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We prove that the sweeping components of the space of smooth rational curves in
a smooth hypersurface of degree d in Pn are not uniruled if (n+1)/2≤ d ≤ n−3.
We also show that for any e≥ 1, the space of smooth rational curves of degree e in
a general hypersurface of degree d in Pn is not uniruled roughly when d ≥ e

√
n.

1. Introduction

Throughout this paper, we work over an algebraically closed field k of characteristic
zero. Let X be a smooth hypersurface of degree d in Pn , and for e ≥ 1, let Re(X)
denote the closure of the open subscheme of Hilbet+1(X) parametrizing smooth
rational curves of degree e in X . It is known that if d < (n+1)/2 and X is general,
then Re(X) is an irreducible variety of dimension e(n+ 1− d)+ n− 4, and it is
conjectured that the same holds for general Fano hypersurfaces; see [Harris et al.
2004; Coskun and Starr 2009]. If X is not general, Re(X) may be reducible. We
call an irreducible component R of Re(X) a sweeping component if the curves
parametrized by its points sweep out X , or equivalently, if for a general curve C
parametrized by R the normal bundle of C in X is globally generated. If d ≤ n−1,
or if d = n and e ≥ 2, then Re(X) has at least one sweeping component.

In this paper, we study the birational geometry of sweeping components of
Re(X). Recall that a projective variety Y of dimension m is called uniruled if there
is a variety Z of dimension m − 1 and a dominant rational map Z × P1 99K Y .
We are interested in the following question: for which values of n, d, and e does
Re(X) have nonuniruled sweeping components? Our original motivation for this
study comes from the question of whether or not general Fano hypersurfaces of
low indices are unirational.

We give a complete answer to the above question when (n+ 1)/2≤ d ≤ n− 3:

Theorem 1.1. Let X be any smooth hypersurface of degree d in Pn , where
(n + 1)/2 ≤ d ≤ n − 3. Then for all e ≥ 1, no sweeping component of Re(X)
is uniruled.
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We also consider the case d = n− 2 and prove:

Theorem 1.2. Let X be a smooth hypersurface of degree n− 2 in Pn , and let C be
a smooth rational curve of degree e in X. Every irreducible sweeping component
of Re(X) which contains C is nonuniruled provided that when we split the normal
bundle of C in Pn as a sum of line bundles

NC/Pn = OC(a1)⊕ · · ·⊕OC(an−1),

we have ai + a j < 3e for every 1≤ i < j ≤ n− 1.

When n = 5 and d = 3, Re(X) is irreducible for any smooth X ; see [Coskun and
Starr 2009]. J. de Jong and J. Starr [2004] studied the birational geometry of Re(X)
with regards to the question of rationality of general cubic fourfolds. Let M0,0(X, e)
be the Kontsevich moduli stack of stable maps of degree e from curves of genus
zero to X and M0,0(X, e) the corresponding coarse moduli scheme. There is an
open subscheme of M0,0(X, e) parametrizing smooth rational curves of degree e in
X . Presenting a general method to produce differential forms on desingularizations
of M0,0(X, e), de Jong and Starr prove that if X is a general cubic fourfold, then
Re(X) is not uniruled when e > 5 is an odd integer, and the general fibers of the
MRC fibration of a desingularization of Re(X) are at most 1-dimensional when
e > 4 is an even integer.

If X is a general cubic fourfold, then for a general rational curve C of degree e
in X , the normal bundle of C in P5 is isomorphic to OC((3e− 1)/2)⊕4 if e ≥ 5 is
odd and to OC(3e/2)⊕2

⊕OC((3e/2)−1)⊕2 if e≥ 6 is an even integer; see [de Jong
and Starr 2004, Proposition 7.1]. Thus Theorem 1.2 gives a new proof of the result
of de Jong and Starr when e ≥ 5 is odd. In Section 4 we study the case when e is
an even integer and show:

Theorem 1.3. Let X be a smooth cubic fourfold, and let C be a general smooth
rational curve of degree e ≥ 5 in X.
• Re(X) is not uniruled if e is odd and NC/P5 = OC((3e− 1)/2)⊕4.

• If R̃ is a desingularization of Re(X), then the general fibers of the MRC
fibration of R̃ are at most 1-dimensional if e is even and

NC/P5 = OC(3e/2)⊕2
⊕OC((3e/2)− 1)⊕2.

It is an interesting question whether or not the splitting type of NC/Pn is always
as above for a general rational curve C of degree ≥ 5 in an arbitrary smooth cubic
fourfold.

Finally, we consider the case d < (n+ 1)/2. When d2
≤ n, Re(X) is uniruled.

In fact, in this range a much stronger statement holds: for every e ≥ 2, the space
of based, 2-pointed rational curves of degree e in X is rationally connected in a
suitable sense; see [de Jong and Starr 2006; Starr 2006]. By [Harris et al. 2004],



Nonuniruledness results for spaces of rational curves in hypersurfaces 671

when X is general and d < (n + 1)/2, M0,0(X, e) is irreducible and therefore it
is birational to Re(X). Starr [2003] shows that if d < min(n− 6, (n+ 1)/2) and
d2
+d ≥ 2n+2, then for every e≥ 1, the canonical divisor of M0,0(X, e) is big. This

suggests that when d2
+ d ≥ 2n+ 2 and X is general, Re(X) may be nonuniruled.

In Section 5, we show:

Theorem 1.4. Let X ⊂ Pn (n ≥ 12) be a general hypersurface of degree d, and
let m ≥ 1 be an integer. If a general smooth rational curve C in X of degree e
is m-normal (that is, if the global sections of OPn (m) map surjectively to those of
OPn (m)|C ), and if

d2
+ (2m+ 1)d ≥ (m+ 1)(m+ 2)n+ 2,

then Re(X) is not uniruled.

In particular, since every smooth curve of degree e ≥ 3 in Pn is (e− 2)-normal, it
follows that Re(X) is not uniruled when X is general and

d2
+ (2e− 3)d ≥ e(e− 1)n+ 2.

2. A consequence of uniruledness

In this section, we prove a proposition, analogous to the existence of free rational
curves on nonsingular uniruled varieties, for varieties whose spaces of smooth
rational curves are uniruled. We first fix notation and recall some definitions.

