G) con-
centrated in odd degrees, such that the induced map∧

N −→ H∗(G)
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is an isomorphism, and such that H∗(BG) ∼= Sym∗N [−1]. Let nr = dim N r , and
let vr1, . . . , vrnr be a basis for N r with respect to which the Frobenius acting on
N r is upper triangular αr1 ∗ ∗

. . . ∗

αrnr


with eigenvalues αr1, . . . , αrnr . By Deligne [1980, 3.3.5], the weights of H r (G)
are ≥ r , so |αri | ≥ qr/2 > 1. We have

H∗(BG)= Sym∗Q`〈vi j | for all i, j〉 =Q`[vi j ],

with deg(vi j ) = i + 1. Note that all i + 1 are even. In particular, H 2r−1(BG) = 0
and

H 2r (BG)= {homogeneous polynomials of degree 2r in vi j }

=Q`

〈∏
i, j

v
mi j
i j ;

∑
i, j

mi j (i + 1)= 2r
〉
.

With respect to an appropriate order of the basis, the matrix representing F acting
on H 2r (BG) is upper triangular, with eigenvalues∏

i, j

α
mi j
i j , for

∑
i, j

mi j (i + 1)= 2r.

By Poincaré duality, the eigenvalues of F acting on H−2r−2d
c (BG) are

q−d
∏
i, j

α
−mi j
i j , where

∑
i, j

mi j (i + 1)= 2r.

Here (mi j )i, j are tuples of nonnegative integers. Therefore the reciprocal charac-
teristic polynomial of F on H−2r−2d

c (BG) is

P−2r−2d(BG0, t) =
∏

mi j≥0∑
i, j mi j (i+1)=2r

(
1− q−d

∏
i, j

α
−mi j
i j · t

)
.

In the following two lemmas we prove two key cases of Theorem 4.2 (i).

Lemma 4.9. Let G0 be an Fq -group scheme of finite type. Then Theorem 4.2 (i)
holds for the structural map f : BG0 → Spec Fq and any convergent complex
K0 ∈W−(BG0,Q`).

Proof. By Olsson [2008a, 7.12–7.14] we may assume that G0 is reduced (hence
smooth), so that the natural projection Spec Fq→ BG0 is a presentation. Note that
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then the assumptions of ι-mixedness and stratifiability on K0 are verified automat-
ically, by Proposition 2.8 and Corollary 3.6 (iii), even though we will not use them
explicitly in the proof.

Let G0
0 be the identity component of G0 and consider the exact sequence of

algebraic groups

1−→ G0
0 −→ G0 −→ π0(G0)−→ 1.

The fibers of the induced map BG0 → Bπ0(G0) are isomorphic to BG0
0, so we

reduce to prove two cases: G0 is finite étale (or even a finite constant group scheme,
by Remark 4.1.2 (iii)), or G0 is connected and smooth.

Case of G0 finite constant. Let G0/Fq be the finite constant group scheme
associated with a finite group G, and let K0 ∈ W−(BG0,Q`). Again we denote
by G both the group scheme G0 ⊗ F and the finite group G0(F), if no confusion
arises. Let y be the unique point in Spec Fq ,

BG BG0

Spec F Spec Fq

fy f

y

is identified with the coinvariance functor

( )G : D−c (RepQ`
G)−→ D−c (Q`),

which is exact on the level of modules, since the category RepQ`
G is semisimple.

So ( f!K0)y = ( fy)!K = KG and Hn(KG)=Hn(K )G . Therefore∑
Hn(( fy)!K ),F

|α|s ≤
∑

Hn(K ),F

|α|s

for every n ∈ Z and s > 0. Therefore, if K0 is a convergent complex, so is f!K0.
Case of G0 smooth and connected. In this case

f ∗ :Q`-Sh(Spec Fq)−→Q`-Sh(BG0)

is an equivalence of categories by 4.7 (ii). Let d = dim G0, and let F0 be a sheaf
on BG0, corresponding to a representation V of the Weil group W (Fq), with
β1, . . . , βm as eigenvalues of F . By the projection formula [Laszlo and Olsson
2008b, 9.1.i] we have H n

c (BG,F) ' H n
c (BG)⊗ V , and by 4.8.2 the eigenvalues

of F on H−2r−2d
c (BG)⊗ V are (using the notation in 4.8.2)

q−dβk

∏
i, j

α
−mi j
i j ,
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for k = 1, . . . ,m and tuples (mi j ) such that
∑

i, j mi j (i+1)= 2r . For every s > 0,∑
n∈Z

∑
Hn

c (BG)⊗V,F

|α|s =
∑
mi j ,k

q−ds
∣∣βk
∣∣s ∏

i, j

∣∣α−mi j
i j

∣∣s
=

( m∑
k=1

∣∣βk
∣∣s)(∑

mi j

q−ds
∏
i, j

∣∣αi j
∣∣−mi j s

)
,

which converges to

q−ds
( m∑

k=1

|βk |
s
)∏

i, j

1
1−|αi j |

−s ,

since |αi j |
−s < 1 and the product above is taken over finitely many indices.

Let K0 be a convergent complex on BG0, and for each k ∈Z, let Vk be a W (Fq)-
module corresponding to Hk K0. For every x ∈ BG0(Fq) (for instance the trivial
G0-torsor), the pair (Hk(K )x , Fx) is isomorphic to (Vk, F). Consider the W (Fq)-
equivariant spectral sequence

H r
c (BG,Hk(K ))H⇒ H r+k

c (BG, K ).

We have ∑
n∈Z

∑
Hn

c (BG,K ),F

|α|s ≤
∑
n∈Z

∑
r+k=n

∑
H r

c (BG,Hk K ),F

|α|s

=

∑
r,k∈Z

∑
H r

c (BG)⊗Vk ,F

|α|s

=

∑
k∈Z

∑
r∈Z

∑
H r

c (BG)⊗Vk ,F

|α|s

=

∑
k∈Z

q−ds
(∑

Vk ,F

|α|s
)∏

i, j

1
1−|αi j |

−s

=

(∑
k∈Z

∑
Vk ,F

|α|s
)(

q−ds
∏
i, j

1
1−|αi j |

−s

)
,

where the first factor is convergent by assumption, and the product in the second
factor is taken over finitely many indices. This shows that f!K0 is a convergent
complex. �

Let Eλ be a finite subextension of Q`/Q` with ring of integers 3 and residue
field30, and let (S,L) be a pair on X defined by simple lcc30-sheaves on strata. A
complex K0 ∈W (X0,Q`) is said to be (S,L)-stratifiable (or trivialized by (S,L)),
if K is defined over Eλ, with an integral model over 3 trivialized by (S,L).
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Lemma 4.10. Let X0/Fq be a geometrically connected variety, Eλ a finite subex-
tension of Q`/Q` with ring of integers 3, and let L be a finite set of simple
lcc 30-sheaves on X. Then Theorem 4.2 (i) holds for the structural morphism
f : X0→ Spec Fq and all lisse ι-mixed convergent complexes K0 on X0 that are
trivialized by ({X},L).

Proof. Let N = dim X0. From the spectral sequence

Erk
2 = H r

c (X,Hk K )H⇒ H r+k
c (X, K )

we see that∑
n∈Z

∑
Hn

c (X,K ),F

|α|s ≤
∑
n∈Z

∑
r+k=n

∑
H r

c (X,Hk K ),F

|α|s =
∑

0≤r≤2N
k∈Z

∑
H r

c (X,Hk K ),F

|α|s,

therefore it suffices to show that the series
∑

k∈Z

∑
H r

c (X,Hk K ),F |α|
s converges for

each 0≤ r ≤ 2N .
Let d be the number in Lemma 3.10 for L. Each cohomology sheaf Hn K0 is

ι-mixed and lisse on X0, so by Theorem 2.6 (i) we have the decomposition

Hn K0 =
⊕

b∈R/Z

(Hn K0)(b)

according to the weights mod Z, defined over Eλ, see Remark 2.6.1 (ii). For
each coset b, we choose a representative b0 ∈ b, and take a b1 ∈ Q

∗

` such that
wq(b1)=−b0. Then the sheaf (Hn K0)(b)(b1) deduced by twist is lisse with integer
punctual weights. Let W be the filtration by punctual weights Theorem 2.6 (ii) of
(Hn K0)(b)(b1). For every v ≥ 1 and x ∈ X0(Fqv ), and every real s > 0, we have∑

n∈Z

∑
(Hn K0)x ,Fx

|α|s/v =
∑
n∈Z

b∈R/Z

∑
(Hn K0)(b)x ,Fx

|α|s/v

=

∑
n∈Z

b∈R/Z

∑
(Hn K0)(b)(b1)

x ,Fx

|α/bv1|
s/v

=

∑
n∈Z

b∈R/Z

qb0s/2
∑

(Hn K0)(b)(b1)
x ,Fx

|α|s/v

=

∑
n∈Z

b∈R/Z

qb0s/2
∑
i∈Z

∑
GrW

i ((H
n K0)(b)(b1))x ,Fx

|α|s/v

=

∑
n∈Z

b∈R/Z

qb0s/2
∑
i∈Z

q is/2
· rank GrW

i (H
n K0)(b)(b1).

Since K0 is a convergent complex, this series is convergent.
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For each n ∈ Z, every direct summand (Hn K0)(b) of Hn K0 is trivialized by
({X},L). The filtration W of each (Hn K0)(b)(b1) gives a filtration of (Hn K0)(b)
(also denoted W ) by twisting back, and it is clear that this latter filtration is de-
fined over Eλ. We have GrW

i ((H
n K0)(b)(b1)) = (GrW

i (H
n K0)(b))(b1), and each

GrW
i (H

n K0)(b) is trivialized by ({X},L). By Lemma 3.10,

hr
c
(
X,GrW

i
(
(Hn K )(b)(b1)

))
= hr

c(X,GrW
i (H

n K )(b))

≤ d · rank GrW
i (H

n K )(b)

= d · rank GrW
i
(
(Hn K )(b)(b1)

)
,

where the first equality follows from [Laszlo and Olsson 2008b, 9.1.i]. Therefore∑
n∈Z

∑
H r

c (X,Hn K ),F

|α|s =
∑
n∈Z

b∈R/Z

∑
H r

c (X,(Hn K )(b)),F

|α|s

=

∑
n∈Z

b∈R/Z

∑
H r

c (X,(Hn K )(b)(b1)),F

|b−1
1 α|s

≤

∑
n∈Z

b∈R/Z

qb0s/2
∑
i∈Z

∑
H r

c (X,GrW
i ((H

n K )(b)(b1))),F

|α|s

≤

∑
n∈Z

b∈R/Z

qb0s/2
∑
i∈Z

q(i+r)s/2
· hr

c
(
X,GrW

i
(
(Hn K )(b)(b1)

))
≤ qrs/2d

∑
n∈Z

b∈R/Z

qb0s/2
∑
i∈Z

q is/2
· rank GrW

i
(
(Hn K )(b)(b1)

)
,

and it converges. �

Now we prove Theorem 4.2 (i) in general.

Proof. We may assume all stacks involved are reduced. From Theorem 2.11 and
Theorem 3.9 we know that f!K0 ∈W−,stra

m (Y0,Q`).
Let y ∈ Y0(Fqv ), we want to show that (( f!K0)y, Fy) is a convergent complex.

Since the property of being convergent depends only on the cohomology sheaves,
by base change [Laszlo and Olsson 2008b, 12.5.3] we reduce to the case when
Y0 = Spec Fqv . Replacing q by qv, we may assume v = 1. By Remark 4.1.2 (iii)
we only need to show that (R0c(X, K ), F) is convergent.

If j :U0 ↪→X0 is an open substack with complement i :Z0 ↪→X0, then we have
an exact triangle

j! j∗K0 −→ K0 −→ i∗i∗K0 −→
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in W−(X0,Q`), which induces an exact triangle

R0c(U0, j∗K0)−→ R0c(X0, K0)−→ R0c(Z0, i∗K0)−→

in W−(Spec Fq ,Q`). So by Corollary 4.4 and noetherian induction, it suffices to
prove Theorem 4.2 (i) for a nonempty open substack. By [Behrend 2003, 5.1.14]
we may assume that the inertia stack I0 is flat over X0. Then we can form the
rigidification π : X0 → X0 with respect to I0 [Olsson 2008b, §1.5], where X0

is an Fq -algebraic space of quasi-compact diagonal. X0 contains an open dense
subscheme [Knutson 1971, II, 6.7]. Replacing X0 by the inverse image of this
scheme, we can assume X0 is a scheme.

If Theorem 4.2 (i) holds for two composable morphisms f and g, then it holds
for their composition g ◦ f . Since R0c(X0,−) = R0c(X0,−) ◦ π!, we reduce
to proving Theorem 4.2 (i) for these two morphisms. For every x ∈ X0(Fqv ),
the fiber of π over x is a gerbe over Spec k(x). Extending the base k(x) (see
Remark 4.1.2 (iii)) one can assume it is a neutral gerbe (in fact all gerbes over
a finite field are neutral; see [Behrend 2003, 6.4.2]). This means the following
diagram is 2-Cartesian:

B Autx X0

Spec Fqv X0.

π

x

So we reduce to two cases: X0 = BG0 for an Fq -algebraic group G0, or X0 = X0

is an Fq -scheme. The first case is proved in Lemma 4.9.
For the second case, given a convergent complex K0 ∈W−,stra

m (X0,Q`), defined
over some Eλ with ring of integers 3, and trivialized by a pair (S,L) (L being
defined over 30) on X , we can refine this pair so that every stratum is connected,
and replace X0 by models of the strata defined over some finite extension of Fq

Remark 4.1.2 (iii). This case is proved in Lemma 4.10. �

5. Trace formula for stacks

We prove two special cases of Theorem 4.2 (ii) in the following two propositions.

Proposition 5.1. Let G0 be a finite étale group scheme over Fq , and F0 a sheaf on
BG0. Then

c1(BG0,F0)= c1(Spec Fq , R0c(BG0,F0)).

Proof. This is a special case of [Olsson 2008a, 8.6] on correspondences given by
group homomorphisms. �
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Proposition 5.2. Let G0 be a connected Fq -algebraic group, and let F0 be a sheaf
on BG0. Then

c1(BG0,F0)= c1(Spec Fq , R0c(BG0,F0)).

Proof. Let f : BG0→ Spec Fq be the structural map and d = dim G0. By 4.7 (ii),
the sheaf F0 on BG0 takes the form f ∗V , for some sheaf V on Spec Fq . By 4.7 (iii),
we have

c1(BG0,F0)=
1

#G0(Fq)
Tr(Fx ,Fx)=

Tr(F, V )
#G0(Fq)

.

By the projection formula we have H n
c (BG,F)' H n

c (BG)⊗ V , so

Tr(F, H n
c (BG,F))= Tr(F, H n

c (BG)) ·Tr(F, V ).

Then

c1(Spec Fq , R0c(BG0,F0))=
∑

n

(−1)n Tr(F, H n
c (BG,F))

= Tr(F, V )
∑

n

(−1)n Tr(F, H n
c (BG)),

so we can assume F0 =Q`. Using the notations in 4.8.2 we have∑
n

(−1)n Tr(F, H n
c (BG))=

∑
r≥0

Tr(F, H−2r−2d
c (BG))

=

∑
r≥0

∑
∑

mi j (i+1)=2r
mi j≥0

q−d
∏
i, j

α
−mi j
i j = q−d

∑
mi j≥0

∏
i, j

α
−mi j
i j

= q−d
∏
i, j

(
1+α−1

i j +α
−2
i j + · · ·

)
= q−d

∏
i, j

1
1−α−1

i j

.

It remains to show that

#G0(Fq)= qd
∏
i, j

(
1−α−1

i j

)
.

In 4.8.2, we saw that if each N i has an ordered basis vi1, . . . , vini with respect
to which F is upper triangular, then since H∗(G)=

∧
N , H i (G) has a basis

vi1 j1 ∧ vi2 j2 ∧ · · · ∧ vim jm ,

such that
∑m

r=1 ir = i, ir ≤ ir+1, and if ir = ir+1, then jr < jr+1. The eigenvalues
of F on H i (G) are αi1 j1 · · ·αim jm for such indices. By Poincaré duality, the eigen-
values of F on H 2d−i

c (G) are qd(αi1 j1 · · ·αim jm )
−1. Note that all the ir are odd,

so
2d − i ≡ i =

m∑
r=1

ir ≡ m mod 2.
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Applying the classical trace formula to G0, we have

#G0(Fq)=
∑

(−1)mqdα−1
i1 j1 · · ·α

−1
im jm = qd

∏
i, j

(
1−α−1

i j

)
.

This finishes the proof. �

5.2.1. Note that in Propositions 5.1 and 5.2 we did not make explicit use of the
fact that F0 is ι-mixed.

Now we prove Theorem 4.2 (ii) in general.

Proof. Since cv(X0, K0) = c1(X0 ⊗ Fqv , K0 ⊗ Fqv ), we can assume v = 1. We
shall reduce to proving Theorem 4.2 (ii) for all fibers of f over Fq -points of Y0,
following the approach of Behrend [2003, 6.4.9].

Let y ∈ Y0(Fq) and (X0)y be the fiber over y. Then (X0)y(Fq) is the groupoid
of pairs (x, α), where x ∈ X0(Fq) and α : f (x)→ y is an isomorphism in Y0(Fq).
Suppose (X0)y(Fq) 6= ∅, and fix an x ∈ (X0)y(Fq). Then Isom( f (x), y)(Fq) is
a trivial left Auty(Fq)-torsor. There is also a natural right action of Autx(Fq) on
Isom( f (x), y)(Fq), namely ϕ ∈ Autx(Fq) takes α to α ◦ f (ϕ). Under this action,
for α and α′ to be in the same orbit, there should be a ϕ ∈ Autx(Fq) such that the
diagram

f (x) f (x)

y

f (ϕ)

α′ α

commutes; by definition this means (x, α) is isomorphic to (x, α′) in (X0)y(Fq). So
the set of orbits Isom( f (x), y)(Fq)/Autx(Fq) is identified with the inverse image
of the class of x along the map [(X0)y(Fq)] → [X0(Fq)]. The stabilizer group
of α ∈ Isom( f (x), y)(Fq) is Aut(x,α)(Fq), the automorphism group of (x, α) in
(X0)y(Fq).

In general, if a finite group G acts on a finite set S, then we have∑
[x]∈S/G

# G
# StabG(x)

=

∑
[x]∈S/G

# OrbG(x)= #S.

Now for S = Isom( f (x), y)(Fq) and G = Autx(Fq), we have∑
(x,α)∈[(X0)y(Fq )]

(x,α) 7→x

# Autx(Fq)

# Aut(x,α)(Fq)
= # Isom( f (x), y)(Fq)= # Auty(Fq);

the last equality follows from the fact that S is a trivial Auty(Fq)-torsor.
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If we assume Theorem 4.2 (ii) holds for the fibers fy : (X0)y → Spec Fq of f ,
for all y ∈ Y0(Fq), then

c1(Y0, f!K0) =
∑

y∈[Y0(Fq )]

Tr(Fy, ( f!K )y)

# Auty(Fq)

=

∑
y∈[Y0(Fq )]

Tr(Fy, ( fy!K )y)

# Auty(Fq)

=

∑
y∈[Y0(Fq )]

1
# Auty(Fq)

∑
(x,α)∈[(X0)y(Fq )]

Tr(Fx , Kx)

# Aut(x,α)(Fq)

=

∑
y∈[Y0(Fq )]

1
# Auty(Fq)

∑
x∈[X0(Fq )]

x 7→y

( ∑
(x,α)∈[(X0)y(Fq )]

(x,α) 7→x

Tr(Fx , Kx)

# Aut(x,α)(Fq)

)

=

∑
y∈[Y0(Fq )]

1
# Auty(Fq)

∑
x∈[X0(Fq )]

x 7→y

1
# Autx(Fq)( ∑

(x,α)∈[(X0)y(Fq )]

(x,α)7→x

# Autx(Fq)

# Aut(x,α)(Fq)

)
Tr(Fx , Kx)

=

∑
y∈[Y0(Fq )]

1
# Auty(Fq)

∑
x∈[X0(Fq )]

x 7→y

Tr(Fx , Kx)

# Autx(Fq)
# Auty(Fq)

=

∑
x∈[X0(Fq )]

Tr(Fx , Kx)

# Autx(Fq)
=: c1(X0, K0).

Here the second equality follows from [Laszlo and Olsson 2008b, 12.5.3]. Thus
we reduce to the case when Y0 = Spec Fq .

If K ′0 → K0 → K ′′0 → K ′0[1] is an exact triangle of convergent complexes in
W−,stra

m (X0,Q`), then by Corollary 4.4 and Theorem 4.2 (i) we have

c1(X0, K0)= c1(X0, K ′0)+ c1(X0, K ′′0 ) and

c1(Y0, f!K0)= c1(Y0, f!K ′0)+ c1(Y0, f!K ′′0 ).

If j :U0→ X0 is an open substack with complement i : Z0→ X0, then

c1(X0, j! j∗K0)= c1(U0, j∗K0) and c1(X0, i∗i∗K0)= c1(Z0, i∗K0).

By noetherian induction we can shrink X0 to a nonempty open substack. So we
may assume the inertia stack I0 is flat over X0, with rigidification π : X0→ X0,
where X0 is a scheme. If Theorem 4.2 (ii) holds for two composable morphisms
f and g, then it holds for g ◦ f . So we reduce to two cases as before: X0 = X0
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is a scheme, or X0 = BG0, where G0 is either a connected algebraic group, or a
finite étale algebraic group over Fq . We may assume X0 is separated, by further
shrinking (for instance to an affine open subscheme).

For a complex of sheaves K0 and an integer n, we have an exact triangle

τ<n K0 −→ τ<n+1K0 −→Hn(K0)[−n] −→,

so
c1(τ<n+1K0)= c1(τ<n K0)+ c1(H

n(K0)[−n])

= c1(τ<n K0)+ (−1)nc1(H
n(K0)).

Since K0 is bounded above, τ<N K0 ' K0 for N � 0. Since K0 is convergent,
c1(τ<n K0) → 0 absolutely as n → −∞, so the series

∑
n∈Z(−1)nc1(H

n(K0))

converges absolutely to c1(K0).
Applying R0c we get an exact triangle

R0c(X0, τ<n K0)−→ R0c(X0, τ<n+1K0)−→ R0c(X0,Hn K0)[−n] −→

in W−(Spec Fq ,Q`). We claim that, for X0 = X0 a scheme, or BG0, we have

lim
n→−∞

c1(Spec Fq , R0c(X0, τ<n K0))= 0

absolutely. Recall that c1(R0c(τ<n K0)) =
∑

i∈Z(−1)i ιTr(F, H i
c (X, τ<n K )), so

we need to show that∑
i∈Z

∑
H i

c (X,τ<n K ),F

|α| → 0 as n→−∞.

From the spectral sequence

H r
c (X,Hkτ<n K )H⇒ H r+k

c (X, τ<n K )

we see that∑
i∈Z

∑
H i

c (X,τ<n K ),F

|α| ≤
∑
i∈Z

∑
r+k=i

∑
H r

c (X,H
kτ<n K ),F

|α| =
∑
i∈Z

∑
r+k=i

k<n

∑
H r

c (X,H
k K ),F

|α|.

Let d = dim X0 (see 9.1). In the cases where X0 is a scheme or BG0, we have
H r

c (X,F)= 0 for every sheaf F unless r ≤ 2d (see 4.8.2 and Lemma 4.6). There-
fore ∑

i∈Z

∑
r+k=i

k<n

∑
H r

c (X,H
k K ),F

|α| ≤
∑

i<n+2d

∑
r+k=i

∑
H r

c (X,H
k K ),F

|α|,

and it suffices to show that the series∑
i∈Z

∑
r+k=i

∑
H r

c (X,H
k K ),F

|α|
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converges. We already proved this for BG0 in Lemma 4.9, and for schemes X0 in
Lemma 4.10 (we may shrink X0 so that the assumption in Lemma 4.10 is satisfied).

Note that in the two cases X0= X0 or BG0, Theorem 4.2 (ii) holds when K0 is a
sheaf concentrated in degree 0. For separated schemes X0, this is a classical result
of Grothendieck [1965] and Verdier [1967]; for BG0, this is done in Propositions
5.1 and 5.2. Therefore, for a general convergent complex K0, we have

c1(R0c(τ<n+1K0))= c1(R0c(τ<n K0))+ c1(R0c(H
n K0)[−n])

= c1(R0c(τ<n K0))+ (−1)nc1(H
n K0),

and so

c1(R0c(K0))=
∑
n∈Z

(−1)nc1(H
n K0)+ lim

n→−∞
c1(R0c(τ<n K0))= c1(K0). �

Corollary 5.3. Let f : X0 → Y0 be a morphism of Fq -algebraic stacks, and let
K0 ∈W−,stra

m (X0,Q`) be a convergent complex of sheaves. Then

L(X0, K0, t)= L(Y0, f!K0, t).

6. Infinite products

For a convergent complex K0 on X0, the series
∑

v≥1 cv(K0)tv/v (and hence the
L-series L(X0, K0, t)) usually has a finite radius of convergence. For instance, we
have the following lemma.

Lemma 6.1. Let X0/Fq be a variety of dimension d. Then the radius of conver-
gence of

∑
v≥1 cv(X0)tv/v is 1/qd .

Proof. Let fX0(t)=
∑

v≥1 cv(X0)tv/v. Let Y0 be an irreducible component of X0

with complement U0. Then cv(X0)=cv(Y0)+cv(U0), and since all the cv-terms are
nonnegative, we see that the radius of convergence of fX0(t) is the minimum of that
of fY0(t) and that of fU0(t). Since max{dim(Y0), dim(U0)} = d, and U0 has fewer
irreducible component than X0, by induction we can assume X0 is irreducible.

Then there exists an open dense subscheme U0⊂ X0 that is smooth over Spec Fq .
Let Z0 = X0−U0, then dim(Z0) < dim(X0)= d . From the cohomology sequence

H 2d−1
c (Z)−→ H 2d

c (U )−→ H 2d
c (X)−→ H 2d

c (Z)

we see that H 2d
c (X) = H 2d

c (U ) = Q`(−d). The Frobenius eigenvalues {αi j } j on
H i

c (X) have ι-weights ≤ i , for 0≤ i < 2d [Deligne 1980, 3.3.4]. By the fixed point
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formula,

cv(X0)

cv+1(X0)
=

qvd
+
∑

0≤i<2d(−1)i
∑

j α
v
i j

q(v+1)d +
∑

0≤i<2d(−1)i
∑

j α
v+1
i j

=

1
qd +

1
qd

∑
0≤i<2d(−1)i

∑
j

(αi j

qd

)v
1+

∑
0≤i<2d(−1)i

∑
j

(αi j

qd

)v+1 ,

which converges to 1/qd as v→∞, therefore the radius of convergence of fX0(t)
is

lim
v→∞

cv(X0)/v

cv+1(X0)/(v+ 1)
=

1
qd . �

In order to prove the meromorphic continuation of Theorem 8.1, we want to
express the L-series as a possibly infinite product. For schemes, if we consider only
bounded complexes, the L-series can be expressed as a finite alternating product of
polynomials Pn(X0, K0, t), so it is rational [Grothendieck 1965]. In the stack case,
even for the sheaf Q`, there might be infinitely many nonzero compact cohomology
groups, and we need to consider the issue of convergence of the coefficients in an
infinite products.

Definition 6.2. Let fn(t)=
∑

k≥0 ank tk
∈C[[t]] be a sequence of power series over

C. The sequence is said to be convergent term by term, if for each k, the sequence
(ank)n converges, and the series

lim
n→∞

fn(t) :=
∑
k≥0

tk lim
n→∞

ank

is called the limit of the sequence ( fn(t))n .

6.2.1. Strictly speaking, a series (respectively infinite product) is defined to be a
sequence (an)n , usually written as an “infinite sum” (respectively “infinite prod-
uct”) so that (an)n is the sequence of finite partial sums (respectively finite partial
products) of it. So the definition above applies to series and infinite products.

Recall that log(1+ g)=
∑

m≥1(−1)m+1gm/m for g ∈ tC[[t]].

