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We generalize the classical Chevalley–Shephard–Todd theorem to the case of
finite linearly reductive group schemes. As an application, we prove that every
scheme X which is étale-locally the quotient of a smooth scheme by a finite
linearly reductive group scheme is the coarse space of a smooth tame Artin
stack (as defined by Abramovich, Olsson, and Vistoli), whose stacky structure is
supported on the singular locus of X .

1. Introduction

Given a field k and an action of a finite (abstract) group G on a k-vector space V ,
we obtain a linear action of G on the polynomial ring k[V ]. A central theme in
invariant theory is determining when certain nice properties of a ring with G-action
are inherited by its invariants. In particular, it is natural to ask when k[V ]G is
polynomial. If G acts faithfully on V , we say g ∈ G is a pseudoreflection (with
respect to the action of G on V ) if V g is a hyperplane. The classical Chevalley–
Shephard–Todd theorem states:

Theorem 1.1 [Bourbaki 1968, §5, Theorem 4]. If G→ Autk(V ) is a faithful rep-
resentation of a finite group and the order of G is not divisible by the characteristic
of k, then k[V ]G is polynomial if and only if G is generated by pseudoreflections.

In this paper we generalize this theorem to the case of finite linearly reductive
group schemes. To do so, we first need a notion of pseudoreflection in this setting.

Definition 1.2. Let k be a field and V a finite-dimensional k-vector space with a
faithful action of a finite linearly reductive group scheme G over Spec k. We say
that a subgroup scheme N of G is a pseudoreflection if V N has codimension 1
in V . We define the subgroup scheme generated by pseudoreflections to be the
intersection of the subgroup schemes which contain all of the pseudoreflections
of G. We say G is generated by pseudoreflections if G is the subgroup scheme
generated by pseudoreflections.
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Over algebraically closed fields, Theorem 1.1 generalizes to

Theorem 1.3. Let k be an algebraically closed field and V a finite-dimensional
k-vector space with a faithful action of a finite linearly reductive group scheme G
over Spec k. Then k[V ]G is polynomial if and only if G is generated by pseudo-
reflections.

A more technical version of this theorem holds over fields which are not alge-
braically closed; however, the “only if” direction does not hold for finite linearly
reductive group schemes in general (see Example 2.4). We instead prove the “only
if” direction for the smaller class of stable group schemes, which we now define
(see Proposition 2.2 for examples). Over an algebraically closed field, the class of
stable group schemes coincides with that of finite linearly reductive group schemes.
Recall from [Abramovich et al. 2008, Definition 2.9] that G is called well-split if
it is isomorphic to a semidirect product 1o Q, where 1 is a finite diagonalizable
group scheme and Q is a finite constant tame group scheme; here, tame means that
the degree is prime to the characteristic.

Definition 1.4. A group scheme G over a field k is called stable if the following
two conditions hold:

(a) for all finite field extensions K/k, every subgroup scheme of G K descends to
a subgroup scheme of G;

(b) there exists a finite Galois extension K/k such that G K is well-split.

Remark 1.5. If G is a finite linearly reductive group scheme over a perfect field
k, then [Abramovich et al. 2008, Lemma 2.11] shows that condition (b) is auto-
matically satisfied.

Theorem 1.3 is a special case of the following generalization of the Chevalley–
Shephard–Todd theorem. This is the first main result of this paper.

Theorem 1.6. Let k be a field and V a finite-dimensional k-vector space with a
faithful action of a finite linearly reductive group scheme G over Spec k. If G is
generated by pseudoreflections, then k[V ]G is polynomial. The converse holds if
G is stable.

We also prove a version of this theorem for an action of a finite linearly reductive
group scheme on a smooth scheme.

Definition 1.7. Given a smooth affine scheme U over Spec k with a faithful action
of a finite linearly reductive group scheme G which fixes a field-valued point x ∈
U (K ), we say a subgroup scheme N of G is a pseudoreflection at x if NK is a
pseudoreflection with respect to the induced action of G K on the cotangent space
at x . We define what it means for G to be generated by pseudoreflections at x in
the same manner as in Definition 1.2.
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Theorem 1.6 then has the following corollary.

Corollary 1.8. Let k be a field and let U be a smooth affine k-scheme with a faithful
action by a finite linearly reductive group scheme G over Spec k. Let x ∈ U (K ),
where K/k is a finite separable field extension, and suppose x is fixed by G. If G
is generated by pseudoreflections at x , then U/G is smooth at the image of x. The
converse holds if G is stable.

The second main result of this paper is this:

Theorem 1.9. Let k be a field and let U be a smooth affine k-scheme with a faithful
action by a stable group scheme G over Spec k. Suppose K/k is a finite separable
field extension and G fixes a point x ∈U (K ). Let M =U/G, let M0 be the smooth
locus of M , and let U 0

=U ×M M0. If G has no pseudoreflections at x , then after
possibly shrinking M to a smaller Zariski neighborhood of the image of x , we have
that U 0 is a G-torsor over M0.

In the classical case, Theorem 1.9 follows directly from Corollary 1.8 and the
purity of the branch locus theorem [Grothendieck and Raynaud 1971, X.3.1]. For
us, however, a little more work is needed since G is not necessarily étale.

As an application of Theorem 1.9, we generalize the well-known result (see, for
example, [Vistoli 1989, (2.9)] or [Fantechi et al. 2007, Remark 4.9]) that schemes
with quotient singularities prime to the characteristic are coarse spaces of smooth
Deligne–Mumford stacks. We say a scheme has linearly reductive singularities
if it is étale-locally the quotient of a smooth scheme by a finite linearly reductive
group scheme. We show that every such scheme M is the coarse space of a smooth
tame Artin stack (in the sense of [Abramovich et al. 2008]) whose stacky structure
is supported at the singular locus of M . More precisely,

Theorem 1.10. Let k be a perfect field and M a k-scheme with linearly reductive
singularities. Then it is the coarse space of a smooth tame stack X over k such that
f 0 in the diagram

X0
j0

//

f 0
��

X

f
��

M0
j

// M

is an isomorphism, where j is the inclusion of the smooth locus of M and X0
=

M0
×M X.

This paper is organized as follows. In Section 2, we prove the “if” direction
of Theorem 1.6 and reduce the proof of the “only if” direction to the special case
of Theorem 1.9 in which U = V∨(V ) for some k-vector space V with G-action
(see the section on notation below). This special case is proved in Section 3. The
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key input for the proof is [Iwanari 2009, Theorem 2.3], which we reinterpret in the
language of pseudoreflections. We finish the section by proving Corollary 1.8. In
Section 4, we use Corollary 1.8 to complete the proof of Theorem 1.9. In Section 5,
we prove Theorem 1.10.

Notation. Throughout this paper, k is a field and S = Spec k. If V is a k-vector
space with an action of a group scheme G, then we denote by V∨(V ), or simply
V∨ if V is understood, the scheme Spec k[V ] whose G-action is given by the dual
representation on functor points. Said another way, if G = Spec A is affine and its
action on V is given by the coaction map σ : V −→ V ⊗k A, then the coaction map
k[V ]−→ k[V ]⊗k A defining the G-action on V∨ is given by

∑
aivi 7→

∑
aiσ(vi ).

