
Algebra &
Number
Theory

mathematical sciences publishers

Volume 6

2012
No. 5

Toroidal compactifications of PEL-type Kuga
families

Kai-Wen Lan



msp
ALGEBRA AND NUMBER THEORY 6:5(2012)

Toroidal compactifications of PEL-type
Kuga families

Kai-Wen Lan

We explain how compactifications of Kuga families of abelian varieties over
PEL-type Shimura varieties, including for example all those products of universal
abelian schemes, can be constructed (up to good isogenies not affecting the
relative cohomology) by a uniform method. We also calculate the relative
cohomology and explain its various properties crucial for applications to the
cohomology of automorphic bundles.
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Introduction

To study the relations between automorphic forms and Galois representations, it
is desirable to understand the cohomology of Shimura varieties with coefficients
in algebraic representations of the associated reductive groups (i.e., the so-called
automorphic bundles).

In the case of PEL-type Shimura varieties, the associated reductive groups
are (up to center) twists of products of symplectic, orthogonal, or general linear
groups. According to Weyl’s construction [1997] (see also [Fulton and Harris 1991;
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Goodman and Wallach 2009]), all algebraic representations of a classical group
can be realized as summands in the tensor powers of the standard representation of
the group. In geometry, one is led to consider the cohomology of fiber products
of the universal families of abelian varieties over the PEL-type Shimura varieties.
Such fiber products are special cases of what we will call PEL-type Kuga families,
or simply Kuga families. When the PEL-type Shimura variety in question is not
compact, the total spaces of such Kuga families are not compact either.

To study cohomology properly, one is often led to the question of the existence
of projective smooth compactifications with good properties, such as allowing the
Hecke operators to act on their cohomology spaces (but not necessarily the geometric
spaces). In what follows, let us simply call such compactifications good compactifi-
cations. In characteristic zero, such questions can often be handled by the embedded
resolution of singularities due to Hironaka [1964a; 1964b]. However, more explicit
theories exist in our context. The work of Mumford and his collaborators in [Ash
et al. 1975] provides a systematic collection of good compactifications of Shimura
varieties with explicit descriptions of local structures, while the work of Pink [1990]
provides a systematic construction of good compactifications of the Kuga families as
well. These compactifications are called toroidal compactifications. Their methods
are analytic in nature and cannot be truly generalized in mixed characteristics.

Based on the theory of degeneration of polarized abelian varieties initiated by
Mumford [1972], Faltings and Chai [Faltings 1985; Chai 1985; Faltings and Chai
1990] constructed good compactifications over the integers for Siegel moduli spaces
defined by the moduli space of principally polarized abelian varieties. In [Faltings
and Chai 1990], they also constructed good compactifications of fiber products
of the universal families by gluing weak relatively complete models along the
boundary. We ought to point out that, although most works on compactifications
spend most of their pages on the construction of boundary charts, it is only the
gluing argument that validates the whole construction. (This is not necessarily
the case for works using the moduli-theoretic approach, such as [Alexeev and
Nakamura 1999; Alexeev 2002; Olsson 2008]. However, the questions there are
not less challenging: What can one say about the boundary structures? Are they
equally useful for applications to cohomology?) Thus, even if the construction
of toroidal compactifications of Siegel moduli spaces in [Faltings and Chai 1990,
Chapter IV] has been generalized for all PEL-type Shimura varieties in [Lan 2008],
the gluing of weak relatively complete models has to be carried out separately
when one works along the original idea of [Faltings and Chai 1990, Chapter VI].
(This is the case in for example [Rozensztajn 2006], in which the assumption
that the boundary divisors are regular, i.e., have no crossings, unfortunately rules
out all cases where choices of cone decompositions are needed for the Shimura
varieties.)
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Note that gluing is not just about techniques of descent. Any theory of descent
requires an input of some descent data. Since a naive generalization of the con-
structions in [Faltings and Chai 1990, Chapter IV] introduces unwanted boundary
components, which have to be studied and removed carefully by imposing liftability
and pairing conditions as in [Lan 2008], we have reason to believe that a naive
generalization of the construction in [Faltings and Chai 1990, Chapter VI, §1]
requires delicate modifications, without which even the strongest descent theory
cannot be applied.

The aim of this article is to avoid any further argument of gluing, and to treat all
PEL-type cases on an equal footing. We shall reduce the construction of toroidal
compactifications of PEL-type Kuga families to the construction of toroidal com-
pactifications of Shimura varieties in [Lan 2008], by systematically realizing the
Kuga families as locally closed boundary strata in the toroidal compactifications
of (larger) PEL-type Shimura varieties. Partly inspired by Kato’s theory of log
abelian schemes, we can show that, up to refinements of cone decompositions, the
structural morphisms from the Kuga families to the Shimura varieties extend (up to
good isogenies not affecting the relative cohomology) to log smooth morphisms
with nice properties between the toroidal compactifications. This approach differs
fundamentally from the one in [Faltings and Chai 1990, Chapter VI]. As Chai
pointed out, although no technique can be truly shared between analytic and
algebraic constructions, our idea is close in spirit to that of [Pink 1990]. (See
Remark 3.10 below.)

Since we replace Faltings and Chai’s construction with a different one, we need
to explain that our simpler (but perhaps cruder) construction is not less useful.
Thus our second task is to calculate the relative (log) de Rham cohomology of the
compactified families. We show that such relative cohomology not only enjoys
the same expected properties as in [Faltings and Chai 1990, Chapter VI, §1],
but also admits natural Hecke actions defined by parabolic subgroups of larger
reductive algebraic groups, because our construction uses toroidal boundaries of
larger Shimura varieties. This exhibits a large class of endomorphisms on our
cohomology spaces, including ones needed in the geometric realization of Weyl’s
construction (i.e., the realization of automorphic bundles as summands in the relative
cohomology of Kuga families).

The outline of this article is as follows. In Section 1, we review some of the
results we need from [Lan 2008]. We consider the investment of this summary
worthwhile because, although we do not need to carry out another gluing argument,
we do need the full strength of the long work [Lan 2008]. In Section 2, we define
what we mean by PEL-type Kuga families, state our main theorem, and give
an outline of the proof. In Section 3, we carry out the construction of toroidal
compactifications for these Kuga families that admit log smooth morphisms to the
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Shimura varieties in question. (This section serves roughly the same purpose as
[Faltings and Chai 1990, Chapter VI, §1].) In Sections 4 and 5, we show that these
toroidal compactifications are indeed good by justifying what we mentioned in
the previous paragraph. (These two sections serve roughly the same purpose as
[Faltings and Chai 1990, Chapter VI, §2].) We would like to mention that the use
of nerve spectral sequences in Section 4 imitates immediate analogues in [Harris
and Zucker 1994; 2001] (based on techniques that can be traced back to [Kempf
et al. 1973, Chapter I, §3]), while the use of log extensions of polarizations is
inspired by Kato’s idea of (relative) log Picard groups [Illusie 1994, 3.3]. (See
Remark 5.7.) The article ends with Section 6, in which we explain how to define
canonical extensions of the so-called principal bundles.

Although used as the main motivation for our construction, applications to
cohomology of automorphic bundles will be deferred to some forthcoming papers.
There the readers will find the construction of proper smooth integral models useful
for studying cohomology with not only rational coefficients, but also integral and
torsion coefficients.

We shall follow [Lan 2008, Notations and Conventions] unless otherwise spec-
ified. (Although our references to [Lan 2008] use the numbering in the original
version, the reader is advised to consult the errata and revision (available online)
for corrections of typos and minor mistakes, and for improved exposition.)

1. PEL-type moduli problems and their compactifications

In this section, we summarize definitions and main results in [Lan 2008] that will
be needed in this article. We will emphasize definitions such as the ones involved
in the description of boundary structures, but will have to be less comprehensive on
some fundamental definitions including the ones of level structures.

1A. Linear algebraic data. Let O be an order in a finite-dimensional semisimple
algebra over Q with a positive involution ?. Here an involution means an antiauto-
morphism of order two, and positivity of ? means TrO⊗ZR/R(xx?) > 0 for any x 6= 0
in O⊗Z R. We assume that O is mapped to itself under ?. We shall denote the
center of O⊗Z Q by F .

Let Z(1) := ker(exp : C→ C×), which is a free Z-module of rank one. Any
choice

√
−1 of a square-root of −1 in C determines an isomorphism (2π

√
−1)−1

:

Z(1)−→∼ Z, but there is no canonical isomorphism between Z(1) and Z. For any
commutative Z-algebra R, we denote by R(1) the module R⊗Z Z(1).

By a PEL-type O-lattice (L , 〈 · , · 〉, h) (as in [Lan 2008, Definition 1.2.1.3]), we
mean the following data:

(1) An O-lattice, namely a Z-lattice L with the structure of an O-module.
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(2) An alternating pairing 〈 · , · 〉 : L × L → Z(1) satisfying 〈bx, y〉 = 〈x, b?y〉
for any x, y ∈ L and b ∈ O, together with an R-algebra homomorphism
h : C→ EndO⊗ZR(L ⊗Z R) satisfying:
(a) For any z ∈C and x, y ∈ L⊗Z R, we have 〈h(z)x, y〉 = 〈x, h(zc)y〉, where

C→ C : z 7→ zc is the complex conjugation.
(b) For any choice of

√
−1 in C, the R-bilinear pairing

(2π
√
−1)−1

〈 · , h(
√
−1) · 〉 : (L ⊗Z R)× (L ⊗Z R)→ R

is symmetric and positive definite. (This last condition forces 〈 · , · 〉 to be
nondegenerate.)

The tuple (O,? , L , 〈 · , · 〉, h) (over Z) then gives us an integral version of the tuple
(B,? , V, 〈 · , · 〉, h) (over Q) in [Kottwitz 1992] and related works. (We favor lattices
over Z rather than their analogues over Q (or over Z(p) for some p) because we
will work with isomorphism classes rather than isogeny classes; cf. Remark 1.7.)

Definition 1.1 [Lan 2008, Definition 1.2.1.5]. Let a PEL-typeO-lattice (L , 〈 · ,· 〉,h)
be given as above. For any Z-algebra R, set

G(R) :=
{
(g, r) ∈ GLO⊗Z R(L ⊗Z R)×Gm(R) : 〈gx, gy〉 = r〈x, y〉,∀x, y ∈ L

}
.

In other words, G(R) is the group of symplectic automorphisms of L⊗Z R (respect-
ing the pairing 〈 · , · 〉 up to a scalar multiple; cf. [Lan 2008, Definition 1.1.4.11]).
For any Z-algebra homomorphism R→ R′, we have by definition a natural homo-
morphism G(R)→ G(R′), making G a group functor (or in fact an affine group
scheme) over Z.

The projection to the second factor (g, r) 7→ r defines a morphism ν : G→Gm,
which we call the similitude character. For simplicity, we shall often denote
elements (g, r) in G by simply g, and denote by ν(g) the value of r when we need
it. (If L 6= {0}, then the value of r is uniquely determined by g. Hence there is
little that we lose when suppressing r from the notation. However, this is indeed an
abuse of notation when L = {0}, in which case we have G=Gm.)

Let � be any set of rational primes. (It can be either an empty set, a finite
set, or an infinite set.) We denote by Z(�) the unique localization of Z (at the
multiplicative subset of Z generated by nonzero integers prime to �) having � as
its set of height one primes, and denote by Ẑ� (resp. A∞,�, resp. A�) the integral
adeles (resp. finite adeles, resp. adeles) away from �. Then we have definitions
for G(Q), G(A∞,�), G(A∞), G(R), G(A�), G(A), G(Z), G(Z/nZ), G(Ẑ�), G(Ẑ),
U�(n) := ker(G(Ẑ�) → G(Ẑ�/nẐ�) = G(Z/nZ)) for any n prime to �, and
U(n) := ker(G(Ẑ)→ G(Ẑ/nẐ)= G(Z/nZ)).

Following Pink [1990, 0.6], we define the neatness of open compact subgroupsH
of G(Ẑ�) as follows: View G(Ẑ�) as a subgroup of GLO⊗ZẐ�(L⊗Z Ẑ�)×Gm(Ẑ

�).
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(Or we may use any faithful linear algebraic representation of G.) Then, for each
rational prime p > 0 not in �, it makes sense to talk about eigenvalues of elements
gp in G(Zp), which are elements in Q̄×p . Let g = (gp) ∈ G(Ẑ�), with p running
through rational primes such that � - p. For each such p, let 0gp be the subgroup
of Q̄×p generated by eigenvalues of gp. For any embedding Q̄ ↪→ Q̄p, consider the
subgroup (Q̄× ∩0gp)tors of torsion elements of Q̄× ∩0gp , which is independent of
the choice of the embedding Q̄ ↪→ Q̄p.

Definition 1.2 [Lan 2008, Definition 1.4.1.8]. We say that g = (gp) is neat if⋂
p 6∈�(Q̄

×
∩0gp)tors = {1}. We say that an open compact subgroup H of G(Ẑ�) is

neat if all its elements are neat.

Remark 1.3. The usual Serre’s lemma that no nontrivial root of unity can be
congruent to 1 modulo n if n ≥ 3 shows that H is neat if H⊂ U�(n) for some n ≥ 3
such that � - n.

Remark 1.4. Definition 1.2 makes no reference to the group G(Q) of rational
elements. For the related notion of neatness for arithmetic groups, see [Borel 1969,
17.1].

1B. Definition of moduli problems. Let us fix a PEL-type O-lattice (L , 〈 · , · 〉, h)
as in the previous section. Let F0 be the reflex field of (L ⊗Z R, 〈 · , · 〉, h) defined
as in [Kottwitz 1992, page 389] or [Lan 2008, Definition 1.2.5.4]. We shall denote
the ring of integers in F0 by OF0 , and use similar notations for other number fields.
(This is in conflict with the notation of the order O, but the precise interpretation
will be clear from the context.)

Let Disc = DiscO/Z be the discriminant of O over Z (as in [Lan 2008, Defini-
tion 1.1.1.6]; see also [Lan 2008, Proposition 1.1.1.12]). Closely related to Disc is
the invariant Ibad for O defined in [Lan 2008, Definition 1.2.1.17], which is either 2
or 1, depending on whether type D factors are involved. Let L#

:= {x ∈ L ⊗Z Q :

〈x, y〉 ∈Z(1),∀y ∈ L} denote the dual lattice of L with respect to the pairing 〈 · , · 〉.

