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We define a new category of nonarchimedean analytic spaces over a complete
discretely valued field, which we call uniformly rigid. It extends the category of
rigid spaces, and it can be described in terms of bounded functions on products of
open and closed polydiscs. We relate uniformly rigid spaces to their associated
classical rigid spaces, and we transfer various constructions and results from
rigid geometry to the uniformly rigid setting. In particular, we prove an analog
of Kiehl’s patching theorem for coherent ideals, and we define the uniformly
rigid generic fiber of a formal scheme of formally finite type. This uniformly
rigid generic fiber is more intimately linked to its model than the classical rigid
generic fiber obtained via Berthelot’s construction.
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1. Introduction

Let K be a nonarchimedean field, and let R be its valuation ring, equipped with the
valuation topology. Grothendieck had suggested that rigid spaces over K should
be viewed as generic fibers of formal schemes of topologically finite (tf) type over
R, that is, of formal schemes which are locally isomorphic to formal spectra of
quotients of strictly convergent power series rings in finitely many variables

R〈T1, . . . , Tn〉.

He envisaged that rigid spaces should, in a suitable sense, be obtained from these
formal schemes by tensoring over R with K . In accordance with this point of view,
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Berthelot construction.
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342 Christian Kappen

there is a generic fiber functor

rig :
(

formal R-schemes
of locally tf type

)
→ (rigid K -spaces)

characterized by the property that it maps affine objects to affinoid spaces such
that, on the level of functions, it corresponds to the extension of scalars functor
·⊗R K . This functor was more closely studied first by Raynaud and later by Bosch
and Lütkebohmert; they proved that it induces an equivalence between the category
of quasiparacompact and quasiseparated rigid K -spaces and the category of quasi-
paracompact admissible formal R-schemes, localized with respect to the class of
admissible blowups [Raynaud 1974; Bosch and Lütkebohmert 1993a; Bosch 2005,
Theorem 2.8/3].

From now on, let us assume that the absolute value on K is discrete, so that
R is noetherian. Berthelot has extended the generic fiber functor to the class of
formal R-schemes of locally formally finite (ff) type, which are locally isomorphic
to formal spectra of topological quotients of mixed formal power series rings in
finitely many variables

R[[S1, . . . , Sm]]〈T1, . . . , Tn〉,

where an ideal of definition is generated by the maximal ideal of R and by the
Si ; see [Rapoport and Zink 1996, Section 5.5; Berthelot 1996, 0.2; de Jong 1995,
7.1–7.2]. This extension of rig is characterized by the property that it maps admis-
sible blowups to isomorphisms, where a blowup is called admissible if it is defined
by an ideal that locally contains a power of a uniformizer of R; see [Temkin 2008,
2.1]. The extended rig functor no longer maps affine formal schemes to affinoid
spaces; for example, the generic fiber of the affine formal R-scheme Spf R[[S]] is
the open rigid unit disc over K , which is not quasicompact.

While Raynaud’s generic fiber functor is precisely described in terms of admis-
sible blowups, Berthelot’s extended generic fiber functor is less accessible: for
example, let us consider an unbounded function f on the open rigid unit disc D1

K .
The resulting morphism ϕ from D1

K to the rigid projective line does not extend to
models of ff type; indeed, the domain of a model of ϕ cannot be quasicompact, for
otherwise f would be bounded. In particular, there exists no admissible blowup
of Spf R[[S]] admitting an extension of ϕ, and the schematic closure of the graph
of ϕ in the fibered product of Spf R[[S]] and P1

R over Spf R does not exist. This
phenomenon presents a serious obstacle if one tries for example to develop a theory
of Néron models of ff type.

The main object of this article is to present a new category of nonarchimedean
analytic spaces, the category of uniformly rigid spaces, which are better adapted
to formal schemes of locally ff type than Tate’s rigid analytic spaces. Intuitively



Uniformly rigid spaces 343

speaking, uniformly rigid spaces and their morphisms are described in terms of
bounded functions on finite products of open and closed unit discs. Like rigid K -
spaces, uniformly rigid K -spaces are locally ringed G-topological K -spaces, where
the letter G indicates that the underlying set of physical points is not equipped with
a topology, but with a Grothendieck topology. Let us give a brief overview of our
definitions and results.

We say that a K -algebra is semiaffinoid if it is obtained from an R-algebra of
ff type via the extension of scalars functor · ⊗R K . In other words, semiaffinoid
K -algebras are quotients of K -algebras of the form

(R[[S1, . . . , Sm]]〈T1, . . . , Tn〉)⊗R K .

We define the category of semiaffinoid K -spaces as the opposite of the category
of semiaffinoid K -algebras, where a morphism of semiaffinoid K -algebras is sim-
ply a K -algebra homomorphism. Semiaffinoid K -spaces play the role of “build-
ing blocks” for uniformly rigid K -spaces, such that we effectively implement
Grothendieck’s original point of view in the ff type situation. Semiaffinoid K -
algebras can be studied via the universal properties of the free semiaffinoid K -
algebras, which we establish in Theorem 2.13.

We define a G-topology on the category of semiaffinoid K -spaces equipped with
its physical points functor by considering compositions of admissible blowups,
completion morphisms and open immersions on flat affine models of ff type; see
Definitions 2.22 and 2.31. These formal-geometric constructions define semiaffi-
noid subdomains, which may be regarded as nested rational subdomains involving
strict or nonstrict inequalities in semiaffinoid functions. In contrast to the classical
rigid case, we cannot avoid nested constructions; this is essentially due to the fact
that admissible blowups defined on open formal subschemes need not extend; see
Remark 2.23. Just like in rigid geometry, the disconnected covering of the closed
semiaffinoid unit disc sSp K 〈S〉 by the open semiaffinoid unit disc sSp K [[S]] and
the semiaffinoid unit circle sSp K 〈S, S−1

〉 is not admissible in the uniformly rigid
G-topology; see Example 2.42. In particular, contrary to the rigid-analytic situa-
tion, finite coverings of semiaffinoid spaces by semiaffinoid subdomains need not
be admissible.

Using methods from formal geometry, we prove a uniformly rigid acyclicity
theorem, which in particular implies the following:

Theorem 1.1 (2.41). The presheaf of semiaffinoid functions is a sheaf for the uni-
formly rigid G-topology.

The resulting functor from the category of semiaffinoid K -spaces to the category
of locally G-ringed K -spaces is fully faithful; hence global uniformly rigid K -
spaces can be defined; see Definition 2.46. They can be constructed by means of
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standard gluing techniques; this is possible because uniformly rigid spaces satisfy
the properties (G0)–(G2) listed in [Bosch et al. 1984, p. 339]. It follows that the
category of uniformly rigid K -spaces admits fibered products and that there is a
natural generic fiber functor urig from the category of formal R-schemes of lo-
cally ff type to the category of uniformly rigid K -spaces. The final picture can be
described as follows:

Theorem 1.2 (Section 2D1). Let RigK , uRigK and FFR denote the categories of
rigid K -spaces, of uniformly rigid K -spaces and of formal R-schemes of locally ff
type respectively. Let moreover Rig′K ⊆RigK be the full subcategory of rigid spaces
that are quasiparacompact and quasiseparated. There is a diagram of functors

Rig′K

uRigK
r -

�

ur

⊃

RigK

?

∩

FFR

rig

-
�

urig

commuting up to isomorphism, where

(i) the functor r is defined by applying the functor rig locally to models of ff type,
where

(ii) the functor ur is defined by applying urig to a global Raynaud-type model of
locally tf type

and where the following holds:

(i) The functor ur is a full embedding.

(ii) The functor r is faithful, yet not fully faithful.

(iii) For each X ∈ uRigK , there is a comparison morphism compX : X
r
→ X that is

final among all morphisms of locally G-ringed K -spaces from rigid K -spaces
to X ; it is a bijection on physical points, and it induces isomorphisms of stalks.

For X ∈ uRigK , we say that X r is the underlying rigid space of X . Conversely,
for Y ∈ Rig′K we say that Y ur is the Raynaud-type uniformly rigid structure on Y .
Via the comparison morphisms, uniformly rigid spaces and their underlying rigid
spaces are locally indistinguishable; we may thus view a uniformly rigid space as a
rigid space equipped with an additional global uniform structure which is encoded
in terms of a coarser G-topology and a smaller sheaf of analytic functions. Let us
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point out that the open rigid unit disc carries two canonical uniform structures, the
one given by a Raynaud model of locally tf type and the one given by the canonical
affine model Spf R[[S]] of ff type. The corresponding uniformly rigid spaces are
distinct, since one is not quasicompact while the other one is quasicompact. The
fact that r is not fully faithful is seen by the example of an unbounded function f on
the rigid open unit disc which we considered above: The rigid-analytic morphism
ϕ defined by f does not extend to a morphism of uniformly rigid spaces from
(Spf R[[S]])urig to (P1,an

K )ur.
In Section 3, we study coherent modules on uniformly rigid K -spaces. We

prove the existence of schematic closures of coherent submodules; see Theorem 3.5.
Using the resulting models of coherent ideals, we prove the following analog of
Kiehl’s theorem A in rigid geometry [Kiehl 1967]:

Theorem 1.3 (3.6). Coherent ideals on semiaffinoid spaces are associated to their
ideals of global functions.

In particular, closed uniformly rigid subspaces are well-behaved; see Proposition
3.11. Using fibered products and closed uniformly rigid subspaces, we define the
notion of separatedness for uniformly rigid K -spaces, and we define the graph of
a morphism f : Y → X of uniformly rigid K -spaces whose target is separated;
see Section 3A1. Using Theorem 3.5, we show that if X and Y are flat formal
R-schemes of locally ff type such that Xurig is separated and if f :Yurig

→ Xurig

is a morphism of uniformly rigid generic fibers, then the schematic closure of the
graph of f in Y×X exists. As we have noted above, the corresponding statement
is false if urig is replaced by Berthelot’s generic fiber functor rig.

Semiaffinoid algebras and some associated locally G-ringed K -spaces have al-
ready been studied in [Lipshitz and Robinson 2000], where the terminology quasi-
affinoid is used. The approach in that book includes the situation where R is not
discrete and where the machinery of locally noetherian formal geometry is not
available. However, no global theory is developed there, and the connection to
formal geometry is not discussed. The proof of Theorem 2.13 in the case of a
possibly nondiscrete valuation, given in [Lipshitz and Robinson 2000, I.5.2.3], is
technically more involved, and it relies upon methods different from ours. The
definition of the G-topology in [ibid., III.2.3.2] is less explicit than our definition,
so that a deep quantifier elimination theorem [ibid., II, Theorem 4.2] is needed in
order to prove an acyclicity theorem. Our approach avoids quantifier elimination.

It is unclear how to reflect uniformly rigid structures on the level of Berkovich’s
analytic spaces or on the level of Huber’s analytic adic spaces; see Section 4. Semi-
affinoid K -algebras are equipped with unique K -Banach algebra structures, so that
one may consider their valuation spectra. For instance, the spectrum M(R[[S]]⊗R K )
is the closure of the Berkovich open unit disc within the Berkovich closed unit
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disc; it is obtained by adding the Gauss point. However, inclusions of semiaffinoid
subdomains need not induce injective maps of valuation spectra, so the formation
of the valuation spectrum does not globalize. This corresponds to the fact that in
the ff type situation, the functor · ⊗R K does not commute with complete localiza-
tion. Nonetheless, we suggest that a uniformly rigid K -space X should be viewed
as a compactification of its underlying rigid space X r. This point of view might
be useful in order to obtain a better understanding of the quasicompactifications
considered in [Strauch 2008, 3.1] and in [Huber 2007, 3]; it should be further
developed within the framework of topos theory. We propose the study of the
uniformly rigid topos as a topic for future research.

The author has used uniformly rigid spaces in his doctoral thesis [Kappen 2009],
in order to lay the foundations for a theory of formal Néron models of locally ff
type. The search for such a theory was strongly motivated by work of C.-L. Chai
[2003], who had suggested that Néron models of ff type could be used to study
the base change conductor of an abelian variety with potentially multiplicative
reduction over a local field. Chai and the author are currently working on further
developing the methods of [Chai 2003] within the framework of uniformly rigid
spaces.

2. Uniformly rigid spaces

Let R be a discrete valuation ring with residue field k and fraction field K , and let
π ∈ R be a uniformizer.

2A. Formal schemes of formally finite type. A morphism of locally noetherian
formal schemes is said to be of locally formally finite (ff) type if the induced mor-
phism of smallest subschemes of definition is of locally finite type. Equivalently,
any induced morphism of subschemes of definition is of locally finite type. A
morphism of locally noetherian formal schemes is called of ff type if it is of locally
ff type and quasicompact. If A is a noetherian adic ring and if B is a noetherian adic
topological A-algebra, then Spf B is of ff type over Spf A if and only if B is a topo-
logical quotient of a mixed formal power series ring A[[S1, . . . , Sm]]〈T1, . . . , Tn〉,
where A[[S1, . . . , Sm]] carries the a+ (S1, . . . , Sm)-adic topology for any ideal of
definition a of A [Berkovich 1996, Lemma 1.2]. In this case, we say that the
topological A-algebra B is of ff type. Morphisms of locally ff type are preserved
under composition, base change and formal completion.

We say that an R-algebra is of formally finite (ff) type if it admits a ring topology
such that it becomes a topological R-algebra of ff type in the above sense, where
R carries the π -adic topology. Equivalently, an R-algebra is of ff type if it admits
a presentation as a quotient of a mixed formal power series ring, as above. If S
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and T are finite systems of variables and if ϕ : R[[S]]〈T 〉 → A is a surjection, then
the ϕ-image of (S, T ) will be called a formal generating system for A.

Lemma 2.1. If A is a topological R-algebra of ff type, then the biggest ideal
of definition of A coincides with the Jacobson radical of A. Moreover, any R-
homomorphism of topological R-algebras of ff type is continuous.

Proof. Let a denote the biggest ideal of definition of A; then a is contained in every
maximal ideal of A since A is a-adically complete. On the other hand, A/a is a
Jacobson ring since it is of finite type over the residue field k of R; it follows that a

coincides with the Jacobson radical of A, as claimed. In particular, the topology on
A is determined by the ring structure of A. Let now A→ B be a homomorphism
of R-algebras of ff type; by what we have seen so far, it suffices to see that ϕ
is continuous for the Jacobson-adic topologies. However, for any maximal ideal
n ⊆ B, the preimage m := n ∩ A of n in A is maximal, since k ⊆ A/m ⊆ B/n,
where B/n is a finite field extension of k because the quotient B/jac B is of finite
type over k. �

In particular, the topology on A an be recovered from the ring structure on A,
and the category of R-algebras of ff type is canonically equivalent to the category
of topological R-algebras of ff type. Lemma 2.1 implies that the category of R-
algebras of ff type admits amalgamated sums ⊗̂.

2B. Semiaffinoid algebras. We define semiaffinoid K -algebras as the generic fibers
of R-algebras of ff type, and we define the category of semiaffinoid K -spaces as
the dual of the category of semiaffinoid K -algebras:

Definition 2.2. Let A be a K -algebra.

(i) An R-model of A is an R-subalgebra A ⊆ A such that the natural homomor-
phism A⊗R K → A is an isomorphism.

