Algebra \&

 Number Theory
Volume 6

 2012 No. 4」
는

Degeneracy of triality-symmetric morphisms
Dave Anderson

Degeneracy of triality-symmetric morphisms

Dave Anderson

Abstract

We define a new symmetry for morphisms of vector bundles, called triality symmetry, and compute Chern class formulas for the degeneracy loci of such morphisms. In an appendix, we show how to canonically associate an octonion algebra bundle to any rank- 2 vector bundle.

1. Introduction

Let $\varphi: E \rightarrow F$ be a morphism of vector bundles on a smooth variety X, of respective ranks m and n. The r-th degeneracy locus of φ is the set of points of X defined by

$$
D_{r}(\varphi)=\{x \in X \mid \operatorname{rk} \varphi(x) \leq r\}
$$

where $\varphi(x): E(x) \rightarrow F(x)$ is the corresponding linear map in the fibers over $x \in X$. Such loci are ubiquitous in algebraic geometry: many interesting varieties, from Veronese embeddings of projective spaces to Brill-Noether loci parametrizing special divisors in Jacobians, can be realized as degeneracy loci for appropriate maps of vector bundles. General geometric information about degeneracy loci is therefore often useful. In particular, one can ask for Chern class formulas for the cohomology class of $D_{r}(\varphi)$ in $H^{*} X$ - what is [$D_{r}(\varphi)$] as a polynomial in the Chern classes of E and F ?

When φ is sufficiently general, so $D_{r}(\varphi)$ has expected codimension equal to $(m-r)(n-r)$, the answer is given by the Giambelli-Thom-Porteous determinantal formula. In two cases of particular interest, Chern class formulas are known for degeneracy loci where φ is not general in this sense. Taking $F=E^{*}$, one has the dual morphism $\varphi^{*}: E^{* *}=E \rightarrow E^{*}$. Call φ symmetric if $\varphi^{*}=\varphi$, and skew-symmetric if $\varphi^{*}=-\varphi$. The codimension of $D_{r}(\varphi)$ is at most $\binom{m-r+1}{2}$ (in the symmetric case) or $\binom{m-r}{2}$ (in the skew-symmetric case), so such morphisms are never sufficiently general for the Giambelli-Thom-Porteous formula to apply. Formulas for these loci were given by Harris and Tu [1984] and Józefiak, Lascoux

[^0]and Pragacz [Józefiak et al. 1981]. As explained in [Fehér et al. 2005], these formulas can also be found by computing the equivariant classes of appropriate orbit closures in the $\mathrm{GL}(E)$-representations $\operatorname{Sym}^{2} E^{*}$ and $\wedge^{2} E^{*}$, where E is a vector space. See [Fulton and Pragacz 1998, Chapter 6] for more detailed discussions of the formulas.

The primary goal of the present article is to give degeneracy locus formulas for a new class of morphisms, which we call triality-symmetric morphisms. Letting E be a rank-2 vector bundle, these are maps

$$
\varphi: E \rightarrow \operatorname{End}(E) \oplus E^{*}
$$

possessing a certain symmetry related to the S_{3} symmetry of the D_{4} Dynkin diagram. Specifically, we use the following definition:

Definition 1.1. Consider the canonical identification

$$
\begin{aligned}
\operatorname{Hom}\left(E, \operatorname{End}(E) \oplus E^{*}\right) & =\left(E^{*} \otimes E^{*} \otimes E\right) \oplus\left(E^{*} \otimes E^{*}\right) \\
& =\left(E^{*} \otimes E^{*} \otimes E^{*} \otimes \wedge^{2} E\right) \oplus\left(E^{*} \otimes E^{*}\right) .
\end{aligned}
$$

A morphism $\varphi: E \rightarrow \operatorname{End}(E) \oplus E^{*}$ is triality-symmetric if the corresponding section of $\operatorname{Hom}\left(E, \operatorname{End}(E) \oplus E^{*}\right)$ lies in the subbundle

$$
\left(\operatorname{Sym}^{3} E^{*} \otimes \Lambda^{2} E\right) \oplus \bigwedge^{2} E^{*}
$$

That is, $\varphi=\varphi_{1} \oplus \varphi_{2}$, with φ_{1} defining a symmetric trilinear form $\operatorname{Sym}^{3} E \rightarrow \wedge^{2} E$ and φ_{2} defining an alternating bilinear form $\wedge^{2} E \rightarrow 0_{X}$.

We will sometimes write $\operatorname{tSym}\left(E^{*}\right)=\left(\operatorname{Sym}^{3} E^{*} \otimes \Lambda^{2} E\right) \oplus \Lambda^{2} E^{*}$ for the subbundle of triality-symmetric morphisms.

A few words of motivation are in order concerning this definition. For simplicity, consider the case where X is a point, and take vector spaces E and F of respective dimensions m and n. The space of all linear maps $\operatorname{Hom}(E, F)$ is also the tangent space to the $\operatorname{Grassmannian} \operatorname{Gr}(m, m+n)=\operatorname{Gr}(m, E \oplus F)=\mathrm{GL}_{m+n} / P$ (for an appropriate maximal parabolic subgroup P) at the point corresponding to E. When $F=E^{*}$, there is a canonical symplectic form ω on $E \oplus E^{*}$, defining the Lagrangian Grassmannian $\operatorname{LG}(m, 2 m) \subseteq \operatorname{Gr}(m, 2 m)$, and the space of symmetric morphisms $\operatorname{Sym}^{2} E^{*}$ is naturally identified with the tangent space to $\mathrm{LG}(m, 2 m)=\mathrm{Sp}_{2 m} / P$ at the point $[E]$. Moreover, $\operatorname{LG}(m, 2 m)$ is the fixed locus for the involution of $\operatorname{Gr}(m, 2 m)$ which sends a subspace to its orthogonal complement under ω. The situation is similar for skew-symmetric morphisms, replacing the Lagrangian Grassmannian with the orthogonal Grassmannian $\mathrm{OG}(m, 2 m)=\mathrm{SO}_{2 m} / P$.

From this point of view, it is natural to expect nice degeneracy locus formulas corresponding to other finite symmetries of homogeneous spaces. A particularly
interesting one is the triality action on $\operatorname{OG}(2,8)$, which we identify as

$$
\mathrm{OG}\left(2, E \oplus \operatorname{End}(E) \oplus E^{*}\right)
$$

for a two-dimensional vector space E. A concise description of this S_{3} action may be found in [Anderson 2009, Appendix B]; for more details, see [van der Blij and Springer 1960; Garibaldi 1999]. For our purposes, the relevant facts are that the fixed locus is the " G_{2} Grassmannian" G_{2} / P (for P corresponding to the long root), and the tangent space to G_{2} / P is naturally identified with $\operatorname{tSym}\left(E^{*}\right)$ at the point $[E] \in G_{2} / P \subseteq \mathrm{OG}(2,8)$. (In Section 3, we will explicitly exhibit the S_{3} action on the tangent space $T_{[E]} \mathrm{OG}(2,8) \cong \operatorname{Hom}(E, \operatorname{End}(E)) \oplus \wedge^{2} E^{*}$ fixing $\operatorname{tSym}\left(E^{*}\right)$.) Further motivation comes from the fact that there is a canonical octonion algebra structure on $E \oplus \operatorname{End}(E) \oplus E^{*}$, when E is a rank-2 vector bundle, just as there is a canonical symplectic structure on $E \oplus E^{*}$. This is the content of Proposition A.1.

Since E is required to have rank-2, a triality-symmetric morphism may have rank 0,1 , or 2 . Write $D_{r}(\varphi) \subseteq X$ for the locus of points where φ has rank at most r. For a triality-symmetric morphism φ, define the expected codimension of $D_{r}(\varphi)$ to be 5,3 , or 0 if $r=0, r=1$, or $r=2$, respectively. With this understood, we may state our main theorem:

Theorem 1.2. Let c_{1}, c_{2} be the Chern classes of E^{*}, and let x_{1}, x_{2} be Chern roots. Let $\varphi: E \rightarrow \operatorname{End}(E) \oplus E^{*}$ be a triality-symmetric morphism. If $D_{r}(\varphi)$ has expected codimension and X is Cohen-Macaulay, then we have $\left[D_{r}(\varphi)\right]=P_{r}\left(c_{1}, c_{2}\right)$ in $H^{*} X$, where

$$
\begin{aligned}
& P_{2}=1, \\
& P_{1}=3 c_{2} c_{1}=3 x_{1} x_{2}\left(x_{1}+x_{2}\right), \\
& P_{0}=c_{2} c_{1}\left(9 c_{2}-2 c_{1}^{2}\right)=x_{1} x_{2}\left(x_{1}+x_{2}\right)\left(2 x_{1}-x_{2}\right)\left(-x_{1}+2 x_{2}\right) .
\end{aligned}
$$

A secondary goal of this article is to illustrate two points of view on degeneracy loci. In this spirit, we will give two proofs of the main theorem, both involving the simple Lie group of type G_{2}, but using substantially different approaches. The first relates degeneracy loci for triality-symmetric morphisms to certain Schubert loci in a G_{2} flag bundle, just as Fulton's generalization of the Harris-Tu formulas relates symmetric morphisms to type C flag bundles [Fulton 1996]. One then applies the formulas for G_{2} Schubert loci developed in [Anderson 2011] to derive the formulas of Theorem 1.2.

