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We investigate the representation theory and fusion rules of a class of cocentral
abelian (quasi-)Hopf extensions of Hopf algebras which includes twisted (gen-
eralized) quantum doubles of finite groups, and a certain quasi-Hopf algebra of
Schauenburg associated to group-theoretical fusion categories. We then present
a nontrivial example with noncommutative fusion rules.

1. Introduction

We present here a “ground-up” approach to attaining the fusion rules for a class
of cocentral abelian extensions of Hopf algebras. Moreover, by not requiring strict
coassociativity of the coproduct in the extension, our results are applicable not only
to cocentral abelian (Hopf) extensions of Hopf algebras, but also to certain quasi-
Hopf extensions as well. One such example, from [Schauenburg 2002], arises in
the study of group-theoretical fusion categories (see also [Natale 2005]). (For a
definition of group-theoretical fusion categories and basic properties, see [Etingof
et al. 2005].) Another family of examples includes the twisted quantum double of
a finite group, introduced in [Dijkgraaf et al. 1991], and the generalization which
is defined in [Goff and Mason 2010].

In Section 2, we review definitions and notation, largely following [Kashina
et al. 2002; Witherspoon 2004]. (For more information on extensions of Hopf
algebras, consult [Andruskiewitsch 1996; Montgomery 1993], or, for quasi-Hopf
extensions, [Masuoka 2002].) Then, Section 3 contains explicit formulas for irre-
ducible characters and central idempotents for such extensions, as well as the inner
product for which the irreducible characters form an orthonormal set. In Section 4,
we write down the character of the tensor product representation and combine it
with the inner product to deduce the fusion coefficients. The main result containing
the fusion coefficients for irreducible representations, Theorem 4.5, is anticipated
in [Witherspoon 2004] but is presented in this note without reference to Hochschild
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cohomology per se. Corollary 4.6 points out the connection to the K0-ring of a
group-theoretical fusion category. Then, in Section 5, we apply these formulas to
a generalized twisted quantum double of a finite group [Goff and Mason 2010].
Indeed, our Section 5 supersedes [Goff and Mason 2010, Section 3]. Finally,
Section 6 contains a nontrivial example of a cocentral abelian extension having
noncommutative fusion rules.

2. Cocentral abelian extensions

We follow closely the notation of [Kashina et al. 2002] with a few exceptions.
First, our action is a right action, consistent with [Andruskiewitsch and Natale
2003]. Second, our modules will be right modules rather than left.

Let L and G be finite groups and let F be an algebraically closed field of char-
acteristic not dividing |G||L|. An abelian extension H is of the form

0→ (FG)∗→ H → FL→ 0,

where H = (FG)∗#τσFL , σ : FL ⊗ FL → (FG)∗ is a group 2-cocycle, and τ :
(FG)∗→ FL⊗FL is the dual of a group 2-cocycle. The condition on F assures that
H is semisimple and cosemisimple. We specialize to a cocentral abelian extension,
meaning that (FL)∗⊆ Z(H∗), and thus that the coaction FL→FL⊗(FG)∗ inherent
in the extension is trivial. The cocentrality also has consequences for the tensor
product structure on irreducible modules, as we will see in Section 4.

There is a right action of FL on (FG)∗ which induces an action on FG via
( f ↼ `)(g) := f (g ↼ `−1) for g ∈ G, ` ∈ L , and extended linearly. Since L acts
as automorphisms of (FG)∗, L permutes the idempotents of the dual basis. Thus,
the action can be viewed as an action of L on G, also by automorphisms. For the
basis {pg | g ∈ G}, we have pg ↼`= pg↼`. Moreover, let Lg be the stabilizer of
g in L and O(g) the orbit of g under the action of L . That is,

Lg = {` ∈ L | g ↼`= g} and O(g)= {g ↼` | ` ∈ L}.