For a morphism f : Y → X between smooth varieties, by the normal sheaf of f
we will mean the cokernel of the induced map on the tangent bundles TY → f ∗TX .

If Y is an irreducible projective variety, and if Ỹ is a desingularization of Y ,
then the maximal rationally connected (MRC) fibration of Ỹ is a smooth morphism
π : Y 0

→ Z from an open subset Y 0
⊂ Ỹ such that the fibers of π are all rationally

connected, and such that for a very general point z ∈ Z , any rational curve in Ỹ
intersecting π−1(z) is contained in π−1(z). The MRC fibration of any smooth
variety exists and is unique up to birational equivalences [Kollár et al. 1992].

Let Y be an irreducible projective variety, and assume the fiber of the MRC
fibration of Ỹ at a general point is m-dimensional. Then it follows from the
definition that there is an irreducible component Z of Hom(P1, Y ) such that the
map µ1 : Z ×P1

→ Y defined by µ1([g], b)= g(b) is dominant and the image of
the map µ2 : Z×P1

×P1
→ Y ×Y defined by µ2([g], b1, b2)= (g(b1), g(b2)) has

dimension ≥ dim Y +m.

Proposition 2.1. Let X ⊂ Pn be a nonsingular projective variety. If an irreducible
sweeping component R of Re(X) is uniruled, then there exist a smooth rational
surface S with a dominant morphism π : S→ P1 and a generically finite morphism
f : S→ X with the following two properties:
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(i) If C is a general fiber of π , then f |C is a closed immersion onto a smooth
curve parametrized by a general point of R.

(ii) If Nf denotes the normal sheaf of f , then π∗Nf is globally generated.

Moreover, if the fiber of the MRC fibration of a desingularization of R at a general
point is at least m-dimensional, then there are such S and f with the additional
property that π∗Nf has an ample subsheaf of rank = m− 1.

Proof. Let U ⊂ R× X be the universal family over R. Since R is uniruled, there
exist a quasiprojective variety Z and a dominant morphism µ : Z ×P1

→ R. Let
V ⊂ Z ×P1

× X be the pullback of the universal family to Z ×P1, and denote by
q : V → Z × X and p : V → Z the projection maps.

Consider a desingularization g : Ṽ → V , and let q̃ = q ◦ g and p̃ = p ◦ g. Let
z ∈ Z be a general point, and denote the fibers of p and p̃ over z by S and S̃,
respectively. Let f : S→ X be the restriction of q to S, and let f̃ = f ◦ g : S̃→ X .
Since z is general, by generic smoothness S̃ is a smooth surface whose general fiber
over P1 is a smooth connected rational curve. We claim that S̃ and f̃ satisfy the
desired properties. The first property is clearly satisfied.

Since every coherent sheaf on P1 splits as a torsion sheaf and a direct sum of
line bundles, to show that π∗Nf is globally generated it suffices to check that the
restriction map H 0(P1, π∗Nf )→ Nf |b is surjective for a general point b ∈ P1, or
equivalently, that the restriction map H 0(S, Nf )→ H 0(C, Nf |C) is surjective for a
general fiber C . To show this, we consider the Kodaira–Spencer map associated to
Ṽ at a general point z ∈ Z . Denote by Nq̃ the normal sheaf of the map q̃ . We get a
sequence of maps

TZ ,z→ H 0(S̃, p̃∗TZ |S̃)→ H 0(S̃, q̃ ∗TX×Z |S̃)→ H 0(S̃, Nq̃ |S̃).

Let b be a general point of P1. Composing the above map with the projection
map TZ×P1,(z,b)→ TZ ,z , we get a map TZ×P1,(z,b)→ H 0(S̃, Nq̃ |S̃). Note that if N f̃

denotes the normal sheaf of f̃ , then Nq̃ |S̃ is naturally isomorphic to N f̃ . Also, if C
is the fiber of π : S̃→P1 over b, then since b is general, C is smooth, and we have
a short exact sequence

0→ NC/S̃→ N f̃ (C)/X → N f̃ |C → 0.

So we get a commutative diagram

TZ×P1,(z,b)

dµ(z,b)
��

// TZ ,z // H 0(S̃, N f̃ )

��
TR,[ f̃ (C)] = H 0( f̃ (C), N f̃ (C)/X )

// H 0(C, N f̃ |C)
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Since µ is dominant, and since R is sweeping and therefore generically smooth,
dµ(z,b) is surjective. Since the bottom row is also surjective, the map H 0(S̃, N f̃ )→

H 0(C, N f̃ |C) is surjective as well. Thus π̃∗N f̃ is globally generated.
Suppose now that R is uniruled and that the general fibers of the MRC fibration

of R are at least m-dimensional. Let dim R = r . Then there exists a morphism
µ1 : Z ×P1

→ R such that the image of

µ2 : Z ×P1
×P1

→ R× R, µ2(z, b1, b2)= (µ1(z, b1), µ1(z, b2))

has dimension ≥ r +m. Constructing S̃ and f̃ as before, and if C1 and C2 denote
the fibers of π over general points b1 and b2 of P1, then the image of the map

dµ2 : TZ×P1×P1,(z,b1,b2)→ TR×R,([ f̃ (C1)],[ f̃ (C2)])

= H 0(C1, N f̃ (C1)/X )⊕ H 0(C2, N f̃ (C2)/X )

is at least (r +m)-dimensional. The desired result now follows from the following
commutative diagram and the observation that the kernel of the bottom row is
2-dimensional:

TZ×P1×P1,(z,b1,b2)

(dµ2)(z,b1,b2)

��

// TZ ,z // H 0(S̃, N f̃ )

��
TR×R,([ f̃ (C1)],[ f̃ (C2)])

// H 0(C1, N f̃ |C1)⊕ H 0(C2, N f̃ |C2) �

Proposition 2.1 will be enough for the proof of Theorem 1.1, but to prove
Theorem 1.3 in the even case, we will need a slightly stronger variant. Let f :Y→ X
be a morphism between smooth varieties, and let Nf be the normal sheaf of f

0→ TY → f ∗TX → Nf → 0.

