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Let F be a field of prime characteristic p and let B be a nonprincipal block of
the group algebra F Sr of the symmetric group Sr . The block component Lie(r)B

of the Lie module Lie(r) is projective, by a result of Erdmann and Tan, although
Lie(r) itself is projective only when p - r . Write r = pmk, where p - k, and let S∗k
be the diagonal of a Young subgroup of Sr isomorphic to Sk × · · ·× Sk . We show
that pm Lie(r)B ∼= (Lie(k)↑Sr

S∗k
)B . Hence we obtain a formula for the multiplici-

ties of the projective indecomposable modules in a direct sum decomposition of
Lie(r)B . Corresponding results are obtained, when F is infinite, for the r -th Lie
power Lr (E) of the natural module E for the general linear group GLn(F).

1. Introduction and summary of results

Let r be a positive integer and let Sr denote the symmetric group of degree r . For
any field F the Lie module Lie(r) is the F Sr -module given by the right ideal ωr F Sr

of the group algebra F Sr where ωr is the Dynkin–Specht–Wever element, defined
by ω1 = 1 and, for r > 2,

ωr = (1− cr )(1− cr−1) · · · (1− c2), (1-1)

where ci is the i-cycle (1 i i−1 . . . 2). It is known that Lie(r) has dimension
(r − 1)! (see Section 2A).

If F has prime characteristic p and p - r then Lie(r) is a direct summand of F Sr

because, as is well known, ω2
r = rωr (see, for example, [Bryant 2009, Section 3]);

so in this case Lie(r) is projective. However, if char F = p and p |r then Lie(r)
is not projective (because its dimension is not then divisible by the order of a
Sylow p-subgroup of Sr ), but it was shown recently that every nonprincipal block
component of Lie(r) is projective (see [Erdmann and Tan 2011]). Here we show
that each such component can be described in a surprisingly simple way in terms
of Lie(k), where k is the p′-part of r .
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The Lie module occurs naturally in a number of contexts in algebra, algebraic
topology and elsewhere (see [Erdmann and Tan 2011] for a fuller discussion). Here
we shall only be concerned with the connection with free Lie algebras, where
our results on the Lie module give new insight into the module structure of the
homogeneous components.

Let G be a group and V an FG-module. Let Lr (V ) denote the homogeneous
component of degree r in the free Lie algebra L(V ) freely generated by any basis of
V . (Here L(V ) may be regarded as the Lie subalgebra generated by V in the tensor
algebra or free associative algebra on V : see Section 2A.) The vector space Lr (V )
is called the r-th Lie power of V and it inherits the structure of an FG-module.

Suppose that F is infinite, let n be a positive integer, and let E denote the natural
n-dimensional module over F for the general linear group GLn(F). Then Lr (E),
as a module for GLn(F), is a homogeneous polynomial module of degree r . In
other words it is a module for the Schur algebra SF (n, r) (see [Green 1980]). In
the case where n > r the Schur functor fr maps SF (n, r)-modules to F Sr -modules
and we have fr (Lr (E))∼= Lie(r) (see Section 2D).

Recall that if B is the set of blocks of an algebra 0 and V is a 0-module then we
may write V as a direct sum of block components: V =

⊕
B∈BVB , where VB ∈ B

for all B. Our main results concern the block components of Lie(r) and Lr (E)
when F has prime characteristic p. The basic results are for Lie(r), and the results
for Lr (E) are obtained from these by means of the Schur functor. To state the
results we write r = pmk where m > 0, k > 1, and p - k.

Let S∗k be a subgroup of Sr such that S∗k ∼= Sk and S∗k is the diagonal of a Young
subgroup of Sr isomorphic to Sk × · · · × Sk (with pm factors). (See Section 2D
for more details.) Since S∗k ∼= Sk we may regard Lie(k) as an F S∗k -module and,
since p - k, this module is projective. Thus the induced module Lie(k)↑Sr

S∗k
is

also projective. It was proved in [Erdmann and Tan 2011, Theorem 3.1] that if
B is a nonprincipal block of F Sr then Lie(r)B is projective. Here we shall prove
(Theorem 3.1) that

Lie(r)B ∼=
1

pm (Lie(k)↑Sr
S∗k
)B (1-2)

when B satisfies the condition B̃ 6=∅ (see Section 2B): this condition is satisfied
when B is nonprincipal. (The notation U ∼= (1/q) V used in (1-2) means that
q U ∼= V , where q U denotes U ⊕ · · · ⊕U with q summands.) The special case
where k = 1 is of particular interest: it yields

Lie(pm)B ∼=
1

pm (F Spm )B .

Since (1-2) holds for each nonprincipal block B, a comparison of dimensions
gives a weaker result (Corollary 3.4) for the principal block B0:
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dim Lie(r)B0 =
1

pm dim (Lie(k)↑Sr
S∗k
)B0 .