Definition 1.5. We say that a prime number p is bad if p| Ibad Disc[L#
: L]. We

say a prime number p is good if it is not bad. We say that � is a set of good primes
if it does not contain any bad primes.

Let us fix a choice of a set � of good primes. By abuse of notation, let OF0,(�) be
the localization of OF0 at the multiplicative set generated by rational prime numbers
not in �. Let S0 := Spec(OF0,(�)) and let (Sch /S0) be the category of schemes
over S0. For any open compact subgroup H of G(Ẑ�), there is an associated moduli
problem MH defined as follows:

Definition 1.6 [Lan 2008, Definition 1.4.1.4]. The moduli problem MH is de-
fined as the category fibered in groupoids over (Sch /S0) whose fiber over each
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S is the groupoid MH(S) described as follows: The objects of MH(S) are tuples
(G, λ, i, αH), where:

(1) G is an abelian scheme over S.

(2) λ : G→ G∨ is a polarization of degree prime to �.

(3) i : O → EndS(G) defines an O-structure of (G, λ) (satisfying the Rosati
condition i(b)∨ ◦ λ= λ ◦ i(b?) for any b ∈O).

(4) LieG/S with its O⊗Z Z(�)-module structure given naturally by i satisfies the
determinantal condition in [Lan 2008, Definition 1.3.4.2] given by

(L ⊗Z R, 〈 · , · 〉, h).

(5) αH is an (integral) level-H structure of (G, λ, i) of type (L ⊗Z Ẑ�, 〈 · , · 〉) as
in [Lan 2008, Definition 1.3.7.8].

The isomorphisms (G, λ, i, αH)∼isom. (G ′, λ′, i ′, α ′H) of MH(S) are given by (naive)
isomorphisms f : G −→∼ G ′ such that λ= f ∨ ◦ λ′ ◦ f , f ◦ i(b)= i ′(b) ◦ f for all
b ∈O, and f ◦αH = α

′
H (symbolically).

Remark 1.7. The definition here using isomorphism classes is not as canonical
as the ones proposed by Grothendieck and Deligne using quasiisogeny classes (as
in [Kottwitz 1992]). For the relation between their definitions and ours, see [Lan
2008, §1.4]. We introduce the definition (using isomorphisms) here mainly because
this is the definition most concrete for the study of compactifications.

Theorem 1.8 [Lan 2008, Theorem 1.4.1.12 and Corollary 7.2.3.10]. The moduli
problem MH is a smooth separated algebraic stack of finite type over S0. It is
representable by a quasiprojective scheme if the objects it parametrizes have no
nontrivial automorphism, which is in particular the case when H is neat (as in
Definition 1.2).

We shall insist from now on the following technical condition on PEL-type
O-lattices:

Condition 1.9 [Lan 2008, Condition 1.4.3.9]. The PEL-typeO-lattice (L , 〈 · , · 〉, h)
is chosen such that the action of O on L extends to an action of some maximal order
O′ in B containing O.

1C. Cusp labels. Although there is no rational boundary components in the theory
of arithmetic compactifications (in mixed characteristics), we have developed in
[Lan 2008, §5.4] the notion of cusp labels that serves a similar purpose. (While
G(Q) plays an important role in the analytic theory over C, it does not play any
obvious role in the algebraic theory over OF0,(�). This is partly due to the so-called
failure of Hasse’s principle; see for example [Kottwitz 1992, §8] and [Lan 2008,
Remark 1.4.3.11].)
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Unlike in the analytic theory over C, where boundary components are naturally
parametrized by group-theoretic objects, the only algebraic machinery we have is
the theory of semiabelian degenerations of abelian varieties with PEL structures.
The cusp labels are (by their very design) part of the parameters (which we call the
degeneration data) for such (semiabelian) degenerations.

Definition 1.10 [Lan 2008, §1.2.6]. Let R be any noetherian Z-algebra. Suppose
we have an increasing filtration F = {F−i } on L ⊗Z R, indexed by nonpositive
integers −i , such that F0 = L ⊗Z R.

(1) We say that F is integrable if, for any i , GrF
−i := F−i/F−i−1 is integrable in the

sense that GrF
−i
∼= Mi ⊗Z R (as R-modules) for some O-lattice Mi .

(2) We say that F is split if there exists (noncanonically) some isomorphism
GrF
:= ⊕i GrF

−i −→
∼ F0 of R-modules.

(3) We say that F is admissible if it is both integrable and split.

(4) Let m be an integer. We say that F is m-symplectic with respect to (L , 〈 · , · 〉)
if, for any i , F−m+i and F−i are annihilators of each other under the pairing
〈 · , · 〉 on F0.

We shall only work with m = 3, and we shall suppress m in what follows. The
fact that Ẑ� involves bad primes (cf. Definition 1.5) is the main reason that we
may have to allow nonprojective filtrations.

Definition 1.11 [Lan 2008, Definition 5.2.7.1]. We say that a symplectic admissible
filtration Z on L ⊗Z Ẑ� is fully symplectic with respect to (L , 〈 · , · 〉) if there is a
symplectic admissible filtration ZA� = {Z−i,A�} on L ⊗Z A� that extends Z in the
sense that Z

−i,A� ∩ (L ⊗Z Ẑ�)= Z−i in L ⊗Z A� for all i .

Definition 1.12 [Lan 2008, Definition 5.2.7.3]. A symplectic-liftable admissible
filtration Zn on L/nL is called fully symplectic-liftable with respect to (L , 〈 · , · 〉)
if it is the reduction modulo n of some admissible filtration Z on L ⊗Z Ẑ� that is
fully symplectic with respect to (L , 〈 · , · 〉) as in Definition 1.11.

Degenerations into semiabelian schemes induce filtrations on Tate modules and
on Lie algebras of the generic fibers. While the symplectic-liftable admissible
filtrations represent (certain orbits of) filtrations on L ⊗Z Ẑ� induced by filtrations
on Tate modules via the level structures, the fully symplectic-liftable ones are
equipped with (certain orbits of) filtrations on L ⊗Z R induced by the filtrations on
Lie algebras via the Lie algebra condition (4) in Definition 1.6. (One may interpret
the Lie algebra condition as the “de Rham” (or rather “Hodge”) component of a
certain “complete level structure”, the direct product of whose “`-adic” components
being a level structure in the usual sense.) Such (orbits of) filtrations are the crudest
invariants of degenerations we consider.
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Definition 1.13 [Lan 2008, Definition 5.4.1.3]. Given a fully symplectic admissible
filtration Z on L ⊗Z Ẑ� with respect to (L , 〈 · , · 〉) as in Definition 1.11, a torus
argument 8 for Z is a tuple 8 := (X, Y, φ, ϕ−2, ϕ0), where:

(1) X and Y are O-lattices of the same O-multirank (see [Lan 2008, Defini-
tion 5.2.2.5]), and φ : Y ↪→ X is an O-equivariant embedding.

(2) ϕ−2 : GrZ
−2 −→

∼ Hom
Ẑ�(X ⊗Z Ẑ�, Ẑ�(1)) and ϕ0 : GrZ

0 −→
∼ Y ⊗Z Ẑ� are

isomorphisms (of Ẑ�-modules) such that the pairing 〈 · , · 〉20 : GrZ
−2×GrZ

0→

Ẑ�(1) defined by Z is the pullback of the pairing

〈 · , · 〉φ : Hom
Ẑ�(X ⊗Z Ẑ�, Ẑ�(1))× (Y ⊗Z Ẑ�)→ Ẑ�(1)

defined by the composition

Hom
Ẑ�(X ⊗Z Ẑ�, Ẑ�(1))× (Y ⊗Z Ẑ�)

Id×φ
→ Hom

Ẑ�(X ⊗Z Ẑ�, Ẑ�(1))× (X ⊗Z Ẑ�)→ Ẑ�(1),

with the sign convention that 〈 · , · 〉φ(x, y) = x(φ(y)) = (φ(y))(x) for any
x ∈ Hom

Ẑ�(X ⊗Z Ẑ�, Ẑ�(1)) and any y ∈ Y ⊗Z Ẑ�.

Definition 1.14 [Lan 2008, Definitions 5.4.1.4 and 5.4.1.5]. Given a fully symplectic-
liftable admissible filtration Zn on L/nL with respect to (L , 〈 · , · 〉) as in Definition
1.12, a torus argument 8n at level n for Zn is a tuple 8n := (X, Y, φ, ϕ−2,n, ϕ0,n),
where:

(1) X and Y are O-lattices of the same O-multirank, and φ : Y ↪→ X is an
O-equivariant embedding.

(2) ϕ−2,n : GrZ
−2,n −→

∼ Hom(X/nX, (Z/nZ)(1)) (resp. ϕ0,n : GrZ
0,n −→
∼ Y/nY ) is

an isomorphism that is the reduction modulo n of some isomorphism ϕ−2 :

GrZ
−2 −→
∼ Hom

Ẑ�(X ⊗Z Ẑ�, Ẑ�(1)) (resp. ϕ0 :GrZ
0 −→
∼ (Y ⊗Z Ẑ�)), such that

8= (X, Y, φ, ϕ−2, ϕ0) form a torus argument as in Definition 1.13.
We say in this case that 8n is the reduction modulo n of 8.

Two torus arguments8n = (X, Y, φ, ϕ−2,n, ϕ0,n) and8′n = (X
′, Y ′, φ′, ϕ′

−2,n, ϕ
′

0,n)

at level n are equivalent if and only if there exists a pair of isomorphisms

(γX : X ′ −→∼ X, γY : Y −→∼ Y ′)

(of O-lattices) such that φ = γXφ
′γY , ϕ′

−2,n =
tγXϕ−2,n , and ϕ′0,n = γYϕ0,n . In

this case, we say that 8n and 8′n are equivalent under the pair of isomorphisms
γ = (γX , γY ), which we denote as γ = (γX , γY ) :8n −→

∼ 8′n .

The torus arguments record the isomorphism classes of the torus parts of de-
generations of abelian schemes with PEL structures. These are the second crudest
invariants of degenerations we consider.
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Definition 1.15 [Lan 2008, Definition 5.4.1.9]. A (principal) cusp label at level n
for a PEL-type O-lattice (L , 〈 · , · 〉, h), or a cusp label of the moduli problem Mn ,
is an equivalence class [(Zn,8n, δn)] of triples (Zn,8n, δn), where:

(1) Zn is an admissible filtration on L/nL that is fully symplectic-liftable in the
sense of Definition 1.12.

(2) 8n is a torus argument at level n for Zn .

(3) δn : GrZ
n −→
∼ L/nL is a liftable splitting.

Two triples (Zn,8n, δn) and (Z′n,8
′
n, δ
′
n) are equivalent if Zn and Z′n are identical,

and if 8n and 8′n are equivalent as in Definition 1.14.

The liftable splitting δn in any triple (Zn,8n, δn) is noncanonical and auxiliary
in nature. Such splittings are needed for analyzing the “degeneration of pairings” in
general PEL cases (unlike in the special case in [Faltings and Chai 1990, Chapter IV,
§6]).

To proceed from principal cusp labels at level n to general cusp labels at level
H, where H is an open compact subgroup of G(Ẑ�), we form étale orbits of
the objects we have thus defined. The precise definitions are complicated (see
[Lan 2008, Definitions 5.4.2.1, 5.4.2.2, and 5.4.2.4]) but the idea is simple: For
any H as above, consider those n ≥ 1 sufficiently divisible such that � - n and
U�(n)⊂H. Then we have a compatible system of finite groups Hn =H/U�(n),
and an object at level H is simply defined to be a compatible system of étale
Hn-orbits of objects at running levels n as above. Then we arrive at the notions
of torus arguments 8H = (X, Y, φ, ϕ−2,n, ϕ0,n) at level H, and of representatives
(ZH,8H, δH) of cusp labels [(ZH,8H, δH)] at level H. (The liftability condition is
implicit in such a definition, as in the definition of level structures we omitted.) By
abuse of language, we call these H-orbits of 8= (X, Y, φ, ϕ−2, ϕ0), (Z,8, δ), and
[(Z,8, δ)], respectively.

For simplicity, we shall often omit ZH from the notation.

Lemma 1.16 [Lan 2008, Lemma 5.2.7.5 in the revision]. Let Zn be an admissi-
ble filtration on L/nL that is fully symplectic-liftable with respect to (L , 〈 · , · 〉).
Let (GrZ

−1, 〈 · , · 〉11) be induced by some fully symplectic lifting Z of Zn , and let
(GrZ
−1,R, 〈 · , · 〉11,R, h−1) be determined by [Lan 2008, Proposition 5.1.2.2 in the

revision] by any extension ZA� in Definition 1.11 (which has the same reflex field F0

as (L ⊗Z R, 〈 · , · 〉, h) does). Then there is associated (noncanonically) a PEL-type
O-lattice (LZ

n, 〈 · , · 〉
Z
n, hZ

n) satisfying Condition 1.9 such that:

(1) [(LZ
n)

#
: LZ

n] is prime to �.

(2) There exist (noncanonical) O-equivariant isomorphisms

(GrZ
−1, 〈 · , · 〉11)−→

∼ (LZn ⊗Z Ẑ�, 〈 · , · 〉Zn )
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and

(GrZ
−1,R, 〈 · , · 〉11,R, h−1)−→

∼ (LZn ⊗Z R, 〈 · , · 〉Zn , hZn ).

(3) The moduli problem M
Zn
n defined by the noncanonical (LZn , 〈 · , · 〉Zn , hZn ) as

in Definition 1.6 is canonical in the sense that it depends (up to isomorphism)
only on Zn , but not on the choice of (LZn , 〈 · , · 〉Zn , hZn ).

Definition 1.17 [Lan 2008, Definition 5.4.2.6]. The PEL-type O-lattice

(LZH, 〈 · , · 〉ZH, hZH)

is a fixed (noncanonical) choice of any of the PEL-typeO-lattice (LZn , 〈 · , · 〉Zn , hZn )

in Lemma 1.16 for any element Zn in any ZHn (in ZH={ZHn }, a compatible collection
of étale orbits ZHn at various levels n such that � - n and U�(n)⊂H). The elements
of Hn leaving Zn invariant induce a subgroup of G(LZn ,〈 · ,· 〉Zn ,hZn )(Z/nZ). Let Hh

be the preimage of this subgroup under

G(LZn ,〈 · ,· 〉Zn ,hZn )(Ẑ
�)� G(LZn ,〈 · ,· 〉Zn ,hZn )(Z/nZ).