The second proof uses equivariant cohomology in the spirit of [Fehér and Rimányi 2004; Fehér et al. 2005] (but see Remark 5.3). More precisely, when P is the maximal parabolic subgroup of G_{2} which omits the long root and E is a twodimensional vector space, we consider $\left(\operatorname{Sym}^{3} E^{*} \otimes \Lambda^{2} E\right) \oplus \bigwedge^{2} E^{*}$ as a P-module and compute the equivariant classes of the P-orbit closures in this vector space.

Certain of these orbit closures correspond to degeneracy loci, and one can deduce Theorem 1.2 from the equivariant formulas. Along the way, we explicitly identify the P-orbit closures in $\left(\operatorname{Sym}^{3} E^{*} \otimes \Lambda^{2} E\right) \oplus \wedge^{2} E^{*}$, and compute all their equivariant classes (Proposition 5.1 and Theorem 5.2).

Triality symmetry is the G_{2} case of a general notion of symmetry for morphisms of vector bundles. In fact, two types of symmetry for morphisms can be naturally associated to any maximal parabolic subgroup P of a complex reductive group G, as described in [Anderson 2009, Appendix C]. The "orbit" approach used in the second proof of Theorem 1.2 generalizes to the following problem: Compute the equivariant classes of P-orbit (or B-orbit) closures for the adjoint action on $\mathfrak{g} / \mathfrak{p}$. Solutions to this problem account for many of the known degeneracy locus formulas; see, for example, [Fehér and Rimányi 2003; Knutson and Miller 2005].

A related problem is to classify situations where there are finitely many orbits. In the case of P acting on $\mathfrak{g} / \mathfrak{p}$, this problem was investigated by Popov and Röhrle [1997], and such parabolic actions have been classified [Bürgstein and Hesselink 1987; Hille and Röhrle 1999; Jürgens and Röhrle 2002]. The classification of Borel or Levi subgroup actions on $\mathfrak{g} / \mathfrak{p}$ with finitely many orbits appears to be unknown.

We have endeavored to make our perspective on triality and G_{2} accessible to general algebraic geometers, and in this spirit, the ingredients of the first proof of Theorem 1.2 are spelled out quite explicitly. The second proof is more streamlined, but requires a little more specialized background; we hope that the reader versed in Lie theory will appreciate both points of view.

2. Preliminaries

All varieties are over \mathbb{C}. We will write X for the base variety. If E is a vector bundle on X, we write $E(x)$ for the fiber over $x \in X$. We often suppress notation for pullback of vector bundles.
2.1. Octonions. An octonion algebra over \mathbb{C} is an 8 -dimensional complex vector space C, equipped with

- a nondegenerate quadratic norm N, and
- a bilinear multiplication with unit e, written $u \otimes v \mapsto u v$,
such that $N(u v)=N(u) N(v)$ for all $u, v \in C$. Recall that any quadratic norm N corresponds to a symmetric bilinear form $\langle\cdot, \cdot\rangle$, by $N(v)=\frac{1}{2}\langle v, v\rangle$ and $\langle u, v\rangle=$ $N(u+v)-N(u)-N(v)$, and a norm is called nondegenerate if the corresponding bilinear form is nondegenerate.

Up to isomorphism, there is only one octonion algebra over \mathbb{C} (or over any algebraically closed field). The multiplication is only required to be bilinear, and indeed it is neither commutative nor associative.

The notion of an octonion algebra globalizes easily to octonion bundles, where C is a rank- 8 vector bundle on a variety X, the multiplication is a vector bundle map $C \otimes C \rightarrow C$, and for simplicity we assume the norm takes values in 0_{X}. For more on octonions and octonion bundles, see [Springer and Veldkamp 2000, Sections 1-2; Petersson 1993; Anderson 2009, Section 2].

The group of algebra automorphisms of an octonion algebra (that is, linear automorphisms preserving multiplication) is the simple complex Lie group of type G_{2} [Springer and Veldkamp 2000, Section 2]; abusing notation, we will write G_{2} to denote this group. ${ }^{1}$

Let E be a rank-2 vector bundle on X. Then $C=E \oplus \operatorname{End}(E) \oplus E^{*}$ has a canonical structure of an octonion bundle, which is described in Proposition A.1. In the case where X is a point, so E is a 2 -dimensional vector space, the same formulas (1) and (2) define an octonion algebra. It will be convenient to use a basis adapted to this construction. Let v_{1}, v_{2} be a basis for E, with dual basis v_{1}^{*}, v_{2}^{*} for E^{*}, and extend to a basis for $C=E \oplus \operatorname{End}(E) \oplus E^{*}$ by setting

$$
\begin{array}{lll}
v_{3}=v_{2}^{*} \otimes v_{1}, & v_{4}=v_{1}^{*} \otimes v_{1}, & v_{5}=v_{2}^{*} \otimes v_{2} \\
v_{6}=v_{1}^{*} \otimes v_{2}, & v_{7}=v_{2}^{*}, & v_{8}=v_{1}^{*} \tag{1}
\end{array}
$$

One checks that the identity element of C is $e=v_{4}+v_{5}$.
With respect to this basis, the symmetric bilinear form $\langle\cdot, \cdot\rangle$ is given by

$$
\begin{align*}
\left\langle v_{p}, v_{9-q}\right\rangle & =-\delta_{p q}, \text { for }\{p, q\} \neq\{4,5\} ; \\
\left\langle v_{4}, v_{5}\right\rangle & =1 . \tag{2}
\end{align*}
$$

Write $V=e^{\perp} \subset C$ for the orthogonal complement of the identity element with respect to $\langle\cdot, \cdot\rangle$. Thus V is defined by $v_{4}^{*}+v_{5}^{*}=0$.

Let the torus $T=\left(\mathbb{C}^{*}\right)^{2}$ act on C in this basis via the matrix

$$
\begin{equation*}
\operatorname{diag}\left(z_{1}, z_{2}, z_{1} z_{2}^{-1}, 1,1, z_{1}^{-1} z_{2}, z_{2}^{-1}, z_{1}^{-1}\right) \tag{3}
\end{equation*}
$$

with weights

$$
\begin{equation*}
\left\{t_{1}, t_{2}, t_{1}-t_{2}, 0,0,-t_{1}+t_{2},-t_{2},-t_{1}\right\} . \tag{4}
\end{equation*}
$$

This is induced from the standard action on $E=\operatorname{span}\left\{v_{1}, v_{2}\right\}$. The algebra structure of C is preserved by this action, so $T \subseteq G_{2}$; in fact, T is a maximal torus.
2.2. Roots and weights. For general Lie-theoretic notions, we refer to [Humphreys 1975]; here we explain the relevant facts for type G_{2}. Let G_{2} be the automorphism group of an octonion algebra C, as above, so G_{2} is presented as a subgroup of

[^1]$\mathrm{GL}(C) \cong \mathrm{GL}_{8}$. Let $T \subset B \subset G_{2}$ be a maximal torus and Borel subgroup, and let $\mathfrak{t} \subset \mathfrak{b} \subset \mathfrak{g}_{2}$ be the corresponding Lie algebras. Once a basis for C has been chosen as in (1), we will always take T to be the torus acting as in (3), and we may take B to be the intersection of the upper-triangular matrices in GL_{8} with the subgroup G_{2}. Write α_{1} and α_{2} for the two simple roots, with α_{2} the long root. In terms of the weights t_{1}, t_{2} of (4), we have
\[

$$
\begin{equation*}
\alpha_{1}=t_{1}-t_{2}, \quad \alpha_{2}=-t_{1}+2 t_{2} \tag{5}
\end{equation*}
$$

\]

The positive roots are $\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}$; the negative roots are $-\alpha$, for α a positive root.

Let $P \subset G_{2}$ be the standard maximal parabolic subgroup omitting the long root, with Lie algebra $\mathfrak{p} \subset \mathfrak{g}_{2}$. Thus $\mathfrak{p}=\mathfrak{b} \oplus \mathfrak{g}_{-\alpha_{1}}$, where $\mathfrak{g}_{-\alpha_{1}} \subset \mathfrak{g}_{2}$ is the weight space for the negative root $-\alpha_{1}$.

