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Given a graded sequence of ideals (am)m≥1 on X , having finite log canonical
threshold, we show that if there are divisors Em over X computing the log
canonical threshold of am , and such that the log discrepancies of the divisors
Em are bounded, then the set {Em | m ≥ 1} is finite.

1. Introduction

Let X be a smooth algebraic variety over an algebraically closed field k of charac-
teristic zero. The log canonical threshold of a nonzero ideal a on X is a fundamental
invariant of the singularities of the subscheme defined by a. Originally known as
the complex singularity index, it shows up in many contexts related to singularities,
and it has found a plethora of applications in birational geometry [Kollár 1997; Ein
and Mustat,ă 2006].

In this note we will be interested in the behavior of this invariant in certain
sequences of ideals. Let a• = (am)m≥1 be a graded sequence of ideals on X ,
that is, a sequence of ideals that satisfies a` · am ⊆ a`+m for every `,m ≥ 1. We
always assume that, in addition, some ideal am is nonzero. The main motivating
example is the graded sequence aL

•
associated to a line bundle L of nonnegative

Iitaka dimension on a smooth projective variety X : the ideal aL
m defines the base-

locus of the linear system |Lm
|. Note that in this case the behavior of aL

•
is easy to

understand if the section ring
⊕

m 0(X, Lm) is finitely generated over k. Indeed,
in this case there is a positive integer p such that amp = am

p for all m. The study
of aL

•
is useful precisely when the section ring is not finitely generated (or at least,

when this property is not known a priori).
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To a graded sequence a• as above, one can associate an asymptotic version of
the log canonical threshold, by putting

lct(a•) := sup
m;am 6=(0)

m · lct(am).

This can be infinite: for example, if a• = aL
•

as above, with L big, then lct(a•) is
infinite if and only if L is nef (see Remark 2.2 below).

We will be concerned with the divisors that compute the log canonical thresholds
of the elements of a graded sequence. We denote by A(ordE) the log discrepancy
of a divisor E over X (see Section 2 for the relevant definitions). Our main result,
which gives a positive answer to a question of Mihai Păun, is Theorem A below.
(Păun’s question was motivated by [Siu 2009], in which Y.-T. Siu presents part
of his arguments for the finite generation of the canonical ring. At the end of
Section 6.3, he evokes a subtle point in his approach, involving the control of
an infinite sequence of blow-ups. Although expressed in a different language,
our main result shows that the infinite blow-up process in Siu’s approach can be
“stopped”, provided that the log discrepancies of the divisors computing the log
canonical thresholds are bounded.)

Theorem A. Let a• be a graded sequence of ideals on a smooth variety X such
that lct(a•) <∞. If I ⊆ Z>0 is a subset such that for all m ∈ I we have a divisor
Em over X that computes lct(am) such that {A(ordEm ) | m ∈ I } is bounded, then
the set {Em | m ∈ I } is finite.

Corollary B. Under the hypothesis in Theorem A, suppose that the set I is infi-
nite. Then there is a divisor E over X that computes lct(am) for infinitely m. In
particular, E computes lct(a•).

In fact, since our proof will require replacing X by a suitable blow-up, we will
need to prove a stronger version of the above theorem, in which we replace the log
canonical threshold by the possibly higher jumping numbers, in the sense of [Ein
et al. 2004] (see Theorem 4.1 below for the precise statement).

Here is a sketch of the proof. Let Zm be the image of Em on X , and let W
be the Zariski closure of

⋃
m∈I Zm . We may assume that W is irreducible, and

we first show that since lct(a•) <∞, the asymptotic order of vanishing ordW (a•)

is positive. In particular, W is a proper subset of X . If W has codimension at
least two in X , then blowing-up X along W decreases the log discrepancies of the
divisors Em , and since these are bounded above, we reduce to the case when W is
a hypersurface. In this case, we use the following result, which we believe is of
independent interest.