All Artin stacks X in this paper are assumed to have finite diagonal, so that if X is
locally of finite presentation, it has a coarse space by [Conrad 2004, Theorem 1.1]
(see also [Keel and Mori 1997]). Given a locally finitely presented scheme U with
an action of a finite flat group scheme G, we denote by U/G the coarse space of
the stack [U/G].

If R is a ring and I an ideal of R, then we denote by V (I) the closed subscheme
of Spec R defined by I.

2. Linear actions on polynomial rings

The “if” direction of Theorem 1.6. Our first goal is to prove the “if” direction of
Theorem 1.6. We begin with examples of stable group schemes and with some
basic results about the subgroup scheme generated by pseudoreflections.

Lemma 2.1. Suppose k is perfect and G is a finite linearly reductive group scheme
over S. If the identity component 1 of G is diagonalizable and G/1 is constant,
then there exists a finite linearly reductive group scheme G̃ over Z such that G̃k =

G. If H is a closed subgroup scheme of G, then there exists a closed subgroup
scheme H̃ of G̃ whose pullback to k is H. If H is normal in G, then H̃ is normal
in G̃.

Proof. Let Q = G/1. Since k is perfect, the connected-étale sequence

1−→1−→ G −→ Q −→ 1

is functorially split (see [Tate 1997, 3.7 (IV)]). Since 1 is diagonalizable, it is of
the form Spec k[A], where A is a finitely generated abelian group. Note that as a
scheme G =1×k Q and that its group scheme structure is given by a homomor-
phism:

ε : Q −→Aut(1)= Aut(A).

We can therefore let G̃ = Spec Z[A] ×Z Q with group scheme structure induced
by ε.
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Now let H be a closed subgroup scheme of G. Letting 1′ = H ∩1 and Q′ =
H/1′, we have a commutative diagram

1 // 1 // G // Q // 1

1 // 1′ //

ϕ

OO

H //

OO

Q′ //
ψ

OO

1

with exact rows. Since 1 is connected, we see 1′ is the connected component of
the identity of H . Therefore, the bottom row of the above diagram is the connected-
étale sequence of H , and so

H =1′o Q′,

as k is perfect. Since 1′ is diagonalizable and Q′ is constant, we can define H̃ in
the same way we defined G̃.

We now show that H̃ is a closed subgroup scheme of G̃. Let ∗ denote the action
of Q (resp. Q′) on1 (resp. 1′). Since the splitting of the connected-étale sequence
of a finite group scheme over a perfect field is functorial, we see that for all q ′ ∈ Q′

and local sections δ′ of 1′,

ψ(q ′) ∗ϕ(δ′)= ϕ(q ′ ∗ δ′).

We therefore obtain a closed immersion from H̃ to G̃ whose pullback to k is the
morphism from H to G.

Lastly, we show that if H is normal in G, then H̃ is normal in G̃. Let 1′ =
Spec k[A′], where A′ is a finitely generated abelian group. Showing that H̃ is
normal in G̃ is equivalent to showing that Q′ is normal in Q, and for all local
sections δ ∈1, δ′ ∈1′, q ∈ Q, and q ′ ∈ Q′, we have

q ∗ (δ−1δ′ · (q ′−1
∗ δ)) ∈1′.

We know that Q′ is normal in Q as H is normal in G. To check the latter statement
about local sections, note that it can be reformulated as follows: for every q ∈ Q
and q ′ ∈ Q, the homomorphism

A→ A× A′

a 7→ (q ∗ (a−1
· q ′−1

∗ a), q ∗ ā)

factors through A′; here ā denotes the image of a under the projection from A to
A′. Since this statement makes no reference to the base scheme, it can be checked
over k, where the normality of H in G yields the desired factorization. �

Proposition 2.2. Let G be a finite group scheme over S. Consider the following
conditions:

(1) G is diagonalizable.
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(2) G is a constant group scheme.

(3) k is perfect, the identity component 1 of G is diagonalizable, and G/1 is
constant.

If any of them holds, then G is stable.

Proof. It is clear that finite diagonalizable group schemes and finite constant group
schemes are stable, so we consider the last case. Let Q =G/1. Since k is perfect,
the connected-étale sequence

1−→1−→ G −→ Q −→ 1

is functorially split. Let K/k be a finite extension and let H be a subgroup scheme
of G K . Letting 1′ = H ∩1K and Q′ = H/1′, we have a commutative diagram

1 // 1K // G K // QK // 1

1 // 1′ //

OO

H //

OO

Q′ //

OO

1

with exact rows. Since 1 is connected and has a k-point, [Grothendieck 1967,
4.5.14] shows that1 is geometrically connected. In particular,1K is the connected
component of the identity of G K , and so 1′ is the connected component of the
identity of H . Therefore, the bottom row of the above diagram is the connected-
étale sequence of H . The proposition then follows from Lemma 2.1. �

Lemma 2.3. Let V be a finite-dimensional k-vector space with a faithful action
of a stable group scheme G over S, and let H be the subgroup scheme generated
by pseudoreflections. If K/k is an algebraic extension of fields, then a subgroup
scheme of G K is a pseudoreflection if and only if it descends to a pseudoreflection.
Furthermore, HK is the subgroup scheme of G K generated by pseudoreflections.

Proof. Note first that if P is a subgroup scheme of G K , then there exists a subgroup
scheme P0 of G such that (P0)K = P . If K/k is a finite extension, this follows
from the fact that G is stable. If K/k is an infinite extension, by a standard limit
argument, there exists a finite extension L/k and a subgroup scheme P1 of GL

such that (P1)K = P . We then obtain our desired P0 as L/k is a finite extension.
The first claim of the proposition then follows from the fact that

(VK )
NK = (V N )K

for any subgroup scheme N of G. The second claim follows from the fact that
if P ′ and P ′′ are subgroup schemes of G, then P ′K contains P ′′K if and only if P ′

contains P ′′. �

We remark that even in characteristic zero, Lemma 2.3 is false for general finite
linearly reductive group schemes G, as the following example shows. Note that this
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example also shows that the “only if” direction of Theorem 1.6 and of Corollary 1.8
is false for general finite linearly reductive group schemes.

Example 2.4. Let k be a field contained in R or let k = Fp for p congruent to
3 mod 4. Let K = k(i), where i2

= −1, and let G be the locally constant group
scheme over Spec k whose pullback to Spec K is Z/2×Z/2 with the Galois action
that switches the two Z/2 factors. Let g1 and g2 be the generators of the two Z/2
factors and consider the action

ρ : G K −→ AutK (K 2)

on the K -vector space K 2 given by

ρ(g1) : (a, b) 7→ (−bi, ai), ρ(g2) : (a, b) 7→ (bi,−ai).

Then ρ is Galois-equivariant and hence comes from an action of G on k2. Note that
Z/2×1 and 1×Z/2 are both pseudoreflections of G K , as the subspaces which they
fix are K · (1, i) and K · (1,−i), respectively. Since G K is not a pseudoreflection,
it follows that there are no Galois-invariant pseudoreflections of G K , and hence,
the subgroup scheme generated by pseudoreflections of G is trivial; the subgroup
scheme generated by pseudoreflections of G K , however, is G K .

Corollary 2.5. If V is a finite-dimensional k-vector space with a faithful action of
a stable group scheme G over S, then the subgroup scheme generated by pseudore-
flections is normal in G.

