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Ideals generated by prescribed powers of linear forms have attracted a great deal
of attention recently. In this paper we study properties that hold when the linear
forms are general, in a sense that we make precise. Analogously, one could study
so-called “general forms” of the same prescribed degrees. One goal of this paper
is to highlight how the differences between these two settings are related to the
weak Lefschetz property (WLP) and the strong Lefschetz property (SLP). Our
main focus is the case of powers of r + 1 general linear forms in r variables.
For four variables, our results allow the exponents to all be different, and we
determine when the WLP holds and when it does not in a broad range of cases.
For five variables, we solve this problem in the case where all the exponents are
equal (uniform powers), and in the case where one is allowed to be greater than
the others. For evenly many variables (≥ 6) we solve the case of uniform powers,
and in particular we prove half of a recent conjecture by Harbourne, Schenck
and Seceleanu by showing that for evenly many variables, an ideal generated
by d-th powers of r + 1 general linear forms fails the WLP if and only if d > 1.
For uniform powers of an odd number of variables, we also give a result for
seven variables, missing only the case d = 3. Our approach in this paper is via
the connection (thanks to Macaulay duality) to fat point ideals, together with a
reduction to a smaller projective space, and the use of Cremona transformations.
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1. Introduction

Ideals generated by powers of linear forms have attracted a great deal of attention
recently. For example, their Hilbert functions have been the focus of the papers
[Ardila and Postnikov 2010; Sturmfels and Xu 2010; Harbourne et al. 2011], among
others. In this paper we obtain further results in this direction, and relate them to
the presence or failure of the weak Lefschetz property, which we now recall.

Let A= R/I be a standard graded artinian algebra, where R= k[x1, . . . , xr ] and
k is a field. If ` is a linear form, then multiplication by ` induces a homomorphism
from any component [A]i to the next. Such linear forms are parametrized by [R]1.
A natural question is whether there is a Zariski-open subset U of [R]1 such that
if ` corresponds to any point of U , then for each i , multiplication by ` induces a
homomorphism of maximal rank. When this property holds, the algebra is said to
have the weak Lefschetz property (WLP), and we say that multiplication by a general
linear form has maximal rank from each degree to the next. One would naively
expect this property to hold, and so it is interesting to find classes of algebras where
it fails and to understand what is it about the algebra that prevents this property
from holding. There has been a long series of papers by many authors studying
different aspects of this problem. Even the characteristic of k plays an interesting
role; see for instance [Migliore et al. 2011; Li and Zanello 2010; Brenner and Kaid
2011; Cook and Nagel 2009; 2011].

The first result in this direction is due to R. Stanley [1980], J. Watanabe [1987],
and L. Reid, L. Roberts and M. Roitman [Reid et al. 1991], who showed that, in
characteristic 0, the WLP holds for an artinian complete intersection generated by
powers of variables. In fact, they showed that there is a Zariski-open subset U of
[R]1 such that if ` corresponds to a point of U , then for each i , multiplication by
any power `d induces a homomorphism of maximal rank from [A]i to [A]i+d ; that
is, the strong Lefschetz property (SLP) holds. Since both the WLP and the SLP
are preserved after a change of variables, their result shows that both properties
hold for any complete intersection whose generators are powers of linear forms. By
semicontinuity, it holds for a complete intersection whose generators (of arbitrary
degree) are chosen generically.

There are (at least) three natural directions suggested by this theorem. First,
we can ask whether the WLP holds for arbitrary complete intersections. It was
shown by T. Harima, J. Watanabe and the first and third authors in [Harima et al.
2003] that in two variables, all artinian algebras have the WLP. In the same paper,
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it was shown that it also holds for arbitrary artinian complete intersections in three
variables. It remains open whether it also holds for arbitrary complete intersections
in arbitrarily many variables.

Second, a natural question arising from the theorem of [Stanley 1980; Watanabe
1987; Reid et al. 1991] is to ask for which monomial ideals does the WLP hold or
not hold. F. Zanello [2006] and H. Brenner and A. Kaid [2007] gave very simple
examples to show that even level monomial ideals need not have this property, and
the latter gave an example that was even an almost complete intersection (the ideal
was in a ring with three variables and had four minimal generators). This latter
fact gave a negative answer to a question in [Migliore and Miró-Roig 2003]. In
[Migliore et al. 2011], we gave a much more extensive study of monomial almost
complete intersections and when they fail to have the WLP. This work was extended
in [Cook and Nagel 2009; 2011]. In [Boij et al. 2012], we showed that the only other
situation where level monomial ideals have to have the WLP is 3 variables, type 2.

A third interesting problem suggested by the result of [Stanley 1980; Watanabe
1987; Reid et al. 1991] is to ask when the WLP holds for powers of ≥ r + 1
linear forms, since up to a change of variables their result says that any complete
intersection of powers of linear forms has the WLP. In [Migliore et al. 2011], we
showed by example that in four variables, for d = 3, . . . , 12, an ideal generated by
the d-th powers of five general linear forms does not have the WLP. On the other
hand, H. Schenck and A. Seceleanu [2010] then gave the surprising result that in
three variables, any ideal generated by powers of linear forms has the WLP. (We
give a new proof of this result in Section 2.) In contrast, Harbourne, Schenck and
Seceleanu [Harbourne et al. 2011] have recently shown the following: Let

I = 〈`t
1, . . . , `

t
n〉 ⊂ k[x1, . . . , x4]

with `i general linear forms. If n ∈ {5, 6, 7, 8} then the WLP fails, respectively, for
t ≥ {3, 27, 140, 704}.

A famous conjecture of Fröberg [1985] gives the expected Hilbert function for
an ideal of s general forms of prescribed degrees d1, . . . , ds . The result of [Stanley
1980; Watanabe 1987; Reid et al. 1991] shows that when s = r+1, the same Hilbert
function is obtained by the same powers d1, . . . , dr+1 of general linear forms. Many
authors have studied the question of when an ideal of powers of general linear
forms has the Hilbert function predicted by Fröberg, and it is known that often it
fails even when s = r + 2; see for instance [Iarrobino 1997]. It is also known (and
strongly used in this paper) that there is a strong connection between the Hilbert
function of powers of general linear forms and the Hilbert function of a related
set of fat points in projective space. The connections between these topics, and a
geometric study of the Hilbert function of a set of fat points via Bézout methods,
can be found in [Iarrobino 1997] and in [2005; Chandler 2007].
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In this paper, we study the WLP for quotients k[x1, . . . , xr ]/I where I is an
almost complete intersection ideal generated by powers of general linear forms.
By the main result of [Schenck and Seceleanu 2010], the first interesting case is
r = 4, and by the result of [Stanley 1980; Watanabe 1987; Reid et al. 1991], the first
interesting situation is that of r+1 forms. This is the focus of this paper. As a main
tool, we first use the inverse system dictionary to relate an ideal I ⊂ k[x1, . . . , xr ]

generated by powers of linear forms to an ideal of fat points in Pr−1, and then we
show that the WLP problem of an ideal generated by powers of linear forms is
closely connected to the geometry of the linear system of hypersurfaces in Pr−2 of
fixed degree with preassigned multiple points.

Let us briefly explain how this paper is organized. In Section 2 we give the
connection between the WLP problem and Fröberg’s conjecture. As a consequence,
the results of this paper (about the failure of WLP for explicit ideals generated by
r + 1 powers of general linear forms in r variables) can be interpreted as explicit
results about when an ideal generated by r + 1 powers of general linear forms in
r − 1 variables fails to have the Hilbert function predicted by Fröberg.

We begin Section 3 by explaining the tools that are applied throughout the
paper. First, we recall a result of Emsalem and Iarrobino [1995] which gives a
duality between powers of linear forms and ideals of fat points in Pr−1. Then, we
reduce our WLP problem to one of computing the Hilbert function of n general fat
points in Pr−2 or, equivalently, to computing the dimension of the linear system
of hypersurfaces in Pr−2 of degree d having some points of fixed multiplicity.
Moreover, using Cremona transformations, one can relate two different linear
systems to reduce the problem; see [Laface and Ugaglia 2006] or [Dumnicki 2009,
Theorem 3].

In Section 4, we consider the case of 4 variables and we give a fairly complete
answer about the failure of the WLP for

I = 〈La1
1 , La2

2 , La3
3 , La4

4 , La5
5 〉 ⊂ k[x1, x2, x3, x4],

where the L i are general linear forms and 2≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5. In Section 5,
we deal with 5 variables and we completely determine when an ideal generated
by uniform or almost uniform powers of six linear forms fails the WLP. We add
some examples to illustrate that our methods extend beyond the mentioned results.
The main result of Section 6 is Theorem 6.1, where we give a complete answer
to the uniform case when the number of variables is even; in particular, we solve
[Harbourne et al. 2011, Conjecture 5.5.2] when the number of variables is even.
The case of an odd number of variables is left as an open conjecture and we present
some evidence for this conjecture, including a proof for the case of seven variables.

Finally, it is worthwhile to point out that the approach used in this work can
be applied to many other situations, in particular when the generators do not all
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have the same degree, but the calculations quickly become overwhelming. The key
steps of our approach involve identifying the consecutive degrees where the WLP
fails, determining the appropriate inequality (or equality) in the dimensions, and
then after making the translation to fat points, showing that the dimension of the
corresponding linear system has the predicted failure. As we will see, all of these
steps become very intricate.

2. Lefschetz properties and Fröberg’s conjecture

This section discusses briefly the relations between Fröberg’s conjecture and the
Lefschetz properties. For all references to Fröberg’s work, see [Fröberg 1985].

Let R = k[x1, . . . , xr ] be a polynomial ring over a field k with its standard
grading. Assume that k is infinite. Denote by h A the Hilbert function

h A(t)= dimk[A]t

of a standard graded k-algebra A. Fix a positive integer s, and fix positive integers
d1, . . . , ds . Consider the product P = [R]d1×· · ·× [R]ds , with its Zariski topology.
Fröberg’s idea is that there should be a dense open subset U of P such that for all
points (F1, . . . , Fs) of U , the coordinate rings of the ideals 〈F1, . . . , Fs〉 should
have the same Hilbert function, which was precisely described by Fröberg; we
call this the expected Hilbert function for the given values of s, d1, . . . , ds . (In
particular, U will avoid any instances where Fi = F j .) Throughout this paper, when
we say that an ideal of general forms has some property (∗), either the values of
s, d1, . . . , ds will be understood from the context, or the statement will be valid
for any choices of s, d1, . . . , ds , and we will mean that there is a Zariski-open
subset U as above whose points correspond to generators of an ideal satisfying (∗).
Beginning in the next section, usually we will have s = r + 1.

Fröberg’s conjecture is equivalent to the following structural statement: If I ⊂ R
is an ideal generated by s general forms of degrees d1, . . . , ds , and f ∈ R is another
general form of degree d , then the multiplication map

× f : [R/I ]i−d → [R/I ]i

has maximal rank for every integer i ; that is, it is injective or surjective. This
conjecture is known if the number of variables is at most three, due to Anick [1986],
and open if the number of variables is greater.

Recall that an artinian graded algebra A = R/I has the weak Lefschetz property
(WLP) if there is a linear form ` such that the multiplication ×` : [A]i−1→[A]i has
maximal rank for each integer i . Furthermore, A has the strong Lefschetz property
(SLP) if for each integer d ≥ 1 the multiplication

×`d
: [A]i−d → [A]i
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has maximal rank for each i . It is known that the WLP does not imply the SLP.
Fröberg’s conjecture implies, in particular, that all ideals generated by general

forms have the WLP. In fact, these concepts are even more closely related, as the
following result and its corollaries show.

Proposition 2.1. (a) If Fröberg’s conjecture is true for all ideals generated by
general forms in r variables, then all ideals generated by general forms in
r + 1 variables have the WLP.

(b) Let R = k[x1, . . . , xr+1], ` ∈ R be a general linear form, and S = R/〈`〉 ∼=
k[x1, . . . , xr ]. Fix positive integers s, d1, . . . , ds+1. Let L1, L2, . . . , Ls+1 ∈ R
be linear forms. Denote by ¯ the restriction from R to S ∼= R/〈`〉. Make the
following assumptions:

(i) The ideal I = 〈Ld1
1 , . . . , Lds

s 〉 has the WLP.
(ii) The multiplication ×L̄ds+1

s+1 : [S/ Ī ] j−ds+1→ [S/ Ī ] j has maximal rank.