The Weyl group is $W=N(T) / T$, where $N(T)$ is the normalizer of T in G_{2}. It is isomorphic to the dihedral group with 12 elements, and is generated by the simple reflections $s=s_{\alpha_{1}}$ and $t=s_{\alpha_{2}}$, and is defined by the relations $s^{2}=t^{2}=(s t)^{6}=1$. There is an embedding $W \hookrightarrow S_{7}$ coming from the action of G_{2} on $V \subset C$ given by

$$
\begin{aligned}
& s \mapsto 2154376, \\
& t \mapsto 1324657 ;
\end{aligned}
$$

see [Anderson 2009, Section A.3]. We will sometimes treat elements of W as permutations via this embedding.
2.3. Flag bundles and Schubert loci. We refer to [Anderson 2009; 2011] for proofs of the following facts with more details. (There the term " γ-isotropic" is used instead of " G_{2}-isotropic" in reference to a trilinear form γ.)

Let C be an octonion algebra, and let $V=e^{\perp} \subset C$ be as before. A subspace $E \subseteq C$ is called G_{2}-isotropic if $E \subseteq V$ and $u v=0$ for all $u, v \in E$. A maximal G_{2}-isotropic subspace has dimension 2 , and a G_{2}-isotropic flag is a chain $E_{1} \subset$ $E_{2} \subset V$ (with $\operatorname{dim} E_{i}=i$), where E_{2} is G_{2}-isotropic. Such a flag can be canonically extended to a complete flag $E_{1} \subset E_{2} \subset E_{3} \subset \cdots \subset E_{7}=V$: When $E_{1} \subset E_{2}$ is G_{2}-isotropic, with E_{1} spanned by a vector u, then $E_{u}:=\{v \in V \mid u v=0\}$ is a three-dimensional subspace containing E_{2}. To get a complete flag, set $E_{3}=E_{u}$, and then take orthogonal complements with respect to the norm N for the rest, so $E_{4}=E_{3}^{\perp}$, etc. (See [Anderson 2011, Section 2.2] for this construction.)

The G_{2} flag variety $\mathrm{Fl}_{G_{2}}$ parametrizes all G_{2}-isotropic flags in $V \subset C$. It is a six-dimensional projective homogeneous space, isomorphic to G_{2} / B for a Borel subgroup $B \subset G_{2}$. The G_{2} Grassmannian $\mathrm{Gr}_{G_{2}}$ parametrizes two-dimensional $G_{2}-$ isotropic subspaces of V; this is isomorphic to the five-dimensional homogeneous
space G_{2} / P. The construction of a complete G_{2}-isotropic flag gives an embedding $\mathrm{Fl}_{G_{2}} \hookrightarrow \mathrm{Fl}\left(\mathbb{C}^{7}\right)=\mathrm{SL}_{7} / B$.

For an octonion bundle C on X with its rank-7 subbundle V, there is an associated G_{2}-isotropic flag bundle $\mathbf{F l}_{G_{2}}(V) \rightarrow X$, as well as a G_{2}-isotropic Grassmann bundle $\mathbf{G r}_{G_{2}}(V) \rightarrow X$. These are (étale-)locally trivial fiber bundles, with fibers $\mathrm{Fl}_{G_{2}}$ and $\mathrm{Gr}_{G_{2}}$, respectively. The flag bundle $\mathbf{F l}_{G_{2}}$ comes with a tautological flag of subbundles \widetilde{E}. of V.

Given a complete G_{2}-isotropic flag of subbundles $F_{1} \subset F_{2} \subset \cdots \subset F_{7}=V$ on X, the Schubert loci in $\mathbf{F l}_{G_{2}}(V)$ are defined by

$$
\begin{equation*}
\Omega_{w}\left(F_{\cdot}\right)=\left\{x \in \mathbf{F l}_{G_{2}} \mid \operatorname{dim}\left(\widetilde{E}_{p}(x) \cap F_{q}(x)\right) \geq r_{w}(q, p) \text { for } 1 \leq p, q \leq 7\right\}, \tag{6}
\end{equation*}
$$

where for $w \in W, r_{w}(q, p)$ is $\#\{i \leq q \mid w(8-i) \leq p\}$, and $\widetilde{E}_{.}$is the tautological flag on $\mathbf{F l}_{G_{2}}$. Here we are using the embedding $W \hookrightarrow S_{7}$ discussed above. ${ }^{2}$ The codimension of Ω_{w} is the length of w, i.e., the least number of simple transpositions needed to write w as a word in s and t.

If $E_{\mathbf{\bullet}}$ is a second G_{2}-isotropic flag on X, it defines a section $s_{E_{\mathbf{\bullet}}}: X \rightarrow \mathbf{F l}_{G_{2}}$ such that $s_{E_{\mathbf{\bullet}}}^{*} \widetilde{E}_{\mathbf{0}}=E_{\text {. }}$ We define degeneracy loci in X as the scheme-theoretic inverse images of Schubert loci:

$$
\Omega_{w}\left(E_{\mathbf{\bullet}}, F_{\mathbf{\bullet}}\right)=s_{E_{\mathbf{\bullet}}}^{-1} \Omega_{w}\left(F_{\mathbf{\bullet}}\right) .
$$

3. Triality symmetry

Triality symmetry is described in terms of coordinates as follows. Assume X is a point, so E is a two-dimensional vector space. Choose a basis $\left\{v_{1}, v_{2}\right\}$ for E, and let $\left\{v_{3}, \ldots, v_{8}\right\}$ be a basis for $\operatorname{End}(E) \oplus E^{*}$ as in (1). Suppose $\varphi: E \rightarrow \operatorname{End}(E) \oplus E^{*}$ is given by $\varphi=\varphi_{1} \oplus \varphi_{2}$, with

$$
\varphi_{1}\left(v_{1}\right)=\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right), \quad \varphi_{1}\left(v_{2}\right)=\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)
$$

and $\varphi_{2}\left(v_{1}\right)=z v_{2}^{*}, \varphi_{2}\left(v_{2}\right)=-z v_{1}^{*}$. In terms of the chosen bases for E and $\operatorname{End}(E) \oplus$ E^{*}, φ has matrix A_{φ}^{t}, whose transpose is

$$
A_{\varphi}=\left(\begin{array}{lllllc}
b_{1} & a_{1} & d_{1} & c_{1} & z & 0 \tag{7}\\
b_{2} & a_{2} & d_{2} & c_{2} & 0 & -z
\end{array}\right)
$$

[^2]Identify $\operatorname{Hom}(E, \operatorname{End}(E))=E^{*} \otimes E^{*} \otimes E$ with $E^{*} \otimes E^{*} \otimes E^{*}$ by mapping

$$
\begin{aligned}
& v_{i}^{*} \otimes v_{j}^{*} \otimes v_{1} \mapsto v_{i j 2}^{*}, \\
& v_{i}^{*} \otimes v_{j}^{*} \otimes v_{2} \mapsto-v_{i j 1}^{*},
\end{aligned}
$$

where $v_{i j k}^{*}=v_{i}^{*} \otimes v_{j}^{*} \otimes v_{k}^{*}$ for $1 \leq i, j, k \leq 2$. (The sign appears because of the canonical isomorphism $E^{*} \otimes E^{*} \otimes E \cong E^{*} \otimes E^{*} \otimes E^{*} \otimes \wedge^{2} E$; we are using $v_{1} \wedge v_{2}$ to identify $E \cong E^{*} \otimes \wedge^{2} E$ with E^{*}.) Thus φ is triality-symmetric if and only if the corresponding coordinates of $v_{i j k}^{*}$ are invariant under permutations of the indices. Explicitly, there is an S_{3}-action on $\operatorname{Hom}(E, \operatorname{End}(E)) \oplus \wedge^{2} E^{*}$ generated by elements τ and σ whose action on matrices A_{φ} is given by

$$
\begin{aligned}
\tau\left(\begin{array}{lllllc}
b_{1} & a_{1} & d_{1} & c_{1} & z & 0 \\
b_{2} & a_{2} & d_{2} & c_{2} & 0 & -z
\end{array}\right) & =\left(\begin{array}{cccccc}
-d_{2} & -d_{1} & c_{2} & c_{1} & z & 0 \\
b_{2} & b_{1} & -a_{2} & -a_{1} & 0 & -z
\end{array}\right) \\
\text { and } \quad \sigma\left(\begin{array}{llllll}
b_{1} & a_{1} & d_{1} & c_{1} & z & 0 \\
b_{2} & a_{2} & d_{2} & c_{2} & 0 & -z
\end{array}\right) & =\left(\begin{array}{cccccc}
a_{2} & a_{1} & c_{2} & c_{1} & z & 0 \\
b_{2} & b_{1} & d_{2} & d_{1} & 0 & -z
\end{array}\right) .
\end{aligned}
$$

This means that the triality-symmetric maps are those whose (transposed) matrix is of the form

$$
A_{\varphi}=\left(\begin{array}{cccccc}
a & -d & d & c & z & 0 \tag{8}\\
b & a & -a & d & 0 & -z
\end{array}\right)
$$

Here a is also the coordinate of v_{122}^{*}, b is the coordinate of $v_{222}^{*},-c$ is the coordinate of v_{111}^{*}, and $-d$ is the coordinate of v_{112}^{*}. Note that the S_{3}-invariants coincide with the τ-invariants.