Suppose there is a dominant map π : Y → P1, and let M be the image of the map
induced by π on the tangent bundles TY → π∗TP1 . Consider the push-out of the
above sequence by the map TY → M :

0 // TY //

��

f ∗TX //

��

Nf //

=

��

0

0 // M //

��

N f,π //

��

Nf // 0

0 0

The sheaf N f,π in the above diagram will be referred to as the normal sheaf of f
relative to π .
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Property (ii) of Proposition 2.1 says that H 0(S, Nf )→ H 0(C, Nf |C) is surjective.
An argument parallel to the proof of Proposition 2.1 shows the following:

Proposition 2.2. Let X be as in Proposition 2.1. Then property (ii) can be strength-
ened as follows:

(ii′) If Nf denotes the normal sheaf of f and N f,π denotes the normal sheaf of f
relative to π , then the composition of the maps

H 0(S, N f,π )→ H 0(C, N f,π |C)→ H 0(C, Nf |C)

is surjective for a general fiber C of π .

Moreover, if the general fibers of the MRC fibration of a desingularization of R are
at least m-dimensional, then there are S and f with properties (i) and (ii′) such that
the image of the map

H 0(S, N f,π ⊗ IC)→ H 0(C, (Nf ⊗ IC)|C)

is at least (m− 1)-dimensional.

3. The case when n+1
2 ≤ d

Let X be a smooth hypersurface of degree d in Pn . Assume that a sweeping
component R of Re(X) is uniruled. The following result, along with Proposition 2.1,
will prove Theorem 1.1.

Proposition 3.1. Suppose d ≤ n− 3, and let S and f be as in Proposition 2.1. If
C is a general fiber of π : S→ P1 and IC is the ideal sheaf of C in S, then the
restriction map

H 0(S, f ∗OX (2d − n− 1)⊗ I∨C )→ H 0(C, f ∗OX (2d − n− 1)⊗ I∨C |C)

is zero.

Proof of Theorem 1.1. Granting Proposition 3.1, since

H 0(S, f ∗OX (2d − n− 1)⊗ I∨C )→ H 0(C, f ∗OX (2d − n− 1)⊗ I∨C |C)

is the zero map, we have

H 0(S, f ∗OX (2d − n− 1))= H 0(S, f ∗OX (2d − n− 1)⊗ I∨C ).

Thus,

H 0(P1, π∗ f ∗OX (2d − n− 1))= H 0(P1, π∗( f ∗OX (2d − n− 1)⊗ I∨C ))

= H 0(P1, (π∗ f ∗OX (2d − n− 1))⊗OP1(1)),

which is only possible if H 0(P1, π∗ f ∗OX (2d − n − 1)) vanishes. So we have
H 0(S, f ∗OX (2d − n− 1))= 0 and d < (n+ 1)/2. �
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Proof of Proposition 3.1.
Let ωS be the canonical sheaf of S. By Serre duality and the long exact se-

quence of cohomology, it suffices to show that if S and f satisfy the properties of
Proposition 2.1, then the restriction map

H 1(S, f ∗OX (n+ 1− 2d)⊗ωS)→ H 1(C, f ∗OX (n+ 1− 2d)⊗ωS|C)

is surjective. Let N be the normal sheaf of the map f : S→ X , and let N ′ be the
normal sheaf of the map S→ Pn .

There is a short exact sequence

0→ N → N ′→ f ∗OX (d)→ 0. (1)

Taking the (n− 3)-rd exterior power of this sequence, we get the exact sequence

0→
∧n−3 N ⊗ f ∗OX (−d)→

∧n−3 N ′⊗ f ∗OX (−d)→
∧n−4 N → 0.

For an exact sequence of sheaves of OS-modules 0→ E→ F→ M→ 0 with
E and F locally free of ranks e and f , there is a natural map of sheaves∧f−e−1 M ⊗

∧e E ⊗ (
∧f F)∨→ M∨

which is defined locally at a point s ∈ S as follows: assume γ1, . . . , γ f−e−1 ∈ Ms ,
α1, . . . , αe ∈ Es , and φ :

∧f Fs → OS,s ; then for γ ∈ Ms , we set γ f−e = γ , and
we define the map to be γ 7→ φ(γ̃1 ∧ γ̃2 ∧ · · · ∧ γ̃ f−e ∧ α1 ∧ · · · ∧ αe), where
γ̃i is any lifting of γi in Fs . Clearly, this map does not depend on the choice
of the liftings, and thus it is defined globally. So from the short exact sequence
0→ TS→ f ∗TX → N → 0, we get a map∧n−4 N → N∨⊗ f ∗OX (n+ 1− d)⊗ωS,

and from the short exact sequence 0→ TS→ f ∗TPn → N ′→ 0, we get a map∧n−3 N ′⊗ f ∗OX (−d)→ (N ′)∨⊗ f ∗OX (n+ 1)⊗ωS.

With the choices of the maps we have made, the following diagram, whose
bottom row is obtained from dualizing sequence (1) and tensoring with

f ∗OX (n+ 1− 2d)⊗ωS,

is commutative with exact rows:

0 // ∧n−3 N⊗ f ∗OX (−d) //

��

∧n−3 N ′⊗ f ∗OX (−d) //

��

∧n−4 N

��

// 0

0 // f ∗OX (n+1−2d)⊗ωS // (N ′)∨⊗ f ∗OX (n+1−d)⊗ωS

// N∨⊗ f ∗OX (n+1−d)⊗ωS // 0
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Since the cokernel of the first vertical map restricted to C is a torsion sheaf, to
show the assertion it suffices to show that the map

H 1(S,
∧n−3 N ⊗ f ∗OX (−d))→ H 1(C,

∧n−3 N ⊗ f ∗OX (−d)|C)

is surjective. Applying the long exact sequence of cohomology to the top sequence,
the surjectivity assertion follows if we show that

(1) H 0(S,
∧n−4 N )→ H 0(C,

∧n−4 N |C) is surjective,

(2) H 1(C,
∧n−3 N ′⊗ f ∗OX (−d)|C)= 0.