Then R/〈Ld1
1 , . . . , Lds+1

s+1 〉 has the WLP.

Proof. As pointed out in the paragraph preceding [Migliore and Miró-Roig 2003,
Proposition 4.3], the proof of [ibid., Proposition 4.3] implies Claim (a). Essentially,
it also proves Claim (b). For the reader’s convenience, we give the proof of (b) here.

Let A = R/I . Let f = Lds+1
s+1 . We have to show that A/ f A ∼= R/(I, f ) has the

WLP. To this end, for simplicity let d=ds+1 and consider the following commutative
diagram with exact rows and columns,

[A] j−d−1 −−−→
ρ

[A] j−1 −−−→ [A/ f A] j−1 −−−→ 0yα yβ yγ
[A] j−d −−−→

ψ
[A] j −−−→ [A/ f A] j −−−→ 0y y y

[A/`A] j−d −−−→
ϕ
[A/`A] j −−−→ [A/( f, `)A] j −−−→ 0y y y

0 0 0,

where α, β, γ are multiplications by ` and ρ,ψ, ϕ are multiplications by f .
By (i), α and β have maximal rank. We have to show that the same is true for γ .

If β is surjective, then so is γ . Thus, assume that β is injective. Since the algebras
in the bottom row are quotients of R = R/`R by ideals generated by powers of
general linear forms in R, the assumption implies that also ϕ has maximal rank.
If ϕ is surjective, then so is γ , and we are done. If ϕ is injective, then a routine
diagram chase shows that γ is injective as well, which completes the argument. �
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The last result provides a new short proof of the main result of [Schenck and
Seceleanu 2010].

Corollary 2.2 [Schenck and Seceleanu 2010]. If k has characteristic zero, then
every ideal generated by powers of linear forms in 3 variables has the WLP.

Proof. Let J ⊂ R = k[x, y] be an ideal generated by powers of linear forms in two
variables. By [Harima et al. 2003, Proposition 4.4], every ideal in two variables
over a field of characteristic zero has the SLP. Hence, if ` in R is a general linear
form, then multiplication by any power of `, say `e, on R/J has maximal rank.
However, since the statement is about ideals generated by powers of arbitrary linear
forms, we need to show that the multiplication still has maximal rank whenever `
is not one of the linear forms whose powers generate J . To this end, it is enough
to argue that the Hilbert function of the cokernel of multiplication by `e, namely
R/(J, `e), does not change. However, this is clear because the latter is determined
by the Hilbert function of fat points in projective 1-space (see Theorem 3.3 below),
which only depends on the degree of the scheme since it is defined by a principal
ideal.

Now we can employ the argument used in the proof of Proposition 2.1. Indeed,
we just showed that the map ϕ in the commutative diagram above has maximal
rank. �

Corollary 2.3. Assume the characteristic is zero. Let R = k[x1, . . . , xr+1], ` ∈ R
be a general linear form, and S= R/〈`〉 ∼= k[x1, . . . , xr ]. For integers d1, . . . , dr+2,
if an ideal of powers of general linear forms 〈Ld1

1 , . . . , Ldr+2
r+2 〉 ⊂ R fails to have the

WLP, then an ideal of powers of general linear forms 〈L̄d1
1 , . . . , L̄dr+2

r+2 〉 ⊂ S fails to
have the Hilbert function predicted by Fröberg’s conjecture.

Proof. Taking s = r + 1, condition (i) of Proposition 2.1(b) is satisfied by the result
of [Stanley 1980; Watanabe 1987; Reid et al. 1991]. Thus (ii) must fail. We also
know that [S/ Ī ] j−dr+1 and [S/ Ī ] j have the expected dimensions. The failure of
×L̄dr+2

r+2 to have maximal rank then immediately gives the result. �

If all ideals in R = k[x1, . . . , xr ] that are generated by powers of general linear
forms were to have the SLP, then these ideals would have the expected Hilbert
function of ideals generated by general forms of the corresponding degrees, and thus
Fröberg’s conjecture would be true in R. Since complete intersections generated
by powers of linear forms have the SLP, it follows that ideals generated by r + 1
powers of general linear forms in r variables have the expected Hilbert functions,
so Fröberg’s conjecture is true for ideals generated by r + 1 general forms of R.

It has already been shown by Iarrobino in [1997] that ideals generated by r + 2
powers of general linear forms in r variables do not necessarily have the expected
Hilbert function, leading to almost complete intersections generated by powers of
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general linear forms in r + 1 variables that fail the WLP. By Corollary 2.2, this
forces r ≥ 4. Since complete intersections do have the WLP, these considerations
suggest as a crucial test case the question of whether ideals generated by r + 1
powers of general linear forms in r ≥ 4 variables have the WLP.

In the following sections we study this phenomenon much more systematically.
We give many explicit ideals of powers of r + 1 general linear forms that fail the
WLP, and so by Corollary 2.3 these all give examples in r − 1 variables of ideals
generated by powers of r + 1 linear forms that fail to have the Hilbert function
predicted by Fröberg. We will not repeat this remark after this section, but it is an
important motivation for our work.

Example 2.4. For some specific examples, see [Migliore et al. 2011; Schenck and
Seceleanu 2010]. However, we give two illustrations here.

(a) Taking a1 = · · · = a5 = 5, in Theorem 4.2 we have λ= 8, so k[x1, . . . , x4]/

〈x5
1 , . . . , x5

4 , L5
〉 fails the WLP from degree 7 to degree 8. Thus the ideal

generated by the fifth powers of five general linear forms in k[x, y, z] fails to
have the Hilbert function predicted by Fröberg.

(b) If r is odd and d > 1, then an ideal of powers of general linear forms of
the form 〈Ld

1 , . . . , Ld
r , Ld

1 , Ld
2〉 fails to have the Hilbert function predicted by

Fröberg. This follows from Theorem 6.1 and the above discussion.

3. General approach

Let R = k[x1, . . . , xr ] be a polynomial ring, where k is a field of characteristic zero.

Notation 3.1. Throughout this paper, when m is any integer, we will denote

[m]+ =max{m, 0}.

For any artinian ideal I ⊂ R and a general linear form ` ∈ R, the exact sequence

· · · → [R/I ]m−1
×`
−→ [R/I ]m→ [R/(I, `)]m→ 0

gives, in particular, that the multiplication by ` will fail to have maximal rank
exactly when

dimk[R/(I, `)]m 6=max{dimk[R/I ]m − dimk[R/I ]m−1, 0}; (3-1)

in that case, we will say that R/I fails the WLP in degree m.

Remark 3.2. Notice that to show that the multiplication by ` fails to have maximal
rank from degree m− 1 to degree m, it is enough to check the failure of injectivity
if dim[R/I ]m−1 ≤ dim[R/I ]m , and it is enough to check the failure of surjectivity
if dim[R/I ]m−1 ≥ dim[R/I ]m . We will then say that R/I fails injectivity or fails
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surjectivity, respectively. An important part of the argument is the verification of
the inequality of the dimensions.

In several of the papers mentioned above, this failure was studied via an exam-
ination of the splitting type of the first syzygy bundle of I . For powers of linear
forms, we give an alternative approach, which we will implement in the subsequent
sections.

We first recall a result of Emsalem and Iarrobino giving a duality between powers
of linear forms and ideals of fat points in Pn−1. We quote it in the form that we
need.

Theorem 3.3 [Emsalem and Iarrobino 1995, Theorem I]. Let 〈La1
1 , . . . , Lan

n 〉 ⊂ R
be an ideal generated by powers of n linear forms. Let ℘1, . . . , ℘n be the ideals of
n points in Pr−1. (Each point is actually obtained explicitly from the corresponding
linear form by duality.) Choose positive integers a1, . . . , an . Then, for any integer
j ≥max{ai },

dimk
[
R/〈La1

1 , . . . , Lan
n 〉
]

j = dimk
[
℘

j−a1+1
1 ∩ · · · ∩℘ j−an+1

n
]

j .

Now, we observe that the ideal (I, `) is also an ideal generated by powers of
linear forms! We conclude that if ℘ is the ideal of the point dual to ` then

dimk
[
R/〈La1

1 , . . . , Lan
n , `〉

]
j = dimk

[
℘

j−a1+1
1 ∩ · · · ∩℘ j−an+1

n ∩℘ j]
j .

Consider the points P1, . . . , Pn, P in Pr−1 defined by the ideals ℘1, . . . , ℘n, ℘,

respectively. Let λi be the line joining P to Pi , and let H = Pr−2 be a general
hyperplane defined by a linear form L H . Let Qi be the point of intersection of λi

with H . For any positive integer m, we will denote by λm
i the curve with defining

ideal I m
λi

, and notice that λm
i is arithmetically Cohen–Macaulay. Thus the hyperplane

section of λm
i by H has saturated ideal qm

i = (I
m
λi
, L H )/(L H ) in the coordinate ring

R/(L H ) of H , and qm
i defines a fat point Qm

i in H = Pr−2. The curve

Y = λ j−a1+1
1 ∪ · · · ∪ λ j−an+1

n

is the cone over Qa1
1 ∪ · · · ∪ Qan

n , and thus is also arithmetically Cohen–Macaulay.

Proposition 3.4. Let 〈La1
1 , . . . , Lan

n 〉 ⊂ R be an ideal generated by powers of n
linear forms, and let ` be a general linear form. For j ≥max{ai }, we have

dimk
[
R/〈La1

1 , . . . , Lan
n , `〉

]
j

= dimk
[
℘

j−a1+1
1 ∩ · · · ∩℘ j−an+1

n ∩℘ j]
j (in k[x1, . . . , xr ])

= dimk
[
q

j−a1+1
1 ∩ · · · ∩ q j−an+1

n
]

j (in k[x1, . . . , xr−1]).
Proof. The first equality is Theorem 3.3. Without loss of generality let P =
[0, . . . , 0, 1], with defining ideal ℘ = 〈x1, . . . , xr−1〉, and assume that H is defined



496 Juan C. Migliore, Rosa M. Miró-Roig and Uwe Nagel

by xr =0. Any form F ∈[℘ j−a1+1
1 ∩· · ·∩℘

j−an+1
n ∩℘ j

] j involves only the variables
x1, . . . , xr−1 since it is in [℘ j

] j . Thus F ∈ [IY ] j , so viewing F in k[x1, . . . , xr−1],
we see that F vanishes on the hyperplane section of Y ; that is,

F ∈
[
q

j−a1+1
1 ∩ · · · ∩ q j−an+1

n
]

j . (∗)

Now suppose F satisfies (∗). Viewing F in k[x1, . . . , xr ] we see that F vanishes
on Y , hence also on the subscheme of Y defined by ℘ j−a1+1

1 ∩ · · · ∩℘
j−an+1
n . But

we also have that F ∈ ℘ j , since it involves only x1, . . . , xr−1. Moreover F has
degree j . Thus F ∈ ℘ j−a1+1

1 ∩ · · · ∩℘
j−an+1
n ∩℘ j

] j as desired. �

Using Proposition 3.4, we reduce our WLP problem to one of computing the
Hilbert function of n general fat points in Pr−2. From now on, we will denote by

Lr−2( j; j − a1+ 1, j − a2+ 1, . . . , j − an + 1)

the linear system [q j−a1+1
1 ∩ · · · ∩ q

j−an+1
n ] j ⊂ [k[x1, . . . , xr−1]] j . In order to

simplify notation, we use superscripts to indicate repeated entries. For example,
L3( j; 52, 23)= L3( j; 5, 5, 2, 2, 2).

Notice that, for every linear system Lr ( j; a1, . . . , an), one has

dimk Lr ( j; a1, . . . , an)≥max
{

0,
( j+r

r

)
−

n∑
i=1

(ai+r−1
r

)}
,

where the right-hand side is called the expected dimension of the linear system. If
the inequality is strict, then the linear system Lr ( j; a1, . . . , an) is called special. It
is a difficult problem to classify the special linear systems.