(ii) The K -algebra A is called semiaffinoid if it admits an R-model of ff type.
(iii) A homomorphism of semiaffinoid K -algebras is a homomorphism of under-

lying K -algebras.
(iv) The category of semiaffinoid K -spaces is the dual of the category of semi-

affinoid K -algebras. If A is a semiaffinoid K -algebra, we write sSp A to
denote the corresponding semiaffinoid K -space, and if ϕ : sSp B→ sSp A is a
morphism of semiaffinoid K -spaces, we write ϕ∗ to denote the corresponding
K -algebra homomorphism.

By Definition 2.2(i) above, any R-model of a K -algebra is flat over R.
There exists no general analog of the Noether normalization theorem for semi-

affinoid K -algebras [Lipshitz and Robinson 2000, I.2.3.5]. However, if A is a semi-
affinoid K -algebra admitting a local R-model of ff type, then there exist finitely
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many variables S1, . . . , Sm and a finite K -monomorphism

R[[S1, . . . , Sm]]⊗R K ↪→ A.

Indeed, if A is a local R-model of ff type for A with maximal ideal m and if
s0, . . . , sm is a system of parameters for A such that s0 = π , then there exists a
unique continuous R-homomorphism ϕ : R[[S1, . . . , Sm]] → A sending Si to si , for
1≤ i ≤ m. If r denotes the maximal ideal of R[[S1, . . . , Sm]], then A/rA is k-finite
because A/mA is k-finite and because r is m-primary. By the formal version of
Nakayama’s Lemma, cf [Eisenbud 1995, Example 7.2], it follows that ϕ is finite;
here we use that R[[S1, . . . , Sm]] is r-adically complete and that A is r-adically
separated. Since R[[S1, . . . , Sm]] and A have the same dimension, it follows that ϕ
is finite, so we obtain the desired finite monomorphism by extending scalars from
R to K .

2B1. The specialization map. The following statement may be compared with
[de Jong 1995, 7.1.9]:

Lemma 2.3. Let A be a semiaffinoid K -algebra, and let A ⊆ A be an R-model of
ff type. If m is a maximal ideal in A, then

spA(m) :=
√
(A∩m)+π A

is a maximal ideal in A, and A/m is a finite extension of K .

Proof. Let us write p := m∩ A; then (A/p)π = A/m is a field, and by the Artin–
Tate theorem [Grothendieck 1964, 0.16.3.3] it follows that A/p is a semilocal ring
of dimension ≤ 1. Moreover, A/p is of ff type over R and, hence, π-adically
complete. Since A/p ⊆ A/m is R-flat and since (A/p)π is local, it thus follows
from Hensel’s Lemma that (A/p)/π(A/p) is local as well [Bourbaki 1998, III.4.6
Proposition 8]. Since pA =m, the class of π in A/p is nonzero, and so the local
noetherian ring (A/p)/π(A/p) is zero-dimensional. Thus its quotient modulo its
nilradical is a field, and it follows that the radical of p+π A is maximal in A, as
desired.

To prove that A/m is finite over K , it suffices to show that A/p is finite over
R. Since R is π-adically complete and since A/p is π-adically separated, it thus
suffices to show that A/(p+ π A) is finite over k [Eisenbud 1995, Example 7.2].
The ring A/(p+π A) is noetherian; hence its nilradical is nilpotent, and it thereby
suffices to see that the quotient of A modulo the maximal ideal

√
p+π A is k-

finite. Since A is of ff type over R, since maximal ideals are open and since field
extensions of finite type are finite, the desired statement follows. �

Definition 2.4. If A is a semiaffinoid K -algebra, we call |X | :=Max A the set of
physical points of its corresponding semiaffinoid K -space X . We will often write
X instead of |X | if no confusion is likely to result.
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Remark 2.5. Lemma 2.3 implies that a morphism ϕ : sSp A→ sSp B induces a
map on sets of physical points such that for R-models of ff type A and B with
ϕ∗(B)⊆ A, the specialization maps spA and spB are compatible with respect to ϕ
and the induced morphism ϕ : Spf A→ Spf B. This functoriality implies that spA is
surjective onto the set of maximal ideals in A. Indeed, let r⊆ A be a maximal ideal,
and let A|r denote the r-adic completion of A; then Max (A|r⊗R K ) is nonempty,
and any element in this set maps to an element in Max (A) that maps to r under
spA. Let us moreover remark that for x ∈ X = sSp A with specialization n ⊆ A,
the valuation ring of the residue field of A in x coincides with the integral closure
of An in that residue field, so that the intersection of An with the valuation ideal is
precisely nAn.

2B2. Power-boundedness and topological quasinilpotency. Let X be a semi-affinoid
K -space with corresponding semiaffinoid K -algebra A. By Lemma 2.3, A/m is
K -finite for m⊆ A maximal; hence the discrete valuation on K extends uniquely
to A/m, so we can define | f (x)| ∈ R≥0 for any f ∈ A, x ∈ X .

Definition 2.6. An element f ∈ A is called power-bounded if | f (x)| ≤ 1 for all
x ∈ X . It is called topologically quasinilpotent if | f (x)|< 1 for all x ∈ X . We let
Å ⊆ A denote the R-subalgebra of power-bounded functions, and we let Ǎ ⊆ Å
denote the ideal of topologically quasinilpotent functions.

For example, S ∈ A = R[[S]] ⊗R K is topologically quasinilpotent, while the
supremum of the absolute values |S(x)|, with x ranging over X , is equal to 1.
Thus we see that the classical maximum principle fails for semiaffinoid K -algebras.
However, the maximum principle holds if we let x vary in the Berkovich spectrum
M(A) of A, where A is equipped with its unique K -Banach algebra topology; see
Section 4. Indeed, this follows trivially from the fact that M(A) is compact.

Remark 2.7. If A is a nonreduced semiaffinoid K -algebra, then Å cannot be of
ff type over R: If f ∈ A is a nonzero nilpotent function, then f ∈ Å is infinitely
π -divisible in Å, but R-algebras of ff type are π -adically separated.

Remark 2.8. If A ⊆ A is an R-model of ff type, then A ⊆ Å, and Ǎ ∩ A ⊆ A is
the biggest ideal of definition. Indeed, by Lemma 2.1 and its proof, the biggest
ideal of definition of A is given by the Jacobson radical, and hence it suffices to
observe that for any f ∈ A and any x ∈ sSp A with specialization n⊆ A, we have
| f (x)| ≤ 1, where | f (x)|< 1 if and only if f ∈ n. This however is clear from the
final statement in Remark 2.5.

For the notion of normality for formal R-schemes of locally ff type, we refer to
the discussion in [Conrad 1999, 1.2], which is based on the fact that R-algebras
of ff type are excellent. This excellence result is a consequence of [Valabrega
1975, Proposition 7] if R has equal characteristic, and it follows from [Valabrega
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1976, Theorem 9] if R has mixed characteristic. In the following, excellence of
R-algebras of ff type will be used without further comments.

The following result is fundamental:

Proposition 2.9. Let A be a semiaffinoid K -algebra. If A admits a normal R-
model of ff type, then this model coincides with Å.

Proof. Let A be a normal R-model of ff type for A. By [de Jong 1995, 7.1.8],
we may view A as a subring of the ring of global functions on (Spf A)rig, and by
[de Jong 1995, 7.4.1; 1998], A coincides with the ring of power-bounded global
functions under this identification. �

Corollary 2.10. Let A be a semiaffinoid K -algebra, and let A ⊆ A be an R-model
of ff type; then the inclusion A ⊆ Å is integral. If moreover A is reduced, then this
inclusion is finite.

Proof. Let ϕ : A→ B denote the normalization of A. Then ϕ is finite since A
is excellent, and hence B is of ff type over R. Extension of scalars yields an
induced homomorphism of semiaffinoid K -algebras ϕ : A→ B. Since ϕ factors
through an injective R-homomorphism A/rad(A) ↪→ B, since K is R-flat and since
rad(A)= rad(A)A, we see that ϕ factors through an injective K -homomorphism
A/rad(A) ↪→ B. By Proposition 2.9, B coincides with the ring of power-bounded
functions in B. Let us consider a power-bounded function f in A; then ϕ( f ) ∈ B.
Since ϕ is finite, there exists an integral equation P(T )∈ A[T ] for ϕ( f ) over A. By
the factorization of ϕ mentioned above, we conclude that P( f ) ∈ A is nilpotent. If
s ∈N is an integer such that P( f )s = 0; then P(T )s ∈ A[T ] is an integral equation
for f over A. Finally, if A is reduced, then ϕ is injective, and hence Å is an A-
submodule of the finite A-module B. Since A is noetherian, it follows that Å is a
finite A-module. �

We immediately obtain the following:

Corollary 2.11. The ring of power-bounded functions in a reduced semiaffinoid
K -algebra is a canonical R-model of ff type containing any other R-model of ff
type.

We conclude that any R-model of ff type can be enlarged so that it contains any
given finite set of power-bounded functions:

Corollary 2.12. Let A be an R-model of ff type in a semiaffinoid K -algebra A,
and let M ⊆ A be a finite set of power-bounded functions. Then the A-subalgebra
A[M] generated by M over A is finite over A and, hence, an R-model of ff type for
A.

Proof. The ring extension A ⊆ A[M] is finite since it is generated by finitely many
integral elements. �
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2B3. Free semiaffinoid algebras. Using the results of Section 2B2, we can now
establish the universal properties of free semiaffinoid K -algebras; these are semi-
affinoid K -algebras of the form R[[S]]〈T 〉⊗R K , for finite systems of variables S
and T :

Theorem 2.13. Let m and n be natural numbers. The semiaffinoid K -algebra
R[[S1, . . . , Sm]]〈T1, . . . , Tn〉 ⊗R K , together with the pair of tuples of functions
((S1, . . . , Sm), (T1, . . . , Tn)), is initial among all semiaffinoid K -algebras A equip-
ped with a pair (( f1, . . . , fm), (g1, . . . , gn)) satisfying the property that the g j are
power-bounded and that the fi are topologically quasinilpotent.

Proof. Let us write S and T to denote the systems of the Si and the T j . By
Corollary 2.12, A admits an R-model of ff type A containing the fi and the g j .
By Remark 2.8, the fi are topologically nilpotent in A; hence there exists a unique
R-homomorphism ϕ : R[[S]]〈T 〉 → A sending Si to fi and T j to g j for all i and j ,
and so ϕ := ϕ⊗R K is a K -homomorphism with the desired properties. It remains
to show that these properties determine ϕ uniquely. Let ϕ′ : R[[S]]〈T 〉⊗R K → A
be any K -homomorphism sending Si to fi and T j to g j for all i and j , and let us
set A′ := ϕ′(R[[S]]〈T 〉) which is of ff type over R. If ϕ = ϕ′, then A′ ⊆ A. On the
other hand, to show that ϕ = ϕ′, it suffices to see that, after possibly enlarging A,
we have A′ ⊆ A, in virtue of the universal property of R[[S]]〈T 〉. If A is reduced,
Corollary 2.10 says that we may set A equal to the ring of power-bounded functions
in A; in this case the inclusion A′ ⊆ A is obvious. In the general case, we let N
denote the nilradical of A; then, by what we have shown so far,

A′/(A′ ∩ N ) ⊆ A/(A∩ N ) (∗)

within Å/N . The ideal A′ ∩ N is finitely generated since A′ is noetherian; after
enlarging A using Corollary 2.12, we may thus assume that A contains a generating
system n1, . . . , nr of A′∩ N . The inclusion (∗) shows that every element a′ ∈ A′ is
the sum of an element a ∈ A and a linear combination

∑r
i=1 a′i ni with coefficients

a′i ∈ A′. Let us write the coefficients a′i in the analogous way, and let us iterate
the procedure. Using the fact that the ni lie in A, the only summands possibly
not lying in A after s-fold iteration are multiples of products of the ni involving
s factors. Since the ni are nilpotent, these summands are zero for s big enough;
hence A′ ⊆ A, as desired. �

With the universal property of the free semiaffinoid K -algebras at hand, we can
now describe the category of semiaffinoid K -algebras in terms of the category of
R-models of ff type. Let us recall that a formal blowup in the sense of [Temkin
2008, 2.1] is called admissible if it can be defined by a π-adically open coherent
ideal.

Corollary 2.14. Let ϕ : A→ B be a homomorphism of semiaffinoid K -algebras.
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(i) Let A1, A2 be R-models of ff type for A. If A2 contains a formal generating
system of A1, then A1 is contained in A2.

(ii) An inclusion of R-models of ff type for A corresponds to a finite admissible
blowup of associated formal spectra.

(iii) Let A ⊆ A, B ⊆ B be R-models of ff type such that there exists a formal
generating system of A mapping to B via ϕ. Then ϕ(A)⊆ B.

(iv) Let A be an R-model of ff type for A. There exists an R-model of ff type B for
B such that ϕ(A) ⊆ B. Moreover, if B ′ is any R-model of ff type for B, we
can choose B such that B ′ ⊆ B.

Proof. To prove the first statement, let us fix a formal generating system ( f, g) of A1

that is contained in A2. The components of f are topologically quasinilpotent in A;
since A2 is an R-model of ff type for A, they are topologically nilpotent in A2. Let
α : R[[S]]〈T 〉 → A1 and β : R[[S]]〈T 〉 → A2 be the associated R-homomorphisms,
where α is surjective because ( f, g) formally generates A1. By Theorem 2.13,
α⊗R K and β⊗R K coincide as homomorphisms from R[[S]]〈T 〉⊗R K to A, so
we conclude that A1 ⊆ A2: given a ∈ A1, we choose an α-preimage a′ of a; then
a = α(a′)= β(a′) ∈ A2.

To prove the second claim, let A1 ⊆ A2 be an inclusion of R-models of ff type
for A, and let M ⊆ A2 be a finite set whose elements are the components of a
formal generating system for A2 over R. Then by Corollary 2.12, A1[M] ⊆ A2 is
an R-model of ff type for A which is finite over A1. By statement (i), A2 = A1[M]
and hence A2 is finite over A1. Arguing exactly as in the proof of [Bosch and
Lütkebohmert 1993a, 4.5], we see that A1 ⊆ A2 corresponds to an admissible
formal blowup.

To prove part (iii), let us choose a formal generating system ( f, g) of A such that
the components of ϕ( f ) and ϕ(g) are contained in B. The components of ϕ( f )
are topologically nilpotent in B since they are topologically quasinilpotent in B.
Let α : R[[S]]〈T 〉 → A and β : R[[S]]〈T 〉 → B be the R-homomorphisms defined
by ( f, g) and (ϕ( f ), ϕ(g)) respectively; then α is surjective, and Theorem 2.13
shows that β⊗R K coincides with ϕ ◦ (α⊗R K ). As is the proof of statement (i),
we conclude that ϕ(A)⊆ B.

To prove statement (iv), let us choose a formal generating system ( f, g) of A.
The components of ϕ( f ) are topologically quasinilpotent, and the components of
ϕ(g) are power-bounded in B. According to Corollary 2.12, there exists an R-
model B of ff type for B containing B ′ and the components of ϕ( f ) and ϕ(g); by
statement (iii), ϕ(A)⊆ B, as desired. �

We can now show that R-models of ff type for affinoid K -algebras are automat-
ically of tf type:
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Corollary 2.15. Let A be an affinoid K -algebra, and let A ⊆ A be an R-model of
ff type. Then A is of tf type over R.