Then we define MZH
H to be the moduli problem defined by (LZn , 〈 · , · 〉Zn , hZn ) with

level-Hh structures as in Lemma 1.16. (The isomorphism class of this final moduli
problem is independent of the choice of (LZH, 〈 · , · 〉ZH, hZH)= (LZn , 〈 · , · 〉Zn , hZn ).)

Such boundary moduli problems MZH
H are the fundamental building blocks in

the construction of toroidal boundary charts for MH. (They actually appear in the
boundary of the minimal compactification of MH, which we call cusps. They are
parametrized by the cusp labels of MH.)

It is important to study the relations among cusp labels of different multiranks.

Definition 1.18 [Lan 2008, Definition 5.4.1.15]. A surjection

(Zn,8n, δn)� (Z′n,8
′

n, δ
′

n)

between representatives of cusp labels at level n, where 8n = (X, Y, φ, ϕ−2,n, ϕ0,n)

and8′n= (X
′,Y ′,φ′,ϕ′

−2,n,ϕ
′

0,n), is a pair (of surjections) (sX : X � X ′,sY :Y �Y ′)
(of O-lattices) such that:

(1) Both sX and sY are admissible surjections (i.e., with kernels defining filtrations
that are admissible in the sense of Definition 1.10), and they are compatible
with φ and φ′ in the sense that sXφ = φ

′sY .

(2) Z′
−2,n is an admissible submodule of Z−2,n , and the natural embedding GrZ′

−2,n↪→

GrZ−2,n satisfies ϕ−2,n ◦ (GrZ′
−2,n ↪→ GrZ−2,n )= s∗X ◦ϕ

′

−2,n .

(3) Z−1,n is an admissible submodule of Z′
−1,n , and the natural surjection GrZ0,n �

GrZ′
0,n satisfies sY ◦ϕ0,n = ϕ

′

0,n ◦ (GrZ0,n � GrZ′
0,n).
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In this case, we write s = (sX , sY ) : (Zn,8n, δn)� (Z′n,8
′
n, δ
′
n)

By taking orbits as before, there is a corresponding notion for general cusp labels:

Definition 1.19 [Lan 2008, Definition 5.4.2.12]. A surjection (ZH,8H, δH) �
(Z′H,8

′
H, δ

′
H) between representatives of cusp labels at level H, where 8H =

(X, Y, φ, ϕ−2,H, ϕ0,H) and 8′H = (X
′, Y ′, φ′, ϕ′

−2,H, ϕ
′

0,H), is a pair (of surjections)
s = (sX : X � X ′, sY : Y � Y ′) (of O-lattices) such that:

(1) Both sX and sY are admissible surjections, and they are compatible with φ and
φ′ in the sense that sXφ = φ

′sY .

(2) Z′H and (ϕ′
−2,H, ϕ

′

0,H) are assigned to ZH and (ϕ−2,H, ϕ0,H) respectively under
s = (sX , sY ) as in [Lan 2008, Lemma 5.4.2.11].

In this case, we write s = (sX , sY ) : (ZH,8H, δH)� (Z′H,8
′
H, δ

′
H).

Definition 1.20 [Lan 2008, Definition 5.4.2.13]. We say that there is a surjection
from a cusp label at level H represented by some (ZH,8H, δH) to a cusp label at
level H represented by some (Z′H,8

′
H, δ

′
H) if there is a surjection (sX , sY ) from

(ZH,8H, δH) to (Z′H,8
′
H, δ

′
H).

This is well defined by [Lan 2008, Lemma 5.4.1.16].
The surjection among cusp labels can be naturally seen when we have the

so-called two-step degenerations (see [Faltings and Chai 1990, Chapter III, §10]
and [Lan 2008, §4.5.6 in the revision]). This notion will be further developed in
Definitions 1.32, 1.37, and 1.38 below.

1D. Cone decompositions. For any torus argument 8n = (X, Y, φ, ϕ−2,n, ϕ0,n) at
level n, consider the finitely generated commutative group (i.e., Z-module)

...
S8n := ((

1
n Y )⊗Z X)/

(
y⊗ φ(y′)− y′⊗ φ(y)

(b 1
n y)⊗ χ − ( 1

n y)⊗ (b?χ)

)
y,y′∈Y

χ∈X, b∈O

(1.21)

and set S8n :=
...
S8n,free, the free quotient of

...
S8n . (See [Lan 2008, (6.2.3.5) and Con-

vention 6.2.3.26].) Then, for a general torus argument 8H = (X, Y, φ, ϕ−2,H, ϕ0,H)

at level H, there is a recipe [Lan 2008, Lemma 6.2.4.4] that gives a corresponding
free commutative group S8H (which can be identified with a finite index subgroup
of some S8n ).

The group S8H provides indices for certain “Laurent series expansions” near the
boundary strata. In the modular curve case, it is canonically isomorphic to Z, which
means there is a canonical parameter q near the boundary — i.e., the cusps. The
expansion of modular forms with respect to this parameter then gives the familiar
q-expansion along the cusps. The compactification of the modular curves can be
described locally near each of the cusps by Spec(R[q i

]i∈Z) ↪→ Spec(R[q i
]i∈Z≥0)
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for some suitable base ring R. For MH, we would like to have an analogous theory
in which the torus with the character group S8H can be partially compactified
by adding normal crossings divisors in a smooth scheme. This is best achieved
by the theory of toroidal embeddings developed in [Kempf et al. 1973]. Many
terminologies in such a theory will naturally show up in our description of the
toroidal boundary charts, and we will review them in what follows.

Let S∨8H :=HomZ(S8H,Z) be the Z-dual of S8H , and let (S8H)∨R :=S∨8H⊗Z R=

HomZ(S8H,R). By construction of S8H , the R-vector space (S8H)∨R is isomorphic
to the space of Hermitian pairings (| · , · |) : (Y⊗ZR)×(Y⊗ZR)→O⊗ZR= B⊗

Q
R,

by sending a Hermitian pairing (| · , · |) to the function y⊗ φ(y′) 7→ TrB/Q(|y, y′|)
in HomR((Y ⊗Z R)× (Y ⊗Z R),R)∼= (S8H)∨R. (See [Lan 2008, Lemma 1.1.4.6].)

Definition 1.22 [Lan 2008, beginning of §6.1.1]. (1) A subset of (S8H)∨R is called
a cone if it is invariant under the natural multiplication action of R×>0 on the
R-vector space (S8H)∨R.

(2) A cone in (S8H)∨R is nondegenerate if its closure does not contain any nonzero
R-vector subspace of (S8H)∨R.

(3) A rational polyhedral cone in (S8H)∨R is a cone in (S8H)∨R of the form σ =

R>0v1+ . . .+R>0vn with v1, . . . , vn ∈ (S8H)∨Q = S∨8H ⊗Z Q.

(4) A supporting hyperplane of σ is a hyperplane P in (S8H)∨R such that σ does
not overlap with both sides of P .

(5) A face of σ is a rational polyhedral cone τ such that τ = σ ∩ P for some
supporting hyperplane P of σ . (Here an overline on a cone means its closure
in the ambient space (S8H)∨R.)

Let P8H be the subset of (S8H)∨R corresponding to positive semidefinite Hermitian
pairings (| · , · |) : (Y⊗ZR)×(Y⊗ZR)→ B⊗

Q
R, with radical (namely the annihilator

of the whole space) admissible in the sense that it is the R-span of some admissible
submodule Y ′ of Y . (We say a submodule Y ′ of Y is admissible if Y ′ ⊂ Y defines
an admissible filtration on Y ; cf. Definition 1.10. In particular, the quotient Y/Y ′ is
also an O-lattice.)

Definition 1.23 [Lan 2008, Definitions 6.2.4.1 and 5.4.1.6]. The group 08H is the
subgroup of elements γ = (γX , γY ) in GLO(X)×GLO(Y ) satisfying φ = γXφγY ,
ϕ−2,H =

tγXϕ−2,H, and ϕ0,H = γYϕ0,H (if we view the latter two as collections of
orbits).

The group 08H acts on S8H , and its induced action preserves the subset P8H
of (S8H)∨R. (The group 08H is the automorphism group of the torus argument 8H.
Such automorphism groups show up naturally because torus arguments are only
determined up to isomorphism.)
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Definition 1.24 [Lan 2008, Definition 6.1.1.12]. A 08H-admissible rational poly-
hedral cone decomposition of P8H is a collection 6 = {σ j } j∈J with some indexing
set J such that:

(1) Every σ j is a nondegenerate rational polyhedral cone.

(2) P8H is the disjoint union of all the σ j ’s in 6. For each j ∈ J , the closure of σ j

in P8H is a disjoint union of σk’s with k ∈ J . In other words, P8H =
∐

j∈J σ j

is a stratification of P8H .

(3) 6 is invariant under the action of 08H on (S8H)∨R, in the sense that 08H
permutes the cones in 6. Under this action, the set 6/08H of 08H-orbits is
finite.

Definition 1.25 [Lan 2008, Definition 6.1.1.13]. A rational polyhedral cone σ in
(S8H)∨R is smooth with respect to the integral structure given by S∨8H if we have
σ = R>0v1+ . . .+R>0vn with v1, . . . , vn part of a Z-basis of S∨8H .

Definition 1.26 [Lan 2008, Definition 6.1.1.14]. A 08H-admissible smooth ratio-
nal polyhedral cone decomposition of P8H is a 08H-admissible rational polyhedral
cone decomposition {σ j } j∈J of P8H in which every σ j is smooth.

Definition 1.27 [Lan 2008, Definition 7.3.1.1]. Let

68H = {σ j } j∈J

be any 08H-admissible rational polyhedral cone decomposition of P8H . An
(invariant) polarization function on P8H for the cone decomposition 68H is a
08H-invariant continuous piecewise linear function pol8H : P8H→ R≥0 such that:

(1) pol8H is linear (i.e., coincides with a linear function) on each cone σ j in 68H .
(In particular, pol8H(t x)= tpol8H(x) for any x ∈ P8H and t ∈ R≥0.)

(2) pol8H((P8H∩S∨8H)−{0})⊂Z>0. (In particular, pol8H(x)> 0 for any nonzero
x in P8H .)

(3) pol8H is linear (in the above sense) on a rational polyhedral cone σ in P8H if
and only if σ is contained in some cone σ j in 68H .

(4) For any x, y ∈ S8H , we have pol8H(x + y) ≥ pol8H(x)+ pol8H(y). This is
called the convexity of pol8H .

If such a polarization function exists, then we say that the 08H-admissible rational
polyhedral cone decomposition 68H is projective.

Definition 1.28. An admissible boundary component of P8H is the image of P8′H
under the embedding (S8′H)

∨

R ↪→ (S8H)∨R defined by some surjection (8H, δH)�
(8′H, δ

′
H). (See Definition 1.19.)

We shall always assume that the following technical condition is satisfied:
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Condition 1.29 (cf. [Faltings and Chai 1990, Chapter IV, Remark 5.8(a)]; see
also [Lan 2008, Condition 6.2.5.25 in the revision]). The cone decomposition
68H = {σ j } j∈J of P8H is chosen such that, for any j ∈ J , if γ σ j ∩ σ j 6= {0} for
some γ ∈ 08H , then γ acts as the identity on the smallest admissible boundary
component of P8H containing σ j .

This condition is used to ensure that there are no self-intersections of toroidal
boundary strata when the level H is neat.

To describe the toroidal boundary of MH, we will need not only cusp labels but
also the cones:

Definition 1.30 [Lan 2008, Definition 6.2.6.1]. Let (8H, δH) and (8′H, δ
′
H) be two

representatives of cusp labels at level H, let σ ⊂ (S8H)∨R, and let σ ′ ⊂ (S8′H)
∨

R. We
say that the two triples (8H, δH, σ ) and (8′H, δ

′
H, σ

′) are equivalent if there exists
a pair of isomorphisms γ = (γX : X ′ −→∼ X, γY : Y −→∼ Y ′) (of O-lattices) such that:

(1) The two representatives (8H, δH) and (8′H, δ
′
H) are equivalent under γ (as in

[Lan 2008, Definition 5.4.2.4], the general level analogue of Definition 1.15).

(2) The isomorphism (S8′H)
∨

R −→
∼ (S8H)∨R induced by γ sends σ ′ to σ .

In this case, we say that the two triples (8H, δH, σ ) and (8′H, δ
′
H, σ

′) are equivalent
under the pair of isomorphisms γ = (γX , γY ).

Definition 1.31 [Lan 2008, Definition 6.2.6.2]. Let (8H, δH) and (8′H, δ
′
H) be

two representatives of cusp labels at level H, and let 68H (resp. 68′H) be a
08H-admissible (resp. 08′H-admissible) smooth rational polyhedral cone decom-
position of P8H (resp. P8′H). We say that the two triples (8H, δH, 68H) and
(8′H, δ

′
H, 68′H) are equivalent if (8H, δH) and (8′H, δ

′
H) are equivalent under some

pair of isomorphisms γ = (γX : X ′ −→∼ X, γY : Y −→∼ Y ′), and if under one (and
hence every) such γ the cone decomposition68H of P8H is identified with the cone
decomposition 68′H of P8′H . In this case we say that the two triples (8H, δH, 68H)
and (8′H, δ

′
H, 68′H) are equivalent under the pair of isomorphisms γ = (γX , γY ).

The compatibility among cone decompositions over different cusp labels is
described as follows:

Definition 1.32 [Lan 2008, Definition 6.2.6.4]. Let (8H, δH) and (8′H, δ
′
H) be

two representatives of cusp labels at level H, and let 68H (resp. 68′H) be a
08H-admissible (resp. 08′H-admissible) smooth rational polyhedral cone decom-
position of P8H (resp. P8′H). A surjection (8H, δH, 68H) � (8′H, δ

′
H, 68′H) is

given by a surjection s = (sX : X � X ′, sY : Y � Y ′) : (8H, δH)� (8′H, δ
′
H) (see

Definition 1.19) that induces an embedding P8′H ↪→ P8H such that the restriction
68H |P8′H

of the cone decomposition68H of P8H to P8′H is the cone decomposition
68′H of P8′H .
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This allows us to define:

Definition 1.33 [Lan 2008, Condition 6.3.3.1 and Definition 6.3.3.2]. A compatible
choice of admissible smooth rational polyhedral cone decomposition data for MH is
a complete set6={68H} of compatible choices of68H (satisfying Condition 1.29)
such that, for every surjection (8H, δH)� (8′H, δ

′
H) of representatives of cusp labels,

the cone decompositions 68H and 68′H define a surjection (8H, δH, 68H) �
(8′H, δ

′
H, 68′H) as in Definition 1.32.