Let Tg be a complete set of right coset representatives for Lg in L . That is, L =⋃
y∈Tg

Lg y. Note that O(g)= {g ↼ y | y ∈ Tg}.
We can write σ and τ in terms of the dual basis via

σ(x, y)=
∑

g∈G
σg(x, y)pg and τ(x)=

∑
g,h∈G

τg,h(x)(pg ⊗ ph),

where σg(x, y), τg,h(x) ∈ F. There are many identities satisfied by σ and τ , such
as

σg↼z(x, y)σg(z, xy)= σg(z, x)σg(zx, y) (1)
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and

τg,h(x)τg↼x,h↼x(y)σg(x, y)σh(x, y)= τg,h(xy)σgh(x, y), (2)

for all g, h ∈ G, x, y, z ∈ L .
Writing pg#x as pg x̄ , we can write multiplication in H as

pk z̄ ph ȳ = δk↼z,hσk(z, y)pkzy,

for all h, k ∈G, y, z ∈ L . We also occasionally write pg for pg1̄ and x̄ for
∑

g pg x̄ ,
whence x̄ pg = pg↼x−1 x̄ . The unit element is 1̄.

For a cocentral abelian extension, the comultiplication is

1(pg x̄)=
∑
h∈G

τh,h−1g(x)ph x̄ ⊗ ph−1g x̄,

for all g ∈ G, x ∈ L . The counit ε satisfies ε(pg x̄)= δg,1. Finally, the antipode S
is given by

S(pg x̄)= σg−1↼x(x
−1, x)−1τg−1,g(x)

−1 pg−1↼x x−1.

Remark 2.1. For H to be a Hopf algebra, 1 must be coassociative, which implies
a certain condition on τ . We require only quasicoassociativity, which implies the
existence of other structures, and a related condition on τ . We omit these details
here, as all of our examples are proved elsewhere [Dijkgraaf et al. 1991; Natale
2005; Andruskiewitsch 1996] to be either coassociative or quasicoassociative.

3. Modules and characters

Irreducible modules for H are induced from irreducible modules for the group
algebra of Lg, but twisted by the 2-cocycle σg. Select one g from each orbit under
the action of L , then select Tg, a set of right coset representatives. Let

Hg := (FG)∗#σFLg.

If V is a right projective σg-representation space for Lg, then V ⊗ pg is a right
Hg-module via

(v⊗ pg) · (ph x̄)= δg,h(v · x ⊗ pg)

for all v ∈ V, h ∈ G, x ∈ Lg.
The irreducible modules for H are induced from these. Let V̂ = (V⊗ pg)⊗Hg H ,

which is then a right H -module under right multiplication by H . In other words,

V̂ =
∑
y∈Tg

(v⊗ pg)⊗ ȳ,
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with action given by

[(v⊗ pg)⊗ ȳ] · ph x̄ = (v⊗ pg)σh↼y−1(y, x)ph↼y−1 yx

= (v⊗ pg)δg,h↼y−1σg(y, x)pgwy′

= (v⊗ pg)δg,h↼y−1σg(y, x)σg(w, y′)−1(pgw̄)(y′)

= δg,h↼y−1
σg(y, x)
σg(w, y′)

[(v ·w⊗ pg)⊗ y′],

where w ∈ Lg, y′ ∈ Tg are chosen so that wy′ = yx .
We introduce the notation V(g,ϕ) to represent the H -module induced from the

projective σg-representation of Lg that has character ϕ, and we let ρ(g,ϕ) be the
representation of V(g,ϕ), and χ(g,ϕ) its character. Then one calculates

χ(g,ϕ)(ph x̄)= δg↼y,hδyxy−1∈Lg

σg(y, x)
σg(yxy−1, y)

ϕ(yxy−1), (3)

where y is the unique element of Tg that maps g to h. We reiterate that V(g,ϕ) is
irreducible if and only if ϕ is.

Remark 3.1. This can be seen as

χ(g,ϕ)(ph x̄)= δg↼y,hδx∈Lhϕ
(y)(x), (4)

where ϕ(y) is a projective representation of Lh = L y
g (conjugate to ϕ) with cocycle

σg↼y = σh . See [Costache 2009, Lemma 59] for a similar calculation.

Before writing down the central idempotents, we first note that the character
χreg of the regular representation ρreg on H satisfies χreg(ph x̄)= δx,1|O(h)||Lh| =

δx,1|L|, and that, from the semisimplicity of H ,

ρreg =
⊕
(h,ψ)

χ(h,ψ)(1H )ρ(h,ψ),

where h ranges over the orbits and ψ ranges over the irreducible projective σh-
representations of Lh . Let z(g,ϕ) denote the central idempotent corresponding to
the representation ρ(g,ϕ). Then ρ(h,ψ)(z(g,ϕ))= δg,hδϕ,ψ(dimϕ)|L : Lg| id.