Proof. Let A′ be an R-model of tf type for A, and let A′′ be an R-model of ff type
for A containing both A and A′; such an A′′ exists by Corollary 2.14(iv) applied
to the identity on A. By Corollary 2.14(ii), A′′ is finite over A′ and, hence, an
R-algebra of tf type. After replacing A′ by A′′, we may thus assume that A ⊆ A′.
Again by Corollary 2.14(ii), this inclusion is finite. We now mimic the proof of the
classical Artin–Tate lemma: Let a1, . . . , am be a system of topological generators
of A′ over R, and for each i let Pi ∈ A[T ] be an integral equation for ai over A. Let
b1, . . . , bn be the coefficients of the Pi in some ordering. Since the R-algebra A is
of ff type, it is π -adically complete; hence there exists a unique R-homomorphism
R〈T1, . . . , Tn〉 → A sending T j to b j for 1≤ j ≤ n. Let B ⊆ A denote its image;
then B is an R-algebra of tf type. Since the ai topologically generate A′ over R,
they also topologically generate A′ over B. The ai are, by construction, integral
over B; hence A′ is in fact finite over B. Since B is noetherian, the B-submodule
A of A′ is finite as well, and it follows that A is of tf type as a B-algebra. We
conclude that A is of tf type over R. �

2B4. Amalgamated sums.

Proposition 2.16. The category of semiaffinoid K -algebras admits amalgamated
sums. More precisely speaking, if ϕ1 : A→ B1 and ϕ2 : A→ B2 are homomor-
phisms of semiaffinoid K -algebras, then the colimit of the resulting diagram is
represented by (B1⊗̂A B2)⊗R K , where A and the Bi are R-models of ff type for
A and the Bi respectively such that ϕ(A)⊆ B1, B2.

Proof. By Corollary 2.14(iv), we may choose R-models A, B1 and B2 as in the
statement of the proposition. Let C be a semiaffinoid K -algebra, and for i = 1, 2 let
τi : Bi→C be a K -homomorphism such that τ1◦ϕ1= τ2◦ϕ2. By Corollary 2.14(iv),
there exists an R-model C of ff type for C such that τi (Bi )⊆ C for i = 1, 2; we
let τ i : Bi → C denote the induced R-homomorphism. Then τ 1 ◦ ϕ1

= τ 2 ◦ ϕ2
,

since the same holds after inverting π and since π is not a zero divisor in A. By
the universal property of the complete tensor product in the category of R-algebras
of ff type, there exists a unique R-homomorphism τ : B1⊗̂A B2 → C such that
τ i = τ ◦ σ i for i = 1, 2, where σ i : Bi → B1⊗̂A B2 is the i th coprojection. Setting
τ := τ ⊗R K and σi := σ i ⊗R K , we obtain τi = τ ◦σi for i = 1, 2. We must show
that τ is uniquely determined by this property. Let

τ ′ : (B1⊗̂A B2)⊗R K → C

be any K -homomorphism satisfying τi = τ
′
◦σi for i = 1, 2. By Corollary 2.14(iv),

there exists an R-model C ′ of ff type for C containing C such that τ ′ restricts to
an R-morphism τ ′ : B1⊗̂A B2→ C ′; then τ ′ = τ ′⊗R K . It suffices to show that
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τ ′ coincides with τ composed with the inclusion ι : C ⊆ C ′. For i = 1, 2, the
compositions τ ′ ◦ σ i and ι ◦ τ ◦ σ i coincide after inverting π , hence they coincide
because π is not a zero divisor in Bi , for i = 1, 2. The universal property of
(B1⊗̂A B2, σ 1, σ 2) implies that τ ′ = ι ◦ τ , as desired. �

Passing to the opposite category, we see that the category of semiaffinoid K -
spaces has fibered products.

2B5. The Nullstellensatz.

Proposition 2.17. Semiaffinoid K -algebras are Jacobson rings.

Proof. Any quotient of a semiaffinoid K -algebra is again semiaffinoid; hence it
suffices to show that if A is a semiaffinoid K -algebra and if f ∈ A is a semiaffinoid
function such that f (x)= 0 for all x ∈ sSp A, then f is nilpotent. We may divide
A by its nilradical and thereby assume that A is reduced. Let A be an R-model
of ff type for A, and let X = (Spf A)rig denote the rigid-analytic generic fiber of
Spf A. Since A is excellent, being a localization of the excellent ring A, and since
rigid K -spaces are excellent [Conrad 1999, 1.1], it follows from [de Jong 1995,
Lemma 7.1.9] that the space X is reduced and that we may view A as a subring of
0(X,OX ) such that the value of f in a point x ∈ X agrees with the value of f in
the corresponding maximal ideal of A. Since f (x)= 0 for all x ∈ X , we see that
f = 0 as a function on X and, hence, in A. �

2C. Semiaffinoid spaces.

2C1. The rigid space associated to a semiaffinoid K -space. Let X = sSp A be a
semiaffinoid K -space. An affine flat formal model of ff type for X is an affine flat
formal R-scheme of ff type X together with an identification of 0(X,OX) with an
R-model of ff type for A. By Definition 2.2, every semiaffinoid K -space admits an
affine flat model of ff type. There is an obvious generic fiber functor urig from the
category of affine flat formal R-schemes of ff type to the category of semiaffinoid
K -spaces, given by

(Spf A)urig
:= sSp(A⊗R K ).

Let X be a flat affine R-model of ff type for X . Berthelot’s construction yields a
rigid K -space X r := Xrig together with a K -homomorphism

ϕ : A→ 0(X r,OX r);

see [de Jong 1995, 7.1.8]. By our discussion in Section 2B1 and by [ibid., 7.1.9]
the homomorphism ϕ induces a bijection |X r

| → |X | and local homomorphisms
Am→ OX r,x which are isomorphisms on maximal-adic completions, where x is
a point of X r and where m ∈Max A is the image of x under the above bijection.
We say that X r is the rigid space associated to X via Berthelot’s construction.



Uniformly rigid spaces 355

It is independent of the choice of X, the pair (X r, ϕ) being characterized by the
following universal property:

Proposition 2.18. Let Y be a rigid K -space, and let ψ : A → 0(Y,OY ) be a
K -algebra homomorphism. There exists a unique morphism of rigid K -spaces
σ : Y → X r such that ψ = 0(σ ]) ◦ϕ.

Proof. Uniqueness of σ follows from the above-mentioned fact that ϕ induces a
bijection of points and isomorphisms of completed stalks; we may thus assume
that Y is affinoid, Y = Sp B. Let A⊆ A be the R-model of ff type corresponding to
X. By Corollary 2.14(iv) and Corollary 2.15, ψ restricts to an R-homomorphism
ψ : A→ B, where B is a suitable R-model of tf type for B; now σ := (Spf ψ)rig

has the required properties. �

If τ : Y→X is a morphism of affine flat formal R-schemes of ff type and if τ urig

denotes the induced morphism of associated semiaffinoid K -spaces, we easily see
that the unique morphism (τ urig)r provided by Proposition 2.18 is given by τ rig.

2C2. Semiaffinoid subdomains. Closed subspaces of semiaffinoid K -spaces are
easily defined in the usual way:

Definition 2.19. A morphism of semiaffinoid K -spaces is called a closed immer-
sion if it corresponds to a surjective homomorphism of semiaffinoid K -algebras.
A closed semiaffinoid subspace of a semiaffinoid K -space is an equivalence class
of closed immersions, where two closed immersions of uniformly rigid K -spaces
i1 : Y1→ X and i2 : Y2→ X are called equivalent if there exists an isomorphism
ϕ : Y1

∼
→ Y2 such that i1 = i2 ◦ϕ.

If A is a semiaffinoid K -algebra and if I ⊆ A is an ideal, then the natural closed
immersion sSp A/I → sSp A is clearly injective onto the set of maximal ideals
containing I . Moreover, if A→ C is a homomorphism of semiaffinoid K -algebras,
then A/I ⊗̂AC = C/I C , because this quotient already represents the amalgamated
sum of C and A/I over A in the category of all K -algebras. In particular, closed
immersions of semiaffinoid K -spaces are stable under the formation of fibered
products.

To define a reasonable structure of G-topological K -space on the set of physical
points of a semiaffinoid K -space X , it is natural to consider subsets U of X that
canonically inherit a structure of semiaffinoid K -space:

Definition 2.20. A subset U in a semiaffinoid K -space X is called representable
if there exists a morphism of semiaffinoid K -spaces to X whose image lies in U
and which is final with this property. Such a morphism is said to represent all
semiaffinoid morphisms to X with image in U .
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Remark 2.21. Here we differ from the terminology used in the author’s PhD the-
sis; there the representable subsets are called semiaffinoid presubdomains [Kappen
2009, Section 1.3.3].

Clearly X and ∅ are representable subsets of X . Copying the proof of [Bosch
et al. 1984, 7.2.2/1], we see that a morphism representing a subset U ⊆ X is
injective with image U and that it induces isomorphisms of infinitesimal neigh-
borhoods of points. Using the existence of fibered products in the category of
semiaffinoid K -spaces, we see that representable subsets are preserved under pull-
back with respect to morphisms of semiaffinoid spaces. The universal property
of representable subsets yields a presheaf OX in semiaffinoid K -algebras on the
category of representable subsets in X .

In the category of affinoid K -spaces, the representable subsets are called affinoid
subdomains [Bosch et al. 1984, 7.2.2/2], and they play a predominant role in the
foundations of rigid geometry. In the uniformly rigid setting, we are unable to
handle general representable subsets; for instance, we do not know whether repre-
sentable subsets induce admissible open subsets via the functor r which is induced
by Berthelot’s construction. We will thus only consider representable subsets of a
specific kind, which we call semiaffinoid subdomains:

Definition 2.22. A subset U of a semiaffinoid K -space X is called a semiaffinoid
subdomain if there is an affine flat R-model of ff type X for X and a finite composi-
tion of open immersions, completion morphisms and admissible blowups ϕ :U→X

such that U is affine and such that U is equal to the image of ϕurig. We say that ϕ
represents U as a semiaffinoid subdomain in X . We say that U is an elementary
semiaffinoid subdomain in X if ϕ can be chosen as an open immersion into an
admissible blowup, and we say that U is a retrocompact semiaffinoid subdomain
in X if ϕ can be chosen as a composition of open immersions and admissible
blowups; such a ϕ is said to represent U as an elementary or as a retrocompact
semiaffinoid subdomain in X respectively.

In Corollary 2.25, we will see that semiaffinoid subdomains are actually repre-
sentable in the sense of Definition 2.20.

Open immersions of formal R-schemes of ff type induce retrocompact open im-
mersions of rigid generic fibers [de Jong 1995, 7.2.2 and 7.2.4(d)]. Moreover, com-
pletion morphisms induce (possibly nonretrocompact) open immersions of rigid
generic fibers [de Jong 1995, 7.2.5], and admissible blowups induce isomorphisms
of rigid generic fibers; see [Nicaise 2009, 2.19]. Hence a semiaffinoid subdomain
U ⊆ X is admissibly open in X r. In particular, the K -homomorphism ϕurig,∗ cor-
responding to ϕurig is flat, since flatness is seen on the level of completions of
stalks. Semiaffinoid subdomains may be regarded as nested rational subdomains
defined in terms of strict or nonstrict inequalities involving semiaffinoid functions.
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For example, the blowup of X = Spf R[[S]] in the ideal (π, S) is covered by the
affine open formal subschemes X1 = Spf (R[[S]]〈V 〉/(πV − S))∼= Spf R〈V 〉 and
X2 = Spf (R[[S]]〈W 〉/(SW − π)); the completion of X1 along the ideal (π, V )
represents the open disc with radius |π | within the open unit disc, while the com-
pletion of X2 along (π,W ) defines the open annulus |π |< |S|< 1.

Remark 2.23. It is necessary to consider iterations as in Definition 2.22 because
if U is an open subset of a flat formal R-scheme of ff type X, then an admissible
blowup of U needs not extend to an admissible blowup of X; see [Kappen 2009,
Example 1.1.3.12].

In order to understand semiaffinoid subdomains, it will be useful to interpret
strict transforms with respect to admissible blowups as pullbacks:

Lemma 2.24. Let Y→ X be a morphism of flat formal R-schemes of locally ff
type, let X′→ X be an admissible blowup, and let Y′→ Y denote the induced
admissible blowup of Y, that is, the strict transform of Y. The resulting square

Y′ - X′

Y
?

- X
?

is cartesian in the category of flat formal R-schemes of locally ff type.

Proof. The universal property of the fibered product in the category of flat formal
R-schemes of locally ff type is readily verified using the universal property of
admissible blowups, the fact that the functor rig maps admissible blowups to iso-
morphisms and the fact that rig is faithful on the category of flat formal R-schemes
of locally ff type. �

In the following, we write ×′ to denote the fibered product in the category of flat
formal R-schemes of locally ff type. It is obtained from the usual fibered product
by dividing out the coherent ideal of π-torsion; in particular, fibered products of
affine flat formal R-schemes of ff type in the category of flat formal R-schemes of
locally ff type are again affine.

As we have just observed, admissible blowups of flat formal R-schemes are
preserved under pullback in the category of flat formal R-schemes of locally ff
type. The same is true for open immersions and completion morphisms, since they
are flat and since they are preserved under pullback in the category of all formal
R-schemes of locally ff type.

Corollary 2.25. Let X be a semiaffinoid K -space, let U ⊆ X be a semiaffinoid
subdomain, and let Y → X be a morphism of semiaffinoid K -spaces.

(i) The preimage of U in Y is a semiaffinoid subdomain in Y .
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(ii) If U→ X represents U as a semiaffinoid subdomain in X and if Y→ X is a
model of Y → X , then the projection U×′X Y→Y represents the preimage
of U as a semiaffinoid subdomain in Y .

(iii) If ϕ represents U as a semiaffinoid subdomain in X , then ϕurig represents all
semiaffinoid morphisms to X with image in U. In particular, semiaffinoid
subdomains are representable in the sense of Definition 2.20.

The analogous statements hold if we consider retrocompact or elementary semiaffi-
noid subdomains and their retrocompact or elementary representations.

Proof. Statement (ii) implies statement (i) in view of Corollary 2.14(iv). To show
(ii), let us consider a factorization

U
ϕn
−→ Un

ϕn−1
−→ · · ·

ϕ1
−→ U1

ϕ0
−→ X (†)

of U→ X, where the ϕi are admissible blowups, open immersions or completion
morphisms. By the remarks preceding this Corollary, we see that the projection
U×′X Y→Y defines a semiaffinoid subdomain in Y . Passing to associated rigid
spaces, we see that this semiaffinoid subdomain coincides with the preimage of U
in Y . To prove (iii), let us write ϕ to denote U→X, and let us assume that the image
of Y → X lies in U ; we must show that Y → X factors uniquely through ϕurig.
Since ϕurig induces an injection of physical points and isomorphisms of completed
stalks, uniqueness follows from Krull’s Intersection theorem. Let us show that the
desired factorization exists. Again, Corollary 2.14(iv) shows that Y → X admits a
model Y→ X with target X. Let us consider the pullback

Yn+1
ψn
−→Yn

ψn−1
−→ · · ·

ψ1
−→Y1

ϕ0
−→Y

of (†) under Y→ X in the category of flat formal R-schemes of locally ff type;
then Yn+1 is affine, and all ψi that are open immersions or completion morphisms
are isomorphisms: Indeed, Y → X factors through U , specialization maps are
surjective onto the sets of closed points of flat formal R-schemes of locally ff type,
and the closed points lie very dense in formal R-schemes of this type. Hence, the
composition Yn+1→Y is a composition of admissible blowups; by [Temkin 2008,
2.1.6], it is an admissible blowup. Since Yn+1 is affine, [Grothendieck 1961b,
3.4.2] shows that Yn+1→ Y is a finite admissible blowup. After applying urig,
we thus obtain the desired factorization of Y → X . �

By Corollary 2.25(iii), every semiaffinoid subdomain may be viewed as a semi-
affinoid K -space in a natural way.