Proof. We denote by H the subgroup scheme generated by pseudoreflections. Let
T be an S-scheme and let g ∈ G(T ). We must show the subgroup schemes HT

and gHT g−1 of GT are equal. To do so, it suffices to check this on stalks and so
we can assume T = Spec R, where R is strictly Henselian. By [Abramovich et al.
2008, Lemma 2.17], we need only show that these two group schemes are equal
over the closed fiber of T , so we can further assume that R= K is a field. Since G
is finite over S, the residue fields of G are finite extensions of k. We can therefore
assume that K/k is a finite field extension.

By Lemma 2.3, we know that HK is the subgroup scheme of G K generated by
pseudoreflections. Note that if N ′ is a pseudoreflection of G K , then gN ′g−1 is as
well since

V gN ′g−1

K = g(V N ′
K ).

As a result, gHK g−1
= HK , which completes the proof. �

Lemma 2.6. Given a finite-dimensional k-vector space V with a faithful action
of a finite linearly reductive group scheme G over S, let {Ni } denote the set of
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pseudoreflections of G and let H be the subgroup scheme generated by pseudore-
flections. Then

k[V ]H =
⋂

i

k[V ]Ni .

Proof. Let R =
⋂

i k[V ]Ni . Consider the functor

F : (k-alg)→ (Groups)

A 7→ {g ∈ G(A) | g(m)= m for all m ∈ R⊗k A}.

Since each k[V ]Ni is finitely generated, we see R is as well. Let r1, . . . , rn be a
finite set of generators for R. We see then that F is representable by the intersection
of the stabilizers Gr j , and so is a closed subgroup scheme of G. Since F contains
every pseudoreflection, we see H ⊂ F . We therefore have the containments

R ⊂ k[V ]F ⊂ k[V ]H ⊂
⋂

i

k[V ]Ni ,

from which the lemma follows. �

If N is any subgroup scheme of G, it is linearly reductive by [Abramovich et al.
2008, Proposition 2.7]. It follows that

V ' V N
⊕ V/V N

as N -representations. If N is a pseudoreflection, then dimk V/V N
= 1. Let v be

a generator of the 1-dimensional subspace V/V N and let σ : V → V ⊗k B be the
coaction map, where N = Spec B. Then via the above isomorphism, σ is given by

V N
⊕ V/V N

→ (V N
⊗k B)⊕ (V/V N

⊗k B)

(w,w′) 7→ (w⊗ 1, w′⊗ b)

for some b ∈ B. It follows that there is a k-linear map h : V → B such that for all
w ∈ V ,

σ(w)− (w⊗ 1)= v⊗ h(w).

If we continue to denote by σ the induced coaction map k[V ] −→ k[V ]⊗k B, we
see that h extends to a k[V ]N -module homomorphism k[V ] −→ k[V ]⊗k B, which
we continue to denote by h, such that for all f ∈ k[V ],

σ( f )− ( f ⊗ 1)= (v⊗ 1) · h( f ).

We are now ready to prove the “if” direction of Theorem 1.6. Our proof is only
a slight variant of the proof of the classical Chevalley–Shephard–Todd theorem
presented in [Smith 1985].
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Proof of “if” direction of Theorem 1.6. Let R = k[V ]G . By Lemma 2.6, we know
that the intersection of the k[V ]N is R, where N runs through the pseudoreflections
of G. By the proposition on [Smith 1985, page 225], to show R is polynomial, we
need only show that k[V ] is a free R-module. By graded Nakayama, the projective
dimension of k[V ] is the smallest integer i such that TorR

i+1(k, k[V ])= 0, where k
is viewed as an R-module via the augmentation map

ε : k[V ]G −→ k[V ] −→ k,

sending all positively graded elements to 0. So we must show TorR
1 (k, k[V ])= 0.

Tensoring the short exact sequence defined by ε with k[V ], we obtain a long
exact sequence

0−→ TorR
1 (k, k[V ])−→ ker ε⊗R k[V ]

φ
−→ R⊗R k[V ]

ε⊗1
−→ k⊗R k[V ] −→ 0.

To show TorR
1 (k, k[V ])= 0, we must prove that φ is injective. We in fact show

φ⊗ 1 : ker ε⊗R k[V ]⊗k C −→ k[V ]⊗k C

is injective for all finite-dimensional k-algebras C . If this is not the case, then the
set

{ξ |C is a finite-dimensional k-algebra, 0 6= ξ ∈ker ε⊗R k[V ]⊗k C, (φ⊗1)(ξ)=0}

is nonempty and we can choose an element ξ of minimal degree, where ker ε is
given its natural grading as a submodule of k[V ] and the elements of C are defined
to be of degree 0. We begin by showing ξ ∈ ker ε⊗R R⊗k C . That is, we show ξ

is fixed by all pseudoreflections.
Let N = Spec B be a pseudoreflection. Let σ : k[V ] −→ k[V ] ⊗ B be the

coaction map. As explained above, we get a k[V ]N -module homomorphism h :
k[V ] −→ k[V ]⊗ B. Note that this morphism has degree −1. Since

(1⊗ σ ⊗ 1)(ξ)− ξ ⊗ 1= (1⊗ h⊗ 1)(ξ) · (1⊗ v⊗ 1⊗ 1),

the commutativity of

ker ε⊗ k[V ]⊗ B⊗C
φ⊗1⊗1 // k[V ]⊗ B⊗C

ker ε⊗ k[V ]⊗C

1⊗σ⊗1
OO

φ⊗1 // k[V ]⊗C

σ⊗1
OO

implies
(φ⊗ 1⊗ 1)(1⊗ h⊗ 1)(ξ) · (v⊗ 1⊗ 1)= 0.

It follows that (1⊗ h ⊗ 1)(ξ) is killed by φ⊗ 1⊗ 1. Since h has degree −1, our
assumption on ξ shows that (1⊗h⊗1)(ξ)= 0. We therefore have (1⊗σ⊗1)(ξ)=
ξ ⊗ 1, which proves that ξ is N -invariant.
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Since G is linearly reductive, we have a section of the inclusion k[V ]G ↪→

k[V ]. We therefore, also obtain a section s of the inclusion j : R ↪→ k[V ]. Let
ψ : ker ε⊗R R −→ R be the canonical map, and consider the diagram

ker ε⊗ k[V ]⊗C
φ⊗1 //

1⊗ j⊗1
��

k[V ]⊗C

j⊗1
��

ker ε⊗ R⊗C
ψ⊗1 //

1⊗s⊗1

OO

R⊗C.

s⊗1

OO

We see that

( j⊗1)(ψ⊗1)(1⊗ s⊗1)(ξ)= (φ⊗1)(1⊗ j⊗1)(1⊗ s⊗1)(ξ)= (φ⊗1)(ξ)= 0.

But j⊗1 and ψ⊗1 are injective, so (1⊗s⊗1)(ξ)= 0. Since ξ ∈ ker ε⊗R R⊗k C ,
it follows that ξ = 0, which is a contradiction. �

Reducing the “only if” direction of Theorem 1.6 to a case of Theorem 1.9. Now
that we have proved the “if” direction of Theorem 1.6, we work toward reducing the
“only if” direction to the special case of Theorem 1.9 where U = V∨. The main
step in this reduction is showing that if G acts faithfully on V , and H denotes
the subgroup scheme generated by pseudoreflections, then the action of G/H on
V∨/H has no pseudoreflections at the origin. In the classical case, the proof of
this statement relies on the fact that G has no pseudoreflections if and only if
V∨→ V∨/G is étale in codimension 1. As the following example illustrates, this
relation between pseudoreflections and ramification no longer holds in our case.