Definition 1.34 [Lan 2008, Definition 7.3.1.3]. We say that a compatible choice
6 = {68H} of admissible smooth rational polyhedral cone decomposition data for
MH (see Definition 1.33) is projective if it satisfies the following condition: There
is a collection pol = {pol8H : P8H → R≥0} of polarization functions labeled by
representatives (8H, δH) of cusp labels, each pol8H being a polarization function
of the cone decomposition 68H in 6 (see Definition 1.27), which are compatible
in the following sense: For any surjection (8H, δH)� (8′H, δ

′
H) of representatives

of cusp labels (see Definition 1.19) inducing an embedding P8′H ↪→ P8H , we have
pol8H |P8′H

= pol8′H .

The most important relations among cone decompositions and among compatible
choices of them are the so-called refinements:

Definition 1.35 [Lan 2008, Definition 6.2.6.3]. Let (8H, δH) and (8′H, δ
′
H) be

two representatives of cusp labels at level H, and let 68H (resp. 68′H) be a
08H-admissible (resp. 08′H-admissible) smooth rational polyhedral cone decom-
position of P8H (resp. P8′H). We say that the triple (8H, δH, 68H) is a refinement
of the triple (8′H, δ

′
H, 68′H) if (8H, δH) and (8′H, δ

′
H) are equivalent under some

pair of isomorphisms γ = (γX , γY ), and if under one (and hence every) such γ
the cone decomposition 68H of P8H is identified with a refinement of the cone
decomposition 68′H of P8′H . In this case we say that the triple (8H, δH, 68H) is a
refinement of the triple (8′H, δ

′
H, 68′H) under the pair of isomorphisms γ = (γX , γY ).

Definition 1.36 [Lan 2008, Definition 6.4.2.2]. Let 6 = {68H} and 6′ = {6′8H}
be two compatible choices of admissible smooth rational polyhedral cone decom-
position data for MH. We say that 6 refines 6′ if the triple (8H, δH, 68H) is a
refinement of the triple (8H, δH, 6′8H), as in Definition 1.35, for (8H, δH) running
through all representatives of cusp labels.

Finally, we would like to describe the relations among the equivalence classes
[(8H, δH, σ )], which will describe the “incidence relations” among (closures of)
the toroidal boundary strata.

Definition 1.37 [Lan 2008, Definition 6.3.2.14]. Let (8H, δH) be a representative
of a cusp label at level H, and let σ ⊂ P+8H be a nondegenerate smooth rational
polyhedral cone. We say that a triple (8′H, δ

′
H, σ

′) is a face of (8H, δH, σ ) if:
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(1) (8′H, δ
′
H) is the representative of some cusp label at level H, such that there

exists a surjection s = (sX , sY ) : (8H, δH)� (8′H, δ
′
H) as in Definition 1.19.

(2) σ ′⊂P+8′H is a nondegenerate smooth rational polyhedral cone, such that for one
(and hence every) surjection s = (sX , sY ) as above, the image of σ ′ under the
induced embedding P8′H ↪→ P8H is contained in the 08H-orbit of a face of σ .

Note that this definition is insensitive to the choices of representatives in the
classes [(8H, δH, σ )] and [(8′H, δ

′
H, σ

′)]. This justifies the following:

Definition 1.38 [Lan 2008, Definition 6.3.2.15]. We say that the equivalence class
[(8′H, δ

′
H, σ

′)] of (8′H, δ
′
H, σ

′) is a face of the equivalence class [(8H, δH, σ )]
of (8H, δH, σ ) if some triple equivalent to (8′H, δ

′
H, σ

′) is a face of some triple
equivalent to (8H, δH, σ ).

1E. Arithmetic toroidal compactifications.

Definition 1.39 [Lan 2008, Definition 5.3.2.1]. Let S be a normal locally noetherian
algebraic stack. A tuple (G, λ, i, αH) over S is called a degenerating family of type
MH, or simply a degenerating family when the context is clear, if there exists a
dense subalgebraic stack S1 of S, such that S1 is defined over Spec(OF0,(�)), and
such that:

(1) By viewing group schemes as relative schemes (cf. [Hakim 1972]), G is a
semiabelian scheme over S whose restriction GS1 to S1 is an abelian scheme. In
this case, the dual semiabelian scheme G∨ exists (up to unique isomorphism),
whose restriction G∨S1

to S1 is the dual abelian scheme of GS1 .

(2) λ :G→G∨ is a group homomorphism that induces by restriction a prime-to-�
polarization λS1 of GS1 .

(3) i :O→EndS(G) is a homomorphism that defines by restriction an O-structure
iS1 :O→ EndS1(GS1) of (GS1, λS1).

(4) (GS1, λS1, iS1, αH)→ S1 defines a tuple parametrized by the moduli problem
MH.

We will only talk about (semiabelian) degenerations (of abelian varieties with
PEL structures) of this form.

Definition 1.40 [Lan 2008, Definition 6.3.1]. Let (G, λ, i, αH) be a degenerating
family of type MH over S (as in Definition 1.39) over S0 = Spec(OF0,(�)). Let
Lie∨G/S := e∗G�

1
G/S be the dual of LieG/S , and let Lie∨G∨/S := e∗G�

1
G∨/S be the

dual of LieG∨/S . Note that λ : G → G∨ induces an O-equivariant morphism
λ∗ : Lie∨G∨/S→ Lie∨G/S . (Here the O-action on Lie∨G/S is a left action after twisting
by the involution ? .) Then we define the sheaf KS=KS(G,λ)/S =KS(G,λ,i,αH)/S by
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setting

KS := (Lie∨G/S ⊗OS
Lie∨G∨/S)/

(
λ∗(y)⊗ z− λ∗(z)⊗ y

(b?x)⊗ y− x ⊗ (by)

)
x ∈Lie∨G/S

y,z ∈Lie∨G∨/S
b∈O

.

Analogues of the sheaf KS appear naturally in the deformation theory of abelian
varieties with PEL structures (without degenerations). The point of Definition 1.40 is
that it extends the conventional definition (for abelian schemes with PEL structures)
to the context of (semiabelian) degenerating families (see Definition 1.39).

Theorem 1.41 [Lan 2008, Theorems 6.4.1.1 and 7.3.3.4]. To each compatible
choice 6 = {68H} of admissible smooth rational polyhedral cone decomposition
data as in Definition 1.33, there is associated a proper smooth algebraic stack
Mtor
H,6 over S0 = Spec(OF0,(�)), which is an algebraic space when H is neat (as in

Definition 1.2), containing MH as an open dense subalgebraic stack, together with
a degenerating family (G, λ, i, αH) over Mtor

H (as in Definition 1.39) such that:

(1) The restriction (GMH, λMH, iMH, αH) of the degenerating family (G, λ, i, αH)
to MH is the tautological (i.e., universal) tuple over MH.

(2) Mtor
H has a stratification by locally closed subalgebraic stacks

Mtor
H,6 =

∐
[(8H,δH,σ )]

Z[(8H,δH,σ )],

with [(8H, δH, σ )] running through a complete set of equivalence classes of
(8H, δH, σ ) (as in Definition 1.30) with σ ⊂ P+8H and σ ∈ 68H ∈ 6. (Here
ZH is suppressed in the notation by our convention.)

In this stratification, the [(8′H, δ
′
H, σ

′)]-stratum Z[(8′H,δ ′H,σ ′)] lies in the clo-
sure of the [(8H, δH, σ )]-stratum Z[(8H,δH,σ )] if and only if [(8H, δH, σ )] is a
face of [(8′H, δ

′
H, σ

′)] as in Definition 1.38.
The [(8H, δH, σ )]-stratum Z[(8H,δH,σ )] is smooth and isomorphic to the

support of the formal algebraic stack X8H,δH,σ/08H,σ for any representative
(8H, δH, σ ) of [(8H, δH, σ )], where the formal algebraic stack X8H,δH,σ (be-
fore quotient by 08H,σ , the subgroup of 08H formed by elements mapping σ to
itself) admits a canonically defined structure of a torus-torsor over an abelian
scheme over the smooth algebraic stack MZH

H in Definition 1.17. (Note that
ZH and the isomorphism class of MZH

H depend only on the class [(8H, δH, σ )],
but not on the choice of the representative (8H, δH, σ ).)

In particular, MH is an open dense stratum in this stratification.

(3) The complement of MH in Mtor
H,6 (with its reduced structure) is a relative Cartier

divisor D∞,H with normal crossings, such that each connected component of a
stratum of Mtor

H −MH is open dense in an intersection of irreducible components
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of D∞,H (including possible self-intersections). WhenH is neat, the irreducible
components of D∞,H have no self-intersections (cf. Condition 1.29, [Lan 2008,
Remark 6.2.5.26 in the revision], and [Faltings and Chai 1990, Chapter IV,
Remark 5.8(a)]).

(4) The extended Kodaira–Spencer morphism [Lan 2008, Definition 4.6.3.32] for
G→Mtor

H induces an isomorphism

KSG/Mtor
H /S0 : KSG/Mtor

H
−→∼ �1

Mtor
H /S0
[d log∞]

(see Definition 1.40). Here the sheaf �1
Mtor
H /S0
[d log∞] is the sheaf of modules

of log 1-differentials on Mtor
H over S0, with respect to the relative Cartier divisor

D∞,H with normal crossings.

(5) The formal completion
(Mtor

H )
∧

Z[(8H,δH,σ )]

of Mtor
H along the [(8H, δH, σ )]-stratum Z[(8H,δH,σ )] is canonically isomor-

phic to the formal algebraic stack X8H,δH,σ/08H,σ for any representative
(8H, δH, σ ) of [(8H, δH, σ )]. (To form the formal completion along a given
locally closed stratum, we first remove the other strata appearing in the closure
of this stratum from the total space, and then form the formal completion of
the remaining space along this stratum.)

This isomorphism respects stratifications in the sense that, given any for-
mally étale morphism Spf(R, I )→ X8H,δH,σ/08H,σ inducing a morphism
Spec(R)→48H,δH(σ )/08H,σ , the stratification of Spec(R) (inherited from
48H,δH(σ )/08H,σ ; see [Lan 2008, Proposition 6.3.1.6 and Definition 6.3.2.16
in the revision]) makes the induced morphism Spec(R) → Mtor

H a strata-
preserving morphism.

The pullback to (Mtor
H )
∧
Z[(8H,δH,σ )]

of the degenerating family (G, λ, i, αH)
over Mtor

H is the Mumford family

( ♥G, ♥λ, ♥i, ♥αH)

over X8H,δH,σ/08H,σ (see [Lan 2008, §6.2.5]) after we identify the bases using
the isomorphism. (Here both the pullback of (G, λ, i, αH) and the Mumford
family ( ♥G, ♥λ, ♥i, ♥αH) are considered as relative schemes with additional
structures; cf. [Hakim 1972].)

(6) Let S be an irreducible noetherian normal scheme over S0. Suppose we have a
degenerating family (G†, λ†, i†, α

†
H) of type MH over S as in Definition 1.39.

Then (G†, λ†, i†, α
†
H) → S is the pullback of (G, λ, i, αH) → Mtor

H via a
(necessarily unique) morphism S→Mtor

H (over S0) if and only if the following
condition is satisfied:
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Consider any dominant morphism Spec(V )→ S centered at a geometric
point s̄ of S, where V is a complete discrete valuation ring with quotient field
K , algebraically closed residue field k, and discrete valuation υ. Let

(G‡, λ‡, i‡, α
‡
H)→ Spec(V )

be the pullback of (G†, λ†, i†, α
†
H)→ S. This pullback family defines an object

of DEGPEL,MH over Spec(V ), which corresponds to a tuple

(A‡, λ
‡
A, i‡

A, X‡, Y ‡, φ‡, c‡, (c∨)‡, τ ‡, [(α
\
H)

‡
])

in DDPEL,MH (under [Lan 2008, Theorem 5.3.1.17]). Then we have a fully
symplectic-liftable admissible filtration Z‡

H determined by [(α\H)
‡
]. Moreover,

the étale sheaves X‡ and Y ‡ are necessarily constant, because the base ring V
is strict local. Hence it makes sense to say we also have a uniquely determined
torus argument 8‡

H at level H for Z‡
H.

On the other hand, we have objects8H(G‡), S8H(G‡), and B(G‡) (see [Lan
2008, Construction 6.3.1.1]), which define objects 8‡

H, S
8

‡
H

and in particular
B‡
: S

8
‡
H
→ Inv(V ) over the special fiber. Then

υ ◦ B‡
: S

8
‡
H
→ Z

defines an element of S∨
8

‡
H

, where υ : Inv(V )→Z is the homomorphism induced
by the discrete valuation of V .

Then the condition is that, for any Spec(V )→ S as above, and for any
choice of δ‡

H (which is immaterial, because this choice will not be used), there
is a cone σ ‡ in the cone decomposition 6

8
‡
H

of P
8

‡
H

(given by the choice of 6;
cf. Definition 1.33) such that σ ‡ contains all the υ ◦ B‡ obtained in this way.

(7) If H is neat and 6 is projective (see Definition 1.34), then Mtor
H,6 is projective

(and hence a scheme) over S0.