Using Cremona transformations, one can relate two different linear systems; see
[Nagata 1960; Laface and Ugaglia 2006; Dumnicki 2009, Theorem 3].

Lemma 3.5. Let n > r ≥ 2 and j, a1, . . . , an be nonnegative integers, and set
m = (r − 1) j − (a1+ · · ·+ ar+1). If ai +m ≥ 0 for all i = 1, . . . , r + 1, then

dimk Lr ( j; a1, . . . , an)= dimk Lr ( j +m; a1+m, . . . , ar+1+m, ar+2, . . . , an).

Following [De Volder and Laface 2007], the linear system Lr ( j; a1, . . . , an) is
said to be in standard form if (r − 1) j ≥ a1+ · · ·+ ar+1 and a1 ≥ · · · ≥ an ≥ 0. If
r = 2, then every linear system in standard form is nonspecial. This is no longer
true if r ≥ 3. However, De Volder and Laface were able to compute the speciality
in the case of at most 8 fat points in P3. We state their result only in the form we
need it.
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Theorem 3.6 [De Volder and Laface 2007, Theorem 5.3]. If the linear system
L3( j; a1, . . . , a6) is in standard form, then

dimk L3( j; a1, . . . , a6)=max
{

0,
( j+r

r

)
−

6∑
i=1

(ai+r−1
r

)}
+

6∑
i=2

( ti+1
3

)
,

where ti = a1+ ai − j .

Notice that we always use the vector space dimension of the linear system rather
than the dimension of its projectivization and that we adjusted the formula for the
expected dimension. Furthermore, we always use the convention that a binomial
coefficient

(a
r

)
is zero if a < r .

In this note, we are interested in certain almost complete intersections. Then one
can compute the right-hand side of the inequality (3-1).

Lemma 3.7. Let I = 〈La1
1 , . . . , Lar+1

r+1 〉 ⊂ R be an almost complete intersection
generated by powers of r + 1 general linear forms. Then, for each integer j ,

dimk[R/I ] j − dimk[R/I ] j−1

=
[
h A( j)− h A( j − ar+1)

]
+
−
[
h A( j − 1)− h A( j − 1− ar+1)

]
+
,

where A = R/〈La1
1 , . . . , Lar

r 〉. Furthermore, if j ≤ 1
2ar+1+

1
2

∑r
i=1(ai − 1), then

the formula simplifies to

dimk[R/I ] j − dimk[R/I ] j−1

=
[
h A( j)− h A( j − 1)

]
−
[
h A( j − ar+1)− h A( j − 1− ar+1)

]
.

Proof. Considering multiplication by lar+1
r+1 on A, the first equation follows because

the complete intersection A has the SLP according to [Stanley 1980; Watanabe
1987; Reid et al. 1991]. The latter also implies that the Hilbert function of A is
unimodal. Its midpoint is 1

2

∑r
i=1(ai − 1). Thus, the differences in brackets in the

first formula are not negative if j ≤ 1
2ar+1+

1
2

∑r
i=1(ai − 1), proving the second

formula. �

Notice that the Hilbert function of the complete intersection A can be computed
using the Koszul complex that provides its minimal free resolution.

4. Powers of linear forms in four variables

In this section we let R = k[x1, x2, x3, x4], where k is a field of characteristic zero.
Our main result will be to determine, in almost all cases, when an ideal generated
by powers of five general linear forms has the WLP. To this end, without loss of
generality we set I = 〈xa1

1 , xa2
2 , xa3

3 , xa4
4 , La5〉, where L is a general linear form and

a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5. Part of the argument involves an application of Bézout’s
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theorem to remove one-dimensional components of the relevant linear systems; this
approach was also used in [Chandler 2005].

Lemma 4.1. Let P1, . . . , P6, be points in P2 in linear general position. Assign
multiplicities m1, . . . ,m6 respectively to the points, with 0 ≤ m1 ≤ · · · ≤ m6. (In
particular, taking some of the mi = 0 allows us to consider fewer than six points.)
Assume that d ≥ m5 + m6 and that 2d ≥

∑6
i=2 mi . Then the fat point scheme

Z = m1 P1+ · · ·+m6 P6 imposes independent conditions on curves of degree d.

Proof. Let X be the rational surface obtained by blowing up P2 at the points Pi .
Let L , E1, . . . , E6 be the standard basis of the divisor class group of X , that is,
L is the pullback of the class of a line in P2 and E1, . . . , E6 are the exceptional
divisors. Under the stated assumptions d ≥ m5 + m6 and 2d ≥

∑6
i=2 mi , the

divisor d L−m1 E1−· · ·−m6 E6 is numerically effective (nef), by [Di Rocco 1996,
Theorem 3.4]. Then [Geramita et al. 2009, Theorem 2.3 and Remark 2.4] show that
the Castelnuovo–Mumford regularity of IZ is ≤ d + 1. This implies the claimed
result. �

The following theorem represents “half” of our results (the “even” case) con-
cerning when an ideal of five powers of general linear forms has the WLP. It is not
a complete list, however, because of the second condition in (iii). See Remark 4.4
for further discussion.

Theorem 4.2. Let L be a general linear form and let I = 〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , La5〉.
Assume that a1+ a2+ a3+ a4 is even. Let λ= (a1+ a2+ a3+ a4)/2− 2.

(i) If a5 ≥ λ then the ring R/I has the WLP.

(ii) If a5 < λ and a1+ a4 ≥ a2+ a3 then R/I fails the WLP from degree λ− 1 to
degree λ.

(iii) If a5 < λ, a1+ a4 < a2+ a3 and 2a5+ a1− a2− a3− a4 ≥ 0 then R/I fails
the WLP from degree λ− 1 to degree λ.

The hypotheses of (ii) and of (iii) both force a1 ≥ 3.

Proof. Let ` be a general linear form. Letting J = 〈xa1
1 , xa2

2 , xa3
3 , xa4

4 〉, consider the
commutative diagram

[R/J ]t
×`
−→ [R/J ]t+1

↓ ↓

[R/I ]t
×`
−→ [R/I ]t+1

(where the vertical arrows are the natural restriction). If we know that the multipli-
cation on the top row is surjective, then we immediately conclude surjectivity on the
bottom row. Notice that 2λ is the socle degree of the artinian complete intersection
R/(xa1

1 , xa2
2 , xa3

3 , xa4
4 ), so λ is the midpoint.



On the weak Lefschetz property for powers of linear forms 499

First assume that a5 >λ. Then clearly R/I and R/J coincide in degrees ≤ λ, so
we have injectivity (by the result of Stanley, Watanabe, Reid, Roberts and Roitman)
for (×`) : [R/I ]t → [R/I ]t+1 for all t ≤ λ− 1. When t ≥ λ we have surjectivity
for R/J , so by the above result we also have it for R/I .

Now assume that a5 = λ. We wish to show that R/I has the WLP. Again
surjectivity is immediate for t ≥ λ, and injectivity is immediate for t ≤ λ−2. When
t = λ− 1 we consider two cases. If dim[R/J ]λ−1 = dim[R/J ]λ then by Stanley–
Watanabe we have surjectivity for (×`) : [R/J ]λ−1→ [R/J ]λ, so the same holds
for R/I . If dim[R/J ]λ−1 < dim[R/J ]λ, the image of [R/J ]λ−1 in [R/J ]λ under
multiplication by ` is not surjective. Hence the vector space

[
〈xa1

1 , xa2
2 , xa3

3 , xa4
4 , `〉

]
λ

is not all of Rλ. But in characteristic zero the λ-th powers of linear forms span [R]λ.
Thus for a general L , the image of Lλ in [R/J ]λ is outside the image of [R/J ]λ−1

in [R/J ]λ. Thus (×`) : [R/I ]λ−1→ [R/I ]λ is injective since it is for R/J in that
degree. This completes the proof of (i).

We now prove (ii). Our assumptions now are that a1 + a2 + a3 + a4 is even,
a5 < λ, and a1+a4 ≥ a2+a3. We first note that the hypotheses force a1 ≥ 3, since
if a1 = 2 then a5 < λ= (a2+ a3+ a4− 2)/2≤ (2+ 2a4− 2)/2= a4.

We will show that the multiplication by ` fails to have maximal rank from degree
λ− 1 to degree λ. If dim[R/I ]λ−1 ≤ dim[R/I ]λ it is enough to check the failure
of injectivity, and if dim[R/I ]λ−1 ≥ dim[R/I ]λ it is enough to check the failure of
surjectivity. (See Example 4.3.)

According to (3-1), the task is to show that

dim[R/(I, `)]λ > [dim[R/I ]λ− dim[R/I ]λ−1]+. (4-1)

We will compute the left-hand side using Proposition 3.4 and the right-hand side
using Lemma 3.7.

By Proposition 3.4 and Theorem 3.3, we have

dimk[R/(I, `)]λ
= dimk[q

λ−a1+1
1 ∩ qλ−a2+1

2 ∩ q
λ−a3+1
3 ∩ qλ−a4+1

4 ∩ q
λ−a5+1
5 ]λ

= dimk L2(λ; λ− a1+ 1, λ− a2+ 1, λ− a3+ 1, λ− a4+ 1, λ− a5+ 1).
(4-2)

Notice that λ− a1+ 1 ≥ · · · ≥ λ− a5+ 1 ≥ 2. The vector space defines a linear
system, and we want to find its dimension. The first step is to understand the
one-dimensional base locus, which has components of degree 2 and of degree 1.
We will use Bézout’s theorem to formally reduce the degree of the polynomials and
the order of vanishing at the points, without changing the dimension of the linear
system. If the result has dimension zero then (4-2) is also zero.

Let Fλ ∈L2(λ; λ−a1+1, λ−a2+1, λ−a3+1, λ−a4+1, λ−a5+1). There is
a unique quadratic polynomial F2 vanishing at the five general points. By Bézout’s
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theorem, if F2 is not a factor of Fλ then it intersects Fλ with multiplicity 2λ. On the
other hand, considering the multiplicities at the five points, we get that the curves
meet with multiplicity at least 5λ−

∑5
i=1 ai + 5. But

5λ−
5∑

i=1

ai + 5≤ 2λ ⇐⇒ a5 ≥
a1+a2+a3+a4

2
− 1= λ+ 1,

a contradiction. Hence F2 is a factor of Fλ. We next want to know what power of
F2 divides Fλ. Thus we want to know the smallest i for which

2(λ− 2i)≥ (λ− a1+ 1− i)+ · · ·+ (λ− a5+ 1− i),

and this is equivalent to i ≥ λ− a5 + 1. Thus we have Fλ = Fλ−a5+1
2 · F2a5−λ−2,

where F2a5−λ−2 ∈L2(2a5−λ− 2; a5− a1, a5− a2, a5− a3, a5− a4). (Notice that
now there are only four points, and some of these multiplicities might even be zero.)

Now we consider linear factors coming from the lines joining two of these four
points. There are six such lines; we denote by L i j , 1≤ i < j ≤ 4, the line (as well
as the linear form) passing through the points with multiplicities a5−ai and a5−a j .
Notice that if a5− ai > 2a5− λ− 2 then there are no such forms F2a5−λ−2, so the
desired dimension is zero.

Arguing in a similar manner as above, we obtain that if (a5− ai )+ (a5− a j ) >

2a5− λ− 2, then L i j appears as a factor

(a5− ai )+ (a5− a j )− (2a5− λ− 2)= λ+ 2− ai − a j

times. Thus, letting Ai j = [λ+ 2− ai − a j ]+ = max{λ+ 2− ai − a j , 0}, we see
that (formally)

Fλ= Fλ−a5+1
2 ·

∏
1≤i< j≤4

L Ai j
i j ·G, where deg G = 2a5−λ−2−

∑
1≤i< j≤4

Ai j . (4-3)

Notice that

if 2a5− λ− 2<
∑

1≤i< j≤4

Ai j , then dim[〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , La5, `〉]λ = 0. (4-4)

Now, since we have assumed a1+ a4 ≥ a2+ a3, observe that

a1+ a4− a2− a3 ≥ 0 a2+ a3− a1− a4≤ 0 a2+ a4− a1− a3 ≥ 0

a1+ a3− a2− a4 ≤ 0 a3+ a4− a1− a2≥ 0 a1+ a2− a3− a4 ≤ 0.
(4-5)

We claim that after removing the one-dimensional base locus, we obtain a set
of at most 4 fat points of uniform multiplicities (possibly 0). We have already seen
that after removing the powers of F2 we are left with the problem of finding the
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dimension of the forms of degree 2a5 − λ− 2 passing through four general fat
points with multiplicity a5−a1, . . . , a5−a4. To compute this, we have to determine
precisely what is left when we remove the lines. At each of the four points we
compute the multiplicity of the fat point that remains after we remove the (multiple)
lines passing through it in the base locus (which do not contribute to the desired
dimension):

a5− a4−
∑

i=1,2,3

[λ+ 2− ai − a4]+

= a5− a4−

[
−a1+a2+a3−a4

2

]
+

−

[a1−a2+a3−a4
2

]
+

−

[a1+a2−a3−a4
2

]
+

= a5− a4.