Example 2.7. Let k be a field of characteristic 2 and G =µ2. We define an action
of G on V = kx⊕ky as follows: for every k-scheme T and every section ζ ∈G(T ),
let ζ act on V ⊗k OT by sending x to ζ x and y to ζ y. Then π : V∨→ V∨/G is a
G-torsor away from the one singular point in V∨/G. Hence, π is ramified at every
height 1 prime, but G has no pseudoreflections.

We must therefore take a different approach to showing that the action of G/H on
V∨/H has no pseudoreflections at the origin. Our strategy is to reduce to the clas-
sical case by lifting to characteristic 0. This is carried out after some preliminary
lemmas.

Lemma 2.8. Let G be a finite group scheme which acts faithfully on an affine
scheme U. If H is a normal subgroup scheme of G, then the action of G/H on
U/H is faithful.

Proof. Let X = [U/H ] and let π : U → U/H be the natural map. We must show
that if G ′ is a subgroup scheme of G such that G ′/H acts trivially on U/H , then
G ′ = H . Replacing G by G ′, we can assume G ′ = G.
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Since G acts faithfully on U , there is a nonempty open substack of X which is
isomorphic to its coarse space. That is, we have a nonempty open subscheme V of
U/H over which π is an H -torsor. Let P = V ×U/H U . Since G acts on P over
V , we obtain a morphism

s : G −→Aut(P)= H.

Note that s is a section of the closed immersion H → G, so H = G. �

Lemma 2.9. Let G be a finite flat linearly reductive group scheme over a complete
discrete valuation ring R with residue field k. If G acts linearly on An

R and An
k/Gk

is isomorphic to An
k , then An

R/G is isomorphic to An
R .

Proof. Let m be the maximal ideal of R and let An
R/G = Spec A. Since An

R
is flat over R, it follows that An

R/G is as well (see, for example, [Alper 2008,
Theorem 4.16(ix)]). Since G is linearly reductive,

Spec k×R An
R/G = An

k/Gk .

Choose an isomorphism

ϕ0 : k[x1, . . . , xn] −→ A⊗R k

and let ri ∈ R be an arbitrary lift of ϕ0(xi ). By Nakayama’s lemma, the morphism

ϕ : R[x1, . . . , xn] −→ A

sending xi to ri is surjective. As R is complete, to show ϕ is an isomorphism, we
need only show that the base change ϕm of ϕ to R/m`+1 is an isomorphism for
every `. This follows from the fact that ϕ0 is an isomorphism and A⊗R R/m` is
flat over R/m`. �

Proposition 2.10. Let G be a finite linearly reductive group scheme over S with a
faithful action on a finite-dimensional k-vector space V . Let U = V∨ and let H
be the subgroup scheme of G generated by pseudoreflections. Then the induced
action of G/H on U/H ' An

k has no pseudoreflections at the origin.

Proof. By the “if” direction of Theorem 1.6, we have k[V ]H = k[W ] for some
subvector space W of k[V ]. The proof of [Neusel 2007, Proposition 6.19] shows
that the degrees of the homogeneous generators of k[V ]H are determined. As a
result, the action of G/H on k[W ] is linear. Lemma 2.8 further tells us that this
action is faithful.

Assume that the subgroup scheme H ′′ of G/H generated by pseudoreflections
is nontrivial. Then H ′′ = H ′/H where H ′ is a normal subgroup scheme of G
which properly contains H . To prove G/H has no pseudoreflections at the origin,
it suffices by Lemma 2.3 to replace k by its algebraic closure. By [Abramovich
et al. 2008, Lemma 2.11], we see then that G is the semidirect product of its identity
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component, which is diagonalizable, and a finite constant tame group scheme. The
same is true for H and H ′.

Let R be a complete discrete valuation ring whose residue field is k and whose
fraction field K is of characteristic 0. Lemma 2.1 shows that there exist finite
flat linearly reductive group schemes G̃, H̃ , and H̃ ′ over R whose base changes
to k are G, H , and H ′, respectively. Furthermore, H̃ ′ and H̃ are normal closed
subgroup schemes of G̃, and H̃ is a proper subgroup scheme of H̃ ′. In character-
istic 0, every finite flat group scheme is locally constant, so after replacing R by a
finite extension, we can further assume that G̃ K , H̃K , and H̃ ′K are constant group
schemes.

Let m denote the maximal ideal of R and let R` = R/m`. Let G̃`, H̃`, and
H̃ ′` denote the base changes of G̃, H̃ , and H̃ ′ to R`. Choosing a basis for V , we
can identify U with An

k . The G-action on U is then given by a group scheme
homomorphism ϕ0 : G −→GLn,k . By [Grothendieck 1970, Exposé III 2.3], given
a deformation ϕ` : G̃` −→ GLn,R` of ϕ0, the obstruction to deforming ϕ` to a
homomorphism ϕ`+1 : G̃`+1 −→ GLn,R`+1 lies in

H 2(G̃`,Lie(GLn)⊗m`/m`+1),

which vanishes as G̃` is linearly reductive. We therefore obtain a faithful action of
G̃ on An

R lifting the action of G on U .
By Lemma 2.9, we see that An

K /H̃K and An
K /H̃ ′K are polynomial. The classical

Chevalley–Shephard–Todd theorem then shows that there is a pseudoreflection ÑK

of G̃ K which is contained in H̃ ′K but not contained in H̃K . Note that this is not yet
a contradiction as it is not clear that H̃K is the subgroup scheme of G̃ K generated
by pseudoreflections. Let Ñ be the closure of ÑK in G̃. Since G̃ is a finite flat
linearly reductive group scheme over R, we see that Ñ is as well. Since ÑK is a
pseudoreflection, there exists some v=

∑
i ai xi ∈ K [x1, . . . , xn] such that ÑK acts

trivially on K [x1, . . . , xn]/v. After scaling the ai , we can assume a1 ∈ R∗ and all
ai ∈ R. Consider the commutative diagram

0 // vK [x1, . . . , xn] // K [x1, . . . , xn] // K [x1, . . . , xn]/v // 0

0 // vR[x1, . . . , xn] //

OO

R[x1, . . . , xn] //

OO

R[x1, . . . , xn]/v //

ψ

OO

0

of Ñ -comodules. Since the left square is Cartesian, we see that ψ is injective.
It follows that the action of Ñ on the hyperplane defined by v in An

R is trivial.
Reducing mod m, we see that Ñk is a pseudoreflection of G. Furthermore, Ñk is
not contained in H , which is a contradiction. �

Using Lemma 2.8 and Proposition 2.10, we now prove the “only if” direction
of Theorem 1.6, assuming the special case of Theorem 1.9 in which U = V∨.
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Proof of “only if” direction of Theorem 1.6. Let H be the subgroup scheme gener-
ated by pseudoreflections. By the “if” direction, k[V ]H is polynomial and as ex-
plained in the proof of Proposition 2.10, the G/H -action on k[V ]H is linear. Since
G/H acts faithfully on U/H without pseudoreflections at the origin by Lemma 2.8
and Proposition 2.10, and since M =U/G is smooth by assumption, Theorem 1.9
implies that U/H is a G/H -torsor over U/G after potentially shrinking U/G.
Since the origin of U/H is a fixed point, we conclude that G = H . �

3. Theorem 1.9 for linear actions on polynomial rings

In Section 2, we reduced the proof of the “only if” direction of Theorem 1.6 to this
statement:

Proposition 3.1. Let G be a stable group scheme over S which acts faithfully on a
finite-dimensional k-vector space V . Then Theorem 1.9 holds when U = V∨ and
x is the origin.