Lemma 6.3. (i) Let fn(t)= 1+
∑

k≥1 ank tk
∈C[[t]] be a sequence of power series.

Then ( fn(t))n is convergent term by term if and only if (log fn(t))n is convergent
term by term, and

lim
n→∞

log fn(t)= log lim
n→∞

fn(t).

(ii) Let f and g be two power series with constant term 1. Then

log( f g)= log( f )+ log(g).



102 Shenghao Sun

(iii) Let fn(t) ∈ 1+ tC[[t]] be a sequence as in (i). Then the infinite product∏
n≥1 fn(t) converges term by term if and only if the series

∑
n≥1 log fn(t) con-

verges term by term, and ∑
n≥1

log fn(t)= log
∏
n≥1

fn(t).

Proof. (i) We have

log fn(t)=
∑
m≥1

(−1)m+1(∑
k≥1

ank tk)m
/m

= t · an1+ t2(an2−
1
2a2

n1
)
+ t3(an3− an1an2+

1
3a3

n1
)

+t4(an4− an1an3−
1
2a2

n2+ a2
n1an2

)
+ · · · =:

∑
k≥1

Ank tk .

In particular, for each k, the function Ank−ank=h(an1, . . . , an,k−1) is a polynomial
in an1, . . . , an,k−1 with rational coefficients. So if (ank)n converges for each k,
then (Ank)n also converges, and by induction the converse also holds. If we have
limn→∞ ank = ak , then limn→∞ Ank = ak + h(a1, . . . , ak−1), and

log lim
n→∞

fn(t)= log
(
1+

∑
k≥1

ak tk)
=

∑
k≥1

(ak+h(a1, . . . , ak−1))tk
= lim

n→∞
log fn(t).

(ii) log and exp are inverse to each other on power series, so it suffices to prove
that for f and g ∈ tC[[t]], we have

exp( f + g)= exp( f ) exp(g).

This follows from the binomial formula:

exp( f + g)=
∑
n≥0

( f + g)n/n! =
∑
n≥0

1
n!

n∑
k=0

(
n
k

)
f k gn−k

=

∑
n≥0

n∑
k=0

f k

k!
·

gn−k

(n− k)!

=

∑
i, j≥0

f i

i !
·

g j

j !
=

(∑
i≥0

f i/ i !
)(∑

j≥0

g j/j !
)
= exp( f ) exp(g).

(iii) Let FN (t) =
∏N

n=1 fn(t). Applying (i) to the sequence (FN (t))N , we see
that the infinite product

∏
n≥1 fn(t) converges term by term if and only if (by defi-

nition) (FN (t))N converges term by term, if and only if the sequence (log FN (t))N

converges term by term, if and only if (by definition) the series
∑

n≥1 log fn(t)
converges term by term, since by (ii)

log
N∏

n=1

fn(t)=
N∑

n=1

log fn(t)
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Also

log
∏
n≥1

fn(t)= log lim
N→∞

FN (t)= lim
N→∞

log FN (t)

= lim
N→∞

N∑
n=1

log fn(t)=:
∑
n≥1

log fn(t). �

6.4. For a complex of sheaves K0 on X0 and n ∈ Z, define

Pn(X0, K0, t) := det(1− Ft, H n
c (X, K )).

We regard Pn(X0, K0, t)±1 as a complex power series with constant term 1 via ι.

Proposition 6.5. For every convergent complex of sheaves K0 ∈ W−,stra
m (X0,Q`),

the infinite product ∏
n∈Z

Pn(X0, K0, t)(−1)n+1

is convergent term by term to the L-series L(X0, K0, t).

Proof. The complex R0c(X, K ) is bounded above, so Pn(X0, K0, t)= 1 for n� 0,
and the infinite product is a one-direction limit, namely n→−∞.

Let αn1, . . . , αnmn be the eigenvalues (counted with multiplicity) of the mor-
phism F on H n

c (X, K ), regarded as complex numbers via ι, so that

Pn(t)= Pn(X0, K0, t)= (1−αn1t) · · · (1−αnmn t).

By Lemma 6.3 (iii) it suffices to show that the series∑
n∈Z

(−1)n+1 log Pn(t)

converges term by term to
∑

v≥1 cv(K0)tv/v.
We have∑

n∈Z

(−1)n+1 log Pn(t)=
∑
n∈Z

(−1)n+1 log
∏

i

(1−αni t)

=

∑
n∈Z

(−1)n
∑

i

∑
v≥1

αvni t
v

v
=

∑
v≥1

tv

v

∑
n∈Z

(−1)n
∑

i

αvni =
∑
v≥1

tv

v
cv(R0c(K0)),

which converges term by term by Theorem 4.2 (i), and is equal to
∑

v≥1 cv(K0)tv/v
by Theorem 4.2 (ii). �

Remark 6.5.1. In particular we have

Z(X0, t)=
∏
n∈Z

Pn(X0, t)(−1)n+1
,
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where Pn(X0, t)= Pn(X0,Q`, t). This generalizes the classical result for schemes
[Grothendieck 1965, 5.1]. When we want to emphasize the dependence on the
prime `, we will write Pn,`(X0, t).

If G0 is a connected Fq -algebraic group, 4.8.2 shows that the zeta function of
BG0 is given by

Z(BG0, t)=
∏
r≥0

∏
mi j≥0∑

i, j mi j (i+1)=2r

(
1−q−d

∏
i, j

α
−mi j
i j ·t

)−1
=

∏
mi j≥0

(
1−q−d

∏
i, j

α
−mi j
i j ·t

)−1
.

7. Examples of zeta functions

In this section we compute the zeta functions of some stacks, and in each example
we do it in two ways: by counting rational points and by computing cohomology
groups. Also we investigate some analytic properties.

Example 7.1. BGm . By 4.7 (iii) we have cv(BGm)= 1/cv(Gm), so the zeta func-
tion is

Z(BGm, t)= exp
(∑
v≥1

cv(BGm)
tv

v

)
= exp

(∑
v≥1

1
qv−1

tv

v

)
.

Using Borel’s theorem 4.8 one can show (or see [Laumon and Moret-Bailly 2000,
19.3.2]) that the cohomology ring H∗(BGm) is a polynomial ring Q`[T ], generated
by a variable T of degree 2, and that the Frobenius action on cohomology is given
by FT n

= qnT n . So by Poincaré duality, we have

Tr(F, H−2n−2
c (BGm))= Tr(F, H−2n−2

c (BGm,Q`(−1)))/q

= Tr(F−1, H 2n(BGm))/q = q−n−1.

This gives ∏
n∈Z

Pn(BGm, t)(−1)n+1
=

∏
n≥1

(1− q−nt)−1.

It is easy to verify the result in Remark 6.5.1 directly:

exp
(∑
v≥1

1
qv − 1

tv

v

)
= exp

(∑
v≥1

1/qv

1− 1/qv
tv

v

)
= exp

(∑
v≥1

tv

v

∑
n≥1

1
qnv

)
=

∏
n≥1

exp
(∑
v≥1

(t/qn)v

v

)
=

∏
n≥1

(1− t/qn)−1.

There is also a functional equation

Z(BGm, qt)= 1
1−t

Z(BGm, t),
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which implies that Z(BGm, t) has a meromorphic continuation to the whole com-
plex plane, with simple poles at t = qn , for n ≥ 1.

H−2n−2
c (BGm) is pure of weight −2n − 2. A natural question is if Deligne’s

theorem of weights [Deligne 1980, 3.3.4] still holds for algebraic stacks. Olsson
told me that it does not hold in general, as the following example shows.

Example 7.2. B E , where E is an elliptic curve over Fq . Again by 4.7 (iii) we have

cv(B E)= 1/#E(Fqv ).

Let α and β be the roots of the reciprocal characteristic polynomial of the Frobenius
on H 1(E):

x2
− (1+ q − c1(E))x + q = 0. (7.2.1)

Then for every v ≥ 1, we have cv(E)= 1−αv −βv + qv = (1−αv)(1−βv). So

cv(B E)= 1
(1−αv)(1−βv)

=
α−v

1−α−v
·
β−v

1−β−v

=

(∑
n≥1

α−nv
)(∑

m≥1

β−nv
)
=

∑
n,m≥1

( 1
αnβm

)v
,

and the zeta function is

Z(B E, t)= exp
(∑
v≥1

cv(B E) t
v

v

)
= exp

( ∑
n,m≥1
v≥1

( t
αnβm

)v/
v

)
=

∏
n,m≥1

(
1− t

αnβm

)−1
.

To compute its cohomology, one can apply Borel’s theorem 4.8 to E , and we
have N = N 1

= H 1(E), so N [−1] is a 2-dimensional vector space sitting in degree
2, on which F has eigenvalues α and β. Then H∗(B E) is a polynomial ring
Q`[a, b] in two variables, both sitting in degree 2, and the basis a, b can be chosen
so that the Frobenius action F on H 2(B E) is upper triangular (or even diagonal)[

α γ

β

]
.

Then F acting on

H 2n(B E)= Symn N [−1] =Q`〈an, an−1b, . . . , bn
〉

can be represented by 
αn

∗ ∗ ∗

αn−1β ∗ ∗

. . . ∗

βn

 ,
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with eigenvalues αn, αn−1β, . . . , βn . So the eigenvalues of F on H−2−2n
c (B E) are

q−1α−n , q−1α1−nβ−1, . . . , q−1β−n and∏
n∈Z

Pn(B E, t)(−1)n+1
= 1

/
(1− q−1t) ·

[
(1− q−1α−1t)(1− q−1β−1t)

]
·
[
(1− q−1α−2t)(1− q−1α−1β−1t)(1− q−1β−2t)

]
· · · .

Note that the right hand side is the same as Z(B E, t) above (since αβ = q).
Let Z1(t) := Z(B E, qt). Its radius of convergence is 1, since by Lemma 6.1

lim
v→∞

cv(B E)
cv+1(B E)

= lim
v→∞

cv+1(E)
cv(E)

= q.

There is also a functional equation

Z1(αt)= 1
1−αt

Z1(t) Z2(t),

where
Z2(t)=

1
(1−αβ−1t)(1−αβ−2t)(1−αβ−3t) · · ·

.

Z2(t) is holomorphic in the open unit disk and satisfies the functional equation

Z2(βt)= 1
1−αt

Z2(t).

Therefore Z2(t), and hence Z(B E, t), has a meromorphic continuation to the
whole complex t-plane with the obvious poles.

Remark 7.2.1. H−2−2n
c (B E) is pure of weight −2− n, which is not ≤ −2− 2n

unless n = 0. So the upper bound of weights for schemes fails for B E . This also
leads to the failure of the decomposition theorem for B E ; see [Sun 2012, §1], for
the example of a pure complex on B E which is not geometrically semisimple.

Also note that, the Equation (7.2.1) is independent of `, so the polynomials
Pn,`(B E, t) are independent of `.

Example 7.3. BG0, where G0 is a finite étale Fq -group scheme, corresponding to
a finite group G and a Frobenius automorphism σ on it. Then BG0(Fqv )'G/ρ(v),
where ρ(v) is the right action of G on the set G given by h : g 7→ σ v(h−1)gh. So

cv(BG0)=
∑

[g]∈G/ρ(v)

1
# Stabρ(v)(g)

=
#G
#G
= 1,

and the zeta function is
Z(BG0, t)= 1

1−t
.

Its cohomology groups are given in Lemma 4.6: H 0
c (BG)=Q`, and other H i

c = 0.
This verifies Remark 6.5.1.
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Note that Z(BG0, t) is the same as the zeta function of its coarse moduli space
Spec Fq . As a consequence, for every Fq -algebraic stack X0, with finite inertia
I0 → X0 and coarse moduli space π : X0 → X0 [Conrad 2005, 1.1], we have
Z(X0, t)= Z(X0, t), and hence it is a rational function. This is because for every
x ∈ X0(Fqv ), the fiber π−1(x) is a neutral gerbe over Spec k(x), and from the above
we see that cv(π−1(x))= 1, and hence cv(X0)= cv(X0). The fact that Z(X0, t) is
a rational function follows from [Knutson 1971, II, 6.7] and noetherian induction.
More generally, we have the following.

Proposition 7.3.1. Let X0 be an Fq -algebraic stack. Suppose that X0 either has
finite inertia, or is Deligne–Mumford (not necessarily separated). Then for every
K0 ∈W b(X0,Q`), the L-series L(X0, K0, t) is a rational function.

Proof. It suffices to show that Theorem 4.2 holds for the structural morphism
X0→ Spec Fq and K0 ∈W b(X0,Q`) in these two cases. We will not make explicit
use of the fact from Remark 2.8.1 that K0 is ι-mixed.

Case when X0 has finite inertia. Let π : X0→ X0 be its coarse moduli space.
For any sheaf F0 on X0, we have isomorphisms H r

c (X, R0π!F) ' H r
c (X,F) by

Lemma 4.6, so R0c(X0,F0) is a bounded complex, hence a convergent complex.
To prove the trace formula for X0→ Spec Fq and the sheaf F0, it suffices to prove
it for X0→ X0 and X0→Spec Fq . The first case, when passing to fibers, is reduced
to BG0, and when passing to fibers again, it is reduced to the two subcases: when
G0 is finite, or when G0 is connected. In both of these two cases as well as the
case of an algebraic space X0→ Spec Fq , the trace formula can be proved without
using ι-mixedness 5.2.1. Therefore, Theorem 4.2 holds for X0→ Spec Fq and any
sheaf, hence any bounded complex, on X0.

The trace formula is equivalent to the equality of power series

L(X0, K0, t)=
∏
i∈Z

Pi (X0, K0, t)(−1)i+1
,

and the right-hand side is a finite product, because R0c(X0, K0) is bounded. There-
fore, L(X0, K0, t) is rational.

Case when X0 is Deligne–Mumford. For both (i) and (ii) of Theorem 4.2, we
may replace X0 by a nonempty open substack, hence by [Laumon and Moret-Bailly
2000, 6.1.1] we may assume X0 is the quotient stack [X ′0/G], where X ′0 is an affine
Fq -scheme of finite type and G is a finite group acting on X ′0. This stack has finite
diagonal, and hence finite inertia, so by the previous case we are done. Also, we
know that R0c(X0, K0) is bounded, therefore L(X0, K0, t) is rational. �

If one wants to use Poincaré duality to get a functional equation for the zeta
function, [Olsson 2008a, 5.17] and [Laszlo and Olsson 2008b, 9.1.2] suggest that
we should assume X0 to be proper smooth and of finite diagonal. Under these
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assumptions, one gets the expected functional equation for the zeta function, as
well as the independence of ` for the coarse moduli space, which is proper but
possibly singular. Examples of such stacks include the moduli stack of pointed
stable curves Mg,n over Fq .

Proposition 7.3.2. Let X0 be a proper smooth Fq -algebraic stack of equidimension
d , with finite diagonal, and let π : X0 → X0 be its coarse moduli space. Then
Z(X0, t) satisfies the usual functional equation

Z
(

X0,
1

qd t

)
=± qdχ/2tχ Z(X0, t),

where χ :=
∑2d

i=0(−1)i deg Pi,`(X0, t). Moreover, H i (X) is pure of weight i , for
every 0≤ i ≤ 2d, and the reciprocal roots of each Pi,`(X0, t) are algebraic integers
independent of `.

Proof. First we show that the adjunction map Q` → π∗π
∗Q` = π∗Q` is an iso-

morphism. Since π is quasi-finite and proper [Conrad 2005, 1.1], we have π∗= π!
[Olsson 2008a, 5.1] and Rrπ!Q`=0 for r 6=0 [Olsson 2008a, 5.8]. The natural map
Q`→ R0π∗Q` is an isomorphism, since the geometric fibers of π are connected.

Therefore R0(X0,Q`)= R0(X0, π∗Q`)= R0(X0,Q`), and hence

H i (X)' H i
c (X)' H i (X)' H i

c (X)

for all i [Olsson 2008a, 5.17]. Let Pi (t) = Pi (X0, t) = Pi (X0, t). Since X0 is an
algebraic space of dimension d, Pi (t) = 1 if i /∈ [0, 2d]. Since X0 is proper and
smooth, Poincaré duality gives a perfect pairing

H i (X)× H 2d−i (X)−→Q`(−d).

Following the standard proof for proper smooth varieties, see [Milne 2008, 27.12],
we get the expected functional equation for Z(X0, t)= Z(X0, t).

H i (X) is mixed of weights ≤ i [Deligne 1980, 3.3.4], so by Poincaré duality,
it is pure of weight i . Following the proof in [Deligne 1974a, p. 276)], this purity
implies that the polynomials Pi,`(X0, t) have integer coefficients independent of
`. �

Remark 7.3.3. Weizhe Zheng suggested Proposition 7.3.1 to me. He also sug-
gested that we give a functional equation relating L(X0, DK0, t) and L(X0, K0, t),
for K0 ∈W b(X0,Q`), where X0 is a proper Fq -algebraic stack with finite diagonal,
of equidimension d, but not necessarily smooth. Here is the functional equation:

L(X0, K0, t−1)= tχc · Q · L(X0, DK0, t),
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where χc =
∑2d

i=0(−1)i hi
c(X, K ) and Q = (tχc L(X0, K0, t))|t=∞. Note that the

rational function L(X0, K0, t) has degree−χc, hence Q is well-defined. The proof
is similar to the above.

Example 7.4. BGL N . We have

# GL N (Fqv )=
(
qvN
− 1

)(
qvN
− qv

)
· · ·
(
qvN
− qv(N−1)),

so one can use cv(BGL N )= 1/cv(GL N ) to compute Z(BGL N , t). One can also
compute the cohomology groups of BGL N using Borel’s theorem 4.8. We refer
to [Behrend 1993, 2.3.2] for the result. Let us consider the case N = 2 only. The
general case is similar.

We have

cv(BGL2)=
1

q4v

(
1+ 1

qv
+

2
q2v +

2
q3v +

3
q4v +

3
q5v + · · ·

)
,

and therefore

Z(BGL2, t)= exp
(∑

v

(t/q4)v

v

)
· exp

(∑
v

(t/q5)v

v

)
· exp

(∑
v

2(t/q6)v

v

)
· · ·

=
1

1−t/q4 ·
1

1−t/q5 ·

( 1
1−t/q6

)2
·

( 1
1−t/q7

)2
·

( 1
1−t/q8

)3
· · · .

So Z(BGL2, qt)= Z(BGL2, t) · Z1(t), where

Z1(t)=
1

(1−t/q3)(1−t/q5)(1−t/q7)(1−t/q9) · · ·
.

Z1(t) satisfies the functional equation

Z1(q2t)= 1
1−t/q

· Z1(t),

So Z1(t), and hence Z(BGL2, t), has a meromorphic continuation with the obvi-
ous poles.

The nonzero compactly supported cohomology groups of BGL2 are given as
follows:

H−8−2n
c (BGL2)=Q`(n+ 4)⊕

(
b n

2c+1
)
, n ≥ 0.

This gives∏
n∈Z

Pn(BGL2, t)(−1)n+1
=

1
(1−t/q4)(1−t/q5)(1−t/q6)2(1−t/q7)2 · · ·

,

and Remark 6.5.1 is verified. Note that the eigenvalues are 1/qn+4, which are
independent of `.
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8. Analytic continuation

We state and prove a generalized version of Theorem 1.3.

Theorem 8.1. Let X0 be an Fq -algebraic stack, and let K0 ∈ W−,stra
m (X0,Q`)

be a convergent complex. Then L(X0, K0, t) has a meromorphic continuation to
the whole complex t-plane, and its poles can only be zeros of the polynomials
P2n(X0, K0, t) for some integers n.

We need a preliminary lemma. For an open subset U ⊂ C, let O(U ) be the set
of analytic functions on U . There exists a sequence {Kn}n≥1 of compact subsets
of U such that U =

⋃
n Kn and Kn ⊂ (Kn+1)

◦. For f and g in O(U ), define

ρn( f, g)= sup{| f (z)− g(z)|; z ∈ Kn} and ρ( f, g)=
∞∑

n=1

( 1
2

)n ρn( f, g)
1+ ρn( f, g)

.

Then ρ is a metric on O(U ) and the topology it induces is independent of the subsets
{Kn}n chosen (see [Conway 1973, VII, §1]).

The following lemma is from [Conway 1973, p. 167, 5.9].

Lemma 8.2. Let U ⊂ C be connected and open and let ( fn)n be a sequence in
O(U ) such that no fn is identically zero. If

∑
n( fn(z)− 1) converges absolutely

and uniformly on compact subsets of U , then
∏

n≥1 fn(z) converges in O(U ) to an
analytic function f (z). If z0 is a zero of f , then z0 is a zero of only a finite number
of the functions fn , and the multiplicity of the zero of f at z0 is the sum of the
multiplicities of the zeros of the functions fn at z0.

Now we prove Theorem 8.1.

Proof. Factorize Pn(X0, K0, t) as
∏mn

j=1(1− αnj t) in C. Since R0c(X0, K0) is a
convergent complex by Theorem 4.2 (i), the series

∑
n, j |αnj | converges.

By Proposition 6.5 we have

L(X0, K0, t)=
∏
n∈Z

( mn∏
j=1

(1−αnj t)
)(−1)n+1

as formal power series. Take U to be the region C−{α−1
nj ; n even}with the intention

of applying Lemma 8.2. Take the lexicographical order on the set of all factors

1−αnj t, for n odd; 1
1−αnj t

, for n even.

Each factor is an analytic function on U . The sum
∑

n( fn(z)− 1) here is equal to∑
n odd, j

(−αnj t) +
∑

n even, j

αnj t
1−αnj t

.
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Let

gn(t)=



mn∑
j=1

|αnj t |, n odd,

mn∑
j=1

|αnj t |
|1−αnj t |

, n even.

We need to show that
∑

n gn(t) is pointwise convergent, uniformly on compact
subsets of U . Precisely, we want to show that for any compact subset B ⊂U , and
for any ε > 0, there exists a constant NB ∈ Z such that∑

n≤N

gn(t) < ε

for all N ≤ NB and t ∈ B. Since gn(t) are nonnegative, it suffices to do this for
N = NB . There exists a constant MB such that |t | < MB for all t ∈ B. Since∑

n, j |αnj | converges, |αnj | → 0 as n→−∞, and there exists a constant L B ∈ Z

such that |αnj |< 1/(2MB) for all n < L B . So

gn(t)≤ 2
mn∑
j=1

|αnj t |

for all n < L B and t ∈ B. There exists a constant NB < L B such that∑
n≤NB

∑
j

|αnj |< ε/(2MB)

and hence ∑
n≤NB

gn(t)≤ 2
∑

n≤NB

∑
j

|αnj t | ≤ 2MB

∑
n≤NB

∑
j

|αnj |< ε.

By Lemma 8.2, L(X0, K0, t) extends to an analytic function on U . By the second
part of Lemma 8.2, the α−1

nj ’s, for n even, are at worst poles rather than essential
singularities, therefore the L-series is meromorphic on C. �

Now L(X0, K0, t) can be called an “L-function”.

9. Weight theorem for algebraic stacks

9.1. We prove Theorem 1.4 in this section. For the reader’s convenience, we briefly
review the definition of the dimension of a locally noetherian S-algebraic stack X

from [Laumon and Moret-Bailly 2000, Chapter 11].
If X is a locally noetherian S-algebraic space and x is a point of X , the dimension

dimx X of X at x is defined to be dimx ′ X ′, for any pair (X ′, x ′) where X ′ is an
S-scheme étale over X and x ′ ∈ X ′ maps to x . This is independent of the choice of
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the pair. If f : X → Y is a morphism of S-algebraic spaces, locally of finite type,
and x is a point of X with image y in Y , then the relative dimension dimx f of f
at x is defined to be dimx X y .

Let P : X→X be a presentation of an S-algebraic stack X, and let x be a point
of X . Then the relative dimension dimx P of P at x is defined to be the relative
dimension at (x, x) of the smooth morphism pr1 : X ×X X → X of S-algebraic
spaces.

If X is a locally noetherian S-algebraic stack and if ξ is a point of X, the dimen-
sion of X at ξ is defined to be dimξ X= dimx X −dimx P , where P : X→X is an
arbitrary presentation of X and x is an arbitrary point of X lying over ξ . This defini-
tion is independent of all the choices made. At last one defines the dimension of X

by dim X= supξ dimξ X. For quotient stacks we have dim [X/G]=dim X−dim G.

Now we prove Theorem 1.4.

Proof. If j :U0→ X0 is an open substack with complement i : Z0→ X0, then we
have an exact sequence

· · · −→ H n
c (U, j∗F)−→ H n

c (X,F)−→ H n
c (Z, i∗F)−→ · · · .

If both H n
c (U, j∗F) and H n

c (Z, i∗F) are zero (respectively have all ι-weights ≤m
for some number m), then so is H n

c (X,F). Since the dimensions of U0 and Z0 are
no more than that of X0, and the set of punctual ι-weights of i∗F0 and of j∗F0 is
the same as that of F0, we may shrink X0 to a nonempty open substack. We can
also make any finite base change on Fq . To simplify notation, we may use twist
(see 2.4) and projection formula to assume w = 0. As before, we reduce to the
case when X0 is geometrically connected, and the inertia f : I0→ X0 is flat, with
rigidification π : X0→ X0, where X0 is a scheme. The squares in the following
diagram are 2-Cartesian:

B Autx B Autx X0 Spec Fqv

I0 Auty

Spec F Spec Fqv X0

y

x x

f

πx πx π

We have (Rkπ!F0)x = H k
c (B Autx ,F). Since f is representable and flat, and X0

is connected, all automorphism groups Autx have the same dimension, say d.
Assume Theorem 1.4 holds for all BG0, where G0 are Fq -algebraic groups.

Then Rkπ!F0 = 0 for k > −2d , and for k ≤ −2d, the punctual ι-weights of
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Rkπ!F0 are ≤ k
2 − d , hence by [Deligne 1980, 3.3.4], the punctual ι-weights of

H r
c (X, Rkπ!F) are ≤ k

2 − d + r . Consider the Leray spectral sequence

Erk
2 = H r

c (X, Rkπ!F)H⇒ H r+k
c (X,F).

If we maximize k
2 − d + r under the constraints

r + k = n, 0≤ r ≤ 2 dim X0 and k ≤−2d,

we find that H n
c (X,F)= 0 for n> 2 dim X0−2d = 2 dim X0, and for n≤ 2 dim X0,

the punctual ι-weights of H n
c (X,F) are ≤ dim X0+

n
2 − d = dim X0+

n
2 .

So we reduce to the case X0= BG0. By Lemma 4.6 the Leray spectral sequence
for h : BG0→ Bπ0(G0) degenerates to isomorphisms

H 0
c (Bπ0(G), Rnh!F)' H n

c (BG,F).

The fibers of h are isomorphic to BG0
0, so by base change and Lemma 4.6 we

reduce to the case when G0 is connected. Let d = dim G0 and f : BG0→ Spec Fq

be the structural map. In this case, F0 ∼= f ∗V for some Q`-representation V of
W (Fq), and hence F0 and V have the same punctual ι-weights. Using the natural
isomorphism H n

c (BG)⊗ V ' H n
c (BG,F), we reduce to the case when F0 =Q`.

In 4.8.2 we see that, if αi1, . . . , αini are the eigenvalues of F on N i , i ≥ 1 odd,
then the eigenvalues of F on H−2k−2d

c (BG) are

q−d
∏
i, j

α
−mi j
i j , where

∑
i, j

mi j (i + 1)= 2k.

Since i ≥ 1, we have
∑

imi j ≥ k; together with |αi j | ≥ q i/2 one deduces∣∣q−d
∏
i, j

α
−mi j
i j

∣∣≤ q(−k−2d)/2,

so the punctual ι-weights of H−2k−2d
c (BG) are ≤−k−2d for k ≥ 0, and the other

compactly supported cohomology groups are zero.
It is clear from the proof and [Deligne 1980, 3.3.10] that the weights of H n

c (X,F)

differ from the weights of F0 by integers.
Recall that H 2k(BG) is pure of weight 2k, for a linear algebraic group G0 over

Fq [Deligne 1974b, 9.1.4]. Therefore, H−2k−2d
c (BG) is pure of weight −2k− 2d ,

and following the same proof as above, we are done. �

Remark 9.2. When X0 = X0 is a scheme, and n ≤ 2 dim X0, we have

dim X0+
n
2
+w ≥ n+w,
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so our bound for weights is worse than the bound in [Deligne 1980, 3.3.4]. For an
Fq -abelian variety A, our bound for the weights of H n

c (B A) is sharp: the weights
are exactly dim(B A)+ n

2 , whenever the cohomology group is nonzero.