Similarly,

a5− a3−
∑

i=1,2,4[λ+ 2− ai − a3]+ = a5− a4,

a5− a2−
∑

i=1,3,4[λ+ 2− ai − a2]+ = a5− a4,

a5− a1−
∑

i=2,3,4[λ+ 2− ai − a1]+ = a5− a4.

Concluding, we want to find the dimension of the vector space of forms of degree

2a5− λ− 2−
∑

1≤i< j≤4

Ai j = 2(a5− a4)

passing through four points with multiplicity a5−a4. By Lemma 4.1, this dimension
is a5− a4+ 1 (which in particular is at least 1). That is,

dim[〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , La5, `〉]λ = a5− a4+ 1≥ 1. (4-6)

Using Lemma 3.7, we now compute the “expected” dimension, that is, the
right-hand side of (4-1). Let A = R/J , where J = 〈xa1

1 , xa2
2 , xa3

3 , xa4
4 〉. In the

following, recall also that λ is the midpoint of the h-vector of R/J , so 0≤h R/I (λ)=

h A(λ)− h A(λ− a5). Observe that a4 < a1+ a2+ a3 since otherwise

a5− λ≥ a4− λ=
a4− a1− a2− a3

2
+ 2> 0,

contradicting our assumption that a5 < λ. This implies, in particular, that for
determining h A(λ) by using the Koszul resolution of A, we only need to consider
the free modules up to

⊕
1≤i<l≤4 R(−ai − a j ).

From (4-5) we see that only λ−a2−a3+2, λ−a1−a3+2 and λ−a1−a2+2
can be positive. Similarly, we have λ− a5 − ai + 2 ≤ 0 since a1 + a4 ≥ a2 + a3.



502 Juan C. Migliore, Rosa M. Miró-Roig and Uwe Nagel

Then the “expected dimension” is[
dim[R/I ]λ− dim[R/I ]λ−1

]
+

=
[
h A(λ)− h A(λ− a5)− h A(λ− 1)+ h A(λ− a5− 1)

]
+

=

[(
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

∑
1≤i< j≤3

(λ−ai−a j+2
2

)
−

(
λ−a5+2

2

)]
+

.

If this is zero then clearly the actual dimension exceeds the expected one and we
are done. If not, one verifies (we used CoCoA version 4.7.5 [CoCoA 2009]) that

dimk[R/(I, `)]λ−
[
dim[R/I ]λ− dim[R/I ]λ−1

]
+

=(a5− a4+ 1)

−

((
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

∑
1≤i< j≤3

(λ−ai−a j+2
2

)
−

(
λ−a5+2

2

))
=

(
λ+1−a5

2

)
,

and this last binomial coefficient is at least 1. Thus, in either case we have shown
the inequality (4-1), which completes the proof of (ii).

Finally we prove (iii). Our assumptions now are that a1+ a2+ a3+ a4 is even,
a5 <λ, a1+a4 < a2+a3 and 2a5+a1−a2−a3−a4≥ 0. The calculations from (ii)
continue to be valid up to (4-3) and (4-4). We first note that the hypotheses again
force a1≥ 3 since if a1= 2 then a5<λ= (a2+a3+a4−2)/2≤ (2+2a5−2)/2= a5.

In our current situation, though, observe that

a3+ a4− a1− a2 > 0 a1+ a2− a3− a4< 0 a2+ a4− a1− a3 > 0

a1+ a3− a2− a4 < 0 a2+ a3− a1− a4> 0 a1+ a4− a2− a3 < 0.
(4-7)

Now we examine the linear system remaining after we remove the one-dimensional
base locus. As in (ii), we obtain a linear system of curves of degree

2a5− λ− 2−
∑

1≤i< j≤4

Ai j .

Now we compute the order of vanishing at the four points:

a5− a4−
∑

i=1,2,3

[λ+ 2− ai − a4]+

=a5− a4−

[
−a1+a2+a3−a4

2

]
+

−

[a1−a2+a3−a4
2

]
+

−

[a1+a2−a3−a4
2

]
+

=a5−
−a1+a2+a3+a4

2
.
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By the additional hypothesis 2a5+ a1− a2− a3− a4 ≥ 0, this order of vanishing
is ≥ 0. A similar computation gives that the order of vanishing at the other three
points is the same. Thus Lemma 4.1 shows that

dim[〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , La5, `〉]λ = a5−
−a1+a2+a3+a4

2
+ 1≥ 1.

The computation of the “expected” dimension is very similar to what we did above.
From (4-7) we see that only λ− a1− a2+ 2, λ− a1− a3+ 2 and λ− a1− a4+ 2
can be positive. We again have a4 < a1+ a2+ a3. Thus, Lemma 3.7 provides[
dim[R/I ]λ− dim[R/I ]λ−1

]
+

=
[
h A(λ)− h A(λ− a5)− h A(λ− 1)+ h A(λ− a5− 1)

]
+

=

[(
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

4∑
i=2

(
λ−a1−ai+2

2

)
−

(
λ−a5+2

2

)]
+

.

As above, if this is zero then we are done. If not, one verifies (for example with
CoCoA) that

dimk[R/(I, `)]λ−
[

dim[R/I ]λ− dim[R/I ]λ−1
]
+

=a5−
−a1+a2+a3+a4

2
+ 1

−

((
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

4∑
i=2

(
λ−a1−ai+2

2

)
−

(
λ−a5+2

2

))

=

(
λ+1−a5

2

)
,

and this last binomial coefficient is at least 1, establishing the inequality (4-1). This
completes the proof of (iii). �

Example 4.3. To illustrate that sometimes it is injectivity that fails and sometimes
it is surjectivity, consider the following (produced using CoCoA).

When a1 = 5, a2 = 7, a3 = 8, a4 = 10, a5 = 10 we get dim[R/I ]12 = 225 and
dim[R/I ]13 = 220, so we expect surjectivity, but the image under multiplication by
a general linear form has dimension 219.

When a1 = 5, a2 = 7, a3 = 8, a4 = 10, a5 = 12 we get dim[R/I ]12 = 234,
dim[R/I ]13 = 236, so we expect injectivity, but the image under multiplication by
a general linear form has dimension 233.

Let us now discuss cases that are not covered by Theorem 4.2, still assuming
that a1+ a2+ a3+ a4 is even.

Remark 4.4. As above, let I = 〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , La5〉. Assume 2a5+ a1− a2−

a3− a4 < 0 and a1 ≥ 3. Then:
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(i) If a1 = 2 then R/I has the WLP (see Theorem 4.6).

(ii) If a1 = 3, then in the following cases, R/I fails to have the WLP, and the
failure is in degree λ− 1 and it fails by 1.

• (3, 9,m,m,m) for m ≥ 9
• (3, 10,m,m+ 1,m+ 1) for m ≥ 10
• (3, 11,m,m,m+ 1) for m ≥ 11
• (3, 11,m,m+ 2,m+ 2) for m ≥ 11
• (3, 12,m,m+ 1,m+ 2) for m ≥ 12
• (3, 12,m,m+ 3,m+ 3) for m ≥ 12
• (3, 13,m,m,m+ 2) for m ≥ 13
• (3, 13,m,m+ 2,m+ 3) for m ≥ 13
• (3, 13,m,m+ 4,m+ 4) for m ≥ 13

(This is shown using arguments as in the proof of Theorem 4.2. We omit the
details.)

Furthermore, the reader can easily construct examples using CoCoA to support the
following statements, although we do not have proofs (see also the beginning of
the proof of Theorem 6.5):

(iii) When a1 = 3 and a2 ≤ 13, all cases apart from the ones above have the WLP.

(iv) When a1 = 3, 4, some examples have the WLP and others do not.

(v) When a1 ≥ 5, R/I fails the WLP.

We now consider the case where a1 + a2 + a3 + a4 is odd. There are some
interesting differences to Theorem 4.2. As before, Theorem 4.5 is not a complete
classification because of the extra condition in (iii).

Theorem 4.5. Let L be a general linear form and let I = 〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , La5〉.
Assume that a1+ a2+ a3+ a4 is odd. Let λ= (a1+ a2+ a3+ a4− 5)/2.

(i) If a5 ≥ λ− 1 then the ring R/I has the WLP.

(ii) If a5 < λ− 1 and a1+ a4 ≥ a2+ a3 then R/I fails the WLP from degree λ− 1
to degree λ. These hypotheses force a1 ≥ 5.

(iii) If a5 < λ−1, a1+a4 < a2+a3 and 2a5+3−a4−a3−a2+a1 ≥ 0 then R/I
fails the WLP from degree λ− 1 to degree λ. These hypotheses force a1 ≥ 3.

Proof. The outline of part of the proof is the same as that for Theorem 4.2, and we
only highlight the differences. First note that with the hypotheses of (ii), if a1 ≤ 4
then we have a5<λ−1= (a1+a2+a3+a4−7)/2≤ (2a1+2a4−7)/2≤ a4+(1)/2,
a contradiction. Similarly, with the hypotheses of (iii), if a1 = 2 then we have
a2+ a3+ a4− 5≤ 2a5 < 2λ− 2= a2+ a3+ a4− 5, again a contradiction.



On the weak Lefschetz property for powers of linear forms 505

Now, for all three parts of the theorem, we show that the one-dimensional part
of the base locus corresponding to the quadratic polynomial F2 has equation Fλ−5

2 .
Thus, in the first step we want to compute

dim L2(2a5− λ; a5− a1+ 1, a5− a2+ 1, a5− a3+ 1, a5− a4+ 1, 1). (4-8)

In the second step, we obtain that if (a5− ai + 1)+ (a5− a j + 1) > 2a5− λ then
L i j appears as a factor

(a5− ai + 1)+ (a5− a j + 1)− (2a5− λ)= λ− ai − a j + 2

times. Thus we let Ai j = [λ+ 2− ai − a j ]+ as before, and formally we have

Fλ = Fλ−a5
2 ·

∏
1≤i< j≤4

L Ai j
i j ·G, where deg G = 2a5− λ−

∑
1≤i< j≤4

Ai j . (4-9)

Notice that

if 2a5− λ <
∑

1≤i< j≤4

Ai j then dim[〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , La5, `〉]λ = 0. (4-10)

For (i), we want to show that whenever a5 ≥ λ− 1, the multiplication (×`) :
[R/I ]t→[R/I ]t+1 has maximal rank. Let J = 〈xa1

1 , xa2
2 , xa3

3 , xa4
4 〉. Notice that we

have h R/J (λ)= h R/J (λ+ 1). We consider several cases.

• If t ≥ λ, we know that the multiplication on R/J from degree t to degree t+1
is surjective, by the result of Watanabe, Stanley, Reid, Roberts and Roitman.
Since R/I is a quotient, the same holds for R/I . This holds no matter what
a5 is.

• If t ≤ a5− 2, then [R/I ]t = [R/J ]t and [R/I ]t+1 = [R/J ]t+1, so again the
result follows trivially. Notice that as a result of these first two cases, we are
done if a5 ≥ λ+ 1.

• If (t, a5)= (λ−1, λ) or (t, a5)= (λ−2, λ−1), we know that the multiplication
for R/J is injective in either of these cases, and that dim[R/I ]t = dim[R/J ]t
and dim[R/I ]t+1 = dim[R/J ]t+1− 1. Then we argue exactly as in the case
a5 = λ at the beginning of the proof of Theorem 4.2, using that the λ-th
and (λ− 1)-st powers of linear forms span [R]λ and [R]λ−1, respectively. In
particular, this completes the argument if a5 = λ.