Statement (1) means the tautological tuple over MH extends to a degenerating
family (G, λ, i, αH) over Mtor

H . (Since Mtor
H is normal, this extension is unique by

a result of Raynaud; see [Raynaud 1970, IX, 1.4] or [Faltings and Chai 1990,
Chapter I, Proposition 2.7].) Statements (2)–(5) and (7) are self-explanatory. State-
ment (6) can be interpreted as a “universal property” for the degenerating family
(G, λ, i, αH)→Mtor

H among degenerating families over normal locally noetherian
bases, as in Definition 1.39, satisfying moreover some conditions describing the
“degenerating patterns” over pullbacks to complete discrete valuation rings with
algebraically closed residue fields. This “universal property” will be crucial in the
main construction of this article (in Section 3A below).
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2. Kuga families and their compactifications

Let O, ?, (L , 〈 · , · 〉), h, and � be as in the previous section. Then we have a moduli
problem MH over S0 = Spec(OF0,(�)) for each open compact H of G(Ẑ�), with a
toroidal compactification Mtor

H,6 for each choice of 6.
For simplicity, let us maintain the following:

Convention 2.1. All morphisms between schemes or algebraic stacks over S0 =

Spec(OF0,(�)) will be defined over S0, unless otherwise specified.

2A. PEL-type Kuga families. Let Q be anyO-lattice. Consider the abelian scheme
GMH over MH in (1) of Theorem 1.41. By [Lan 2008, Proposition 5.2.3.8], the
group functor HomO(Q,GMH) over MH is representable by a proper smooth group
scheme which is an extension of a finite étale group scheme, whose rank has no
prime factors other than those of Disc, by an abelian scheme HomO(Q,GMH)

◦,
which we call the fiberwise geometric identity component of HomO(Q,GMH).

Example 2.2. If Q ∼= O⊕s for some integer s ≥ 0, then HomO(Q,GMH)
◦
=

HomO(Q,GMH)
∼= G×s

MH
is the s-fold fiber product of GMH over MH.

Example 2.3. If O ∼= Mk(OF ) and Q is of finite index in O⊕k
F for some integer

k ≥ 1, then the relative dimension of HomO(Q,GMH)
◦ over MH is 1/k of the

relative dimension of GMH over MH.

Definition 2.4. A PEL-type Kuga family over MH is an abelian scheme N→MH
that is Z×(�)-isogenous to HomO(Q,GMH)

◦ for some O-lattice Q.

Consider Diff−1
= Diff−1

O/Z, the inverse different of O over Z [Lan 2008, Defini-
tion 1.1.1.11] with its canonical left O-module structure. Since the trace pairing
Diff−1

×O→ Z : (y, x) 7→ TrO/Z(yx) is perfect by definition, for each O-lattice
Q, we may identify Q∨ := HomZ(Q,Z) with HomO(Q,Diff−1). By composition
with the involution ?

:O −→∼ Oop, the natural right action of O on Diff−1 induced
a left action of O on Diff−1, which commutes with the natural left action of O
on Diff−1. Accordingly, the Z-module Q∨ is torsion-free and has a canonical left
O-structure induced by the right action of Oop on Diff−1 (and ?

: O −→∼ Oop). In
other words, Q∨ is an O-lattice. Then the trace pairing induces a perfect pairing

〈 · , · 〉Q : Q∨× Q→ Z : ( f, x) 7→ TrO/Z( f (x)).

For any b ∈O, f ∈ Q∨, and x ∈ Q, we have

〈b f, x〉Q = TrO/Z( f (x)b?)= TrO/Z(b? f (x))= TrO/Z( f (b?x))= 〈 f, b?x〉.

Lemma 2.5. There exists an embedding jQ : Q∨ ↪→ Q of O-lattices inducing an
isomorphism jQ : Q∨⊗Z Z(�) −→

∼ Q⊗Z Z(�) of O⊗Z Z(�)-modules such that the
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pairing
〈 j−1

Q ( · ), · 〉Q : (Q⊗Z R)× (Q⊗Z R)→ R

is positive definite.

Proof. By the explicit classification [Lan 2008, (1.2.1.10), Proposition 1.2.1.13, and
Lemma 1.2.1.23], there exists an isomorphism jQ,0 : Q∨⊗Z R−→∼ Q⊗Z R of O⊗Z

R-modules such that the induced pairing 〈 j−1
Q,0( · ), · 〉Q : (Q⊗ZR)×(Q⊗ZR)→R is

positive definite. If � is the set of all rational prime numbers, then necessarilyO=Z,
and the lemma is clear. Otherwise, we know that IsomO⊗ZZ(�)

(Q∨⊗Z Z(�), Q⊗Z

Z(�)) is dense in IsomO⊗ZR(Q∨ ⊗Z R, Q ⊗Z R) (with the topology induced by
R). Hence there exists an element jQ,1 : Q∨ ⊗Z Z(�) −→

∼ Q ⊗Z Z(�) close to
jQ,0 in IsomO⊗ZR(Q∨⊗Z R, Q⊗Z R) such that the induced pairing 〈 j−1

Q,1( · ), · 〉Q :

(Q⊗ZR)×(Q⊗ZR)→R is still positive definite. By multiplying jQ,1 by a positive
element in Z×(�), we may assume that it maps Q∨ to a submodule of Q. Then the
induced morphism jQ : Q∨→ Q satisfies the requirement of the lemma. �

Lemma 2.6. The abelian scheme HomZ(Q∨,G∨MH) is isomorphic to the dual
abelian scheme of HomZ(Q,GMH).

Proof. Let s be the common rank of Q and Q∨ as free Z-modules. Let {e1, . . . , es}

be a Z-basis of Q, and let {e∨1 , . . . , e∨s } be the dual Z-basis of Q∨, such that
e∨i (e j ) = δi j for any 1 ≤ i, j ≤ s. Then the choices of bases define canonical
isomorphisms

HomZ(Q,GMH)
∼= G×s

MH
(2.7)

and
HomZ(Q∨,G∨MH)

∼= (G∨MH)
×s . (2.8)

As a result, HomZ(Q∨,G∨MH)
∼= G×s

MH
is isomorphic to the dual abelian scheme of

HomZ(Q,GMH)
∼= (G∨MH)

×s . �

Lemma 2.9. Let jQ : Q∨ ↪→ Q be as in Lemma 2.5. Then the isogeny

λMH, jQ ,Z : HomZ(Q,GMH)→ HomZ(Q∨,G∨MH)

induced canonically by jQ and λMH : GMH→ G∨MH , which is of degree prime to �

because both [Q : jQ(Q∨)] and deg(λMH) are prime to �, is a polarization.

Proof. We need to show that the invertible sheaf

(IdHomZ(Q,GMH )
, λMH, jQ ,Z)

∗PHomZ(Q,GMH )

is relative ample over MH. Using the choice of basis {e1, . . . , es} (resp. {e∨1 , . . . , e∨s })
of Q (resp. Q∨) as in the proof of Lemma 2.6, the morphism jQ can be represented
by e∨i 7→

∑
1≤ j≤s ai j e j for some integers ai j , for each 1≤ i ≤ s. These integers form
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a positive definite matrix a = (ai j ), because the induced pairing 〈 j−1
Q ( · ), · 〉Q :

(Q ⊗Z R)× (Q ⊗Z R)→ R is positive definite. By completion of squares for
quadratic forms, we know that there exist an integer m ≥ 1 such that ma = ud t u
for some matrices d and u with integral coefficients, where d = diag(d1, . . . , ds) is
diagonal with positive entries. As a result, the morphism mλMH, jQ ,Z factors as a
composition

mλMH, jQ ,Z = [
t u]∗ ◦ λMH,d,Z ◦ [u]

∗

of morphisms

[u]∗ : HomZ(Q,GMH)→ HomZ(Q,GMH),

λMH,d,Z : HomZ(Q,GMH)→ HomZ(Q∨,G∨MH),

[
t u]∗ : HomZ(Q∨,G∨MH)→ HomZ(Q∨,G∨MH).

If we identify HomZ(Q,GMH) and HomZ(Q∨,G∨MH) as dual abelian schemes
of each other using the canonical isomorphisms (2.7) and (2.8) defined by the
dual bases {e1, . . . , es} and {e∨1 , . . . , e∨s }, then [ t u]∗ = ([u]∗)∨, and λMH,d,Z =

(d1λMH)× (d2λMH)× . . .× (dsλMH) : G
×s
MH
→ (G∨MH)

×s is a polarization. Since
[u]∗ is finite, this implies that λMH, jQ ,Z is also a polarization, as desired. �

Proposition 2.10. The abelian scheme HomO(Q∨,G∨MH)
◦ is Z×(�)-isogenous to the

dual abelian scheme of HomO(Q,GMH)
◦.

Proof. Since λMH, jQ ,Z is a polarization by Lemma 2.9, the induced morphism

λMH, jQ : HomO(Q,GMH)
◦ ↪→ HomZ(Q,GMH)

λMH, jQ ,Z
→ HomZ(Q∨,G∨MH)� (HomO(Q,GMH)

◦)
∨ (2.11)

is also a polarization. (Since the condition of being a polarization can be checked
fiber by fiber [Deligne and Pappas 1994, 1.2–1.4], it suffices to note that the
restriction of an ample invertible sheaf to a closed subscheme is again ample.)
Since λMH, jQ ,Z maps HomO(Q,GMH)

◦ onto the subscheme HomO(Q∨,G∨MH)
◦ of

HomZ(Q∨,G∨MH), we obtain an isogeny

HomO(Q∨,G∨MH)
◦
→ (HomO(Q,GMH)

◦)
∨
.

The degree of this isogeny is prime to � because λMH, jQ ,Z is. �

Corollary 2.12 (of the proof of Proposition 2.10). Let jQ : Q∨ ↪→ Q be as in
Lemma 2.5. Then the canonical morphism

λMH, jQ : HomO(Q,GMH)
◦
→ (HomO(Q,GMH)

◦)
∨

induced by jQ and λMH : GMH → G∨MH (as in (2.11)) is a polarization of degree
prime to �.
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Corollary 2.13. If a Kuga family N→MH is Z×(�)-isogenous to HomO(Q,GMH)
◦

for some O-lattice Q, then we have canonical isomorphisms over MH:

LieN/MH
∼= HomO(Q,LieG/MH), LieN∨/MH

∼= HomO(Q∨,LieG∨/MH),

Lie∨N/MH
∼= HomO(Q∨,Lie∨G/MH), Lie∨N∨/MH

∼= HomO(Q,Lie∨G∨/MH).

Remark 2.14. We do not need to choose a polarization N→N∨ in the isomorphisms
in Corollary 2.13. The sheaves on the right-hand sides of the isomorphisms are
locally free because the order O is maximal at any good prime (see Definition 1.5
and [Lan 2008, Proposition 1.1.1.17]), and because lattices over maximal orders
are projective modules (see [Lan 2008, Proposition 1.1.1.20]).

2B. Main theorem. (Convention 2.1 will persist until the end of this article.)

Theorem 2.15. Let Q be anyO-lattice. Suppose thatH is neat (as in Definition 1.2),
so that the moduli problem MH it defines is representable by a quasiprojective
scheme, and so that Mtor

H =Mtor
H,6 is a proper smooth algebraic space over S0. Then

there is a directed partially ordered set KQ,H,6 parametrizing the following data:

(1) For each κ ∈KQ,H,6 , there is a Z×(�)-isogeny κ isog
: HomO(Q,GMH)

◦
→ Nκ

over MH, together with an open immersion κ tor
: Nκ ↪→ Ntor

κ of schemes over
S0, such that the scheme Ntor

κ is projective and smooth over S0, and that the
complement of Nκ in Ntor

κ (with its reduced structure) is a relative Cartier
divisor E∞,κ with simple normal crossings.

For each relation κ ′ � κ in KQ,H,6 , there is a proper log étale morphism
f tor
κ ′,κ : N

tor
κ ′ → Ntor

κ extending the canonical Z×(�)-isogeny

fκ ′,κ := κ isog
◦ ((κ ′)isog)−1

: Nκ ′→ Nκ

such that Ri ( f tor
κ ′,κ)∗ONtor

κ′
= 0 for i > 0.

(2) For each κ ∈ KQ,H,6 , the structural morphism fκ : Nκ →MH extends (nec-
essarily uniquely) to a morphism f tor

κ : N
tor
κ →Mtor

H , which is proper and log
smooth (as in [Kato 1989, 3.3] and [Illusie 1994, 1.6]) if we equip Ntor

κ and
Mtor
H with the canonical (fine) log structures given respectively by the relative

Cartier divisors with (simple) normal crossings E∞,κ and D∞,H (see (1) above
and (3) of Theorem 1.41). Then we have the following commutative diagram:

Nκ

fκ
proper
smooth

��

� � +NCD
// Ntor

κ

f tor
κ

proper
log smooth

��

projective
smooth

&&

MH
� �

+NCD

// Mtor
H proper

smooth

// S0

If κ ′ � κ , then we have the compatibility f tor
κ ′ = f tor

κ ◦ f tor
κ ′,κ .
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(3) Let us fix a choice of κ ∈ KQ,H,6 and suppress the subscript κ from the
notation. (All canonical isomorphisms will be required to be compatible with
the canonical isomorphisms defined by pullback under f tor

κ ′,κ for each relation
κ ′ � κ .) Then the following are true:

(3a) Let�1
Ntor/S0

[d log∞] and�1
Mtor
H /S0
[d log∞] denote the sheaves of modules

of log 1-differentials over S0 given by the (respective) canonical log structures
defined in (2). Let

�1
Ntor/Mtor

H
:= (�1

Ntor/S0
[d log∞])/(( f tor)∗(�1

Mtor
H /S0
[d log∞])).

Then there is a canonical isomorphism

( f tor)∗(HomO(Q∨,Lie∨G/Mtor
H
))∼=�

1
Ntor/Mtor

H
(2.16)

between locally free sheaves over Ntor, extending the composition of canonical
isomorphisms

f ∗(HomO(Q∨,Lie∨GMH/MH
))∼= f ∗Lie∨N/MH

∼=�
1
N/MH

(2.17)

over N.

(3b) For any integer b ≥ 0, there exists a canonical isomorphism
Rb f tor
∗
(�a

Ntor/Mtor
H
)

∼=
(∧b

(HomO(Q∨,LieG∨/Mtor
H
))
)
⊗OMtor

H

(∧a
(HomO(Q∨,Lie∨G/Mtor

H
))
)
. (2.18)

of locally free sheaves over Mtor
H , compatible with cup products and exterior

products, extending the canonical isomorphism over MH induced by the com-
position of canonical isomorphisms

Rb f∗(ON)∼=
∧bLieN∨/MH

∼=
∧b
(HomO(Q∨,LieG∨MH/MH

)). (2.19)

(3c) Let�•Ntor/Mtor
H
:=
∧
•
�1

Ntor/Mtor
H

be the log de Rham complex associated with
f tor
: Ntor

→Mtor
H (with differentials inherited from �•N/MH). Let the (relative)

log de Rham cohomology be defined by

H i
log-dR(N

tor/Mtor
H ) := Ri f tor

∗
(�•

Ntor/Mtor
H
).