Set z(g,ϕ) =
∑

c∈G,d∈L αc,d pcd̄ . We find the αc,d by determining the value of
the regular character on S(pa−1 b̄)z(g,ϕ) two ways. First,

χreg(S(pa−1 b̄)z(g,ϕ))=
∑

c∈G, d∈L

σa↼b(b−1, b)−1τa,a−1(b)−1αc,dχreg(pa↼bb−1 pcd̄)

= τa,a−1(b)−1αa,b|L|.

On the other hand, we have

ρreg(S(pa−1 b̄)z(g,ϕ))= (dimϕ)|L : Lg|ρ(g,ϕ)(S(pa−1 b̄)),
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which means

χreg(S(pa−1 b̄)z(g,ϕ))= (dimϕ)|L : Lg|σa↼b(b−1, b)−1τa,a−1(b)−1χ(g,ϕ)(pa↼bb−1)

Solving for αa,b, we obtain

z(g,ϕ) =
(dimϕ)

|Lg|

∑
a∈G, b∈L

1
σa↼b(b−1, b)

χ(g,ϕ)(pa↼bb−1)(pa b̄).

Simplifying somewhat using the delta functions within χ(g,ϕ), we have:

Lemma 3.2. The central idempotent of H corresponding to V(g,ϕ) is

z(g,ϕ) =
(dimϕ)

|Lg|

∑
a∈G

∑
b∈La

1
σa(b−1, b)

χ(g,ϕ)(pab−1)(pa b̄). �

Note that the first sum could be over a ∈ O(g), as χ = 0 otherwise.

Proposition 3.3. Letting

〈α, β〉 =
1
|L|

∑
a∈G

∑
b∈La

1
σa(b−1, b)

α(pab−1)β(pa b̄), (5)

where α, β are characters of H, defines an inner product on the space of characters
of H. The irreducible characters form an orthonormal basis with respect to this
inner product.

We give three proofs to demonstrate the consistency with the character theory
of projective representations of finite groups, and to demonstrate the relationship
between certain conjugates of projective representations.

First proof. Clearly, (5) is linear in each component. The symmetry of (5) follows
from (1) because b ∈ La . Using Lemma 3.2, we have

〈
χ(g,ϕ), χ(h,ψ)

〉
=

1
|L|

∑
a∈G

∑
b∈La

1
σa(b−1, b)

χ(g,ϕ)(pab−1)χ(h,ψ)(pa b̄)

=
1
|L|
χ(h,ψ)

(
|Lg|

dimϕ
z(g,ϕ)

)
=

(
1
|L|
|Lg|

dimϕ

)
(dimϕ)|L : Lg| · δg,hδϕ,ψ = δg,hδϕ,ψ . �

Second proof. From (3), we obtain that a ∈ O(g)∩O(h) and thus g = h or else the
inner product is zero. Thus
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χ(g,ϕ), χ(h,ψ)

〉
=
δg,h

|L|

∑
a∈O(g)
[a=g↼y]

∑
b∈La

σg(y, b−1)σg(y, b)
σa(b−1, b)σg(yb−1y−1,y)σg(yby−1,y)

ϕ(yb−1y−1)ψ(yby−1)

=
δg,h

|L|

∑
a∈O(g)
[a=g↼y]

∑
b∈La

1
σg(yb−1y−1,yby−1)

ϕ(yb−1y−1)ψ(yby−1)

by repeated application of (1). Hence〈
χ(g,ϕ), χ(h,ψ)

〉
=
δg,h

|Lg|

∑
c∈Lg

1
σg(c−1, c)

ϕ(c−1)ψ(c)= δg,h〈ϕ,ψ〉Lg = δg,hδϕ,ψ .

Here, 〈 · , · 〉Lg denotes the usual inner product for projective σg-representations of
Lg. See [Nauwelaerts and Van Oystaeyen 1991, Proposition 2.8], for instance. �

Third proof. Using Remark 3.1,〈
χ(g,ϕ), χ(h,ψ)

〉
=
δg,h

|L|

∑
a∈O(g)
[a=g↼y]

∑
b∈La

1
σa(b−1, b)

ϕ(y)(b−1)ψ (y)(b)

=
δg,h

|L|

∑
a∈O(g)

|La|〈ϕ
(y), ψ (y)〉La = δg,hδϕ,ψ .