The proof of this proposition is given in two steps. First we handle the case
when G is diagonalizable, and then we use that for the general case (see page 15).

Reinterpreting a result of Iwanari. The key to proving Proposition 3.1 for diago-
nalizable G is provided by [Iwanari 2009, Theorem 3.3 and Proposition 3.4] after
we reinterpret them in the language of pseudoreflections. We refer the reader to
[Iwanari 2009, pages 4–6] for the basic definitions concerning monoids. We recall
the following definition given as [Iwanari 2009, Definition 2.5].

Definition 3.2. An injective morphism i : P→ F from a simplicially toric sharp
monoid to a free monoid is called a minimal free resolution if i is close and if for
all injective close morphisms i ′ : P→ F ′ to a free monoid F ′ of the same rank as
F , there is a unique morphism j : F→ F ′ such that i ′ = j i .

Given a faithful action of a finite diagonalizable group scheme 1 over S on a
k-vector space V of dimension n, we can decompose V as a direct sum of one-
dimensional1-representations. Therefore, after choosing an appropriate basis, we
have an identification of k[V ] with k[Nn

] and can assume that the 1-action on
U = V∨ is induced from a morphism of monoids

π : F = Nn
−→ A,

where A is the finite abelian group such that 1 is the Cartier dual D(A) of A. We
see then that

U/1= Spec k[P],

where P is the submonoid {p | π(p) = 0} of F . Note that P is simplicially toric
sharp, that i : P→ F is close, and that A = Fgp/ i(Pgp).
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We now give the relationship between minimal free resolutions and pseudore-
flections.

Proposition 3.3. With notation as above, i : P→ F is a minimal free resolution if
and only if the action of 1 on V has no pseudoreflections.

Proof. If i is not a minimal free resolution, then without loss of generality, i = j i ′,
where i ′ : P→ F is close and injective, and j : F→ F is given by

j (a1, a2, . . . , an)= (ma1, a2, . . . , an),

with m 6= 1. We have then a short exact sequence

0−→ Fgp/ i ′(Pgp)−→ Fgp/ i(Pgp)−→ Fgp/(m, 1, . . . , 1)(Fgp)−→ 0.

Let N be the Cartier dual of Fgp/(m, 1, . . . , 1)(Fgp), which is a subgroup scheme
of 1. Letting {xi } be the standard basis of F , we see that

k[F]N = k[xm
1 , x2, . . . , xn],

and so V N , which is the degree 1 part of k[F]N , has codimension 1 in V . Therefore,
N is a pseudoreflection.

Conversely, suppose N is a pseudoreflection. Since N is a subgroup scheme of
1, it is diagonalizable as well. Let N = Spec k[B], where B is a finite abelian
group, and let ψ : A→ B be the induced map. We see that

V N
=

⊕
i 6= j

kxi

for some j . Without loss of generality, j = 1. It follows then that

{ f ∈ F | ψπ( f )= 0} = (m, 1, . . . , 1)F

for some m dividing |B|. Since the 1 action on V is assumed to be faithful, we
see, in fact, that m = |B|. Therefore, i factors through ·(m, 1, . . . , 1) : F −→ F ,
which shows that i is not a minimal free resolution. �

Having reinterpreted minimal free resolutions, the proof of Proposition 3.1 for
diagonalizable group schemes G follows easily from Iwanari’s work.

Proposition 3.4. Let G =1 be a finite diagonalizable group scheme over S which
acts faithfully on a finite-dimensional k-vector space V . Then Theorem 1.9 holds
when U = V∨ and x is the origin. In this case it is not necessary to shrink M to a
smaller Zariski neighborhood of the image of x.

Proof. Let F and P be as above, and let X = [U/1]. By Proposition 3.3, the
morphism i : P→ F is a minimal free resolution. [Iwanari 2009, Theorem 3.3 (1)
and Proposition 3.4] then show that the natural morphism X×M M0

→ M0 is an
isomorphism. Since X×M M0

= [U 0/1], we see U 0 is a 1-torsor over M0. �
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Finishing the proof. The goal of this subsection is to prove Proposition 3.1. The
main result used in the proof of this proposition, as well as in the proof of Theorem
1.9, is the following.

Proposition 3.5. Let notation and hypotheses be as in Theorem 1.9. Let X =U/1
and G = 1 o Q, where 1 is diagonalizable and Q is constant and tame. If in
addition to assuming that G acts without pseudoreflections at x , we assume that
1 is local and that the base change of U to X sm is a 1-torsor over X sm , then
after possibly shrinking M to a smaller Zariski neighborhood of the image of x ,
the quotient map f : X→ M is unramified in codimension 1.

Proof. Let g be the quotient map U→ X . For every q ∈ Q, consider the Cartesian
diagram

Zq //

��

U
1

��
U

0q // U ×U,

where 0q(u)= (u, qu). We see that Zq is a closed subscheme of U and that Zq(T )
is the set of u ∈U (T ) which are fixed by q. Let Z be the closed subset of U which
is the union of the Zq for q 6= 1. Since the action of G on U is faithful, Z is not
all of U . Let Z ′ be the union of the codimension 1 components of Z . Since f g
is finite, we see that f g(Z ′) is a closed subset of M . Moreover, f g(Z ′) does not
contain the image of x , as G is assumed to act without pseudoreflections at x . By
shrinking M to M− f g(Z ′), we can assume that no nontrivial q ∈ Q acts trivially
on a divisor of U .

Let U = Spec R. The morphism f is unramified in codimension 1 if and only
if the (traditional) inertia groups of all height 1 primes p of R1 are trivial. So, we
must show that if q ∈ Q acts trivially on V (p), then q = 1. Since g is finite, and
hence integral, the going-up theorem shows that

pR =Pe1
1 + · · ·+Pen

n ,

where the Pi are height 1 primes and the ei are positive integers. Note that X is
normal and so the complement of X sm in X has codimension at least 2. As a result,

h :U ×X Spec OX,p −→ Spec OX,p

is a 1-torsor. Since 1 is local, h is a homeomorphism of topological spaces, so
there is exactly one prime P lying over p. We see then that U ×X V (p)= V (Pe)

for some e.
Let V (p)0 be the intersection of V (p) with X sm , and let Z0

=U×X V (p)0. Then
Z0 is a 1-torsor over V (p)0. Since q acts trivially on V (p), we obtain an action of
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q on Z0 over V (p)0, and hence a group scheme homomorphism

ϕ : Q′V (p)0 −→Aut(Z0/V (p)0)=1V (p)0,

where Q′ denotes the subgroup of Q generated by q. Since V (p)0 is reduced,
we see that ϕ factors through the reduction of 1V (p)0 , which is the trivial group
scheme. Therefore, q acts trivially on Z0.