Remark 3.1. "Triality" usually refers to several phenomena related to the S_{3} symmetry of the D_{4} Dynkin diagram. It was first described by Cartan [1925]; see [Knus et al. 1998] for a thorough discussion. The connection with our context can be explained briefly as follows. Automorphisms of the D_{4} Dynkin diagram correspond to outer automorphisms of the simply connected group Spin_{8}; these all fix a parabolic subgroup P, and therefore define automorphisms of $\operatorname{Spin}_{8} / P \cong \mathrm{OG}(2,8)$ and the tangent space $T_{e P} \operatorname{Spin}_{8} / P$. The tangent space can be identified with matrices as in (7), and under this identification the automorphism group S_{3} acts as described above.

4. Graphs

For any morphism $\varphi: E \rightarrow F$, let $E_{\varphi} \subset E \oplus F$ be its graph, that is, the subbundle whose fiber over x is $E_{\varphi}(x)=\{(v, \varphi(v)) \mid v \in E(x)\}$. If $\varphi: E \rightarrow E^{*}$ is symmetric, then its graph is isotropic for the canonical skew-symmetric form on $E \oplus E^{*}$ defined by $\left(v_{1} \oplus f_{1}, v_{2} \oplus f_{2}\right)=f_{1}\left(v_{2}\right)-f_{2}\left(v_{1}\right)$. Thus one obtains a map to the Lagrangian
bundle of isotropic flags in $E \oplus E^{*}$, and formulas for the degeneracy loci of φ are deduced from formulas for Schubert loci; see [Fulton 1996; Fulton and Pragacz 1998].

In this section, we consider morphisms $\varphi: E \rightarrow \operatorname{End}(E) \oplus E^{*}$. There is, by Proposition A.1, a canonical octonion algebra structure on $E \oplus \operatorname{End}(E) \oplus E^{*}$. We give formulas for degeneracy loci of morphisms whose graphs are G_{2}-isotropic with respect to this structure. In general such morphisms are not triality-symmetric (nor vice versa). For rank-1 maps, however, the two notions agree.

After a suitable change of coordinates (including a switch to opposite Schubert cells), the parametrization of the open Schubert cell in G_{2} / P given in [Anderson 2009, Section D.1] becomes

$$
\widetilde{\Omega}^{\circ}=\left(\begin{array}{cccccccc}
1 & 0 & a & -d & d & c & z & -X \tag{9}\\
0 & 1 & b & a & -a & d & -Z & -Y
\end{array}\right),
$$

where $X=-a c-d^{2}, Y=z+a d-b c$, and $Z=-a^{2}-b d$. Morphisms $E \rightarrow$ $\operatorname{End}(E) \oplus E^{*}$ with G_{2}-isotropic graph are exactly those whose (transposed) matrix has the form of the last six columns of (9).

Lemma 4.1. Suppose X is a point and $\varphi: E \rightarrow \operatorname{End}(E) \oplus E^{*}$ is a triality-symmetric map with matrix A_{φ}^{t} as in (8). Then the graph E_{φ} is contained in $V \subset C$, and is G_{2}-isotropic if and only if

$$
\begin{equation*}
a^{2}+b d=a c+d^{2}=a d-b c=0 . \tag{10}
\end{equation*}
$$

Conversely, suppose $\varphi: E \rightarrow \operatorname{End}(E) \oplus E^{*}$ has G_{2}-isotropic graph as in (9). Then φ is triality-symmetric if and only if the equations (10) hold.

Proof. This is a straightforward verification, using the basis $\left\{v_{i}\right\}$ as in (1). It is clear that the row span of (9) is always in $V \subset C$ since the fourth and fifth columns add to zero. The condition that the row span be the graph E_{φ} means $X=Z=0$ and $Y=z$, which are precisely the equations (10).

Corollary 4.2. Let $\varphi: E \rightarrow \operatorname{End}(E) \oplus E^{*}$ be a morphism of rank at most 1 such that the component $\varphi_{2}: E \rightarrow E^{*}$ is zero. Then φ is triality-symmetric if and only if $E_{\varphi} \subset C$ is G_{2}-isotropic. (This holds scheme-theoretically, that is, the equations locally defining these two subsets of $\operatorname{Hom}(E, \operatorname{End}(E))$ are the same.)

Proof. This is a local statement, so we may assume X is a point and compute in coordinates. In this case, it follows from Lemma 4.1 by adding the equation $z=0$. (In fact, for a morphism with G_{2}-isotropic graph, the rank condition is forced by $\varphi_{2} \equiv 0$.)

Corollary 4.2 implies that the formulas of Theorem 1.2 (for triality-symmetric morphisms) will agree with formulas for morphisms with G_{2}-isotropic graphs. Before proceeding with the proof of Theorem 1.2, we will describe the connection between triality-symmetry and G_{2}-isotropic graphs more precisely.

Let $\mathbf{G r}_{G_{2}} \subseteq \mathbf{G r}(2, C)$ be the G_{2}-Grassmannian bundle on X, and let $\mathbf{G r}{ }^{\circ}$ be the open subset parametrizing subbundles of $C=E \oplus \operatorname{End}(E) \oplus E^{*}$ whose projection onto E is an isomorphism; locally on X, coordinates for $\mathbf{G r}^{\circ}$ are given as in (9). Identifying a morphism $E \rightarrow \operatorname{End}(E) \oplus E^{*}$ with its graph, note that $\operatorname{Hom}\left(E, \operatorname{End}(E) \oplus E^{*}\right)$ is identified with the corresponding open subset of $\mathbf{G r}(2, C)$, so $\mathbf{G r}^{\circ}=\mathbf{G r}_{G_{2}} \cap \operatorname{Hom}\left(E, \operatorname{End}(E) \oplus E^{*}\right)$ parametrizes morphisms with G_{2}-isotropic graph.

When X is a point, we have remarked that the space of triality-symmetric maps $\operatorname{tSym}\left(E^{*}\right)$ is naturally isomorphic to the tangent space $T_{[E]} \operatorname{Gr}_{G_{2}}$. For general X, this globalizes to an identification of the vector bundle $\operatorname{tSym}\left(E^{*}\right)$ with the normal bundle $N_{X / \mathbf{G r}}=N_{X / \mathbf{G r}}{ }^{\circ}$, where X is embedded in $\mathbf{G r}^{\circ} \subset \mathbf{G r}$ by the section corresponding to the subbundle $E \subset C$.

Now let $\mathbf{D}_{1} \subseteq \operatorname{tSym}\left(E^{*}\right)$ be the locus of triality symmetric morphisms of rank at most 1, and let $\Omega_{1}^{\circ} \subset \mathbf{G r}^{\circ}$ be the locus of morphisms with G_{2}-isotropic graph of rank at most 1 such that the component φ_{2} is zero. The next lemma identifies \mathbf{D}_{1} with the normal cone to X in Ω_{1}°.

Lemma 4.3. Inside $\operatorname{tSym}\left(E^{*}\right)=N_{X / G \mathbf{G r}^{\circ}}$, we have $\mathbf{D}_{1}=C_{X} \Omega_{1}^{\circ}$.
Proof. This can be checked locally on X, so assume X is a point. Note that both $\operatorname{tSym}\left(E^{*}\right)$ and $\mathbf{G r}^{\circ}$ are isomorphic to \mathbb{A}^{5}. By Corollary $4.2, \mathbf{D}_{1}$ and Ω_{1}° are defined by the same equations, namely (10) together with $z=0$; since these equations are already homogeneous, we have that Ω_{1}° is equal to its tangent cone at the origin.
Corollary 4.4. Let φ be any triality-symmetric morphism and let ψ be any morphism with G_{2}-isotropic graph. Let $s_{\varphi}: X \rightarrow \operatorname{tSym}\left(E^{*}\right)$ and $s_{\psi}: X \rightarrow \mathbf{G r}^{\circ}$ be the sections determined by φ and ψ. Then $s_{\varphi}^{*}\left[\mathbf{D}_{1}\right]=s_{\psi}^{*}\left[\Omega_{1}\right]$ in $H^{*} X$.
Proof. Let s_{0} be the zero section of $\operatorname{tSym}\left(E^{*}\right)$, and let s_{E} be the section of $\mathbf{G r}^{\circ}$ corresponding to $E \subset C$. By Lemma 4.3 and the basic construction of intersection theory (see [Fulton 1998, Section 6]), we have $s_{0}^{*}\left[\mathbf{D}_{1}\right]=s_{E}^{*}\left[\Omega_{1}\right]$. On the other hand, both $\operatorname{tSym}\left(E^{*}\right)$ and $\mathbf{G r}^{\circ}$ are affine bundles on X, so every section determines the same pullback on cohomology. (In fact, $\mathbf{G r}^{\circ}$ is isomorphic to $\operatorname{tSym}\left(E^{*}\right)$, as one sees from the parametrization in (9), although it is not a vector subbundle of $\operatorname{Hom}\left(E, \operatorname{End}(E) \oplus E^{*}\right)$.)