It is clear that ϕ(y) = ψ (y) if and only if ϕ = ψ . �

4. Fusion rules

The character of the tensor product representation (via 1) is

χ(g,ϕ)⊗(h,ψ)(pa b̄)

=

∑
f ∈G

[ f ∈O(g), f −1a∈O(h)]
[ f=g↼y, f −1a=h↼w]

δb∈L f ∩L f−1a
ϕ(yby−1)ψ(wbw−1)

τ f, f −1a(b)σg(y, b)σg(w, b)
σg(yby−1, y)σg(wbw−1, b)

=

∑
f ∈G

[ f ∈O(g), f −1a∈O(h)]
[ f=g↼y, f −1a=h↼w]

δb∈L f ∩L f−1a
τ f, f −1a(b)ϕ

(y)(b)ψ (w)(b)

=

∑
f ∈G

[ f ∈O(g), f −1a∈O(h)]
[ f=g↼y, f −1a=h↼w]

δb∈L f ∩L f−1a

[
ϕ(y)⊗ψ (w)τ f, f −1a

]
(b),
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where
[
ϕ(y)⊗ψ (w)τ f, f −1a

]
is a projective representation (of L f ∩ L f −1a ≤ La)

with cocycle σa . As explained in [Witherspoon 2004, (4.7)], the cocentrality of the
extension, and the fact that the coproduct 1 is an algebra map, together imply that
σa is cohomologous to σ f ·σ f −1a on L f ∩ L f −1a via τ f, f −1a . This is the content of
Equation (2), which depends on the assumption of cocentrality.

Remark 4.1. If h=1, then χ(g,ϕ)⊗(1,ψ)=χ(g,ϕ⊗ψ↓Lg )
. If g=1 the result is similar.

Hence, the irreducible representations induced from 1 ∈ G are in the center of the
fusion algebra and their tensor products with other modules can be reduced to a
calculation in the appropriate stabilizer. This generalizes a similar result in [Goff
and Mason 2010].

We need two lemmas before calculating the fusion coefficients.

Lemma 4.2. Let a, f ∈ G, y ∈ L.

(1) Let α and β be projective σ f -representations of L f . Then

〈α, β〉L f = 〈α
(y), β(y)〉L y

f
.

Note that α(y) and β(y) are σ f↼y-representations of L f↼y = L y
f .

(2) Let α be a σ f -representation of L f and let β be a σ f −1a-representation of
L f −1a . Then [

α⊗βτ f, f −1a
](y)
=
[
α(y)⊗β(y)τ f↼y, f −1a↼y

]
as σa↼y-representations of L y

f ∩ L y
f −1a ≤ L y

a .

Proof. The proof is straightforward, using (4), (1), and (2). �

We need a way to calculate products of L-orbits in CG. The following formula
appears in [Witherspoon 2004, Proof of Theorem 4.8], where the author relies
on standard trace map properties of the L-algebra ZG, citing general results of
[Thévenaz 1995]. Our proof is specific to group actions on sets. Recall that if L
acts on G, then L also acts on G×G diagonally: (g1, g2)↼ `= (g1 ↼`, g2 ↼`)

for ` ∈ L , g1, g2 ∈ G.

Lemma 4.3. Let g, h ∈ G. Then

O(g)O(h)=
∑
x∈D

|L(g↼x)h : Lg↼x ∩ Lh|O((g ↼ x)h),

where D is a complete set of Lg\L/Lh double coset representatives.

