
Algebra &
Number
Theory

mathematical sciences publishers

Volume 6

2012
No. 4

Realizing large gaps in cohomology for symmetric
group modules
David J. Hemmer



msp
ALGEBRA AND NUMBER THEORY 6:4(2012)

Realizing large gaps in cohomology for
symmetric group modules

David J. Hemmer

Using results of the author with Cohen and Nakano, we find examples of
Young modules Y λ for the symmetric group 6d for which the Tate cohomology
Ĥi (6d , Y λ) does not vanish identically, but vanishes for approximately 1

3 d3/2

consecutive degrees. We conjecture these vanishing ranges are maximal among
all 6d -modules with nonvanishing cohomology. The best known upper bound
on such vanishing ranges stands at (d − 1)2, due to work of Benson, Carlson and
Robinson. Particularly striking, and perhaps counterintuitive, is that these Young
modules have maximum possible complexity.

1. Introduction

Let G be a finite group and k an algebraically closed field of characteristic p. If G
contains an element x of order p such that the centralizer CG(x) is not p-nilpotent,
then a result of Benson [1995] guarantees the existence of a nonprojective kG-
module M in the principal block such that the cohomology H∗(G,M) is identically
zero. For the remaining principal block modules, those with nonvanishing coho-
mology, one might ask for the smallest degree that is nonzero, or the number of
consecutive degrees in which the cohomology vanishes. In [Benson et al. 1990],
Benson, Carlson and Robinson gave an upper bound r = r(G) on the number
of consecutive i for which the cohomology Hi (G,M) can vanish, without being
identically zero:

Theorem 1.1 [Benson et al. 1990, Theorem 2.4]. Given a finite group G, there
exists a positive integer r such that for any commutative ring R of coefficients
and any RG-module M , if Ĥ

i
(G,M) = 0 for r + 1 consecutive values of i then

Ĥ
i
(G,M)= 0 for all i positive and negative.

The Ĥ above denotes Tate cohomology, which agrees with the ordinary coho-
mology in positive degrees. The proof of Theorem 1.1 expresses r in terms of the
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degrees of a set of homogenous generators for the cohomology ring of G. However,
there is no expectation that this r should be the best possible bound.

There do not appear to be any examples in the literature demonstrating large gaps
in cohomology, or determining the smallest possible value of r for particular groups.
This is not surprising, as calculating H∗(G,M) is generally difficult. In [Cohen et al.
2010] the author, with Cohen and Nakano, obtained some very general results when
M is a Young module Y λ for the symmetric group 6d . The goal of this paper is to
use these results to find very large gaps in Young module cohomology. For certain
partitions λ`d in characteristic two, we find the minimal i ≥0 with Hi (6d , Y λ) 6=0.
These gaps turn out to be the largest possible among all Young modules, and come
“close” to realizing the value of r arising from Theorem 1.1. Remarkably the Young
modules with the largest vanishing ranges also have maximum possible complexity.
That is the dimensions in a minimal projective resolution grow as quickly as possible.
See [Benson 1998, p.153] for the precise definition of complexity.

2. Computing Young module cohomology

In this section we recall results from [Cohen et al. 2010] on computing Young
module cohomology. Let V ∼= kd be the natural module for the general linear group
G :=GLd(k). For a partition λ` d , let L(λ) denote the simple G-module of highest
weight λ, and let Y λ denote the Young module for 6d . We denote by D the usual
dominance order on partitions of d , and by λ′ the transpose or conjugate partition.
Definitions and information on all these modules can be found in [Martin 1993].

The commuting actions of G and 6d on V⊗d give the homology Hi (6d , V⊗d)

the structure of a G-module. The composition multiplicities of this G-module are
related to the dimensions of Young module cohomology in the following way. Let
[M : S] denotes the multiplicity of a simple module S in a composition series of M .

Theorem 2.1 [Doty et al. 2004, Proposition 2.6B].

dimk Hi (6d , Y λ)= [Hi (6d , V⊗d) : L(λ)], i ≥ 0.

Theorem 2.1 indicates that determining the simple constituents of H∗(6d , V⊗d)

as a graded G-module allows one to calculate Young module cohomology in all
degrees. It turned out to be easier to study this for all d simultaneously, using
methods from algebraic topology. In [Cohen et al. 2010, Theorem 8.1.4] the algebra
⊕d≥0 H∗(6d , V⊗d) is described as a G-module. It is a polynomial algebra, tensored
with an exterior algebra if p is odd. Each generator belongs to a certain G-module
direct summand, and this summand belongs to Hi (6d , V⊗d) for a particular i and d .