We hope Theorem 1.4 has useful and interesting applications, for instance for
generalizing the decomposition theorem of Beilinson–Bernstein–Deligne–Gabber
(see [Sun 2012]) to stacks with affine stabilizers, and for studying the Hasse–Weil
zeta functions of Artin stacks over number fields. For instance, it implies that the
Hasse–Weil zeta function is analytic in some right half complex s-plane.

Using Theorem 1.4 we can show certain stacks have Fq -points.

Example 9.3. Let X0 be a form of BGm , that is, X ∼= BGm,F over F. Then all
the automorphism group schemes in X0 are affine, and for any n ≥ 0 we have
h−2−2n

c (X)=h−2−2n
c (BGm)=1. Let α−2−2n be the eigenvalue of F on H−2−2n

c (X).
Then by Theorem 1.4 we have |α−2−2n| ≤ q−1−n . Smoothness is fppf local on the
base, so X0 is smooth and connected, hence H−2

c (X)=Q`(1) and α−2 = q−1. So

#X0(Fq)=
∑
n≥0

Tr(F, H−2−2n
c (X))= q−1

+α−4+α−6+ · · ·

≥ q−1
− q−2

− q−3
+ · · · = q−1

−
q−1

q − 1
> 0

when q 6=2. In fact, since there exists an integer r ≥1 such that X0⊗Fqr ∼= BGm,Fqr ,
we see that all cohomology groups H−2−2n

c (X) are pure, that is, |α−2−2n| = q−1−n .
In fact, one can classify the forms of BGm,Fq as follows. If X0 is a form, then it

is also a gerbe over Spec Fq , hence a neutral gerbe BG0 for some algebraic group
G0 by Behrend [2003, 6.4.2]. By comparing the automorphism groups, we see that
G0 is a form of Gm,Fq . There is only one nontrivial form of Gm,Fq , because

H 1(Fq ,Aut(Gm))= H 1(Fq ,Z/2Z)= Z/2Z,

and this form is the kernel R1
Fq2/Fq

Gm,Fq2 of the norm map

RFq2/Fq Gm,Fq2 −−−→
Nm

Gm,Fq ,

where RFq2/Fq is the operation of Weil’s restriction of scalars. Therefore, the only
nontrivial form of BGm,Fq is B(R1

Fq2/Fq
Gm,Fq2 ). In particular, they all have Fq -

points, even when q = 2.

Example 9.4. Consider the projective line P1 with the following action of Gm : it
acts by multiplication on the open part A1

⊂ P1, and leaves the point∞ fixed. So
we get a quotient stack [P1/Gm] over Fq . Let X0 be a form of [P1/Gm]. We want to
find an Fq -point on X0, or even better, an Fq -point on X0 which, when considered
as a point in X(F)∼= [P1/Gm](F), lies in the open dense orbit [Gm/Gm](F).
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9.4.1. Consider the following general situation. Let G0 be a connected Fq -alge-
braic group, and let X0 be a proper smooth variety with a G0-action over Fq . Let

[X0/G0]
f
−→ BG0

g
−→ Spec Fq

be the natural maps, and let X0 be a form of [X0/G0]. Then f is representable and
proper. For every k, Rk f∗Q` is a lisse sheaf, and takes the form g∗Vk for some
sheaf Vk on Spec Fq . Consider the Leray spectral sequence

Erk
2 = Rr g!Rk f∗Q` H⇒ Rr+k(g f )!Q`.

Since Rr g!Rk f∗Q` = Rr g!(g∗Vk)= (Rr g!Q`)⊗ Vk , we have

hn
c (X)= hn

c ([X/G])≤
∑

r+k=n

hr
c(BG) · dim Vk =

∑
r+k=n

hr
c(BG) · hk(X).

Now we return to [P1/Gm]. Since h0(P1) = h2(P1) = 1 and h−2i
c (BGm) = 1

for i ≥ 1, we see that hn
c (X)= 0 for n odd and

h2n
c (X)≤ h0(P1) h2n

c (BGm)+ h2(P1) h2n−2
c (BGm)=


0, n ≥ 1,

1, n = 0,

2, n < 0.

Since X0 is connected and smooth of dimension 0, we have H 0
c (X) = Q`. By

Theorem 1.4, the ι-weights of H 2n
c (X) are ≤ 2n. The trace formula gives

#X0(Fq)=
∑
n≤0

Tr(F, H 2n
c (X))= 1+

∑
n<0

Tr(F, H 2n
c (X))

≥ 1− 2
∑
n<0

qn
= 1−

2
q − 1

> 0

when q ≥ 4.
In order for the rational point to be in the open dense orbit, we need an upper

bound for the number of Fq -points on the closed orbits. When passing to F, there
are 2 closed orbits, both having stabilizer Gm,F. So in [X0(Fq)] there are at most 2
points whose automorphism groups are forms of the algebraic group Gm,Fq . From
the cohomology sequence

1−→ (R1
Fq2/Fq

Gm,Fq2 )(Fq)−→ F∗q2 −−−→
Nm

F∗q

we see that
#(R1

Fq2/Fq
Gm,Fq2 )(Fq)= q + 1.

Since 1/(q + 1) ≤ 1/(q − 1), the space that the closed orbits can take is at most
2/(q − 1), and equality holds only when the two closed orbits are both defined



116 Shenghao Sun

over Fq with stabilizer Gm . In order for there to exist an Fq -point in the open dense
orbit, we need

1− 2
q−1

>
2

q−1
,

and this is so when q ≥ 7.

10. About independence of `

The coefficients of the expansion of the infinite product

Z(X0, t)=
∏
i∈Z

Pi,`(X0, t)(−1)i+1

are rational numbers and are independent of `, because the cv(X0)’s are rational
numbers independent of `. A famous conjecture is that this is also true for each
Pi,`(X0, t). First we show that the roots of Pi,`(X0, t) are Weil q-numbers. Note
that Pi,`(X0, t) ∈Q`[t].

Definition 10.1. An algebraic number is called a Weil q-number if all of its con-
jugates have the same weight relative to q , and this weight is a rational integer. It
is called a Weil q-integer if in addition it is an algebraic integer. A number in Q`

is called a Weil q-number if it is a Weil q-number via ι.

For α ∈Q`, being a Weil q-number or not is independent of ι; in fact the images
in C under various ι’s are conjugate.

For an Fq -variety X0, not necessarily smooth or proper, [Deligne 1980, 3.3.4]
implies all Frobenius eigenvalues of H i

c (X) are Weil q-integers. The following
lemma generalizes this.

Lemma 10.2. For every Fq -algebraic stack X0, and a prime number ` 6= p, the
roots of each Pi,`(X0, t) are Weil q-numbers. In particular, the coefficients of
Pi,`(X0, t) are algebraic numbers in Q` (that is, algebraic over Q).

Proof. For an open immersion j : U0 → X0 with complement i : Z0 → X0, we
have an exact sequence

· · · −→ H i
c (U)−→ H i

c (X)−→ H i
c (Z)−→ · · · ,

thus we may shrink to a nonempty open substack. In particular, Lemma 10.2 holds
for algebraic spaces, by Knutson [1971, II 6.7] and Deligne [1980, 3.3.4].

We may assume X0 is smooth and connected. By Poincaré duality, it suffices to
show that the Frobenius eigenvalues of H i (X) are Weil q-numbers, for all i . Take
a presentation X0 → X0 and consider the associated strictly simplicial smooth
covering X•0→ X0 by algebraic spaces. Then there is a spectral sequence [Laszlo
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and Olsson 2008b, 10.0.9]

Erk
1 = H k(X r )H⇒ H r+k(X),

and the assertion for X0 follows from the assertion for algebraic spaces. �

Problem 10.3. Is each

Pi,`(X0, t)= det(1− Ft, H i
c (X,Q`))

a polynomial with coefficients in Q, and the coefficients are independent of `?

Remark 10.3.1. (i) Note that, unlike the case for varieties, we cannot expect the
coefficients to be integers (for instance, for BGm , the coefficients are 1/q i ).

(ii) Problem 10.3 is known to be true for smooth proper varieties [Deligne 1980,
3.3.9], and (coarse moduli spaces of) proper smooth algebraic stacks of finite diag-
onal (see Proposition 7.3.2). It remains open for general varieties. Even the Betti
numbers are not known to be independent of ` for a general variety, see [Illusie
2006].

Let us give positive answer to Problem 10.3 in some special cases of algebraic
stacks. In Section 7 we see that it holds for B E and BGL N . We can generalize
these two cases as follows.

Lemma 10.4. Problem 10.3 has a positive answer for:

(i) B A, where A is an Fq -abelian variety.

(ii) BG0, where G0 is a linear algebraic group over Fq .

Proof. (i) Let g= dim A. Then N = H 1(A) is a 2g-dimensional vector space, with
eigenvalues α1, . . . , α2g for the Frobenius action F , and N is pure of weight 1. Let
a1, . . . , a2g be a basis for N so that F is given by the upper-triangular matrixα1 ∗ ∗

. . . ∗

α2g

 .
Then H∗(B A) = Sym∗N [−1] = Q`[a1, . . . , a2g], where each ai sits in degree 2.
In degree 2n, H 2n(B A)=Q`〈ai1 · · · ain | 1≤ i1, . . . , in ≤ 2g〉, and the eigenvalues
are αi1 · · ·αin . By Poincaré duality

H−2n−2g
c (B A)= H 2n(B A)∨⊗Q`(g)

we see that the eigenvalues of F on H−2g−2n
c (B A) are

q−g
·α−1

i1
· · ·α−1

in
.
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Each factor
P−2g−2n(qgt) =

∏
1≤i1,...,in≤2g

(
1− (αi1 · · ·αin )

−1t
)

stays unchanged if we permute the αi ’s arbitrarily, so the coefficients are symmetric
polynomials in the α−1

i ’s with integer coefficients, hence are polynomials in the
elementary symmetric functions, which are coefficients of

∏2g
i=1(t − α

−1
i ). The

polynomial
2g∏

i=1

(1−αi t)= det
(
1− Ft, H 1(A,Q`)

)
also has roots α−1

i , and this is a polynomial with integer coefficients, independent
of `, since A is smooth and proper. Let m =±qg be leading coefficient of it. Then

2g∏
i=1

(t −α−1
i )=

1
m

2g∏
i=1

(1−αi t).

This verifies Problem 10.3 for B A.
(ii) Let d = dim G0. For every k ≥ 0, H 2k(BG) is pure of weight 2k [Deligne

1974b, 9.1.4], hence H−2d−2k
c (BG) is pure of weight−2d−2k by Poincaré duality.

The entire function
1

Z(BG0, t)
=

∏
k≥0

P−2d−2k(BG0, t) ∈Q[[t]]

is independent of `, and invariant under the action of Gal(Q) on the coefficients of
the Taylor expansion. Therefore the roots of P−2d−2k(BG0, t) can be described as

“zeros of 1
Z(BG0, t)

that have weight 2d + 2k relative to q ,”

which is a description independent of `, and these roots (which are algebraic num-
bers) are permuted under Gal(Q). Hence P−2d−2k(BG0, t) has rational coeffi-
cients. �

The following proposition generalizes Proposition 7.3.2 and Lemma 10.4 (ii).

Proposition 10.5. Let X0 be the coarse moduli space of a proper smooth Fq -
algebraic stack of finite diagonal, and let G0 be a linear Fq -algebraic group that
acts on X0, and let X0 be a form of the quotient stack [X0/G0]. Then Problem 10.3
is verified for X0.

Proof. It suffices to show that H n
c (X) is pure of weight n, for every n. To show

this, we can make a finite extension of the base field Fq , so we may assume that
X0 = [X0/G0]. Let

X0
f
−→ BG0

h
−→ Bπ0(G0)
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be the natural maps.
Let d = dim G0. Consider the spectral sequence

H−2d−2r
c (BG, Rk f!Q`)H⇒ H−2d−2r+k

c (X).

The E2-terms can be computed from the degenerate Leray spectral sequence for
h:

H−2d−2r
c (BG, Rk f!Q`)' H 0

c (Bπ0(G), R−2d−2r h!Rk f!Q`).

We remark that the restriction of R−2d−2r h!Rk f!Q` along the natural projection
Spec Fq→ Bπ0(G0) is isomorphic to the Galois module H−2d−2r

c (BG0, Rk f!Q`),
and since G0

0 is connected, (Rk f!Q`)|BG0
0

is the inverse image of some sheaf Vk

via the structural map BG0
0→ Spec Fq . By base change, we see that the sheaf Vk ,

regarded as a Gal(Fq)-module, is H k(X). By projection formula we have

H−2d−2r
c (BG0, Rk f!Q`)' H−2d−2r

c (BG0)⊗ H k(X)

as representations of Gal(Fq), and by Proposition 7.3.2, the right hand side is pure
of weight −2d − 2r + k. By Lemma 4.6, H−2d−2r

c (BG, Rk f!Q`) is also pure of
weight −2d − 2r + k, therefore H n

c (X) is pure of weight n, for every n. �

10.6. Finally, let us consider the following much weaker version of independence
of `. For X0 and i ∈ Z, let 9(X0, i) be the following property: the Frobenius
eigenvalues of H i

c (X,Q`), counted with multiplicity, for all ` 6= p, are contained
in a finite set of algebraic numbers with multiplicities assigned, and this set together
with the assignment of multiplicity, depends only on X0 and i . In particular it is
independent of `. In other words, there is a finite decomposition of the set of all
prime numbers ` 6= p into disjoint union of some subsets, such that the Frobenius
eigenvalues of H i

c (X,Q`) depends only on the subset that ` belongs to. If this
property holds, we also denote such a finite set of algebraic numbers (which is not
unique) by 9(X0, i), if there is no confusion.

Proposition 10.6.1. The property 9(X0, i) holds for every X0 and i .

Proof. If U0 is an open substack of X0 with complement Z0, and properties
9(U0, i) and 9(Z0, i) hold, then 9(X0, i) also holds, and the finite set 9(X0, i)
a subset of 9(U0, i)∪9(Z0, i).

Firstly we prove this for schemes X0. By shrinking X0 we can assume it is
a connected smooth variety. By Poincaré duality it suffices to prove the similar
statement 9∗(X0, i) for ordinary cohomology, that is, with H i

c replaced by H i , for
all i . This follows from [de Jong 1996] and [Deligne 1980, 3.3.9]. Therefore it
also holds for all algebraic spaces.

For a general algebraic stack X0, by shrinking it we can assume it is connected
smooth. By Poincaré duality, it suffices to prove 9∗(X0, i) for all i . This can be
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done by taking a hypercover by simplicial algebraic spaces, and considering the
associated spectral sequence. �
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Multiplicative mimicry and improvements
to the Pólya–Vinogradov inequality

Leo Goldmakher

We study exponential sums whose coefficients are completely multiplicative and
belong to the complex unit disc. Our main result shows that such a sum has
substantial cancellation unless the coefficient function is essentially a Dirichlet
character. As an application we improve current bounds on odd-order character
sums. Furthermore, conditionally on the generalized Riemann hypothesis we
obtain a bound for odd-order character sums which is best possible.

1. Introduction

Character sums, which encode information on the distribution of primes in arith-
metic progressions, have played a central role in the history of analytic number
theory. On the assumption of the generalized Riemann hypothesis (GRH), Mont-
gomery and Vaughan [1977] determined an upper bound on character sums which
was known to be best-possible for quadratic characters. More recently, under
the assumption of the GRH, Granville and Soundararajan [2007] proved that the
Montgomery–Vaughan bound is optimal for characters of every even order. In
the same work, they also made breakthroughs in our understanding of odd-order
character sums. In the present paper, we develop their ideas further and (again
conditionally on the GRH) obtain a best-possible bound on character sums for
characters of every odd order, thus completing the story.

Our results on character sums will follow from a more general result, which we
discuss first. Let U denote the closed complex unit disc {|z| ≤ 1}, and set

F= { f : Z→ U | f is completely multiplicative}, (1-1)

that is, for all integers m and n, f (mn)= f (m) f (n) and | f (n)| ≤ 1. Consider the
exponential sum ∑

n≤x

f (n)
n

e(nα), (1-2)

MSC2000: primary 11L40; secondary 11L03, 11L07.
Keywords: Dirichlet characters, character sums, exponential sums, multiplicative functions.
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where f ∈ F, α ∈ R, and e(X) = e2π i X . By the triangle inequality, this sum has
magnitude � log x ; moreover, this trivial bound is attained in the case f (n) ≡ 1
and α = 0.1 However, the sum cannot in general be this large unless there is a
correlation between the behavior of f (n) and e(nα), an unlikely event given that
f is completely multiplicative and e(nα) has an additive structure. Perhaps surpris-
ingly, this unlikely scenario does occur nontrivially: taking f =χ−4 (the nontrivial
Dirichlet character (mod 4)) and α = 1

4 , we see that f (n) = e
(
−

1
4

)
e(nα) for all

odd integers n, from which one can deduce that the magnitude of the exponential
sum (1-2) is � log x . Our first result (Theorem 1) shows that this is essentially
the only type of pathological example; precisely, we will show that if the sum
has large magnitude, then f (n) must closely mimic the behavior of a function of
the form ξ(n)ni t , where ξ is a Dirichlet character of small conductor and t is a
small real number. Moreover, the twist by ni t is almost certainly superfluous (see
Conjecture 2.6).

Results of this type have been obtained before. Halász [1971] realized that the
mean value of f ∈ F is small (in fact, zero) unless f (n) mimics the behavior
of a function of the form ni t . Much more recently, Granville and Soundararajan
[2007] proved that a character sum

∑
χ(n) has small magnitude unless χ mimics

the behavior of a Dirichlet character ξ of small conductor and opposite parity. The
first part of the present paper is devoted to creating a hybrid of these two methods.
When combined with results of Montgomery and Vaughan, this leads to strong
bounds on exponential sums of the shape (1-2).

Before we can state our main results, we must set up some notation. A common
feature in Halász’s and Granville and Soundararajan’s work is a measure of how
closely one function in F mimics another. We call this the multiplicative mimicry
(MM) metric:

Definition (multiplicative mimicry metric). For any f, g ∈ F and any positive X ,
set

D( f, g; X) :=
(∑

p≤X

1−Re f (p)g(p)
p

)1/2

. (1-3)

Note that because f and g are completely multiplicative, their behavior is en-
tirely determined by their values at prime arguments, so the above definition uses
all the data on the behavior of f and g (up to X ). Granville and Soundararajan
[2007] observed that this is a pseudometric — in particular, it satisfies a triangle
inequality: D( f1, g1; X)+ D( f2, g2; X) ≥ D( f1 f2, g1g2; X) for any fi , gi ∈ F.
(The only way in which this measure fails to be an honest metric is the possibility
that the distance from f to itself might be nonzero.) Further discussion of this

1Here and throughout we use Vinogradov’s notation f � g to mean f = O(g).



Multiplicative mimicry and improvements to the Pólya–Vinogradov inequality 125

pseudometric and some unexpected applications of the triangle inequality can be
found in [Granville and Soundararajan 2008].

Halász [1971] proved that the mean value of a function f ∈ F is 0 unless
D( f (n), ni t ,∞) � 1 for some t ∈ R; moreover, if such a t exists, it is unique.
Montgomery [1978] and, subsequently, Tenenbaum [1995, §III.4.3] found that to
further quantify Halász’s result it is convenient to introduce a measure which is
closely related to the MM metric:

M( f ; X, T ) := min
|t |≤T

D
(

f (n), ni t
; X
)2
. (1-4)

Essentially, this is measuring how closely f can mimic a function of the form ni t .
Our main theorem will likewise be stated in terms of this quantity.

For our intended applications, we will need to control the size of the prime
factors of the argument. To this end, let S(y) denote the set of y-smooth numbers:

S(y) := {n ≥ 1 : p ≤ y for every prime p|n}. (1-5)

We can now state a version of our main theorem (for a stronger but more technical
statement, see Theorem 2.1):

Theorem 1. Let F, M, and S(y) be defined as in (1-1), (1-4), and (1-5), respec-
tively. Suppose that x ≥ 2, y ≥ 16, α ∈ R, f ∈ F, and that as ψ ranges over
all primitive Dirichlet characters of conductor less than log y, M( fψ; y, log2 y) is
minimized when ψ = ξ . Then∑

n≤x
n∈S(y)

f (n)
n

e(nα)� (log y)e−M( f ξ ; y,log2 y)
+ (log y)2/3+o(1),

where the implicit constant is absolute and o(1)→ 0 as y→∞.

Remarks. (i) Colloquially, the theorem asserts that there is lots of cancellation
in the exponential sum unless f (n) ≈ ξ(n)ni t for many small n, where ξ is
some Dirichlet character of small conductor and t is a small real number.

(ii) Formally, the bound is independent of x . However, note that for all y ≥ x the
condition n ∈ S(y) becomes superfluous, so if this is the case we can replace
all appearances of y by x on the right-hand side of the bound.

(iii) As stated, the theorem is uniform in α. See Theorem 2.1 for a quantitative
version which is explicit in the dependence on α.

In the second half of this paper we apply this method to the study of character
sums. Given a Dirichlet character χ (mod q), we wish to understand the behavior
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of the associated character sum function

Sχ (t) :=
∑
n≤t

χ(n).

The importance of this function is perhaps most easily seen in its intimate con-
nection to the Dirichlet L-functions: partial summation on L(s, χ) leads to the
following expression, valid whenever Re s > 0:

L(s, χ)= s
∫
∞

1

1
t s+1 Sχ (t)dt.

In the reverse direction, Perron’s formula shows that for any c > 1 and any t /∈ Z,

Sχ (t)=
1

2π i

∫ c+i∞

c−i∞
L(s, χ)x s ds

s
.

The behavior of the character sum function is not well understood, but some
progress has been made in studying its magnitude. The first breakthrough occurred
in 1918, when Pólya and Vinogradov independently proved that for all t ,

|Sχ (t)| �
√

q log q. (1-6)

This is superior to the trivial bound |Sχ (t)| ≤ t for all t larger than q1/2+ε , and is
close to being sharp; for all primitive χ (mod q),

max
t≤q
|Sχ (t)| �

√
q.

(A slick proof of this is to apply partial summation to the Gauss sum

τ(χ) :=
∑
n≤q

χ(n)e
(n

q

)
(1-7)

and use the classical result that for primitive χ (mod q), |τ(χ)| =
√

q.)
The Pólya–Vinogradov inequality naturally suggests two distinct research goals:

to obtain nontrivial bounds for short character sums, and to improve (1-6) for long
sums. Great progress has been made in the former by Burgess, although the current
state of knowledge still falls far short of the bound |Sχ (t)| �ε qε

√
t implied by the

GRH. The other path, that of sharpening the Pólya–Vinogradov inequality for long
sums, saw little progress until [Montgomery and Vaughan 1977], which proved on
the assumption of the GRH that

|Sχ (t)| �
√

q log log q. (1-8)

Given the strength of the hypothesis this improvement may seem a bit precious,
but in fact it is a best-possible result: Paley [1932] constructed an infinite class of
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quadratic characters {χn (mod qn)} for which

max
t≤q
|Sχn (t)| �

√
qn log log qn.

Unconditionally, however, there were no asymptotic improvements2 of the Pólya–
Vinogradov inequality for long sums until the recent breakthroughs of Granville
and Soundararajan [2007]. Among other results, these authors showed that for
primitive characters χ (mod q) of odd order one can unconditionally improve the
Pólya–Vinogradov bound by a power of log q and, conditionally on the GRH, the
Montgomery–Vaughan estimate by a power of log log q . The following theorem,
which will be an immediate consequence of Theorems 2.9 and 2.10, improves
Granville and Soundararajan’s conditional and unconditional bounds alike; see the
remarks following the theorem.

Theorem 2. For every primitive Dirichlet character χ (mod q) of odd order g,

|Sχ (t)| �g
√

q(log Q)1−δg+o(1),

where δg := 1− g
π

sin π
g

and

Q =

{
q unconditionally,

log q conditionally on the GRH.

The implicit constant depends only on g, and o(1)→ 0 as q→∞.

Remarks. (i) Our conditional estimate was conjectured in [Granville and Sound-
ararajan 2007].

(ii) δ3 ≈ 0.173, so 1− δ3 is slightly smaller than 5/6.

(iii) Theorem 2 saves a factor of (log Q)δg/2 over the Granville–Soundararajan
bounds (see [Granville and Soundararajan 2007, Theorems 1 and 4]).

(iv) The only step in our argument requiring the GRH is Proposition 2.8.

Finally, we show that the conditional estimate in Theorem 2 is best-possible:

Theorem 3. Assume the GRH. Then for any odd integer g ≥ 3, there exists an
infinite family of characters χ (mod q) of order g such that

max
t≤q
|Sχ (t)| �ε,g

√
q(log log q)1−δg−ε .

In the following section, we state precise versions of our results and outline the
arguments which go into proving them.

2There were several improvements of the implicit constant, however. Of particular note is Hilde-
brand [1988], which puts forward the idea that Sχ (t) can only have large magnitude if χ mimics
closely the behavior of a character of very small conductor. It was the development of this idea
which led to the work of Granville and Soundararajan, and subsequently to the present paper.
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2. Precise statements of results and sketches of their proofs

It has long been understood that cancellation in exponential sums with arithmetic
coefficients is closely related to the diophantine properties of α. To state this more
precisely, recall Dirichlet’s theorem on diophantine approximation: given any M ≥
2 there exists a rational number b/r such that

1≤ r ≤ M, (b, r)= 1, and
∣∣∣α− b

r

∣∣∣≤ 1
r M

. (2-1)

Montgomery and Vaughan [1977] showed that there is cancellation in the expo-
nential sum (1-2) for α belonging to a “minor arc”, that is, for those α admitting
a diophantine approximation by a rational number with a large denominator. Our
main result complements this by showing that there is substantial cancellation in
the sum (1-2) even for those α not admitting such a rational approximation, un-
less both f (n) and α are rather special: f (n) must mimic a function of the form
ξ(n)ni t for some primitive Dirichlet character ξ (mod m), and the denominator r
of the diophantine approximation for α given by (2-1) must be a multiple of the
“exceptional modulus” m. Formally:

Theorem 2.1. Let F, M, and S(y) be defined as in (1-1), (1-4), and (1-5), respec-
tively. Suppose that x ≥ 2, y ≥ 16, α ∈ R, f ∈ F, and that as ψ ranges over
all primitive Dirichlet characters of conductor less than log y, M( fψ; y, log2 y) is
minimized when ψ = ξ (mod m). Set

M = exp
(

exp log log y
log log log y

)
.

(I) If there exists b/r satisfying (2-1) with r > log y, then∑
n≤x

n∈S(y)

f (n)
n

e(nα)� (log y)
1
2+o(1).

(II) If there exists a rational number of the form b/r such that (2-1) holds with
r ≤ log y and m - r , then∑

n≤x
n∈S(y)

f (n)
n

e(nα)� (log y)
2
3+o(1).

(III) If no rational numbers satisfy the hypotheses of (I) or (II), then∑
n≤x

n∈S(y)

f (n)
n

e(nα)�
√

m
ϕ(m)

(log y)e−M( f ξ ; y,log2 y)
+

1
√

r
(log y)

2
3+o(1)

+(log y)
1
2+o(1).

All implicit constants are absolute, and o(1)→ 0 as y→∞.
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Remarks. (i) We expect that the twist by ni t is superfluous. In other words, tak-
ing ξ (mod m) to be the nearest primitive Dirichlet character to f (n) with re-
spect to the MM metric, the above theorem should hold with M( fψ; y, log2 y)
replaced throughout by D( f, ψ; y)2. See Conjecture 2.6 and the discussion
preceding it for a justification of this belief.