Then the (relative) Hodge spectral sequence

Ea,b
1 := Rb f tor

∗
(�a

Ntor/Mtor
H
)⇒ Ha+b

log-dR(N
tor/Mtor

H ) (2.20)

degenerates at E1 terms, and defines a Hodge filtration on H i
log-dR(N

tor/Mtor
H )

with locally free graded pieces given by Rb f tor
∗
(�a

Ntor/Mtor
H
) for integers a+b= i ,

extending the canonical Hodge filtration on H i
dR(N/MH).

As a result, for any integer i ≥ 0, there is a canonical isomorphism∧i H 1
log-dR(N

tor/Mtor
H )−→

∼ H i
log-dR(N

tor/Mtor
H ),
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compatible with the Hodge filtrations defined by (2.20), extending the canoni-
cal isomorphism

∧i H 1
dR(N/MH) −→∼ H i

dR(N/MH) over MH (defined by cup
product).

(3d) For any jQ : Q∨ ↪→ Q as in Lemma 2.5, the Z×(�)-polarization λMH, jQ :

HomO(Q,GMH)
◦
→ (HomO(Q,GMH)

◦)∨ in Corollary 2.12 defines canoni-
cally (as in [Deligne and Pappas 1994, 1.5]) a perfect pairing

〈 · , · 〉λMH, jQ
: H 1

dR(N/MH)× H 1
dR(N/MH)→ OMH(1).

Then H 1
log-dR(N

tor/Mtor
H ) is the unique subsheaf of (MH ↪→Mtor

H )∗(H
1
dR(N/MH))

satisfying the following conditions:

(i) H 1
log-dR(N

tor/Mtor
H ) is locally free of finite rank over OMtor

H
.

(ii) The sheaf f tor
∗
(�1

Ntor/Mtor
H
) can be identified as the subsheaf of

(MH ↪→Mtor
H )∗( f∗(�1

N/MH
))

formed (locally) by sections that are also sections of H 1
log-dR(N

tor/Mtor
H ).

(Here we are viewing all these sheaves canonically as subsheaves of
(MH ↪→Mtor

H )∗(H
1
dR(N/MH)).)

(iii) H 1
log-dR(N

tor/Mtor
H ) is self-dual under the push-forward

(MH ↪→Mtor
H )∗〈 · , · 〉λMH, jQ

.

(3e) The Gauss–Manin connection

∇ : H •

dR(N/MH)→ H •

dR(N/MH)⊗OMH
�1

MH/S0
(2.21)

extends to an integrable connection

∇ : H •

log-dR(N
tor/Mtor

H )→ H •

log-dR(N
tor/Mtor

H )⊗OMtor
H
�1

Mtor
H /S0

(2.22)

with log poles along D∞,H, called the extended Gauss–Manin connection,
satisfying the usual Griffith transversality with the Hodge filtration defined by
(2.20).

(4) (Hecke actions.) Suppose we have an element gh ∈ G(A∞,�), and suppose we
have a (neat) open compact subgroup H′ of G(Ẑ�) such that g−1

h H′gh ⊂ H.
Suppose 6′ = {6′

8′H′
} is a compatible choice of admissible smooth rational

polyhedral cone decomposition data for MH′ , which gh-refines 6 (as in [Lan
2008, Definition 6.4.3.3]; the notion was called “dominance” in the original
version, but changed to the more common “refinement” in the revision). Then
there is also a directed partially ordered set KQ,H′,6′ parametrizing (for κ ′ ∈
KQ,H′,6′) Z×(�)-isogenies HomO(Q,GMH′ )

◦
→ N′κ ′ over MH′ , together with

open immersions N′κ ′ ↪→ (N′κ ′)
tor of schemes over S0, satisfying analogues of

properties (1)–(3) above. The constructions of KQ,H,6 and KQ,H′,6′ (and the
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objects they parametrize) satisfy the compatibility with gh in the sense that, for
each κ ∈KQ,H,6 , there is an element κ ′ ∈KQ,H′,6′ such that the following are
true:

(4a) There exists a (necessarily unique) finite étale morphism [gh]κ ′,κ :N
′

κ ′→Nκ
covering the morphism [gh] : MH′ → MH given by [Lan 2008, Proposi-
tion 6.4.3.4], inducing a prime-to-� isogeny N′κ ′ → Nκ ×MH MH′ , which
agrees with the Z×(�)-isogeny induced by (κ ′)isog, κ isog, and the Z×(�)-isogeny
GMH′ → GMH×MH MH′ realizing GMH×MH MH′ as a Hecke twist of GMH′ by
gh . (Here all the base changes from MH to MH′ use the morphism [gh].)

(4b) There exists a (necessarily unique) proper log étale morphism

[gh]
tor
κ ′,κ : (N

′

κ ′)
tor
→ Ntor

κ (2.23)

extending the morphism [gh]κ ′,κ and covering the morphism [gh]
tor
:Mtor

H′,6′→

Mtor
H,6 given by [Lan 2008, Proposition 6.4.3.4], such that

Ri ([gh]
tor
κ ′,κ)∗O(N′

κ′
)
tor = 0 (2.24)

for any i > 0.

(4c) There is a canonical isomorphism

([gh]
tor)∗Ha+b

log-dR(N
tor
κ /M

tor
H,6)−→

∼ Ha+b
log-dR((N

′

κ ′)
tor
/Mtor

H′,6′)

respecting the Hodge filtrations and compatible with the canonical isomor-
phisms

([gh]
tor
κ ′,κ)

∗�1
Ntor
κ /M

tor
H,6
−→∼ �1

(N′
κ′
)
tor
/Mtor

H′,6′
,

([gh]
tor)∗LieG∨/Mtor

H,6
−→∼ LieG∨/Mtor

H′,6′
,

([gh]
tor)∗Lie∨G/Mtor

H,6
−→∼ Lie∨G/Mtor

H′,6′
,

and the canonical isomorphisms in (3) for Ntor
κ and (N′κ ′)

tor.

(5) (Z×(�)-isogenies.) Let gl be an element of GLO⊗ZA∞,�(Q ⊗Z A∞,�). Then
the submodule gl(Q ⊗Z Ẑ�) in Q ⊗Z A∞,� determines a unique O-lattice
Q′ (up to isomorphism), together with a unique choice of an isomorphism
[gl]Q : Q⊗Z Z(�) −→

∼ Q′⊗Z Z(�), inducing an isomorphism Q⊗Z A∞,� −→∼

Q′⊗Z A∞,� matching gl(Q⊗Z Ẑ�) with Q′⊗Z Ẑ�, and inducing a canonical
Z×(�)-isogeny

[gl]
∗

Q : HomO(Q′,GMH)
◦
→ HomO(Q,GMH)

◦
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defined by [gl]Q . For HomO(Q′,GMH)
◦, there is also a directed partially

ordered set KQ′,H,6 parametrizing (for κ ′ ∈KQ′,H,6) Z×(�)-isogenies

HomO(Q′,GMH)
◦
→ N′κ ′

over MH, together with open immersions N′κ ′ ↪→ (N′κ ′)
tor of schemes over S0,

satisfying analogues of properties (1)–(3) above. The constructions of KQ,H,6
and KQ′,H,6 (and the objects they parametrize) satisfy the compatibility with
gl in the sense that, for each κ ∈ KQ,H,6 , there is an element κ ′ ∈ KQ′,H,6
such that the following are true:

(5a) The Z×(�)-isogeny [gl]
∗

κ ′,κ := κ
isog
◦ [gl]

∗

Q ◦ ((κ
′)isog)−1

: N′κ ′ → Nκ is an
isogeny (not just a quasiisogeny), and hence defines a finite étale morphism.

(5b) There exists a (necessarily unique) proper log étale morphism

([gl]
∗

κ ′,κ)
tor
: (N′κ ′)

tor
→ Ntor

κ (2.25)

extending the morphism [gl]
∗

κ ′,κ over MH, such that

Ri ([gl]
∗

κ ′,κ)
tor
∗

O(N′
κ′
)
tor = 0 (2.26)

for any i > 0.

(5c) For any integer i ≥ 0, there is a canonical isomorphism

(([gl]
∗

κ ′,κ)
tor
)∗ : H i

log-dR(N
tor
κ /M

tor
H,6)−→

∼ H i
log-dR((N

′

κ ′)
tor
/Mtor

H,6)

extending the canonical isomorphism

([gl]
∗

κ ′,κ)
∗
: H i

dR(Nκ/MH)−→∼ H i
dR(N

′

κ ′/MH)

induced by [gl]Q , respecting the Hodge filtrations and inducing canonical
isomorphisms

(([gl]
∗

κ ′,κ)
tor
)∗ : Rb f tor

∗
(�a

Ntor
κ /M

tor
H
)−→∼ Rb f tor

∗
(�a

(N′
κ′
)
tor
/Mtor

H
)

(for integers a+ b = i) compatible (under the canonical isomorphisms in (3)
for Ntor

κ and (N′κ ′)
tor) with the canonical isomorphisms

([gl]
∗

Q)
∗
: HomO(Q∨,LieG∨/Mtor

H
)−→∼ HomO((Q′)

∨
,LieG∨/Mtor

H
)

and

([gl]
∗

Q)
∗
: HomO(Q∨,Lie∨G/Mtor

H
)−→∼ HomO((Q′)

∨
,Lie∨G/Mtor

H
).
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2C. Outline of the proof. The proof of Theorem 2.15 consists of seven steps:

(1) Find a PEL-type O-lattice (L̃, 〈 · , · 〉̃ , h̃), a fully symplectic admissible filtra-
tion Z̃ on L̃ ⊗Z Ẑ�, a torus argument 8̃, and a splitting δ̃ for Z̃, such that, for
some choices of H̃, 6̃, and σ̃ , the [(8̃H̃, δ̃H̃, σ̃ )]-stratum Z̃

[(8̃H̃,δ̃H̃ ,̃σ )]
of the

toroidal compactification M̃tor
H̃ = M̃tor

H̃,6̃ has a canonical structure of an abelian
scheme over MH, and such that there exists a canonical Z×(�)-isogeny

κ isog
: HomO(Q,GMH)

◦
→ Z̃

[(8̃H̃,δ̃H̃ ,̃σ )]
.

Then we take Nκ to be this Z̃
[(8̃H̃,δ̃H̃ ,̃σ )]

.
Take Kpre

Q,H,6 to be the set of all such triples κ = (H̃, 6̃, σ̃ ), with directed
partial order defined by the relation

κ ′ = (H̃′, 6̃′, σ̃ ′)� κ = (H̃, 6̃, σ̃ )

when H̃′ ⊂ H̃ and 6̃′ refines 6̃ as in [Lan 2008, Definition 6.4.2.8], and
when the [(8̃H̃′, δ̃H̃′, σ̃

′)]-stratum of M̃tor
H̃′,6̃′ is mapped (surjectively) to the

[(8̃H̃,δ̃H̃,σ̃ )]-stratum of M̃tor
H̃ = M̃tor

H̃,6̃ under the canonical morphism M̃tor
H̃′,6̃′→

M̃tor
H̃,6̃ given by [Lan 2008, Proposition 6.4.2.9].
For κ=(H̃, 6̃, σ̃ ), take Ntor

κ to be the closure of the [(8̃H̃, δ̃H̃, σ̃ )]-stratum in
M̃tor
H̃,6̃ . For κ ′=(H̃′, 6̃′, σ̃ ′)�κ=(H̃, 6̃, σ̃ ), the morphism f tor

κ ′,κ :N
tor
κ ′ →Ntor

κ is
just the morphism induced by the canonical proper morphism M̃tor

H̃′,6̃′→ M̃tor
H̃,6̃

given by [Lan 2008, Proposition 6.4.2.9].

(2) Show that Ntor
κ is projective and smooth over S0 for κ ∈Kpre

Q,H,6 .

(3) Find a condition on κ that guarantees the existence of a morphism f tor
κ :N

tor
κ →

Mtor
H extending the structural morphism fκ : Nκ→MH.

(4) Take KQ,H,6 to be the subset of Kpre
Q,H,6 consisting of elements κ satisfying

the condition we have found. Show that this subset is nonempty and has an
induced directed partial order by showing that the conditions we need can be
achieved after suitable refinements of cone decompositions. This verifies (1)
and (2) of Theorem 2.15.

(5) For each κ ∈KQ,H,6 , verify that the morphism f tor
κ : N

tor
κ →Mtor

H extending
Nκ→MH is log smooth, and verify (3a) of Theorem 2.15.

(6) Assuming (3b) and (3c), verify (4) and (5) of Theorem 2.15 using the Hecke
actions on the double tower {M̃H̃,6̃}H̃,6̃ .

(7) Verify (3b), (3c), and (3d) of Theorem 2.15 using explicit descriptions of the
formal fibers of f tor

κ along (locally closed) strata of Mtor
H . (A crucial step for

(3b) requires the notion of log extensions of polarizations we mentioned in the
introduction.)
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We will carry out these steps in Sections 3–5. We will make frequent references
to results cited in Section 1, and also to the original statements in [Lan 2008].

2D. System of notation. Although the underlying ideas are simple, the notation
can be quite heavy. (This seems unavoidable in general works on compactifications.)
We decided to keep the notation informative (and hence complicated), because
we believe it is more difficult to keep track of three sets of cusp labels and cone
decompositions with simplified notation. We understand that the heaviness of
notation will inevitably be an enormous burden on the readers, and hence we would
like to provide some guidance by explaining the key features in the system of
notation, as follows:

• The superscript tor stands for toroidal compactifications (or objects related to
them). For morphisms this typically means extensions to morphisms between
toroidal compactifications.

• Depending on the context, the overlines can have different meanings:

– For geometric objects they almost always mean closures.
– For sheaves of differentials (or related objects) they mean the log versions.
– Notable exceptions (to the above two) are in Sections 3B–3C below, where

overlines can also stand for quotients of group schemes or sheaves.

• Objects for the “given” moduli problem MH and its compactifications are
denoted as in Section 1.