The G-modules that occur are described below. For a G-module M let M (a)

denote the a-th Frobenius twist of M (see [Jantzen 2003, p. 132]), and let Sa(M)
and 3a(M) denote respectively the a-th symmetric and exterior power of M .
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Theorem 2.2 [Cohen et al. 2010, Corollary 8.2.1]. In characteristic two, the G-
module H∗(6d , V⊗d) is a direct sum of modules of the form

Sa0(V )⊗ Sa1(V (c1))⊗ · · ·⊗ Sas (V (cs)) (2-1)

where each ai ≥ 0, ci > 0 and d = a0+
∑s

j=1 a j 2c j .
In odd characteristic the G-module H∗(6d , V⊗d) is a direct sum of modules of

the form

Sa0(V )⊗ Sa1(V (c1))⊗ · · ·⊗ Sas (V (cs))⊗3d1(V (e1))⊗ · · ·⊗3dt (V (et )) (2-2)

where each ai ≥0, each ci , di , ei >0 and where d=a0+
∑s

j=1 a j pc j+
∑t

j=1 d j pe j .

Each summand in (2-1) or (2-2) occurs in Hi (6d , V⊗d) for a single value of d
but for infinitely many different degrees i , for a description see Theorem 8.1.4 in
[Cohen et al. 2010] or the special cases below, which are all we will use. To compute
a particular Hi (6d , Y λ) one must first determine the (finitely many) summands
which contribute to this d and i , and then compute the multiplicities of L(λ) in each
summand. In the next section we will let p = 2 and make a strategic choice for λ.
For these λ we can determine precisely the summand (2-1) of smallest degree which
contains L(λ) as a composition factor, and thus determine the initial vanishing
range. In Section 4 we use these computations to produce Young modules with
very large gaps in cohomology. In the final section we discuss the situation in odd
characteristic, and present a few open problems.

3. Initial vanishing ranges in characteristic two

In this section assume p = 2. Notation such as (23, 12) will be shorthand for
the partition (2, 2, 2, 1, 1), not the partition (8, 1). It is clear from (2-1) that
understanding the composition factors of Sa(V ) is necessary for computing Young
module cohomology (but not sufficient, as one must also decompose the tensor
products).

Fortunately, Doty [1985] has determined the entire submodule structure for
Sa(V ). The composition factors all occur with multiplicity at most one, and have a
particularly nice form in characteristic two:

Proposition 3.1 [Doty 1985]. (See also [Cohen et al. 2010, Proposition 12.2.1].)
Let λ ` s have a 2-adic expansion

λ=

m∑
i=0

2iλ(i)

where each λ(i) is 2-restricted. Then L(λ) is a constituent of Ss(V ) if and only if
each λ(i) is of the form (1ai ) for ai ≥ 0.
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Let µ= (µ1, µ2, . . . , µr )`d be 2-restricted. Set µ′= ((µ′)1, (µ′)2, . . . , (µ′)µ1).
We will compute the first i such that Hi (62d , Y 2µ) is nonzero, and see that a
particular such µ will maximize the initial vanishing range.

Since µ is 2-restricted, the 2-adic expansion of 2µ is just 2µ. So Steinberg’s
tensor product theorem (STPT) [Jantzen 2003, II.3.17] implies the summands from
(2-1) with any ci > 1 do not have L(2µ) as a composition factor. So to compute
Hi (62d , Y 2µ) we must determine the multiplicity of L(2µ) in summands of the
form

Sa(V )⊗ Sa1(V (1))⊗ · · ·⊗ Sas (V (1))∼= Sa(V )⊗ Sτ (V (1)) (3-1)

where we can assume without loss that ai ≥ ai+1, so τ = (a1, a2, . . . , as) ` d − a
2 .

Analysis just as in Section 10 of [Cohen et al. 2010] shows that a summand of
the form (3-1) corresponds to monomials in the polynomial algebra of the form

va
· Qa1

i1
(v) · · · Qas

is
(v),

for distinct it . By [Cohen et al. 2010, Theorem 8.1.4(a)], such a summand contributes
to the cohomology in degree a1i1+ a2i2+ · · ·+ asis . To determine the smallest i
with Hi (62d , Y 2µ) 6= 0 we must first determine which modules (3-1) contain L(2µ)
as a composition factor. Then for each we must determine the smallest possible
corresponding degree where the summand can occur. Our assumption on µ limits
how L(2µ) can arise as a composition factor in (3-1):

Proposition 3.2. Let 2µ ` 2d where µ is 2-restricted. Then Hi (62d , Y 2µ) 6= 0 if
and only if there exists an integer a ≥ 0, a partition τ = (a1, a2, . . . , as) ` d − a
and integers {it > 0} such that

(i) i = a1i1+ a2i2+ · · ·+ asis ,

(ii)
[L(2a)⊗ L(2a1)⊗ · · ·⊗ L(2as ) : L(2µ)] 6= 0.