Since the complement of X sm in X has codimension at least 2, and since g
factors as a flat map U → [U/1] followed by a coarse space map [U/1] → X ,
both of which are codimension-preserving (see [Fantechi et al. 2007, Definition 4.2
and Remark 4.3]), we see that the complement of Z0 in V (Pe) has codimension
at least 2. Note that if Y is a normal scheme and W is an open subscheme of Y
whose complement has codimension at least 2, then any morphism from W to an
affine scheme Z extends uniquely to a morphism from Y to Z . Since the action of
q on V (Pe) restricts to a trivial action on Z0, the action of q on V (Pe) is trivial.
Therefore, q acts trivially on a divisor of U , and so q = 1. �

Proof of Proposition 3.1. Let k ′/k be a finite Galois extension such that Gk′ '

1o Q, where 1 is diagonalizable and Q is constant and tame. Let S′ = Spec k ′

and consider the diagram
U ′ //

��

U
��

M ′ //

��

M
��

S′ // S,

where the squares are Cartesian. We denote by x ′ the induced k ′-rational point
of U ′. Since 1 is the product of a local diagonalizable group scheme and a lo-
cally constant diagonalizable group scheme, replacing k ′ by a further extension if
necessary, we can assume that 1 is local.

Since G is stable, Gk′ has no pseudoreflections at x ′. It follows then from
Proposition 3.5 that there exists an open neighborhood W ′ of x ′ such that U ′×M ′

W ′−→W ′ is unramified in codimension 1. Since k ′/k is a finite Galois extension,
replacing W ′ by the intersection of the τ(W ′) as τ ranges over the elements of
Gal(k ′/k), we can assume W ′ is Galois-invariant. Hence, W ′ = W ×M M ′ for
some open subset W of M . We shrink M to W .

To check that U 0 is a G-torsor over M0, we can look étale-locally. We can
therefore assume S = S′. Let X = U/1, and let g : U → X and f : X → M be
the quotient maps. We denote by X0 the fiber product X ×M M0 and by f 0 the
induced morphism X0

→ M0.
By Proposition 3.4, we know that the base change of U to X sm is a1-torsor over

X sm . Since f is unramified in codimension 1, we see that f 0 is as well. Since M0
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is smooth and X0 is normal, the purity of the branch locus theorem [Grothendieck
and Raynaud 1971, X.3.1] implies that f 0 is étale, and hence a Q-torsor. Since X0

is étale over M0, it is smooth. As a result, U 0 is a 1-torsor over X0 from which it
follows that U 0 is a G-torsor over M0. �

This finishes the proof of Proposition 3.1, and hence also of Theorem 1.6. We
conclude this section by proving Corollary 1.8.

Proof of Corollary 1.8. Let U = Spec R and M = U/G. We denote by y the
image of x . Since G being generated by pseudoreflections at x implies that G K

is generated by pseudoreflections at x for arbitrary finite linearly reductive group
schemes G, and since smoothness of M at y can be checked étale-locally, we can
assume that x is k-rational. Let V = mx/m

2
x be the cotangent space of x . As G

is linearly reductive, there is a G-equivariant section of mx → V . This yields a
G-equivariant map Sym•(V )→ R, which induces an isomorphism k[[V ]]−→ ÔU,x

of G-representations. That is, complete locally, we have linearized the G-action.
Since ÔM,y = k[[V ]]G , the corollary follows from Theorem 1.6, as M is smooth at
y if and only if ÔM,y is a formal power series ring over k. �

4. Actions on smooth schemes

Having proved Theorem 1.9 for polynomial rings with linear actions, we now turn
to the general case. We begin with two preliminary lemmas and a technical propo-
sition.

Lemma 4.1. Let U be a smooth affine scheme over S with an action of a finite
diagonalizable group scheme 1. Then there is a closed subscheme Z of U on
which 1 acts trivially, with the property that every closed subscheme Y on which
1 acts trivially factors through Z. Furthermore, the construction of Z commutes
with flat base change on U/1.

Proof. Let U = Spec R and 1 = Spec k[A], where A is a finite abelian group
written additively. The 1-action on U yields an A-grading

R =
⊕
a∈A

Ra.

We see that if J is an ideal of R, then 1 acts trivially on Y = Spec R/J if and
only if J contains the Ra for a 6= 0. Letting I be the ideal generated by the Ra for
a 6= 0, we see that Spec R/I is our desired Z .

We now show that the formation of Z commutes with flat base change. Note
that

U/1= Spec R0.
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Let R′0 be a flat R0-algebra and let R′ = R′0 ⊗R0 R. The induced 1-action on
Spec R′ corresponds to the A-grading

R′ =
⊕
a∈A

(R′0⊗R0 Ra).

Since R′0 is flat over R0, we see that I⊗R0 R′0 is an ideal of R′, and one easily
shows that it is the ideal generated by the R′0⊗R0 Ra for a 6= 0. �

Recall that if G is a group scheme over a base scheme B which acts on a B-
scheme U , and if y : T→U is a morphism of B-schemes, then the stabilizer group
scheme G y is defined by the Cartesian diagram

G y //

��

G×B U
ϕ

��
T

y×y // U ×B U,

where ϕ(g, u) = (gu, u). If U is separated over B, then G y is a closed subgroup
scheme of GT .

Lemma 4.2. Let B be a scheme and G a finite flat group scheme over B. If G acts
on a B-scheme U , then U →U/G is a G-torsor if and only if the stabilizer group
schemes G y are trivial for all closed points y of U.

Proof. The “only if” direction is clear. To prove the “if” direction, it suffices to
show that the stabilizer group schemes G y are trivial for all scheme-valued points
y : T →U . This is equivalent to showing that the universal stabilizer Gu is trivial,
where u :U→U is the identity map. Since Gu is a finite group scheme over U , it
is given by a coherent sheaf F on U . The support of F is a closed subset, and so to
prove Gu is trivial, it suffices to check this on stalks of closed points. Nakayama’s
lemma then shows that we need only check the triviality of Gu on closed fibers.
That is, we need only check that the G y are trivial for closed points y of U . �

Proposition 4.3. Let U be a smooth affine scheme over S with a faithful action of
a stable group scheme G fixing a k-rational point x. If N has a pseudoreflection
at x , then there is an étale neighborhood T −→ U/G of x and a divisor D of UT

defined by a principal ideal on which NT acts trivially.

Proof. Let M = U/G and let y be the image of x in M . As in the proof of
Corollary 1.8, we have an isomorphism k[[V ]] −→ ÔU,x of G-representations,
where V = mx/m

2
x . If N is a pseudoreflection at x , then there is some v ∈ V

such that N acts trivially on the closed subscheme of Spec k[[V ]] defined by the
prime ideal generated by v.

Consider the contravariant functor F which sends an M-scheme T to the set of
divisors of UT defined by a principal ideal on which NT acts trivially. As F is
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locally of finite presentation and U ×M Spec ÔM,y = Spec ÔU,x , Artin’s approxi-
mation theorem [Artin 1969] finishes the proof. �

We are now ready to prove Theorem 1.9. Our method of proof is similar to that
of Proposition 3.1; we first prove the theorem in the case that G is diagonalizable
and then make use of this case to prove the theorem in general.

Proposition 4.4. Theorem 1.9 holds when G =1 is a finite diagonalizable group
scheme.