Consequently, for morphisms φ and ψ as in Corollary 4.4, we have $\left[D_{1}(\varphi)\right]=$ [$D_{1}(\psi)$] whenever

$$
\begin{equation*}
s_{\varphi}^{*}\left[\mathbf{D}_{1}\right]=\left[s_{\varphi}^{-1} \mathbf{D}_{1}\right] \quad \text { and } \quad s_{\psi}^{*}\left[\Omega_{1}\right]=\left[s_{\psi}^{-1} \Omega_{1}\right] . \tag{11}
\end{equation*}
$$

(Indeed, $D_{1}(\varphi)=s_{\varphi}^{-1} \mathbf{D}_{1}$ and $D_{1}(\psi)=s_{\psi}^{-1} \Omega_{1}$ by definition.) When X is CohenMacaulay, so are \mathbf{D}_{1} and Ω_{1}; this can be seen directly from the equations, or by using the fact that Schubert varieties are Cohen-Macaulay. The conditions (11) are therefore equivalent to the condition that $D_{1}(\varphi)$ and $D_{1}(\psi)$ have expected codimension in X, by [Fulton and Pragacz 1998, Lemma, p. 108].

First proof of Theorem 1.2. Let $\varphi: E \rightarrow \operatorname{End}(E) \oplus E^{*}$ have G_{2}-isotropic graph E_{φ}. Suppose E has a rank-1 subbundle, so E_{φ} also does. (One can always arrange for this, by passing to a \mathbb{P}^{1}-bundle if necessary.) Write $E_{1} \subset E_{2}=E$ and $F_{1} \subset F_{2}=$ E_{φ}, and extend these to complete G_{2}-isotropic flags $E_{\text {. }}$ and $F_{.}$. For $w \in W$, set $\Omega_{w}(\varphi)=\Omega_{w}\left(E_{\text {. }}, F_{.}\right)$. Since $E_{\varphi} \cong E$, the Chern classes are the same. Let $-x_{1},-x_{2}$ be Chern roots of E, so x_{1}, x_{2} are Chern roots of E^{*}. Then, by [Anderson 2011, Theorem 2.4 and Section 2.5], we have

$$
\begin{equation*}
\left[\Omega_{w}(\varphi)\right]=\mathfrak{G}_{w}\left(x_{1}, x_{2} ;-x_{1},-x_{2}\right) \tag{12}
\end{equation*}
$$

in $H^{*} X$, where $\mathfrak{G}_{w}\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)$ is the " G_{2} double Schubert polynomial" defined in the same reference.

It remains to determine the w for which $D_{r}(\varphi)=\Omega_{w}(\varphi)$. We have

$$
D_{r}(\varphi)=\left\{x \in X \mid \operatorname{dim}\left(E(x) \cap E_{\varphi}(x)\right) \geq 2-r\right\},
$$

and it is easy to check that

$$
\begin{equation*}
D_{2}(\varphi)=\Omega_{\mathrm{id}}(\varphi)=X, \quad D_{1}(\varphi)=\Omega_{t s t}(\varphi), \quad \text { and } \quad D_{0}(\varphi)=\Omega_{t s t s t}(\varphi) . \tag{13}
\end{equation*}
$$

Indeed, the element tst $\in W$ corresponds to the permutation 3614725 (see [Anderson 2011, Section A.3]), so the condition defining $\Omega_{t s t}$ is $\operatorname{dim}\left(E_{2} \cap F_{2}\right) \geq$ $r_{t s t}(2,2)=1$. The other two identities are clear. This also justifies our definition of expected codimension for triality-symmetric degeneracy loci: the expected codimension of $D_{r}(\varphi)$ is the length of the corresponding element of W.

Specializing the polynomials \mathfrak{G}_{w} given in [Anderson 2009, Section D.2] for these three w, we obtain the desired formulas for P_{r}.

Remark 4.5. The twelve polynomials $\mathfrak{G}_{w}\left(x_{1}, x_{2} ;-x_{1},-x_{2}\right)$ become the equivariant localizations of Schubert classes in G_{2} / B at the point $e B$ after the substitution $x_{i}=-t_{i}$; see [Anderson 2009, Section D.3].

Remark 4.6. We defined the scheme structure on $D_{1}(\varphi)$ for a triality-symmetric morphism by taking the equations (10) together with $z=0$. In fact, the ideal generated by 2×2 minors of the matrix (8) is the same as the one generated by minors of (9), but this ideal is not radical. (It is generated by (10) together with $a z, b z, c z, d z, z^{2}$.) The requirement $\varphi_{2} \equiv 0$ for rank-1 maps is transparent on the triality-symmetric side; for G_{2}-isotropic graphs, the scheme structure is defined by
pullback from the Schubert locus $\Omega_{t s t}$, and one sees $\varphi_{2} \equiv 0$ from a parametrization of Schubert cells [Anderson 2009, Section D.1].

5. Orbits

Another approach to the computation of triality-symmetric degeneracy loci is as follows. Inside the vector bundle

$$
\left(\operatorname{Sym}^{3} E^{*} \otimes \bigwedge^{2} E\right) \oplus \bigwedge^{2} E^{*} \subset \operatorname{Hom}\left(E, \operatorname{End}(E) \oplus E^{*}\right)
$$

there is a locus \mathbf{D}_{r} consisting of morphisms of rank at most r. By definition, a triality-symmetric morphism φ defines a section s_{φ} of $\left(\operatorname{Sym}^{3} E^{*} \otimes \bigwedge^{2} E\right) \oplus \bigwedge^{2} E^{*}$, and $D_{r}(\varphi)=s_{\varphi}^{-1} \mathbf{D}_{r}$ is the scheme-theoretic preimage.

It suffices to solve this problem on the classifying space for the vector bundle E (or on algebraic approximations thereof), so let $X=\mathrm{BGL}_{2} \cdot{ }^{3}$ Replace E with the standard representation of GL_{2}, and write

$$
U=\left(\operatorname{Sym}^{3} E^{*} \otimes \bigwedge^{2} E\right) \oplus \bigwedge^{2} E^{*}
$$

The relevant vector bundle on BGL_{2} is $U \times{ }^{\mathrm{GL}_{2}} \mathrm{EGL}_{2}$, where $\mathrm{EGL}_{2} \rightarrow \mathrm{BGL}_{2}$ is the universal principal GL_{2}-bundle. Letting $D_{r} \subseteq U \subset \operatorname{Hom}\left(E, \operatorname{End}(E) \oplus E^{*}\right)$ be the locus of maps of rank at most r, we have

$$
\mathbf{D}_{r}=D_{r} \times{ }^{\mathrm{GL}_{2}} \mathrm{EGL}_{2} \subseteq U \times{ }^{\mathrm{GL}_{2}} \mathrm{EGL}_{2}
$$

Therefore $\left[\mathbf{D}_{r}\right]=\left[D_{r}\right]^{\mathrm{GL}_{2}}$ in $H^{*}\left(U \times{ }^{\mathrm{GL}_{2}} \mathrm{EGL}_{2}\right)=H_{\mathrm{GL}_{2}}^{*}(U)$, and the problem becomes a computation in the equivariant cohomology of the vector space U.

Moreover, as we shall see below, D_{r} is an orbit closure for the action of GL_{2} on U. In fact, we will use a larger group action. As discussed in Section 1, U may be identified with the tangent space

$$
T_{[E]} G_{2} / P \cong \mathfrak{g}_{2} / \mathfrak{p}
$$

so P acts on U via the adjoint action on $\mathfrak{g}_{2} / \mathfrak{p}$. Let $P=L \cdot P_{u}$ be the Levi decomposition, with P_{u} the unipotent radical and L a Levi subgroup. We will be interested in P-orbit closures in $\mathfrak{g}_{2} / \mathfrak{p}$.