Question 2.26. One may ask whether every representable subset of a semiaffinoid
K -space is in fact a semiaffinoid subdomain. Unfortunately, we do not know the
answer.
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Corollary 2.27. Let X be a semiaffinoid K -space, let U ⊆ X be a semiaffinoid
subdomain, and let X be a flat affine R-model of ff type for X. Then there exists a
representation of U as a semiaffinoid subdomain in X with target X.

Proof. Let U′→ X′ be a representation of U as a semiaffinoid subdomain in X ,
let us write X = sSp A, and let A, A′ ⊆ A be the R-models of ff type of A corre-
sponding to X and X′ respectively. By Corollary 2.14(iv) applied to the identity
on A, there exists an R-model of ff type A′′ of A containing both A and A′. By
Corollary 2.14(ii), the inclusions A ⊆ A′′ and A′ ⊆ A′′ correspond to finite admis-
sible blowups X′′→ X and X′′→ X′. By Corollary 2.25(ii), the strict transform
U′′→ X′′ of U′→ X′ under X′′→ X′ represents U as a semiaffinoid subdomain in
X . Composing this representation with the admissible blowup X′′→ X, we obtain
a representation U′′→ X of U as a semiaffinoid subdomain in X with target X, as
desired. �

Remark 2.28. One can easily show that if U ⊆ X is a semiaffinoid subdomain
and if Y→ X is a model of the inclusion of U into X , then there exists a finite
admissible blowup Y′ of Y such that the composition Y′→ X represents U as a
semiaffinoid subdomain in X ; this fact will not be needed in the following.

Corollary 2.29. Let X be a semiaffinoid K -space.

(i) Let U ⊆ X be a semiaffinoid subdomain, and let V be a subset of U. Then V
is a semiaffinoid subdomain in U if and only if it is a semiaffinoid subdomain
in X.

(ii) The set of semiaffinoid subdomain in X is stable under the formation of finite
intersections.

Proof. If V is semiaffinoid in X , then V = V ∩ U is semiaffinoid in U by
Corollary 2.25(i). Conversely, assume that V is semiaffinoid in U , and let U→ X

be a representation of U as a semiaffinoid subdomain in X . By Corollary 2.27,
there exists a representation V→ U of V as a semiaffinoid subdomain in U ; the
composition V→ U→ X represents V as a semiaffinoid subdomain in X . This
settles the first statement. To show (ii), let us consider two semiaffinoid subdomains
U and V in X . By Corollary 2.25(i), U ∩ V is a semiaffinoid subdomain in U ; by
part (i), U ∩ V is thus a semiaffinoid subdomain in X . �

These results obviously remain true if we only consider retrocompact semi-
affinoid subdomains instead of general semiaffinoid subdomains. Similarly, el-
ementary semiaffinoid subdomains are preserved under pullback with respect to
morphisms of semiaffinoid spaces. However, if U is an elementary semiaffinoid
subdomain in a semiaffinoid K -space X and if V is an elementary semiaffinoid
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subdomain in U , then V needs not be elementary in X . Likewise, if U is a semi-
affinoid subdomain in X and if V is a retrocompact semiaffinoid subdomain in U ,
then V needs not be retrocompact in X .

We conclude this section by identifying retrocompact semiaffinoid subdomains
in affinoid K -spaces:

Lemma 2.30. Let A be an affinoid K -algebra; then a retrocompact semiaffinoid
subdomain U in sSp A is an affinoid subdomain in Sp A.

Proof. Let ϕ : Y→ X be a morphism defining U as a retrocompact semiaffinoid
subdomain in X . By Corollary 2.15, X is of tf type over R. Since ϕ is adic, Y

is of tf type over R as well, such that ϕrig is a morphism of affinoid K -spaces.
By Corollary 2.25(iii), ϕ represents all semiaffinoid maps with image in U ; in
particular it represents all affinoid maps with image in U . Hence, U is an affinoid
subdomain in Sp A. �

Conversely, it is clear that for any affinoid K -algebra A, the rational subdomains
in Sp A define semiaffinoid subdomains in sSp A. Let U ⊆ Sp A be a general
affinoid subdomain in Sp A. By the theorem of Gerritzen and Grauert [Bosch et al.
1984, 7.3.5/1], U is a finite union of rational subdomains. Let X be any affine flat
formal R-model of tf type for Sp A. By [Bosch and Lütkebohmert 1993a, Lemma
4.4], there exist an admissible formal blowup X′→ X of X and an open formal
subscheme U ⊆ X′ such that U = Urig. However, we do not know whether U is
affine, so we do not know whether a general affinoid subdomain U in Sp A is a
semiaffinoid subdomain or even a representable subset in sSp A. Nonetheless, we
will see that affinoid subdomains in Sp A are admissible open in the uniformly rigid
G-topology on sSp A; see Proposition 2.34.

2C3. G-topologies on semiaffinoid spaces. We first define an auxiliary G-topo-
logy Taux on the category of semiaffinoid K -spaces equipped with the physical
points functor; see [Bosch et al. 1984, 9.1.2]. The Taux-admissible subsets of a
semiaffinoid K -space are the semiaffinoid subdomains of that space. If I is a
rooted tree and if i ∈ I is a vertex, we let ch(i) denote the set of children of i .

Definition 2.31. Let X be a semiaffinoid K -space, and let (X i )i∈I be a finite family
of semiaffinoid subdomains in X .

(i) We say that (X i )i∈I is an elementary covering of X if there exist an affine flat
R-model of ff type X for X , an admissible blowup X′→X and an affine open
covering (Xi )i∈I of X′ such that for each i ∈ I , Xi ⊆ X′→ X represents X i

as a semiaffinoid subdomain in X .

(ii) We say that (X i )i∈I is a treelike covering of X if there exists a rooted tree
structure on I such that Xr = X , where r is the root of I , and such that
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(X j ) j∈ch(i) is an elementary covering of X i for all i ∈ I which are not leaves.
A rooted tree structure on I with these properties is called suitable for (X i )i∈I .

(iii) We say that (X i )i∈I is a leaflike covering if it extends to a treelike covering
(X i )i∈J , J ⊇ I , where J admits a suitable rooted tree structure such that I is
identified with the set of leaves of J .

(iv) We say that (X i )i∈I is Taux-admissible if it admits a leaflike refinement.

If (X i )i∈I is an elementary, treelike or leaflike covering of X , then by definition
all X i are retrocompact in X . For trivial reasons, condition (iv) in Definition 2.31
can be checked after refinement.

Arguing as in the proof of Corollary 2.27, we see that an elementary covering can
be represented with respect to any flat affine R-model of ff type X of X . It follows
that any treelike covering (X i )i∈I together with a suitable rooted tree structure on
I admits a model with respect to X; that is, we have

(i) for each i ∈ I , an affine flat R-model of ff type Xi for X i such that Xr = X,
where r denotes the root of I ,

(ii) for each inner i ∈ I , an admissible blowup X′i → Xi and

(iii) for each inner i ∈ I and for each child j of i , an open immersion X j ↪→ X′i
such that X j ⊆ X′i → Xi represents X j as a semiaffinoid subdomain in X i .

Arguing as in the proof of Corollary 2.25, we see that elementary, treelike and
leaflike coverings, suitable rooted tree structures and models in the above sense
are preserved under pullback with respect to morphisms Y → X of semiaffinoid
K -spaces and their models Y→ X, where Y and X are flat affine models of ff
type for Y and X respectively.

Lemma 2.32. Let X be a semiaffinoid K -space, let (Ui )i∈I be a covering of X by
semiaffinoid subdomains, and for each i ∈ I , let (Vi j ) j∈Ji be a covering of Ui . If
all of these coverings are leaflike or Taux-admissible, then the same holds for the
covering (Vi j )i∈I, j∈Ji of X.

Proof. Let us first consider the case where the given coverings are leaflike. Let us
choose a treelike covering (Ui )i∈I ′ of U extending (Ui )i∈I together with a suitable
rooted tree structure on I ′ such that I ⊆ I ′ is the set of leaves. Similarly, for each
i ∈ I we choose a treelike covering (Vi j ) j∈J ′i extending (Vi j ) j∈Ji together with a
suitable rooted tree structure on J ′i such that Ji ⊆ J ′i is identified with the set of
leaves for all i ∈ I . For each i ∈ I , we glue the rooted tree J ′i to the rooted tree I ′

by identifying the root of J ′i with the leaf i of I ′. We obtain a rooted tree J ′ whose
set of leaves is identified with the disjoint union of the sets Ji , i ∈ I . For each i ∈ I ,
Ui = Viri , where ri is the root of J ′i ; hence we obtain a covering (V j ) j∈J ′ such that
the given rooted tree structure on J ′ is suitable for (V j ) j∈J ′ ; indeed, this can be
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checked locally on the rooted tree J ′. We conclude that the composite covering
(Vi j )i∈I, j∈Ji of X is leaflike. The statement for Taux-admissible coverings now
follows by passing to leaflike refinements. �

Combining Lemma 2.32 and the fact that Taux-admissible coverings are stable
under pullback, we see that the semiaffinoid subdomains and the Taux-admissible
coverings define a G-topology on the category of semiaffinoid K -spaces equipped
with the physical points functor. The following proposition suggests that Taux

should be viewed as an analog of the weak G-topology in rigid geometry. We first
define:

Definition 2.33. A retrocompact covering of a semiaffinoid K -space X is a finite
family of retrocompact semiaffinoid subdomains of X that covers X on the level
of physical points.

If I is a rooted tree, we write lv(I ) to denote the set of leaves of that tree, and
we write v(I ) denote the volume of the tree, that is, its number of vertices.

Proposition 2.34. Retrocompact coverings of semiaffinoid spaces are Taux-admis-
sible.

Proof. Let X be a semiaffinoid K -space, and let (X i )i∈I be a finite family of retro-
compact semiaffinoid subdomains in X covering X on the level of sets; we have
to show that (X i )i∈I is Taux-admissible. For each i ∈ I , we choose a retrocompact
representation ϕi of X i in X , such that the targets of the ϕi all coincide with a fixed
flat affine target X. For each i ∈ I , we choose a factorization

ϕi = βi1 ◦ψi1 ◦ · · · ◦βini ◦ψini ,

where the ψi j are open immersions and the βi j are admissible blowups,

Xi j
ψi j
↪→ X′i j

βi j
→ Xi, j−1,

with Xi0 = X. Let v denote the sum of the ni ; we say that v is the total length
of the given retrocompact representation. Let X′→ X be an admissible blowup
dominating all βi1 : X

′

i1→ X, and let Ui ⊆ X′ denote the preimage of Xi1 ⊆ X′i1.
The X

rig
i1 cover Xrig, the specialization map spX′ is surjective onto the closed points

of X′, and the closed points in X′ lie very dense; hence X′ is covered by the Ui .
For each i ∈ I , we consider the pullback ψ ′i of

βi2 ◦ψi2 ◦ · · · ◦βini ◦ψini

under Ui ⊆ X′→ X′i1, and moreover for each j ∈ I different from i we consider
the pullback ϕ′i j of

ϕ j = β j1 ◦ψ j1 ◦ · · · ◦β jn j ◦ψ jn j
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under Ui ⊆ X′→ X, both in the category of flat formal R-schemes of ff type. For
each i ∈ I , we choose a finite affine covering of Ui . For each constituent Vis of this
covering with semiaffinoid generic fiber Vis , we choose finite affine coverings of
(ψ ′i )

−1(Vis) and of (ϕ′i j )
−1(Vis), for j ∈ I \{i}. We obtain a retrocompact covering

of Vis , together with retrocompact representations as above of total length v− 1. If
we let i and s vary, the resulting retrocompact covering of X refines (X i )i∈I . Since
the Vis , for varying i and s, form an elementary covering of X , it suffices to see
that the given retrocompact covering of Vis is Taux-admissible, which now follows
by induction on v; the case v = 1 is trivial. �

Definition 2.35. Let Turig denote the finest G-topology on the category of semiaffi-
noid K -spaces which is slightly finer than Taux in the sense of [Bosch et al. 1984,
9.1.2/1].

The G-topology Turig is called the uniformly rigid G-topology. It exists by
[Bosch et al. 1984, 9.2.1/2], and it is saturated in the sense that it satisfies conditions
(G0)–(G2) in [Bosch et al. 1984, 9.1.2], saying that Turig-admissibility of subsets
can be checked locally with respect to Turig-admissible coverings and that admis-
sibility of a covering by Turig-admissible subsets can be checked after refinement.

As a corollary of [BGR] 9.1.2/3, we obtain the following explicit description of
the uniformly rigid G-topology on a semiaffinoid K -space:

Proposition 2.36. Let X be a semiaffinoid K -space.

(i) A subset U ⊆ X is Turig-admissible if and only if it admits a covering (Ui )i∈I

by semiaffinoid subdomains such that for any morphism ϕ : Y → X of semi-
affinoid K -spaces with ϕ(Y ) ⊆ U , the induced covering of Y has a leaflike
refinement.

(ii) A covering (Ui )i∈I of a Turig-admissible subset U in X by Turig-admissible
subsets is Turig-admissible if and only if for any morphism ϕ : Y → X of
semiaffinoid K -spaces with ϕ(Y )⊆U , the induced covering of Y has a leaflike
refinement.

Corollary 2.37. Let X be a semiaffinoid K -space.

(i) For any semiaffinoid subdomain U of X , the uniformly rigid G-topology on X
restricts to the uniformly rigid G-topology on U.

(ii) If U ⊆ X is a finite union of retrocompact semiaffinoid subdomains in X ,
then U is Turig-admissible, and every finite covering of U by retrocompact
semiaffinoid subdomains in X is Turig-admissible.

Proof. By Corollary 2.29(i), the semiaffinoid subdomains in U are the semiaffi-
noid subdomains in X contained in U , and by Corollary 2.25(iii) the semiaffinoid
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morphisms to X with image in U correspond to the semiaffinoid morphisms to U .
Hence, statement (i) follows from parts (i) and (ii) of Proposition 2.36.

To prove the second statement, let (Ui )i∈I be a finite family of retrocompact
semiaffinoid subdomains of X such that U is the union of the Ui . Let Y be any semi-
affinoid K -space, and let ϕ : Y → X be any semiaffinoid morphism whose image is
lies in U . Then (ϕ−1(Ui ))i∈I is a retrocompact covering of Y ; by Proposition 2.34,
it admits a leaflike refinement. By Proposition 2.36(i), we conclude that U is a
Turig-admissible subset of X , and by Proposition 2.36(ii) we see that the covering
(Ui )i∈I of U is Turig-admissible. �

In particular, Corollary 2.37(ii) and the theorem of Gerritzen and Grauert [Bosch
et al. 1984, 7.3.5/1] show that if A is an affinoid K -algebra and if U ⊆ Sp A is an
affinoid subdomain, then U ⊆ sSp A is Turig-admissible.