• The case where t = λ− 1, a5 = λ− 1 is the most subtle, and we now give the
argument for this case.

We claim that the multiplication (×`) : [R/I ]λ−1 → [R/I ]λ is injective. To
see this, we will show that dim[R/I ]λ−1 < dim[R/I ]λ and that dim[R/(I, `)]λ =
dim[R/I ]λ− dim[R/I ]λ−1.
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First we compute dim[R/(I, `)]λ. The first step (4-8) now becomes

dim[R/(I, `)]λ = dim L2(λ− 2; λ− a1, λ− a2, λ− a3, λ− a4, 1).

We now consider three cases. First, if a1 = a2 = a3 = a4−1 then (4-8) becomes

dim[R/(I, `)]λ = dim L2(2a4− 6; a4− 3, a4− 3, a4− 3, a4− 4, 1)

= 2a4− 6= 2a1− 4
(4-11)

thanks to Lemma 4.1.
We now assume that we are not in the first case. We obtain

A1,2 =

[
−a1−a2+a3+a4−1

2

]
+

≥ 0 A1,3 =

[
−a1+a2−a3+a4−1

2

]
+

≥ 0

A1,4 =

[
−a1+a2+a3−a4−1

2

]
+

A2,3 =

[a1−a2−a2+a4−1
2

]
+

A2,4 =

[a1−a2+a3−a4−1
2

]
+

= 0 A3,4 =

[a1+a2−a3−a4−1
2

]
+

= 0.

Our second case is a2+a3> a1+a4. Then A1,2, A1,3 and A1,4 are possibly nonzero.
A calculation shows that we then must have

dim[R/(I, λ)]λ = dim L2(2a1− 3; a1− 1, a1− 2, a1− 2, a1− 2, 1)

= 2a1− 3. (4-12)

Our third case is a1+a4>a2+a3. Then A1,2, A1,3 and A2,3 are possibly nonzero.
Another calculation shows that we must have

dim[R/(I, `)]λ= dim L2(a1+ a2+ a3− a4− 3; (λ− a4+ 1)3, λ− a4, 1)

= a1+ a2+ a3− a4− 3.
(4-13)

Now we compute the expected dimension dim[R/I ]λ− dim[R/I ]λ−1 (recall
a5 = λ− 1) by using Lemma 3.7.

In the first case (a1 = a2 = a3 = a4− 1) we use the Koszul complex and easily
compute that the expected dimension is 2a4− 6= 2a1− 4, agreeing with (4-11).

In the second case, using the observations about which Ai, j are positive, the
Koszul resolution gives the expected dimension 2a1− 3, agreeing with (4-12).

In the third case, again using the observations about the Ai, j and the Koszul
complex, we obtain the expected dimension a1+ a2+ a3− a4− 3, agreeing with
(4-13). Thus when a5 = λ− 1, R/I has the WLP, concluding the proof of (i).

Now, we prove (ii). Hence, we are assuming that a1+a4 ≥ a2+a3. In fact, since
a1+ a2+ a3+ a4 is odd, we actually have a1+ a4 > a2+ a3. We obtain

a1+a4−a2−a3 > 0, a2+a3−a1−a4 < 0, a2+a4−a1−a3 > 0,

a1+a3−a2−a4 < 0, a3+a4−a1−a2 > 0, a1+a2−a3−a4 < 0.
(4-14)
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Therefore, we get

a5− a4+ 1−
∑

i=1,2,3[λ+ 2− ai − a4]+ = a5− a4+ 1,

a5− a3+ 1−
∑

i=1,2,4[λ+ 2− ai − a3]+ = a5− a4+ 2,

a5− a2+ 1−
∑

i=1,3,4[λ+ 2− ai − a2]+ = a5− a4+ 2,

a5− a1+ 1−
∑

i=2,3,4[λ+ 2− ai − a1]+ = a5− a4+ 2,

2a5− λ−
∑

1≤i< j≤4 Ai j = 2(a5− a4+ 2).

Concluding, we want the dimension of the linear system

L2(2a5− 2a4+ 4; a5− a4+ 2, a5− a4+ 2, a5− a4+ 2, a5− a4+ 1, 1).

By Lemma 4.1 we have

dimk L2(2a5− 2a4+ 4; (a5− a4+ 2)3, a5− a4+ 1, 1)
≥ dimk L2(2a5− 2a4+ 4; (a5− a4+ 2)3, a5− a4+ 1)− 1

= dimk L2(2a5− 2a4+ 4; (a5− a4+ 2)4)+ a5− a4+ 1

= 2a5− 2a4+ 4.

This is clearly positive. Arguing as in the proof of Theorem 4.2, and using the
inequalities (4-14), we compute the expected dimension and we get

[dim[R/I ]λ− dim[R/I ]λ−1]]+

=

[(
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

∑
1≤i< j≤3

(λ−a j−ai+2
2

)
−

(
λ−a5+2

2

)]
+

.

If the part inside the brackets is negative, the actual dimension clearly exceeds the
expected one, and we are done. If not, a straightforward computation shows that

dimk[R/(I, `)]λ− [dimk[R/I ]λ− dimk[R/I ]λ−1]

≥ (2a5− 2a4+ 4)

−

((
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

∑
1≤i< j≤3

(λ−a j−ai+2
2

)
−

(
λ−a5+2

2

))
=

(
λ−a5

2

)
> 0.

Thus the actual dimension exceeds the expected dimension, and this completes the
proof of (ii).

(iii) We break this into two cases: first we will assume that a1+a4+3≤ a2+a3,
and then we will handle the case a1+ a4+ 1= a2+ a3.



508 Juan C. Migliore, Rosa M. Miró-Roig and Uwe Nagel

So to begin, our assumptions now are that a1+ a2+ a3+ a4 is odd, a5 < λ− 1,
a1+ a4+ 3≤ a2+ a3 and 2a5+ 3− a4− a3− a2+ a1 ≥ 0. Hence, we have

a3+ a4− a1− a2 >0, a1+ a2− a3− a4<0, a2+ a4− a1− a3>0,

a1+ a3− a2− a4 <0, a2+ a3− a1− a4>0, a1+ a4− a2− a3<0.
(4-15)

Now we examine the linear system remaining after we remove the one-dimensional
base locus. Observe that

a5− a4+ 1−
∑

i=1,2,3[λ+ 2− ai − a4]+ = a5+ 1− (a2+ a3+ a4− a1− 1)/2,

a5− a3+ 1−
∑

i=1,2,4[λ+ 2− ai − a3]+ = a5+ 1− (a2+ a3+ a4− a1− 1)/2,

a5− a2+ 1−
∑

i=1,3,4[λ+ 2− ai − a2]+ = a5+ 1− (a2+ a3+ a4− a1− 1)/2,

a5− a1+ 1−
∑

i=2,3,4[λ+ 2− ai − a1]+ = a5+ 2− (a2+ a3+ a4− a1− 1)/2,

2a5− λ−
∑

1≤i< j≤4 Ai j = 2a5+ 4− a4− a3− a2+ a1 =: 2b.

The additional hypothesis 2a5+3−a4−a3−a2+a1 ≥ 0 guarantees that the orders
of vanishing are positive. Therefore, applying Lemma 4.1, we obtain

dimk[R/(I, `)]λ = dimk L2(2b; b, (a5+ 1− (a2+ a3+ a4− a1− 1)/2)3, 1)

≥ 2a5+ 5− (a2+ a3+ a4− a1)− 1.

The hypothesis also guarantees that this value is positive. The computation of the
“expected” dimension is very similar to what we did above. The extra hypothesis
a1 + a4 + 3 ≤ a2 + a3 implies that only λ − a1 − a2 + 2, λ − a1 − a3 + 2 and
λ− a1 − a4 + 2 are > 0. We again have a4 < a1 + a2 + a3. Thus, Lemma 3.7
provides[
dimk[R/I ]λ− dimk[R/I ]λ−1]

]
+

=
[
h A(λ)− h A(λ− a5)− h A(λ− 1)+ h A(λ− a5− 1)

]
+

=

[(
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

4∑
i=2

(
λ−a1−ai+2

2

)
−

(
λ−a5+2

2

)]
+

.

If this is zero, we are done. Otherwise, a straightforward computation shows that
dimk[R/(I, `)]λ− [dimk[R/I ]λ− dimk[R/I ]λ−1] is given by

2a5+ 4− (a2+ a3+ a4− a1)

−

((
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

4∑
i=2

(
λ−a1−ai+2

2

)
−

(
λ−a5+2

2

))
=

(
λ−a5

2

)
> 0.
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Thus in either case the actual value of dim[R/(I, `)]λ exceeds the expected dimen-
sion. This completes the proof of the case a1+ a4+ 3≤ a2+ a3.

Finally, we assume that a1+a4+1= a2+a3. We note first that this assumption
actually forces the stronger condition a1 ≥ 4 since a4 ≤ a5 < λ− 1 implies

7< a1+ a2+ a3− a4 = 2a1+ 1,

and hence a1>3. The condition a1+a4+1=a2+a3 implies that λ−a1−a4+2=0,
so the computation of the expected dimension above can only get smaller, while
the computation of dim[R/(I, `)]λ remains unchanged. Thus the difference can
only grow, and we again have shown the failure of the WLP. This completes the
proof of (iii). �

In the previous results we excluded the case a1 = 2 for the most part. The reason
is that then the algebra does have the WLP.

Theorem 4.6. Let L be a general linear form in R := k[x1, . . . , x4], and let I be
the ideal 〈x2

1 , xa2
2 , xa3

3 , xa4
4 , La5〉 of R. Then the algebra R/I has the WLP.

The proof will be based on a result about almost complete intersections in three
variables generated by powers of four general linear forms. According to [Schenck
and Seceleanu 2010] such an algebra has the WLP, that is, multiplication by a
general linear form has maximal rank. We show that this is also true when one
multiplies by the square of such a form.

Proposition 4.7. Let `2, . . . , `5, ` be five general linear forms of S := k[x, y, z],
and let a ⊂ S be the ideal 〈`a2

2 , . . . , `
a5
5 〉. Set A := S/a. Then, for each integer j ,

the multiplication map ×`2
: [A] j−2→ [A] j has maximal rank.

Proof. If any of the numbers a2, . . . , a5 equals one, then A has the SLP by [Harima
et al. 2003], so the claim is true. Thus, we may assume 2≤ a2 ≤ · · · ≤ a5.

First, assume also that

a5 ≤
a2+a3+a4−3

2
.

Define integers p and b by

p :=
⌊a2+a3+a4+a5−4

3

⌋
and a2+ a3+ a4+ a5 = 3(p+ 1)+ b,

thus 1≤ b ≤ 3.
According to [Schenck and Seceleanu 2010], A has the WLP and A/`A has

socle degree p. This implies that multiplication by ` on A is injective until degree
p and surjective in larger degrees. Symbolically, this reads as

[A]0 ↪→ · · · ↪→ [A]p−1 ↪→ [A]p� [A]p+1� · · · . (4-16)
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Hence, to show our claim it suffices to prove that the multiplication

×`2
: [A]p−1→ [A]p+1

has maximal rank, which is equivalent to

dimk[A/`2 A]p+1 =max{0, h A(p+ 1)− h A(p− 1)}. (4-17)

In order to see this, we first compute the left-hand side and then the right-hand
side. Using Theorem 3.3, we get

dimk[A/`2 A]p+1 = dimk[S/〈`2, `
a2
2 , . . . , `

a5
5 〉]p+1

= dimk[p
p
∩ p

p−a2+2
2 ∩ . . .∩ p

p−a5+2
5 ]p+1

= dimk L2(p+ 1; p, p− a2+ 2, . . . , p− a5+ 2),

where p, p2, . . . , p5 are the homogenous ideals of five general points in P2. Let
Q ∈ S be the unique quadric that vanishes at these five points. Again, we use
Bézout’s theorem to estimate the multiplicity of Q in the base locus of the linear
system

L2(p+ 1; p, p− a2+ 2, . . . , p− a5+ 2).