First observe that L is isomorphic to GL_{2}. Here is one way to see this. Since E defines a point in G_{2} / P, the parabolic P may be identified with the subgroup of G_{2} stabilizing E. Every linear automorphism of E induces an algebra automorphism of $C=E \oplus \operatorname{End}(E) \oplus E^{*}$; therefore $\mathrm{GL}(E) \cong \mathrm{GL}_{2}$ is a (reductive) subgroup of P, and we have $\mathrm{GL}(E) \subseteq L$. On the other hand, L is connected (since P is) and four-dimensional (by the root decomposition), so this inclusion must be an equality.

[^3]The L-action on $\mathfrak{g}_{2} / \mathfrak{p}$ is identified with the natural GL_{2}-action on U : as an L-module, we have

$$
\mathfrak{g}_{2} / \mathfrak{p} \cong\left(\operatorname{Sym}^{3} E^{*} \otimes \Lambda^{2} E\right) \oplus \Lambda^{2} E^{*},
$$

where $E \cong \mathbb{C}^{2}$ is the standard representation of $L \cong \mathrm{GL}_{2}$ (with weights $t_{1}=2 \alpha_{1}+\alpha_{2}$ and $t_{2}=\alpha_{1}+\alpha_{2}$). As a P-module, $\mathfrak{g}_{2} / \mathfrak{p}$ is indecomposable, but there is an exact sequence

$$
0 \rightarrow \operatorname{Sym}^{3} E^{*} \otimes \wedge^{2} E \rightarrow \mathfrak{g}_{2} / \mathfrak{p} \rightarrow \bigwedge^{2} E^{*} \rightarrow 0
$$

These identifications of L - and P-modules follow directly from the weight decomposition of $\mathfrak{g}_{2} / \mathfrak{p}$: the T-weights are

$$
\begin{equation*}
-\alpha_{2}, \quad-\alpha_{1}-\alpha_{2}, \quad-2 \alpha_{1}-\alpha_{2}, \quad-3 \alpha_{1}-\alpha_{2}, \quad-3 \alpha_{1}-2 \alpha_{2} . \tag{14}
\end{equation*}
$$

As a first step to computing the classes of P-orbits in $H_{T}^{*}(\mathfrak{g} / \mathfrak{p})$, we give explicit descriptions of these orbits.

By the classification given in [Jürgens and Röhrle 2002], there are finitely many P-orbits on $\mathfrak{g} / \mathfrak{p}$. In fact, there are five orbits. To describe them, let

$$
U^{\prime}=\operatorname{Sym}^{3} E^{*} \otimes \wedge^{2} E \subset U=\mathfrak{g}_{2} / \mathfrak{p}
$$

Let b, a, d, c be coordinates on U^{\prime} with weights $-\alpha_{2},-\alpha_{1}-\alpha_{2},-2 \alpha_{1}-\alpha_{2},-3 \alpha_{1}-$ α_{2}, respectively. The five orbits are O_{c}, with $c=0,1,2,3,5$ giving the codimension; their closures are nested and described by the following proposition:
Proposition 5.1. The P-orbit closures in $U=\mathfrak{g}_{2} / \mathfrak{p}$ are as follows:

- $\bar{O}_{0}=U$.
- $\bar{O}_{1}=U^{\prime}$.
- \bar{O}_{2} is the discriminant locus in U^{\prime} defined by the vanishing of the quartic polynomial $a^{2} d^{2}+4 a^{3} c+4 b d^{3}-27 b^{2} c^{2}+18 a b c d$.
- \bar{O}_{3} is the (affine) cone over the twisted cubic curve in $\mathbb{P}^{3}=\mathbb{P} U^{\prime}$ defined by the condition that the matrix

$$
\left(\begin{array}{ccc}
a & -d & c \\
b & a & d
\end{array}\right)
$$

have rank 1.

- $\bar{O}_{5}=O_{5}=\{0\}$.

The proof is straightforward, using the orbit classification of [Bürgstein and Hesselink 1987, Table 2]. See [Anderson 2009, Section 5.2] for details. Each of these orbit closures is Cohen-Macaulay, as may be checked easily from the equations.

From the description in terms of cubic polynomials, it is easy to find representatives for orbits in U^{\prime}. Here we give representatives as weight vectors in $\mathfrak{g} / \mathfrak{p}$. Let $Y_{\alpha} \in \mathfrak{g}_{2} / \mathfrak{p}$ be a weight vector for α. We have

$$
\begin{aligned}
& O_{0}=P \cdot Y_{-3 \alpha_{1}-2 \alpha_{2}}=U \backslash U^{\prime}, \\
& O_{1}=P \cdot\left(Y_{-3 \alpha_{1}-\alpha_{2}}+Y_{-\alpha_{2}}\right) \cong P / P_{u} \cong \mathrm{GL}_{2}, \\
& O_{2}=P \cdot Y_{-\alpha_{1}-\alpha_{2}}, \\
& O_{3}=P \cdot Y_{-\alpha_{2}}, \\
& O_{5}=\{0\} .
\end{aligned}
$$

Using Proposition 5.1, it is a simple matter to compute the equivariant classes.
Theorem 5.2. In $H_{T}^{*}(U)=\mathbb{Z}\left[\alpha_{1}, \alpha_{2}\right]=\mathbb{Z}\left[t_{1}, t_{2}\right]$, we have

$$
\begin{aligned}
{\left[\bar{O}_{0}\right] } & =1, \\
{\left[\bar{O}_{1}\right] } & =-3 \alpha_{1}-2 \alpha_{2}=-t_{1}-t_{2}, \\
{\left[\bar{O}_{2}\right] } & =2\left(-3 \alpha_{1}-2 \alpha_{2}\right)^{2}=2\left(t_{1}+t_{2}\right)^{2}, \\
{\left[\bar{O}_{3}\right] } & =-3\left(\alpha_{1}+\alpha_{2}\right)\left(2 \alpha_{1}+\alpha_{2}\right)\left(3 \alpha_{1}+2 \alpha_{2}\right) \\
& =-3 t_{1} t_{2}\left(t_{1}+t_{2}\right), \\
{\left[\bar{O}_{5}\right] } & =-\alpha_{2}\left(\alpha_{1}+\alpha_{2}\right)\left(2 \alpha_{1}+\alpha_{2}\right)\left(3 \alpha_{1}+\alpha_{2}\right)\left(3 \alpha_{1}+2 \alpha_{2}\right) \\
& =t_{1} t_{2}\left(t_{1}+t_{2}\right)\left(2 t_{1}-t_{2}\right)\left(t_{1}-2 t_{2}\right) .
\end{aligned}
$$

Proof. The normal space to $U^{\prime}=\bar{O}_{1} \subset U$ has weight $-3 \alpha_{1}-2 \alpha_{2}$, so the formula for [\bar{O}_{1}] is clear. Since the restriction $H_{T}^{*}(U) \rightarrow H_{T}^{*}\left(U^{\prime}\right)$ is an isomorphism, the Gysin pushforward $H_{T}^{*}\left(U^{\prime}\right) \rightarrow H_{T}^{*}(U)$ is multiplication by [$\left.U^{\prime}\right]$. Therefore it suffices to compute the remaining classes in $H_{T}^{*}\left(U^{\prime}\right)$. The locus \bar{O}_{2} is a hypersurface in U^{\prime} defined by an equation of weight $-6 \alpha_{1}-4 \alpha_{2}$, so its class in $H_{T}^{*}(U)$ is $\left(-6 \alpha_{1}-4 \alpha_{2}\right) \cdot\left[U^{\prime}\right]$. The class of $\left[\bar{O}_{3}\right]$ in $H_{T}^{*}\left(U^{\prime}\right)$ is found by the classical Giambelli (or Salmon-Roberts) formula; see for example [Fulton and Pragacz 1998, Section 1.1]. Finally, the class of the origin is the product of all the T-weights on U.

Remark 5.3. These classes cannot be computed using the "restriction equation" method of Fehér and Rimányi [2004] because the stabilizer of $O_{1}=P / P_{u}$ is unipotent. This means the restriction map $H_{P}^{*}(U) \rightarrow H_{P}^{*}\left(O_{1}\right) \cong H_{P_{u}}^{*}(\mathrm{pt})=H^{*}(\mathrm{pt})$ is zero in positive degrees, and all the restriction equations are of the form $0=0$. The problem persists for the other orbits.

Lemma 5.4. The orbit $O_{3} \subset \mathfrak{g} / \mathfrak{p} \subset \operatorname{Hom}\left(E, \operatorname{End}(E) \oplus E^{*}\right)$ consists of the trialitysymmetric morphisms of rank 1 .

Proof. Any rank-1 map φ must correspond to an element $\varphi_{1} \oplus \varphi_{2} \in U=U^{\prime} \oplus \wedge^{2} E^{*}$ with $\varphi_{2}=0$, that is, φ lies in U^{\prime}. (If $\varphi_{2} \neq 0$, then φ surjects onto E^{*}.)