Theorem C. Let H be a hypersurface in X , and a a nonzero ideal. Suppose that
E is a divisor over X that computes lct(a). If the image Z of E on X is a proper
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subset of H , and if H is smooth at the generic point of Z , then

ordZ (a)≥ ordH (a) ·

(
1+

ordE(IZ )

A(ordE)

)
,

where IZ is the ideal defining Z.

Of course, as we have already mentioned, we need in fact a version of this result
that applies also to higher jumping numbers (see Theorem 3.1 below for this more
general version of the theorem). Using Theorem C, we show that if there were
infinitely many Zm that were properly contained in W , then the ideals in a• would
vanish along W more than they should. Therefore all but finitely many of the Em

are equal to W (note that at this point we are on some blow-up of our original
variety).

In the following section we review some basic facts about log canonical thresh-
olds and higher jumping numbers. The proofs of the stronger versions of Theo-
rems C and A are given in Section 3, and respectively, Section 4.

2. Jumping numbers and valuations

In this section we recall some definitions and results concerning the invariants of
singularities that we will use, and set the notation for the rest of the paper. We work
over a fixed algebraically closed field k of characteristic zero. Let X be a smooth
variety over k (in particular, we assume that X is connected and separated). All
ideal sheaves on X are assumed to be coherent.

By a divisor E over X we mean a prime divisor on a normal variety Y that has
a proper birational morphism π : Y → X . This induces a discrete valuation of
the function field K (Y ) = K (X), that we denote by ordE . As usual, we identify
two such divisors if they induce the same valuation. In particular, it follows from
Hironaka’s theorem on resolution of singularities that we may assume that both Y
and E are nonsingular. If we denote by KY/X the relative canonical divisor, then
the log discrepancy of ordE is given by A(ordE) := 1+ordE(KY/X ). Note that this
depends on the variety X , and whenever the variety is not clear from the context,
we will write AX (ordE). The center of E on X is the image cX (E) := π(E) of
E . We always consider on cX (E) the reduced scheme structure. If a is a nonzero
ideal sheaf on X , we put

ordE(a) :=min{ordE( f ) | f ∈ a ·OX,cX (E)} ∈ R≥0.

If Z is the subscheme defined by a, we also denote this by ordE(Z).
Given an irreducible closed subset Z of X , we define the order of vanishing

along Z as follows. Consider the normalized blow-up of X along Z , and put
ordZ := ordE , where E is the unique irreducible component of the exceptional
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divisor that dominates Z . It is clear that in this case cX (E) = Z . Note also that
ordZ (a)=minx∈Z ordx(a).

Let us recall the definition of multiplier ideals. For details and proofs we refer
to [Lazarsfeld 2004, Section 9]. Suppose that a is a nonzero ideal on X . Let
µ : X ′ → X be a log resolution of (X, a), that is, π is proper and birational, X ′

is nonsingular, a · OX ′ = OX ′(−F) for an effective divisor F , and F + K X ′/X has
simple normal crossings. For every λ ∈ R≥0, the multiplier ideal of a of exponent
λ is given by

J(aλ) := π∗OX ′(K X ′/X −bλFc).

The definition is independent of the choice of log resolution.
It is clear from the above definition that if λ< λ′, then J(aλ

′

)⊆ J(aλ). Further-
more, for every λ there is ε > 0 such that J(aλ) = J(at) for every t ∈ [λ, λ+ ε].
One says that λ> 0 is a jumping number of a if J(aλ) 6=J(aλ

′

) for every λ′<λ. It
follows from the definition that if we write F =

∑
i ai Ei , then for every jumping

number λ there is i such that λai is an integer. In particular, the jumping numbers
form a discrete set of rational numbers.

For basic properties of the jumping numbers and applications, we refer to [Ein
et al. 2004]. The most important jumping number is the smallest one, known as
the log canonical threshold and denoted by lct(a). This is the smallest λ such that
J(aλ) 6= OX (note that J(a0)= OX ).

It is convenient to index the jumping numbers as follows (see [Jonsson and
Mustat,ă 2010]). Let q be a nonzero ideal on X . We put

lctq(a) :=min{λ | q 6⊆ J(aλ)}.