The projective indecomposable F Sr -modules may be labelled Pλ where λ ranges
over the p-regular partitions of r (see Section 2B). For any F Sr -block B we write
λ ∈ B when Pλ ∈ B. Since Lie(r)B is projective when B is nonprincipal, there are
nonnegative integers mλ such that

Lie(r)B ∼=
⊕
λ∈B

mλ Pλ.

In Theorem 3.5 we prove that

mλ =
1
r

∑
d|k

µ(d) βλ(τ k/d), (1-3)

where µ is the Möbius function, τ is an element of Sr of cycle type (k, k, . . . , k),
and βλ denotes the Brauer character of Dλ, the irreducible F Sr -module isomorphic
to the head of Pλ.

Now suppose that F is infinite and n is a positive integer. We have observed
that Lr (E) is an SF (n, r)-module. Similarly, Lk(E⊗pm

) is an SF (n, r)-module,
and (by the argument in [Donkin and Erdmann 1998, Section 3.1]) it is isomorphic
to a direct summand of E⊗r . It is a consequence of [Erdmann and Tan 2011,
Theorem 3.2] that if B is a block of SF (n, r) satisfying the condition B̃ 6=∅ (see
Section 2C) then Lr (E)B is isomorphic to a direct sum of summands of E⊗r . Here
we shall prove (Theorem 3.6) that

Lr (E)B ∼=
1

pm Lk(E⊗pm
)B .

The indecomposable summands of E⊗r are tilting modules T (λ), where λ is a
p-regular partition of r with at most n parts (see Section 2C). For any SF (n, r)-
block B we write λ ∈ B when T (λ) ∈ B. In Theorem 3.7 we prove that if B̃ 6=∅
then

Lr (E)B ∼=
⊕
λ∈B

mλ T (λ),

where the multiplicities mλ are given by (1-3). This extends [Donkin and Erdmann
1998, Section 3.3, Theorem], which gives the same result in the case where p - r .

All modules over fields in this paper will be assumed to be finite-dimensional,
and modules for algebras are right modules unless otherwise specified.

2. Preliminaries

2A. The Lie module. Let r and n be positive integers where n > r . Let 1 be
the free associative ring (Z-algebra) on free generators x1, . . . , xn and let L be the
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Lie subring of 1 generated by x1, . . . , xn . By [Bourbaki 1972, chapitre II, §3,
théorème 1], L is free on x1, . . . , xn . Let 1r denote the homogeneous component
of 1 of degree r . Then Sr has a left action by “place permutations” on 1r , given by
α(y1 · · · yr )= y1α · · · yrα for all α ∈ Sr and all y1, . . . , yr ∈ {x1, . . . , xn}. (Note that
we write multiplication in Sr from left to right.) Hence1r is a left ZSr -module. Let
ωr be the element of ZSr given by (1-1). Then it is well known and easily verified
that ωr (y1 · · · yr ) = [y1, . . . , yr ] where [y1, . . . , yr ] denotes the left-normed Lie
product [· · · [[y1, y2], y3], . . . , yr ].

The group Sr also has a right action on 1 by automorphisms, where xiα = xiα

for i = 1, . . . , r and xiα = xi for i > r . Thus 1r becomes a (ZSr ,ZSr )-bimodule.
Let 10

r be the Z-subspace of 1r spanned by the monomials x1α · · · xrα with α ∈ Sr .
Thus 10

r is a subbimodule of 1r and the map ξ : ZSr → 10
r defined by ξ(α) =

x1α · · · xrα is an isomorphism of bimodules.
Let L0

r = L ∩ 10
r . Then L0

r is spanned over Z by all elements of the form
[x1α, . . . , xrα]. Also, by [Bourbaki 1972, chapitre II, §3, théorème 2], L0

r is free of
rank (r − 1)! as a Z-module. We have ωr1

0
r = L0

r . Thus the isomorphism ξ maps
ωr ZSr to L0

r , and so ωr ZSr is isomorphic to L0
r as a right ZSr -module.

All of the above still applies if Z is replaced by R, where R is an arbitrary
commutative ring with unity. Also (using subscripts to show coefficient rings) we
have R ⊗Z L0

r,Z
∼= L0

r,R . The Lie module LieR(r) is the RSr -module defined by
LieR(r) = ωr RSr . Thus LieR(r) ∼= L0

r,R . It follows that LieR(r) ∼= R⊗Z LieZ(r)
and LieR(r) is free of rank (r − 1)! as an R-module. If F is a field we have

dim LieF (r)= (r − 1)! (2-1)

and, if F is understood, we write LieF (r) as Lie(r).
When K is a field of characteristic zero there is a formula for the character ψr of

LieK (r). Let µ denote the Möbius function and let σ be an r -cycle of Sr . For each
divisor d of r let Cd denote the conjugacy class of σ r/d in Sr . Then, for g ∈ Sr ,

ψr (g)=
{
µ(d)(r − 1)!/|Cd | if g ∈ Cd ,
0 if g /∈ Cd for all d.