(ii) The methods used to prove Theorem 2.1 can be applied to obtain an analogous
theorem for sums of the form

∑
f (n)e(nα) with f ∈ F. In this case, in

contrast with the previous remark, the twist by ni t will be necessary. See the
discussion preceding Conjecture 2.6.

(iii) With more work, it should be possible to adapt the argument to prove a similar
result under the weaker hypothesis that f (n) is multiplicative (as opposed
to completely multiplicative). The hypothesis that | f (n)| ≤ 1 for all n is
much more delicate, however. Proving an analogous result for f (n) whose
magnitude grows (however slowly) to infinity would find wide application,
but the methods described here seem insufficient to attack this problem.

(iv) Theorem 2.1 immediately implies Theorem 1.

We split the proof into several steps.

Step 1: Handling the minor arcs. Montgomery and Vaughan [1977] made an im-
portant breakthrough in the study of character sums by proving the upper bound
(1-8) on the assumption of the generalized Riemann hypothesis (GRH). Most of
their paper is devoted to (unconditionally) obtaining cancellation in sums of the
form

∑
f (n)e(nα) with f multiplicative and α admitting a rational diophantine

approximation with a large denominator. To accomplish this, they first reduce
the problem to studying certain bilinear forms, then develop an intricate iterated
version of Dirichlet’s hyperbola method to estimate this form. For our purposes,
we require a variant of their bound: first, we are interested in sums of the form∑
( f (n)/n)e(nα), and second, we will need to control the smoothness of the ar-

gument. In Section 3 we deduce the following from Montgomery and Vaughan’s
theorem:

Corollary 2.2. Given f ∈ F, α ∈ R, and a reduced fraction b/r such that r ≥ 2
and |α− b/r | ≤ 1/r2, we have, for x ≥ 2 and y ≥ 16,∑

n≤x
n∈S(y)

f (n)
n

e(nα)� log r +
(log r)5/2
√

r
log y+ log log y,

where the implicit constant is absolute.

It is evident that this bound is particularly effective for those α which have a
rational diophantine approximation with a large denominator. In the language of
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the circle method, such α constitute the minor arcs; all other α (that is, all of whose
rational diophantine approximations have small denominators) comprise the major
arcs. Thus, Corollary 2.2 handles the minor arcs, and it remains to tackle those α
belonging to major arcs. A method to do this in the case that f is a character was
developed in [Granville and Soundararajan 2007]. In addition to generalizing and
streamlining Granville and Soundararajan’s argument somewhat, we introduce a
new ingredient: the work of Halász, Montgomery, and Tenenbaum on mean values
of multiplicative functions. We describe how this is done in the next three steps of
our outline.

Step 2: The Granville–Soundararajan identity. In Section 4 we prove Lemma 4.1,
which will allow us to replace α by a rational diophantine approximation in the
exponential sum at the cost of possibly shortening the range of summation slightly
and adding a negligible error. More precisely, under a weak technical hypothesis
(easily satisfied in our situation), it will assert the existence of an N ≤ x such that∑

n≤x
n∈S(y)

f (n)
n

e(nα)=
∑
n≤N

n∈S(y)

f (n)
n

e
(b

r
n
)
+ O(log log y).

It is worth noting that while our choice of N will be dependent on α, the implicit
constant in the error term will be absolute.

This step allows us to focus on the case of rational α. An identity that is implicit
in [Granville and Soundararajan 2007, Section 6.2], and whose proof can be found
in Section 4, gets right to the heart of the matter:

Proposition 2.3 (Granville–Soundararajan identity3). Given integers b and r such
that (b, r)= 1 with b 6= 0 and r ≥ 1, we have, for all f ∈ F, N ≥ 2 and y ≥ 2,∑

n≤N
n∈S(y)

f (n)
n

e
(b

r
n
)
=

∑
d|r

d∈S(y)

f (d)
d
·

1
ϕ(r/d)

∑
ψ (mod r/d)

τ(ψ)ψ(b)
∑

n≤N/d
n∈S(y)

f (n)ψ(n)
n

.

In the case that α belongs to a major arc, r will be small, so the only factor on
the right-hand side which can make a significant contribution is the innermost sum.
We thus must turn our attention to sums of the form∑

n≤x
n∈S(y)

g(n)
n

for g ∈ F; it is here that we introduce significant refinements to Granville and
Soundararajan’s ideas.

3Similar identities appear in [Montgomery and Vaughan 1977; Hildebrand 1988].
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Step 3: A Halász-like result. As mentioned in the introduction, Halász [1971] re-
alized that the mean value of f ∈ F can be large only if f (n) mimics a function
of the form ni t , where this mimicry is measured by the MM metric. Montgomery
[1978] reworked Halász’s method to bound the magnitude of

∑
n≤x f (n) in terms

of the behavior of the generating function of f ,

F(s) :=
∞∑

n=1

f (n)
ns , (2-2)

in a vertical strip of the complex plane. In §III.4.3 of his excellent book, Tenen-
baum [1995] outlines a method of bounding F(s) in terms of the quantity

M( f ; X, T ) := min
|t |≤T

D
(

f (n), ni t
; X
)2
.

In combination with Montgomery’s work, this leads to an elegant quantitative ver-
sion of Halász’s result.

Inspired by Montgomery’s reworking of Halász’s method, Montgomery and
Vaughan [2001] bounded ∑

n≤x

f (n)
n

in terms of F(s), the generating series of f defined in (2-2). In Section 5 we apply
Tenenbaum’s method to the Montgomery–Vaughan bound to prove the following:

Theorem 2.4. For f ∈ F, x ≥ 2, and T ≥ 1,∑
n≤x

f (n)
n
� (log x)e−M( f ; x,T )

+
1
√

T
,

where M is defined by (1-4).

From this it is not hard to deduce the following useful corollary.

Corollary 2.5. For f ∈ F, x ≥ 2, y ≥ 2, and T ≥ 1,∑
n≤x

n∈S(y)

f (n)
n
� (log y)e−M( f ; y,T )

+
1
√

T
.

Remark. Taking y = x in the corollary immediately yields Theorem 2.4, so the
two statements are in fact equivalent.

The above simultaneously refines and generalizes [Granville and Soundararajan
2007, Lemma 4.3], and is sufficiently strong for our intended application of an
optimal bound on odd-order character sums. However, we suspect that more can
be said. Colloquially, our bound indicates that

∑
f (n)/n can be large only if f (n)
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mimics a function of the form ni t . This is an artifact from the proof of the Halász–
Montgomery–Tenenbaum theorem, which drew the same conclusion for the sum∑

f (n). In that case, ni t is an actual enemy since
∑

ni t is not o(x). Our situation
is quite different: if f (n) closely mimics ni t , then∑

n≤x

f (n)
n
≈ ζ(1− i t),

which is bounded so long as t is neither too small nor too large. Therefore, for sums
of the form considered in Theorem 2.4, ni t is no longer an enemy — the only real
enemy is the constant function 1. This leads us to make the following conjecture:

Conjecture 2.6. For f ∈ F and 2≤ y ≤ x ,∑
n≤x

n∈S(y)

f (n)
n
� 1+ (log y)e−D( f,1; y)2 .

Note that the restriction y ≤ x is necessary, as shown by the example directly
following [Granville and Soundararajan 2007, Lemma 4.3].

If some form of this conjecture holds, it would improve our main results (The-
orems 1, 2, and 2.1) by removing the possible twist by ni t , and would allow us
to state all the results purely in terms of the distance from f (n) to the nearest
primitive character.

Step 4: Handling the major arcs. One important discovery of Granville and Sound-
ararajan in their study of the MM metric was a repulsion principle similar to the
Deuring–Heilbronn phenomenon: f cannot mimic two different characters too
closely. Thus, if we identify the “exceptional character” ξ (mod m) which f most
nearly mimics (in the sense made precise in the statement of Theorem 2.1), then
f must be quite far from mimicking any other primitive character. In their study
of mean values of multiplicative functions in arithmetic progressions, Balog et al.
[2007] derived explicit lower bounds on M( fψ; y, log2 y) for all primitive ψ 6= ξ .

With this in mind, we turn to major arcs. Suppose that α ≈ b/r with r small,
so that the Montgomery–Vaughan result (Corollary 2.2) is not useful. Plugging
the estimate of Corollary 2.5 into the right side of the Granville–Soundararajan
identity (Proposition 2.3), we quickly find an upper bound on the magnitude of the
left side in terms of the quantities M( fψ; N/d, T ), where T is a parameter we
can specify as we wish and ψ runs over all characters of modulus dividing r . If r
is not a multiple of the exceptional modulus m, then none of the characters ψ are
induced by the exceptional character ξ ; the repulsion principle then implies that
M( fψ; y, log2 y) is bounded from below for all ψ in the sum, meaning that the
contribution from each character to the sum is not too large.
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If on the other hand m divides r , then some of the characters we are summing
over might be induced by the exceptional character ξ . In this case, once again
using the repulsion principle, we can bound M( fψ; y, log2 y) from below for all
ψ which are not induced by ξ ; however, there will now be a main term coming
from the characters induced by the exceptional character. In Section 6 we make
these arguments precise and deduce the following:

Theorem 2.7. Assume N ≥ 2, y ≥ 16, f ∈ F, and b/r is a reduced fraction4 with
1≤ r ≤ log y. Suppose that as ψ ranges over all primitive characters of conductor
less than r , the minimum of M( fψ; y, log2 y) occurs when ψ = ξ (mod m). Then∑

n≤N
n∈S(y)

f (n)
n

e
(b

r
n
)
�

1
√

r
(log y)

2
3+o(1)

+
√

r eC
√

log log y
+


√

m
ϕ(m)

(log y)e−M( f ξ ; y,log2 y) if m|r,

0 otherwise,

where both C and the implicit constant are absolute, and o(1)→ 0 as y→∞.

This result is complementary to Corollary 2.2, which bounded the same quantity
effectively for large r ; combining the two yields Theorem 2.1, as will be shown in
Section 7.

Having sketched the proof of Theorem 2.1, we move on to sketching the proof
of Theorem 2.

Application to character sums. In their proofs of the inequality (1-6), both Pólya
and Vinogradov expanded the character sum function Sχ (t) as a Fourier series
(Vinogradov had earlier proved the inequality via other means). Pólya’s version of
the Fourier expansion is as follows: for any N ,

Sχ (t)=
τ(χ)

2π i

∑
1≤|n|≤N

χ(n)
n

(
1− e

(
−

nt
q

))
+ O

(
1+ q log q

N

)
, (2-3)

where τ(χ) denotes the Gauss sum, defined in (1-7). For any primitive Dirichlet
character χ (mod q), |τ(χ)| =

√
q , so we are left to study sums of the form∑

1≤|n|≤N

χ(n)
n

e(nα). (2-4)

Needless to say, this looks very similar to the sums seen in Theorems 1 and 2.1,
aside from n running over both positive and negative values. Actually, we will be
able to use this symmetry to our advantage. As a simple illustration of this, we
note that if χ has odd order and α = 0, the sum (2-4) vanishes.

4We adopt the convention that the reduced form of 0 is 0
1 .
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One important consequence of the GRH is that, for some of the most fundamen-
tal sums which occur in multiplicative number theory, the bulk of the contribution
comes from the so-called smooth arguments, that is, those with no large prime
factors — see (1-5) for the precise definition.5 The following proposition is due to
Granville and Soundararajan, and is the only step in our argument which depends
on the GRH.

Proposition 2.8. Assume the GRH. Then for all primitive Dirichlet characters χ
(mod q) we have∑

n≤x

χ(n)
n

e(nα)=
∑
n≤x

n∈S(y)

χ(n)
n

e(nα)+ O
(
(log q)(log ex)

y1/6

)

uniformly for 1≤ x ≤ q3/2, y ≥ 1, and all α.

Proof. This follows immediately from [Granville and Soundararajan 2007, Lemma
5.2] by partial summation. �

A precursor of this result, with α= 0, was proved in [Montgomery and Vaughan
1977, Lemma 2].

Very slightly modifying the method used to prove Theorem 2.1, we will show
(in Section 7) that∑
1≤|n|≤q

χ(n)
n

e(nα)�
(
1−χ(−1)ξ(−1)

) √m
ϕ(m)

(log Q)e−M(χξ ;Q,log2 Q)
+(log Q)2/3+o(1),

where the implicit constant is absolute and o(1)→ 0 as q→∞. Colloquially, this
indicates that there is a lot of cancellation in the sum on the left-hand side unless
χ(n) mimics ξ(n)ni t for some primitive Dirichlet character ξ of opposite parity
and small conductor, and some small real number t .

Combining this bound with Pólya’s Fourier expansion (2-3) we immediately
deduce the following:

Theorem 2.9. Given a primitive Dirichlet character χ (mod q), set

Q =
{

q unconditionally,
( log q)12 conditionally on the GRH.

5Recall, for example, Littlewood’s celebrated result that, on the GRH, L(1, χ) is well ap-
proximated by a short Euler product for any primitive Dirichlet character χ (mod q). Expanding
the product, his result can be roughly written down in the following form: assuming the GRH,
L(1, χ) ≈

∑
n∈S((log q)2) χ(n)/n. See [Littlewood 1928] for the original argument, or [Granville

and Soundararajan 2003, Section 2] for some unconditional versions.
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Suppose that as ψ ranges over all primitive characters of conductor less than
log Q, M(χψ; Q, log2 Q) is minimized when ψ = ξ (mod m). Then

max
t≤q
|Sχ (t)|

�
(
1−χ(−1)ξ(−1)

) √m
ϕ(m)

√
q(log Q)e−M(χξ ;Q,log2 Q)

+
√

q(log Q)2/3+o(1),

where the implicit constant is absolute and o(1)→ 0 as q→∞.

Remark. This refines the main term and sharpens the error term of [Granville and
Soundararajan 2007, Theorems 2.1 and 2.4].

To conclude the proof of Theorem 2, it remains only to show that given any
primitive Dirichlet character χ (mod q) of odd order, and any primitive character ξ
of small conductor and opposite parity, χ(n) cannot mimic too closely the behavior
of ξ(n)ni t for small t . This is reminiscent of [Granville and Soundararajan 2007,
Lemma 3.2], wherein Granville and Soundararajan proved the same statement in
the special case that t=0. Unfortunately, their argument does not generalize easily,
and we are forced to introduce several new ingredients. These are discussed at the
beginning of Section 8, in which we will prove the following:

Theorem 2.10. Let y ≥ 3, a primitive character χ (mod q) of odd order g, and an
odd character ξ (mod m) with m < (log y)A be given. Then

M(χξ ; y, log2 y)≥
(
δg + o(1)

)
log log y,

where o(1)→ 0 as y→∞ for any fixed values of g and A.

Using the bound from Theorem 2.10 in the one from Theorem 2.9, we deduce
Theorem 2.

We conclude the paper with a proof of Theorem 3, which shows that, condition-
ally on the GRH, our bound on odd-order character sums is best possible.

This concludes our outline. We summarize it, more briefly, before carrying
out the arguments. Section 3 builds on the work of Montgomery and Vaughan
estimating the minor arc contributions to the exponential sum

∑
( f (n)/n)e(nα),

culminating in Corollary 2.2. In Section 4 we prove two elementary results which
inform the rest of our arguments: Lemma 4.1 shows that it suffices to consider the
case of rational α, and an identity of Granville and Soundararajan further reduces
the problem to considering a sum of a type previously investigated by Montgomery
and Vaughan. In Section 5 we apply Tenenbaum’s method to Montgomery and
Vaughan’s bound to obtain Corollary 2.5, a variation on the Halász–Montgomery–
Tenenbaum bound for mean values of multiplicative functions. This puts us in the
position to treat the major arcs and prove Theorem 2.7, which we do in Section 6. In
Section 7 we combine the major arc and minor arc estimates to obtain Theorem 2.1,
and subsequently deduce the bound on character sums given by Theorem 2.9. In
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Section 8, we show that a primitive character of odd order cannot mimic too closely
any function of the form ξ(n)ni t , where ξ is a character of even order and small
conductor; this is Theorem 2.10. Finally, in Section 9, we prove Theorem 3.

3. The minor arc case: Proof of Corollary 2.2

We begin by recalling a result of Montgomery and Vaughan:

Theorem 3.1 (Montgomery–Vaughan). Suppose f ∈ F and |α−b/r | ≤ 1/r2 with
(b, r)= 1. Then for every R ∈ [2, r ] and any N ≥ Rr we have

∑
Rr≤n≤N

f (n)
n

e(nα)� log log N +
(log R)3/2
√

R
log N ,

where the implicit constant is absolute.

Proof. This follows immediately from [Montgomery and Vaughan 1977, Corol-
lary 1] by partial summation. Our formulation of this theorem is lifted from [Gran-
ville and Soundararajan 2007, Lemma 4.2]. �

Montgomery and Vaughan’s proof of the above theorem required both ingenuity
and hard analysis, as might be expected in a minor arc estimate. With their result
in hand, we can deduce the following corollary (which is modeled on [Granville
and Soundararajan 2007, Lemma 6.1]) without much exertion.

Corollary 2.2. Given f ∈ F, α ∈ R, and a reduced fraction b/r such that r ≥ 2
and |α− b/r | ≤ 1/r2, we have, for x ≥ 2 and y ≥ 16,

∑
n≤x

n∈S(y)

f (n)
n

e(nα)� log r +
(log r)5/2
√

r
log y+ log log y,

where the implicit constant is absolute.

Prior to proving this, we introduce one more piece of notation. Given f :Z→C

and any positive number y, we define the y-smoothed function fy :

fy(n)=
{

f (n) if n ∈ S(y),
0 otherwise.

(3-1)

Note that if f ∈ F, then fy ∈ F as well.

Proof. The bound is trivially true for x ≤ r2, so we assume x > r2.
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First, note that for x ≤ ylog r the claim follows from Theorem 3.1 applied to fy :∑
n≤x

n∈S(y)

f (n)
n

e(nα)=
∑
n≤x

fy(n)
n

e(nα)=
∑
n<r2

fy(n)
n

e(nα)+
∑

r2≤n≤x

fy(n)
n

e(nα)

� log r +
(log r)3/2
√

r
log x + log log x

� log r +
(log r)5/2
√

r
log y+ log log y.

It therefore suffices to bound ∑
ylog r<n≤x

n∈S(y)

f (n)
n

e(nα).

Since n > ylog r if and only if n > r · n1−1/(log y),∑
ylog r<n≤x

n∈S(y)

f (n)
n

e(nα)� 1
r

∑
ylog r<n≤x

n∈S(y)

1
n1−1/(log y) ≤

1
r

∏
p≤y

(
1−

1
p1−1/(log y)

)−1

.

By the prime number theorem,

log
∏
p≤y

(
1−

1
p1−1/(log y)

)−1

=

∑
p≤y

1
p1−1/(log y) + O(1)= log log y+ O(1).

It follows that ∑
ylog r<n≤x

n∈S(y)

f (n)
n

e(nα)� 1
r

log y,

and the corollary is proved. �

4. Reduction to rational α and the Granville–Soundararajan identity

We now begin our approach towards the major arcs. We begin by reducing the
problem to the case of rational α. The following bound is inspired by [Granville
and Soundararajan 2007, Lemma 6.2]:

Lemma 4.1. Assume f ∈ F, α ∈ R, x ≥ 16, y ≥ 16, and M ≥ 2. Suppose the
reduced fraction b/r with r ≤ M is a rational diophantine approximation to α,
that is, ∣∣∣α− b

r

∣∣∣≤ 1
r M

.
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Set N =min
{

x, 1
|rα−b|

}
. Then for all R ∈

[
2, N

2

]
,

∑
n≤x

n∈S(y)

f (n)
n

e(nα)=
∑
n≤N

n∈S(y)

f (n)
n

e
(b

r
n
)
+O

(
log R+

(log R)3/2
√

R
(log y)2+log log y

)
,

where the implied constant in the error term is absolute. Moreover, the error term
above can be replaced by O(log log y) if M ≥ 2(log y)4 log log y.

Remarks. (i) For our intended applications, we will be able to choose an M
much larger than 2(log y)4 log log y.

(ii) The actual value of N is unimportant; what is important is that M ≤ N ≤ x .

Proof. If N = x then
∣∣∣α− b

r

∣∣∣≤ 1
r x

whence

∑
n≤x

n∈S(y)

f (n)
n

(
e(nα)− e

(b
r

n
))
�

∑
n≤x

n∈S(y)

1
n
· n
∣∣∣α− b

r

∣∣∣� 1.

We therefore assume that N = 1
|rα−b|

< x . Note that this immediately implies
that N ≥ M and that ∣∣∣α− b

r

∣∣∣= 1
r N

.

By Dirichlet’s theorem, there is a reduced fraction b1
r1

with r1 ≤ 2N such that∣∣∣∣α− b1

r1

∣∣∣∣≤ 1
2r1 N

.

Note that b
r
6=

b1
r1

, since
∣∣∣α− b1

r1

∣∣∣< 1
r1 N

. Thus,

1
rr1
≤

∣∣∣∣br − b1

r1

∣∣∣∣≤ 1
2r1 N

+
1

r N
,

whence r1 ≥ N − r
2

. Since r ≤ M ≤ N , we see that

N
2
≤ r1 ≤ 2N ,

so we can trivially bound the (possibly empty) sum∑
N<n≤Rr1

n∈S(y)

f (n)
n

e(nα)� log
Rr1

N
= log R+ O(1).
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Once again applying Montgomery–Vaughan’s Theorem 3.1 to fy (which we can
do since R ≤ N/2≤ r1) we see that∑
Rr1<n≤e(log y)2

n∈S(y)

f (n)
n

e(nα)=
∑

Rr1<n≤e(log y)2

fy(n)
n

e(nα)� log log y+
(log R)3/2
√

R
(log y)2.

Finally, using the same device as in the proof of Corollary 2.2, we see that∑
e(log y)2<n≤x

n∈S(y)

f (n)
n

e(nα)�
∑

e(log y)2<n≤x
n∈S(y)

1
n
�

1
y

∑
n∈S(y)

1
n1−1/log y � 1.

Combining these three bounds, we deduce∑
n≤x

n∈S(y)

f(n)
n

e(nα)=
∑
n≤N

n∈S(y)

f(n)
n

e(nα)+O
(

1+ log R+
(log R)3/2
√

R
(log y)2+ log log y

)
.

Just as at the start of the proof, we have∑
n≤N

n∈S(y)

f (n)
n

e(nα)=
∑
n≤N

n∈S(y)

f (n)
n

e
(b

r
n
)
+ O(1)

and we conclude the proof of the first part of the theorem.
For the second claim, if M ≥ 2(log y)4 log log y, then

r1 ≥ N − r
2
≥ M − M

2
≥ (log y)4 log log y.

Taking R = (log y)4 log log y renders the error O(log log y). �

We now suppose that α is rational. The following identity, essentially due to
Granville and Soundararajan, highlights the key contributors to the major arcs.

Proposition 2.3 (Granville–Soundararajan identity). Given integers b and r such
that (b, r)= 1 with b 6= 0 and r ≥ 1, we have, for all f ∈ F, N ≥ 2 and y ≥ 2,∑

n≤N
n∈S(y)

f (n)
n

e
(b

r
n
)
=

∑
d|r

d∈S(y)

f (d)
d
·

1
ϕ(r/d)

∑
ψ (mod r/d)

τ(ψ)ψ(b)
∑

n≤N/d
n∈S(y)

f (n)ψ(n)
n

.

Thus for small r , the left-hand side can be large only if∑
n≤N/d
n∈S(y)

f (n)ψ(n)
n

is large for some Dirichlet character ψ of conductor dividing r .
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Proof. We examine the left-hand side. Summing over all possible greatest common
divisors d of n and r , and setting a = n/d we find∑

n≤N
n∈S(y)

f (n)
n

e
(b

r
n
)
=

∑
d|r

d∈S(y)

f (d)
d

∑
a≤N/d
(a,r/d)=1

a∈S(y)

f (a)
a

e
( ab

r/d

)
. (4-1)

Now,

e
( ab

r/d

)
=

∑
k(mod r/d)

e
( k

r/d

)
δab(k),

where δx is the indicator function of x . By orthogonality of characters, we can
express the indicator function in terms of characters:

δab(k)=
1

ϕ(r/d)

∑
ψ(mod r/d)

ψ(ab)ψ(k),

whence, switching the order of summation,

e
( ab

r/d

)
=

1
ϕ(r/d)

∑
ψ(mod r/d)

τ(ψ)ψ(ab).

Plugging this back into (4-1) and once again switching order of summation yields
the identity. �

5. A Halász-like result: Proof of Theorem 2.4

Given f ∈ F, set

F(s) :=
∞∑

n=1

f (n)
ns .

Note that this generating series converges in the half-plane Re s > 1.

Theorem 5.1 [Montgomery and Vaughan 2001]. For any f ∈ F and x ≥ 3, we
have ∑

n≤x

f (n)
n
�

1
log x

∫ 1

1/log x

1
α

H(α)dα,

where

H(α) :=
(∑

k∈Z

max
s∈Bk(α)

∣∣∣∣ F(s)
s− 1

∣∣∣∣2)1/2

and Bk(α) is the region in the complex plane defined by

Bk(α) :=
{
s ∈ C : 1+α ≤ σ ≤ 2 and |t − k| ≤ 1

2

}
.



Multiplicative mimicry and improvements to the Pólya–Vinogradov inequality 141

In order to deduce Theorem 2.4 from this, we use the following:

Theorem 5.2 [Tenenbaum 1995]. Assume f and F are as above and x ≥ 3. Then
we have

F(1+α+ i t)�

(log x)e−M( f ; x,T ) for |t | ≤ T,

1
α

for |t |> T,

uniformly for α ∈
[ 1

log x
, 1
]
.

Proof of Theorem 2.4. Applying the bound of Theorem 5.2, we estimate H(α)
from Montgomery and Vaughan’s Theorem 5.1 as follows:

H(α)=
(∑

k∈Z

max
s∈Bk(α)

∣∣∣∣ F(s)
s− 1

∣∣∣∣2)1/2

≤

(∑
k∈Z

1
k2+α2 max

s∈Bk(α)
|F(s)|2

)1/2

� (log x)e−M( f ; x,T )
( ∑
|k|≤T− 1

2

1
k2+α2

)1/2

+
1
α

( ∑
|k|>T− 1

2

1
k2+α2

)1/2

�
1
α
(log x)e−M( f ; x,T )

+(log x)e−M( f ; x,T )
(∑

k≤T

1
k2

)1/2

+
1
α

( ∑
k>T− 1

2

1
k2

)1/2

�
1
α
(log x)e−M( f ; x,T )

+
1

α
√

T
.

Using this bound in Theorem 5.1 immediately yields the result. �

Proof of Corollary 2.5. Recall from Section 3 the convenient notation

fy(n) :=
{

f (n) if n ∈ S(y),
0 otherwise.

As was noted there, f ∈ F implies that fy ∈ F. Therefore, by Theorem 2.4 we
have ∑

n≤x
n∈S(y)

f (n)
n
=

∑
n≤x

fy(n)
n
� (log x)e−M( fy; x,T )+

1
√

T
.

The following calculation completes the proof:

M( fy; x, T )= min
|t |≤T

D
(

fy(n), ni t
; x
)2
= min
|t |≤T

∑
p≤x

1−Re fy(p)p−i t

p

= min
|t |≤T

(∑
p≤y

1−Re f (p)p−i t

p
+

∑
y<p≤x

1
p

)
=M( f ; y, T )+ log log x

log y
+ O(1). �
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6. The major arc case: Proof of Theorem 2.7

We first derive the claimed bound for b 6= 0. In this case, we can apply the
Granville–Soundararajan identity (Proposition 2.3), which we rewrite in the form∑

n≤N
n∈S(y)

f (n)
n

e
(b

r
n
)
=

∑
d|r

d∈S(y)

f (d)
d

a(d), (6-1)

where

a(d)=
1

ϕ(r/d)

∑
ψ(mod r/d)

τ(ψ)ψ(b)
( ∑

n≤N/d
n∈S(y)

f (n)ψ(n)
n

)
.