Note that lctOX (a) is the log canonical threshold lct(a) of a. It follows from the
definition that if a 6= OX , then

⋂
λ≥0 J(aλ) = (0), hence lctq(a) is finite. When

a = OX , we make the convention lctq(a) = ∞. We will also use the notation
Arnq(a) := 1/ lctq(a) (where Arn stands for Arnold multiplicity). It follows from
the definition that we have

Arnq(a)=max
E

ordE(a)

A(ordE)+ ordE(q)
, (1)

where the maximum can be taken either over all divisors over X , or just over those
lying on a log resolution of (X, a). We say that E computes lctq(a) (or Arnq(a))
if the maximum in (1) is achieved by E .

The most interesting of the jumping numbers is the log canonical threshold.
However, as the following lemma shows, the other jumping numbers appear natu-
rally when we consider higher birational models.
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Proposition 2.1. Let π : X ′→ X be a proper birational morphism, with X ′ smooth,
and a and q nonzero ideals on X. If a′ = a ·OX ′ , and q′ = q ·OX ′(−K X ′/X ), then

lctq(a)= lctq
′

(a′).

Proof. This is an immediate consequence of (1), and of the fact that for every
divisor E over X , we have AX (ordE)= AX ′(ordE)+ ordE(K X ′/X ). �

Suppose now that a• is a graded sequence of ideals on X , and let S = {m | am 6=

(0)}. Note that S is closed under addition. In this case we have the following
asymptotic version of the jumping numbers:

lctq(a•) := sup
m∈S

m · lctq(am)= lim
m→∞,m∈S

m · lctq(am) (2)

(see [Jonsson and Mustat,ă 2010, Section 2]). We put Arnq(a•)= 1/ lctq(a•). When
q= OX , we simply write lct(a•) and Arn(a•). Note that lctq(a•) ∈R>0∪{∞}. One
can show that lctq(a•) =∞ if and only if lct(a•) =∞ (see [Jonsson and Mustat,ă
2010, Corollary 6.10]).

Remark 2.2. If X is a smooth projective variety, L is a big line bundle on X , and
a• = aL

•
is the graded sequence of ideals defining the base loci of the powers of L

(see Introduction), then [Ein et al. 2006, Corollary 2.10] shows that lct(a•)=∞ if
and only if L is nef.

If a• is as above and E is a divisor over X , we will also consider the following
asymptotic version of the order of vanishing along E :

ordE(a•) := inf
m

ordE(am)

m
= lim

m→∞,m∈S

ordE(am)

m
.

We have the following extension of (1)

Arnq(a•)= sup
E

ordE(a•)

A(ordE)+ ordE(q)
. (3)

For these facts, we refer to [Jonsson and Mustat,ă 2010, Section 2]. We say that
E computes lctq(a•) if the supremum in (3) is achieved by E . Note however that
unlike in the case of one ideal, there may be no divisor E that computes lctq(a•);
see [Jonsson and Mustat,ă 2010, Example 8.5].

We will use the following Izumi-type estimate [Izumi 1985; Ein et al. 2003].

Proposition 2.3. If E is a divisor over X with cX (E)= Z , then

ordE(a)≤ A(ordE) · ordZ (a)

for every nonzero ideal sheaf a on X.
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Proof. We may replace X by an affine open subset of the generic point of Z , and
therefore assume that X is affine. In this case we may assume that a is principal.
If ordZ (a)= m, then for a general p ∈ Z we have ordp(a)= m. By [Kollár 1997,
Lemma 8.10], there is an open neighborhood U of p such that lct(a|U )≥ 1/m, and
we get the assertion in the proposition since U ∩ Z 6=∅ implies

A(ordE)

ordE(a)
≥ lct(a|U ). �

3. An inequality between orders of vanishing

We keep the notation and the conventions from Section 2. The following is the
main result in this section. Note that in the special case q = OX , this recovers
Theorem C in the Introduction.