(2-2)

(See, for example, [Donkin and Erdmann 1998, Section 3.2].) Hence, if θ is any
class function on Sr with values in K and we write

(θ, ψr )Sr =
1
|Sr |

∑
g∈Sr

θ(g)ψr (g−1), (2-3)

we have

(θ, ψr )Sr =
1
r

∑
d|r

µ(d)θ(σ r/d). (2-4)
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2B. Representations of Sr . By a partition of a nonnegative integer r we mean, as
usual, a finite sequence λ= (λ1, . . . , λs) of integers satisfying λ1 > · · ·> λs > 0
and λ1+· · ·+λs = r . We call λ1, . . . , λs the parts of λ. We write 3+(r) for the set
of all partitions of r . If r = 0 then 3+(r) contains only the empty partition, which
we denote by ∅. Let p be a prime number. A partition λ is p-regular if λ does
not have p or more equal parts, and we write 3+p (r) for the set of all p-regular
partitions of r . The p-core of a partition λ of r is the partition λ̃ of r ′, for some
r ′ 6 r , obtained from (the diagram of) λ by the removal of as many “rim p-hooks”
as possible: see [James and Kerber 1981, Section 2.7]. We write Cr for the set of
all p-cores of elements of 3+(r).

Let r be a positive integer and let F be a field of prime characteristic p. The irre-
ducible F Sr -modules may be labelled (up to isomorphism) as Dλ with λ ∈3+p (r),
where Dλ is a quotient module of the Specht module Sλ (see [James and Ker-
ber 1981, 7.1.14]). Here D(r) is isomorphic to the trivial F Sr -module F because
S(r)∼= F . For each λ we write Pλ for the projective cover of Dλ. Thus the projective
indecomposable F Sr -modules are the Pλ with λ∈3+p (r). If F ′ is an extension field
of F then (using subscripts to show coefficient fields) we have Dλ

F ′
∼= F ′⊗F Dλ

F
and PλF ′ ∼= F ′⊗F PλF .

We recall a few general facts about blocks. If 0 is a finite-dimensional F-algebra
we may write 0 uniquely as a finite direct sum of indecomposable two-sided ideals,
0=

⊕
B∈B 0B . These ideals are the blocks of 0, but it is convenient also to refer to

the labels B as the blocks. The identity element of 0 may be written as
∑

B∈B eB ,
with eB ∈ 0B for all B. The elements eB are the block idempotents: they are
primitive central idempotents of 0 (see, for example, [Benson 1995]). Any 0-
module V satisfying V eB = V is said to belong to B, and we write V ∈ B. Every
0-module V may be written uniquely in the form V =

⊕
B∈B VB , where VB ∈ B

for all B (indeed, VB = V eB). We call VB the block component of V corresponding
to B.

By the Nakayama conjecture (see [James and Kerber 1981, 6.1.21]), the blocks
of F Sr may be labelled B(ν) with ν ∈ Cr in such a way that Sλ ∈ B(λ̃) for all
λ ∈3+p (r). Since Dλ is a quotient of Sλ and Pλ is indecomposable with Dλ as a
quotient, we have Dλ, Pλ ∈ B(λ̃). We use the same notation for the blocks of F Sr

for every field F of characteristic p. By consideration of composition factors we
see that, for any F Sr -module V , any extension field F ′ of F , and any ν, we have

(F ′⊗F V )B(ν) ∼= F ′⊗F VB(ν). (2-5)

If B is a block and B = B(ν) we write B̃ = ν. Also, for λ ∈3+p (r), we write λ ∈ B
if Dλ

∈ B (or equivalently Pλ ∈ B). The principal block is the block B0 containing
the trivial irreducible D(r). Thus B̃0 = (r), where r denotes the remainder on
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dividing r by p. If B̃ = ∅ then p |r and r = 0 so that B = B0. Hence if B is
nonprincipal we have B̃ 6=∅.

If p - r then Lie(r) is projective (see Section 1). But if p |r and B̃ 6= ∅ then
B 6= B0 and so Lie(r)B is projective by [Erdmann and Tan 2011, Theorem 3.1].
Hence we have the following result.

Theorem 2.1 [Erdmann and Tan 2011]. If B is a block of F Sr such that B̃ 6= ∅
then Lie(r)B is projective.