Proof. By Proposition 3.1 and the STPT, the composition factors of Sm(V ) are all
of the form

L(1c0)⊗ L(2c1)⊗ L(4c2)⊗ · · · .

But 2µ is its own 2-adic expansion, so any L(2µ) occurring in (3-1) must arise
as in part (2) by the STPT. The corresponding degree i follows from [Cohen et al.
2010, Theorem 8.1.4(a)]. �

Notice that the “if” part of the preceding result did not require µ be 2-restricted,
a fact we will need later.

Now we want to find the smallest degree i where the cohomology Hi (62d , Y 2µ)is
nonzero. Since a1 ≥ a2 ≥ · · · , it is clear from Proposition 3.2(1) that we should
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choose it = t to minimize the degree i . The smallest nonzero degree is given in
terms of the following function on partitions. Let ρ = (ρ1, ρ2, . . . ρs) ` d . Define

x(ρ)=
s∑

l=1

(l − 1)ρl .

The following easy lemma is left to the reader:

Lemma 3.3. Suppose λDµ. Then x(λ)≤ x(µ). If λ 6= µ the inequality is strict.

We can now determine the first nonvanishing degree for H∗(62d , Y 2µ).

Theorem 3.4. Let µ ` d be arbitrary. Then:

(i) Hx(µ′)(62d , Y 2µ) 6= 0.

(ii) If µ is 2-restricted, then

dim Hi (62d , Y 2µ)=

{
0 for 0≤ i < x(µ′),
1 for i = x(µ′).

Proof. For convenience let τ = µ′. Observe that

µ= (1τ1)+ (1τ2)+ · · ·+ (1τµ1 ).

Then L(2τ1)⊗ L(2τ2)⊗ · · ·⊗ L(2τµ1 ) has highest weight 2µ with multiplicity one,
so

[L(2τ1)⊗ L(2τ2)⊗ · · ·⊗ L(2τµ1 ) : L(2µ)] = 1. (3-2)

Thus

[S2τ1(V )⊗ Sτ2(V (1))⊗ Sτ3(V (1)) · · · ⊗ Sτµ1 (V (1)) : L(2µ)] ≥ 1. (3-3)

Choosing a = τ1 and it = t , the proof of Proposition 3.2 tells us that

Hx(µ′)(62d , Y 2µ) 6= 0.

(The “if” part did not require µ be 2-restricted.)
Now suppose further that µ is 2-restricted, and consider Proposition 3.2. Suppose

[L(2a)⊗ L(2a1)⊗ · · ·⊗ L(2as ) : L(2µ)] 6= 0.

In order to minimize the degree i it is clear from Proposition 3.2(2) that we
may assume a ≥ a1 ≥ a2 ≥ · · · ≥ as . Then ρ := (a, a1, a2, . . . , as) ` d, and
by Proposition 3.2(1), the corresponding cohomological degree is x(ρ). Since
L(2a)⊗ L(2a1)⊗· · ·⊗ L(2as ) has highest weight 2ρ ′ then ρ ′Dµ, and thus µ′Dρ.
When ρ =µ′ we get a single copy of L(2µ) as above, contributing to degree x(µ′).
Otherwise µ′B ρ. Then Lemma 3.3 implies x(µ′) < x(ρ), so x(µ′) is the smallest
degree with nonzero cohomology. So the cohomology is one-dimensional in degree
x(µ′) and zero in smaller degrees. �
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4. Mind the gap

In this section we apply Theorem 3.4 to find large gaps in cohomology. For
comparison we first compute the smallest currently known r(6d) which satisfies
Theorem 1.1.

A faithful complex representation of a group G gives rise to an embedding into
a compact unitary group G ↪→ U (n). The cohomology of the classifying space
BU (n) is a polynomial ring on generators in degrees 2, 4, 6, . . . , 2n (see [Benson
1998, Section 2.6]). The value of r coming from these generators by the construction
in [Benson et al. 1990] is 1+ 3+ 5+ · · ·+ (2n− 1)= n2. Thus if G has a faithful
representation of dimension n, one can take r = r(G) = n2 in Theorem 1.1, see
[Benson 1998, Sections 5.14–15] for details.