Theorem 3.1. Let H be a hypersurface in X , and a, q nonzero ideals on X. Sup-
pose that E is a divisor over X that computes lctq(a). If the center Z of E on X is a
proper subset of H , and if H is smooth at the generic point of Z , then the following
inequality holds

ordZ (a)≥ ordH (a) ·

(
1+

ordE(Z)
A(ordE)(1+ ordH (q))

)
. (4)

We start by recalling a basic estimate for the log discrepancy of a valuation. For
a proof, see for example [Lazarsfeld 2004, page 157].

Lemma 3.2. Let E be a divisor over X with cX (E) = Z , and let ξ be the generic
point of Z. If x1, . . . , xr form a regular system of parameters of OX,ξ , then

A(ordE)≥

r∑
i=1

ordE(xi ).

Corollary 3.3. If H is a hypersurface in X , and E is a divisor over X such that
Z := cX (E) is a proper subset of H , and H is smooth at the generic point of Z ,
then

A(ordE)≥ ordE(H)+ ordE(Z). (5)

Proof. Let ξ be the generic point of Z . Since H is smooth at ξ , we may choose a
regular system of parameters x1, . . . , xr of OX,ξ such that H is defined at ξ by (x1).
Note that by assumption r ≥ 2. By definition, we have ordE(Z)=min j ordE(x j ).
Let i be such that ordE(xi )= ordE(Z). If i ≥ 2, then by the lemma

A(ordE)≥ ordE(x1)+ ordE(xi )= ordE(H)+ ordE(Z).

On the other hand, if i = 1, then using again the lemma we get

A(ordE)≥ ordE(x1)+ ordE(x2)≥ 2 · ordE(x1)= ordE(H)+ ordE(Z). �
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Proof of Theorem 3.1. Let us put m = ordH (a) and p = ordH (q). We can write
a= OX (−H)m · ã, and we get

ordE(a)= m · ordE(H)+ ordE(ã), ordZ (a)= m+ ordZ (ã) (6)

(note that ordZ (H) = 1 since H is smooth at the generic point of Z ). Since E
computes lctq(a), it follows from (1) that

ordE(a)

A(ordE)+ ordE(q)
≥

ordH (a)

A(ordH )+ ordH (q)
=

m
1+ p

. (7)

Corollary 3.3 gives ordE(H) ≤ A(ordE)− ordE(Z), and combining this with (7)
we deduce

m ≤ (1+p)·
ordE(a)

A(ordE)+ordE(q)
≤

ordE(ã)+m(A(ordE)−ordE(Z))+ p ·ordE(a)

A(ordE)+ordE(q)

= m+
ordE(ã)+ p ·ordE(a)−m(ordE(q)+ordE(Z))

A(ordE)+ordE(q)
. (8)

Therefore ordE(ã) ≥ m(ordE(q)+ ordE(Z))− p · ordE(a). Using one more time
the first equation in (6), this implies

(1+ p) · ordE(ã)≥ m(ordE(q)+ ordE(Z))− pm · ordE(H). (9)

On the other hand, by Proposition 2.3 we have ordE(ã)≤ A(ordE) ·ordZ (ã), while
clearly ordE(q)≥ p · ordE(H). Putting these together with (9) gives

(1+ p)A(ordE) · ordZ (ã)≥ (1+ p) · ordE(ã)

≥ m(ordE(q)+ ordE(Z))− pm · ordE(H)

≥ m · ordE(Z).

Combining this with the second equality in (6), we obtain

ordZ (a)= m+ ordZ (ã)≥ m ·
(

1+
ordE(Z)

A(ordE)(1+ p)

)
,

which completes the proof of the theorem. �

Remark 3.4. In Theorem 3.1 one can replace ordE by any real valuation of K (X),
having center on X and computing lctq(a). The proof goes through if one uses the
definition of A(v) from [Jonsson and Mustat,ă 2010, Section 5]. In this case, the
assertion in Lemma 3.2 follows from Corollary 5.4 of that reference.