As is well known, Brauer characters of F Sr -modules have integer values: this
follows, for example, from [Nagao and Tsushima 1989, Chapter 3, Lemma 6.13].
(Consequently Brauer characters of F Sr -modules are uniquely defined and do not
depend upon choices of roots of unity.) We regard Brauer characters as maps
from Sr to Z by assigning the value zero to p-singular elements of Sr . For each
λ∈3+p (r) we write βλ and ζ λ for the Brauer characters of Dλ and Pλ, respectively.
By the orthogonality relations for Brauer characters (see [Nagao and Tsushima
1989, Chapter 3, Theorem 6.10]) we have

(βλ, ζ ρ)Sr =

{
1 if λ= ρ,
0 if λ 6= ρ,

(2-6)

where (βλ, ζ ρ)Sr is defined as in (2-3).

2C. Polynomial representations of GLn(F). Suppose now that F is an infinite
field of prime characteristic p and let n and r be positive integers. We refer to
[Green 1980] and [Donkin and Erdmann 1998] for background concerning poly-
nomial GLn(F)-modules and the Schur algebra SF (n, r). Let E denote the natural
GLn(F)-module. Thus E⊗r is an SF (n, r)-module. If k and t are positive integers
such that r = kt and if V is an SF (n, t)-module then V⊗k and Lk(V ) are SF (n, r)-
modules.

Let 3+(n, r) denote the set of all partitions of r with at most n parts and let
3+p (n, r) denote the set of all p-regular partitions in 3+(n, r). The irreducible
SF (n, r)-modules may be labelled L(λ) with λ ∈3+(n, r). For each such λ there
is also an indecomposable SF (n, r)-module T (λ) called a “tilting module”, and
(see [Donkin and Erdmann 1998, Section 1.3]) there are nonnegative integers nλ
such that

E⊗r ∼=
⊕

λ∈3+p (n,r)

nλ T (λ). (2-7)

The main facts about the blocks of SF (n, r) were obtained in [Donkin 1994] and
summarised in [Erdmann and Tan 2011]. When n > r the blocks may be labelled
B(ν) with ν ∈ Cr in such a way that L(λ) ∈ B(λ̃). If B is a block and B = B(ν)
we write B̃ = ν. When n < r , p-cores do not necessarily label unique blocks, but
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if L(λ) and L(ρ) are in the same block then λ̃= ρ̃. Thus, for each block B, there
is an element B̃ of Cr (where B̃ has at most n parts) with the property that λ̃= B̃
whenever L(λ)∈ B. For each ν ∈Cr we write B(ν) for the set of blocks B such that
B̃ = ν. (Thus B(ν) is empty if ν has more than n parts.) If V is an SF (n, r)-module
we write VB(ν) for the direct sum of the block components VB of V corresponding
to blocks B in B(ν). For all n and all λ ∈3+(n, r), T (λ) is indecomposable and
has L(λ) as a composition factor (see [Erdmann 1994, Section 1.3]); thus T (λ) and
L(λ) belong to the same block. For a block B and λ ∈3+(n, r) we write λ ∈ B
if L(λ) ∈ B (or equivalently T (λ) ∈ B). We define the principal block to be the
block B0 containing L(λ) where λ= (r). Thus B̃0 = (r), with r as before. As in
the case of F Sr , if n > r and B is nonprincipal then B̃ 6=∅.

Let T denote the class of all SF (n, r)-modules that are isomorphic to direct
sums of tilting modules T (λ) where λ ∈ 3+p (n, r). Thus E⊗r

∈ T by (2-7). If
p - r then Lr (E) is isomorphic to a direct summand of E⊗r (see Section 1) and so
Lr (E) ∈ T. But if p |r and B̃ 6=∅ then Lr (E)B ∈ T by [Erdmann and Tan 2011,
Theorem 3.2]. Hence we have the following result.

Theorem 2.2 [Erdmann and Tan 2011]. If B is a block of SF (n, r) such that B̃ 6=∅
then Lr (E)B ∈ T.

Suppose now that n1 and n2 are positive integers with n1 > n2 and let dn1,n2

denote the functor from the category of SF (n1, r)-modules to the category of
SF (n2, r)-modules described in [Green 1980, Section 6.5]. This functor is ex-
act (in particular it preserves direct sums) and we call it truncation. Note that
3+(n2, r) ⊆ 3+(n1, r). We temporarily use subscripts to distinguish between
modules for SF (n1, r) and SF (n2, r). Then, if λ ∈ 3+(n1, r) and M(λ) denotes
either L(λ) or T (λ), we have

dn1,n2(Mn1(λ))
∼=

{
Mn2(λ) if λ ∈3+(n2, r),
0 otherwise.

(2-8)

(For the case of L(λ) see [Green 1980, Section 6.5] and for T (λ) see [Erdmann
1994, Section 1.7].)