For an integer j , the condition

2(p+ 1− 2 j)≥ p− j +
∑5

i=2[p− ai + 2− j]

= 5p+ 8− 5 j −
∑5

i=2 ai

= 5p+ 8− 5 j − [3(p+ 1)+ b]

= 2p+ 5− 5 j − b

is equivalent to j ≥ 3− b. It follows that Q appears with multiplicity at least 3− b
in the base locus. Thus, we get

dimk[A/`2 A]p+1 = dimk L2(p+ 1; p, p− a2+ 2, . . . , p− a5+ 2)

= dimk L2(p+ 2b− 5; p+ b− 3, p+ b− a2− 1,

. . . , p+ b− a5− 1).

The latter linear system is clearly empty if b = 1. To compute its dimension if
2≤ b ≤ 3, we consider the lines L i , 2≤ i ≤ 5, passing through the points p and pi .
By Bézout’s theorem, the line L i appears with multiplicity at least Bi in the base
locus, where

Bi := [p+ b− 3+ p+ b− ai − 1−{p+ 2b− 5}]+ = [p+ 1− ai ]+.
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Our assumption a5 ≤ (a2 + a3 + a4 − 3)/2 implies a5 ≤ p + 1. Thus, we get
Bi = p+ 1− ai , so

B2+· · ·+ B5= 4p+4−[a2+a3+a4+a5] = 4p+4−[3(p+1)+b] = p+1−b.

Removing the lines from the base locus we obtain

dimk[A/`2 A]p+1 = dimk L2(p+ 2b− 5; p+ b− 3, p+ b− a2− 1,

. . . , p+ b− a5− 1)

= dimk L2(3b− 6; 2b− 4, b− 2, . . . , b− 2).

It follows that dimk[A/`2 A]p+1 = 1 if b = 2.
If b = 3, then we get, using Theorem 3.3 again,

dimk[A/`2 A]p+1 = dimk L2(3; 2, 1, . . . , 1)

= dimk[S/〈`2, `3
2, . . . , `

3
5〉]3

= dimk[S/〈`2
〉]3− 4

= 3,

because the linear forms are general. Summarizing, we have shown so far that

dimk[A/`2 A]p+1 =


0 if b = 1,
1 if b = 2,
3 if b = 3.

(4-18)

Now we compute the right-hand side of (4-17). To this end consider the ring
B := S/〈`a3

3 , `
a4
4 , `

a5
5 〉. Observe that

p+ 1− a3− a4 =

⌊a2+a3+a4+a5−1
3

⌋
− a3− a4

≤
a2+a5−1−2a3−2a4

3

≤
3a2−5−3a3−3a4

6
< 0,

where we used again a5 ≤ (a2+ a3+ a4− 3)/2. Hence, the Koszul resolution of
the complete intersection B provides for its Hilbert function if j ≤ p+ 1 that

hB( j)=
( j+2

2

)
−

5∑
i=3

( j+2−ai
2

)
, (4-19)
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where, as above, we define a binomial coefficient
(c

2

)
to be zero if c < 0. Since the

complete intersection B has the SLP and since A ∼= B/`a2
2 B, we get

h A(p+ 1)− h A(p− 1)

=
[
hB(p+ 1)− hB(p+ 1− a2)

]
+
−
[
hB(p− 1)− hB(p− 1− a2)

]
+
.

One easily checks that our assumptions provide p+ 1 ≤
⌈
(a3+ a4+ a5− 3)/2

⌉
.

Since a3+a4+a5−3 is the socle degree of B, this implies that hB( j−1)≤ hB( j)
if j ≤ p+ 1. Hence the last formula simplifies to

h A(p+1)−h A(p−1)= hB(p+1)−hB(p+1−a2)−hB(p−1)+hB(p−1−a2).

The socle degree of A/`A is at most the socle degree of S/〈`, `a2
2 , `

a3
3 〉, thus

p ≤ a2+ a3− 2. Combining with (4-19) and using that( j+1
2

)
−

( j−1
2

)
= 2 j − 1

if j ≥ 1, this provides

h A(p+ 1)− h A(p− 1)=
( p+3

2

)
−

( p+1
2

)
−

5∑
i=3

[( p+3−aa
2

)
−

( p+1−ai
2

)]
−

[( p+3−a2
2

)
−

( p+1−a2
2

)]
=−6p− 9+ 2

4∑
i=2

ai

= 2b− 3.

Hence, we get

[h A(p+ 1)− h A(p− 1)]+ = [2b− 3]+ =


0 if b = 1,
1 if b = 2,
3 if b = 3.

Comparing with (4-18), this establishes the desired equality (4-17).
It remains to consider the case a5 > (a2 + a3 + a4 − 3)/2. Let us call b :=

〈`
a2
2 , `

a3
3 , `

a4
4 〉 and set B := S/b. Note that the socle degree of B is a2+a3+a4−3.

Stanley [1980], Watanabe [1987] and Reid, Roberts and Roitman [1991] showed
that, in characteristic 0, SLP holds for an artinian complete intersection generated
by powers of linear forms. In particular, for each integer j , the multiplication map
×`2
: [B] j−2→ [B] j has maximal rank. We want to prove that, for each integer j ,

the multiplication map ×`2
: [A] j−2→ [A] j has maximal rank. To this end, we

will examine several cases:

(a) Assume a2+ a3+ a4 odd.
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(a1) For any j < a5, we have [A] j ∼= [B] j and hence ×`2
: [A] j−2 → [A] j has

maximal rank.

(a2) For any j ≥ a5 + 1 or j = a5 and a5 > (a2 + a3 + a4 − 3)/2+ 1, we have
j − 2 ≥ (a2 + a3 + a4 − 3)/2. Hence, the surjectivity ×`2

: [B] j−2 � [B] j
together with the commutative diagram

[B] j−2 � [A] j−2y y
[B] j � [A] j

allows us to conclude that ×`2
: [A] j−2→ [A] j has maximal rank.

(a3) For j = a5= (a2+a3+a4−3)/2+1 we have [A] j−2∼=[B] j−2∼=[B] j� [A] j .
Therefore, we also conclude that ×`2

: [A] j−2→ [A] j has maximal rank.

(b) Assume a2+ a3+ a4 even.

(b1) For any j < a5, we have [A] j ∼= [B] j and hence ×`2
: [A] j−2 → [A] j has

maximal rank.

(b2) It is identical to (a2).

(b3) For j = a5 = (a2+a3+a4−2)/2 we have to prove that ×`2
: [A] j−2→[A] j

is injective. Since dim[B] j−2 < dim[B] j , the image of [B] j−2 in [B] j under
multiplication by `2 is not surjective. So the vector space [〈`a2

2 , `
a3
3 , `

a4
4 , `

2
〉] j

is not all of S j . But in characteristic zero the j -th powers of linear forms span
[S] j . Thus for a general L , the image of L j

= La5 in [B] j is outside the image
of [B] j−2 in [B] j . Thus (×`2) : [A] j−2→ [A] j is injective, since it is for B
in that degree. This completes the proof of the proposition. �

Remark 4.8. Observe that extensions of Proposition 4.7 to multiplication by higher
powers of ` fail in general. There are many such examples. The smallest is when
a2 = · · · = a5 = 3, for which multiplication by `3 fails to have maximal rank from
degree 1 to degree 4. It is easy to see that this extends to the case a2 = · · · = a5 = d ,
for which multiplication by `d fails to have maximal rank from degree d − 2 to
degree 2d − 2. Many more complicated examples (produced by CoCoA) exist as
well.

Proof of Theorem 4.6. If one of the numbers a2, . . . , a5 is one, then the result
follows by [Schenck and Seceleanu 2010]. Thus, we may assume 2≤ a2 ≤ · · · ≤ a5.

If a5 > (a2 + a3 + a4 − 3)/2, then R/I has the WLP by Theorems 4.2(i) and
4.5(i). Thus, we may assume a5 ≤ (a2+ a3+ a4− 3)/2 for the remainder of the
proof. Let ` ∈ R be another general linear form. We have to show that for all
integers j ,

dimk[R/(I, `)] j =max{0, h R/I ( j)− h R/I ( j − 1)}. (4-20)
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To this end, consider the ideal J := 〈xa2
2 , xa3

3 , xa4
4 , La5〉 ⊂ R. The complete

intersection R/J has the SLP, which implies[
h R/I ( j)− h R/I ( j − 1)

]
+

=

[[
h R/J ( j)− h R/J ( j − 2)

]
+
−
[
h R/J ( j − 1)− h R/J ( j − 3)

]
+

]
+

.

The complete intersection R/J has socle degree a2 + · · · + a5 − 4 ≥ 4, thus the
multiplication×` : [R/J ] j−1→[R/J ] j is injective if j≤

⌈
(a2+a3+a4+a5−4)/2

⌉
.

One checks that⌈a2+a3+a4+a5−4
2

⌉
≥

⌊a2+a3+a4+a5−1
3

⌋
=: p+ 1.

It follows that h R/J ( j −1)≤ h R/J ( j) if j ≤ p+1. Thus, if j ≤ p+1, then we get
that

h R/I ( j)− h R/I ( j − 1)

= h R/J ( j)− h R/J ( j − 2)− h R/J ( j − 1)+ h R/J ( j − 3)

=
[
h R/J ( j)− h R/J ( j − 1)

]
+
−
[
h R/J ( j − 2)− h R/J ( j − 3)

]
+

= h R/(J,`)( j)− h R/(J,`)( j − 2),

where we used again that R/J has the SLP. Invoking Proposition 4.7, we obtain[
h R/I ( j)− h R/I ( j − 1)

]
+
= h R/(I,`)( j)

if j≤ p+1. This equality is also true (using the same computations) if h R/J (p+1)≤
h R/J (p+2). Otherwise, we get

[
h R/I (p+2)−h R/I (p+1)

]
+
= 0. However, using

(4-16), we get [R/(I, `)]p+2 = 0. Hence, we have in any case[
h R/I (p+ 2)− h R/I (p+ 1)

]
+
= h R/(I,`)(p+ 2)= 0,

which completes the argument. �

5. Almost uniform powers of linear forms in 5 variables

In this section, we let R = k[x1, x2, x3, x4, x5], where k is a field of characteristic
zero, and we will apply the approach described in Section 3 and results on fat points
in P3 to determine exactly when an ideal generated by uniform powers of six general
linear forms in R fails the WLP. Some nonuniform cases are also discussed. To
this end, without loss of generality we set I = 〈xa1

1 , xa2
2 , xa3

3 , xa4
4 , xa5

5 , La6〉, where
L is a general linear form and a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 ≤ a6.

Theorem 5.1. Let L be a general linear form and let I = 〈xd
1 , xd

2 , xd
3 , xd

4 , xd
5 , Ld
〉.

Then the ring R/I fails the WLP if and only if d > 3.
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Proof. Using CoCoA we check that if d < 4 then R/I has the WLP. Assume d ≥ 4
and we will show that R/I fails the WLP in degree 2d − 1. To this end, we take
` ∈ R a general linear form. According to (3-1), it is enough to show that

dim[R/(I, `)]2d−1 >
[
dim[R/I ]2d−1− dim[R/I ]2d−2

]
+
. (5-1)

We will compute the left-hand side using Proposition 3.4 and the right-hand side
using the fact that R/J has the SLP.

Now let S = k[x1, x2, x3, x4]. We want to compute the vector space dimension

dimk
[
qd

1 ∩ qd
2 ∩ qd

3 ∩ qd
4 ∩ qd

5 ∩ qd
6
]

2d−1 = dimk L3(2d − 1; d6). (5-2)

Applying a sequence of cubo-cubic Cremona transformations

P3 99K P3

(x1 : x2 : x3 : x4) 99K (x−1
1 , x−1

2 , x−1
3 , x−1

4 )= (x2x3x4 : x1x3x4 : x1x2x4 : x1x2x3)

we will transform the last linear system to another one which has the same dimension,
but it will be nonspecial and hence we will be able to compute its dimension. In
fact, we apply Lemma 3.5 and we get

dim L3(2d − 1; d6)= dim L3(2d − 3; d2, (d − 2)4)

= dim L3(2d − 5; (d − 2)4, (d − 4)2)

= dim L3(2d − 7; (d − 4)6). (5-3)

Since 2(2d − 7)≥ 4(d − 4), the linear system L3(2d − 7; (d − 4)6) is in standard
form. Therefore, Theorem 3.6 provides that it is nonspecial and its dimension is
given by

dim L3
(
2d − 7; (d − 4)6

)
=

(2d−4
3

)
− 6

(d−2
3

)
. (5-4)

Now we have to compute the right-hand side of (5-1). Let A = R/J , where
J = 〈xd

1 , xd
2 , xd

3 , xd
4 , xd

5 〉. Since R/J has the SLP, we have

0≤ h R/I (2d − 1)= h A(2d − 1)− h A(d − 1).