To prove (1), we consider the following commutative diagram:

∧n−4 H 0(S, N ) //

��

∧n−4 H 0(C, N |C)

��

H 0(S,
∧n−4 N ) // H 0(C,

∧n−4 N |C)

The top horizontal map is surjective since H 0(S, N )→ H 0(C, N |C) is surjective,
and the right vertical map is surjective since N |C is a globally generated line bundle
over P1. By commutativity of the diagram the bottom horizontal map is surjective.

To prove (2), note that there is a surjective map f ∗OPn (1)⊕n+1
→ N ′. Taking the

(n− 3)-rd exterior power, and then tensoring with f ∗OX (−d), we get a surjective
map

f ∗OPn (n− 3− d)⊕(
n+1
n−3)→

∧n−3 N ′⊗ f ∗OX (−d).

Restricting to C , since n− 3− d ≥ 0, we have

H 1(C,
∧n−3 N ′⊗ f ∗OX (−d)|C)= 0. �

Proof of Theorem 1.2. Suppose that X is a smooth hypersurface of degree n− 2
in Pn . Let C be a smooth rational curve of degree e in Pn whose normal bundle
NC/Pn is globally generated. If we write

NC/Pn = OC(a1)⊕ · · ·⊕OC(an−1),

then
∑

1≤i≤n−1 ai =e(n+1)−2. Assume that ai+a j <3e for every 1≤ i< j ≤n−1.
Then H 1(C,

∧n−3 NC/Pn ⊗ OPn (−d)|C) = 0, and so if N ′ is as in the proof of
Theorem 1.1, then

H 1(C,
∧n−3 N ′⊗ f ∗OX (−d)|C)= 0.

The assertion now follows from the proof of Theorem 1.1. �



Nonuniruledness results for spaces of rational curves in hypersurfaces 677

We remark that when d=n−1 or n, the uniruledness of the sweeping subvarieties
of Re(X) has been studied in [Beheshti and Starr 2008]. It is proved that if e ≤ n,
then a subvariety of Re(X) is nonuniruled if the curves parametrized by its points
sweep out X or a divisor in X .

4. Cubic fourfolds

In this section we prove Theorem 1.3. When e ≥ 5 is odd, the theorem follows
from Theorem 1.2 and [de Jong and Starr 2004, Proposition 7.1].

So let e≥ 6 be an even integer, and assume to the contrary that the general fibers
of the MRC fibration of Re(X) are at least 2-dimensional. Let S and f be as in
Proposition 2.2, and let C be a general fiber of π . Set N = Nf and Q = N f,π . Then
by Proposition 2.1 the following properties are satisfied:

• Property (i): The composition of the maps

H 0(S, Q)→ H 0(S, Q|C)→ H 0(C, N |C)

is surjective.

• Property (ii): The composition of the maps

H 0(S, Q⊗ IC)→ H 0(C, Q⊗ IC |C)→ H 0(C, N ⊗ IC |C)

is nonzero.

We show these lead to a contradiction. Note that IC |C is isomorphic to the trivial
bundle OC , but we write IC |C instead of OC to keep track of various maps and exact
sequences involved in the proof.

Let Q′ be the normal sheaf of the map S→P5 relative to π . We have Q|C=NC/X

and Q′|C = NC/P5 . Since NX/P5 = OX (3), there is a short exact sequence

0→ Q→ Q′→ f ∗OX (3)→ 0. (2)

Taking exterior powers, we obtain the short exact sequence

0→
∧2 Q⊗ f ∗OX (−3)→

∧2 Q′⊗ f ∗OX (−3)→ Q→ 0. (3)

Since this sequence splits locally, its restriction to C is also a short exact sequence

0→
∧2 Q⊗ f ∗OX (−3)|C →

∧2 Q′⊗ f ∗OX (−3)|C → Q|C → 0. (4)

To get a contradiction, we show that the image of the boundary map

γ : H 0(C, Q|C)→ H 1(C,
∧2 Q⊗ f ∗OX (−3)|C)
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is of codimension at least 2 in H 1(C,
∧2 Q⊗ f ∗OX (−3)|C). This is not possible

since by our assumption NC/P5 = OC(3e/2)⊕2
⊕OC((3e/2)− 1)⊕2, and so

H 1(C,
∧2 Q′⊗ f ∗OX (−3)|C)= H 1(C,

∧2 NC/P5 ⊗ f ∗OX (−3)|C)

= H 1(C,OC(−2)⊕OC(−1)⊕4
⊕OC)

= k.

Lemma 4.1. The kernel of the map f ∗TX → Q is a line bundle which contains∧2 TS ⊗π
∗ωP1 as a subsheaf.

Proof. The kernel of f ∗TX → Q is equal to the kernel of the map induced by π on
the tangent bundles TS→ π∗TP1 , which we denote by F :

0→ F→ TS→ π∗TP1 .

Since F is reflexive, it is locally free on S, and it is clearly of rank 1. Also, the
composition of the maps∧2 TS ⊗π

∗ωP1 →
∧2 TS ⊗�S = TS→ π∗TP1

is the zero map. So
∧2 TS ⊗π

∗ωP1 is a subsheaf of F . �

Given a section r ∈ H 0(C, Q⊗ IC |C), we can define a map

βr : H 1(C,
∧2 Q⊗ f ∗OX (−3)|C)−→ H 1(C, ωS|C)= k

as follows. Let F be the line bundle from the proof of Lemma 4.1. It follows from
the proof of the lemma that there is an injection

∧2 TS⊗π
∗ωP1→ F , and from the

short exact sequence
0→ F→ f ∗TX → Q→ 0

we get a generically injective map of sheaves∧3 Q⊗ F→
∧4 f ∗TX .

Combining these, we get a morphism∧3 Q⊗ (ωS ⊗π
∗TP1)∨→

∧4 f ∗TX .

Since
∧4 f ∗TX = f ∗OX (3), we get a generically injective map

9 :
∧3 Q⊗ f ∗OX (−3)⊗ IC → ωS ⊗π

∗TP1 ⊗ IC ,

and by restricting to C , we get a map

9|C :
(∧3 Q⊗ f ∗OX (−3)⊗ IC

)
|C → ωS|C .
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Finally, r gives a map

8r :
∧2 Q⊗ f ∗OX (−3)|C

∧r
−→

∧3 Q⊗ f ∗OX (−3)⊗ IC |C ,

and we define βr to be the map induced by the composition 9|C ◦8r . Note that βr

is nonzero if r 6= 0.