Write d = dn1,n2 and use the same notation for arbitrary r . Then, if k and t are
positive integers and V is an SF (n1, t)-module, it is easy to check that d(V⊗k)∼=

d(V )⊗k and d(Lk(V ))∼= Lk(d(V )). Furthermore d(E⊗t
n1
)∼= E⊗t

n2
. Also, if V is an

SF (n1, r)-module and ν ∈ Cr , it follows from (2-8) that

d(VB(ν))∼= d(V )B(ν). (2-9)

2D. The Schur functor. We continue with the notation of the previous subsection
but now assume that n > r . The Schur functor fr is an exact functor from the
category of SF (n, r)-modules to the category of F Sr -modules (see [Green 1980,
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Chapter 6]). If U is an SF (n, r)-module then fr (U ) may be thought of as the
weight space of U corresponding to the weight (1, . . . , 1, 0, . . . , 0), with r coordi-
nates equal to 1, and the action of Sr on fr (U ) comes by taking Sr as a group of
permutation matrices in GLn(F) (see, for example, [Donkin and Erdmann 1998,
Section 1.2]). It is easily seen that

fr (E⊗r )∼= F Sr . (2-10)

Let {e1, . . . , en} be the standard basis of E . Then fr (Lr (E)) is the subspace of
Lr (E) spanned by the left-normed Lie products [e1α, . . . , erα] with α ∈ Sr . In the
notation of Section 2A, fr (Lr (E))∼= L0

r,F . Thus, since L0
r,F
∼= Lie(r), we obtain

fr (Lr (E))∼= Lie(r). (2-11)

For all λ ∈3+p (n, r)=3
+
p (r), we have (see [Donkin and Erdmann 1998, Sec-

tion 1.3])
fr (T (λ))∼= Pλ. (2-12)

As observed in [Erdmann and Tan 2011], fr sends modules in the SF (n, r)-block
B(ν) to modules in the F Sr -block B(ν) labelled by the same p-core. Thus, if V
is any SF (n, r)-module, we have

fr (VB(ν))∼= fr (V )B(ν). (2-13)

Let k be a divisor of r , and write t = r/k. (We do not at present assume that
p - k.) For each α ∈ Sk we may define α∗ ∈ Sr by ((i − 1)t + j)α∗ = (iα− 1)t + j
for i = 1, . . . , k and j = 1, . . . , t . The set {α∗ : α ∈ Sk} is a subgroup S∗k of
Sr isomorphic to Sk . The subgroup of Sr consisting of all permutations fixing
{(i − 1)t + j : i = 1, . . . , k} setwise for j = 1, . . . , t is a Young subgroup of Sr

isomorphic to Sk × · · · × Sk , and S∗k may be thought of as the diagonal of this
subgroup. The diagonal of any other Young subgroup isomorphic to Sk × · · ·× Sk

is a conjugate of S∗k in Sr . Note that if σ is the r-cycle (1 2 . . . r) of Sr and
σk is the k-cycle (1 2 . . . k) of Sk then σ t

= σ ∗k ∈ S∗k . For i = 1, . . . , k, write
�i = {(i − 1)t + j : j = 1, . . . , t}. The subgroup S(k)t of Sr consisting of all
permutations fixing each�i setwise is a Young subgroup isomorphic to St×· · ·×St .
For each α ∈ Sk we have �iα

∗
=�iα for i = 1, . . . , k. The subgroup S(k)t S∗k of Sr

is isomorphic to the wreath product St wr Sk .
Let V be an SF (n, t)-module. Then ft(V ) is an F St -module, so ft(V )⊗k is an

F S(k)t -module. Indeed, ft(V )⊗k may be regarded as an F S(k)t S∗k -module, where the
action of S∗k is to permute the tensor factors. We regard Lie(k) as an F S∗k -module
by means of the isomorphism α 7→ α∗ from Sk to S∗k . Then Lie(k) may also be
regarded as an F S(k)t S∗k -module, by taking trivial action of S(k)t . The following
result is part of [Lim and Tan 2012, Corollary 3.2].
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Lemma 2.3 [Lim and Tan 2012]. In the above notation,

fr (Lk(V ))∼= ( ft(V )⊗k
⊗Lie(k))↑Sr

S(k)t S∗k
.

Corollary 2.4. In the above notation,

fr (Lk(E⊗t))∼= Lie(k)↑Sr
S∗k
.

Proof. By (2-10) and Lemma 2.3,

fr (Lk(E⊗t))∼= ((F St)
⊗k
⊗Lie(k))↑Sr

S(k)t S∗k
.

Clearly (F St)
⊗k is a transitive permutation module under the action of S(k)t S∗k and

the stabiliser of the basis element 1⊗· · ·⊗1 is S∗k . Thus (F St)
⊗k is induced from a

one-dimensional trivial module for S∗k and (by [Benson 1995, Proposition 3.3.3(i)])
we have

(F St)
⊗k
⊗Lie(k)∼= Lie(k)↑

S(k)t S∗k
S∗k

.