• Objects for the “larger” moduli problem M̃H̃ (mentioned in step (1) above) will
be denoted with either ˜ (tilde) or ˘ (breve) on top of the symbols in Section 1.
The difference is the following:

– Symbols with ˜ will be used for defining M̃H̃ and its compactifications
M̃tor
H̃,6̃ , and for realizing the Kuga families we would like to compactify as

boundary strata Z̃[(8̃H̃,δ̃H̃ ,̃σ )] of M̃tor
H̃,6̃ .

– Symbols with ˘ will be used for the boundary strata of M̃tor
H̃,6̃ appearing in

the closure of the realizations

Z̃
[(8̃H̃,δ̃H̃ ,̃σ )]

.

(These strata are parametrized by faces [(8̆H̃, δ̆H̃, τ̆ )] of [(8̃H̃, δ̃H̃, σ̃ )].)
In other words, they parametrize the boundary strata of the toroidal com-
pactification of the Kuga families we consider.

• In the local descriptions of toroidal boundary structures, we will encounter
notations of the forms ( · )(σ ) and ( · )σ .

– When the object ( · ) being modified is a scheme with action by some torus,
( · )(σ ) will stand for the affine toroidal embedding adding the σ -stratum
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(which then also adds all the strata for nontrivial faces of σ ), while ( · )σ
will stand for the closed σ -stratum (without the nontrivial face strata).

– The formal version of ( · )σ (often denoted in Fraktur) will mean the formal
completion of ( · )(σ ) along ( · )σ .

The notation will be most heavy in Sections 4–5, where the calculation of relative
cohomology is carried out in detail. For readers only interested in applications
to cohomology of Shimura varieties, the statements of Theorem 2.15, the two
propositions in Section 3D, and the applications in Section 6 are all they need.

3. Constructions of compactifications and morphisms

3A. Kuga families as toroidal boundary strata. The goal of this subsection is to
carry out steps (1) and (2) of Section 2C.

Let Q be an O-lattice as in Theorem 2.15. Identify Q∨ with HomO(Q,Diff−1)

and give it an O-lattice structure as in Section 2A. The (surjective) trace map
TrO/Z : Diff−1

→ Z induces a perfect pairing

〈 · , · 〉Q : Q∨× Q→ Z : ( f, x) 7→ TrO/Z( f (x)).

By extension of scalars, the pairing 〈 · , · 〉Q induces a perfect pairing between
Q∨ ⊗Z Q and Q ⊗Z Q. By Condition 1.9, the action of O on L extends to an
action of some maximal order O′ in B containing O. Let us fix the choice of such
a maximal order O′. By [Lan 2008, Proposition 1.1.1.17], O⊗Z Z(p) 6=O′⊗Z Z(p)

for a prime number p > 0 only when p|Disc. Let Q0 := O′ · Q ⊂ Q ⊗Z Q and
Q−2 := HomO(Q,Diff−1

O′/Z)(1)⊂ Q∨⊗Z Q(1). Then the induced pairing

〈 · , · 〉Q : Q−2× Q0→Q(1)

has values in Z(1). The localizations of this pairing at primes of Z are perfect
except at those dividing Disc.

Let (L̃, 〈 · , · 〉̃ , h̃) be the symplectic O-lattice given by the following data:

(1) An O-lattice L̃ := Q−2⊕ L ⊕ Q0, where Q−2 and Q0 are defined as above.
(Note that L̃ satisfies Condition 1.9 by construction.)

(2) A symplectic O-pairing 〈 · , · 〉̃ : L̃ × L̃→ Z(1) defined (symbolically) by the
matrix

〈x, y〉̃ := t

x−2

x−1

x0

 〈 · , · 〉Q

〈 · , · 〉

−
t
〈 · , · 〉Q

y−2

y−1

y0

 ,
namely by

〈x, y〉̃ := 〈x−2, y0〉Q +〈x−1, y−1〉− 〈y−2, x0〉Q,
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where x =

x−2

x−1

x0

 and y =

y−2

y−1

y0

 are elements of L̃ = Q−2 ⊕ L ⊕ Q0

expressed (vertically) in terms of components in the direct summands.

Let jQ : Q∨ ↪→ Q be an embedding of O-lattices given by Lemma 2.5, so that
the pairing 〈 j−1

Q ( · ), · 〉Q : (Q⊗Z R)× (Q⊗Z R)→R is positive definite. Consider
the R-algebra homomorphism h̃ : C→ EndO⊗ZR(L̃ ⊗Z R) defined by

z = z1+
√
−1 z2

7→ h̃(z) :=

 z1 IdQ−2⊗ZR −z2((2π
√
−1) ◦ j−1

Q )

h(z)
z2( jQ ◦ (2π

√
−1)−1) z1 IdQ0⊗ZR

 ,
where 2π

√
−1 :Z−→∼ Z(1) and (2π

√
−1)−1

:Z(1)−→∼ Z stand for the isomorphisms
defined by the choice of

√
−1 in C, and where the matrix acts (symbolically) on

elements of L̃ ⊗Z R by left multiplication. In other words,

h̃(z)

x−2

x−1

x0

=
 z1x−2− z2((2π

√
−1) ◦ j−1

Q )(x0)

h(z)x−1

z2( jQ ◦ (2π
√
−1)−1)(x−2)+ z1x0

 .
Then h̃ is a polarization of (L̃, 〈 · , · 〉̃ ) making (L̃, 〈 · , · 〉̃ , h̃) a PEL-type O-lattice.
Note that the reflex field of (L̃ ⊗Z R, 〈 · , · 〉̃ , h̃) is also F0.

By construction of (L̃, 〈 · , · 〉̃ ), there is a fully symplectic admissible filtration
on L̃ ⊗Z Ẑ� induced by

0⊂ Q−2 ⊂ Q−2⊕ L ⊂ Q−2⊕ L ⊕ Q0 = L̃.

More precisely, we have

Z̃−3 := 0,

Z̃−2 := Q−2⊗Z Ẑ�,

Z̃−1 := (Q−2⊗Z Ẑ�)⊕ (L ⊗Z Ẑ�),

Z̃0 := (Q−2⊗Z Ẑ�)⊕ (L ⊗Z Ẑ�)⊕ (Q0⊗Z Ẑ�)= L̃ ⊗Z Ẑ�,

so that there are canonical isomorphisms

Gr̃Z
−2
∼= Q−2⊗Z Ẑ�, Gr̃Z

−1
∼= L ⊗Z Ẑ�, Gr̃Z

0
∼= Q0⊗Z Ẑ�

matching the pairings Gr̃Z
−2×Gr̃Z

0 → Ẑ�(1) and Gr̃Z
−1×Gr̃Z

−1→ Ẑ�(1) induced
by 〈 · , · 〉̃ with 〈 · , · 〉Q and 〈 · , · 〉, respectively.
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Let X̃ := HomO(Q−2,Diff−1(1)) and Ỹ := Q0. The pairing

〈 · , · 〉Q : Q−2× Q0→ Z(1)

induces a canonical embedding φ̃ : Ỹ ↪→ X̃ and there are canonical isomor-
phisms ϕ̃−2 : Gr̃Z

−2 −→
∼ Hom

Ẑ�(X̃ ⊗Z Ẑ�, Ẑ�(1)) and ϕ̃0 : Gr̃Z
0 −→
∼ Ỹ ⊗Z Ẑ� (of

Ẑ�-modules). These data define a torus argument 8̃ := (X̃ , Ỹ , φ̃, ϕ̃−2, ϕ̃0) for Z̃ as
in Definition 1.13.

Let δ̃ be the obvious splitting of Z̃ induced by the equality Q−2⊕ L ⊕ Q0 = L̃ .
Let G̃ be the group functor defined by (L̃, 〈 · , · 〉̃ ) as in Definition 1.1. For any

Ẑ�-algebra R, let P̃Z̃(R) denote the subgroup of G̃(R) consisting of elements g such
that g(̃Z−2⊗

Ẑ� R)= Z̃−2⊗
Ẑ� R and g(̃Z−1⊗

Ẑ� R)= Z̃−1⊗
Ẑ� R. Any element g

in P̃Z̃(R) defines an isomorphism

Gr̃Z
−1(g) : Gr̃Z

−1⊗Ẑ� R −→∼ Gr̃Z
−1⊗Ẑ� R,

which corresponds under the canonical isomorphism Gr̃Z
−1⊗Ẑ� R ∼= L ⊗Z R above

to an element of G(R). This defines in particular a homomorphism

Gr̃Z
−1 : P̃Z̃(Ẑ

�)→ G(Ẑ�).

Let H̃ be any neat open compact subgroup of G̃(Ẑ�) such that the image
Gr̃Z
−1(H̃∩ P̃Z̃(Ẑ

�)) is exactly H. (Such an H̃ exists because the pairing 〈 · , · 〉̃ is the
direct sum of the pairings on Q−2⊕ Q0 and on L .) The data of O, (L̃, 〈 · , · 〉̃ , h̃),
�, and H̃⊂ G̃(Ẑ�) define a moduli problem M̃H̃ as in Definition 1.6.

Take any compatible choice 6̃ of admissible smooth rational polyhedral cone
decomposition data for M̃H̃ that is projective (see Definitions 1.33 and 1.34). Since
H̃ is neat, any such 6̃ defines a toroidal compactification M̃tor

H̃ = M̃tor
H̃,6̃ which is

projective and smooth over S0 by (7) of Theorem 1.41.
Let (̃Z, 8̃, δ̃) be as above, and let (̃ZH̃, 8̃H̃ = (X̃ , Ỹ , φ̃, ϕ̃−2,H̃, ϕ̃0,H̃), δ̃H̃) be the

induced triple at level H̃, inducing a cusp label [(̃ZH̃, 8̃H̃, δ̃H̃)] at level H̃.
Let σ̃ ⊂ P+

8̃H̃
be any top-dimensional nondegenerate rational polyhedral cone

in the cone decomposition 6̃8̃H̃ in 6̃. Then, by (2) of Theorem 1.41, we have a
stratum Z̃[(8̃H̃,δ̃H̃ ,̃σ )] of M̃tor

H̃ .
Since σ̃ is a top-dimensional cone in 6̃8̃H̃ , the locally closed stratum Z̃[(8̃H̃,δ̃H̃ ,̃σ )]

(not its closure) is a zero-dimensional torus bundle over the abelian scheme C̃8̃H̃,δ̃H̃
over MH. In other words, Z̃[(8̃H̃,δ̃H̃ ,̃σ )] is canonically isomorphic to C̃8̃H̃,δ̃H̃ . By the
construction of C̃8̃H̃,δ̃H̃ in [Lan 2008, §§6.2.3–6.2.4], it is canonically Z×(�)-isogenous
to the abelian scheme HomO(Q,GMH)

◦. Let us define Nκ to be this stratum
Z̃[(8̃H̃,δ̃H̃ ,̃σ )], and denote the canonical morphism Nκ → MH by fκ . This gives
the Z×(�)-isogeny κ isog

: HomO(Q,GMH)
◦
→ Nκ . Note that Nκ = Z̃[(8̃H̃,δ̃H̃ ,̃σ )] is

canonically isomorphic to C̃8̃H̃,δ̃H̃ for every 6̃ and every top-dimensional cone σ̃
in 6̃8̃H̃ .
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As planned in step (1) of Section 2C, let us take Kpre
Q,H,6 to be the set of all

possible such triples κ = (H̃, 6̃, σ̃ ), with directed partial order defined by the
relation κ ′ = (H̃′, 6̃′, σ̃ ′) � κ = (H̃, 6̃, σ̃ ) when H̃′ ⊂ H̃, when 6̃′ refines 6̃
as in [Lan 2008, Definition 6.4.2.8], and when (8̃H̃′, δ̃H̃′, σ̃

′) refines (8̃H̃, δ̃H̃, σ̃ )
as in [Lan 2008, Definition 6.4.2.6]. In this case, the [(8̃H̃′, δ̃H̃′, σ̃

′)]-stratum of
M̃tor
H̃′,6̃′ is mapped to the [(8̃H̃, δ̃H̃, σ̃ )]-stratum of M̃tor

H̃,6̃ by the canonical morphism
M̃tor
H̃′,6̃′→ M̃tor

H̃,6̃ given by [Lan 2008, Proposition 6.4.2.9]. Note that the induced
morphism fκ ′,κ : Nκ ′ → Nκ , which is κ isog

◦ ((κ ′)isog)−1 by definition, can be
identified with the canonical Z×(�)-isogeny C̃8̃H̃′ ,δ̃H̃′ → C̃8̃H̃,δ̃H̃ . In particular, it is
surjective and is an isogeny of degree prime to �.

For κ = (H̃, 6̃, σ̃ ), take Ntor
κ to be the closure of Z̃

[(8̃H̃,δ̃H̃ ,̃σ )]
in M̃tor

H̃,6̃ . Then we
obtain the canonical immersion κ tor

: Nκ ↪→ Ntor
κ .

When κ ′ = (H̃′, 6̃′, σ̃ ′) � κ = (H̃, 6̃, σ̃ ), the morphism f tor
κ ′,κ : N

tor
κ ′ → Ntor

κ is
simply the morphism induced by the canonical proper morphism M̃tor

H̃′,6̃′→ M̃tor
H̃,6̃

given by [Lan 2008, Proposition 6.4.2.9]. Note that the latter morphism is étale
locally given by equivariant morphisms between toric schemes, and the same is
true for the induced morphism f tor

κ ′,κ : N
tor
κ ′ → Ntor

κ . Therefore, both the morphism
M̃tor
H̃′,6̃′→M̃tor

H̃,6̃ and the induced morphism f tor
κ ′,κ :N

tor
κ ′ →Ntor

κ are log étale essentially
by definition (see [Kato 1989, Theorem 3.5]). Moreover, as in [Faltings and Chai
1990, Chapter V, Remark 1.2(b)] and in the proof of [Lan 2008, Lemma 7.1.1.3],
we have Ri ( f tor

κ ′,κ)∗ONtor
κ′
= 0 for i > 0 by [Kempf et al. 1973, Chapter I, §3].

Lemma 3.1. Under the assumption that H̃ is neat, the closure of every stratum in
M̃tor
H̃,6̃ has no self-intersection.