Example 3.5. The inequality in Theorem 3.1 is optimal, at least in an asymptotic
sense. Indeed, let us consider the ideal a = xm(x, ym+1) in k[x, y], where m is
a positive integer. Since this is a monomial ideal, one can use Howald’s theorem
[Howald 2001] to compute its log canonical threshold. It is easy to check that
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lct(a) = (m + 2)/(m + 1)2, and this log canonical threshold is computed by the
(toric) divisor E over X = A2 such that

ordE

( ∑
i, j≥0

ci, j x i y j
)
=min{(m+ 1)i + j | ci, j 6= 0}.

Note that A(ordE) = m + 2, and the center of E on X is the origin. If we take
q= OX and H = (x = 0), then

ordZ (a)

ordH (a)
(

1+ ordE(Z)
A(ordE)

) = m+ 1

m
(

1+ 1
m+2

) = (m+ 1)(m+ 2)
m(m+ 3)

,

and this converges to 1 when m goes to infinity.

Remark 3.6. The right-hand side of the inequality (4) is bounded above by

ordH (a) ·

(
1+

1
lct(IZ ) · (1+ ordH (q))

)
,

where IZ is the ideal defining Z . One could ask whether this expression is ≤
ordZ (a), improving in this way the assertion in Theorem 3.1. However, this is
not the case: let us consider the special case m = 3 in Example 3.5, that is, a =

x3(x, y4). With q= OX and H = (x = 0), we have ordZ (a)= 4, while

ordH (a) ·

(
1+ 1

lct(IZ )

)
= 3

(
1+ 1

2

)
=

9
2 > 4.

4. The main result

In this section we prove the generalized version of Theorem A in the Introduction.
We work in the same setting as in Section 2.

Theorem 4.1. Let a• be a graded sequence of ideals on X , and q a nonzero ideal
on X such that lctq(a•) <∞. If I ⊆ Z>0 is a subset such that for all m ∈ I we
have a divisor Em over X that computes lctq(am) such that {A(ordEm ) | m ∈ I } is
bounded, then the set {Em | m ∈ I } is finite.

Corollary 4.2. Under the same hypothesis as in Theorem 4.1, suppose that the set
I is infinite. Then there is a divisor E over X that computes lctq(am) for infinitely
many m. In particular, E computes lctq(a•).

Proof of Theorem 4.1. Note that the hypothesis implies, in particular, that am is
nonzero for every m ∈ I . We assume that I is an infinite set, that Ei 6= E j for
all i 6= j in I and aim to derive a contradiction. Let Zm = cX (Em). We argue by
induction on M := max{A(ordEi ) | i ∈ I }. This is finite by assumption. Note that
M is a positive integer, and M = 1 if and only if all the Ei ’s are divisors on X . At
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several stages in the proof we will replace I by an infinite subset. Note that this
can only decrease the value of M .

We start with the following lemma.

Lemma 4.3. With the above notation, suppose that there is an infinite subset J ⊆ I
such that W :=

⋃
j∈J Z j is irreducible, and Z j 6=W for all j ∈ J . In this case

ordW (a•)≥ Arn(a•)≥ Arnq(a•) > 0.

Proof. We only need to prove the first inequality. Let C = Arn(a•), so that
Arn(am)≥ Cm for every m. If j ∈ J , then by Proposition 2.3 we have Arn(a j )≤

ordZ j (a j ).
We need to show that ordW (am) ≥ Cm for every m ≥ 1. We may, of course,

assume that am is nonzero. By hypothesis, we can find 0 ≤ ` ≤ m − 1 such that
the set ⋃

j∈J
j≡`(mod m)

Z j (10)

is dense in W . Since all Z j are proper subsets of W , this implies that if in (10)
we only take the union over those j ∈ J with j ≡ ` (mod m) and with j ≥ N , for
some N , then the union is still dense in W . Let us fix j0 ∈ J with j0 ≡ ` (mod m),
and let C ′ := maxx∈W ordx(a j0) <∞ (recall that a j0 is nonzero). If mp+ j0 ∈ J ,
then the inclusion a

p
m · a j0 ⊆ amp+ j0 implies

p·ordZmp+ j0
(am)+ordZmp+ j0

(a j0)≥ordZmp+ j0
(amp+ j0)≥Arn(amp+ j0)≥C(mp+ j0).