The result follows. �

3. Main results

Recall from Section 2B that if B is a nonprincipal block of F Sr then B̃ 6=∅. Our
main result on the Lie module is as follows. We use the notation of Section 2D,
regarding Lie(k) as an F S∗k -module.

Theorem 3.1. Let F be a field of prime characteristic p. Let r be a positive integer
and write r = pmk where m > 0, k > 1, and p - k. Let B be a block of F Sr such
that B̃ 6= ∅ and let S∗k be the diagonal of a Young subgroup Sk × · · · × Sk of Sr .
Then

Lie(r)B ∼=
1

pm (Lie(k)↑Sr
S∗k
)B .

Note that Lie(k)↑Sr
S∗k

is projective since Lie(k) is projective (see Section 1).
We commence the proof of Theorem 3.1. If F ′ is an extension field of F then,

by the description of the Lie module in Section 2A, LieF ′(r)∼= F ′⊗LieF (r) and
LieF ′(k) ∼= F ′ ⊗ LieF (k). Thus, if B is any block of F Sr , we have LieF ′(r)B ∼=

F ′⊗LieF (r)B and (LieF ′(k)↑
Sr
S∗k
)B ∼= F ′⊗(LieF (k)↑

Sr
S∗k
)B by (2-5). Hence it suffices

to prove Theorem 3.1 for the prime field Fp and then, by the Noether–Deuring
theorem, it suffices to prove the theorem for any chosen field F of characteristic
p. We choose F so that there is a p-modular system (K , R, F) with the properties
specified in [Nagao and Tsushima 1989, Chapter 3, Section 6]. Note, in particular,
that K has characteristic 0 and contains sufficient roots of unity, K is the field of
fractions of R, and F = R/(π) where (π) is the maximal ideal of R.
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We state some standard facts associated with p-modular systems in order to
establish terminology and notation. If G is any finite group then the natural epi-
morphism R→ F yields an epimorphism RG→ FG. If this epimorphism maps
u to v, where u ∈ RG and v ∈ FG, we say that v lifts to u. By an RG-lattice
we mean an RG-module that is free of finite rank as an R-module. If M is an
RG-lattice we write M = M/πM . Thus M ∼= F ⊗R M and M has the structure
of an FG-module. An FG-module V is said to be liftable if there exists M such
that M ∼= V , in which case we say that V lifts to M . If M is an RG-lattice then
K ⊗R M is a K G-module. If U is any K G-module then there is an RG-lattice M
such that U ∼= K ⊗R M (see [Benson 1995, Lemma 1.9.1]) and we say that M is
obtained from U by modular reduction.

By a standard result (see [ibid., Theorem 1.9.4]), each block idempotent eB of
F Sr can be lifted to an element êB of RSr to obtain pairwise-orthogonal primitive
central idempotents of RSr summing to the identity. If M is an RSr -lattice such
that MêB = M we write M ∈ B. Every RSr -lattice M may be written uniquely in
the form M =

⊕
B MB where, for each B, MB is an RSr -lattice belonging to B.

Similar facts and notation apply to K Sr -modules, using the same idempotents êB .
If U is a K Sr -module then, since K has characteristic zero, UB is a direct sum of
irreducible K Sr -modules belonging to B.

It is easily verified that if M is an RSr -lattice and B is a block then

(K ⊗R M)B ∼= K ⊗R MB and MB ∼= M B . (3-1)

We let σ be an r-cycle of Sr chosen as in Section 2D (with t = pm) so that
σ pm
= σ ∗k ∈ S∗k , where σk is a k-cycle of Sk .

Lemma 3.2. If g is an element of the cyclic subgroup 〈σ 〉 such that g has order
divisible by p and if χ is the character of an irreducible K Sr -module U belonging
to a block B such that B̃ 6=∅ then χ(g)= 0.

Proof. Let M be an RSr -lattice such that U ∼= K ⊗R M . Since U belongs to B
it follows from (3-1) that M belongs to B. Let D be the defect group of the F Sr -
block B (see [Benson 1995, Section 6.1]). (Thus D is a p-group, determined up
to conjugacy in Sr .) By [ibid., Corollary 6.1.3], D is also the defect group of B
regarded as a block of RSr . Thus, by [ibid., Proposition 6.1.2], M is projective
relative to D.

Let B = B(ν) where ν ∈ Cr . Thus ν 6=∅ and so ν is a partition of r ′ for some
r ′ satisfying 0< r ′ 6 r . It follows from [James and Kerber 1981, 6.2.45] that D
can be taken to be a Sylow p-subgroup of a subgroup Sr−r ′ of Sr fixing r ′ points
of {1, . . . , r}. Hence every element of D fixes some point of {1, . . . , r}.