The action of P on U^{\prime} is the same as that of its Levi subgroup GL_{2}. Let $P_{\hat{2}} \subset \mathrm{GL}_{8}$ be the parabolic which stabilizes E. The inclusion $P \hookrightarrow P_{\hat{2}} \subset \mathrm{GL}_{8}$ induces an inclusion of Levi subgroups $\mathrm{GL}_{2}=\mathrm{GL}_{2} \times 1 \hookrightarrow \mathrm{GL}_{2} \times \mathrm{GL}_{6}$, and the latter group acts on $\operatorname{Hom}\left(E, \operatorname{End}(E) \oplus E^{*}\right)$ by left-right matrix multiplication, ${ }^{4}$ so it preserves ranks of morphisms. Therefore it will suffice to check that a representative for O_{2} has rank 2, and a representative from O_{3} has rank 1.

For these, we use the coordinate description given in Section 3. Under the identification of U^{\prime} with the space of cubic polynomials, the monomial $x y^{2}$ corresponds to the basis vector v_{122}^{*}. The orbit is O_{2} (since $x y^{2}$ has two distinct zeroes), and the corresponding matrix A_{φ} has $b=c=d=0$ and $a \neq 0$; it is easy to see this means φ has rank 2. Similarly, x^{3} corresponds to v_{111}^{*}, and the corresponding A_{φ} has $a=b=d=0$ and $c \neq 0$, so φ has rank 1 .

The formulas of Theorem 1.2 now follow from those of Theorem 5.2.
Second proof of Theorem 1.2. Let $f: X \rightarrow \mathrm{BGL}_{2}$ be the map defined (up to homotopy) by the given vector bundle E on X. The corresponding map

$$
f^{*}: H^{*} \mathrm{BGL}_{2}=H_{\mathrm{GL}_{2}}^{*}(\mathrm{pt})=\mathbb{Z}\left[c_{1}, c_{2}\right] \rightarrow H^{*} X
$$

is given by $c_{i} \mapsto c_{i}(E)=(-1)^{i} c_{i}\left(E^{*}\right)$. Equivalently, using the inclusion $H_{\mathrm{GL}_{2}}^{*}(\mathrm{pt}) \subset$ $H_{T}^{*}(\mathrm{pt})=\mathbb{Z}\left[t_{1}, t_{2}\right]$ and Chern roots x_{1}, x_{2} for E^{*}, the map is given by $t_{i} \mapsto-x_{i}$.

Using Lemma 5.4, we have $f^{-1} \bar{O}_{3}=D_{1}(\varphi)$, so by [Fulton and Pragacz 1998, p. 108] and the fact that \bar{O}_{3} is Cohen-Macaulay, we obtain $f^{*}\left[\bar{O}_{3}\right]=\left[D_{1}(\varphi)\right]$ when $D_{1}(\varphi)$ has expected codimension.

Remark 5.5. The proof of Theorem 1.2 given in Section 4 works verbatim for Chow cohomology. The proof in this section also works, though to apply equivariant techniques, one needs to take extra care to ensure that the bundle E is pulled back from an algebraic approximation to the classifying space. To achieve this, one can replace X with an appropriate composition of an affine bundle and a Chow envelope; see [Graham 1997, p. 486] for the argument.

Appendix: Octonion bundles

There is a G_{2} analogue of the well-known fact that for any vector bundle E, the direct sum $E \oplus E^{*}$ carries canonical symplectic (type C) and symmetric (type D) forms; see for example [Fulton and Pragacz 1998, p. 71]. The intrinsic construction

[^4]presented here seems to appear first in [Landsberg and Manivel 2006, p. 151]; it is closely related to the Cayley-Dickson doubling construction [Petersson 1993].

We fix some notation. For any vector bundle E, let

$$
\operatorname{Tr}: \operatorname{End}(E)=E^{*} \otimes E \rightarrow \mathcal{O}_{X}
$$

be the canonical contraction map, and let

$$
\operatorname{End}^{0}(E)=\operatorname{ker}(\operatorname{Tr}) \subset \operatorname{End}(E)
$$

be the subbundle of trace-zero endomorphisms. Let $e: O_{X} \rightarrow \operatorname{End}(E)$ be the identity section. Thus the composition $\operatorname{Tr} o e: O_{X} \rightarrow O_{X}$ is multiplication by $\mathrm{rk}(E)$. Also, when E has rank 2, the conjugation map $\operatorname{End}(E) \rightarrow \operatorname{End}(E)$ is given by $e \circ \mathrm{Tr}-\mathrm{id}$. (Here id is the identity morphism, as opposed to the identity section e.) Conjugation is an involution; locally, it is $\xi \mapsto \bar{\xi}:=\operatorname{Tr}(\xi) e-\xi$.

The norm on an octonion bundle C corresponds to a nondegenerate symmetric bilinear form $\langle\cdot, \cdot\rangle$. Let $V \subset C$ be the orthogonal complement to the identity subbundle defined by e. A subbundle $E \subset C$ is G_{2}-isotropic if it is contained in V and the multiplication map $E \otimes E \rightarrow C$ is the zero map.

Proposition $\mathbf{A .} 1$ (cf. [Landsberg and Manivel 2006, p. 151]). Let E be a rank-2 vector bundle on a variety X. Then $C=E \oplus \operatorname{End}(E) \oplus E^{*}$ has a canonical octonion bundle structure with identity section $e: \mathbb{O}_{X} \rightarrow \operatorname{End}(E) \subset C$. The subbundle $E=$ $E \oplus 0 \oplus 0 \subset C$ is G_{2}-isotropic.

More specifically, there is a quadratic norm $N: C \rightarrow \mathbb{O}_{X}$ and bilinear multiplication $m: C \otimes C \rightarrow C$ for $C=E \oplus \operatorname{End}(E) \oplus E^{*}$ which are compatible. The norm corresponds to the bilinear form $\langle\cdot, \cdot\rangle$ defined by

$$
\begin{equation*}
\langle x \oplus \xi \oplus f, y \oplus \eta \oplus g\rangle=\operatorname{Tr}(\xi) \operatorname{Tr}(\eta)-\operatorname{Tr}(\xi \eta)-f(y)-g(x) . \tag{1}
\end{equation*}
$$

The multiplication is given by

$$
\begin{equation*}
(x \oplus \xi \oplus f) \cdot(y \oplus \eta \oplus g)=(\eta x+\bar{\xi} y) \oplus(\overline{g \otimes x}+\xi \eta+f \otimes y) \oplus(g \xi+f \bar{\eta}) \tag{2}
\end{equation*}
$$

One only needs to verify compatibility of the norm with multiplication; see [Anderson 2009, Section 2.4] for details.

Acknowledgments

This work is part of my Ph.D. thesis, and it is a pleasure to thank William Fulton for his encouragement in this project. Thanks also to Danny Gillam for conversations about triality, and the referees for helpful comments on the manuscript.