Remark 2.38 (quasicompactness). Proposition 2.36(ii) shows that semiaffinoid K -
spaces are quasicompact in Turig, see [Bosch et al. 1984, p. 337]. By the maximum
principle for affinoid K -algebras; it follows that sSp (R[[S]] ⊗R K ) has no Turig-
admissible covering by semiaffinoid subdomains whose rings of functions are affi-
noid. In particular, the covering of sSp (R[[S]] ⊗R K ) provided by Berthelot’s
construction is not Turig-admissible.

Remark 2.39 (bases for Turig). Proposition 2.36 implies that the semiaffinoid sub-
domains form a basis for the uniformly rigid G-topology on a semiaffinoid K -
space [Bosch et al. 1984, p. 338]. The retrocompact semiaffinoid subdomains in
sSp (K 〈S〉) do not form a basis for Turig: Indeed, sSp (R[[S]]⊗R K ) is a semiaffi-
noid subdomain in sSp (K 〈S〉); by Lemma 2.30 and Remark 2.38, it does not
admit a Turig-admissible covering by retrocompact semiaffinoid subdomains in
sSp (K 〈S〉). Thus, even though the K -algebra K 〈S〉 is affinoid, the uniformly rigid
G-topology on sSp (K 〈S〉) turns out to be strictly coarser than the rigid G-topology
on Sp (K 〈S〉). We do not know whether this discrepancy already appears on the
level of admissible subsets.

We conclude our discussion of the uniformly rigid G-topology Turig by showing
that it is finer than the Zariski topology TZar which, on a semiaffinoid K -space X ,
is generated by the nonvanishing loci D( f ) of semiaffinoid functions f on X :

Proposition 2.40. The uniformly rigid G-topology Turig is finer than the Zariski
topology TZar.

Proof. Let X = sSp A be a semiaffinoid K -space, let U ⊆ X be a Zariski-open
subset, and let f1, . . . , fn ∈ A be semiaffinoid functions such that U is the union
of the Zariski-open subsets D( fi )= {x ∈Max A ; fi (x) 6= 0}. Let Y be a nonempty
semiaffinoid K -space, and let ϕ : Y → X be a semiaffinoid morphism whose image
is contained in U . For each i , the preimage ϕ−1(D( fi )) is the set of points y ∈ Y
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where ϕ∗ fi 6= 0. Since Y is covered by the ϕ−1(D( fi )), the ϕ∗ fi generate the unit
ideal in B. That is, there exist elements b1, . . . , bn in B such that b1ϕ

∗ f1+ . . .+

bnϕ
∗ fn = 1. Let us set γ := (maxi |bi |sup)

−1; this number is well-defined since
the bi are bounded functions on Y without a common zero. By the strict triangle
inequality, maxi |ϕ

∗ fi (y)| ≥ γ for all y ∈ Y . For each i , let Yi ⊆ Y denote the set
of points y ∈ Y where |ϕ∗ fi (y)| ≥ γ ; then (Yi )1≤i≤n is a retrocompact covering
of Y refining (ϕ−1(D( fi )))1≤i≤n . By Proposition 2.34, retrocompact coverings are
Turig-admissible; hence U ⊆ X is Turig-admissible. If (U j ) j∈J is a Zariski-covering
of U , we may pass to a refinement and assume that for all j ∈ J , U j = D(g j )⊆ X
for some semiaffinoid function g j on X ; we can then argue along the same lines
to prove that (U j ) j∈J is a Turig-admissible covering of U . �

The above argument works even though the maximum principle might fail on Y .
Let us point out that our proof shows the following: If f1, . . . , fn are semiaffinoid
functions on X , if

U =
n⋃

i=1

D( fi )

is the associated Zariski-open subset of X , and if we set

U≥ε =
n⋃

i=1

{x ∈ X ; | fi (x)| ≥ ε}

for ε ∈
√
|K ∗|, then the resulting covering (U≥ε)ε of U by finite unions of retro-

compact semiaffinoid subdomains of X is Turig-admissible. In particular, Zariski-
open subsets in semiaffinoid spaces need not be quasicompact in the uniformly
rigid G-topology. As a consequence, the sheaf of uniformly rigid functions on a
semiaffinoid K -space, to be defined in the following section, may have unbounded
sections on Zariski-open subsets.

2C4. The acyclicity theorem. Let X be a semiaffinoid K -space. We show that
the presheaf OX that we introduced after Definition 2.20 is a sheaf for Taux and,
hence, extends uniquely to a sheaf for Turig. More generally, we show that every
OX -module associated to a finite module over the ring of global functions on X is
acyclic for any Turig-admissible covering of X in the sense of [Bosch et al. 1984]
p. 324. Adopting methods from [Lütkebohmert 1990], we derive our acyclicity
theorem from results in formal geometry; we also use ideas from [Lipshitz and
Robinson 2000, III.3.2].

Let us recall from [Bosch et al. 1984, p. 324] that if F is a presheaf in OX -
modules on Taux, a covering (X i )i∈I of X by semiaffinoid subdomains is called F-
acyclic if the associated augmented Čech complex is acyclic. The covering (X i )i∈I
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is called universally F-acyclic if (X i ∩U )i∈I is F|U -acyclic for any semiaffinoid
subdomain U ⊆ X .

Theorem 2.41. For a semiaffinoid K -space X , Taux-admissible coverings are OX -
acyclic.

Proof. Let us first consider an elementary covering (X i )i∈I . Let us choose a for-
mal representation (X, β : X′→ X, (Xi )i∈I ) of (X i )i∈I , where β is an admissible
blowup and where (Xi )i∈I is a finite affine covering of X′ such that Xi ⊆ X′→ X

represents X i in X . By the ff type transcription of [Lütkebohmert 1990, 2.1],
β]⊗R K is an isomorphism; hence β induces a natural identification of augmented
Čech complexes

C•aug((X i )i∈I ,OX )∼= C•aug((Xi )i∈I ,OX′ ⊗R K ).

We have to show that the complex on the right hand side is acyclic. Since OX′⊗R K
is a sheaf on X′, it suffices to show that

Ȟq((Xi )i∈I ,OX′ ⊗R K ) = 0

for all q ≥ 1. Since I is finite, we have an identification

Ȟq((Xi )i∈I ,OX′ ⊗R K ) = Ȟq((Xi )i∈I ,OX′)⊗R K .

By the comparison theorem [Grothendieck 1961b, 4.1.5 and 4.1.7] and by the van-
ishing theorem [Grothendieck 1961b, 1.3.1], the higher cohomology groups of a
coherent sheaf on an affine noetherian formal scheme vanish. Since the Xi are
affine, Leray’s theorem implies that

Ȟq((Xi )i∈I ,OX′) = Hq(X′,OX′).

By [Grothendieck 1961b, 1.4.11], Hq(X′,OX′) = 0(X, Rqβ∗OX′), and by the ff
type transcription of [Lütkebohmert 1990, 2.1] this module is π -torsion. We have
thus finished the proof in the case where (X i )i∈I is an elementary covering.

Let us turn towards the general case. By definition, every Taux-admissible cov-
ering of X has a leaflike refinement; by [Bosch et al. 1984, 8.1.4/3] it is enough
to show that the leaflike coverings of X are universally OX -acyclic. Since leaflike
coverings are preserved with respect to pullback under morphisms of semiaffinoid
K -spaces, it suffices to show that any leaflike covering (X i )i∈I of X is OX -acyclic.

Let (X j ) j∈J be a treelike covering of X extending (X i )i∈I , and let us choose
a suitable rooted tree structure on J such that I ⊆ J is identified with the set of
leaves of J . We argue by induction on the volume of J . If J has only one vertex,
the covering (X i )i∈I is trivial and, hence, OX -acyclic. Let us assume that J has
more than one vertex. Let ι ∈ I be a leaf of J such that the length l(ι) of the path
from ι to the root is maximal in {l(i) ; i ∈ I }. Let ι′ := par(ι) denote the parent of ι.
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By maximality of l(ι), all siblings i ∈ ch(ι′) of ι are leaves of J . Let J ′ := J \ch(ι′)
be the rooted subtree of J that is obtained by removing the siblings of ι (including
ι itself). Then

(i) the set of leaves of J ′ is I ′ := (I \ ch(ι′))∪ {ι′},
(ii) (X j ) j∈J ′ is a treelike covering of X , and

(iii) v(J ′) < v(J ).

By our induction hypothesis, the covering (X i )i∈I ′ is OX -acyclic. Since (X i )i∈I is
a refinement of (X i )i∈I ′ , [Bosch et al. 1984, 8.1.4/3] says that it suffices to prove
that for any r ≥ 0 and any tuple (i0, . . . , ir )∈ (I ′)r+1, the covering (X i ∩ X i0···ir )i∈I

of X i0···ir is OX -acyclic, where X i0···ir denotes the intersection X i0 ∩ . . .∩ X ir . Let
us assume that there exists some 0 ≤ s ≤ r such that is 6= ι

′. Then is ∈ I . Since
X i0···ir ⊆ X is , we see that the trivial covering of X i0···ir refines (X i ∩ X i0···ir )i∈I .
Since trivial coverings restrict to trivial coverings and since trivial coverings are
acyclic, we deduce from [Bosch et al. 1984, 8.1.4/3] that (X i ∩ X i0···ir )i∈I is acyclic.
It remains to consider the case where all is , 0 ≤ s ≤ r , coincide with ι′. That is,
it remains to see that the covering (X i ∩ X ι′)i∈I of X ι′ is OX -acyclic. It admits
the elementary covering (X i )i∈ch(ι′) as a refinement. Since elementary coverings
restrict to elementary coverings and since elementary coverings are OX -acyclic
by what we have shown so far, we conclude by [Bosch et al. 1984, 8.1.4/3] that
(X i ∩ X ι′)i∈I is OX -acyclic, as desired. �

By [Bosch et al. 1984, 9.2.3/1], OX extends uniquely to a sheaf for Turig which
we again denote by OX and which we call the structural sheaf or the sheaf of
uniformly rigid functions. We can now easily discuss a fundamental example of
a nonadmissible finite covering of a semiaffinoid K -space by semiaffinoid subdo-
mains:

Example 2.42. The canonical covering of the semiaffinoid closed unit disc

sSp (K 〈T 〉)

by the semiaffinoid open unit disc sSp (R[[T ]]⊗R K ) and the semiaffinoid unit circle
sSp (K 〈T, T−1

〉) is not Turig-admissible and, hence, not Taux-admissible. Indeed,
the two covering sets are nonempty and disjoint, while the ring of functions K 〈T 〉
on the closed semiaffinoid unit disc has no nontrivial idempotents.

If X is a semiaffinoid K -space with ring of global functions A and if M is a
finite A-module, the presheaf M ⊗OX sending a semiaffinoid subdomain U in X
to M ⊗A OX (U ) is an OX -module, which we call the OX -module associated to M .
A presheaf F equipped with an OX -module structure is called associated if it is
isomorphic to M ⊗ OX for some finite A-module M . We sometimes abbreviate
M̃ := M ⊗OX .
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Corollary 2.43. Let X be a semiaffinoid K -space, and let F be an associated OX -
module. Then every Taux-admissible covering (X i )i∈I of X is F-acyclic.

Proof. By [Bosch et al. 1984, 8.1.4/3], we may assume that I is finite. Using
Theorem 2.41, the proof is now literally the same as the proof of [Bosch et al.
1984, 8.2.1/5]. �

In particular, M ⊗OX is a Taux-sheaf. By [Bosch et al. 1984, 9.2.3/1], M ⊗OX

extends uniquely to a Turig-sheaf on X which we again denote by M ⊗OX or by
M̃ and which we call the sheaf associated to M .

Remark 2.44. If U ⊆ X is a representable subset that is Turig-admissible, then
OX (U )= OU (U ). Indeed, U admits a Turig,X -admissible covering by semiaffinoid
subdomains in X ; since morphisms of semiaffinoid spaces are continuous for Turig,
this covering is also Turig,U -admissible, so the statement follows from the fact that
both OX and OU are Turig-sheaves. However, it is not clear whether Turig,X restricts
to Turig,U ; for example, we do not know whether a semiaffinoid subdomain of U
is Turig,X -admissible. Of course, this does not affect our theory since we do not
deal with general representable subsets.

The category of abelian sheaves on (X,Turig|X ) has enough injective objects,
so the functor 0(X, ·) from the category of abelian sheaves on X to the category
of abelian groups has a right derived functor H•(X, ·). By the acyclicity theorem
and its Corollary 2.43, this right derived functor can, for associated OX -modules,
be calculated in terms of Čech cohomology:

Corollary 2.45. Let X be a semiaffinoid K -space, and let F be an associated
OX -module. Then the natural homomorphism Ȟq(U,F)→ Hq(U,F) is an iso-
morphism for all Turig-admissible subsets U ⊆ X. In particular, Hq(U,F) = 0
for all q > 0 and all semiaffinoid subdomains U ⊆ X.

Proof. The system S of semiaffinoid subdomains in X satisfies the following prop-
erties:

(i) S is stable under the formation of intersections,
(ii) every Turig-admissible covering (Ui )i∈I of a Turig-admissible subset U ⊆ X

admits a Turig-admissible refinement by sets in S, and
(iii) Ȟq(U,F) vanishes for all q > 0 and all U ∈ S;

hence the statement follows by means of the standard Čech spectral sequence ar-
gument. �

Transcribing the proof of [Bosch et al. 1984, 7.3.2/1], we see that if A is a
semiaffinoid K -algebra with associated semiaffinoid K -space X and if m⊆ A is
a maximal ideal corresponding to a point x ∈ X , then the stalk OX,x is local with
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maximal ideal mOX,x which coincides with the ideal of germs of functions vanish-
ing in x . The arguments in the proof of [ibid., 7.3.2/3] are also seen to work in our
situation, showing that the natural homomorphisms A/mn+1

→ OX,x/m
n+1OX,x are

isomorphisms for all n ∈ N. The rings OX,x are noetherian, which can for example
be seen by imitating the proof of [ibid., 7.3.2/7].

Transcribing the discussion at the beginning of [ibid., 9.3.1], we see that the
uniformly rigid G-topology and the sheaf of uniformly rigid functions define a
functor from the category of semiaffinoid K -spaces to the category of locally ringed
G-topological K -spaces. The proof of [ibid., 9.3.1/2] carries over verbatim to the
semiaffinoid situation, showing that this functor is fully faithful. We call a locally
ringed G-topological K -space semiaffinoid if it lies in the essential image of this
functor.

2D. Uniformly rigid spaces. We are now able to define the category of uniformly
rigid K -spaces:

Definition 2.46. Let X be a locally ringed G-topological K -space.

(i) An admissible semiaffinoid covering of X is an admissible covering (X i )i∈I

of X such that for each i ∈ I , (X i ,OX |X i ) is a semiaffinoid K -space.