Let g be as in the statement of the lemma. The p-part of g is a nontrivial element
of 〈σ 〉 and hence has no fixed points in {1, . . . , r}. It follows that the p-part of g is
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not conjugate in Sr to an element of D. Therefore, by [Nagao and Tsushima 1989,
Chapter 4, Theorem 7.4], we have χ(g)= 0, as required. �

Lemma 3.3. If B is a block such that B̃ 6=∅ then pm LieK (r)B ∼= (LieK (k)↑
Sr
S∗k
)B .

Proof. The result is trivial if r = k. Thus we may assume that p |r . Let ψr

denote the character of the K Sr -module LieK (r) and let ψk denote the character
of the K S∗k -module LieK (k). In order to prove the lemma it suffices to show that
the multiplicity of each irreducible K Sr -module U belonging to B is the same in
pm LieK (r) as in LieK (k)↑

Sr
S∗k

. Let χ be the character of U . By the orthogonality
relations and Frobenius reciprocity for ordinary characters, it suffices to prove

pm (χ, ψr )Sr = (χ↓
Sr
S∗k
, ψk)S∗k . (3-2)

By (2-4) we have

r (χ, ψr )Sr =

∑
d|r

µ(d)χ(σ r/d)

=

∑
d|k

µ(d)χ(σ r/d)−
∑
d|k

µ(d)χ(σ r/pd).

However, for d |k, we have χ(σ r/pd)= 0 by Lemma 3.2. Thus

r (χ, ψr )Sr =

∑
d|k

µ(d)χ((σ pm
)k/d).

Recall that σ pm
= σ ∗k ∈ S∗k where σk is a k-cycle of Sk . Hence, by (2-4) applied to

S∗k ,

k (χ↓Sr
S∗k
, ψk)S∗k =

∑
d|k

µ(d)χ((σ pm
)k/d).

This gives (3-2). �

We can now prove Theorem 3.1. Let B be a block of F Sr such that B̃ 6=
∅. By the description of the Lie module in Section 2A, Lie(r) lifts to the RSr -
lattice LieR(r) and Lie(k) lifts to the RS∗k -lattice LieR(k). Thus pm Lie(r) and
Lie(k)↑Sr

S∗k
lift to pm LieR(r) and LieR(k)↑

Sr
S∗k

, respectively. Also, K ⊗ pmLieR(r)∼=
pmLieK (r) and K ⊗ LieR(k)↑

Sr
S∗k
∼= LieK (k)↑

Sr
S∗k

. Hence pmLie(r) and Lie(k)↑Sr
S∗k

are modular reductions of pmLieK (r) and LieK (k)↑
Sr
S∗k

, respectively. It follows by
(3-1) that pmLie(r)B and (Lie(k)↑Sr

S∗k
)B are modular reductions of pmLieK (r)B and

(LieK (k)↑
Sr
S∗k
)B , respectively. However, by Lemma 3.3, these two last modules are

isomorphic. Therefore, by [Nagao and Tsushima 1989, Chapter 3, Lemma 6.4],
pm Lie(r)B and (Lie(k)↑Sr

S∗k
)B have the same Brauer character.

By Theorem 2.1, Lie(r)B is projective. Since Lie(k) is a projective F S∗k -module,
Lie(k)↑Sr

S∗k
is a projective F Sr -module and so (Lie(k)↑Sr

S∗k
)B is projective. Thus
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pm Lie(r)B and (Lie(k)↑Sr
S∗k
)B are projective modules with the same Brauer charac-

ters. Therefore, by [Benson 1995, Corollary 5.3.6], these modules are isomorphic.
This proves Theorem 3.1.

Corollary 3.4. If B0 is the principal block of F Sr then

dim Lie(r)B0 =
1

pm dim (Lie(k)↑Sr
S∗k
)B0 .

Proof. For each nonprincipal block B of F Sr we have

dim Lie(r)B =
1

pm dim (Lie(k)↑Sr
S∗k
)B ,

by Theorem 3.1. However, by (2-1),

dim Lie(k)↑Sr
S∗k
= (k− 1)! r !/k! = pm(r − 1)! = pm dim Lie(r).

The result follows. �

Theorem 3.5. In the notation of Theorem 3.1, we have

Lie(r)B ∼=
⊕

λ∈3+p (r)
λ∈B

mλ Pλ, (3-3)

where, for each λ,

mλ =
1
r

∑
d|k

µ(d) βλ(τ k/d), (3-4)

where τ is an element of Sr of cycle type (k, k, . . . , k) and βλ denotes the Brauer
character of Dλ.

Proof. By Theorem 2.1, Lie(r)B is projective. Thus it satisfies (3-3) for suitable
nonnegative integers mλ. It remains to prove (3-4). If F ′ is an extension field of
F then LieF ′(r)∼= F ′⊗LieF (r) and PλF ′ ∼= F ′⊗ PλF . Also, block components are
preserved under field extensions, by (2-5). Hence it suffices to prove the result
for the field Fp and then, by a similar argument, it suffices to prove the result for
any chosen field F of characteristic p. We take F from the p-modular system
(K , R, F) used in the proof of Theorem 3.1.