Because we are assuming r < log y, the restriction d ∈ S(y) above is superfluous.
Our first goal is to identify the exceptional character, the one primitive character

which is the primary contributor to our exponential sum. To this end, consider the
set of all primitive characters with conductor not exceeding r , where we include
the constant function 1 as the primitive character (mod 1) which induces all the
principal characters to larger moduli. Enumerate all of these primitive characters
as ψk (mod mk) in such a way that

M( fψ1; y, log2 y)≤M( fψ2; y, log2 y)≤ · · · .

It will be seen that ψ1 (mod m1) is the exceptional character for f ; this is the
character we called ξ (mod m) in the statement of the theorem, and its contribution
to the sum is difficult to control. We will return to this point later in the proof.

The behavior of the characters (mod r/d) is determined by the set of primitive
characters inducing them, so for ease of reference we define for each d|r the set

Kd =

{
k : mk

∣∣∣ r
d

}
.

Note that |Kd | = ϕ(r/d). We can rewrite a(d) in terms of the underlying primitive
characters {ψk (mod mk)}k∈Kd :

a(d)=
1

ϕ(r/d)

∑
k∈Kd

τ(ψkχ0)ψk(b)χ0(b)
( ∑

n≤N/d
n∈S(y)

f (n)ψk(n)χ0(n)
n

)
,

where χ0 is the principal character (mod r/d). A straightforward calculation shows
that if a character ψ (mod m) is induced by the primitive character ψ∗ (mod m∗),
then

τ(ψ)= µ
( m

m∗
)
ψ∗
( m

m∗
)
τ(ψ∗).
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Therefore,

a(d)=
χ0(b)
ϕ(r/d)

∑
k∈Kd

µ
( r

dmk

)
ψk

( r
dmk

)
τ(ψk)ψk(b)

∑
n≤N/d
n∈S(y)
(n,r/d)=1

f (n)ψk(n)
n

.

We make one final cosmetic adjustment prior to estimating this quantity. Lemma 5
of [Hildebrand 1988] asserts that, for any g ∈ F and x ≥ 1,∑

n≤x
(n,k)=1

g(n)
n
=

∏
p|k

(
1−

g(p)
p

)∑
n≤x

g(n)
n
+ O

((
log log(k+ 2)

)3
)
,

where the implicit constant is absolute.6 Set g= fψ for any Dirichlet character ψ ,
and let gy be the y-smoothed version of g (defined in (3-1)). Applying Hildebrand’s
lemma to gy and using the inequalities d ≤ r ≤ y, we see that

∑
n≤N/d
n∈S(y)
(n,r/d)=1

f (n)ψ(n)
n

=

∑
n≤N/d
(n,r/d)=1

gy(n)
n
=

∑
n≤N

(n,r/d)=1

gy(n)
n
+ O(log d)

=

∏
p|r/d

(
1−

gy(p)
p

)∑
n≤N

gy(n)
n
+ O(log r)

=

∏
p|r/d

(
1−

f (p)ψ(p)
p

) ∑
n≤N

n∈S(y)

f (n)ψ(n)
n

+ O(log r).

Therefore, continuing our calculation from above,

a(d)=
χ0(b)
ϕ(r/d)

∑
k∈Kd

µ
( r

dmk

)
ψk

( r
dmk

)
τ(ψk)ψk(b)

×

∏
p|r/d

(
1−

f (p)ψk(p)
p

) ∑
n≤N

n∈S(y)

f (n)ψk(n)
n

up to an error of size

�
1

ϕ(r/d)

∑
k∈Kd

√
mk log r �

√
r
d

log r, (6-2)

6See [Granville and Soundararajan 2007, Lemma 4.4] for a substantially similar result.
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since mk |r/d and |Kd | = ϕ(r/d). Before further refining our estimate for a(d), we
bound the accumulation of the error (6-2) in the sum∑

n≤N
n∈S(y)

f (n)
n

e
(b

r
n
)
=

∑
d|r

f (d)
d

a(d).

Since r < log y, we find that the total possible contribution from the error terms is

�

∑
d|r

1
d

√
r
d

log r �
√

r log r �
√

r log log y. (6-3)

In view of the bound claimed in Theorem 2.7, this is negligible.
We will now show that the contribution from all the nonexceptional characters
{ψk}k≥2 to a(d) is not terribly large. From Corollary 2.5 we deduce that

χ0(b)
ϕ(r/d)

∑
k∈Kd
k≥2

µ
( r

dmk

)
ψk

( r
dmk

)
τ(ψk)ψk(b)

×

∏
p|r/d

(
1−

f (p)ψk(p)
p

) ∑
n≤N

n∈S(y)

f (n)ψk(n)
n

�
1

ϕ(r/d)

∑
k∈Kd
k≥2

√
mk

(∏
p|r/d

(
1+ 1

p

))(
(log y)e−M( fψk ; y,log2 y)

+
1

log y

)
.

Note that for any g∈F and any T ≥0 we have 0≤M(g; y, T )≤2 log log y+O(1),
whence

(log y)e−M( fψk ; y,log2 y)
�

1
log y

.

Also, mk ≤ r/d for all k ∈ Kd , and∏
p|r/d

(
1+ 1

p

)
� log log

( r
d
+ 2

)
.

Therefore, the contribution from all the k ≥ 2 to a(d) is

�
1

ϕ(r/d)

√
r
d

(
log log

( r
d
+ 2

))
(log y)

∑
k∈Kd
k≥2

e−M( fψk ; y,log2 y).

To make further progress, we need lower bounds on M( fψk; y, log2 y) for k≥2; in
other words, we wish to show that f (n) cannot mimic too closely a function of the
form ψ(n)ni t so long as ψ is not induced by the exceptional character ψ1. Fortu-
itously, such bounds were determined by Balog et al. [2007] in their recent study of
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mean values of multiplicative functions over arithmetic progressions. Lemma 3.3
of [Balog et al. 2007] asserts that, for all k ≥ 2,

M( fψk; y, log2 y)≥
( 1

3 + o(1)
)

log log y. (6-4)

For larger values of k we can do even better: from Lemma 3.1 of the same reference
we deduce that for all k >

√
log log y,

M( fψk; y, log2 y)≥ log log y+ O(
√

log log y).

Using these bounds in our calculations above (and keeping in mind that |Kd | =

ϕ(r/d)) we find that the contribution to a(d) from all those k ≥ 2 which are in Kd

is

�
1

ϕ(r/d)

√
r
d

(
log log

( r
d
+2
))
(log y)2/3+o(1)

+

√
r
d

(
log log

( r
d
+2
))

eO(
√

log log y).

Going back to (6-1), we see that the total contribution of all such terms to the sum∑
n≤N

n∈S(y)

f (n)
n

e
(b

r
n
)
=

∑
d|r

f (d)
d

a(d)

is

�

∑
d|r

1
d

(
1

ϕ(r/d)

√
r
d

(
log log

( r
d
+ 2

))
(log y)2/3+o(1)

+

√
r
d

(
log log

( r
d
+ 2

))
eO(
√

log log y)
)

�
√

r
(
log log(r + 2)

)∑
d|r

(1
d

)3/2
(

1
ϕ(r/d)

(log y)2/3+o(1)
+ eO(

√
log log y)

)

�
1
r
(
log log(r + 2)

)
(log y)2/3+o(1)

∑
d|r

d3/2

ϕ(d)
+
√

r
(
log log(r + 2)

)
eO(
√

log log y),

where we have used the change of variables d↔ r
d

in the sum. Finally, recall that

n
ϕ(n)

� log log n, log d(n)�
log n

log log n
,

where d(n) denotes the number of divisors of n; in particular, we deduce that
d(r)� (log y)o(1) where o(1)→ 0 as y→∞. Using these bounds in conjunction
with our above results, we deduce that the total contribution of all the primitive
characters ψk with k ≥ 2 is

�
1
√

r
(log y)

2
3+o(1)

+
√

r eC
√

log log y,
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where both C and the implicit constant are absolute, and o(1)→ 0 as y→∞.
If m1 - r then 1 6∈ Kd for all d | r , which means that the exceptional character

ψ1 (mod m1) does not contribute anything to our exponential sum. In this case, our
above estimates tell the whole story, and we conclude the proof of the theorem.

Now suppose instead that m1 | r ; in this case, we must estimate the contribution
from the exceptional character ψ1 (mod m1) to each a(d). This character appears
in our sum precisely whenever 1 ∈ Kd (that is, whenever ψ1 induces a character
(mod r/d)), so the total contribution of this exceptional character is∑
d|r/m1

f (d)
d
·

1
ϕ(r/d)

µ
( r

dm1

)
ψ1

( r
dm1

)
τ(ψ1)ψ1(b)

×

( ∏
p|r/(dm1)

(
1−

fψ1(p)
p

)) ∑
n≤N

n∈S(y)

fψ1(n)
n

.

Note that the product now runs over only those p dividing r/(dm1), not just those
dividing r/d (it is easily seen that this extra restriction does not change the value
of the product). Making the change of variables d ↔ r/(dm1), we find that ψ1’s
contribution can be rewritten in the form

m1

r
τ(ψ1)ψ1(b)

( ∑
n≤N

n∈S(y)

fψ1(n)
n

) ∑
d|r/m1

f
( r

dm1

)
A(d), (6-5)

where

A(d)=
d

ϕ(dm1)
µ(d)ψ1(d)

∏
p|d

(
1−

fψ1(p)
p

)
.

Note that A(d) = 0 whenever (d,m1) 6= 1, so only those d which are coprime to
m1 contribute to the sum in (6-5). Moreover, the same reasoning shows that we
need only consider squarefree d . Therefore,

A(d)=
1

ϕ(m1)
·
dµ(d)ψ1(d)

ϕ(d)

∏
p|d

(
1−

fψ1(p)
p

)
=

1
ϕ(m1)

∏
p|d

(
f (p)−ψ1(p)· p

ϕ(p)

)

�
1

ϕ(m1)

∏
p|d

( p+1
p−1

)
�

1
ϕ(m1)

(
log log(d + 2)

)2
.

Combining this with Corollary 2.5 and (6-5) and making elementary estimates as
above, we conclude that the total contribution from ψ1 is

�

√
m1

ϕ(m1)
(log y)e−M( fψ1; y,log2 y)

;

this completes the proof of Theorem 2.7 in the case b 6= 0.
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To show that the same bound holds for the case b= 0, we consider two separate
cases: either ψ1 is the trivial character 1, or it isn’t. In the former scenario, m1= 1,
so from Corollary 2.5 we deduce that∑

n≤N
n∈S(y)

f (n)
n
�

√
m1

ϕ(m1)
e−M( fψ1; y,log2 y). (6-6)

If, on the other hand, ψ1 is not the trivial character, then by Corollary 2.5 together
with the lower bound (6-4) we find∑

n≤N
n∈S(y)

f (n)
n
�

1
√

r
(log y)2/3+o(1) (6-7)

(recall our convention that the reduced form of 0 is 0
1 , so r = 1). In either case,

these bounds are subsumed by those claimed. This concludes the proof.

7. Exponential sums with multiplicative coefficients and character sums:
Proofs of Theorems 2.1 and 2.9

Having dealt with both the major and minor arcs, we can now prove Theorem 2.1
without too much difficulty.

Proof of Theorem 2.1. As in the statement of the theorem, set

M = exp
(

exp log log y
log log log y

)
.

By Dirichlet’s theorem on diophantine approximation, there exists a reduced frac-
tion b/r with 1≤ r ≤ M , such that∣∣∣α− b

r

∣∣∣≤ 1
r M

. (7-1)

If the hypotheses of (I) hold (that is, if α belongs to a minor arc), Corollary 2.2
immediately implies the result claimed.

Suppose instead that the hypotheses of (I) fail to hold (that is, α belongs to a
major arc). By Lemma 4.1, since M≥2(log y)4 log log y there exists an N ∈[M, x]
such that ∑

n≤x
n∈S(y)

f (n)
n

e(nα)=
∑
n≤N

n∈S(y)

f (n)
n

e
(b

r
n
)
+ O(log log y).

Applying Theorem 2.7 immediately yields the claim for scenarios (II) and (III).
�
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Theorem 2.9 is not much harder:

Proof of Theorem 2.9. Taking N = q in Pólya’s Fourier expansion (2-3) we see
that we must bound the sum ∑

1≤|n|≤q

χ(n)
n

e(nα)

for α = 0 or −nt/q . As in the proof of Theorem 2.7, we treat the cases α = 0 and
α 6= 0 separately, starting with the latter.

Recall from the statement of the theorem that we set

Q =
{

q unconditionally,
(log q)12 conditionally on the GRH.

We use Proposition 2.8 to restrict attention to smooth arguments, in the case that
the GRH is assumed:∑

1≤|n|≤q

χ(n)
n

e(nα)=
∑

1≤|n|≤q
n∈S(Q)

χ(n)
n

e(nα)+ O(1). (7-2)

Note that this holds unconditionally as well, albeit with a superfluous error term.
We next find a diophantine rational approximation to α, that is, a reduced fraction
b/r with 1≤ r ≤ M such that ∣∣∣α− b

r

∣∣∣≤ 1
r M

.

Lemma 4.1 asserts that for M ≥ 2(log Q)4 log log Q there exists N ∈ [M, q] such
that ∑

1≤|n|≤q
n∈S(Q)

χ(n)
n

e(nα)=
∑

1≤|n|≤N
n∈S(Q)

χ(n)
n

e
(b

r
n
)
+ O(log log Q).

Finally, note that∑
1≤|n|≤N
n∈S(Q)

χ(n)
n

e
(b

r
n
)
=

∑
n≤N

n∈S(Q)

χ(n)
n

e
(b

r
n
)
−χ(−1)

∑
n≤N

n∈S(Q)

χ(n)
n

e
(
−b
r

n
)
.

Since M→∞ with q while α 6= 0 remains fixed, we must have b 6= 0. It follows
that we can apply the Granville–Soundararajan identity (Proposition 2.3) to both of
the expressions on the right-hand side of the above equation, deducing the relation
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∑
1≤|n|≤N
n∈S(Q)

χ(n)
n

e
(b

r
n
)

=

∑
d|r

d∈S(Q)

χ(d)
d
·

1
ϕ(r/d)

∑
ψ(mod r/d)

(
1−χ(−1)ψ(−1)

)
τ(ψ)ψ(b)

( ∑
n≤N/d
n∈S(Q)

χ(n)ψ(n)
n

)
.

The arguments from the proofs of Theorems 2.1 and 2.7 carry over virtually ver-
batim, and we conclude that for α 6= 0,∑
1≤|n|≤q

χ(n)
n

e(nα)

�
(
1−χ(−1)ξ(−1)

) √m
ϕ(m)

(log Q)e−M(χξ ;Q,log2 Q)
+ (log Q)2/3+o(1),

where the implicit constant is absolute, and o(1)→ 0 as q→∞.
We now treat the case α = 0; again, the arguments will be familiar. We begin

as before, by using (7-2) to (potentially) restrict the sum∑
1≤|n|≤q

χ(n)
n
=
(
1−χ(−1)

)∑
n≤q

χ(n)
n

to Q-smooth arguments. We consider separately the two cases ξ = 1 and ξ 6= 1.
In the former, ξ(−1)= 1, whence(

1−χ(−1)
) ∑

n≤q
n∈S(Q)

χ(n)
n
=
(
1−χ(−1)ξ(−1)

) ∑
n≤q

n∈S(Q)

ξ(n)χ(n)
n

�
(
1−χ(−1)ξ(−1)

) √m
ϕ(m)

e−M(χξ ;Q,log2 Q),

by Corollary 2.5 (as in (6-6)). If ξ 6= 1, then from (6-7) we know that(
1−χ(−1)ξ(−1)

) ∑
n≤q

n∈S(Q)

χ(n)
n
� (log Q)2/3+o(1),

where the constant is absolute and o(1)→ 0 as q→∞.
Putting this all together with Pólya’s Fourier expansion, we deduce the claimed

bound on Sχ (t). �

8. Multiplicative nonmimicry: Proof of Theorem 2.10

Granville and Soundararajan [2007, Lemma 3.2] proved that for any primitive char-
acter χ (mod q) of odd order g, and any primitive character ξ of opposite parity
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and conductor smaller than a power of log y,

D(χ, ξ ; y)2 ≥
(
δg + o(1)

)
log log y. (8-1)

Our goal in this section is to prove Theorem 2.10, which asserts that the same lower
bound continues to hold for small perturbations of ξ . To be precise, we will show
that under the same hypotheses on χ and ξ as above,

D
(
χ(n), ξ(n)niβ

; y
)2
≥
(
δg + o(1)

)
log log y (8-2)

for all β of magnitude smaller than log2 y. For β = o(log log y/log y) this is
straightforward:

D
(
χ(n), ξ(n)niβ

; y
)2
=

∑
p≤y

1
p
(
1−Reχξ(p)e−iβ log p)

=

∑
p≤y

1
p

(
1−Reχξ(p)

(
1+ O(|β| log p)

))
= D(χ, ξ ; y)2+ O

(
|β|
∑
p≤y

log p
p

)
= D(χ, ξ ; y)2+ o(log log y),

and thus for such β, (8-2) follows from (8-1). For larger perturbations, however,
the problem is more delicate.

Our plan of attack is as follows. Fix a primitive Dirichlet character χ (mod q)
of odd order g, and a primitive ξ (mod m) of opposite parity to χ . Since χ has
odd order, χ(−1)= 1, whence ξ(−1)=−1 and therefore ξ has even order k, say.
We partition the interval [2, y] into many small intervals of the form (x, (1+δ)x],
where δ is small. For each prime p in such an interval, we approximate p−iβ by
x−iβ . This reduces our problem to estimating sums of the form

∑
` (mod k)

∑
x<p≤(1+δ)x
ξ(p)=e(`/k)

1
p

(
1−Reχ(p)e

(
−
`

k

)
x−iβ

)
.

Following Granville and Soundararajan’s proof of (8-1), we ignore the arithmetic
properties of χ and view it as an arbitrary function from Z to µg ∪ {0}; here µg

denotes the set of g-th roots of unity. This leads us to consider

∑
` (mod k)

∑
x<p≤(1+δ)x
ξ(p)=e(`/k)

1
p

min
z∈µg∪{0}

(
1−Re z e

(
−
`

k

)
x−iβ

)
,
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and since the only factor dependent on p is the 1/p out front, we look at∑
x<p≤(1+δ)x
ξ(p)=e(`/k)

1
p
.

We expect ξ(p)= e(`/k) for 1/k of the primes, so the natural guess is∑
x<p≤(1+δ)x
ξ(p)=e(`/k)

1
p
≈

1
k

∑
x<p≤(1+δ)x

1
p
≈

δ

k log x
.

A straightforward application of Siegel–Walfisz will make this estimate rigorous
(see Lemma 8.1), and the remaining sum,∑

` (mod k)

min
z∈µg∪{0}

(
1−Re z e

(
−
`

k

)
x−iβ

)
,

can then be evaluated by arguments inspired by those of [Granville and Sound-
ararajan 2007]. Summing over all the small intervals will yield the desired lower
bound (8-2).

The contribution from short intervals. Our first goal is to obtain a lower bound on
the sum over a short interval∑

x<p≤(1+δ)x

1
p
(
1−Reχξ(p)p−iβ), (8-3)

where

δ �
1

log3 y
.

Note that for any prime p ∈ (x, (1+ δ)x], we may approximate piβ by x iβ : we
have 0≤ log p− log x ≤ δ, whence

|p−iβ
− x−iβ

| = |1− eiβ(log p−log x)
| ≤ |β(log p− log x)| ≤ δ|β|.

Therefore,∑
x<p≤(1+δ)x

1
p
(
1−Reχξ(p)p−iβ)
=

∑
x<p≤(1+δ)x

1
p
(
1−Reχξ(p)x−iβ)

+ O
(
δ|β|

∑
x<p≤(1+δ)x

1
p

)
=

∑
x<p≤(1+δ)x

1
p
(
1−Reχξ(p)e(θx)

)
+ O

(
δ2 log2 y

log x

)
, (8-4)
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where θx =−(β/(2π)) log x . We bound the sum from below in terms of the orders
of χ and ξ :∑
x<p≤(1+δ)x

1
p
(
1−Reχξ(p)e(θx)

)
=

∑
` (mod k)

∑
x<p≤(1+δ)x
ξ(p)=e(`/k)

1
p

(
1−Reχ(p)e

(
−
`

k

)
e(θx)

)

≥

∑
` (mod k)

∑
x<p≤(1+δ)x
ξ(p)=e(`/k)

1
p

min
z∈µg∪{0}

(
1−Re z · e

(
θx −

`

k

))
.

We first estimate the interior sum over primes:

Lemma 8.1. Suppose ε > 0, ξ (mod m) is a nonprincipal character of order k,
and y ≥ exp(mε). Then for δ � (log y)−3 and x ≥ exp((log y)ε),∑

x<p≤(1+δ)x
ξ(p)=e(`/k)

1
p
=

δ

k log x
(
1+ o(1)

)
,

where o(1)→ 0 as y→∞ and depends only on y and ε.

Note that this estimate is independent of `. Thus the following general result,
combined with Lemma 8.1, will furnish a lower bound on the sum (8-3):

Lemma 8.2. Given g ≥ 3 odd, k ≥ 2 even, and θ ∈
(
−

1
2 ,

1
2

]
. Set k∗ = k/(g, k).

Then

1
k

∑
` (mod k)

min
z∈µg∪{0}

(
1−Re z ·e

(
θ−

`

k

))
=1−

sin(π/g)
k∗ tan(π/(gk∗))

Fgk∗(−gk∗θ), (8-5)

where

FN (ω)= cos
2π{ω}

N
+

(
tan π

N

)
sin

2π{ω}
N

.

To make sense of this lemma, we examine some properties of FN (ω). First,
since FN (ω)= FN ({ω}) we may assume that ω ∈ [0, 1). Second, since k∗ must be
even, gk∗ ≥ 6, and we can therefore assume that N ≥ 6. Under these assumptions,
one easily checks that

(i) FN (0)= 1 and FN (0.5)=
1

cos(π/N )
,

(ii) FN (ω) is concave down everywhere on [0, 1),

(iii) On the unit interval, FN is symmetric about ω = 1
2 , and

(iv) The average value of FN over the unit interval is N
π

tan π
N

.
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Thus, for the typical θ we expect the right side of (8-5) to be δg. It is appreciably
larger than δg when gk∗θ is close to an integer, and somewhat smaller than δg

when gk∗θ is close to a half-integer. In the context of [Granville and Sound-
ararajan 2007], θ = 0, which allowed Granville and Soundararajan to bound (8-5)
from below by δg quite easily. Although our arguments are also not difficult, the
computations are naturally somewhat more involved; we will isolate the proof in a
separate subsection.

Before proving the two lemmata, we deduce from them a lower bound on (8-3).
The main term of (8-4) can be bounded from below, for all x ≥ exp((log y)ε):∑
x<p≤(1+δ)x

1
p
(
1−Reχξ(p)e(θx)

)
≥

∑
` (mod k)

( ∑
x<p≤(1+δ)x
ξ(p)=e(`/k)

1
p

)
min

z∈µg∪{0}

(
1−Re z · e

(
θx −

`

k

))

=
δ
(
1+ o(1)

)
log x

(
1−

sin(π/g)
k∗ tan(π/(gk∗))

Fgk∗(−gk∗θx)

)
.

Let

G(t)= 1−
sin(π/g)

k∗ tan(π/(gk∗))
Fgk∗

(
βgk∗

2π
t
)
.

Note that G is minimized at values of t for which Fgk∗ is maximized, whence

G(t)≥ 1−
sin(π/g)

k∗ sin(π/(gk∗))
.

It follows that as a function of t , G(t) is bounded away from 0. This combined
with our choice of δ of size (log y)−3 shows that we can bound (8-4) as follows:∑

x<p≤(1+δ)x

1
p
(
1−Reχξ(p)p−iβ)

≥

(
1+ o(1)

)
δ

log x
G(log x)+ O

(
δ2 log2 y

log x

)
=

(
1+ o(1)

)
δ

log x
G(log x), (8-6)

where the o(1) term in (8-6) tends to 0 as y →∞ and depends only on y, ε, g,
and k.

We now go back and prove the two lemmata.

Proof of Lemma 8.1. A consequence of the Siegel–Walfisz theorem says that for
any fixed ε > 0 and A > 0, for all X ≥ exp(mε),

θ(X;m, a) :=
∑
p≤X

p≡a (mod m)

log p =
X

ϕ(m)

(
1+ O

(
1

(log X)A

))
,
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where the constant implicit in the O-term depends only upon A and ε. In particular,
for all X ≥ exp((log y)ε),

θ(X;m, a)=
X

ϕ(m)

(
1+ Oε

(
1

(log X)4/ε

))
, (8-7)

where the implicit constant only depends on ε.
To apply Siegel–Walfisz, we must first express the sum in question as a sum

over primes in arithmetic progressions:∑
x<p≤(1+δ)x
ξ(p)=e(`/k)

1
p
=

∑
a (mod m)
ξ(a)=e(`/k)

∑
x<p≤(1+δ)x
p≡a (mod m)

1
p
.

Note that x < p ≤ (1+ δ)x is equivalent to (1/(1+ δ))p ≤ x < p, whence

x log x
p log p

=
x
p
·

log x
log p

=
(
1+ O(δ)

)
·

(
1+ O

(
δ

log p

))
= 1+ O(δ).

Combining this with (8-7) and the hypotheses on the sizes of x and δ yields∑
x<p≤(1+δ)x
p≡a (mod m)

1
p
=

1+ O(δ)
x log x

∑
x<p≤(1+δ)x
p≡a (mod m)

log p=
δ

ϕ(m) log x

(
1+Oε

( 1
log y

))
. (8-8)

Since this estimate is independent of a, to prove the lemma it remains only to show∑
a (mod m)
ξ(a)=e(`/k)

1=
ϕ(m)

k
. (8-9)

For brevity, denote (Z/mZ)∗ by G. Since ξ has order k, there is some b ∈ G such
that 1, ξ(b), ξ(b)2, . . . , ξ(b)k−1 are all distinct; on the other hand, all these must be
k-th roots of unity. In particular, there exists some g ∈ G such that ξ(g)= e(1/k).

Let H be the kernel of ξ , that is, H = {a ∈ G : ξ(a) = 1}. This is a normal
subgroup of G, and g`H={a∈G :ξ(a)=e(`/k)}. G can therefore be decomposed
as a disjoint union of the k cosets g`H with 0 ≤ ` ≤ k − 1. Since |g`H | = |H |,
(8-9) must hold. Combining this with (8-8) yields the lemma. �

Proof of Lemma 8.2. Recall that g ≥ 3 is odd, k ≥ 2 is even, and θ ∈
(
−

1
2 ,

1
2

]
. Let

d = (g, k) and set k∗ = k/d and g∗ = g/d .
To prove (8-5), it suffices to show∑
` (mod k)

max
z∈µg∪{0}

Re z · e
(
θ −

`

k

)
= d ·

sin(π/g)
tan(π/(gk∗))

· Fgk∗(−gk∗θ). (8-10)

Let A0 = {e(β) : −1/(2g) < β ≤ 1/(2g)} and set An = e(n/g)A0; note that the
disjoint union of An as n runs over any complete set of residues of Z/gZ is the
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complex unit circle. In particular, for any `∈Z there is a unique n` ∈ (−g/2, g/2]
such that e(θ−`/k)∈An` . By definition, this means that e(−n`/g)e(θ−`/k)∈A0.
Since e(−n/g)e(θ − `/k) 6∈A0 for all other n ∈ (−g/2, g/2], we deduce that

max
z∈µg∪{0}

Re z · e
(
θ −

`

k

)
= Re e

(
−

n`
g

)
e
(
θ −

`

k

)
= Re e(θ)e

(
f (`)
gk

)
where f : Z→ Z is defined by f (`)=−(g`+ kn`). This allows us to rewrite the
left-hand side of the inequality (8-10):∑

` (mod k)

max
z∈µg∪{0}

Re z · e
(
θ −

`

k

)
= Re e(θ)

∑
` (mod k)

e
(

f (`)
gk

)
. (8-11)

Our aim is rewrite the sum on the right side of (8-11) in terms of geometric series.
It is not hard to see that if `1 ≡ `2 (mod k) then f (`1)≡ f (`2) (mod gk). How-

ever, more is true:

Lemma 8.3. `1 ≡ `2 (mod k∗)=⇒ f (`1)≡ f (`2) (mod gk).