Proof. Consider the orbits of the diagonal action of L on G × G. Evidently,
y ∈ Lgx Lh if and only if OL((g ↼ x, h)) = OL((g ↼ y, h)). Now pick x ∈ D
and consider the image of OL((g ↼ x, h)) in G under the product map. Clearly,
the product (g ↼ x)h is fixed by L(g↼x)h but also each component is fixed by
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L x
g ∩ Lh ≤ L(g↼x)h . So, the number of distinct ordered pairs (g ↼ xw, h ↼ w)

such that (g ↼ xw)(h ↼w) = (g ↼ x)h is |L(g↼x)h : L x
g ∩ Lh|. Since L acts by

automorphisms, this is also the number of times O((g ↼ x)h) appears in this term
of the sum. �

Remark 4.4. The right hand side in Lemma 4.3 cannot generally be interpreted
as a summation over distinct orbits. There may be y /∈ Lgx Lh for which O((g ↼
x)h)= O((g ↼ y)h).

Anticipated in [Witherspoon 2004, Theorem 4.8], the following theorem gives
the fusion coefficients for irreducible representations of H .

Theorem 4.5. Let g, h, k ∈ G and let ϕ be a σg-representation of Lg, ψ a σh-
representation of Lh , and γ a σk-representation of Lk and consider the corre-
sponding induced modules of H. Then

〈χ(k,γ ), χ(g,ϕ)⊗(h,ψ)〉 =
∑
x∈D

(g↼x)h∈O(k)
[(g↼xw′)(h↼w′)=k]

〈
γ,
[
ϕ(xw

′)
⊗ψ (w

′)τg↼xw′,h↼w′
]〉

Lxw′
g ∩Lw′h

where D is a set of those Lg\L/Lh double coset representatives x satisfying

(g ↼ x)h ∈ O(k),

and the inner product on L xw′
g ∩ Lw

′

h ≤ Lk is of projective σk-representations.

Proof. Using the inner product (5), we have

〈χ(k,γ ), χ(g,ϕ)⊗(h,ψ)〉

=
1
|L|

∑
a∈O(k)
[a=k↼z]

∑
f ∈O(g)

f −1a∈O(h)
[ f=g↼y]
[ f −1a=h↼w]

∑
b∈La∩L f

γ (zb−1z−1)ϕ(yby−1)ψ(wbw−1)

·
τ f, f −1a(b)σk(z, b−1)σg(y, b)σh(w, b)

σa(b−1, b)σk(zb−1z−1, z)σg(yby−1, y)σh(wbw−1, w)

=
1
|L|

∑
a∈O(k)
[a=k↼z]

∑
f ∈O(g)

f −1a∈O(h)
[ f=g↼y]
[ f −1a=h↼w]

∑
b∈La∩L f

τ f, f −1a(b)
σa(b−1, b)

γ (z)(b−1)ϕ(y)(b)ψ (w)(b)

=
1
|L|

∑
a∈O(k)
[a=k↼z]

∑
f ∈O(g)

f −1a∈O(h)
[ f=g↼y]
[ f −1a=h↼w]

|L f ∩ L f −1a|
〈
γ (z),

[
ϕ(y)⊗ψ (w)τ f, f −1a

]〉
L f ∩L f−1a

.
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By Lemma 4.2 this is equal to

=
1
|L|

∑
a∈O(k)
[a=k↼z]

∑
f ∈O(g)

f −1a∈O(h)
[ f=g↼y]
[ f −1a=h↼w]

|L f ∩ L f −1a|

·
〈
γ,
[
ϕ(yz−1)

⊗ψ (wz−1)τ f↼z−1, f −1a↼z−1
]〉

L z−1
f ∩L z−1

f−1a

=
1
|Lk |

∑
f ∈O(g)

f −1k∈O(h)
[ f=g↼y′]
[ f −1k=h↼w′]

|L f ∩ L f −1k |
〈
γ,
[
ϕ(y

′)
⊗ψ (w

′)τ f, f −1k
]〉

L f ∩L f−1k
,

and by Lemma 4.3 this can further be written as

=
1
|Lk |

∑
x∈D

(g↼x)h∈O(k)
[(g↼xw′)(h↼w′)=k]

∣∣L xw′
g ∩ Lw

′

h

∣∣ ∣∣L(g↼x)h : L x
g ∩ Lh

∣∣
·
〈
γ,
[
ϕ(xw

′)
⊗ψ (w

′)τ f, f −1k
]〉

Lxw′
g ∩Lw′h

=

∑
x∈D

(g↼x)h∈O(k)
[(g↼xw′)(h↼w′)=k]

〈
γ,
[
ϕ(xw

′)
⊗ψ (w

′)τg↼xw′,h↼w′
]〉

Lxw′
g ∩Lw′h

,

where D is a set of Lg\L/Lh double coset representatives with (g ↼ x)h ∈ O(k).
Thus, the fusion rules for H modules can be determined from the fusion rules for
projective σk-representations restricted to certain subgroups of Lk . �

As stated before, the theorem holds for certain quasi-Hopf extensions, including
the examples in the following corollary and the next section.