Proof. Let g : U → M be the quotient map. Since any subgroup scheme N of
1 is again finite diagonalizable, Lemma 4.1 shows that for every N , there exists
a closed subscheme Z N of U on which N acts trivially, with the property that
every closed subscheme Y on which N acts trivially factors through Z N . Let Z
be the union of the finitely many closed subsets Z N for N 6= 1. Since the action
of 1 on U is faithful, Z has codimension at least 1. Let Z ′ be the union of all
irreducible components of Z which have codimension 1. Since 1 acts without
pseudoreflections at x , we see x /∈ Z ′. Note that g(Z ′) is closed as g is proper.
Since the construction of Z commutes with flat base change on M and since flat
morphisms are codimension-preserving, replacing M with M − g(Z ′), we can as-
sume that there are no nontrivial subgroup schemes of 1 which fppf locally on M
act trivially on a divisor of U .

By Lemma 4.2, to show U 0 is a 1-torsor over M0, it suffices to show that for
every closed point y of U which maps to M0, the stabilizer group scheme 1y is
trivial. Fix such a closed point y and let T = Spec k(y). Since T is fppf over S, we
see from Proposition 4.3 that the closed subgroup scheme1y of1T acts faithfully
on UT without pseudoreflections at the k(y)-rational point y′ of UT induced by y.
Since y maps to a smooth point of M , it follows that y′ maps to a smooth point
of MT . Corollary 1.8 then shows that 1y is generated by pseudoreflections. Since
1y has no pseudoreflections, it is therefore trivial. �

Proof of Theorem 1.9. If G =1o Q, where 1 is diagonalizable and Q is constant
and tame, then letting Z ′ be as in Proposition 4.4 and letting U , X , f , and g be
as in the proof of Proposition 3.1, the proof of Proposition 4.4 shows that after
replacing M by M− f g(Z ′), the base change of U to X sm is a 1-torsor over X sm .
As in the proof of Proposition 3.1, we can then reduce the general case to the case
when G = 1o Q, where 1 is local diagonalizable and Q is constant tame. The
last paragraph of the proof of Proposition 3.1 then shows that U 0 is a G-torsor
over M0. �

5. Schemes with linearly reductive singularities

Let k be a perfect field of characteristic p.
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Definition 5.1. We say a scheme M over S has linearly reductive singularities if
there is an étale cover {Ui/Gi → M}, where the Ui are smooth over S and the Gi

are linearly reductive group schemes which are finite over S.

Note that if M has linearly reductive singularities, then it is automatically normal
and, in fact, Cohen–Macaulay by [Hochster and Roberts 1974, page 115].

Our goal in this section is to prove Theorem 1.10, which generalizes the re-
sult that every scheme with quotient singularities prime to the characteristic is the
coarse space of a smooth Deligne–Mumford stack. We remark that in the case of
quotient singularities, the converse of the analogous theorem is true as well; that is,
every scheme which is the coarse space of a smooth Deligne–Mumford stack has
quotient singularities. It is not clear, however, that the converse of Theorem 1.10
should hold. We know from [Abramovich et al. 2008, Theorem 3.2] that X is
étale-locally [V/G0], where G0 is a finite flat linearly reductive group scheme
over V/G0, but V need not be smooth and G0 need not be the base change of a
group scheme over S. On the other hand, Proposition 5.2 below shows that X is
étale-locally [U/G] where U is smooth and G is a group scheme over S, but here
G is not finite.

Before proving Theorem 1.10, we begin with a technical proposition followed
by a series of lemmas.

Proposition 5.2. Let X be a tame stack over S with coarse space M. Then there
exists an étale cover T → M such that

X×M T = [U/Gr
m,T o H ],

where H is a finite constant tame group scheme and U is affine over T . Further-
more, Gr

m,T o H is the base change to T of a group scheme Gr
m,S o H over S, so

X×M T = [U/Gr
m,S o H ].

Proof. [Abramovich et al. 2008, Theorem 3.2] shows that there exists an étale
cover T → M and a finite flat linearly reductive group scheme G0 over T acting
on a finite finitely presented scheme V over T such that

X×M T = [V/G0].

By [Abramovich et al. 2008, Lemma 2.20], after replacing T by a finer étale cover
if necessary, we can assume there is a short exact sequence

1−→1−→ G0 −→ H −→ 1,

where 1 = Spec OT [A] is a finite diagonalizable group scheme and H is a finite
constant tame group scheme. Since 1 is abelian, the conjugation action of G0 on
1 passes to an action

H −→ Aut(1)= Aut(A).
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Choosing a surjection F→ A in the category of Z[H ]-modules from a free module
F yields an H -equivariant morphism 1 ↪→ Gr

m,T . Using the H -action on Gr
m,T ,

we define the group scheme Gr
m,T o G0 over T . Note that there is an embedding

1 ↪→ Gr
m,T o G0

sending δ to (δ, δ−1), which realizes1 as a normal subgroup scheme of Gr
m,T oG0.

We can therefore define

G := (Gr
m,T o G0)/1.

One checks that there is a commutative diagram

1 // 1 //

��

G0
//

��

H //

id
��

1

1 // Gr
m,T

// G
π // H // 1,

where the rows are exact and the vertical arrows are injective.
We show that, étale-locally on T , there is a group scheme-theoretic section of

π , so that G = Gr
m,T o H . Let P be the sheaf on T such that for any T -scheme

W , P(W ) is the set of group scheme-theoretic sections of πW : GW → HW . Note
that the sheaf Hom(H,G) parametrizing group scheme homomorphisms from H
to G is representable since it is a closed subscheme of G×|H | cut out by suitable
equations. We see that P is the equalizer of the two maps

Hom(H,G)
p1 //
p2

// H×|H |,

where p1(φ)= (πφ(h))h and p2(φ)= (h)h . That is, there is a Cartesian diagram

P //

��

Hom(H,G)
(p1,p2)��

H×|H |
1 // H×|H |× H×|H |.

Since H is separated over T , we see that P is a closed subscheme of Hom(H,G).
In particular, it is representable and locally of finite presentation over T . Further-
more, P→ T is surjective as [Abramovich et al. 2008, Lemma 2.16] shows that it
has a section fppf locally. To show P has a section étale locally, by [Grothendieck
1967, 17.16.3], it suffices to prove P is smooth over T .

Given a commutative diagram

X0 = Spec A/I //

��

P

��
X = Spec A //

66lllll
T,



22 Matthew Satriano

with I a square zero ideal, we want to find a dotted arrow making the diagram
commute. That is, given a group scheme-theoretic section s0 : GW0 → HW0 of
πW0 , we want to find a group scheme homomorphism s : GW → HW which pulls
back to s0 such that πW ◦ s is the identity. Note first that any group scheme ho-
momorphism s which pulls back to s0 is automatically a section of πW since H
is a finite constant group scheme and πW ◦ s pulls back to the identity over W0.
By [Grothendieck 1970, Exposé III 2.3], the obstruction to lifting s0 to a group
scheme homomorphism lies in

H 2(H,Lie(G)⊗I),

which vanishes as H is linearly reductive. This proves the smoothness of P .
To complete the proof of the lemma, let U := V ×G0 G and note that

X×M T = [V/G0] = [U/G].

Since V is finite over T and G is affine over T , it follows that U is affine over T
as well. Replacing T by a finer étale cover if necessary, we have

X×M T = [U/Gr
m,T o H ].