Lemma 4.2. For r, r ′ ∈ H 0(C, Q⊗ IC |C), ker(βr )= ker(βr ′) if and only if r and
r ′ are scalar multiples of each other.

Proof. By Serre duality, it is enough to show that the images of the maps

H 0(C, I∨C |C)= H 0(C, ω∨S |C ⊗ωC)
β∨r //

β∨r ′

// H 0
(
C,
(∧2 Q∨⊗ f ∗OX (3)

)
|C ⊗ωC

)
are the same if and only if r and r ′ are scalar multiples of each other. Since
Q|C = NC/X , we have

∧3 Q|C =
∧3 NC/X = f ∗OX (3)⊗ωC , so(∧2 Q∨⊗ f ∗OX (3)

)
|C ⊗ωC = Q|C ,

and the map

β∨r : H
0(C, I∨C |C)→ H 0(C, Q|C)

is simply given by r . Similarly, β∨r ′ is given by r ′, and the lemma follows. �

Recall that by definition, we have a short exact sequence

0→ π∗TP1 |C → Q|C → N |C → 0,

and π∗TP1 |C = I−1
C |C . If we tensor this sequence with IC |C , we get the short exact

sequence

0→ OC → Q⊗ IC |C → N ⊗ IC |C → 0.

Let i be a nonzero section in the image of H 0(C,OC)→ H 0(C, Q⊗ IC |C). Then
i induces a map

βi : H 1(C,
∧2 Q⊗ f ∗OX (−3)|C)−→ H 1(C, ωS|C)= k

as described before. Let

γ : H 0(C, Q|C)→ H 1(C,
∧2 Q⊗ f ∗OX (−3)|C)

be the connecting map in sequence (4).

Lemma 4.3. We have image(γ )⊂ kerβi .
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Proof. Since the short exact sequence 0→ N→ N ′→ f ∗OX (3)→ 0 splits locally,
there is an exact sequence

0→
∧2 N ⊗ f ∗OX (−3)→

∧2 N ′⊗ f ∗OX (−3)→ N → 0.

Applying the long exact sequence of cohomology to the restriction of this sequence
to C , we get a map

H 0(C, N |C)→ H 1(C,
∧2 N ⊗ f ∗OX (−3)|C).

Also from the exact sequence 0→ TS→ f ∗TX → N → 0, we get a map∧2 TS ⊗
∧2 N →

∧4 f ∗TX = f ∗OX (3),

and hence a map ∧2 N ⊗ f ∗OX (−3)→ ωS.

It follows from the definition of βi that the map βi ◦ γ factors through

H 0(C, Q|C)→ H 0(C, N |C)→ H 1(C,
∧2 N ⊗ f ∗OX (−3)|C)→ H 1(C, ωS|C),

so we have a commutative diagram

H 0(S, N ) //

����

H 1(S,
∧2 N ⊗ f ∗OX (−3)) // H 1(S, ωS)= 0

��
H 0(C, Q|C) // H 0(C, N |C) // H 1(C, ωS|C)

Thus we can conclude the assertion by the fact that the restriction map H 0(S, N )→
H 0(C, N |C) is surjective, and so the image of the composition of the above maps
is contained in the image of the restriction map H 1(S, ωS)→ H 1(C, ωS|C), which
is zero. �

In the following lemma we prove a similar result for the sections of Q⊗ IC |C

which are obtained by restricting the global sections of Q⊗ IC to C .

Lemma 4.4. If r̃ ∈ H 0(S, Q⊗ IC), and if r = r̃ |C , then image(γ )⊂ ker(βr ).

Proof. We have a commutative diagram

H 0(S, Q) //

��

H 1(S,
∧2 Q⊗ f ∗OX (−3)) //

��

H 1(S, ωS)= 0

��
H 0(C, Q|C)

γ // H 1(C,
∧2 Q⊗ f ∗OX (−3))

βr // H 1(C, ωS|C)

Therefore we have βr (γ (u)) = 0 for any u ∈ H 0(C, Q|C) in the image of the
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restriction map H 0(S, Q)→ H 0(C, Q|C). Consider the exact sequence

0→ I−1
C |C → Q|C → N |C → 0.

From the hypothesis that the composition map

H 0(S, Q)→ H 0(C, Q|C)→ H 0(C, N |C)

is surjective, we see that to prove the statement it is enough to show that for any
nonzero u in the image of H 0(C, I−1

C |C)→ H 0(C, Q|C), we have γ (u) ∈ kerβr .
Consider the following diagram, where λ is obtained from applying the long

exact sequence of cohomology to the third wedge power of sequence (2), and ψ is
induced by the map 9|C :

H 0(C, Q|C)
γ //

∧i
��
∧r





H 1(C,
∧2 Q⊗ f ∗OX (−3)|C)

∧i
��
∧r



 βi ++

βr

''

H 0(C,
∧2 Q⊗ IC |C) λ

// H 1(C,
∧3 Q⊗ f ∗OX (−3)⊗ IC |C) ψ

// H 1(C, ωS|C)

Then we have

βr ◦ γ (u)= ψ ◦ λ(u ∧ r)

= ψ ◦ λ(r ∧ i) (up to a scalar factor)

= βi ◦ γ (r)

= 0,

where the last equality comes from γ (H 0(C, Q|C))⊂ kerβi , by Lemma 4.3. �

Now, let r̃0 ∈ H 0(S, Q⊗ IC) be so that its image in H 0(C, N⊗ IC |C) is nonzero.
Such an r̃0 exists by Property (ii). Then r0 := r̃0|C defines a map βr0 . Since the
image of r0 in H 0(C, N ⊗ IC |C) is nonzero, r0 and i are not scalar multiples, so
according to Lemma 4.2, kerβr0 6= kerβi . Thus the codimension of kerβi ∩kerβr0

is at least 2. On the other hand, by the previous lemmas, image(γ )⊂ kerβi∩kerβr0 .
This is a contradiction since dim H 1(C,

∧2 Q′⊗ f ∗OX (−3)|C)= 1.