Corollary 4.6. The fusion rules in Theorem 4.5 describe the K0-ring for the group-
theoretical module category C(G o L , ω, L , 1), where ω ∈ H 3(G o L , F∗) is the 3-
cocycle associated to [σ, τ ] in the relevant Kac exact sequence. See [Schauenburg
2002; Natale 2003; Masuoka 2002] for further cohomological details.

Proof. Indeed, the theorem holds whenever the structure maps and (1) and (2) hold,
even if H is a quasi-Hopf algebra (with coassociator 8), because the fusion rules
for H do not depend on the associativity constraint (determined by 8) in the cate-
gory of right H -modules, Mod-H . Thus these fusion rules hold for a certain quasi-
Hopf algebra of Schauenburg, denoted (Aop,8) by Natale [2005], in the case when
A= (FG)∗#τσFL , and the left actionB of G on L is trivial; i.e., when GL =G o L .
(In this case, the structure maps and cocycles are exactly as in Section 2.) Natale,
in the proof of her Theorem 4.4, cites [Schauenburg 2002] to demonstrate that
(Aop,8)-Mod is tensor-equivalent to C(GoL , ω, L , 1), where ω∈ H 3(GoL , F∗)

is the 3-cocycle associated to [σ, τ ] in the Kac exact sequence. �
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5. Example: generalized twisted quantum doubles of finite groups

Other examples of abelian extensions satisfying the structure maps of Section 2
(and hence having fusion rules determined by Theorem 4.5) include twisted quan-
tum doubles of finite groups [Dijkgraaf et al. 1991] and generalized twisted doubles
of finite groups [Goff and Mason 2010]. We expand on the latter, but using right
modules here. As mentioned earlier, this section supersedes [Goff and Mason 2010,
Section 3].

Let G be a finite group, N a normal subgroup, and G := G/N . We use the
bar notation for elements in Ḡ, i.e., if g ∈ G then ḡ = gN ∈ Ḡ. Then G acts
naturally on G via conjugation, namely ḡ ↼ x := x−1ḡx = ḡx

= gx = x̄−1ḡx̄ , for
all x ∈ G, ḡ ∈ Ḡ.

In addition, let ω ∈ H 3(G, F∗), and let ω′ := InflG
G
ω. In analogy with σ and τ ,

define θ : FG⊗ FG→ FḠ∗ and γ : FḠ∗→ FG⊗ FG via

θ =
∑
ḡ∈Ḡ

θḡ and γ =
∑

x,y∈Ḡ

γ()(x, y),

where

θḡ(x, y)=
ω(ḡ, x̄, ȳ)ω(x̄, ȳ, ḡxy)

ω(x̄, ḡx , ȳ)
, γḡ(x, y)=

ω(x̄, ȳ, ḡ)ω(ḡ, x̄g, ȳg)

ω(x̄, ḡ, ȳg)
.

Notice that θḡ and γḡ could be thought of as functions from FḠ⊗ FḠ to F∗ since
they pass to the quotient Ḡ. The generalized twisted double is then Dω(G,G) =
(FG)∗#γθ (FG). The maps θ and γ satisfy (1) and (2), mutatis mutandis [Dijkgraaf
et al. 1991].

The irreducible (right) modules of Dω(G, Ḡ) are induced from irreducible pro-
jective representations of centralizers. In particular, the character of the irreducible
projective θḡ-representation ϕ of CG(ḡ) is given by

χ̂(ḡ,ϕ)(e(h̄) FG x)= δḡy ,h̄δyxy−1∈CG(ḡ)
θḡ(y, x)

θḡ(yxy−1, y)
ϕ(yxy−1)

= δḡy ,h̄δx∈CG(h̄)ϕ
(y)(x).