Since Lie(k)↑Sr
S∗k

is projective we have

Lie(k)↑Sr
S∗k
∼=

⊕
ρ∈3+p (r)

m′ρ Pρ

for suitable nonnegative integers m′ρ . Let λ ∈3+p (r) where λ ∈ B. By Theorem 3.1
we have mλ = (1/pm)m′λ. Let φ denote the Brauer character of Lie(k)↑Sr

S∗k
. By the
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orthogonality relation (2-6) we have

mλ =
1

pm m′λ =
1

pm (β
λ, φ)Sr .

As observed in the proof of Theorem 3.1, Lie(k)↑Sr
S∗k

is a modular reduction of
LieK (k)↑

Sr
S∗k

. The character of LieK (k)↑
Sr
S∗k

is ψk↑
Sr
S∗k

, where ψk denotes the char-
acter of LieK (k) as a K S∗k -module. By [Nagao and Tsushima 1989, Chapter 3,
Lemma 6.4], φ and ψk↑

Sr
S∗k

take the same value on p′-elements of Sr . Thus, by
Frobenius reciprocity,

mλ =
1

pm (β
λ, ψk↑

Sr
S∗k
)Sr =

1
pm (β

λ
↓

Sr
S∗k
, ψk)S∗k .

Let τ be as in the statement of the theorem. Then τ is conjugate to, and therefore
can be taken to be, an element σ ∗k of S∗k corresponding to a k-cycle σk of Sk . Thus,
by (2-4), we have

1
pm (β

λ
↓

Sr
S∗k
, ψk)S∗k =

1
pmk

∑
d|k

µ(d) βλ(τ k/d).

The result follows. �

We now turn to Lie powers and, for the rest of this section, we assume that F
is infinite. As before, let n be a positive integer and let E be the natural GLn(F)-
module.

Theorem 3.6. Let F be an infinite field of prime characteristic p. Let r be a
positive integer and write r = pmk where m > 0, k > 1, and p - k. Let B be a block
of SF (n, r) such that B̃ 6=∅. Then

Lr (E)B ∼=
1

pm Lk(E⊗pm
)B .

Proof. Let T be as defined in Section 2C. Thus, by Theorem 2.2, Lr (E)B ∈ T.
Also, since Lk(E⊗pm

) is a direct summand of E⊗r , we have Lk(E⊗pm
) ∈ T, by

(2-7).
Suppose first that n > r . Then we may write B = B(ν) where ν 6=∅. By (2-11)

and (2-13),
fr (pm Lr (E)B(ν))∼= pm Lie(r)B(ν).

Similarly, by Corollary 2.4 and (2-13),

fr (Lk(E⊗pm
)B(ν))∼= (Lie(k)↑Sr

S∗k
)B(ν).

Also, by Theorem 3.1, pm Lie(r)B(ν) ∼= (Lie(k)↑Sr
S∗k
)B(ν). It follows from (2-12)

that if U, V ∈ T and fr (U ) ∼= fr (V ) then U ∼= V . Hence the isomorphism in
Theorem 3.6 holds when n > r .
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Now suppose that n < r and let B̃ = ν. Thus B ∈ B(ν). Consider the SF (r, r)-
block B(ν). By the first case, there is an isomorphism of SF (r, r)-modules,

Lr (E)B(ν) ∼=
1

pm Lk(E⊗pm
)B(ν). (3-5)

We apply truncation dr,n to (3-5). By (2-9) and the other properties of truncation
given in Section 2C, we obtain (3-5) for SF (n, r)-modules. Hence the correspond-
ing block components are isomorphic for all SF (n, r)-blocks in B(ν) and we obtain
the isomorphism of Theorem 3.6. �

Theorem 3.7. In the notation of Theorem 3.6, we have

Lr (E)B ∼=
⊕

λ∈3+p (n,r)
λ∈B

mλ T (λ),

where mλ is given by (3-4).

Proof. By Theorem 2.2, Lr (E)B ∈ T. Thus Lr (E)B is isomorphic to a direct sum
of tilting modules T (λ) with λ ∈3+p (n, r) and λ ∈ B. Let B̃ = ν. Then, for n > r ,
we have fr (Lr (E)B(ν))∼= Lie(r)B(ν), by (2-11) and (2-13), and fr (T (λ))∼= Pλ for
all λ ∈ 3+p (n, r), by (2-12). Thus, for n > r , the result is given by Theorem 3.5.
For n < r the result follows by truncation, as in the proof of Theorem 3.6. (Note
that the effect of truncation on T (λ) is given by (2-8).) �
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