5. The case when d < n+1
2

Throughout this section, X ⊂ Pn is a general hypersurface of degree d < (n+ 1)/2.
By the main theorem of [Harris et al. 2004], Re(X) is irreducible for every e ≥ 1.
If d2

≤ n and e ≥ 2, then by [de Jong and Starr 2006; Starr 2006], the space of
rational curves of degree e in X passing through two general points of X is rationally
connected. In particular, Re(X) is rationally connected for e ≥ 2. If e = 1, then
R1(X) is the Fano variety of lines in X which is rationally connected if and only if



682 Roya Beheshti

d2
+ d ≤ 2n [Kollár 1996, V.4.7]. In this section, we will consider the case when

d2
+ d > 2n.
Assume that Re(X) is uniruled. Then there are S and f with the two properties

given in Proposition 2.1. We can take the pair (S, f ) to be minimal in the sense
that a component of a fiber of π which is contracted by f cannot be blown down.
Let N be the normal sheaf of f , and let C be a general fiber of π with ideal sheaf
IC in S. Denote by H the pullback of a hyperplane in Pn to S, and denote by K a
canonical divisor on S. From the exact sequences 0→ TS→ f ∗TX → N → 0 and
0→ f ∗TX → f ∗TPn → f ∗OPn (d)→ 0, we get

χ(N ⊗ IC)

= (n+ 1)χ( f ∗OPn (1)⊗ IC)−χ( f ∗OPn (d)⊗ IC)−χ(IC)−χ(TS ⊗ IC)

= (n+ 1)
(
(H−C)·(H−C−K )

2
+ 1

)
−
(d H−C)·(d H−C−K )

2
− 1

−
−C ·(−C−K )

2
− 1− (2K 2

− 14)

=
(n+1−d2)

2
H 2
−
(n+1−d)

2
H · K − 2K 2

− (n+ 1− d)e+ 14.

We claim that 2H + 2C + K is base-point free and hence has a nonnegative
self-intersection number. By the main theorem of [Reider 1988], if 2H + 2C + K
is not base-point free, then there exists an effective divisor E such that either

(2H + 2C) · E = 1, E2
= 0 or (2H + 2C) · E = 0, E2

=−1.

The first case is clearly not possible. In the second case, H · E = 0, and C · E = 0.
So E is a component of one of the fibers of π which is contracted by f and which
is a (−1)-curve. This contradicts the assumption that (S, f ) is minimal. Thus
(2H + 2C + K )2 ≥ 0. Also, since H 1(S, f ∗OX (−1))= 0, we have

H · (H + K )= 2χ( f ∗OX (−1))− 2≥−2,

so we can write

χ(N ⊗ IC)=
2n+2−d2

−d
2

H 2
− (n−d−15)(e−1)−2−2(2H +2C+ K )2

−
n−d−15

2
(H · (H + K )+2)

≤
2n+2−d2

−d
2

H 2
− (n−d−15)(e−1)−2,

and therefore χ(N ⊗ IC) is negative when d2
+ d ≥ 2n+ 2 and n ≥ 30.

The Leray spectral sequence gives a short exact sequence

0→ H 1(P1, π∗(N ⊗ IC))→ H 1(S, N ⊗ IC)→ H 0(P1, R1π∗(N ⊗ IC))→ 0,
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and by our assumption on S and f , H 1(P1, π∗(N⊗ IC))= 0. If we could choose S
such that H 0(P1, R1π∗(N ⊗ IC))= 0, then we could conclude that χ(N ⊗ IC)≥ 0,
and hence Re(X) could not be uniruled for d2

+ d ≥ 2n+ 2 and n ≥ 30.
We cannot show that for a general X , a minimal pair (S, f ) as in Proposition 2.1

can be chosen so that H 0(P1, R1π∗(N ⊗ IC))= 0. However, we prove that if X is
general and (S, f ) is minimal, then for every t ≥ 1,

H 0(P1, R1π∗(N ⊗ IC ⊗ f ∗OX (t)))= 0.

We also show that if t ≥ 0 and f (C) is t-normal, then

H 1(P1, π∗(N ⊗ IC ⊗ f ∗OX (t)))= 0.

These imply that χ(N⊗ IC⊗ f ∗OX (t)) is nonnegative when X is general and f (C)
is t-normal. To finish the proof of Theorem 1.4, we compute χ(N⊗ IC⊗ f ∗OX (t))
directly and show that it is negative when the inequality in the statement of the
theorem holds.

Proof of Theorem 1.4. Let X be a general hypersurface of degree d in Pn . If Re(X)
is uniruled, then there are S and f as in Proposition 2.1. Assume the pair (S, f ) is
minimal. Let N be the normal sheaf of f , and let C be a general fiber of π . Then
H 0(S, N )→ H 0(C, N |C) is surjective. The restriction map H 0(S, f ∗OX (m))→
H 0(C, f ∗OX (m)|C) is also surjective since f (C) is m-normal, so the restriction map
H 0(S, N ⊗ f ∗OX (m))→ H 0(C, N ⊗ f ∗OX (m)|C) is surjective as well. Therefore,

H 1(P1, π∗(N ⊗ f ∗OX (m)⊗ IC))= 0.

Now let C be an arbitrary fiber of π , and let C0 be an irreducible component
of C . Then by Proposition 5.2, f ∗(TX (t))|C0 is globally generated for every t ≥ 1,
and hence N ⊗ f ∗OX (t)|C0 is globally generated too. So Lemma 5.1 shows that
for every t ≥ 1,

H 0(P1, R1π∗(N ⊗ f ∗OX (t)⊗ IC))= 0.

By the Leray spectral sequence,

H 1(S, N ⊗ f ∗OX (m)⊗ IC)

= H 1(P1, π∗(N ⊗ f ∗OX (m)⊗ IC))⊕ H 0(P1, R1π∗(N ⊗ f ∗OX (m)⊗ IC))

= 0,

and therefore, χ(N⊗ f ∗OX (m)⊗ IC)≥ 0. We next compute χ(N⊗ f ∗OX (m)⊗ IC).
For an integer t ≥ 0, set

at = χ(N ⊗ IC ⊗ f ∗OX (t)).
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We have

at = χ(N ⊗ IC)+
2t (n+1−d)+t2(n−3)

2
H 2
−

t (n−5)
2

H · K − t (n− 3)e.