(ii) The space X is called uniformly rigid if it satisfies conditions (G0)–(G1) in
[Bosch et al. 1984, 9.1.2] and if it admits an admissible semiaffinoid covering.

(iii) An admissible open subset U of a uniformly rigid K -space X is called an
open semiaffinoid subspace of X if (U,OX |U ) is a semiaffinoid K -space.

Remark 2.47. In the author’s PhD thesis, open semiaffinoid subspaces were sim-
ply called semiaffinoid subspaces [Kappen 2009, Section 1.3.9]

The category uRigK of uniformly rigid K -spaces is a full subcategory of the
category of locally G-topological K -spaces, and it contains the category of semi-
affinoid K -spaces as a full subcategory.

Remark 2.48. We do not know whether an open semiaffinoid subspace U of a
semiaffinoid K -space X is necessarily a semiaffinoid subdomain in X . However,
one easily verifies that U is a representable subset in X . Moreover, one sees that U
is locally a semiaffinoid subdomain in X ; see Lemma 2.52 for a precise statement.
In rigid geometry, the open affinoid subvarieties [Bosch et al. 1984, p. 357] of an
affinoid space are precisely the affinoid subdomains, which means that there is no
need to distinguish between the two notions in the affinoid setting.

Remark 2.49. Let X = sSp A be a semiaffinoid K -space, and let U = sSp B be
an open semiaffinoid subspace of X ; then the restriction homomorphism A→ B
is flat. Indeed, for every maximal ideal n⊆ B with corresponding point x ∈U and
preimage m⊆ A, the induced homomorphism Am→ Bn induces an isomorphism of
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maximal-adic completions; by the flatness criterion [Bourbaki 1998, III.5.2, The-
orem 1], we conclude that A→ Bn is flat for all maximal ideals n in B, which
implies that A→ B is flat.

Lemma 2.50. The open semiaffinoid subspaces of a uniformly rigid K -space X
form a basis for the G-topology on X.

Proof. Let (X i )i∈I be an admissible semiaffinoid covering of X , and let U ⊆ X be
an admissible open subset. Then (X i ∩U )i∈I is an admissible covering of U . For
each i ∈ I , X i ∩U is admissible open in X i and, hence, admits an admissible cov-
ering by semiaffinoid subdomains of X i . Hence, U has an admissible semiaffinoid
covering. �

It follows that if X is a uniformly rigid K -space and if U ⊆ X is an admissible
open subset, then (U,OX |U ) is a uniformly rigid K -space, again.

It is now clear that the gluing theorem [Bosch et al. 1984, 9.3.2/1] and its proof
carry over verbatim to the uniformly rigid setting. Similarly, a morphism of uni-
formly rigid spaces can be defined locally on the domain; this is the uniformly rigid
version of [ibid., 9.3.3/1], and again the proof is obtained by literal transcription.
Furthermore, a uniformly rigid K -space is determined by its functorial points with
values in semiaffinoid K -spaces.

We can also copy the proof of [ibid., 9.3.3/2] to see that if X is a semiaffinoid
K -space and if Y is a uniformly rigid K -space, then the set of morphisms from Y
to X is naturally identified with the set of K -algebra homomorphisms from OX (X)
to OY (Y ).

Let X be an affine formal R-scheme of ff type with semiaffinoid generic fiber
X . The associated specialization map spX which we discussed in Section 2B1 is
naturally enhanced to a morphism of G-ringed R-spaces spX : X→ X. Morphisms
of uniformly rigid K -spaces being defined locally on the domain, we see that spX is
final among all morphisms of G-ringed R-spaces from uniformly rigid K -spaces to
X. Using this universal property, we can invoke gluing techniques to construct the
uniformly rigid generic fiber Xurig of a general formal R-scheme of locally ff type
X, together with a functorial specialization map spX : X

urig
→X which is universal

among all morphisms of G-ringed R-spaces from uniformly rigid K -spaces to X;
this process does not involve Berthelot’s construction. It is easily seen that urig
is faithful on the category of flat formal R-schemes of locally ff type. A formal
R-model of a uniformly rigid K -space X is a formal R-scheme X of locally ff
type together with an isomorphism X ∼= Xurig. The map spX is surjective onto
the closed points of X whenever X is flat over R. This follows from Remark 2.5,
together with the remark that the underlying topological space of X is a Jacobson
space [Grothendieck and Dieudonné 1971, 0.2.8 and 6.4], so that the condition on
a point in X of being closed is local.
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Question 2.51. Under what conditions does a uniformly rigid K -space admit a
formal R-model?

By Proposition 2.16, the category of semiaffinoid K -spaces has fibered products;
following the method outlined in [Bosch et al. 1984, 9.3.5], we see that the category
of uniformly rigid K -spaces has fibered products as well and that these are con-
structed by gluing semiaffinoid fibered products of open semiaffinoid subspaces. It
is clear from this description that the urig-functor preserves fibered products.

Open semiaffinoid subspaces of semiaffinoid spaces can be described in the style
of the Gerritzen–Grauert theorem [ibid., 7.3.5/3]:

Lemma 2.52. Let X be a semiaffinoid K -space, and let U ⊆ X be an open semi-
affinoid subspace. Then U admits a leaflike covering (Ui )i∈I such that each Ui is
a semiaffinoid subdomain in X.

Proof. By Lemma 2.50, U admits an admissible covering (V j ) j∈J by semiaffinoid
subdomains V j of X ; by Proposition 2.36, this covering is refined by a leaflike
covering (Ui )i∈I of U . Via pullback, the V j are semiaffinoid subdomains of U .
Let ϕ : I → J denote a refinement map. By Corollary 2.29(i), for each i ∈ I the
set Ui is a semiaffinoid subdomain in Vϕ(i) and, hence, in X , as desired. �

A morphism of uniformly rigid K -spaces is called flat in a point of its domain
if it induces a flat homomorphism of stalks in this point, and it is called flat if it is
flat in all points. Clearly a morphism of semiaffinoid K -spaces is flat in this sense
if and only if the underlying homomorphism of rings of global sections is flat.

2D1. Comparison with rigid geometry. In Section 2C1, we have defined the rigid
space X r associated to a semiaffinoid K -space X = sSp A together with a universal
K -homomorphism A→ 0(X r,OX r) which induces a bijection X r

→ X of physical
points and isomorphisms of completed stalks. We will show that this universal
homomorphism extends to a morphism compX : X

r
→ X of locally G-ringed K -

spaces which is final among all morphisms from rigid K -spaces to X . To do so, we
first show that the above bijection is continuous, that is, that the rigid G-topology
Trig is finer than Turig. We will need the following elementary fact from rigid
geometry; the proof is left as an exercise to the reader:

Lemma 2.53. Let X be an affinoid K -space, and let U ⊆ X be a subset admitting
a covering (Ui )i∈I by admissible open subsets Ui ⊆ X such that for any affinoid
K -space Y and any morphism ϕ : Y → X with image in U , the induced covering
(ϕ−1(Ui ))i∈I of Y has a refinement which is a finite covering by affinoid subdo-
mains. Then U ⊆ X is admissible.

Proposition 2.54. The rigid G-topology Trig on X is finer than the uniformly rigid
G-topology Turig.
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Proof. It is clear that Taux-admissible subsets and Taux-admissible coverings are
Trig-admissible. Let U ⊆ X be a Turig-admissible subset. To check that U is Trig-
admissible, we may work locally on X r. Let V ′ ⊆ X r be an affinoid subspace;
by Proposition 2.18, the open immersion V ′ ↪→ X r corresponds to a morphism
V → X , where V denotes the semiaffinoid K -space associated to V ′ such that
V ′ = V r. After pulling U back under this morphism, we may thus assume that
the K -algebra of global functions on X is affinoid. Let (Ui )i∈I be a covering of
U by semiaffinoid subdomains in X such that condition (i) of Proposition 2.36 is
satisfied. Let Y be an affinoid K -space, and let ϕ : Y → X r be a morphism of
rigid spaces that factors through U . By Proposition 2.18, we may also view ϕ as
a morphism of semiaffinoid K -spaces. By assumption, the covering (ϕ−1(Ui ))i∈I

of Y has a leaflike refinement; by Lemma 2.30, this refinement is affinoid. It now
follows from Lemma 2.53 that U ⊆ X is Trig-admissible.

Let now (Ui )i∈I be a Turig-admissible covering of U by Turig-admissible subsets
Ui . We have seen that U and the Ui are Trig-admissible; we claim that the covering
(Ui )i∈I is Trig-admissible as well. Again, we may work locally on X r and thereby
assume that the K -algebra of functions on X is affinoid. Let Y be an affinoid K -
space, and let ϕ : Y → X r be a morphism of affinoid K -spaces, which we may also
view as a morphism of semiaffinoid K -spaces. Since (Ui )i∈I is Turig-admissible,
we see by Proposition 2.36(ii) that (ϕ−1(Ui ))i∈I has a leaflike and, hence, affinoid
refinement. It follows that (Ui )i∈I is Trig-admissible. �

If U ⊆ X is a semiaffinoid subdomain, then the morphism U r
→ X r provided by

Proposition 2.18 is an open immersion onto the preimage of U under the continuous
bijection compX : X

r
→ X ; hence compX extends to a morphism of G-ringed K -

spaces with respect to Taux, which then again extends uniquely to a morphism of
G-ringed K -spaces with respect to Turig. One easily verifies that compX is local.

Proposition 2.55. The morphism compX is final among all morphisms from rigid
K -spaces to X.

Proof. Let Y be a rigid K -space, and let ψ : Y → X be a morphism of locally
G-ringed K -spaces. By Proposition 2.18, there is a unique morphism ψ r

: Y → X r

such that ψ and compX ◦ψ
r coincide on global sections. Since the points and the

completed stalks of X are recovered from the K -algebra of global sections of X ,
it follows that ψ and compX ◦ψ

r coincide. �

Let X be any uniformly rigid K -space. Since the open semiaffinoid subspaces of
X form a basis for the G-topology on X , we can use standard gluing arguments to
show that the comparison morphisms attached to these open semiaffinoid subspaces
glue to a universal comparison morphism

compX : X r
→ X
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from a rigid K -space to X .

Remark 2.56. The functor X 7→ X r is faithful, yet not fully faithful. For example,
it is easily seen that an unbounded function on the rigid open unit disc induces a
morphism to the rigid projective line over K which is not induced by a morphism
from the semiaffinoid open unit disc sSp (R[[S]]⊗R K ) to the uniformly rigid pro-
jective line over K . Likewise, the functor r forgets the distinction between the
semiaffinoid open unit disc just mentioned and the uniformly rigid open unit disc
that is the generic fiber of a quasiparacompact formal R-model of locally tf type
for the rigid open unit disc. One can prove that X 7→ X r is fully faithful on the full
subcategory of reduced semiaffinoid K -spaces.

Remark 2.57. The functor X 7→ X r preserves fibered products. Indeed, this may
be checked in the semiaffinoid situation, where it follows from the fact that fibered
products of semiaffinoid spaces are uniformly rigid generic fibers of fibered prod-
ucts of affine flat formal R-models, together with the fact that Berthelot’s generic
fiber functor preserves fibered products [de Jong 1995, 7.2.4(g)]. In particular,
X 7→ X r preserves group structures.

Remark 2.58. We have seen that compX induces isomorphisms of completed
stalks. Examining Berthelot’s construction, one easily sees that compX in fact
already induces isomorphisms of noncompleted stalks; the proof of this statement
is left as an exercise.

We have seen that every uniformly rigid K -space X has an underlying classical
rigid K -space X r such that X and X r share all local properties. That is, a uniformly
rigid K -space can be seen as a rigid K -space equipped with an additional global
uniform structure. Every quasiparacompact and quasiseparated rigid K -space car-
ries a canonical uniformly rigid structure, which may be called the Raynaud-type
uniform structure: let C temporarily denote the category of quasiparacompact flat
formal R-schemes of locally tf type, and let CBl denote its localization with respect
to the class of admissible formal blowups. It follows easily from the definitions that
the functor urig|C : C→ uRigK factors through a functor ur′ : CBl→ uRigK . By
[Bosch 2005, Theorem 2.8/3], the functor rig induces an equivalence rigBl between
CBl and the category Rig′K of quasiparacompact and quasiseparated rigid K -spaces.
The functor rigBl will be called the Raynaud equivalence. Composing ur′ with a
quasiinverse of rigBl, we obtain a functor ur : Rig′K → uRigK ; if Y is in Rig′K , we
say that Y ur := ur(Y ) is the uniformly rigid K -space associated to Y . Of course, it
depends on the choice of a quasiinverse of the Raynaud equivalence.

Proposition 2.59. The composite functor r ◦ ur is quasiisomorphic to the identity
on Rig′K .
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Proof. Let rig−1
Bl denote the chosen inverse of the Raynaud equivalence. Let Y

be an object of Rig′K ; then rig−1
Bl (Y ) is a quasiparacompact flat formal R-model of

locally tf type for Y , and Y ur
= rig−1

Bl (Y )
urig, which implies that (Y ur)r= rig−1

Bl (Y )
rig,

functorially in Y . That is, r ◦ ur= rig ◦ rig−1
Bl , which is isomorphic to the identity

functor. �

In particular, after choosing an isomorphism r ◦ ur ∼= id, the comparison mor-
phisms compY ur induce functorial comparison morphisms

compY : Y ∼= (Y ur)r → Y ur

for all quasiparacompact and quasiseparated rigid K -spaces Y .

Corollary 2.60. For Y ∈ Rig′K , the morphism compY is the initial morphism from
Y to a uniformly rigid K -space.

Proof. Let X be a uniformly rigid K -space, and let ψ : Y → X be a morphism
of locally G-ringed K -spaces. The morphism compY is a bijection on points, and
it induces isomorphisms of stalks; hence the morphism Y ur

→ X that we seek is
unique if it exists. If Y is affinoid and X is semiaffinoid, there is nothing to show.
Let (X i )i∈I be an admissible semiaffinoid covering of X , and let (Y j ) j∈J be an
admissible affinoid covering of Y refining (ψ−1(X i ))i∈I . It suffices to see that
(Y ur

j ) j∈J is an admissible covering of Y ur. By [Bosch 2005, Lemma 2.8/4], there
exists a flat quasiparacompact R-model of locally tf type Y for Y such that (Y j ) j∈J

is induced by an open covering of Y. Since Yurig
= Y ur, it follows that (Y ur

j ) j∈J

is an admissible covering of Y ur, as desired. �

Corollary 2.61. The functor ur is fully faithful.

Proof. Let X and Y be objects in Rig′K . By Proposition 2.59, by the global variant
of Proposition 2.55 and by Corollary 2.60, we have functorial bijections

Hom(Y, X)∼= Hom(Y, (Xur)r)∼= Hom(Y, Xur)∼= Hom(Y ur, Xur). �

Of course, if X is any uniformly rigid K -space, then the comparison morphism

compX : X r
→ X

is not initial all morphisms from X r to uniformly rigid K -spaces. For example, if
X is the semiaffinoid open unit disc sSp (R[[S]]⊗R K ), then the natural morphism
compX r from the rigid open unit disc X r to its uniform rigidification (X r)ur does
not extend to a morphism X→ (X r)ur. Indeed, such a morphism would have to be
the identity on points, but X is quasicompact, while (X r)ur is not quasicompact.