Proof. Assume `1 ≡ `2 (mod k∗). Then k divides g(`2 − `1), since g(`2 − `1) =

g∗k(`2−`1)/k∗. Equivalently, there exists m ∈Z such that−`1/k=−`2/k+m/g.
Therefore, by the definition of n`, we find that both e((m−n`1)/g) and e(−n`2/g)
belong to the set e(`2/k − θ)A0. But this implies that n`1 ≡ m+ n`2 (mod g),
whence, as needed,

e
(

f (`1)

gk

)
= e

(
f (`2)

gk

)
. �

Thus, we can restrict the sum on the right side of (8-11) to Z/k∗Z:∑
` (mod k)

e
(

f (`)
gk

)
= d ·

∑
`∗ (mod k∗)

e
(

f (`∗)
gk

)
. (8-12)

We now prove a weaker form of Lemma 8.3, which has the advantage of a
converse.

Lemma 8.4. `1 ≡ `2 (mod k∗)⇐⇒ f (`1)≡ f (`2) (mod k).

Proof. We have

f (`1)≡ f (`2) (mod k)=⇒ k | g(`2−`1)=⇒ k∗ | g∗(`2−`1)=⇒ `1 ≡ `2 (mod k∗),

since (g∗, k∗)= 1. On the other hand,

`1 ≡ `2 (mod k∗)=⇒ k | d(`2− `1),

whence

f (`1)− f (`2)= g(`2− `1)+ k(n`1 − n`2)

= g∗d(`2− `1)+ k(n`1 − n`2)≡ 0 (mod k). �
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Proposition 8.5. The map f restricted to [−k∗/2 + k∗θ, k∗/2 + k∗θ) ∩ Z is an
injection into (

−
k
2
− gkθ, k

2
− gkθ

]
∩Z.

Proof. Injectivity follows immediately from Lemma 8.4, so it suffices to show that
the image of [−k∗/2+k∗θ, k∗/2+k∗θ)∩Z under f lands in the claimed target. In
fact, we will show a slightly stronger statement. Observe that because |θ | ≤ 1

2 ,[
−

k∗

2
+ k∗θ, k∗

2
+ k∗θ

)
⊆

[
−

k
2
+ kθ, k

2
+ kθ

)
;

we claim that the image under f of the larger set lands inside the claimed target.
Fix any ` ∈ [−k/2+ kθ, k/2+ kθ); this is equivalent to requiring θ − `/k ∈(
−

1
2 ,

1
2

]
. By definition of n` we have e(θ − `/k) ∈ An` , from which we deduce

that for some integer N ,

θ −
`

k
∈

(
N +

2n`− 1
2g

, N +
2n`+ 1

2g

]
.

By our restriction on `, N must equal 0 (recall that −(g−1)/2≤ n` ≤ (g−1)/2).
It follows that f (`) ∈ (−k/2− gkθ, k/2− gkθ ]. �

Note that d| f (`) for all `. Combining this fact with Proposition 8.5 we conclude
that {

f (`∗) : −k∗

2
+ k∗θ ≤ `∗ < k∗

2
+ k∗θ

}
is a set of k∗ distinct multiples of d , all contained in (−k/2−gkθ, k/2−gkθ ]. But
by inspection, this interval contains precisely k∗ multiples of d . Therefore:∑

`∗ (mod k∗)

e
(

f (`∗)
gk

)
=

∑
−

k∗
2 +k∗θ≤`∗< k∗

2 +k∗θ

e
(

f (`∗)
gk

)
=

∑
1
d (−

k
2−gkθ)<m≤ 1

d (
k
2−gkθ)

e
(md

gk

)
=

∑
−

k∗
2 −gk∗θ<m≤ k∗

2 −gk∗θ

e
( m

gk∗
)
. (8-13)

This is a k∗-term geometric series with first term e
(
(1/(gk∗))[k∗/2− gk∗θ ]

)
and

ratio e(−1/(gk∗)). Summing the series and performing standard algebraic manip-
ulations, one finds∑

−
k∗
2 −gk∗θ<m≤ k∗

2 −gk∗θ

e
( m

gk∗
)
= e

(
−θ +

1−2c
2gk∗

) sin(π/g)
sin(π/(gk∗))

,
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where c= {−gk∗θ} ∈ [0, 1). Tracing back through (8-11)–(8-13) and simplifying,
we see that∑

` (mod k)

max
z∈µg∪{0}

Re z · e
(
θ −

`

k

)
= d ·

sin(π/g)
sin(π/(gk∗))

· cos
(
π

gk∗
(1− 2c)

)
= d ·

sin(π/g)
tan(π/(gk∗))

· Fgk∗(−gk∗θ),

proving (8-10), and thus the lemma. �

Completion of the proof of Theorem 2.10. Let x0 = exp((log y)ε) and set xr =

x0(1+ δ)r . Then from (8-6) we deduce

D
(
χ(n), ξ(n)niβ

; y
)2
=

∑
p≤y

1
p
(
1−Reχξ(p)p−iβ)

≥

∑
x0<p≤y

1
p
(
1−Reχξ(p)p−iβ)

≥

∑
r≥0

xr+1≤y

∑
xr<p≤xr+1

1
p
(
1−Reχξ(p)p−iβ)

≥

∑
r≥0

xr+1≤y

(1+ o(1))δ
log xr

G(log xr )

≥
(
1+ o(1)

)
log(1+ δ)

∑
r≥0

xr+1≤y

G(log xr )

log xr
. (8-14)

We recognize the sum above as the left Riemann sum — with subintervals of length
log(1+ δ)— for the integral ∫ log xm

log x0

G(t)
t

dt,

where m is the integer such that xm ≤ y < xm+1. Since

∣∣∣∣ d
dt

(
G(t)

t

)∣∣∣∣≤ ∣∣∣∣G ′(t)t

∣∣∣∣+ ∣∣∣∣G(t)t2

∣∣∣∣≤
sin(πg)

k∗ tan(π/(gk∗))
F ′gk∗(0)

log x0
+

2
(log x0)2

� 1,

for all t ≥ log x0, we have∣∣∣∣∣log(1+ δ)
∑
r≥0

xr+1≤y

G(log xr )

log xr
−

∫ log y

log x0

G(t)
t

dt

∣∣∣∣∣
� (log y) · log(1+ δ)+

∣∣∣∣∫ log y

log xm

G(t)
t

dt
∣∣∣∣� 1

log2 y
.
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Therefore, continuing our calculation from where we left it in (8-14),

D
(
χ(n), ξ(n)niβ

; y
)2
≥
(
1+ o(1)

) ∫ log y

log x0

G(t)
t

dt + O(1). (8-15)

To prove Theorem 2.10 it remains only to bound the integral on the right side
of (8-15) from below by (δg + o(1)) log log y. Recall that

G(t)= 1−
sin(π/g)

k∗ tan(π/(gk∗))
Fgk∗

(
βgk∗

2π
t
)
,

where

FN (ω)= cos
2π{ω}

N
+

(
tan π

N

)
sin

2π{ω}
N

is concave down everywhere on the unit interval and symmetric about t = 1
2 , with

minima at the endpoints of the interval. Furthermore, F N , the mean value of FN

on the unit interval, is (N/π) tan(π/N ). Rewriting (8-15), we see that it suffices
to prove that ∫ b(y)

a(y)

1
t

FN (t)dt ≤
(
F N + o(1)

)
log log y,

where

a(y)=
N |β|
2π

(log y)ε and b(y)=
N |β|
2π

log y.

(Note that a(y) and b(y) are expressed in terms of the magnitude of β, a change
of variables we can make because FN is an even function.) Given any x ≥ 1 we
find ∫ x

1

1
t

FN (t)dt = F N · log x + O(1),

by splitting the integral into unit intervals (with at most one exception) and on
each interval bounding 1/t from above and below trivially. Thus if a(y) ≥ 1, we
immediately find∫ b(y)

a(y)

1
t

FN (t)dt = F N · log
b(y)
a(y)
+ O(1)≤

(
F N + o(1)

)
log log y.

Now we consider the case when a(y) < 1. Note that we may take b(y) ≥ 1:
from the discussion directly following (8-2) we see that we can assume

|β| ≥
C0(log log y)1/2

log y

for any positive constant C0, and since y ≥ 3 and N = gk∗ ≥ 6, choosing

C0 =
2π
6
(log log 3)−1/2
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makes b(y)≥ 1. Therefore,∫ b(y)

a(y)

1
t

FN (t)dt =
∫ 1

a(y)

1
t

FN (t)dt +
∫ b(y)

1

1
t

FN (t)dt

=

∫ 1/a(y)

1

1
t

FN

(1
t

)
dt + F N · log b(y)+ O(1).

It remains only to show that∫ x

1

1
t

FN

(1
t

)
dt ≤ F N · log x + O(1). (8-16)

Because FN is concave down on [0, 1), we see that for all sufficiently large x ,
FN (1/x)≤ F N . Therefore,

d
dx

(∫ x

1

1
t

FN

(1
t

)
dt
)
≤

d
dx
(F N · log x)

for all large x . This implies (8-16), and Theorem 2.10 is proved. �

9. Proof of Theorem 3

All results stated and proved in this section are conditional on the generalized
Riemann hypothesis.

In Theorem 2 we proved that

|Sχ (t)| �g
√

q(log log q)1−δg+o(1)

for any primitive character χ (mod q) of odd order g ≥ 3. The goal of this section
is to construct an infinite family of characters χ (mod q) of order g such that

max
t≤q
|Sχ (t)| �ε,g

√
q(log log q)1−δg−ε,

thus showing that the constant 1− δg in our upper bound cannot be improved. We
note that when g is squarefree, the dependence of the implicit constant on g can
be made explicit from our construction. We first recall the following:

Theorem 9.1 [Granville and Soundararajan 2007, Theorem 2.5]. Assume the GRH.
Given a primitive character χ (mod q), let ξ (mod m) be a primitive character of
opposite parity to χ . Then

max
t≤q
|Sχ (t)| +

√
m

ϕ(m)
√

q log log log q �
√

m
ϕ(m)

√
q(log log q)e−D(χ,ξ ;log q)2 .

To prove Theorem 3 it therefore suffices to show that there is an odd character
ξ (mod m) and an infinite family of characters χ (mod q) of odd order g such that

D(χ, ξ ; log q)2 ≤ (δg + ε) log log log q
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or, equivalently, that∑
p≤log q

1
p

Reχ(p)ξ(p)≥ (1− δg − ε) log log log q. (9-1)

We will accomplish this in two steps. First, using ideas similar to those of the
previous section, we will prove:

Proposition 9.2. For any ε > 0, there exists an odd character ξ (mod m) such that
for y ≥ exp(mε),∑

p≤y

1
p

max
z∈µg∪{0}

Re z ξ(p)≥
(
1− ε+ o(1)

)
(1− δg) log log y; (9-2)

o(1)→ 0 as y→∞.

Given such a ξ , to deduce (9-1) it suffices to find a χ (mod q) whose values at
primes up to log q coincide with the z that maximize each term of (9-2). Using a
generalization of Eisenstein’s reciprocity law and the Chinese remainder theorem,
we will prove:

Proposition 9.3. Fix an odd integer g ≥ 3, and let ψ : Z −→ µg ∪ {0} be a com-
pletely multiplicative function. Then there exists a constant C = C(g) > 0 and
infinitely many Dirichlet characters χ (mod q) of order g such that χ(n) = ψ(n)
for all n ≤ C log q which are coprime to g.

With these results in hand, Theorem 3 follows easily:

Proof of Theorem 3. Proposition 9.2 furnishes a character ξ such that (9-2) holds
for all y ≥ exp(mε). For any such y, choose z p ∈ µg ∪ {0} so that∑

p≤y

1
p

max
z∈µg∪{0}

Re z ξ(p)=
∑
p≤y

1
p

Re z p ξ(p).

By Proposition 9.3 we can find infinitely many characters χ (mod q) such that
χ(p)= z p for all p≤C log q which are coprime to g. For any such χ , we therefore
have ∑

p≤C log q

1
p

Reχ(p)ξ(p)=
∑

p≤C log q

1
p

Re z p ξ(p)+ O
(∑

p|g

1
p

)
.

Since g is fixed, (9-2) implies (9-1); applying Theorem 9.1 yields Theorem 3. �

It remains only to prove the two propositions.
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Proof of Proposition 9.2. Let ξ (mod m) be an odd character. Then its order k must
be even, and (exactly as in the previous section) we have∑

p≤y

1
p

max
z∈µg∪{0}

Re z ξ(p)=
∑

` (mod k)

max
z∈µg∪{0}

Re z e
(
−
`

k

) ∑
p≤y

ξ(p)=e(`/k)

1
p
.

Siegel–Walfisz implies that∑
p≤y

ξ(p)=e(`/k)

1
p
=

1+ o(1)
k

log log y

and relation (8-10) (with θ = 0) gives∑
` (mod k)

max
z∈µg∪{0}

Re z e
(
−
`

k

)
= (g, k)

sin(π/g)
tan(π/(gk∗))

.

Putting these estimates together yields∑
p≤y

1
p

max
z∈µg∪{0}

Re z ξ(p)=
(
1− δg + o(1)

) π/(gk∗)
tan(π/(gk∗))

log log y.

The function x/tan x tends to 1 from below as x→ 0, so to prove the proposition
it suffices to find a sequence of k∗ tending to infinity. Since g is fixed and k∗ =
k/(g, k), this is easily achieved by choosing ξ of order k relatively prime to g. �

Proof of Proposition 9.3. Let y be large (this is an auxiliary parameter which will
tend to infinity). Given a prime p - g, there exists an integer Q p such that(

Q p

p

)
g
= ψ(p),

where
(
·

·

)
g is the g-th order residue symbol. By the Chinese remainder theorem,

there exists a Q = Q(y) satisfying

(1) Q ≡ Q p (mod p) for all primes p ≤ y such that p - g;

(2) Q ≡ 1 (mod g); and

(3) g
∏
p≤y
p-g

p < Q ≤ 2g
∏
p≤y
p-g

p.

It follows that (Q
p

)
g
= ψ(p) (9-3)

for all p ≤ y coprime to g.
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We now wish to use reciprocity for the g-th order residue symbol to obtain a
g-th order character of modulus Q. For g an odd prime, this is given by the Eisen-
stein reciprocity law. Recently, Vostokov and Orlova [2008] gave a generalization
of the reciprocity law to all odd g. In our situation, their result implies that(Q

p

)
g
=

( p
Q

)
g

for all p - g.
By the prime number theorem and our restriction on the size of Q, we see that

log Q � y+ log g
rad g

,

where rad g denotes the radical of g. It follows that there exists a constant C =
C(g) such that y ≥ C log Q. Combining this with (9-3) and the Vostokov–Orlova
reciprocity, we deduce that ( p

Q

)
g
= ψ(p)

for all p ≤ C log Q relatively prime to g. By complete multiplicativity,( n
Q

)
g
= ψ(n) (9-4)

for all n≤C log Q coprime to g. Letting y tend to infinity, we see that Q must also
tend to infinity, whence we find infinitely many Q satisfying (9-4). This concludes
the proof. �
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Quiver Grassmannians and
degenerate flag varieties

Giovanni Cerulli Irelli, Evgeny Feigin and Markus Reineke

Quiver Grassmannians are varieties parametrizing subrepresentations of a quiver
representation. It is observed that certain quiver Grassmannians for type A quivers
are isomorphic to the degenerate flag varieties investigated earlier by Feigin. This
leads to the consideration of a class of Grassmannians of subrepresentations of
the direct sum of a projective and an injective representation of a Dynkin quiver.
It is proved that these are (typically singular) irreducible normal local complete
intersection varieties, which admit a group action with finitely many orbits and
a cellular decomposition. For type A quivers, explicit formulas for the Euler
characteristic (the median Genocchi numbers) and the Poincaré polynomials are
derived.

1. Introduction

Motivation. Quiver Grassmannians, which are varieties parametrizing subrepresen-
tations of a quiver representation, first appeared in [Crawley-Boevey 1989; Schofield
1992] in relation to questions on generic properties of quiver representations. It was
observed in [Caldero and Chapoton 2006] that these varieties play an important role
in cluster algebra theory [Fomin and Zelevinsky 2002]; namely, the cluster variables
can be described in terms of the Euler characteristic of quiver Grassmannians.
Subsequently, specific classes of quiver Grassmannians (for example, varieties of
subrepresentations of exceptional quiver representations) were studied by several
authors, with the principal aim of computing their Euler characteristic explicitly;
see for example [Caldero and Reineke 2008; Cerulli Irelli 2011; Cerulli Irelli and
Esposito 2010; Cerulli Irelli et al. 2010]. In recent papers, authors noticed that also
the Poincaré polynomials of quiver Grassmannians play an important role in the
study of quantum cluster algebras [Qin 2010; Berenstein and Zelevinsky 2005].

This paper originated with the observation that certain quiver Grassmannians
can be identified with the sln-degenerate flag variety of [Feigin 2010; 2011; Feigin

The work of Evgeny Feigin was partially supported by the RFBR Grant 09-01-00058, by the grant
Scientific Schools 6501.2010.2, and by the Dynasty Foundation.
MSC2010: primary 14M15; secondary 16G20.
Keywords: flag variety, quiver grassmannian, degeneration.
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and Finkelberg 2011]. This led to the consideration of a class of Grassmannians
of subrepresentations of the direct sum of a projective and an injective represen-
tation of a Dynkin quiver. It turns out that this class of varieties enjoys many of
the favorable properties of quiver Grassmannians for exceptional representations.
More precisely, they turn out to be (typically singular) irreducible normal local
complete intersection varieties which admit a group action with finitely many orbits
and a cellular decomposition. The proofs of the basic geometric properties are
based on generalizations of the techniques of [Reineke 2008], where the case of
Grassmannians of subrepresentations of injective quiver representations is treated.

Main results. Let Q be a quiver with set of vertices Q0 of cardinality n and finite
set of arrows Q1. For a representation M of Q, we denote by Mi the space in
M attached to the i-th vertex, and by Mα : Mi → M j the linear map attached to
an arrow α : i → j . We also denote by 〈 _ , _ 〉 the Euler form on ZQ0. Given
a dimension vector e = (e1, . . . , en) ∈ Z≥0 Q0 and a representation M of Q, the
quiver Grassmannian Gre(M)⊂

∏n
i=1 Gr ei (Mi ) is the subvariety of collections of

subspaces Vi ⊂ Mi subject to the conditions MαVi ⊂ V j for all α : i→ j ∈ Q1. In
this paper we study a certain class of quiver Grassmannians for Dynkin quivers Q.
Before describing this class, we first consider the following example.

Let Q be an equioriented quiver of type An with vertices i = 1, . . . , n and arrows
i → i + 1, and let CQ be the path algebra of Q. Then the quiver Grassmannian
Grdim CQ(CQ⊕CQ∗) is isomorphic to the complete degenerate flag variety Fa

n+1
for G = SLn+1. We recall the definition from [Feigin 2010; 2011]. Let W be an
(n+ 1)-dimensional vector space with basis w1, . . . , wn+1. Let prk :W →W for
k = 1, . . . , n+ 1 be the projection operators prk(

∑n+1
i=1 ciwi )= a

∑
i 6=k ciwi . Then

the degenerate flag variety consists of collections (V1, . . . , Vn) with Vi ⊂ W and
dim Vi = i , subject to the conditions prk+1Vk ⊂ Vk+1 for k = 1, . . . , n− 1. These
varieties are irreducible singular algebraic varieties enjoying many nice properties.
In particular, they are flat degenerations of classical flag varieties SLn+1/B. Now
consider the representation M of Q such that Mi =W and the maps Mi → Mi+1

are given by pri+1. For example, for n = 3, M has the following coefficient quiver:

• // • // •

• // • •

• • // •

• // • // •

where each dot represents basis vectors w1, w2, w3, w4 from bottom to top and
arrows represent maps. Note that M is isomorphic to CQ⊕CQ∗ as a representation
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of Q and moreover, we have

Fa
n+1 ' Grdim CQ(CQ⊕CQ∗). (1-1)

Now let Q be a Dynkin quiver. Recall that the path algebra CQ (resp. its
linear dual CQ∗) is isomorphic as a representation of Q to the direct sum of
all indecomposable projective (resp. injective) representations. Motivated by the
isomorphism (1-1), we consider the quiver Grassmannians Grdim P(P ⊕ I ), where
P and I are projective resp. injective representations of Q. (We note that some
of our results are valid for more general Grassmannians and we discuss it in the
main body of the paper. However, in the introduction we restrict ourselves to the
above mentioned class of varieties). We use the isomorphism (1-1) in two different
ways. On the one hand, we generalize and expand the results about Fa

n+1 to the
case of the above quiver Grassmannians. On the other hand, we use general results
and constructions from the theory of quiver representations to understand better the
structure of Fa

n+1.
Our first theorem is as follows:

Theorem 1.1. The variety Grdim P(P ⊕ I ) is of dimension 〈dim P,dim I 〉 and
irreducible. It is a normal local complete intersection variety.

Our next goal is to construct cellular decompositions of the quiver Grassman-
nians and to compute their Poincaré polynomials. Let us consider the following
stratification of Grdim P(P ⊕ I ). For a point N we set NI = N ∩ I , NP = πN ,
where π : P ⊕ I → P is the projection. Then for a dimension vector f ∈ Z≥0 Q0

we set

S f = {N ∈ Grdim P(P ⊕ I ) : dim NI = f ,dim NP = dim P − f }.

We have natural surjective maps ζ f : S f → Grf (I )×Grdim P− f (P).

Theorem 1.2. The map ζ f is a vector bundle. The fiber over a point (NP , NI ) is
isomorphic to Hom Q(NP , I/NI ) which has dimension 〈dim P − f ,dim I − f 〉.

Using this theorem, we construct a cellular decomposition for each stratum X f
and thus for the whole variety X as well. Moreover, since the Poincaré polynomials
of Gr f (I ) and of Grdim P− f (P) can be easily computed, we arrive at a formula
for the Poincaré polynomial (and thus for the Euler characteristic) of X . Recall
(see [Feigin 2010]) that the Euler characteristic of the variety Fa

n+1 is given by
the normalized median Genocchi number hn+1 (see [Dellac 1900; Dumont 1974;
Dumont and Randrianarivony 1994; Dumont and Zeng 1994; Viennot 1982]). Using
Theorem 1.2 we obtain an explicit formula for hn+1 in terms of binomial coefficients.
Moreover, we give a formula for the Poincaré polynomial of Fa

n+1, providing a
natural q-version of hn+1.
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Finally we study the action of the group of automorphisms Aut (P ⊕ I ) on the
quiver Grassmannians. Let G ⊂ Aut(P ⊕ I ) be the group

G =
[

AutQ(P) 0
HomQ(P, I ) AutQ(I )

]
.

(We note that G coincides with the whole group of automorphisms unless Q is of
type An .) We prove the following theorem:

Theorem 1.3. The group G acts on GrdimP(P ⊕ I ) with finitely many orbits,
parametrized by pairs of isomorphism classes ([Q P ], [NI ]) such that Q P is a
quotient of P , NI is a subrepresentation of I , and dim Q P = dim NI . Moreover,
if Q is equioriented of type An , then the orbits are cells parametrized by torus fixed
points.

Outline of the paper. In Section 2, we recall general facts about quiver Grass-
mannians and degenerate flag varieties. In Section 3, we prove that the quiver
Grassmannians Grdim(P ⊕ I ) are locally complete intersections and that they are
flat degenerations of the Grassmannians in exceptional representations. In Section 4,
we study the action of the automorphism group on Grdim(P ⊕ I ), describe the
orbits and prove the normality of Grdim(P ⊕ I ). In Section 5, we construct a
one-dimensional torus action on our quiver Grassmannians such that the attracting
sets form a cellular decomposition. Sections 6 and 7 are devoted to the case of the
equioriented quiver of type A. In Section 6, we compute the Poincaré polynomials
of Grdim(P ⊕ I ) and derive several new formulas for the Euler characteristics —
the normalized median Genocchi numbers. In Section 7 we prove that the orbits
studied in Section 4, are cells coinciding with the attracting cells constructed in
Section 5. We also describe the connection with the degenerate group SLa

n+1.

2. General facts on quiver Grassmannians and degenerate flag varieties

General facts on quivers. Let Q be a finite quiver with a finite set of vertices Q0

and finite set of arrows Q1; arrows will be written as (α : i→ j)∈ Q1 for i, j ∈ Q0.
We assume Q to be without oriented cycles. Denote by ZQ0 the free abelian group
generated by Q0, and by NQ0 the subsemigroup of dimension vectors d = (di )i∈Q0

for Q. Let 〈 _ , _ 〉 be the Euler form on ZQ0 defined by

〈d, e〉 =
∑
i∈Q0

di ei −
∑

(α:i→ j)∈Q1

di e j .

We consider finite dimensional representations M of Q over the complex numbers,
viewed either as finite dimensional left modules over the path algebra CQ of Q, or as
tuples M = ((Mi )i∈Q0, (Mα :Mi→M j )(α:i→ j)∈Q1) consisting of finite dimensional
complex vector spaces Mi and linear maps Mα. The category rep(Q) of all such
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representations is hereditary (that is, Ext≥2
Q ( _, _ ) = 0). Its Grothendieck group

K (rep(Q)) is isomorphic to ZQ0 through the the identification of the class of a
representation M with its dimension vector dim M = (dim Mi )i∈Q0 ∈ ZQ0. The
Euler form defined above then identifies with the homological Euler form, that is,

dim HomQ(M, N )− dim Ext1Q(M, N )= 〈dim M,dim N 〉

for all representations M and N .
Associated to a vertex i ∈ Q0, we have the simple representation Si of Q with

(dim Si ) j = δi, j (the Kronecker delta), the projective indecomposable Pi , and the
indecomposable injective Ii . The latter are determined as the projective cover (resp.
injective envelope) of Si ; more explicitly, (Pi ) j is the space generated by all paths
from i to j , and the linear dual of (Ii ) j is the space generated by all paths from j
to i .

Given a dimension vector d ∈ NQ0, we fix complex vector spaces Mi of dimen-
sion di for all i ∈ Q0. We consider the affine space

Rd(Q)=
⊕

(α:i→ j)

HomC(Mi ,M j );

its points canonically parametrize representations of Q of dimension vector d. The
reductive algebraic group Gd =

∏
i∈Q0

GL(Mi ) acts naturally on Rd(Q) via base
change

(gi )i · (Mα)α = (g j Mαg−1
i )(α:i→ j),

such that the orbits OM for this action naturally correspond to the isomorphism
classes [M] of representations of Q of dimension vector d. Note that dim Gd −

dim Rd(Q)= 〈d, d〉. The stabilizer under Gd of a point M ∈ Rd(Q) is isomorphic
to the automorphism group AutQ(M) of the corresponding representation, which
(being open in the endomorphism space EndQ(M)) is a connected algebraic group
of dimension dim EndQ(M). In particular, we get the following formulas:

dim OM = dim Gd − dim EndQ(M), codimRd OM = dim Ext1Q(M,M). (2-1)

Basic facts on quiver Grassmannians. The constructions and results in this section
follow [Caldero and Reineke 2008; Schofield 1992]. Additionally to fix another
dimension vector e such that e ≤ d componentwise, and define the Q0-graded
Grassmannian Gre(d)=

∏
i∈Q0

Grei (Mi ) which is a projective homogeneous space
for Gd of dimension

∑
i∈Q0

ei (di − ei ), namely Gre(d) ' Gd/Pe for a maximal
parabolic Pe⊂Gd . We define GrQ

e (d), the universal Grassmannian of e-dimensional
subrepresentations of d-dimensional representations of Q, as the closed subvariety
of Gre(d)× Rd(Q) consisting of tuples

((Ui ⊂ Mi )i∈Q0, (Mα)α∈Q1)
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such that Mα(Ui )⊂U j for all arrows (α : i→ j)∈Q1. The group Gd acts on GrQ
e (d)

diagonally so that the projections p1 :GrQ
e (d)→Gre(d) and p2 :GrQ

e (d)→ Rd(Q)
are Gd-equivariant. In fact, the projection p1 identifies GrQ

e (d) as the total space
of a homogeneous vector bundle over Gre(d) of rank∑

(α:i→ j)∈Q1

(di d j + ei e j − ei d j ).