So

at =
bt
2

H 2
+

ct
2

H · K − 2K 2
+ dt ,

where
bt = (n+ 1− d2)+ 2t (n+ 1− d)+ t2(n− 3),

ct =−(n+ 1− d)− t (n− 5),

and dt =−t (n− 3)e− (n+ 1− d)e+ 14.

A computation similar to the computation in the beginning of this section shows
that

at =
bt−ct

2
H 2
− 2(2H + 2C + K )2+ ct+16

2
(H · (H + K )+ 2)

+ (dt − ct − 32+ 16e)

≤
bt−ct

2
H 2
+ (dt − ct − 32+ 16e).

Since dt − ct − 32+ 16e =−(e− 1)(n− 15− d + t (n− 3))− 2t − 2, and since
n− 15− d + t (n− 3)≥ 2n− d − 18≥ 0 for t ≥ 1 and n ≥ 12, we get

at <
bt−ct

2
H 2.

When d2
+ (2t + 1)d ≥ (t + 1)(t + 2)n+ 2, bt < ct , and so at < 0. If we let t =m,

we get the desired result. �

Lemma 5.1. If E is a locally free sheaf on S such that for every irreducible compo-
nent C0 of a fiber of π , E |C0 is globally generated, then R1π∗E = 0.

Proof. By cohomology and base change [Hartshorne 1977, Theorem III.12.11], it
suffices to prove that for every fiber C of π , H 1(C, E |C)= 0. We first show that if
l is the number of irreducible components of C counted with multiplicity, then we
can write C = C1+ · · · +Cl such that each Ci is an irreducible component of C
and for every 1≤ i ≤ l− 1, (C1+· · ·+Ci ) ·Ci+1 ≤ 1. This is proven by induction
on l. If l = 1, there is nothing to prove. Otherwise, there is at least one component
C0 of C which can be contracted. Let r be the multiplicity of C0 in C . Blowing
down C0, we get a rational surface S′ over P1. Denote by C ′ the blow-down of C .
Then by the induction hypothesis, we can write

C ′ = C ′1+ · · ·+C ′l−r
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such that (C ′1+· · ·+C ′i ) ·C
′

i+1 ≤ 1 for every 1≤ i ≤ l−r−1. Let Ci be the proper
transform of C ′i . Then if in the above sum we replace C ′i by Ci when Ci does not
intersect C0, and by Ci +C0 when Ci intersects C0, we get the desired result for C .

Since E |Ci+1 is globally generated, H 1(Ci+1, E(−C1− · · · −Ci )|Ci+1)= 0 for
every 0 ≤ i ≤ l − 1. On the other hand, for every 0 ≤ i ≤ l − 2, we have a short
exact sequence of OS-modules

0→ E(−C1− · · ·−Ci+1)|Ci+2+···+Cl → E(−C1− · · ·−Ci )|Ci+1+···+Cl

→ E(−C1− · · ·−Ci )|Ci+1 → 0.

So a decreasing induction on i shows that for every 0 ≤ i ≤ l − 2, we have
H 1(S, E(−C1−· · ·−Ci )|Ci+1+···+Cl )= 0. Letting i = 0, the statement follows. �

Proposition 5.2. Let X ⊂ Pn be a general hypersurface of degree d.

(i) For any morphism h : P1
→ X , h∗(TX (1)) is globally generated.

(ii) If C is a smooth, rational, d-normal curve on X , then H 1(C, TX |C)= 0.

Proof. (i) This follows from [Voisin 1996, Proposition 1.1]. We give a proof here
for the sake of completeness. Consider the short exact sequence

0→ h∗TX → h∗TPn → h∗OX (d)→ 0.

Since X is general, the image of the pullback map

H 0(X,OX (d))→ H 0(P1, h∗OX (d))

is contained in the image of the map H 0(P1, h∗TPn )→ H 0(P1, h∗OX (d)). Choose
a homogeneous coordinate system for Pn . Let p be a point in P1, and without loss of
generality assume that h(p)= (1 : 0 : · · · : 0). We show that for any r ∈ h∗(TX (1))|p,
there is r̃ ∈ H 0(P1, h∗(TX (1))) such that r̃ |p = r .

Consider the exact sequence

0−→ H 0(P1, h∗TX (1))−→ H 0(P1, h∗TPn (1))
φ
−→ H 0(P1, h∗OX (d + 1)).

Denote by s the image of r in h∗(TPn (1))|p. There exists S ∈ H 0(Pn, TPn (1))
such that the restriction of s̃ := h∗(S) to p is s. Denote by T the image of S in
H 0(Pn,OPn (d + 1)), and let t̃ = h∗(T ). Then T is a form of degree d + 1 on
Pn , and since t̃ |p = 0, we can write T = x1G1 + · · · + xnGn , where the Gi are
forms of degree d. Our assumption implies that for every 1 ≤ i ≤ n, there is
s̃i ∈ H 0(P1, h∗TPn ) such that φ(s̃i )= h∗Gi . Then

φ(s̃− h∗(x1)s̃1− · · ·− h∗(xn)s̃n)= t̃ − h∗(x1G1)− · · ·− h∗(xnGn)= 0,

and therefore there is some r̃ ∈ H 0(P1, h∗(TX (1))) whose image is

s̃− h∗(x1)s̃1− · · ·− h∗(xn)s̃n.
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Since (s̃− h∗(x1)s̃1− · · ·− h∗(xn)s̃n)|p = s̃|p = s, we have r̃ |p = r .

(ii) There is a short exact sequence

0→ TX |C → TPn |C → OC(d)→ 0.