Therefore,

[dim[R/I ]2d−1− dim[R/I ]2d−2]

= h A(2d − 1)− h A(d − 1)− h A(2d − 2)+ h A(d − 2)

=

(2d+2
3

)
− 6

(d+2
3

)
.

We easily verify that

dim[R/(I, `)]2d−1− [dim[R/I ]2d−1− dim[R/I ]2d−2] = 4
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and this shows that R/I fails the WLP in degree 2d − 1, which is what we wanted
to prove. �

Remark 5.2. Note that (5-4) could also have been proven using Proposition 3.5 of
[Catalisano et al. 1999]. However, we use our approach because it also applies to
setups below where the hypotheses of the latter proposition are not satisfied.

There are several possible extensions of the above theorem. First, we can ask
whether the WLP property holds for the case of nonuniform powers and, in particular,
we can ask what happens in the almost uniform case. We have

Theorem 5.3. Let L be a general linear form and let I =〈xd
1 , xd

2 , xd
3 , xd

4 , xd
5 , Ld+e

〉

with e ≥ 1. Then:

(i) If d is odd, then R/I has the WLP if and only if e ≥ (3d − 5)/2.

(ii) If d is even, R/I has the WLP if and only if e ≥ (3d − 8)/2.

Proof. Set λ :=
⌊
(5d − 5)/2

⌋
. We will actually prove the following sequence of

statements:

(i′) If d + e ≥ λ, then R/I has the WLP.

(ii′) If d is odd and e ≤ d − 2, then R/I fails the WLP.

(iii′) If d is even and e ≤ d − 3, then R/I fails the WLP.

(iv′) If d is odd and d − 1≤ e ≤ (3d − 7)/2 then R/I fails the WLP.

(v′) If d is even and d − 2≤ e ≤ (3d − 10)/2 then R/I fails the WLP.

(vi′) If d is even and e= (3d− 8)/2 (that is d+ e= λ− 1) then R/I has the WLP.

Throughout this proof we will denote A= R/J , where J = 〈xd
1 , xd

2 , xd
3 , xd

4 , xd
5 〉.

(i′) The proof is the same as in Theorems 4.2(i) and 4.5(i).

(ii′) Since d+e≤ 2d−2, we can write e= 2 j+ε with 0≤ ε ≤ 1 and j ≤ (d−3)/2.
We will show that R/I fails the WLP in degree 2d − 1+ j . To this end, we take
` ∈ R, a general linear form. According to (3-1), it is enough to show that

dim[R/(I, `)]2d−1+ j > [dim[R/I ]2d−1+ j − dim[R/I ]2d−2+ j ]+. (5-5)

We will compute the left-hand side using Proposition 3.4 and the right-hand side
using Lemma 3.7.

We begin by computing the vector space dimension

dimk[q
d+ j
1 ∩ q

d+ j
2 ∩ q

d+ j
3 ∩ q

d+ j
4 ∩ q

d+ j
5 ∩ q

d+ j−e
6 ]2d−1+ j

= dimk L3(2d − 1+ j; (d + j)5, d + j − e).
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Applying a sequence of cubo-cubic Cremona transformations (see Lemma 3.5), we
get

dimk L3(2d − 1+ j; (d + j)5, d + j − e)

= dimk L3(2d − 3− j; d + j, d + j − e), (d − j − 2)4

= dimk L3(2d − 5− 3 j + e; d − j − 2+ e, (d − j − 2)3, (d − 3 j − 4+ e)2)

= dimk L3(2d − 7− 5 j + 2e; d − 3 j − 4+ 2e, (d − 3 j − 4+ e)5).

(Here we use the hypothesis d+ e ≤ 2d− 2 to guarantee that d− 3 j − 4+ 2e ≥ 0.)
Since 2(2d − 7− 5 j + 2e) ≥ 3(d − 3 j − 4+ e)+ d − 3 j − 4+ 2e, the linear

system

L3(2d − 7− 5 j + 2e; d − 3 j − 4+ 2e, (d − 3 j − 4+ e)5)

is in standard form. Therefore, Theorem 3.6 provides

dimk L3(2d − 7− 5 j + 2e; (d − 3 j − 4+ e)5, d − 3 j − 4+ 2e)

=

[(2d−4−5 j+2e
3

)
− 5

(d−2−3 j+e
3

)
−

(d−2−3 j+2e
3

)]
+

+ 5 ·
(e− j

3

)
.

We claim that(2d−4−5 j+2e
3

)
− 5

(d−2−3 j+e
3

)
−

(d−2−3 j+2e
3

)
+ 5 ·

(e− j
3

)
=

1
6
(d − 2− 2 j)

[
2d2
− 3e2

+ 12e(1+ j)− 4(3+ 8 j + 4 j2)+ d(3e− 2− 2 j)
]

is positive. In fact, using d ≥ 2 j + 3 and e ≥ 2e, one gets

2d2
− 3e2

+ 12e(1+ j)− 4(3+ 8 j + 4 j2)+ d(3e− 2− 2 j)

≥ 2(2 j + 3)2− 3e2
+ 12e(1+ j)− 4(3+ 8 j + 4 j2)+ (2 j + 3)(3e− 2− 2 j) > 0.

We conclude that dim[R/(I, `)]2d−1+ j > 0.
Now we compute the right-hand side of (5-5). Lemma 3.7 provides

dim[R/I ]2d−1+ j − dim[R/I ]2d−2+ j

= h A(2d − 1+ j)− h A(d − 1+ j − e)− h A(2d − 2+ j)+ h A(d − 2+ j − e)

=

(2d+ j+2
3

)
− 5

(d+ j+2
3

)
−

(d+ j+2−e
3

)
+ 10

( j+2
3

)
.

If dim[R/I ]2d−1+ j − dim[R/I ]2d−2+ j ≤ 0, then the WLP fails because we have
seen that dim[R/(I, `)]2d−1+ j > 0.
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If dim[R/I ]2d−1+ j − dim[R/I ]2d−2+ j > 0, then

dim[R/(I, `)]2d−1+ j − [dim[R/I ]2d−1+ j − dim[R/I ]2d−2+ j ]

≥

(2d−4−5 j+2e
3

)
− 5

(d−2−3 j+e
3

)
−

(d−2−3 j+2e
3

)
+ 5 ·

(e− j
3

)
−

[(2d+ j+2
3

)
− 5

(d+ j+2
3

)
−

(d+ j+2−e
3

)
+ 10

( j+2
3

)]
=

(3 j−e+4
3

)
> 0.

Hence, we conclude in every case that R/I fails the WLP in degree 2d − 1+ j ,
which is what we wanted to prove.

(iii′) The proof is completely analogous.

(iv′) Suppose that d is odd and d−1≤ e≤ (3d−7)/2. We claim that R/I fails the
WLP (usually by failing injectivity) from degree (5d − 7)/2 to degree (5d − 5)/2.
We first consider (by applying a sequence of cubo-cubic Cremona transformations;
see Lemma 3.5)

dim[R/(I, `)](5d−5)/2 = dimk L
(5d−5

2
;

(3d−3
2

)5
,

3d−3
2
− e

)
= dimk L3

(3d−3
2
;

(d−1
2

)4
,

3d−3
2

,
3d−3

2
− e

)
= dimk L3

(3d−3
2
;

3d−3
2

,
(d−1

2

)4
,

3d−3
2
− e

)
= dimk L2

(3d−3
2
;

(d−1
2

)4
,

3d−3
2
− e

)
,

the last step being a consequence of Proposition 3.4. Notice that since d − 1≤ e,
we have (3d−3)/2−e≤ (d−1)/2. Thanks to Lemma 4.1, these fat points impose
independent conditions, so we have

dim[R/(I, `)](5d−5)/2 =

( 3d−3
2 +2

2

)
− 4 ·

( d−1
2 +1

2

)
−

( 3d−3
2 −e+1

2

)
=

9d2
−1

8
− 4·d

2
−1
8
−

1
2

[9d2
−12d+3

4
− e(3d − 2)+ e2

]
=

e
2
(3d − 2− e)−

(d−1
2

)
+ 1

(The fact that

dimk L3

(3d−3
2
;

3d−3
2

,
d−1

2
,

d−1
2
,

d−1
2
,

d−1
2
,

3d−3
2
− e

)
=

e
2
(3d − 2− e)−

(d−1
2

)
+ 1

could also be obtained via Theorem 3.6.)
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Combined with Lemma 3.7, we obtain

dim[R/(I, `)](5d−5)/2−
(
dim[R/I ](5d−5)/2− dim[R/I ]((5d−5)/2)−1

)
=

( 3d−7
2 −e+3

3

)
.

If the part in parentheses is nonnegative then we expect injectivity, but the positivity
of the part on the right (since we assumed e≤ (3d−7)/2) implies that the WLP fails.
Now suppose that the part in parentheses is negative, so that we expect surjectivity.
Then one checks that

dim[R/(I, `)](5d−5)/2 =
e
2
(3d − 2− e)−

(d−1
2

)
+ 1

=
(e−d)(2d−e−2)

2
+

(d+1
2

)
≥
(e−d)(d+3)

4
+

(d+1
2

)
(since e ≤ 3d−7

2
)

> 0.

(the last inequality is for d − 1≤ e ≤ (3d − 7)/2 ), and so surjectivity, and hence
WLP, fails. This completes the proof of (iv′).

(v′) We show that R/I fails the WLP from degree (5d− 8)/2 to degree (5d− 6)/2.
Since we will use part of the computations also for (vi′), we consider all even d
such that d − 2≤ e ≤ (3d − 8)/2. In the same way as above we get

dim[R/(I, `)](5d−6)/2 = dimk L3

(5d−6
2
;

(3d−4
2

)5
,

3d−4
2
− e

)
= dimk L3

(3d−2
2
;

(d
2

)4
,

3d−4
2

,
3d−4

2
− e

)
.

Using Theorem 3.6, we obtain

dim[R/(I, `)](5d−6)/2 =−d2
+ 3de− e2

+ 6d − 4e− 4= 5d2

4
−

(3d−4
2
− e

)2
,

which is at least d2 in the given range for e. In particular, we are finished whenever
dim[R/I ](5d−6)/2 ≤ dim[R/I ]((5d−6)/2)−1.

If dim[R/I ](5d−6)/2 ≥ dim[R/I ]((5d−6)/2)−1 (so we expect injectivity), then
Lemma 3.7 provides, minding the bound on e,

dim[R/(I, `)](5d−6)/2−
(
dim[R/I ](5d−6)/2− dim[R/I ]((5d−6)/2)−1

)
=

( 3d−10
2 −e+3

3

)
. (5-6)

Since we are assuming that the part in parentheses is nonnegative, the positivity of
the part on the right implies that WLP fails if e ≤ (3d − 10)/2, as claimed.
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(vi′) Arguing as in Theorem 4.5(iii), we see that if t ≤ λ− 2 or t ≥ λ then (×`) :
[R/I ]t→[R/I ]t+1 has maximal rank. So, it only remains to study the case t=λ−1.
We are going to prove that the multiplication (×`) : [R/I ]λ−1→[R/I ]λ is injective,
that is dim[R/(I, `)]λ = dim[R/I ]λ− dim[R/I ]λ−1.

Notice that the assumptions force d ≥ 4, so we may apply the computations of
(v′). Thus, the desired follows by (5-6). �

The same argument gives us the following result.

Proposition 5.4. Let L be a general linear form and let

I = 〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , xa5
5 , La6〉.