The smallest faithful irreducible C6d module is d − 1 dimensional, so one can
take r(6d)= (d−1)2, and this is the smallest known bound. To find Young modules
with large vanishing ranges, Theorem 3.4(2) suggests finding p-restricted µ with
x(µ′) as large as possible. In this section we show careful choice of Young module
can realize gaps on the order of 1

3 d3/2.
Fix n ≥ 1 and define ρn = (n, n−1, n−2, . . . , 2, 1) ` 1

2(n
2
+ n). Notice that

ρn = (ρn)
′
= (1n)+ (1n−1)+ · · ·+ (12)+ (1).

One easily computes that

x(ρn)=
n3
− n
6

. (4-1)

Proposition 4.1. Let p = 2 and ρn ` (n2
+ n)/2 be as above. Then:

dim Ĥ
i
(6n2+n, Y 2ρn )=

{
0 for − 1

6(n
3
− n) < i < 1

6(n
3
− n),

1 for i =± 1
6(n

3
− n).

Proof. Since ρn is 2-restricted, we can apply Theorem 3.4(2) and (4-1). The
extension to negative degrees comes from Tate duality, using the fact that Young
modules are self-dual. �

Proposition 4.1 shows that for d = n2
+ n, the best possible r(6d) is at least

1
3(n

3
− n).

Example 4.2. Let λ= (28, 26, 24, . . . , 6, 4, 2) ` 210. Then

Hi (6210, Y λ)=
{

0 if −455< i < 455,
k if i = 455.

It follows from [Hemmer and Nakano 2002, Theorem 3.3.2] that the Y λ in
Example 4.2 has complexity 105, the maximum possible among 6210-modules.
This means the dimension of the module Pi in the minimal projective resolution
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P∗→ k of the trivial module grows like a polynomial of degree 104 in i . However
it is not until P455 that the projective cover P(k) makes its first appearance!

Remark 4.3. Proposition 4.1 applies to62d where d is a triangular number T (n)=
n2
+n
2 . For arbitrary d one can still choose a 2-restricted µ maximizing x(µ′) in a

similar way. Write d = T (n)+ a for 0≤ a < n+ 1 and choose

µ= (n, n− 1, . . . , a+ 1, a, a, a− 1, a− 2, . . . , 2, 1). (4-2)

One still has x((2µ)′) asymptotic to a constant times n3.

So there is a constant c so that for arbitrary d we can obtain Young modules in
characteristic two with cohomology vanishing for the first cd3/2 degrees.

5. Odd primes and further directions

Since Theorem 1.1 gives a bound r(G) independent of the characteristic, we have
focused on p = 2 which gives the cleanest results. For an arbitrary prime one can
still achieve gaps that are a constant times d3/2 in length, using µ = p(p− 1)ρ,
although the answer is messier, and involves polynomials in p. For example the
nice compact form for x(ρn) in (4-1) becomes replaced by

(p− 1)[n(2p− 3)+ (n− 1)(4p− 5)+ · · ·+ 1(2n(p− 1)− 1)].

The corresponding result, which we state without proof, is this:

Proposition 5.1. Let d = 1
2 p(p− 1)(n2

+ n). Let µ= p(p− 1)ρn ` d. Then there
is a constant c(p) and a polynomial p(n)= c(p)n3

+ an2
+ bn such that

Hi (6d , Yµ)= 0 if −p(n) < i < p(n)

So once again we have find an r(6d) asymptotic to a constant times d3/2. The
function c(p) is decreasing, so the best estimates for r(6d) come from the p = 2
case. This might lead one to make a wild conjecture:

Conjecture 5.2. Let d = 1
2 p(p− 1)(n2

+ n). Let µ = p(p− 1)ρn ` d. Among
all 6d modules in the principal block with nonvanishing cohomology, the Young
module Yµ has the largest gap in cohomology, and thus determines the best possible
r in Theorem 1.1. For d not of this form, a similar choice, in the spirit of (4-2), for
µ achieves the maximal gap.

There are many problems which remain, although it isn’t clear one should expect
nice answers to any of them. For example one might find the smallest positive i
with Hi (6d , Y λ) 6= 0. The corresponding problem for simple modules is a subject
of active research, for example for groups of Lie type. A first step would be to
generalize Doty’s work from the µ= (d) case to something more general:
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Problem 5.3. Given λ ` d , find the maximal µ ` d such that [Sµ(V ) : L(λ)] 6= 0.

Determining the λ for which µ = (d) is just Doty’s result on the composi-
tion factors of Sd(V ). At the opposite extreme, such a µ always exists, because
S(1

d )(V )∼= V⊗d and each L(µ) occurs as a composition factor of V⊗d .
Finally we observe that the partition µ appearing in Proposition 5.1 is just the

twist of the Steinberg weight (see [Jantzen 2003, p. 199]), but there seems to be no
representation-theoretic interpretation of this fact.
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