The functor Y 7→ Y ur does not respect arbitrary open immersions. For example,
if Y ′ ⊆ Y is the inclusion of the open rigid unit disc into the closed rigid unit disc,
the morphism (Y ′)ur

→ Y ur is not an open immersion: its image is the semiaffinoid
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open unit disc, while (Y ′)ur is not quasicompact. However, it follows from [Bosch
and Lütkebohmert 1993b, 5.7] that ur preserves open immersions of quasicompact
rigid K -spaces.

Quasiseparated rigid K -spaces are obtained from affinoid K -spaces by gluing
along quasicompact admissible open subspaces, it thus follows that ur preserves
fibered products. Indeed, this can now be checked in an affinoid situation, where
the statement is clear from the construction of semiaffinoid fibered products. In
particular, Y 7→ Y ur preserves group structures.

3. Coherent modules on uniformly rigid spaces

Let X be a G-ringed K -space, and let F be an OX -module. Let us recall some
standard definitions concerning the coherence property [Bosch 2005, 1.14/2] :

(i) F is called of finite type if there exists an admissible covering (X i )i∈I of X
together with exact sequences

Osi
X |X i → F|X i → 0.

(ii) F is called coherent if F is of finite type and if for any admissible open
subspace U ⊆ X , the kernel of any morphism Os

X |U → F|U is of finite type.

If X is a semiaffinoid K -space with ring of functions A, then the functor M 7→ M̃
on the category of finite A-modules is well-behaved, as it is shown by the following
lemma. The proof of Lemma 3.1 is identical to the proof of [Bosch 2005, 1.14/1];
one uses the fact that the restriction homomorphisms associated to semiaffinoid
subdomains are flat:

Lemma 3.1. The functor M 7→ M̃ from the category of finite A-modules to the
category of OX -modules is fully faithful, and it commutes with the formation of
kernels, images, cokernels and tensor products. Moreover, a sequence of finite
A-modules

0→ M ′→ M→ M ′′→ 0

is exact if and only if the associated sequence

0→ M̃ ′→ M̃→ M̃ ′′→ 0

of OX -modules is exact.

For a semiaffinoid K -space X = sSp A, we have Or
X = Ar

⊗ OX . Since A is
noetherian, it follows from Lemma 3.1 that kernels and cokernels of morphisms of
type Or

X → Os
X are associated. We thus conclude that an OX -module on a uniformly

rigid K -space X is coherent if and only if there exists an admissible semiaffinoid
covering (X i )i∈I of X such that F|X i is associated for all i ∈ I .
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In particular, the structural sheaf OX of any uniformly rigid K -space X is coher-
ent. Moreover, it follows from Lemma 3.1 that kernels and cokernels of morphisms
of coherent OX -modules are coherent.

Lemma 3.2. Let ϕ : Y → X be a morphism of uniformly rigid K -spaces, and let
F be a coherent OX -module. Then ϕ∗F is a coherent OY -module.

Proof. Indeed, we may assume that X and Y are semiaffinoid, with X = sSp A
and Y = sSp B, and that F is associated to a finite A-module M . Then ϕ∗F is
associated to M ⊗A B, where B is an A-algebra via ϕ∗. �

Definition 3.3. Let X be a uniformly rigid K -space. An OX -module F is called
strictly coherent if for any open semiaffinoid subspace U ⊆ X , the restriction F|U
is an associated module.

For example, the structural sheaf of a uniformly rigid K -space is strictly coher-
ent. Since we do not know whether an open semiaffinoid subspace of a semiaffinoid
K -space is a semiaffinoid subdomain, it is not a priori clear whether any associated
module on a semiaffinoid K -space is strictly coherent. In Corollary 3.6, however,
we will show that this is indeed the case.

Let X be a uniformly rigid K -space. We will be interested in coherent OX -
modules F with the property that there exists an injective OX -homomorphism F ↪→

Or
X for some r ∈N. This property is clearly satisfied by coherent ideals, and it is

preserved under pullback with respect to flat morphisms of uniformly rigid spaces.
We will study integral models of such F, and we will show that any such F is
strictly coherent.

If X is a formal R-scheme of locally ff type and if F is a coherent OX-module,
we obtain a coherent OX -module Furig on Xurig which we call the uniformly rigid
generic fiber of F. If X is a uniformly rigid K -space, if F is a coherent OX -module
and if X is a flat formal R-model of locally ff type for X , then an R-model of F

on X is a coherent OX-module F together with an isomorphism Furig ∼= F that is
compatible with the given identification Xurig ∼= X . Sometimes we will not mention
the isomorphism Furig ∼= F explicitly. Clearly

spX,∗(F) = F⊗R K ,

and urig factors naturally through the functor F 7→ F⊗R K . Let us abbreviate
FK := F⊗R K .

For any r ∈ N, the coherent OX -module Or
X admits the natural model Or

X on
every flat formal R-model of locally ff type X for X . We will show that coherent
submodules F⊆ Or

X inherit this property by taking schematic closures. Let us first
consider the affine situation:

Lemma 3.4. Let A be an R-algebra, let M be an A-module, and let N ⊆ M ⊗R K
be an A⊗R K -submodule. Then there exists a unique A-submodule N ⊆ M such
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that the natural homomorphism N ⊗R K → M ⊗R K is an isomorphism onto N
and such that M/N is R-flat.

Proof. Let us abbreviate M := M ⊗R K , and let us set

N := ker (M→ M/N );

then N is an A-submodule of M . For any n ∈ N , there exists an s ∈ N such that
π sn lies in the image of M in M ; the natural K -homomorphism N ⊗R K → N is
thus bijective. As an A-submodule of M/N , the quotient M/N is free of π -torsion
and, hence, R-flat.

If N ′⊆M is another A-submodule whose image in M generates N as an A⊗R K -
module, then N ′ lies in the kernel N of M → M/N . If in addition M/N ′ is flat
over R, then the natural homomorphism M/N ′→M/N ′⊗R K =M/N is injective,
which proves that N ′ coincides with this kernel. �

Theorem 3.5. Let X be a uniformly rigid K -space, let F′ ⊆ F be an inclusion of
coherent OX -modules, and let X be an R-model of locally ff type for X such that F

admits be an R-model F on X. Then there exists a unique coherent OX-submodule
F′ ⊆ F such that F/F′ is R-flat and such that the given isomorphism Furig ∼= F

identifies (F′)urig with F′.

Proof. We may work locally on X and thereby assume that X is affine. Uniqueness
of F′ is a consequence of Lemma 3.4. Since F′ is coherent, there exists a treelike
covering (X i )i∈I of X such that F′|X i is associated for all i ∈ lv(I ). Let us choose
a model of this covering, that is,

(i) for each i ∈ I , an affine flat R-model of ff type Xi for X i ,

(ii) for each inner i ∈ I an admissible blowup βi : X
′

i → Xi and

(iii) for each inner i ∈ I and for each child j of i an open immersion ϕ j :X j ↪→X′i
such that X j ⊆ X′i → Xi represents X j in X i .

For each i ∈ I , we let F|Xi denote the pullback of F to Xi , and for each inner
vertex i ∈ I , we let F|X′i denote the pullback of F to X′i . Let i be an inner vertex of
I , and let us assume that for each child j of i , we are given a coherent submodule

F′j ⊆ F|X j

such that F|X j /F
′

j is R-flat and such that (F′j )
urig
= F′|X j . By Lemma 3.4, this

assumption is satisfied if all children of i are leaves in I . Using the uniqueness
assertion in Lemma 3.4, we see that the F′j glue to a unique coherent submodule

Gi ⊆ F|X′i .

The quotient F|X′i /Gi is R-flat; by [Grothendieck 1961b, 3.4.2], βi∗(F|X′i /Gi ) thus
is a coherent R-flat OXi -module. By definition, F|X′i = β

∗

i F|Xi , so we have a natural
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homomorphism of coherent OX j -modules

F|Xi → βi∗F|X′i → βi∗(F|X′i /Gi ).

Let F′i denote its kernel; the resulting exact sequence of coherent OXi -modules

0→ F′i → F|Xi → βi∗(F|X′i /Gi )

shows that F|Xi /F
′

i is R-flat. We claim that the coherent X i -module F′|X i = G
urig
i

is associated to F′i . To prove this, it suffices to show that the morphism

(β∗i F′i )K → (β∗i βi∗Gi )K → Gi,K (‡)

induced by the natural morphism F′i → βi∗Gi is an isomorphism. By the ff type
variant of [Lütkebohmert 1990, 2.1], the second morphism in (‡) is an isomorphism,
so we must show that the first morphism is an isomorphism as well. Let X i be
the spectrum of the ring of global functions on Xi , and let bi : X ′i → X i be the
admissible blowup such that βi = b∧i , where we use a wedge to denote the formal
completion with respect to an ideal of definition of X. Let Fi , Fi

′ and Gi denote
the algebraizations of F|Xi , F′i and Gi respectively, which exist by [Grothendieck
1961b, 5.1.4]; then

F|X′i = (b
∗

j Fi )
∧.

By [Grothendieck 1961b, 4.1.5],

βi∗(F|X′i /Gi ) = (bi∗((b∗i Fi )/Gi )))
∧,

so we have a short exact sequence

0→ F ′i → Fi → bi∗((b∗i Fi )/Gi ))

which under · ⊗R K induces a short exact sequence

0→ F ′i,K → Fi,K → (bi,K )∗((b∗i,K Fi,K )/Gi,K )).

Since bi,K is an isomorphism and, hence, flat, we obtain an induced short exact
sequence

0→ b∗i,K F ′i,K → b∗i,K Fi,K → b∗i,K (bi,K )∗((b∗i,K Fi,K )/Gi,K ));

since b∗i,K (bi,K )∗ is naturally isomorphic to the identity functor, this shows that
b∗i,K F ′i,K = Gi,K . Hence, the natural morphism

b∗i F ′ j → b∗i bi∗G j
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becomes an isomorphism under · ⊗R K . That is, its kernel and cokernel are π-
torsion. It follows that kernel and cokernel of the completed morphism

β∗i F′i → β∗i βi∗Gi

are π -torsion as well, which yields our claim.
Let us now prove the statement of the proposition by induction on the volume

v(I ) of I . We may assume that I has more than one vertex. Let j be a leaf of I
whose path to the root has maximal length, and let i be the parent of j . Then all chil-
dren of i are leaves of I , so the assumption in the argument above is satisfied. By
what we have shown so far, F′|X i is associated to a unique coherent OXi -submodule
F′i ⊆ F|Xi such that F|Xi /F

′

i is R-flat. We may thus replace subt(i) by {i}. By
induction on v(I ), the desired statement follows. �

Corollary 3.6. We conclude:

(i) A coherent submodule of an associated module on a semiaffinoid K -space is
associated.

(ii) Coherent submodules and coherent quotients of strictly coherent modules are
strictly coherent.

(iii) An associated module on a semiaffinoid K -space is strictly coherent.

Proof. Let us first show (i). Let X = sSp A be a semiaffinoid K -space, let A ⊆ A
be an R-model of ff type, and let F′ be a coherent submodule of an associated
module M̃ . Since M̃ admits a model M over Spf A, Theorem 3.5 implies that
F′ ∼= (F′)urig for a coherent module F′ on Spf A. Since coherent modules on affine
formal schemes are associated, it follows that F′ is associated.

Let us prove statement (ii). Let X be a uniformly rigid K -space, let F be a
strictly coherent OX -module and let F′ ⊆ F be a coherent submodule. For every
open semiaffinoid subspace U ⊆ X , the restriction F′|U is a coherent submodule
of F|U , and F|U is associated by assumption on F. It follows from (i) that F′|U
is associated; hence F′ is strictly coherent. Let now F′′ be a coherent quotient of
F. Then the kernel F′ of the projection F→ F′′ is a coherent submodule of F

and, hence, strictly coherent by what we have seen so far. Let U ⊆ X be an open
semiaffinoid subspace; then we have a short exact sequence

0→ F′|U → F|U → F′′|U → 0

where the first two modules are associated. It follows from Lemma 3.1 that F′′|U
is associated as well.

Finally, statement (iii) follows from statement (ii) because by Lemma 3.1, an
associated module is a quotient of a finite power of the structural sheaf. �

If X is a flat formal R-scheme of locally ff type and if F is a coherent OX-module,
we do not know in general whether Furig is strictly coherent. In particular, we
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unfortunately do not know whether the analog of Kiehl’s theorem [Kiehl 1967, 1.2]
holds in general, that is to say whether every coherent module on a semiaffinoid K -
space is associated. Let us point out that the analogous question for quasicoherent
modules on rigid spaces was open for a long time; it was finally settled in the
negative by O. Gabber [Conrad 2006, Example 2.1.6].

Conjecture 3.7. The general uniformly rigid analog of Kiehl’s theorem does not
hold.

Remark 3.8. The general uniformly rigid analog of Kiehl’s theorem is equivalent
to the following statement: let X be an admissible blowup of a flat affine formal
R-scheme of ff type, and let F be a coherent sheaf on X = Xurig that admits flat
models Fi locally with respect to an affine open covering (Xi )i∈I of X; then F

admits a model on X. Indeed, this equivalence follows by arguing as in the proof
of [Lütkebohmert 1990, Theorem 2.3]. However, it seems impossible in general
to modify the models Fi such that they glue to a model of F on X: Let us assume
that I = {1, 2}. After multiplying F1 by a suitable power of π , we may assume
that F1 is contained in F2 on the intersection X12 of X1 and X2. Let n ∈ N be
big enough such that πnF2 ⊆F1 on X12; then G :=F1|X12/π

nF2|X12 is a coherent
subsheaf of (F2/π

nF2)|X12 ; see the proof of [Lütkebohmert 1990, Lemma 2.2]. If
X is of tf type over R, then the closed formal subscheme of X cut out by πn is a
scheme, and by chasing denominators [Grothendieck and Dieudonné 1960, 9.4.7]
one can extend G to a coherent subsheaf, again denoted by G, on all of X2. Let
F′2 denote the preimage of G under the projection F2→ F2/π

nF2; then F′2 is a
model of F on X2 which glues to F1, and we obtain a model of F on all of X.
In our situation, however, X2 might not be of tf type, and hence the closed formal
subscheme of X2 cut out by πn might not be a scheme. On a formal scheme though
it is in general not possible to extend coherent subsheaves because of convergence
problems. Thus, Lütkebohmert’s proof of Kiehl’s theorem fails in the uniformly
rigid situation. Similar problems occur if one tries to carry over Kiehl’s original
proof.

3A. Closed uniformly rigid subspaces.

Definition 3.9. A morphism of uniformly rigid K -spaces ϕ : Y → X is called a
closed immersion if there exists an admissible semiaffinoid covering (X i )i∈I of X
such that for each i ∈ I , the restriction ϕ−1(X i )→ X i of ϕ is a closed immersion
of semiaffinoid K -spaces in the sense of Definition 2.19.

We easily see that closed immersions are injective on the level of physical points.