The fact that X is general implies that any section of OC(d)) which is the restriction
of a section of OPn (d) can be lifted to a section of TPn |C . Since the first cohomology
group of TPn |C vanishes, the result follows. �

Although for every e and n with e ≥ n+ 1≥ 4, there are smooth nondegenerate
rational curves of degree e in Pn which are not (e − n)-normal [Gruson et al.
1983, Theorem 3.1], a general smooth rational curve of degree e in a general
hypersurface of degree d has possibly a much smaller normality: if a maximal-rank
type conjecture holds for rational curves contained in general hypersurfaces (at
least when d < (n+ 1)/2), then it follows that if c is the smallest positive number
such that

(n+c
n

)
−
(n+c−d

n

)
≥ ce+ 1, a general smooth rational curve of degree e in

a general hypersurface of degree d in Pn is c-normal.

Acknowledgments

I am grateful to Izzet Coskun, N. Mohan Kumar, Mike Roth, and Jason Starr for
many helpful conversations. I also thank the referee for a careful reading of the
paper and several significant suggestions.

References

[Beheshti and Starr 2008] R. Beheshti and J. M. Starr, “Rational surfaces in index-one Fano hypersur-
faces”, J. Algebraic Geom. 17:2 (2008), 255–274. MR 2008j:14075 Zbl 1141.14024

[Coskun and Starr 2009] I. Coskun and J. Starr, “Rational curves on smooth cubic hypersurfaces”,
Int. Math. Res. Not. 2009:24 (2009), 4626–4641. MR 2010j:14056 Zbl 1200.14051

[Gruson et al. 1983] L. Gruson, R. Lazarsfeld, and C. Peskine, “On a theorem of Castelnuovo,
and the equations defining space curves”, Invent. Math. 72:3 (1983), 491–506. MR 85g:14033
Zbl 0565.14014

[Harris et al. 2004] J. Harris, M. Roth, and J. Starr, “Rational curves on hypersurfaces of low degree”,
J. Reine Angew. Math. 571 (2004), 73–106. MR 2005e:14067 Zbl 1052.14027

[Hartshorne 1977] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer,
New York, 1977. MR 57 #3116 Zbl 0367.14001

[de Jong and Starr 2004] A. J. de Jong and J. Starr, “Cubic fourfolds and spaces of rational curves”,
Illinois J. Math. 48:2 (2004), 415–450. MR 2006e:14007 Zbl 1081.14007

[de Jong and Starr 2006] A. de Jong and J. Starr, “Low degree complete intersections are ratio-
nally simply connected”, preprint, 2006, available at http://www.math.sunysb.edu/~jstarr/papers/
nk1006g.pdf.

[Kollár 1996] J. Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3) 32,
Springer, Berlin, 1996. MR 98c:14001 Zbl 0877.14012



Nonuniruledness results for spaces of rational curves in hypersurfaces 687

[Kollár et al. 1992] J. Kollár, Y. Miyaoka, and S. Mori, “Rational connectedness and boundedness of
Fano manifolds”, J. Differential Geom. 36:3 (1992), 765–779. MR 94g:14021 Zbl 0759.14032

[Reider 1988] I. Reider, “Vector bundles of rank 2 and linear systems on algebraic surfaces”, Ann. of
Math. (2) 127:2 (1988), 309–316. MR 89e:14038 Zbl 0663.14010

[Starr 2003] J. Starr, “The Kodaira dimension of spaces of rational curves on low degree hypersur-
faces”, preprint, 2003. arXiv math/0305432

[Starr 2006] J. Starr, “Hypersurfaces of low degree are rationally 1-connected”, preprint, 2006.
arXiv math/0602641

[Voisin 1996] C. Voisin, “On a conjecture of Clemens on rational curves on hypersurfaces”, J.
Differential Geom. 44:1 (1996), 200–213. MR 97j:14047 Zbl 0883.14022

Communicated by David Eisenbud
Received 2010-09-20 Revised 2011-06-19 Accepted 2011-07-28

beheshti@math.wustl.edu Department of Mathematics, Washington University,
Campus Box 1146, Saint Louis, MO 63130, United States

mathematical sciences publishers msp



Algebra & Number Theory
msp.berkeley.edu/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad University of Michigan, USA

Hélène Esnault Universität Duisburg-Essen, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Ehud Hrushovski Hebrew University, Israel

Craig Huneke University of Kansas, USA

Mikhail Kapranov Yale University, USA

Yujiro Kawamata University of Tokyo, Japan

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Victor Reiner University of Minnesota, USA

Karl Rubin University of California, Irvine, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Ronald Solomon Ohio State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Bernd Sturmfels University of California, Berkeley, USA

Richard Taylor Harvard University, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Andrei Zelevinsky Northeastern University, USA

Efim Zelmanov University of California, San Diego, USA

PRODUCTION
contact@msp.org

Silvio Levy, Scientific Editor

See inside back cover or www.jant.org for submission instructions.

The subscription price for 2012 is US $175/year for the electronic version, and $275/year (+$40 shipping outside the US) for
print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should
be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840,
USA.

Algebra & Number Theory (ISSN 1937-0652) at Mathematical Sciences Publishers, Department of Mathematics, University
of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://msp.org/
A NON-PROFIT CORPORATION

Typeset in LATEX
Copyright ©2012 by Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:contact@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org
http://msp.org/


Algebra & Number Theory
Volume 6 No. 4 2012

611Spherical varieties and integral representations of L-functions
YIANNIS SAKELLARIDIS

669Nonuniruledness results for spaces of rational curves in hypersurfaces
ROYA BEHESHTI

689Degeneracy of triality-symmetric morphisms
DAVE ANDERSON

707Multi-Frey Q-curves and the Diophantine equation a2
+ b6

= cn

MICHAEL A. BENNETT and IMIN CHEN

731Detaching embedded points
DAWEI CHEN and SCOTT NOLLET

757Moduli of Galois p-covers in mixed characteristics
DAN ABRAMOVICH and MATTHIEU ROMAGNY

781Block components of the Lie module for the symmetric group
ROGER M. BRYANT and KARIN ERDMANN

797Basepoint-free theorems: saturation, b-divisors, and canonical bundle formula
OSAMU FUJINO

825Realizing large gaps in cohomology for symmetric group modules
DAVID J. HEMMER

1937-0652(2012)6:4;1-B

A
lgebra

&
N

um
ber

Theory
2012

Vol.6,
N

o.4


	
	
	