References

[Anderson 2009] D. Anderson, Degeneracy loci and G_{2} flags, Ph.D. thesis, University of Michigan, 2009, Available at http://www.math.washington.edu/~dandersn/papers/thesis.pdf.
[Anderson 2011] D. Anderson, "Chern class formulas for G_{2} Schubert loci", Trans. Amer. Math. Soc. 363:12 (2011), 6615-6646. MR 2012g:14101 Zbl 1234.14037
[van der Blij and Springer 1960] F. van der Blij and T. A. Springer, "Octaves and triality", Nieuw Arch. Wisk. (3) 8 (1960), 158-169. MR 23 \#A947 Zbl 0127.11804
[Bürgstein and Hesselink 1987] H. Bürgstein and W. H. Hesselink, "Algorithmic orbit classification for some Borel group actions", Compositio Math. 61 (1987), 3-41. MR 88k:20069 Zbl 0612.17005
[Cartan 1925] E. Cartan, "Le principe de dualité et la théorie des groupes simples et semi-simples", Bull. Sci. Math. 49 (1925), 361-374. JFM 51.0322.02
[Fehér and Rimányi 2003] L. M. Fehér and R. Rimányi, "Schur and Schubert polynomials as Thom polynomials - cohomology of moduli spaces", Cent. Eur. J. Math. 1:4 (2003), 418-434. MR 2005b:05219 Zbl 1038.57008
[Fehér and Rimányi 2004] L. M. Fehér and R. Rimányi, "Calculation of Thom polynomials and other cohomological obstructions for group actions", pp. 69-93 in Real and complex singularities, edited by T. Gaffney and M. A. S. Ruas, Contemp. Math. 354, Amer. Math. Soc., Providence, RI, 2004. MR 2005j:58052 Zbl 1074.32008
[Fehér et al. 2005] L. M. Fehér, A. Némethi, and R. Rimányi, "Degeneracy of 2-forms and 3-forms", Canad. Math. Bull. 48:4 (2005), 547-560. MR 2006h:53078 Zbl 1087.58012
[Fulton 1996] W. Fulton, "Determinantal formulas for orthogonal and symplectic degeneracy loci", J. Differential Geom. 43:2 (1996), 276-290. MR 98d:14004 Zbl 0911.14001
[Fulton 1998] W. Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 2, Springer, Berlin, 1998. MR 99d:14003 Zbl 0885.14002
[Fulton and Pragacz 1998] W. Fulton and P. Pragacz, Schubert varieties and degeneracy loci, Lecture Notes in Mathematics 1689, Springer, Berlin, 1998. MR 99m: 14092 Zbl 0913.14016
[Garibaldi 1999] R. S. Garibaldi, "Twisted flag varieties of trialitarian groups", Comm. Algebra 27:2 (1999), 841-856. MR 2000a:20103 Zbl 0986.16006
[Graham 1997] W. Graham, "The class of the diagonal in flag bundles", J. Differential Geom. 45:3 (1997), 471-487. MR 98j:14070 Zbl 0935.14015
[Harris and Tu 1984] J. Harris and L. W. Tu, "On symmetric and skew-symmetric determinantal varieties", Topology 23:1 (1984), 71-84. MR 85c:14032 Zbl 0534.55010
[Hille and Röhrle 1999] L. Hille and G. Röhrle, "A classification of parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical", Transform. Groups 4:1 (1999), 3552. MR 2000f: 20072 Zbl 0924.20035
[Humphreys 1975] J. E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics 21, Springer, New York, 1975. MR 53 \#633 Zbl 0325.20039
[Józefiak et al. 1981] T. Józefiak, A. Lascoux, and P. Pragacz, "Classes of determinantal varieties associated with symmetric and skew-symmetric matrices", Izv. Akad. Nauk SSSR Ser. Mat. 45:3 (1981), 662-673. In Russian; translated in Mathematics of the USSR-Izvestiya 18:3 (1982), 575586. MR 83h:14044 Zbl 0471.14028
[Jürgens and Röhrle 2002] U. Jürgens and G. Röhrle, "MOP—algorithmic modality analysis for parabolic group actions", Experiment. Math. 11:1 (2002), 57-67. MR 2004a:20050
[Knus et al. 1998] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, American Mathematical Society Colloquium Publications 44, American Mathematical Society, Providence, RI, 1998. MR 2000a: 16031 Zbl 0955.16001
[Knutson and Miller 2005] A. Knutson and E. Miller, "Gröbner geometry of Schubert polynomials", Ann. of Math. (2) 161:3 (2005), 1245-1318. MR 2006i:05177 Zbl 1089.14007
[Landsberg and Manivel 2006] J. M. Landsberg and L. Manivel, "The sextonions and $E_{7 \frac{1}{2}}$ ", $A d v$. Math. 201:1 (2006), 143-179. MR 2006k: 17017 Zbl 1133.17007
[Petersson 1993] H. P. Petersson, "Composition algebras over algebraic curves of genus zero", Trans. Amer. Math. Soc. 337:1 (1993), 473-493. MR 93g:17006 Zbl 0778.17001
[Popov and Röhrle 1997] V. Popov and G. Röhrle, "On the number of orbits of a parabolic subgroup on its unipotent radical", pp. 297-320 in Algebraic groups and Lie groups, edited by G. Lehrer, Austral. Math. Soc. Lect. Ser. 9, Cambridge Univ. Press, 1997. MR 99f: 14063 Zbl 0887.14020
[Springer and Veldkamp 2000] T. A. Springer and F. D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer Monographs in Mathematics, Springer, Berlin, 2000. MR 2001f:17006 Zbl 1087.17001

Communicated by Ravi Vakil
Received 2010-09-27 Revised 2011-06-10 Accepted 2011-08-13
dandersn@math.washington.edu Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States

Department of Mathematics, University of Washington, Seattle, WA 98195, United States

Algebra \& Number Theory

msp.berkeley.edu/ant

EDITORS

Managing Editor
Bjorn Poonen
Massachusetts Institute of Technology
Cambridge, USA

Editorial Board Chair
David Eisenbud
University of California
Berkeley, USA

Board of Editors

Georgia Benkart	University of Wisconsin, Madison, USA	Shigefumi Mori	RIMS, Kyoto University, Japan
Dave Benson	University of Aberdeen, Scotland	Raman Parimala	Emory University, USA
Richard E. Borcherds	University of California, Berkeley, USA	Jonathan Pila	University of Oxford, UK
John H. Coates	University of Cambridge, UK	Victor Reiner	University of Minnesota, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Karl Rubin	University of California, Irvine, USA
Brian D. Conrad	University of Michigan, USA	Peter Sarnak	Princeton University, USA
Hélène Esnault	Universität Duisburg-Essen, Germany	Joseph H. Silverman	Brown University, USA
Hubert Flenner	Ruhr-Universität, Germany	Michael Singer	North Carolina State University, USA
Edward Frenkel	University of California, Berkeley, USA	Ronald Solomon	Ohio State University, USA
Andrew Granville	Université de Montréal, Canada	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Joseph Gubeladze	San Francisco State University, USA	J. Toby Stafford	University of Michigan, USA
Ehud Hrushovski	Hebrew University, Israel	Bernd Sturmfels	University of California, Berkeley, USA
Craig Huneke	University of Kansas, USA	Richard Taylor	Harvard University, USA
Mikhail Kapranov	Yale University, USA	Ravi Vakil	Stanford University, USA
Yujiro Kawamata	University of Tokyo, Japan	Michel van den Bergh	Hasselt University, Belgium
János Kollár	Princeton University, USA	Marie-France Vignéras	Université Paris VII, France
Yuri Manin	Northwestern University, USA	Kei-Ichi Watanabe	Nihon University, Japan
Barry Mazur	Harvard University, USA	Efim Zelmanov	University of California, San Diego, USA
Philippe Michel	École Polytechnique Fédérale de Lausanne	Norinsky	Northeastern University, USA

PRODUCTION

contact@msp.org
Silvio Levy, Scientific Editor

See inside back cover or www.jant.org for submission instructions.
The subscription price for 2012 is US $\$ 175 /$ year for the electronic version, and $\$ 275 /$ year ($+\$ 40$ shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA.

Algebra \& Number Theory (ISSN 1937-0652) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers
http://msp.org/
A NON-PROFIT CORPORATION
Typeset in $\operatorname{LAT}_{\mathrm{E}} \mathrm{X}$
Copyright ©2012 by Mathematical Sciences Publishers

Algebra \& Number Theory

Volume 6 No. 42012
Spherical varieties and integral representations of L-functions 611Yiannis Sakellaridis
Nonuniruledness results for spaces of rational curves in hypersurfaces 669
Roya Beheshti
Degeneracy of triality-symmetric morphisms 689
Dave Anderson
Multi-Frey \mathbb{Q}-curves and the Diophantine equation $a^{2}+b^{6}=c^{n}$ 707
Michael A. Bennett and Imin Chen
Detaching embedded points 731
Dawei Chen and Scott Nollet
Moduli of Galois p-covers in mixed characteristics 757Dan Abramovich and Matthieu Romagny
Block components of the Lie module for the symmetric group 781Roger M. Bryant and Karin Erdmann
Basepoint-free theorems: saturation, b-divisors, and canonical bundle formula 797
Osamu Fujino
Realizing large gaps in cohomology for symmetric group modules 825
David J. Hemmer

[^0]: This work was partially supported by NSF Grants DMS-0502170 and DMS-0902967.
 MSC2010: primary 14M15; secondary 14F43, 14N15, 20G99, 17A75.
 Keywords: degeneracy locus, triality, octonions, equivariant cohomology.

[^1]: ${ }^{1}$ In fact, one can show that $u^{2}=\langle u, e\rangle u-N(u) e$ for any element $u \in C$, so any algebra automorphism also preserves the norm.

[^2]: ${ }^{2}$ This definition of r_{w} differs slightly from that of [Anderson 2011]; there the assignment $(q, p) \mapsto \#\{i \leq q \mid w(i) \leq p\}$ is called r_{w}. The two are related by replacing w with $w w_{\circ}$, where w_{\circ} is the longest element of W.

[^3]: ${ }^{3}$ Topologically, we may assume E is pulled back from the tautological bundle on $\operatorname{Gr}(2, n)$, for $n \gg 0$, so one can take a Grassmannian for an approximation to BGL_{2}.

[^4]: ${ }^{4}$ Identifying $\operatorname{Hom}\left(E, \operatorname{End}(E) \oplus E^{*}\right)$ with 6×2 matrices, the action is by $(g, h) \cdot A=h A g^{-1}$. This is the action induced by restricting the conjugation action of GL_{8} on 8×8 matrices when the subspace of 6×2 matrices is placed in the lower-left corner.