Consistent with (5), the inner product on characters is given by

〈α, β〉 =
1
|G|

∑
k̄∈G

∑
x∈CG(k̄)

1
θk̄(x̄−1, x̄)

α(e(k̄) FG x−1)β(e(k̄) FG x),

and thus the fusion coefficients are given by〈
χ̂(k̄,λ), χ̂(ḡ,ϕ)⊗(h̄,ψ)

〉
=

∑
x∈D

[ḡxw′ h̄w
′
=k̄]

〈
λ,
[
ϕ(xw

′)
⊗ψ (w

′)γ()(ḡxw′, h̄w
′

)
]〉

CG(ḡxw′ )∩CG(h̄w
′
)
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where D is a set of CG(ḡ)\G/CG(h̄) double coset representatives with ḡx h̄ ∈O(k̄),
and the inner product on CG(ḡxw′)∩CG(h̄w

′

)≤ CG(k̄) is of θk̄-representations.

6. Example: noncommutative fusion rules

Noncommutative fusion rules for cocentral abelian extensions are not rare: choose
L = 1, σ and τ trivial, and any nonabelian G, for instance. Also, see [Kosaki et al.
1997; Nikshych 1998; Zhu 2001]. We give here an example with σ , τ trivial, but
nontrivial action of L . Let G be the dihedral group of order 18, and let

L ≤ Aut D9 ∼= Z9 o Z∗9.

Namely, L = 〈3〉×〈4〉 ∼=Z3×Z3. [The first factor of L is with respect to addition,
the second, multiplication.] If we let G = 〈x, y | x2

= y9
= e, yx = xy−1

〉, then

(xc yd) ↼ (a, b) := xc yac+bd .

We choose L-orbit representatives S = {e, y3, y6, y, y2, x, xy, xy2
} with their re-

spective stabilizers. Since L is abelian, χ (`)(g,ϕ) = χ(g,ϕ) for all ` ∈ L . Note that in
the decomposition of the product of orbits, we have

O(x)O(y)= 3O(xy) and O(y)O(x)= 3O(xy2),

which suffices to guarantee noncommutative fusion rules.

Theorem 6.1. Let M(g, α) denote the irreducible representation of (FG)∗#(FL)
induced from α, an irreducible representation of Lg for g ∈ S. The first five rules
are commutative.

i. M(s, α)⊗M(t, β)= M(st, α⊗β) for s, t ∈ 〈y3
〉.

ii. M(s, α)⊗M(g, β)= M(g, α ↓Lg ⊗β) for s ∈ 〈y3
〉, g ∈ {y, y2, x, xy, xy2

}.

iii. M(g, α)⊗M(g, β)= 3M(h, α⊗β) if {g, h} = {y, y2
}.

iv. M(y, α)⊗M(y2, β)=
⊕

s∈〈y3〉

⊕
γ↓L y=α⊗β

M(s, γ ).

v. M(g, α)⊗M(g, β)=
⊕

s∈〈y3〉

⊕
γ↓Lg=α⊗β

M(s, γ ) for g ∈ {x, xy, xy2
}.

The rest of the list holds for all α, β, δ, ε, ζ, η, µ, ν.

vi. M(y, α)⊗M(x, β)=
⊕
all γ

M(xy2, γ )= M(x, δ)⊗M(y2, ε)

= M(y2, ζ )⊗M(xy, η)= M(xy, µ)⊗M(y, ν).
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vii. M(y, α) ⊗ M(xy, β) =
⊕
all γ

M(x, γ )= M(xy, δ)⊗M(y2, ε)

= M(y2, ζ )⊗M(xy2, η)= M(xy2, µ)⊗M(y, ν).

viii. M(y, α)⊗M(xy2, β)=
⊕
all γ

M(xy, γ )= M(xy2, δ)⊗M(y2, ε)

= M(y2, ζ )⊗M(x, η)= M(x, µ)⊗M(y, ν).

ix. M(x, α) ⊗ M(xy, β) =
⊕
all γ

M(y, γ )= M(xy, δ)⊗M(xy2, ε)

= M(xy2, ζ )⊗M(x, η).

x. M(x, α)⊗M(xy2, β)=
⊕
all γ

M(y2, γ )= M(xy2, δ)⊗M(xy, ε)

= M(xy, ζ )⊗M(x, η).

Proof. Straightforward. �
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