Lemma 3.10. Let ϕ : Y → X be a closed immersion of uniformly rigid K -spaces.
Then ϕ] : OX → ϕ∗OY is an epimorphism of sheaves. Moreover, the OX -modules
ϕ∗OY and ker ϕ] are strictly coherent.
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Proof. The OX -module OX is strictly coherent. By Corollary 3.6(ii), it thus suffices
to show that ϕ] is an epimorphism and that both ker ϕ] and ϕ∗OY are coherent.
Considering an admissible semiaffinoid covering (X i )i∈I of X such that for all
i ∈ I , the restriction ϕ−1(X i )→ X i of ϕ is a closed immersion of semiaffinoid
K -spaces, we reduce to the case where both X and Y are semiaffinoid and where
ϕ corresponds to a surjective homomorphism of semiaffinoid K -algebras. Now the
desired statements follow from Lemma 3.1. �

Proposition 3.11. Let ϕ : Y → X be a morphism of uniformly rigid K -spaces.
Then the following are equivalent:

(i) ϕ is a closed immersion.
(ii) For each open semiaffinoid subspace U ⊆ X , the restriction ϕ−1(U )→U is

a closed immersion of semiaffinoid K -spaces in the sense of Definition 2.19.

Proof. The implication (ii)⇒ (i) is trivial, the open semiaffinoid subspaces forming
a basis for the G-topology on X . Let us assume that (i) holds, let I denote the kernel
of ϕ], and let U ⊆ X be an open semiaffinoid subspace; then ϕ induces a short
exact sequence

0→ I|U → OU → ϕ∗OY |U → 0.

Let A denote the ring of functions on U . By Lemma 3.10, I and ϕ∗OY are strictly
coherent; hence the above short exact sequence is associated to a short exact se-
quence of A-modules

0→ I → A→ B→ 0.

Since morphisms from uniformly rigid K -spaces to semiaffinoid K -spaces corre-
spond to K -homomorphisms of rings of global functions, we can now mimic the
proof of [Bosch et al. 1984, 9.4.4/1] to see that the restriction ϕ−1(U )→U of ϕ
is associated to the projection A→ B: it suffices to see that the natural morphism
ϕ−1(U )→ sSp B is an isomorphism. This can be checked locally on sSp B with
respect to the preimage under sSp B→U of a leaflike refinement of (U ∩ X i )i∈I ,
where (X i )i∈I is an admissible semiaffinoid covering of X satisfying the conditions
of Definition 3.9. �

Remark 3.12. The proof of [Bosch et al. 1984, 9.4.4/1] resorts to [ibid., 8.2.1/4].
However, as our argument above shows, this is in fact unnecessary — which is to
our advantage, because the statement of 8.2.1/4 fails to hold in the semiaffinoid sit-
uation: Example 2.42 yields a bijective morphism of semiaffinoid K -spaces which
induces isomorphisms of stalks and which is not an isomorphism.

In particular, a morphism of semiaffinoid K -spaces is a closed immersion in
the sense of Definition 3.9 if and only if it is a closed immersion of semiaffinoid
K -spaces in the sense of Definition 2.19. We can now define a closed uniformly
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rigid subspace as an equivalence class of closed immersions, in the usual way. By
standard gluing arguments, we see that the closed uniformly rigid subspaces of a
uniformly rigid K -space X correspond to the coherent OX -ideals. We easily see that
closed immersions of uniformly rigid K -spaces are preserved under base change.

It is clear that closed immersions of formal R-schemes of locally ff type induce
closed immersions on uniformly rigid generic fibers. Conversely, given a uniformly
rigid K -space X together with an R-model of locally ff type X and a closed uni-
formly rigid subspace V ⊆ X , there exists a unique R-flat closed formal subscheme
V⊆ X such that the given isomorphism Xurig ∼= X identifies Vurig with V . Indeed,
this is an immediate consequence of Theorem 3.5. We say that V is the schematic
closure of V in X.

The comparison functors studied in Section 2D1 preserve closed immersions.
This can be verified in the semiaffinoid and affinoid situations respectively. In
the case of the functor ur, there is nothing to show. In the case of the functor
r, the statement follows by looking at schematic closures and using the fact that
Berthelot’s construction preserves closed immersions [de Jong 1995, 7.2.4(e)].

3A1. Separated uniformly rigid spaces. As usual, a morphism ϕ : Y → X of uni-
formly rigid K -spaces is called separated if its diagonal morphism

1ϕ : Y → Y ×X Y

is a closed immersion. A uniformly rigid K -space X is called separated if its
structural morphism X→ sSp K is separated. If X is a uniformly rigid K -space,
we let 1X denote the diagonal of its structural morphism.

Semiaffinoid K -spaces are visibly separated. Moreover, uniformly rigid generic
fibers of separated morphisms of formal R-schemes of locally ff type are separated,
since functor urig preserves fibered products and closed immersions. Similarly, the
comparison functors studied in Section 2D1 preserve the separatedness property.

Lemma 3.13. Let X be a separated uniformly rigid K -space. The intersection of
two open semiaffinoid subspaces in X is an open semiaffinoid subspace in X.

Proof. Let U and V be open semiaffinoid subspaces in X . We easily see, using
points with values in finite field extensions of K , that U ∩ V is the 1X -preimage
of U ×sSp K V which is an open semiaffinoid subspace of X ×sSp K X . Since 1X

is a closed immersion by assumption on X , it follows from Proposition 3.11 that
U ∩ V is an open semiaffinoid subspace of X . �

Corollary 3.14. Let X be a separated uniformly rigid K -space, and let F be a
coherent OX -module. Then the natural morphism

Ȟq(X,F)
∼
→ Hq(X,F)

is an isomorphism for all q ≥ 0.
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Proof. Let S denote the set of open semiaffinoid subspaces U in X with the property
that F|U is associated. By Lemma 3.13, this set is stable under the formation of
intersections. It is clearly a basis for the G-topology on X , and Ȟq(U,F) = 0
for any U in S and any q ≥ 0 by Corollary 2.43. We conclude by the usual Čech
spectral sequence argument. �

If X is a separated uniformly rigid K -space and if ϕ : Y → X is a morphism
of uniformly rigid K -spaces, then the graph 0ϕ : Y → Y × X of ϕ is a closed
immersion since it is obtained from 1X via pullback. In particular, if X and Y are
R-models of locally ff type for X and Y respectively, the schematic closure of 0ϕ
in Y×X is well-defined. Here fibered products without indication of the base are
understood over sSp K or Spf R respectively.

4. Comparison with the theories of Berkovich and Huber

The category of formal R-schemes of locally ff type is a full subcategory of Huber’s
category of adic spaces [Huber 1996]. If X is a formal R-scheme of locally ff
type, viewed as an adic space, then by [Huber 1996, 1.2.2] the fibered product
X×Spa(R,R) Spa(K , R) is the adic space associated to the rigid generic fiber Xrig

of X. That is, the uniform structure induced by X is lost. In fact, we do not see a
way to view the category of uniformly rigid spaces as a full subcategory of Huber’s
category of adic spaces. The main obstacle lies in the fact that if A is an R-algebra
of ff type, equipped with its natural Jacobson-adic topology, and if A = A⊗R K ,
then the pair (A, A) is in general not an f-adic ring in the sense of [Huber 1996].
For example, for A = R[[S]] there exists no ring topology on A such that A is open
in this topology: There is a unique such group topology, but multiplication by π−1

in A is not continuous because there is no n ∈N such that π−1Sn
∈ R[[S]]⊗R K is

contained in R[[S]].
The situation is different if we consider the π-adic topology on R-algebras

of ff type. If Aπ denotes the ring A equipped with its π-adic topology, then
the pair (A, Aπ ) is an f-adic ring in the sense of Huber. The induced topology
on A is in fact a K -Banach algebra topology; if, for f ∈ A nonzero, we set
vA(F) := max{n ∈ N ; π−n f ∈ A}, then | f |A := |π |vA( f ) defines a K -Banach
algebra norm on A which induces the topology defined by Aπ . If A = R[[S]]〈T 〉
is a mixed formal power series ring in finitely many variables, then | · |R[[S]]〈T 〉
is the Gauss norm, and it coincides with the supremum seminorm taken over all
points in Max A. Using [Bosch et al. 1984, 3.7.5/2], one proves that all K -Banach
algebra structures on A are equivalent; in particular, the valuation spectrum M(A)
in the sense of [Berkovich 1990, 1.2] is well defined. One shows that reduced
semiaffinoid K -algebras are Banach function algebras, and one verifies that the
supremum seminorm, taken over all points in Max A or, equivalently, over all
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points in M(A), takes values in
√
|K |. For a more detailed discussion, including

proofs, we refer to [Kappen 2009, Section 1.2.5].
The topological space M(A) may be viewed as a compactification of the rigid

space (sSp A)r. To illustrate this idea in terms of an example, let us first explain
how the specialization map extends to valuation spectra. If A is a semiaffinoid K -
algebra and if A is an R-model of ff type for A, there exists a natural specialization
map

spA : M(A)→ Spec(A/π A)

extending the specialization map which we discussed in Section 2B1: let x be a
point in M(A), represented by a character χx : A→ K with values in some valued
field extension K of K ; then spA(x) := ker (χ̃x : A/π A→ K̃), where K̃ is the
residue field of K and where χ̃x is the reduction of χx .

Lemma 4.1. The map spA is surjective onto Spec(A/π A). If A/π A is a domain,
the residue norm | · |A is multiplicative and, hence, defines a point in M(A). This
point specializes to the generic point of Spec(A/π A), and it is the only point in
M(A) with this property.

Proof. Surjectivity of spA follows from [Grothendieck 1961a, 7.1.7]. If A/π A is a
domain, then | · |A ∈ M(A) clearly specializes to π A. Moreover, the local ring Aπ A

is then a discrete valuation ring, such that every character χ of a point x ∈ M(A)
specializing to the generic point of Spec A/π A is equivalent to the character given
by the natural homomorphism from A to the fraction field of the π -adic completion
of Aπ A. It follows that x equals | · |A. �

One can easily verify that when A/π A is a domain, then {| · |A} is the Shilov
boundary of M(A) [Kappen 2009, 1.2.5.12]; we will not use this fact in the fol-
lowing. Let us now discuss the example of the open unit disc sSp (R[[S]]⊗R K ):

Example 4.2. The set M(R[[S]] ⊗R K ) is naturally identified with the closure of
the Berkovich open unit disc within M(K 〈S〉), which is obtained by adding the
Gauss point.

Proof. To understand the continuous map i : M(R[[S]] ⊗R K ) → M(K 〈S〉) in-
duced by the natural isometry K 〈S〉 ↪→ R[[S]] ⊗R K , we distinguish the points
in M(R[[S]]⊗R K ) with respect to their specializations to the scheme Spec k[[S]].
Applying Lemma 4.1 to A = R[[S]], we see that the unique point above the generic
point of Spec k[[S]] is the Gauss point | · |Gauss , which maps to the Gauss point
in M(K 〈S〉) via i . If x ∈ M(R[[S]] ⊗R K ) is a point specializing to the spe-
cial point of Spec k[[S]], then for any character χx representing x , the induced
R-homomorphism χ̊x : R[[S]] → K̊ is continuous for the (π, S)-adic topology on
R[[S]] and the valuation topology on K̊. In particular, χx is determined by the χx -
image of the variable S. We conclude that the map i is injective and that it maps
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the complement of the Gauss point onto the Berkovich open unit disc. The image
of i is the continuous image of a compact set and, hence, compact. Since M(K 〈S〉)
is Hausdorff, it follows that the image of i is closed in M(K 〈S〉). �

Remark 4.3. Given a complete nontrivially valued nonarchimedean field K with
valuation ring R, one may wonder whether the points of the rigid open unit disc
over K lie dense in M(R[[S]] ⊗R K ); this question is called the one-dimensional
nonarchimedean Corona problem. It is yet unanswered; see the introduction of
[Deninger 2010] for a brief survey including other versions of nonarchimedean
Corona problems. If K is discretely valued (which is the overall assumption in
this paper), our discussion of Example 4.2 above shows that the Corona question
has a positive answer: indeed, let Z ⊆ M(R[[S]]⊗R K ) be the closure of the set of
classical points; then the image of Z under the natural map i to the K -analytic space
M(K 〈S〉) is closed. Working locally on M(K 〈S〉), we see that i(Z) contains the
Berkovich open unit disc and, hence, its closure. We have seen in Example 4.2 that
i is injective onto that closure; thus it follows that Z = M(R[[S]]⊗R K ). The one-
dimensional nonarchimedean Corona problem is significantly more challenging
when K is not discretely valued: then the ring R[[S]]⊗R K is not noetherian, it has
maximal ideals of infinite height [van der Put 1974, Corollary 4.9], and it contains
functions with infinitely many zeros on the rigid open unit disc.

It is natural to ask whether one can associate a topological space to a uniformly
rigid K -space such that, in the semiaffinoid case, one recovers the construction
sSp A 7→ M(A) which we described above. However, the formation of M(A) does
not behave well with respect to localization; see the following example. This is not
surprising: the Banach K -algebra structure on A restricts to the π-adic topology
on an R-model of ff type A for A, and complete localization of A with respect
to the π-adic topology does in general not agree with complete localization with
respect to the topology defined by the Jacobson radical. Similarly, the extended
specialization map spA maps onto the algebraization Spec(A/π A) of the special
fiber Spf(A/π A) of Spf A whose formation, again, does in general not commute
with localization.

Example 4.4. If A = R〈X, Y 〉[[Z ]]/(XY − Z), equipped with the Jacobson-adic
topology, and if B = A{X−Y }, then the induced map M(B)→ M(A) is not injective.

Proof. Let us write X := Spf A, and let X0 := Spec k[X, Y ]/(XY ) denote the
smallest subscheme of definition of X. Since X is formally smooth over R, its
special fiber Xk is formally smooth over k. The underlying topological space |Xk | =

|X0| is connected; hence the ring A/π A is a domain. By Lemma 4.1, there exists
a unique point | · |A of M(A) specializing to the generic point of the algebraization
Xπk := Spec(A/π A) of the special fiber Xk = Spf (A/π A) of X. On the other
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hand, let us consider the open formal subscheme U := Spf B of X. Its underlying
smallest subscheme of definition U0 is

U0 = Spec (k[X, Y ]/(XY ))X−Y = Spec(k[X, X−1
])qSpec(k[Y, Y−1

]),

so U has exactly two connected components. We conclude that B is a nontriv-
ial direct sum B1 ⊕ B2 of flat R-algebras of ff type. Since U is formally R-
smooth, we see that Bi/πBi is a domain for i = 1, 2. We obtain an induced
nontrivial decomposition B = B1 ⊕ B2 and, hence, a nontrivial decomposition
M(B) = M(B1)q M(B2). By the proof of the statement in Example 4.2, there
exist unique elements | · |Bi ∈ M(Bi ), i = 1, 2, specializing to the respective generic
point of Uπi,k := Spec Bi/πBi . To prove that the natural map M(B)→M(A) is not
injective, it suffices to see that it maps the elements | · |B1 , | · |B2 in M(B) to | · |A. By
functoriality of the specialization map, it thus suffices to observe that the natural
morphism Uπi,k→ Xπk maps the generic point to the generic point. However, this is
clear because A/π A→ Bi/πBi is injective. Indeed, it is a flat homomorphism of
domains, where flatness follows from the fact that Ui,k→Xk is an open immersion
of formal schemes. �

In the light of Example 4.4, it is unclear how to define a global analog of M(A).
Nonetheless, we think that a quasicompact uniformly rigid K -space X should be
viewed as a compactification of its underlying rigid K -space X r. This should be
made more precise by studying the topos of X .
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