Assume that 5≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 ≤ a6 ≤ a1+ 2. Then the ring R/I fails the
WLP.

Our methods extend beyond the results mentioned above.

Example 5.5. Using the above notation, one shows:

(i) If d ≥ 4 and (a1, a2, a3, a4, a5, a6) = (d, d + 1, d + 2, d + 3, d + 4, d + 5),
then the ring R/I fails the WLP in degree 2d + 4.

(ii) If d ≥ 4 and (a1, a2, a3, a4, a5, a6) = (d, d + 3, d + 4, d + 7, d + 7, d + 10),
then the ring R/I fails the WLP in degree 2d + 9.

6. Uniform powers of linear forms

In this section, we consider the case of an almost complete intersection of general
linear forms whose generators all have the same degree d. We give a complete
answer, in the case of an even number of variables, to the question of when the
WLP holds. Interestingly, the case of an odd number of variables is more delicate,
and we are only able to give a partial result, concluding with a conjecture.

We first consider the case where there are an even number of variables. Set
R = k[x1, . . . , x2n], where k is a field of characteristic zero. We determine when
an ideal generated by uniform powers of 2n+ 1 general linear forms in R fails the
WLP. If n = 1, then R/I always has the WLP due to [Harima et al. 2003]. If n = 2,
then R/I fails the WLP if and only if d ≥ 3 by Theorem 4.2.

Theorem 6.1. Let L ∈ R be a general linear form, and let I = 〈xd
1 , . . . , xd

2n, Ld
〉,

where n ≥ 3. Then the ring R/I fails the WLP if and only if d > 1.

Proof. It is clear that for d = 1, R/I has WLP.
Assume d ≥ 2. We will show that R/I fails WLP in degree nd − n. To this end,

we take ` ∈ R, a general linear form. According to (3-1), it is enough to show that

dimk[R/(I, `)]nd−n >
[
dimk[R/I ]nd−n − dimk[R/I ]nd−n−1

]
+
. (6-1)
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First, we compute the left-hand side of (6-1).

Claim 1. dim[R/(I, `)]nd−n = 1.

Proof. By Proposition 3.4 and Theorem 3.3, we have

dimk[R/(I, `)]nd−n

= dimk[q
(n−1)d−(n−1)
1 ∩ q

(n−1)d−(n−1)
2 ∩ · · · ∩ q

(n−1)d−(n−1)
2n ∩ q

(n−1)d−(n−1)
2n+1 ]nd−n

= dimk L2n−2(nd − n; ((n− 1)d − (n− 1))2n+1).

Applying Lemma 3.5, we get

dimk L2n−2(nd − n; ((n− 1)d − (n− 1))2n+1)

= dimk L2n−2((n−1)d−(n−1); ((n−1)d−(n−1))2, ((n−2)d−(n−2))2n−1).

Using Proposition 3.4 twice, it follows that

dimk L2n−2(nd−n; ((n−1)d− (n−1))2n+1)

= dimk L2n−3((n−1)d− (n−1); (n−1)d− (n−1), ((n−2)d− (n−2))2n−1)

= dimk L2n−4((n−1)d− (n−1); ((n−2)d− (n−2))2n−1). (6-2)

If n = 3, then we get by applying again Lemma 3.5

dimk L2(2d − 2; (d − 1)5)= dimk L2(2d − 2; (d − 1)2, 03)= 1,

as desired.
If n ≥ 4, then we conclude by induction using (6-2). Thus, Claim 1 is shown.

Next we consider the right-hand side of inequality (6-1). Taking into account
Claim 1, we see that R/I fails the WLP, once we have shown the following:

Claim 2. dimk[R/I ]nd−n ≤ dimk[R/I ]nd−n−1.

Proof. We use induction on n ≥ 3. Let A = R/〈xd
1 , . . . , xd

2n〉. Assume n = 3.
Lemma 3.7 provides

dimk[R/I ]3d−3− dimk[R/I ]3d−4

= h A(3d − 3)− h A(2d − 3)− h A(3d − 4)+ h A(2d − 4)

=

(3d+1
4

)
− 7

(2d+1
4

)
+ 21

(d+1
4

)
=−

1
12

d(d − 2)(5d2
+ 2d + 5)

≤ 0,

as desired.
Let n ≥ 4. By Lemma 3.7, Claim 2 can be rewritten as

h A(nd − n)− h A(nd − n− 1)≤ h A(nd − n− d)− h A(nd − n− d − 1). (6-3)



522 Juan C. Migliore, Rosa M. Miró-Roig and Uwe Nagel

Consider now the ring B = k[x1, . . . , x2n−1]/〈xd
1 , . . . , xd

2n−1〉. Then A ∼= B ⊗k

k[x]/(xd), which implies

h A( j)= hB( j)+ hB( j − 1)+ · · ·+ hB( j − (d − 1)). (6-4)

Thus, the last inequality becomes

hB(nd − n)− hB(nd − n− d)≤ hB(nd − n− d)− hB(nd − n− 2d).

The Hilbert function of B is symmetric about 1
2(2n− 1)(d − 1), so hB(nd − n)=

hB(nd − n− d + 1). Thus, we have to show

hB(nd − n− d + 1)− hB(nd − n− d)≤ hB(nd − n− d)− hB(nd − n− 2d).

To this end, put C = k[x1, . . . , x2n−2]/〈xd
1 , . . . , xd

2n−2〉. Then B ∼= C⊗k k[x]/(xd).
Hence, using a relation similar to (6-4), Claim 2 follows, once we have shown

hC(nd − n− d + 1)− hC(nd − n− 2d + 1)

≤ hC(nd − n− d)+ hC(nd − n− d)+ · · ·+ hC(nd − n− 2d + 1)

−
[
hC(nd− n− 2d)+ hC(nd− n− 2d− 1)+· · ·+ hC(nd− n− 3d+ 1)

] (6-5)

Our induction hypothesis (see inequality (6-3)) provides

hC(nd−n−d+1)− hC(nd−n−d)≤ hC(nd−n−2d+1)− hC(nd−n−2d).

Since the Hilbert function of C is unimodal with peak in degree (n− 1)(d− 1), we
have the estimates:

hC(nd − n− d)− hC(nd − n− 2d + 1)
≤ hC(nd − n− d)− hC(nd − n− 2d − 1),

0≤ hC(nd − n− d − 1)− hC(nd − n− 2d − 2),
...

0≤ hC(nd − n− 2d)− hC(nd − n− 3d − 1).

Adding the last inequalities, we get the desired inequality (6-5), which completes
the proof of Claim 2, and we are done. �

Remark 6.2. Theorem 6.1 proves half of Conjecture 5.5.2 in [Harbourne et al.
2011] — namely, the case when the number of variables is even.

Remark 6.3. In [Harbourne et al. 2011, Theorem 5.2.2], Harbourne, Schenck and
Seceleanu have recently given an alternative proof of the above theorem for d � 0.

Claim 2 can be restated as a result about the growth of the coefficients of a
certain univariate polynomial.
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Proposition 6.4. Let n ≥ 3 and d ≥ 1 be integers. For the univariate polynomial

a0+ a1z+ · · ·+ a2nd z2nd
:=
(
1+ z+ · · ·+ zd)2n,

we have and − and−1 ≤ and−d−1− and−d−2.

Proof. Note that ai is the Hilbert function of k[x1, . . . , x2n]/〈xd+1
1 , . . . , xd+1

2n 〉 in
degree i . Hence inequality (6-3) establishes the claim. �

We now turn to an odd number of variables. We are not able to give a result as
comprehensive as that of an even number of variables, and we only consider the
case of seven variables.

Theorem 6.5. Let L ∈ R = k[x1, . . . , x7] be a general linear form, and let I =
〈xd

1 , . . . , xd
7 , Ld
〉. If d = 2 then the ring R/I has the WLP. If d ≥ 4 then R/I fails

the WLP.

Proof. If d = 2, we have verified on CoCoA that R/I has the WLP. In fact, CoCoA
has also given the result that when d = 3, R/I fails to have the WLP because of
the failure of injectivity. However, a computer verification is not enough to show
the failure of the WLP, since it is impossible to justify that the linear forms are
“general enough”. We conjecture that WLP also fails for d = 3.

We now assume that d ≥ 4. We will show the failure of surjectivity in a suitable
degree. Let ` ∈ R be a general linear form. Let j =

⌊17
5 (d − 1)

⌋
. We want to

compute dimk[R/(I, `)] j = dimk L5( j; ( j + 1− d)8), and in particular, to show
that this dimension is nonzero. Using Lemma 3.5 four times we get

dimk[R/(I, `)] j
= dimk L5(− j + 6(d − 1); ( j + 1− d)2, (− j + 5(d − 1))6)

= dimk L5(−3 j + 12(d − 1); (− j + 5(d − 1))4, (−3 j + 11(d − 1))4, )

= dimk L5(−5 j + 18(d − 1); (−3 j + 11(d − 1))6, (−5 j + 17(d − 1))2)

= dimk L5(−7 j + 24(d − 1); (−5 j + 17(d − 1))8). (6-6)

This computation is correct and has a chance of resulting in a nonempty linear
system if 0≤−5 j+17(d−1)<−7 j+24(d−1), which is true since j ≤ 17

5 (d−1).
Thus, we distinguish five cases, where e is an integer:

Case 1: d − 1= 5e, thus j = 17e.

Case 2: d − 1= 5e+ 1, thus j = 17e+ 3.

Case 3: d − 1= 5e+ 2, thus j = 17e+ 6.

Case 4: d − 1= 5e+ 3, thus j = 17e+ 10.

Case 5: d − 1= 5e+ 4, thus j = 17e+ 13.
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The computation (6-6) then shows that dimk[R/(I, `)] j equals dimk L5(e; 08) in
Case 1, dimk L5(e+3;28) in Case 2, dimk L5(e+6;48) in Case 3, dimk L5(e+2;18)

in Case 4, and dimk L5(e+5; 38) in Case 5. It is clear that these linear systems are
not empty if e ≥ 0, thus d ≥ 1.

To prove failure of the WLP in degree j it remains to check that the expected
dimension is zero. Using Lemma 3.7, we obtain

dimk[R/I ] j − dimk[R/I ] j−1

=

( j+5
5

)
− 8

( j+5−d
5

)
+ 28

( j+5−2d
5

)
− 56

( j+5−3d
5

)
.

Notice that the last binomial coefficient is zero if d ≤ 10, while the third one is zero
for d ≤ 2. However, the computations of the polynomials below are not affected.
Distinguishing the five cases above, this dimension times 5! equals

Case 1:− 101995 e5
− 69925 e4

− 15975 e3
+ 565 e2

+ 730 e+ 120

Case 2:− 101995 e5
− 139850 e4

− 60225 e3
− 1330 e2

+ 5080 e+ 960

Case 3:− 101995 e5
− 209775 e4

− 133975 e3
− 8145 e2

+ 19730 e+ 5040

Case 4:− 101995 e5
− 359875 e4

− 499175 e3
− 336365 e2

− 107910 e− 12600

Case 5:− 5 (e+ 1) (20399 e4
+ 65561 e3

+ 74044 e2
+ 32716 e+ 3840)

Clearly the first three polynomials are negative if e ≥ 1, and the last two whenever
e ≥ 0. Thus the expected dimension is zero whenever d ≥ 4. In particular, we have
shown the failure of surjectivity (in particular the failure of the WLP) for d ≥ 4. �

In applying the approach of Theorem 6.5 to the general case, we were able to
mimic the choice of j , as well as the main details of the proof that dim[R/(I, `)] j >
0. However, a proof of the required inequality to verify that it is surjectivity rather
than injectivity that fails eluded us. Based on experiments with CoCoA, we end
with the following conjecture (also to complete the case of seven variables). Notice
that the case d = 2 has the WLP in seven variables (as noted above).

Conjecture 6.6. Let R = k[x1, . . . , x2n+1], where n ≥ 4. Let L ∈ R be a general
linear form, and let I = 〈xd

1 , . . . , xd
2n+1, Ld

〉. Then the ring R/I fails the WLP if
and only if d > 1. Furthermore, if n = 3 then R/I fails the WLP when d = 3.
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