Therefore ordZmp+ j0
(am) ≥ Cm − C ′/p. Since we have arbitrarily large such p,

and since the union of the corresponding Zmp+ j0 is dense in W , we conclude that
ordW (am)≥ Cm, as required. �

A first consequence of the lemma is that if W is the closure of
⋃

i∈I Zi , then
W 6= X . In particular, this shows that when M = 1, we have a contradiction.

Arguing by Noetherian induction on W , we may assume that W is minimal in X
with the property that there is an infinite family of divisors (Ei )i∈I as above, with
max{A(ordEi ) | i ∈ I } ≤ M . This implies first that W is irreducible. Indeed, if we
consider the irreducible decomposition W =W1∪· · ·∪Wr , then there is j such that
Zi ⊆ W j for infinitely many i ∈ I . Since we may replace I by {i ∈ I | Zi ⊆ W j },
it follows from the minimality assumption on W that W =W j .

A second consequence of the minimality of W is that for every infinite subset
J ⊆ I , the union

⋃
j∈J Z j is dense in W . In particular, if U is an open subset of

X that meets W , then there are infinitely many i ∈ I such that U meets Zi (and
the union of these Zi ∩ U is dense in W ∩ U ). Therefore in order to deduce a
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contradiction we may replace X by U and each am by its restriction to U . We may
thus assume that W is nonsingular.

We claim that the induction hypothesis on M implies that W is a hypersurface in
X . Indeed, suppose that c= codim(W, X)≥ 2, and let π : X ′→ X be the blow-up
of X along W . If E is the exceptional divisor of π , then K X ′/X = (c−1)E . Since
cX (Ei )⊆W for every i ∈ I , it follows that cX ′(Ei )⊆ E , hence

AX ′(ordEi )= AX (ordEi )− ordEi (K X ′/X )≤ AX (ordEi )− (c− 1).

If a′m=am ·OX ′ and q′=q·OX ′(−K X ′/X ), then by Proposition 2.1 we have lctq(ai )=

lctq
′

(ai ), and it follows from hypothesis and (1) that Ei computes lctq
′

(a′i ) for every
i ∈ I . Since max{AX ′(ordEi ) | i ∈ I }≤M−1, we have a contradiction by induction
on M .

Therefore W is a smooth hypersurface in X . If Zi = W , then Ei = W , hence
this can be the case for at most one i . After discarding this i , we may assume that
each Zi is a proper subset of W . In particular, we may apply Theorem 3.1 to get

ordZi (ai )≥ ordW (ai ) ·

(
1+

ordEi (Zi )

A(ordEi )(1+ ordW (q))

)
. (11)

Note that ordEi (Zi ) ≥ 1 for all i ∈ I . Let α = ordW (a•). We have α > 0 by
Lemma 4.3. Let us fix ε > 0 with

ε <
1

M(1+ ordW (q))
.

If we show that ordW (am)≥ αm(1+ ε) for every m ≥ 1, then

α = ordW (a•)≥ α(1+ ε),

a contradiction. We now argue as in the proof of Lemma 4.3. Let 0 ≤ ` ≤ m − 1
be such that the set in (10) is dense in W . We fix j0 ∈ I such that j0 ≡ ` (mod m),
and let C ′ := maxx∈W ordx(a j0). It follows from the inclusion a

p
m · a j0 ⊆ amp+ j0

and from (11) that for every p such that mp+ j0 ∈ I we have

p ·ordZmp+ j0
(am)≥ ordZmp+ j0

(amp+ j0)−ordZmp+ j0
(a j0)≥ ordW (amp+ j0)(1+ε)−C ′.

Therefore for every such p we have ordZmp+ j0
(am)≥αm(1+ε)−C ′/p. Since there

are arbitrarily large such p, and the union of the corresponding Zmp+ j0 is dense
in W , we conclude that ordW (am) ≥ αm(1+ ε). As we have seen, this leads to a
contradiction, and thus completes the proof of the theorem. �
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