Lastly, the scheme underlying Gr
m,T o H is Gr

m,T×T H and its group scheme struc-
ture is determined by the action H → Aut(Gr

m,T ). Since Aut(Gr
m,T ) = Aut(Zr ),

we can use this same action to define the semidirect product Gr
m,S o H and it is

clear that this group scheme base changes to Gr
m,T o H . �

Lemma 5.3. If V is a smooth S-scheme with an action of finite linearly reductive
group scheme G0 over S, then [V/G0] is smooth over S.

Proof. Let X= [V/G0]. To prove X is smooth, it suffices to work étale-locally on
S, where, by [Abramovich et al. 2008, Lemma 2.20], we can assume G0 fits into
a short exact sequence

1−→1−→ G0 −→ H −→ 1,

where 1 is a finite diagonalizable group scheme and H is a finite constant tame
group scheme. Let G be obtained from G0 as in the proof of Proposition 5.2 and
let U = V ×G0 G. Since X= [U/G], it suffices to show U is smooth over S. The
action of G0 on V ×G, given by g0 · (v, g)= (vg0, g0g), is free as the G0-action
on G is free. As a result, U = [(V × G)/G0] and G/G0 = [G/G0]. Since the
projection map p : V ×G→ G is G0-equivariant, we have a Cartesian diagram

V ×G
p //

��

G

��
U

q // G/G0.
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Since p is smooth, q is as well. Since G → [G/G0] = G/G0 is flat and G is
smooth, [Grothendieck 1967, 17.7.7] shows that G/G0 is smooth, and so U is as
well. �

Lemma 5.4. Let X be a smooth S-scheme and i : U ↪→ X an open subscheme
whose complement has codimension at least 2. Let P be a G-torsor on U , where
G = Gr

m o H and H is a finite constant étale group scheme. Then P extends
uniquely to a G-torsor on X.

Proof. The structure map from P to U factors as P → P0 → U , where P is a
Gr

m-torsor over P0 and P0 is an H -torsor over U . Since the complement of U in X
has codimension at least 2, we have π1(U ) = π1(X) and so P0 extends uniquely
to an H -torsor Q0 on X . Let i0 : P0 ↪→ Q0 be the inclusion map. Since Q0 is
smooth and the complement of P0 in Q0 has codimension at least 2, the natural
map Pic(Q0)→Pic(P0) is an isomorphism. It follows that any line bundle over P0

can be extended uniquely to a line bundle over Q0. We can therefore inductively
construct a unique lift of P over X . �

Our proof of the following lemma closely follows that of [Fantechi et al. 2007,
Theorem 4.6].

Lemma 5.5. Let f : Y→ M be an S-morphism from a smooth tame stack Y to
its coarse space which pulls back to an isomorphism over the smooth locus M0 of
M. If h :X→ M is a dominant, codimension-preserving morphism (see [Fantechi
et al. 2007, Definition 4.2]) from a smooth tame stack, then there is a morphism
g : X→ Y, unique up to unique isomorphism, such that f g = h.

Proof. We show that if such a morphism g exists, then it is unique. Suppose
g1 and g2 are two such morphisms. We see then that g1

∣∣
h−1(M0)

= g2
∣∣
h−1(M0)

.
Since h is dominant and codimension-preserving, h−1(M0) is open and dense in X.
[Fantechi et al. 2007, Proposition 1.2] shows that if X and Y are Deligne–Mumford
with X normal and Y separated, then g1 and g2 are uniquely isomorphic. The
proof, however, applies equally well to tame stacks since the only key ingredient
used about Deligne–Mumford stacks is that they are locally [U/G] where G is a
separated group scheme.

By uniqueness, to show the existence of g, we can assume by Proposition 5.2
that Y=[U/G], where U is smooth and affine, and G=Gr

moH , where H is a finite
constant tame group scheme. Let p :V→X be a smooth cover by a smooth scheme.
Since smooth morphisms are dominant and codimension-preserving, uniqueness
implies that to show the existence of g, we need only show there is a morphism
g1 : V → Y such that f g1 = hp. So, we can assume X= V .

Given a stack Z over M , let Z0
= M0

×M Z. Given a morphism π : Z1→ Z2

of M-stacks, let π0
: Z0

1 → Z0
2 denote the induced morphism. Since f 0 is an
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isomorphism, there is a morphism g0
: V 0
→ Y0 such that f 0g0

= h0. It follows
that there is a G-torsor P0 over V 0 and a G-equivariant map from P0 to U 0 such
that the diagram

P0 //

��
U 0

��
V 0

��

// Y0

'xx
M0

commutes and the square is Cartesian. By Lemma 5.4, P0 extends to a G-torsor
P over V .

Note that if X is a normal algebraic space and i :W ↪→ X is an open subalgebraic
space whose complement has codimension at least 2, then any morphism from W
to an affine scheme Y extends uniquely to a morphism X → Y . As a result, the
morphism from P0 to U 0 extends to a morphism q : P→U . Consider the diagram

G× P
id×q //

��

G×U

��
P

q // U,

where the vertical arrows are the action maps. Precomposing either of the two
maps in the diagram from G × P to U by the inclusion G × P0 ↪→ G × P yields
the same morphism. That is, the two maps from G × P to U are both extensions
of the same map from G × P0 to the affine scheme U , and hence are equal. This
shows that q is G-equivariant, and therefore yields a map g : V → Y such that
f g = h. �

Proof of Theorem 1.10. We begin with the following observation. Suppose U is
smooth and affine over S with a faithful action of a finite linearly reductive group
scheme G over S. Let y be a closed point of U mapping to x ∈U/G. After making
the étale base change Spec k(y)→ S, we can assume y is a k-rational point. Let
G y be the stabilizer subgroup scheme of G fixing y. Since

U/G y −→U/G

is étale at y, replacing U/G by an étale cover, we can further assume that G fixes
y. Then by Corollary 1.8, we can assume G has no pseudoreflections at y, and,
hence, Theorem 1.9 shows that after shrinking U/G about x , we can assume that
the base change of U to the smooth locus of U/G is a G-torsor.

We now turn to the proof. Since M has linearly reductive singularities, there is
an étale cover {Ui/Gi→M}, where Ui is smooth and affine over S and Gi is a finite
linearly reductive group scheme over S which acts faithfully on Ui . By the above
discussion, replacing this étale cover by a finer étale cover if necessary, we can
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assume that the base change of Ui to the smooth locus of Ui/Gi is a Gi -torsor. Let
Mi =Ui/Gi and Xi = [Ui/Gi ]. We see that the Xi are locally the desired stacks,
so we need only glue the Xi . Let Mi j = Mi ×M M j and let Vi → Xi be a smooth
cover. Since Mi j is the coarse space of both Xi×Mi Mi j and X j×M j Mi j , and since
coarse space maps are dominant and codimension-preserving, Lemma 5.5 shows
that there is a unique isomorphism of Xi ×Mi Mi j and X j ×M j Mi j . Identifying
these two stacks via this isomorphism, let Ii j be the fiber product over the stack of
Vi×Mi Mi j and V j×M j Mi j . We see then that we have a morphism Ii j→Ui×M U j .
This yields a groupoid ∐

Ii j −→
∐

Ui ×M U j ,

which defines our desired glued stack X. Note that X is smooth and tame by
[Abramovich et al. 2008, Theorem 3.2]. �
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