Indeed, for a point (Ui )
#Q0
i=1 in Gre(d), we can choose complements Mi =Ui ⊕ Vi

and identify the fiber of p1 over (Ui )
#Q0
i=1 with([

HomQ(Ui ,U j ) HomQ(Vi ,U j )

0 HomQ(Vi , V j )

]
⊂ HomQ(Mi ,M j )

)
(α:i→ j)

⊂ Rd(Q).

In particular, the universal Grassmannian GrQ
e (d) is smooth and irreducible of

dimension

dim GrQ
e (d)= 〈e, d− e〉+ dim Rd(Q).

The projection p2 is proper, thus its image is a closed Gd-stable subvariety of Rd ,
consisting of representations admitting a subrepresentation of dimension vector e.

We define the quiver Grassmannian Gre(M)= p−1
2 (M) as the fiber of p2 over a

point M ∈ Rd(Q); by definition, it parametrizes (more precisely, its closed points
parametrize) e-dimensional subrepresentations of the representation M .

Remark 2.1. Note that we have to view Gre(M) as a scheme; in particular, it might
be nonreduced. For example, if Q is the Kronecker quiver, e the isotropic root, and
M is a regular indecomposable representation of dimension vector 2e, the quiver
Grassmannian is Spec of the ring of dual numbers.

Recall that a representation M is called exceptional if Ext1Q(M,M)= 0; thus, in
view of (2-1), its orbit in Rd(Q) is open and dense.

Proposition 2.2. Let M be an exceptional d-dimensional representation of Q.
Then Gre(M) is nonempty if Ext1Q(N , L) vanishes for generic N of dimension
vector e and generic L of dimension vector d− e. In this case, Gre(M) is smooth of
dimension 〈e, d−e〉, and for all d-dimensional representations N , every irreducible
component of Gre(N ) has at least dimension 〈e, d− e〉.

Proof. The criterion for nonemptiness follows from [Schofield 1992, Theorem 3.3].
If Gre(M) is nonempty, p2 is surjective with Gre(M) as its generic fiber. In
particular, Gre(M) is smooth of dimension 〈e, d − e〉. For all other fibers, we
obtain at least the desired estimate on dimensions of their irreducible components
[Hartshorne 1977, Chapter II, Exercise 3.22 (b)]. �
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We conclude this section by pointing out a useful isomorphism: let U be a point
of Gre(M) and let TU (Gre(M)) denote the Zariski tangent space of Gre(M) at U .
As shown in [Schofield 1992; Caldero and Reineke 2008] we have the following
scheme-theoretic description of the tangent space:

Lemma 2.3. For U ∈ Gre(M), we have TU (Gre(M))' HomQ(U,M/U ).

Quotient construction of (universal) quiver Grassmannians and a stratification.
We follow [Reineke 2008, Section 3.2]. Additionally to the choices before, fix vector
spaces Ni of dimension ei for i ∈Q0. We consider the universal variety HomQ(e, d)
of homomorphisms from an e-dimensional to a d-dimensional representation;
explicitly, HomQ(e, d) is the set of triples

((Nα)α∈Q1, ( fi : Ni → Mi )i∈Q0, (Mα)α∈Q1) ∈ Re×
∏

i∈Q0

Hom(Ni ,Mi )× Rd(Q)

such that f j Nα =Mα fi for all (α : i→ j)∈ Q1. This is an affine variety defined by
quadratic relations, namely by the vanishing of the individual entries of the matrices
f j Nα −Mα fi , on which Ge×Gd acts naturally. On the open subset Hom0

Q(e, d)
where all fi : Ni→ Mi are injective maps, the action of Ge is free. By construction,
we have an isomorphism

Hom0
Q(e, d)/Ge ' GrQ

e (d)

which associates the orbit of a triple ((Nα), ( fi ), (Mα)) with the pair given by
( fi (Ni )⊂ Mi )i∈Q0, (Mα)α∈Q1). Indeed, the maps Nα are uniquely determined in
this situation, and they can be reconstructed algebraically from ( fi ) and (Mα) (see
[Reineke 2008, Lemma 3.5]).

Similarly to GrQ
e (d), we have a projection p̃2 :Hom0

Q(e, d)→ Rd(Q) with fibers
p̃−1

2 (M)=Hom0
Q(e,M), and we have a local version of the previous isomorphism:

Hom0
Q(e,M)/Ge = p̃−1

2 (M)/Ge ' Gre(M).

Note that the quotient map Hom0
Q(e,M)→ Gre(M) is locally trivial since it is

induced by the quotient map

Hom0
Q(e, d)=

∏
i∈Q0

Hom0(Ni ,Mi )→ Gre(d),

which can be trivialized over the standard open affine coverings of Grassmannians.
Let p be the projection from Hom0

Q(e,M) to Re(Q); its fiber over N is the space
Hom0

Q(N ,M) of injective maps. For each isomorphism class [N ] of representations
of dimension vector e, we can consider the subset S[N ] of Gre(M) corresponding
under the previous isomorphism to (p−1(ON ))/Ge. Therefore it consists of all
subrepresentations U ∈ Gre(M) which are isomorphic to N .
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Lemma 2.4. Each S[N ] is an irreducible locally closed subset of Gre(M) of dimen-
sion dim HomQ(N ,M)− dim EndQ(N ).

Proof. Irreducibility of S[N ] follows from irreducibility of ON by Ge-equivariance
of p. Using the fact that the geometric quotient is closed and separating on Ge-
stable subsets, induction over dim ON proves that all S[N ] are locally closed. The
dimension is calculated as

dim S[N ] = dim ON + dim Hom0
Q(N ,M)− dim Ge. �

Degenerate flag varieties. In this subsection we recall the definition of the degen-
erate flag varieties following [Feigin 2010; 2011; Feigin and Finkelberg 2011].
Let W be an n-dimensional vector space with a basis w1, . . . , wn . We denote by
prk : W → W the projections along wk to the linear span of the remaining basis
vectors, that is, prk

∑n
i=1 ciwi =

∑
i 6=k ciwi .

Definition 2.5. The variety Fa
n is the set of collections of subspaces

(Vi ∈ Gri (W ))n−1
i=1

subject to the conditions pri+1Vi ⊂ Vi+1 for all i = 1, . . . , n− 2.

The variety Fa
n is called the complete degenerate flag variety. It enjoys the

following properties:

• Fa
n is a singular irreducible projective algebraic variety of dimension

(n
2

)
.

• Fa
n is a flat degeneration of the classical complete flag variety SLn/B.

• Fa
n is a normal local complete intersection variety.

• Fa
n can be decomposed into a disjoint union of complex cells.

We add some comments on the last property. The number of cells (which is equal
to the Euler characteristic of Fa

n ) is given by the n-th normalized median Genocchi
number hn; see for example [Feigin 2011, Section 3]. These numbers have several
definitions. Here, we will use the following one: hn is the number of collections
(S1, . . . , Sn−1), where Si ⊂ {1, . . . , n} subject to the conditions

#Si = i, 1≤ i ≤ n− 1; Si ⊂ Si+1 ∪ {i + 1}, 1≤ i ≤ n− 2.

For n = 1, 2, 3, 4, 5 the numbers hn are equal to 1, 2, 7, 38, 295, respectively.
There exists a degeneration SLa

n of the group SLn acting on Fa
n . Namely, the

degenerate group SLa
n is the semidirect product of the Borel subgroup B of SLn and

a normal abelian subgroup G
n(n−1)/2
a , where Ga is the additive group of the field.

The simplest way to describe the structure of the semidirect product is via the Lie
algebra slan of SLa

n . Namely, let b ∈ sln be the Borel subalgebra of upper-triangular
matrices and n− be the nilpotent subalgebra of strictly lower-triangular matrices.
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Let (n−)a be the abelian Lie algebra with underlying vector space n−. Then n−

carries a natural structure of b-module induced by the adjoint action on the quotient
(n−)a ' sln/b. Then slan = b⊕ (n−)a , where (n−)a is abelian ideal and b acts
on (n−)a as described above. The group SLa

n (the Lie group of slan) acts on the
variety Fa

n with an open G
n(n−1)/2
a -orbit. We note that in contrast with the classical

situation, the group SLa
n acts on Fa

n with an infinite number of orbits.
For partial (parabolic) flag varieties of SLn there exists a natural generalization

of Fa
n . Namely, consider an increasing collection 1≤ d1 < · · ·< ds < n. In what

follows we denote such a collection by d. Let Fd be the classical partial flag variety
consisting of the collections (Vi )

s
i=1, Vi ∈ Grdi (W ) such that Vi ⊂ Vi+1.

Definition 2.6. The degenerate partial variety Fa
d is the set of collections of sub-

spaces Vi ∈ Grdi (W ) subject to the conditions prdi+1 . . . prdi+1
Vi ⊂ Vi+1 for all

i = 1, . . . , s− 1.

We still have the following properties:

• Fa
d is a singular irreducible projective algebraic variety.

• Fa
d is a flat degeneration of Fd .

• Fa
d is a normal local complete intersection variety.

• Fa
d is acted upon by the group SLa

n with an open G
n(n−1)/2
a -orbit.

Comparison between quiver Grassmannians and degenerate flag varieties. Let
Q be an equioriented quiver of type An . We order the vertices of Q from 1 to n
in such a way that the arrows of Q are of the form i → i + 1. Let Pi and Ii , be
the projective and injective representations, respectively, attached to the i-th vertex
for i = 1, . . . , n. In particular, dim Pi = (0, . . . , 0, 1, . . . , 1) with i − 1 zeros and
dim Ii = (1, . . . , 1, 0, . . . , 0) with n− i zeros.

We will use the following basis of Pi and Ii : for each j = i, . . . , n we fix nonzero
elements wi, j ∈ (Pj )i in such a way that wi, j 7→ wi+1, j . Also, for j = 1, . . . , i ,
we fix nonzero elements wi, j+1 ∈ (I j )i in such a way that wi, j 7→ wi+1, j unless
j = i + 1 and wi,i+1 7→ 0.

Let A be the path algebra CQ. Viewed as a representation of Q, A is isomorphic
to the direct sum

⊕n
i=1 Pi . In particular, dim A = (1, 2, . . . , n). The linear dual

A∗ is isomorphic to the direct sum of injective representations
⊕n

i=1 Ii .

Proposition 2.7. The quiver Grassmannian Grdim A(A⊕ A∗) is isomorphic to the
degenerate flag variety Fa

n+1 of sln+1.

Proof. Consider A⊕ A∗ =
⊕n

i=1(Pi ⊕ Ii ) as a representation of Q. Let W j be the
space attached to the j-th vertex, that is, A⊕ A∗ = (W1, . . . ,Wn). First, we note
that dim W j = n+ 1 for all j . Second, we fix an (n+ 1)-dimensional vector space
W with a basis w1, . . . , wn+1. We identify all W j with W by sending wi, j to w j .
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Then the maps W j → W j+1 coincide with pr j+1. Now our proposition follows
from the equality dim A = (1, 2, . . . , n). �

The coefficient quiver of the representation A⊕ A∗ is given by (n = 4):

w1,5 // w2,5 // w3,5 // w4,5

w1,4 // w2,4 // w3,4 w4,4

w1,3 // w2,3 w3,3 // w4,3

w1,2 w2,2 // w3,2 // w4,2

w1,1 // w2,1 // w3,1 // w4,1

(2-2)

Remark 2.8. We note that the classical SLn+1 flag variety has a similar realization.
Namely, let M̃ be the representation of Q isomorphic to the direct sum of n+ 1
copies of P1, so dim M̃ = dim (A⊕ A∗). Then the classical flag variety SLn+1/B
is isomorphic to the quiver Grassmannian GrdimA M̃ . The Q-representation M̃ can
be visualized as (n = 4)

• // • // • // •

• // • // • // •

• // • // • // •

• // • // • // •

• // • // • // •

(2-3)

We can easily generalize Proposition 2.7 to degenerate partial flag varieties:
Suppose we are given a sequence d= (0=d0<d1<d2<. . .<ds <ds+1=n+1).

Then we define

P =
s⊕

i=1

Pdi−di−1
i and I =

s⊕
i=1

I di+1−di
i

as representations of an equioriented quiver of type As .

Proposition 2.9. The quiver Grassmannian Grdim P(P ⊕ I ) is isomorphic to the
degenerate partial flag variety Fa

d of sln+1.

Proof. The dimension vector of P ⊕ I is given by (n + 1, . . . , n + 1) and the
dimension vector of P equals (d1, . . . , ds). Now let us identify the spaces (P⊕ I ) j

with W as in the proof of Proposition 2.7. Then the map

(P ⊕ I ) j → (P ⊕ I ) j+1

corresponding to the arrow j → j + 1 coincides with prd j+1, . . . , prd j+1
, which

proves the proposition. �
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3. A class of well-behaved quiver Grassmannians

Geometric properties. From now on, let Q be a Dynkin quiver. Then Gd acts with
finitely many orbits on Rd(Q) for every d; in particular, for every d ∈NQ0, there
exists a unique (up to isomorphism) exceptional representation of this dimension
vector.

The subsets S[N ] defined just before Lemma 2.4 then define a finite stratifica-
tion of each quiver Grassmannian Gre(M) according to isomorphism type of the
subrepresentation N ⊂ M .

Proposition 3.1. Assume that X and Y are exceptional representations of Q such
that Ext1Q(X, Y )= 0. Define M = X ⊕Y and e= dim X , d = dim (X ⊕Y ). Then:

(i) dim Gre(M)= 〈e, d− e〉.

(ii) The variety Gre(M) is reduced, irreducible and rational.

(iii) Gre(M) is a locally complete intersection scheme.

Proof. The representation X obviously embeds into M ; thus

dim Gre(M)≥ dim S[X ] = dim HomQ(X,M)− dim EndQ(X)

= dim HomQ(X, Y ).

The tangent space to any point U ∈ S[X ] has dimension dim HomQ(X, Y ) too, thus
S[X ] is reduced. Moreover, a generic embedding of X into X ⊕ Y is of the form
[idX , f ] for a map f ∈HomQ(X, Y ), and this identifies an open subset isomorphic
to HomQ(X, Y ) of S[X ], proving rationality of S[X ]. Now suppose N embeds into
M = X ⊕ Y and dim N = e. Then Ext1Q(N , Y )= 0 since Ext1Q(X ⊕ Y, Y )= 0 by
assumption, and thus dim HomQ(N , Y )=〈e, d−e〉=dim HomQ(X, Y ). Therefore,

dim S[N ] = dim HomQ(N , X)− dim HomQ(N , N )+ dim HomQ(X, Y )

≤ dim HomQ(X, Y ),

which proves that dim Gre(M) = dim HomQ(X, Y ) = 〈e, d − e〉, and that the
closure of S[X ] is an irreducible component of Gre(M). Conversely, suppose that an
irreducible component C of Gre(M) is given. Then C is necessarily the closure of
some stratum S[N ], and the dimension of C equals 〈e, d− e〉 = dim HomQ(X, Y )
by Proposition 2.2. By the dimension estimate above, we conclude that

dim HomQ(N , X)= dim HomQ(N , N ).

By [Bongartz 1996, Theorem 2.4], this yields an embedding N ⊂ X , and thus N = X
by equality of dimensions. Therefore, Gre(M) equals the closure of the stratum
S[X ], thus it is irreducible, reduced and rational. The dimension of Hom0

Q(e,M)
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equals 〈e, d− e〉+ dim Ge, thus its codimension in Re(Q)×Hom0
Q(e, d) equals

dim Re(Q)+
∑

i

ei di −〈e, d− e〉− dim Ge =
∑

(α:i→ j)∈Q1

ei d j .

But this value is exactly the number of equations defining HomQ(e,M). Thus
Hom0

Q(e,M) is locally a complete intersection. The map Hom0
Q(e,M)→Gre(M)

is locally trivial with smooth fiber Ge, hence the last statement follows. �

On a quiver Grassmannian Gre(M), the automorphism group AutQ(M) acts
algebraically. In the present situation, this implies that the group

G =
[

AutQ(X) 0
HomQ(X, Y ) AutQ(Y )

]
acts on Gre(X ⊕ Y ).

Flat degeneration. Now let M̃ be the unique (up to isomorphism) exceptional
representation of the same dimension vector as M . By Proposition 2.2, we also
have dim Gre(M̃)= 〈e, d− e〉. It is thus reasonable to ask for good properties of
the degeneration from Gre(M̃) to Gre(M).

Theorem 3.2. Under the previous hypotheses, the quiver Grassmannian Gre(M) is
a flat degeneration of Gre(M̃).

Proof. Let Y be the open subset of Rd(Q) consisting of all representations Z whose
orbit closure OZ contains the orbit OM ; in particular, Y contains OM̃ . We consider
the diagram

Gre(d)
p1
←− GrQ

e (d)
p2
−→ Rd(Q)

of the previous section. In particular, we consider the restriction q : Ỹ → Y of p2 to
Ỹ = p−1

2 (Y ). This is a proper morphism (since p2 is so) between two smooth and
irreducible varieties (since they are open subsets of the smooth varieties Rd(Q)
and GrQ

e (d), respectively). The general fiber of q is Gre(M̃), since the orbit of M̃ ,
being exceptional, is open in Y , and the special fiber of q is Gre(M), since the orbit
of M is closed in Y by definition. By semicontinuity, all fibers of q have the same
dimension 〈e, d− e〉. By [Matsumura 1989, Corollary to Theorem 23.1], a proper
morphism between smooth and irreducible varieties with constant fiber dimension
is already flat. �

Remark 3.3. Theorem 3.2 generalizes Proposition 3.15 of [Feigin 2010], where the
flatness of the degeneration Fn→ Fa

n was proved using complicated combinatorial
tools. (See also the sections on degenerate flag varieties in the present paper, pages
172–174.)
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Note that the degeneration from M̃ to M in Rd(Q) can be realized along a
one-parameter subgroup of Gd in the following way:

Lemma 3.4. Under the previous hypotheses, there exists a short exact sequence

0→ X→ M̃→ Y → 0.

Proof. By [Schofield 1992, Theorem 3.3], a generic representation Z of dimension
vector d admits a subrepresentation of dimension vector e if Ext1Q(N , L) vanishes
for generic N of dimension vector e and generic L of dimension vector d− e. In
the present case, these generic representations are Z = M̃ , N = X and L = Y , and
the lemma follows. �

This lemma implies that M̃ can be written, up to isomorphism, in the following
form

M̃α =

[
Xα ζα

0 Yα

]
for all α ∈ Q1. Conjugating with the one-parameter subgroup([

t · idX i 0
0 idYi

])
i∈Q0

of Gd and passing to the limit t = 0, we arrive at the desired degeneration.
Since Q is a Dynkin quiver, the isomorphism classes of indecomposable repre-

sentations of Q are parametrized by the positive roots 8+ of the corresponding
root system. We view 8+ as a subset of NQ0 by identifying the simple root αi

with the vector having 1 at the i-th place and zeros everywhere else. Denote by
Vα the indecomposable representation corresponding to α ∈8+; more precisely,
dimVα = α. Using this parametrization of the indecomposables and the Auslander–
Reiten quiver of Q, we can actually construct M̃ explicitly from X and Y (or, more
precisely, from their decompositions into indecomposables), using the algorithm of
[Reineke 2001, Section 3].

4. The group action and normality

In this section we put X = P and Y = I , where P and I are projective and injective
representations of a Dynkin quiver Q. We consider the group

G =
[

AutQ(P) 0
HomQ(P, I ) AutQ(I )

]
.

Theorem 4.1. The group G acts on GrdimP(P ⊕ I ) with finitely many orbits,
parametrized by pairs ([Q P ], [NI ]) of isomorphism classes such that Q P is a
quotient of P , NI is a subrepresentation of I , and Q P and NI have the same
dimension vector.
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Proof. Suppose N is a subrepresentation of P ⊕ I of dimension vector dim N =
dim P , and denote by ι : N → P ⊕ I the embedding. Define NI = N ∩ I and
NP = N/(N ∩ I ). Then NP ' (N + I )/I embeds into (P⊕ I )/I ' P , thus NP is
projective since rep(Q) is hereditary. Therefore, the short exact sequence

0→ NI → N → NP → 0

splits. We thus have a retraction r : NP → N such that N is the direct sum of NI

and r(NP) and NI embeds into the component I of P ⊕ I under ι. Without loss of
generality, we can thus write the embedding of N into P ⊕ I as

ι=

[
ιP 0
f ιI

]
: NP ⊕ NI → P ⊕ I

for ιP (resp. ιI ) an embedding of NP (resp. NI ) into P (resp. I ), and f : NP → I .
Since I is injective, the map f factors through ιP , yielding a map x : P→ I such
that xιP = f . We can then conjugate ι with[

1 0
−x 1

]
∈ G.

We have thus proved that each G-orbit in GrdimP (P⊕ I ) contains an embedding of
the form [

ιP 0
0 ιI

]
: NP ⊕ NI → P ⊕ I,

such that NI is a subrepresentation of I , the representation Q P = P/NP is a quotient
of P , and their dimension vectors obviously add up to dim P . We now have to
show that the isomorphism classes of such Q P and NI already characterize the
corresponding G-orbit in Grdim P(P ⊕ I ). To do this, suppose we are given two
such embeddings,[

ιP 0
0 ιI

]
: NP ⊕ NI → P ⊕ I and

[
ι′P 0
0 ι′I

]
: N ′P ⊕ N ′I → P ⊕ I,

such that the cokernels Q P and Q′P of ιP and ι′P , respectively, are isomorphic,
and such that NI and N ′I are isomorphic. By [Reineke 2008, Lemma 6.3], an
arbitrary isomorphism ψI : NI → N ′I lifts to an automorphism ϕI of I , such
that ϕI ιI = ι

′

IψI . By the obvious dual version of the same lemma, an arbitrary
isomorphism ξP : Q P → Q′P lifts to an automorphism ϕP of P , which in turn
induces an isomorphism ψP : NP → N ′P such that ϕP ιP = ι

′

PψP . This proves that
the two embeddings above are conjugate under G. Finally, given representations
Q P and NI as above, we can define NP as the kernel of the quotient map and get
an embedding as above. �
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Remark 4.2. We can obtain an explicit parametrization of the orbits by writing

P =
⊕
i∈Q0

Pai
i and I =

⊕
i∈Q0

I bi
i .

By [Reineke 2008, Lemma 4.1] and its obvious dual version, we have:

• A representation NI embeds into I if and only if dim HomQ(Si , NI )≤ bi for
all i ∈ Q0.

• A representation Q P is a quotient of P if and only if dim HomQ(Q P , Si )≤ ai

for all i ∈ Q0.

The previous result establishes a finite decomposition of the quiver Grassmanni-
ans into orbits. In particular the tangent space is equidimensional along every such
orbit. The following example shows that in general such orbits are not cells.

Example 4.3. Let

Q :=
3

1 // 2 //

77

4

be a Dynkin quiver of type D4. The quiver Grassmannian Gr(1211)(I3 ⊕ I4) is
isomorphic to P1, with the points 0 and∞ corresponding to two decomposable
representations, whereas all points in P1

\ {0,∞}, which is obviously not a cell,
correspond to subrepresentations which are isomorphic to the indecomposable
representation of dimension vector (1211).

We note the following generalization of the tautological bundles

Ui = {(U, x) ∈ Gre(X)× X i : x ∈Ui } on Gre(X) :

Given a projective representation P , the trivial vector bundle HomQ(P, X) on
Gre(X) admits the subbundle

VP = {(U, α) ∈ Gre(X)×HomQ(P, X) : α(P)⊂U }.

We then have VP '
⊕

i∈Q0
Vmi

i if P '
⊕

i∈Q0
Pmi

i . Dually, given an injective
representation I , the trivial vector bundle HomQ(X, I ) admits the subbundle

VI = {(U, β) ∈ Gre(X)×HomQ(X, I ) : β(U )= 0}.

We then have VI '
⊕

i∈Q0
(V∗i )

mi if I '
⊕

i∈Q0
I mi
i .

Given a decomposition of the dimension vector dim P = e= f + g, recall the
subvariety Sf (P ⊕ I )⊂ Gre(P ⊕ I ) consisting of all representations N such that
dim N ∩ I = f and dimπ(N )= g, where π : P⊕ I → P is the natural projection.
We have a natural surjective map ζ :Gr f ,g(P⊕ I )→Grg(P)×Gr f (I ). We note that
since P is projective, all the points of Grg(P) are isomorphic as representations of Q.
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Also, since I is injective, for any two points M1,M2 ∈ Gr f (I ) the representations
I/M1 and I/M2 of Q are isomorphic. Therefore, the dimension of the vector space
HomQ(NP , I/NI ) is independent of the points NP ∈ Grg(P) and NI ∈ Gr f (I ).
We denote this dimension by D.

Proposition 4.4. The map ζ is a D-dimensional vector bundle (in the Zariski
topology).

Proof. Associated to NP and NI , we have exact sequences

0→ NP → P→ Q P → 0 and 0→ NI → I → Q I → 0.

These induce the following commutative diagram with exact rows and columns,
where the final zeroes arise from projectivity of NP and injectivity of Q I and we
abbreviate HomQ( _ , _ ) by ( _ , _ ):

0 0 0
↓ ↓ ↓

0 → (Q P , NI ) → (Q P , I ) → (Q P , Q I )

↓ ↓ ↓

0 → (P, NI ) → (P, I ) → (P, Q I ) → 0
↓ ↓ ↓

0 → (NP , NI ) → (NP , I ) → (NP , Q I ) → 0
↓ ↓

0 0

This diagram yields an isomorphism

HomQ(NP , Q I )' HomQ(P, I )/(HomQ(P, NI )+HomQ(Q P , I )).

Pulling back the tautological bundles constructed above via the projections

Grg(P)
pr1
← Grg(P)×Gr f (I )

pr2
→ Gr f (I ),

we get subbundles pr∗2VP and pr∗1VI of the trivial bundle HomQ(P, I ) on Grg(P)×
Gr f (I ). By the above isomorphism, the quotient bundle

HomQ(P, I )/(pr∗1VP + pr∗2VI )

identifies with the fibration ζ :Sf (P⊕ I )→Grg(P)×Gr f (I ), proving the Zariski
local triviality of the latter. �

The methods established in the two previous proofs now allow us to prove
normality of the quiver Grassmannians.

Theorem 4.5. The quiver Grassmannian Gr e(P ⊕ I ) is a normal variety.
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Proof. We already know that Gre(P ⊕ I ) is locally a complete intersection, thus
normality is proved once we know that Gre(P ⊕ I ) is regular in codimension 1.
By the proof of Theorem 4.1, we know that a subrepresentation N of P ⊕ I of
dimension vector dim P is of the form N = NP ⊕ NI , with exact sequences

0→ NP → P→ Q P → 0 and 0→ NI → I → Q I → 0

such that NI and Q P are of the same dimension vector f . By the tangent space
formula, N defines a singular point of Gre(P ⊕ I ) if and only if

Ext1Q(NP ⊕ NI , Q P ⊕ Q I )= Ext1Q(NI , Q P)

is nonzero. In particular, singularity of the point N only depends on the isomorphism
types of NI = N ∩ I and Q P = (P ⊕ I )/(N + I ). Consider the locally closed
subset Z of Gre(P ⊕ I ) consisting of subrepresentations N ′ such that N ′ ∩ I ' NI

and (P ⊕ I )/(N ′+ I )' Q P ; thus Z ⊂ Sf . The vector bundle ζ : Sf → Gr f (I )×
Gre− f (P) of the previous proposition restricts to a vector bundle

ζ : Z→ Z I × Z P ,

where Z I = S[NI ] ⊂ Gr f (I ) consists of subrepresentations isomorphic to NI , and
Z P ⊂ Gre− f (P) consists of subrepresentations with quotient isomorphic to Q P .
By the dimension formula for the strata S[NI ], the codimension of Z I in Gr f (I )
equals dim Ext1Q(NI , NI ); dually, the codimension of Z P in Gre− f (P) equals
dim Ext1Q(Q P , Q P). Since the rank of the bundle ζ is dim HomQ(NP , Q I ), we
have

dim Gre(P ⊕ I )− dim ζ−1(Z I × Z P)

= dim Gre(P ⊕ I )− dim HomQ(NP , Q I )− (dim Gr f (I )− dim Ext1Q(NI , NI ))

− (dim Gre− f (P)− dim Ext1Q(Q P , Q P))

= 〈e, d〉− 〈e− f , d− f 〉− 〈 f , d− f 〉− 〈e− f , f 〉

+ dim Ext1Q(NI , NI )+ dim Ext1Q(Q P , Q P)

= 〈 f , f 〉+ dim Ext1Q(NI , NI )+ dim Ext1Q(Q P , Q P)

for the codimension of Z in Gre(P ⊕ I ). Assume that this codimension equals
1. Since the Euler form (Q being Dynkin) is positive definite, the summand
〈 f , f 〉 is nonnegative. If it equals 0, then f equals 0, and NI and Q P are just the
zero representations, a contradiction to the assumption Ext1Q(NI , Q P) 6= 0. Thus
〈 f , f 〉= 1 and both other summands are zero, thus NI and Q P are both isomorphic
to the exceptional representation of dimension vector f . But this implies vanishing
of Ext1Q(NI , Q P) and thus nonsingularity of N . �
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5. Cell decomposition

Let Q be a Dynkin quiver, P and I respectively a projective and an injective
representation of Q. Let M := P ⊕ I and let Gr= Gre(M) where e = dim P . In
this section we construct a cellular decomposition of Gr.

The indecomposable direct summands of M are either injective or projective.
In particular they are thin, that is, the vector space at every vertex is at most
one–dimensional. The set of generators of these one–dimensional spaces form a
linear basis of M which we denote by B. To each indecomposable summand L of
M we assign an integer d(L), the degree of L, so that if HomQ(L , L ′) 6= 0 then
d(L) < d(L ′) and so that all the degrees are different. In particular the degrees of
the homogeneous vectors of I are strictly bigger than the ones of P (in case there
is a projective–injective summand in both P and I we choose the degree of the
copy in I to be bigger than the degree of the copy in P). To every vector of L we
assign degree d(L). In particular every element v of B has an assigned degree d(v).
In view of [Cerulli Irelli 2011] the one–dimensional torus T = C∗ acts on Gr as
follows: for every v ∈ B and every λ ∈ T we define

λ · v := λd(v)v. (5-1)

This action extends uniquely to an action on M and induces an action on Gr. The
T -fixed points are precisely the points of Gr generated by a part of B, that is, the
coordinate subrepresentations of P ⊕ I of dimension vector dim P .

We denote the (finite) set of T -fixed points of Gr by GrT.
For every L ∈GrT, the torus acts on the tangent space TL(Gr)'HomQ(L ,M/L).

More explicitly, the vector space HomQ(L ,M/L) has a basis given by elements
which associate to a basis vector v ∈ L ∩ B a nonzero element v′ ∈ M/L ∩ B and
such element is homogeneous of degree d(v′)− d(v) [Crawley-Boevey 1989]. We
denote by HomQ(L ,M/L)+ the vector subspace of HomQ(L ,M/L) generated by
the basis elements of positive degree.

Since Gr is projective, for every N ∈Gr the limit limλ→0 λ.N exists and moreover
it is T -fixed; see for example [Chriss and Ginzburg 1997, Lemma 2.4.3]. For every
L ∈ GrT we consider its attracting set

C(L)= {N ∈ Gr | lim
λ→0

λ · N = L}.

The action (5-1) on Gr induces an action on Gr f (I ) and Gre− f (P) so that the map

ζ : Sf → Gr f (I )×Gre− f (P) (5-2)

is T -equivariant. Since both Gr f (I ) and Gre− f (P) are smooth (P and I being
rigid), we apply [Białynicki-Birula 1973] and we get cellular decompositions into
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attracting sets

Gr f (I )=
∐

L I∈Gr f (I )T C(L I ) and Grg(P)=
∐

L P∈Grg(P)T C(L P),

and moreover C(L I )' HomQ(L I , I/L I )
+ and C(L P)' HomQ(L P , P/L P)

+.

Theorem 5.1. The attracting set of each L ∈ GrT is an affine space isomorphic to
HomQ(L ,M/L)+. In particular, we get a cellular decomposition

Gr=
∐

L∈GrT

C(L).

Moreover,

C(L)= ζ−1(C(L I )×C(L P))' C(L I )×C(L P)×HomQ(L P , I/L I ). (5-3)

Proof. The subvariety Sf := ζ
−1(Gr f (I ) × Grdim P− f (P)) is smooth but not

projective. Nevertheless it enjoys the following property:

lim
λ→0

λ · N ∈ Sf for all N ∈ Sf . (5-4)

Indeed let N be a point of Sf , and let w1, . . . , w|e| be a basis of it (here |e| =∑
i∈Q0

ei ). We write every wi in the basis B, and we find a vector vi ∈ B which has
minimal degree in this linear combination and whose coefficient can be assumed
to be 1. We call vi the leading term of wi . The subrepresentation NI = N ∩ I is
generated by those wi which belong to I while NP =π(N )' N/NI is generated by
the remaining ones. The torus action is chosen in such a way that the leading term
of every w j ∈ NP belongs to P. The limit point L := limλ→0 λ · N has v1, . . . , v|e|
as its basis. The subrepresentation L I = L ∩ I is generated precisely by the vi

which are the leading terms of wi ∈ NI . In particular dim L I = dim NI = f and
hence L ∈ Gr f .

Since the map ζ is T -equivariant, (5-3) follows from (5-4).
It remains to prove that C(L)' HomQ(L ,M/L)+. This is a consequence of

C(L I )' HomQ(L I , I/L I )
+, HomQ(L I , P/L I )

+
= 0,

C(L P)' HomQ(L P , P/L P)
+, HomQ(L P , I/L I )

+
= HomQ(L P , I/L I ),

together with the isomorphism (5-3). �

The following example shows that for L ∈ GrT and N ∈ C(L), it is not true that
the tangent spaces at N and L have the same dimension.

Example 5.2. Let

Q :=
3

1 // 2 //

77

4
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be a Dynkin quiver of type D4. For every vertex k∈Q0, let Pk and Ik be, respectively,
the indecomposable projective and injective Q-representations at vertex k. Let
P := P1 ⊕ P2 ⊕ P3 ⊕ P4 and I := I1 ⊕ I2 ⊕ I3 ⊕ I4. We consider the variety
Gr(1233)(I ⊕ P). We assign degree deg(Pk) := 4 − k and deg(Ik) := 4 + k for
k = 1, 2, 3, 4. We notice that I4⊕ I3⊕ I2 has an indecomposable subrepresentation
NI of dimension vector (1211) such that limλ→0 λ · NI = I4⊕ (0110) := L , where
(0110) denotes the indecomposable subrepresentation of I3 of dimension vector
(0110). We have I/L I ' I/NI ' I1 ⊕ I1 ⊕ I2 and dim HomQ(NI , I/NI ) =

dim HomQ(L I , I/L I )= 3. Let us choose L P inside P of dimension vector (0022)
so that L I ⊕ L P ∈ Gr. We choose L P ' P2

3 ⊕ P2
4 , where P2

3 is a subrepresenta-
tion of P1 ⊕ P3 and P2

4 is in P1 ⊕ P2. The quotient P/L P ' I2 ⊕ (0110)⊕ P4.
Now dim Ext1Q(NI , P/L P)= dim Ext1Q(NI , P4)= 1, but dim Ext1Q(L I , P/L P)=

dim Ext1Q(I4, (0110))+ dim Ext1Q((0110), P4)= 2.

6. Poincaré polynomials in type A and Genocchi numbers

In this section we compute the Poincaré polynomials of Gr dim P(P ⊕ I ) for equi-
oriented quiver of type A and derive some combinatorial consequences.

Equioriented quiver of type A. For two nonnegative integers k and l, the q-binomial
coefficient

(k
l

)
q is defined by the formula(k

l

)
q
=

kq !

lq !(k− l)q !
, where kq ! = (1− q)(1− q2) . . . (1− qk).

We also set
(k

l

)
q = 0 if k < l, k < 0, or l < 0.

Recall (see Proposition 2.7) that Fa
n+1 is isomorphic to Grdim P(P⊕ I ), where P

and I are the direct sums of, respectively, all projective and all injective indecom-
posable representations of Q. According to Proposition 4.4, in order to compute
the Poincaré polynomial of Gre(P ⊕ I ), we only need to compute the Poincaré
polynomials of Grg(P) and Gr f (I ) for arbitrary dimension vectors g= (g1, . . . , gn)

and f = ( f1, . . . , fn). Let us compute these polynomials in a slightly more gen-
eral setting. Namely, fix two collections of nonnegative integers a1, . . . , an and
b1, . . . , bn , and set P =

⊕n
i=1 Pai

i and I =
⊕n

i=1 I bi
i .

Lemma 6.1. We have

PGrg(P)(q)=
n∏

k=1

(
a1+ · · ·+ ak − gk−1

gk − gk−1

)
q
, (6-1)

PGr f (I )(q)=
n∏

k=1

(
bn+1−k + fn+2−k

fn+1−k

)
q

(6-2)

with the convention g0 = 0, fn+1 = 0.
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Proof. We first prove the first formula by induction on n. For n = 1, the formula
reduces to the well-known formula for the Poincaré polynomials of the classi-
cal Grassmannians. Let n > 1. Consider the map Grg(P)→ Grg1((P)1). We
claim that this map is a fibration with the base Grg1(C

a1) and a fiber isomorphic
to Gr(g2−g1,g3−g1,...,gn−g1)

(
Pa1−g1

1
⊕n

i=2 Pai
i

)
. In fact, an element of Grg(P) is a

collection of spaces (V1, . . . , Vn) such that Vi ⊂ (P)i . We note that all the maps in
P corresponding to the arrows i→ i + 1 are embeddings. Therefore, if one fixes a
g1-dimensional subspace V1⊂ P1, this automatically determines the g1-dimensional
subspaces to be contained in V2, . . . , Vn . This proves the claim. Now formula (6-1)
follows by induction.

In order to prove (6-2), we consider the map

Gr f (I )→ Gr f ∗(I ∗) : N 7→ {ϕ ∈ I ∗ |ϕ(N )= 0},

where I ∗ = HomC(I,C) and f ∗ = ( f ∗1 , · · · , f ∗n−1)= dim I − f is defined by

f ∗k = bk + bk+1+ · · ·+ bn − fk .

Now I ∗ can be identified with
⊕n

i=1 Pbi
n+1−i by acting on the vertices of Q with

the permutation ω : i 7→ n − i for every i = 1, 2, · · · , n − 1. We hence have an
isomorphism

Gr f (I )' Grω f ∗
( n⊕

i=1
Pbi

i

)
.

Substituting into (6-1), we obtain (6-2). �

Theorem 6.2. Let Gr = Gre(I ⊕ P) with I and P as above. Then the Poincaré
polynomial PGr(q) of Gr is given by∑

f+g=e

q
∑n

i=1 gi (ai− fi+ fi+1)

n∏
k=1

(
a1+ · · ·+ ak − gk−1

gk − gk−1

)
q

n∏
k=1

(
bn+1−k + fn+2−k

fn+1−k

)
q
.

Proof. Recall the decomposition Gre(P ⊕ I )= t f Sf . Each stratum Sf is a total
space of a vector bundle over Grg(P)×Gr f (I ) with fiber over a point (NP , NI ) ∈

Grg(P)×Gr f (I ) isomorphic to HomQ(NP , I/NI ). Since Ext1Q(NP , I/NI ) = 0,
we obtain dim HomQ(NP , I/NI ) = 〈g,dim I − f 〉. Since Q is the equioriented
quiver of type An , we obtain

〈g,dim I − f 〉 =
n∑

i=1

gi (ai − fi + fi+1). (6-3)

Now our theorem follows from formulas (6-1) and (6-2). �

Now let ai = bi = 1, i = 1, . . . , n. Then the quiver Grassmannian Grdim P(P⊕ I )
is isomorphic to Fa

n+1.
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Corollary 6.3. The Poincaré polynomial of the complete degenerate flag variety
Fa

n+1 is equal to∑
f1,..., fn≥0

q
∑n

k=1(k− fk)(1− fk+ fk+1)

n∏
k=1

(
1+ fk−1

fk

)
q

n∏
k=1

(
1+ fk+1

fk

)
q

(6-4)

where f0 = fn+1 = 0.

Now fix a collection d = (d1, . . . , ds) with 0= d0 < d1 < · · ·< ds < ds+1 = n+1.

Corollary 6.4. Define ai = di − di−1 and bi = di+1− di . Then Theorem 6.2 gives
the Poincaré polynomial of the partial degenerate flag variety Fa

d .

Proof. This follows from Proposition 2.9. �

The normalized median Genocchi numbers. Recall that the Euler characteristic
of Fa

n+1 is equal to the (n + 1)-st normalized median Genocchi number hn+1;
see [Feigin 2011, Proposition 3.1 and Corollary 3.7]. In particular, the Poincaré
polynomial (6-4) provides natural q-deformation hn+1(q). We also arrive at the
following formula.

Corollary 6.5. With the convention f0 = fn+1 = 0, we have

hn+1 =
∑

f1,..., fn≥0

n∏
k=1

(
1+ fk−1

fk

) n∏
k=1

(
1+ fk+1

fk

)
(6-5)

We note that formula (6-5) can be seen as a sum over the set Mn+1 of Motzkin
paths starting at (0, 0) and ending at (n + 1, 0). Namely, we note that a term in
(6-5) is zero unless, for all i = 1, . . . , n, we have fi+1 = fi , fi+1 = fi + 1, or
fi+1 = fi − 1 (recall that fi ≥ 0 and f0 = fn+1 = 0). Therefore the terms in (6-5)
are labeled by Motzkin paths; see for example [Donaghey and Shapiro 1977]. We
can simplify the expression for hn+1. Namely, for a Motzkin path f ∈ Mn+1 let
l( f ) be the number of rises ( fi+1 = fi +1) plus the number of falls ( fi+1 = fi −1).
Then we obtain:

Corollary 6.6. hn+1 =
∑

f∈Mn+1

∏n
k=1(1+ fk)

2

2l( f ) .

We note also that Remark 4.2 produces one more combinatorial definition of the
numbers hn+1. Namely, for 1≤ i ≤ j ≤ n, we denote by Si, j the indecomposable
representation of Q such that

dim Si, j = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, . . . , 1︸ ︷︷ ︸
j−i+1

, 0, . . . , 0).
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In particular, the simple indecomposable representation Si coincides with Si,i . Then
we have

dim HomQ(Sk, Si, j )=

{
1 if k = j,
0 otherwise;

dim HomQ(Si, j , Sk)=

{
1 if i = k,
0 otherwise.

Recall (see Theorem 4.1) that the Euler characteristic of Fa
n+1 is equal to the

number of isomorphism classes of pairs ([Q P ], [NI ]) such that NI is embedded
into I =

⊕n
k=1 Ik , Q P is a quotient of P =

⊕n
k=1 Pk , and dim NI = dim Q P . Let

NI =
⊕

1≤i≤ j≤n

Sri, j
i, j and Q P =

⊕
1≤i≤ j≤n

Smi, j
i, j .

Then from Remark 4.2 we obtain the following proposition.

Proposition 6.7. The normalized median Genocchi number hn+1 is equal to the
number of pairs of collections of nonnegative integers (ri, j ), (mi, j ), 1≤ i ≤ j ≤ n,
subject to the following conditions for all k = 1, . . . , n:

n∑
k=i

ri,k ≤ 1,
j∑

k=1

mk, j ≤ 1,
∑

i≤k≤ j

ri, j =
∑

i≤k≤ j

mi, j .

7. Cells and the group action in type A

In this section we fix Q to be the equioriented quiver of type An .

Description of the group. Let P =
n⊕

i=1
Pi and I =

n⊕
i=1

Ii . As in the general case,
we consider the group

G =
[

AutQ(P) 0
HomQ(P, I ) AutQ(I )

]
,

which is a subgroup of AutQ(P ⊕ I ).

Remark 7.1. The whole group of automorphisms AutQ(P ⊕ I ) is generated by
G and exp(HomQ(I, P)). We note that HomQ(I, P) is a one-dimensional space.
In fact, HomQ(Ik, Pl) = 0 unless k = n, i = 1, and In ' P1. Thus G “almost”
coincides with Aut(P ⊕ I ).

We now describe G explicitly.

Lemma 7.2. The groups AutQ(P) and AutQ(I ) are isomorphic to the Borel sub-
group Bn of the Lie group GLn , that is, to the group of nondegenerate upper-
triangular matrices.

Proof. For g ∈ Aut(P ⊕ I ), let gi be the component acting on (P ⊕ I )i (the vector
space corresponding to the i-th vertex). Then the map g 7→ gn gives a group
isomorphism AutQ(P) ' Bn . In fact, if k > l, HomQ(Pk, Pl) = 0; otherwise,
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HomQ(Pk, Pl) is one-dimensional and is completely determined by the n-th com-
ponent. Similarly, the map g 7→ g1 gives a group isomorphism AutQ(I )' Bn . �

In what follows, we denote AutQ(P) by BP and AutQ(I ) by BI .

Proposition 7.3. The group G is isomorphic to the semidirect product

Gn(n+1)/2
a o (BP × BI ).

Proof. First, the groups BP and BI commute inside G. Second, the group G
is generated by BP , BI , and exp(HomQ(P, I )). The group exp(HomQ(P, I )) is
abelian and isomorphic to G

n(n+1)/2
a (the abelian version of the unipotent subgroup

of the lower-triangular matrices in SLn+1). In fact, if i > j , HomQ(Pi , I j ) is trivial;
otherwise, it is one-dimensional. Also, exp(HomQ(P, I )) is normal in G. �

We now describe explicitly the structure of the semidirect product. For this we
pass to the level of the Lie algebras. So let bP and bI be the Lie algebras of BP

and BI , respectively (bP and bI are isomorphic to the Borel subalgebra of sln). Let
(n−)a be the abelian n(n+ 1)/2-dimensional Lie algebra, that is, the Lie algebra
of the group G

n(n+1)/2
a . Also, let b be the Borel subalgebra of sln+1. Recall that

the degenerate Lie algebra slan+1 is defined as (n−)a⊕b, where (n−)a is an abelian
ideal and the action of b on (n−)a is induced by the adjoint action of b on the
quotient (n−)a ' sln+1/b. Consider the embedding ıP : bP → b, Ei, j 7→ Ei, j ,
and the embedding ı I : bI → b, Ei, j 7→ Ei+1, j+1. These embeddings define the
structures of bP - and bI -modules on (n−)a .

Proposition 7.4. The Lie algebra of the group G is isomorphic to (n−)a⊕bP ⊕bI ,
where (n−)a is an abelian ideal and the structure of bP ⊕ bI -module on (n−)a is
defined by the embeddings ıP and ı I .

Proof. The Lie algebra of G is isomorphic to the direct sum EndQ(P)⊕EndQ(I )⊕
HomQ(P, I ). Recall that the identification HomQ(P, P)' bP is given by a 7→ an

and the identification HomQ(I, I ) ' bI is given by a 7→ a1, where ai denotes
the i-th component of a ∈ HomQ(P ⊕ I, P ⊕ I ). Recall from page 173 that
(P⊕ I )1 is spanned by the vectors w1, j , j = 1, . . . , n+1, and that w1,1 ∈ (P1)1 and
w1, j ∈ (I j−1)1 for j > 1. Therefore, we have a natural embedding bI ⊂ b mapping
the matrix unit Ei, j to Ei+1, j+1. Similarly, (P⊕ I )n is spanned by the vectors wn, j ,
j = 1, . . . , n + 1, together with wn,n+1 ∈ (In)n and wn, j ∈ (Pj )n for j < n + 1,
giving the natural embedding bI ⊂ b, Ei, j 7→ Ei, j . With such a description, it
is easy to compute the commutator of an element of bP ⊕ bI with an element of
HomQ(P, I )' (n−)a . �

We now compare G with SLa
n+1. We note that the Lie algebra slan+1 and the

Lie group SLa
n+1 have one-dimensional centers. Namely, let θ be the highest root

of sln+1 and let eθ = E1,n ∈ b ⊂ sln+1 be the corresponding element. Then eθ
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commutes with everything in slan+1 and thus the exponents exp(teθ ) ∈ SLa
n+1 form

the center Z . From Proposition 7.4 we obtain the following corollary.

Corollary 7.5. The group SLa
n+1/Z is embedded into G.

Bruhat-type decomposition. The goal of this subsection is to study the G-orbits
on the degenerate flag varieties. So let d = (d1, . . . , ds) for 0 = d0 < d1 < · · · <

ds < ds+1 = n+ 1.

Lemma 7.6. The group G acts naturally on all degenerate flag varieties Fa
d .

Proof. By definition, G acts on the degenerate flag variety Fa
n+1. We note that there

exists a map Fa
n+1→ Fa

d defined by (V1, . . . , Vn) 7→ (Vd1, . . . , Vds ). Since G acts
fiberwise with respect to this projection, the G-action on Fa

n+1 induces a G-action
on Fa

d . �

We first work out the case s = 1, that is, the G-action on the classical Grass-
mannian Grd(n+ 1). We first recall the cellular decomposition from [Feigin 2011].
The cells are labeled by torus fixed points, that is, by collections L = (l1, . . . , ld)

with 1 ≤ l1 < · · · < ld ≤ n + 1. The corresponding cell is denoted by CL . Ex-
plicitly, the elements of CL can be described as follows. Let k be an integer such
that lk ≤ d < lk+1. Recall the basis w1, . . . , wn+1 of W = Cn+1. We denote by
xL ∈ Grd+1(n+ 1) the linear span of wl1, . . . , wld . Then a d-dimensional subspace
V belongs to CL if and only if it has a basis e1, . . . , ed such that for some constants
cp, we have

e j = wl j +

l j−1∑
p=1

cpwp +

n+1∑
p=d+1

cpwp for j = 1, . . . , k; (7-1)

e j = wl j +

l j−1∑
p=d+1

cpwp for j = k+ 1, . . . , d. (7-2)

For example, xL ∈ CL .

Lemma 7.7. Each G-orbit on the Grassmannian Fa
(d) contains exactly one torus

fixed point xL . The orbit G · xL coincides with CL .

Proof. Follows from the definition of G. �

We prove now that the G-orbits in GrdimP(P ⊕ I ) described in Theorem 4.1 are
cells. Moreover, we prove that this cellular decomposition coincides with the one
of [Feigin 2011]. Let

P =
s⊕

i=1

Pdi−di−1
i and I =

s⊕
i=1

I di+1−di
i .

We start with the following lemma.
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Lemma 7.8. Let NI ⊂ I be a subrepresentation of I . Then there exists a unique
torus fixed point N ◦I ∈ GrdimNI (I ) such that NI ' N ◦I . Similarly, for NP ⊂ P there
exists a unique torus fixed point N ◦P ∈ GrdimNP (P) such that P/NP ' P/N ◦P .

Proof. We prove the first part; the second part can be proved similarly. Recall the
vectors wi, j ∈ (I j−1)i , i = 1, . . . , n, j = i + 1, . . . , n+ 1 such that wi, j 7→ wi+1, j

if j 6= i + 1 and wi, j 7→ 0 if j = i + 1. For each indecomposable summand Sk,l of
NI we construct the corresponding indecomposable summand of N ◦I . Namely, we
take the subrepresentation in Il of dimension vector

(0, . . . , 0︸ ︷︷ ︸
k−1

, 1, . . . , 1︸ ︷︷ ︸
l−k+1

, 0, . . . , 0).

Since each Il is torus-fixed, our lemma is proved. �

Remark 7.9. This lemma is not true for injective modules over Dynkin quivers
in general. Namely, consider the quiver from Example 4.3 and let NI ⊂ I3⊕ I4

be an indecomposable Q-module of dimension (1, 2, 1, 1). Then, for such NI ,
Lemma 7.8 does not hold.

Corollary 7.10. Each G-orbit in GrdimP(P ⊕ I ) contains exactly one torus fixed
point, and each such point is contained in some orbit.

Proof. Follows from Theorem 4.1 and Lemma 7.8. �

We note that any torus fixed point in Fa
d is the product of fixed points in the

Grassmannians Fa
(di )

, i = 1, . . . , s. Therefore, any such point is of the form∏s
i=1 xL i . We denote this point by xL1,...,Ls .

Theorem 7.11. The orbit G ·xL1,...,Ls is the intersection of the quiver Grassmannian
GrdimP(P ⊕ I ) with the product of cells CL i .

Proof. First, obviously G · xL1,...,Ls ⊂ Fa
d ∩

∏s
i=1 CL i . Second, since each orbit

contains exactly one torus fixed point and the intersection on the right hand side
does not contain fixed points other than xL1,...,Ls , the theorem is proved. �

Corollary 7.12. The G-orbits on Fa
d produce the same cellular decomposition as

the one constructed in [Feigin 2011].

Proof. The cells from [Feigin 2011] are labeled by collections L1, . . . , Ls (whenever
xL1,...,Ls ∈ Fa

d) and the corresponding cell CL1,...,Ls is given by

CL1,...,Ls = Fa
d ∩

s∏
i=1

CL i . �
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Cells and one-dimensional torus. In this subsection we show that the cellular
decomposition described above coincides with the one constructed in Section 5.
We describe the case of the complete flag varieties (in the parabolic case everything
works in the same manner). Recall that the action of our torus is given by the
formulas

λ ·wi, j =

{
λ2n− j+1wi, j if j > i,
λn− jwi, j if j ≤ i.

(7-3)

For n = 4 we have the following picture (compare with (2-2)):

1 w4,4

λ w3,3 // w4,3

λ2 w2,2 // w3,2 // w4,2

λ3 w1,1 // w2,1 // w3,1 // w4,1

λ4 w1,5 // w2,5 // w3,5 // w4,5

λ5 w1,4 // w2,4 // w3,4

λ6 w1,3 // w2,3

λ7 w1,2

(7-4)

Proposition 7.13. Given a fixed point x of the one-dimensional torus (7-3), the
attracting (λ→ 0)-cell of x coincides with the G-orbit G · x.

Proof. First, consider the action of our torus on each Grassmannian Grd((P ⊕ I )d).
Then formulas (7-1) and (7-2) imply that the attracting cells (λ→ 0) coincide with
the cells CL . Now Theorem 7.11 implies our proposition. �

We note that the one-dimensional torus (7-3) does not belong to SLa
n+1 (more

precisely, to the image of SLa
n+1 in the group of automorphisms of the degenerate

flag variety). However, it does belong to a one-dimensional extension

SLa
n+1 o C∗P BW

of the degenerate group; see [Feigin 2011, Remark 1.1]. Recall that the extended
group is the Lie group of the extended Lie algebra slan+1⊕CdP BW , where dP BW

commutes with the generators Ei, j ∈ sln+1 as follows:

[dP BW , Ei, j ] =

{
0 if i < j ,
Ei, j if i > j .

In particular, the action of the torus C∗P BW = {exp(λdP BW ), λ ∈C} on wi, j is given
by the formulas: λ ·wi, j = wi, j if i ≥ j and λ ·wi, j = λwi, j if i < j . For example,
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for n = 4 one has the following picture (vectors come equipped with the weights):

λ• // λ• // λ• // λ•

λ• // λ• // λ• 1•

λ• // λ• 1• // 1•

λ• 1• // 1• // 1•

1• // 1• // 1• // 1•

Proposition 7.14. The one-dimensional torus (7-3) sits inside the extended group
SLa

n+1 o C∗P BW .

Proof. For any collection of integers k1, . . . , kn+1 there exists a one-dimensional
torus C∗(k1,...,kn+1)

inside the Cartan subgroup of SLa
n+1 which acts on wi, j by the

formula wi, j 7→ λk jwi, j . A direct check shows that the torus (7-3) acts as

C∗(n,n+1,...,2n)× (C
∗

P BW )
−n−1. �
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