Proof. According to Definitions 1.33 and 1.34, the collection 6̃ of cone decomposi-
tions for M̃H̃ satisfies Condition 1.29. Hence [Lan 2008, Lemma 6.2.5.27 in the
revision] implies that the closure of any stratum does not intersect itself. (See also
[Faltings and Chai 1990, Chapter IV, Remark 5.8a].) �

Corollary 3.2. For any κ=(H̃,6̃, σ̃ )∈Kpre
Q,H,6 , the closure Ntor

κ of Nκ=Z̃
[(8̃H̃,δ̃H̃ ,̃σ )]

in M̃tor
H̃,6̃ is projective and smooth over S0, and the complement of Nκ in Ntor

κ (with
its reduced structure) is a relative Cartier divisor with simple normal crossings.
Thus the collection of open embeddings κ tor

: Nκ ↪→ Ntor
κ , with κ ∈Kpre

Q,H,6 , satisfies
(1) of Theorem 2.15.

Proof. Combine Lemma 3.1 with (3) and (7) of Theorem 1.41. �

From now on, let us fix a choice of κ = (H̃, 6̃, σ̃ )∈Kpre
Q,H,6 , and suppress κ and

6̃ from the notation. The compatibility of various objects under compositions with
or pullbacks by f tor

κ ′,κ : N
tor
κ ′ → Ntor

κ (for κ ′ � κ in Kpre
Q,H,6) will be obvious from the

constructions.
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3B. Extendability of structural morphisms. The goal of this subsection is to carry
out steps (3) and (4) of Section 2C.

Let (G̃, λ̃, ĩ, α̃H̃) be the degenerating family of type M̃H̃ over M̃tor
H̃ . By construc-

tion of N as a boundary stratum of M̃tor
H̃ , the restriction G̃N of G̃ to N is an extension

of the pullback of the abelian scheme GMH over MH to N by f : N→ MH, by
the split torus T̃N over N with character group X̃ . The data of λ̃, ĩ , and α̃H̃ induce
respectively a polarization, an O-endomorphism structure, and a level H-structure
on the abelian part of G̃N, which agree with the pullbacks of the data λ, i , and αH
over MH to N by f : N→MH. By normality of (the closure) Ntor (of N in M̃tor

H̃ ),
and by a result of Raynaud (see [Raynaud 1970, IX 2.4] or [Faltings and Chai 1990,
Chapter I, Proposition 2.9]), the embedding T̃N ↪→ G̃N of group schemes extends
(uniquely) to an embedding T̃Ntor ↪→ G̃Ntor of group schemes, and the quotient

G := G̃Ntor/T̃Ntor

is a semiabelian scheme whose restriction to N can be identified with the pullback
of G from MH to N. Similarly, we obtain G

∨
:= G̃∨Ntor/T̃∨Ntor . By another result of

Raynaud (see [Raynaud 1970, IX 1.4] or [Faltings and Chai 1990, Chapter I, Propo-
sition 2.7]), the semiabelian G carries (unique) additional structures λ : G→ G

∨
,

i , and αH such that the restriction of (G, λ, i, αH) to N is the pullback of the
tautological tuple over MH by f : N→ MH, and so that (G, λ, i, αH) defines a
degenerating family of type MH over Ntor.

Now the question is whether the structural morphism f : N→ MH extends
(necessarily uniquely) to a (proper) morphism f tor

: Ntor
→ Mtor

H between the
compactifications. By (6) of Theorem 1.41, this extendability can be verified after
pullback to complete discrete valuation rings (with algebraically closed residue
fields).

The stratification of M̃tor
H̃ induces one on Ntor. By (2) of Theorem 1.41, the

strata of Ntor are parametrized by the faces of [(8̃H̃, δ̃H̃, σ̃ )] (as in Definition 1.38).
Concretely, the faces of [(8̃H̃, δ̃H̃, σ̃ )] are equivalence classes [(8̆H̃, δ̆H̃, τ̆ )] of
H̃-orbits of data of the following form:

(1) A fully symplectic admissible filtration Z̆= {Z̆−i } on L̃ ⊗Z Ẑ� satisfying

Z̃−2 ⊂ Z̆−2 ⊂ Z̆−1 ⊂ Z̃−1. (3.3)

Any such filtration Z̆ induces a fully symplectic admissible filtration Z =
{Z−i } on L ⊗Z Ẑ� by Z−2 := Z̆−2/̃Z−2 and Z−1 := Z̆−1/̃Z−2, so that there is a
canonical isomorphism

Z0/Z−1 ∼= Z̃−1/Z̆−1. (3.4)
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Conversely, any fully symplectic admissible filtration Z on L ⊗Z Ẑ� induces a
fully symplectic admissible filtration Z̆ on L̃ ⊗Z Ẑ� satisfying (3.3) and (3.4).

(2) A torus argument 8̆= (X̆ , Y̆ , φ̆, ϕ̆−2, ϕ̆0) for Z̆ (as in Definition 1.13), together
with admissible surjections sX̆ : X̆ � X̃ and sY̆ : Y̆ � Ỹ satisfying sX̆ φ̆ = φ̃sY̆
and other natural compatibilities with ϕ̆−2, ϕ̆0, ϕ̃−2, and ϕ̃0. (See Definitions
1.18–1.20.)

Any 8̆, sX̆ , and sY̆ determine a torus argument 8= (X, Y, φ, ϕ−2, ϕ0) for
Z by X := ker(sX̆ ), Y := ker(sY̆ ), and φ := φ̆|Y , so that there is a commutative
diagram

0 // Y //

φ

��

Y̆
sY̆

//

φ̆

��

Ỹ //

φ̃

��

0

0 // X // X̆ sX̆

// X̃ // 0

(3.5)

whose horizontal rows are exact sequences.

(3) The existence of some splitting of Z̆, inducing some liftable splitting δ̆H̃ defining
the cusp label (Z̆H̃, 8̆H̃, δ̆H̃) at level H̃.

Given the liftable splitting δ̃H̃, the existence of the liftable splitting δ̆H̃ is
equivalent to the existence of some liftable splitting δH of ZH. Then we see that
there is a canonical bijection between cusp labels [(ZH,8H, δH)] at levelH and
cusp labels [(Z̆H̃, 8̆H̃, δ̆H̃)] at level H̃ admitting a surjection to [(̃ZH̃, 8̃H̃, δ̃H̃)].

(4) Let 8H (resp. 8̆H̃) be the torus argument for ZH (resp. Z̃H̃) at level H (resp.
H̃) induced by 8 (resp. 8̆). Then (3.5) induces morphisms

S8H ↪→ S8̆H̃ � S8̃H̃, (3.6)

where the first morphism is canonical, and where the second morphism is
defined by sX̆ and sY̆ , whose composition is zero. (In general, the morphisms
in (3.6) do not form an exact sequence.)

The dual of (3.6) defines morphisms

P+
8̃H̃
↪→ P8̆H̃ � P8H, (3.7)

where the first morphism is defined by sX̆ and sY̆ , and where the second
morphism is canonical, whose composition is zero.

Then τ̆ ⊂ P+
8̆H̃

is a cone in the cone decomposition 6̃8̆H̃ having a face σ̆
that is a 08̆H̃-translation (see Definition 1.23) of the image of σ̃ ⊂ P+

8̃H̃
under

the first morphism in (3.7).
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By (5) of Theorem 1.41, the formal completion

(M̃tor
H̃ )
∧

Z̃
[(8̆H̃,δ̆H̃,τ̆ )]

is isomorphic to the formal scheme X̃8̆H̃,δ̆H̃,τ̆ = X̃8̆H̃,δ̆H̃,τ̆/08̆H̃,τ̆ for any repre-
sentative (8̆H̃,δ̆H̃,τ̆ ) of [(8̆H̃,δ̆H̃,τ̆ )]. Here 08̆H̃,τ̆ is trivial by [Lan 2008, Lemma
6.2.5.27 in the revision], and X̃8̆H̃,δ̆H̃,τ̆ is the formal completion of 4̃8̆H̃,δ̆H̃(τ̆ ) along
its τ̆ -stratum (4̃8̆H̃,δ̆H̃)τ̆ .

Let us describe the structure of the scheme 4̃8̆H̃,δ̆H̃(τ̆ ) in more detail:

(1) By construction, 4̃8̆H̃,δ̆H̃(τ̆ ) is a scheme over M̃
Z̆H̃
H̃ , the latter of which is

isomorphic to MZH
H because of (3.3) and (3.4). (Note that M̃

Z̆H̃
H̃
∼= MZH

H is a
scheme by [Lan 2008, Corollary 7.2.3.10].)

By abuse of notation, we shall simply denote the push-forward

(4̃8̆H̃,δ̆H̃
(τ̆ )� C̃8̆H̃,δ̆H̃)∗O4̃8̆H̃,δ̆H̃ (τ̆ )

by O4̃8̆H̃,δ̆H̃ (τ̆ )
, and view O4̃8̆H̃,δ̆H̃ (τ̆ )

as an OC̃8̆H̃,δ̆H̃
-algebra when there is no

confusion. We shall adopt a similar convention for other affine morphisms.

(2) Let (A, λA, i A, ϕ−1,H) be the tautological object over MZH
H . Then C̃8̆H̃,δ̆H̃ is

the abelian scheme over MH parametrizing liftings (to level H̃) of data of the
form (c̆ : X̆→ A∨, c̆∨ : Y̆ → A), compatible with φ̆ : Y̆ ↪→ X̆ and satisfying
certain liftability and pairing conditions (coming from the so-called symplectic-
liftability on the level structures). By construction, C̃8̆H̃,δ̆H̃ is Z×(�)-isogenous
to HomO(Y̆ , A)◦.

(3) The scheme 4̃8̆H̃,δ̆H̃ is a torsor over C̃8̆H̃,δ̆H̃ under (the pullback of) the split
torus E8̆H̃ = Hom(S8̆H̃,Gm), which can be identified with the relative spec-
trum

SpecOC̃
8̆H̃,δ̆H̃

( ⊕
˘̀∈S8̆H̃

9̃8̆H̃,δ̆H̃
( ˘̀)
)
,

where 9̃8̆H̃,δ̆H̃( ˘̀) is the subsheaf of O4̃8̆H̃,δ̆H̃
(considered as an OC̃8̆H̃,δ̆H̃

-algebra
by our convention) on which E8̆H̃ acts by the character ˘̀. In the case when
˘̀ = [y̆ ⊗ χ̆ ], where y̆ ∈ Y̆ and χ̆ ∈ X̆ , there is a canonical identification
9̃8̆H̃,δ̆H̃(

˘̀) and the pullback of (c̆∨(y̆), c̆(χ̆))∗PA over C̃8̆H̃,δ̆H̃ . (See [Lan
2008, Convention 6.2.3.26 and end of §6.2.4].)

(4) Consider the subsemigroups of S8̆H̃ (see [Lan 2008, Definitions 6.1.1.9 and
6.1.2.5]) given by

τ̆∨ = { ˘̀ ∈ S8̆H̃ : 〈
˘̀, y〉 ≥ 0,∀y ∈ τ̆ },

τ̆∨0 = {
˘̀ ∈ S8̆H̃ : 〈

˘̀, y〉> 0,∀y ∈ τ̆ },

τ̆⊥ = { ˘̀ ∈ S8̆H̃ : 〈
˘̀, y〉 = 0,∀y ∈ τ̆ } ∼= τ̆∨/τ̆∨0 .
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The scheme 4̃8̆H̃,δ̆H̃(τ̆ ) is constructed as an affine toroidal embedding

4̃8̆H̃,δ̆H̃
↪→ 4̃8̆H̃,δ̆H̃

(τ̆ )

along τ̆ over the abelian scheme C̃8̆H̃,δ̆H̃ , which can be identified with the
relative spectrum

SpecOC̃
8̆H̃,δ̆H̃

( ⊕
˘̀∈τ̆∨

9̃8̆H̃,δ̆H̃
( ˘̀)
)
.

(5) Finally, the sheaf of ideals

Ĩτ̆ =
⊕
˘̀∈τ̆∨0

9̃8̆H̃,δ̆H̃
( ˘̀)

(see [Lan 2008, Lemma 6.1.2.6]) defines the τ̆ -stratum (4̃8̆H̃,δ̆H̃
)τ̆ , which can

be identified with the relative spectrum

SpecOC̃
8̆H̃,δ̆H̃

( ⊕
˘̀∈τ̆⊥

9̃8̆H̃,δ̆H̃
( ˘̀)
)
.

Here Ĩτ̆ is an O4̃8̆H̃,δ̆H̃(τ̆ )
-ideal represented as an OC̃8̆H̃,δ̆H̃

-submodule of O4̃8̆H̃,δ̆H̃(τ̆ )
(the latter being viewed as an OC̃8̆H̃,δ̆H̃

-algebra by our convention).

Suppose σ̆ is the face of τ̆ that is a 08̆H̃-translation of the image of σ̃ ⊂ P+
8̃H̃

under the first morphism in (3.7). Similar to the definition of τ̆∨, τ̆∨0 , and τ̆⊥ above,
consider the following subsemigroups of S8̆H̃ :

σ̆∨ = { ˘̀ ∈ S8̆H̃ : 〈
˘̀, y〉 ≥ 0,∀y ∈ σ̆ },

σ̆∨0 = {
˘̀ ∈ S8̆H̃ : 〈

˘̀, y〉> 0,∀y ∈ σ̆ },

σ̆⊥ = { ˘̀ ∈ S8̆H̃ : 〈
˘̀, y〉 = 0,∀y ∈ σ̆ } ∼= σ̆∨/σ̆∨0 .

Note that τ̆∨⊂ σ̆∨ and τ̆⊥⊂ σ̆⊥, but τ̆∨0 6⊂ σ̆
∨

0 in general. The closure (4̃8̆H̃,δ̆H̃)σ̆ (τ̆ )
of the σ̆ -stratum on 4̃8̆H̃,δ̆H̃(τ̆ )

∼= SpecOC̃
8̆H̃,δ̆H̃

(⊕
˘̀∈τ̆∨ 9̃8̆H̃,δ̆H̃

( ˘̀)
)

is defined by the

sheaf of ideals
⊕
˘̀∈σ̆∨0 ∩τ̆

∨ 9̃8̆H̃,δ̆H̃
( ˘̀). Then we have a canonical isomorphism

(4̃8̆H̃,δ̆H̃
)σ̆ (τ̆ )∼= SpecOC̃

8̆H̃,δ̆H̃

( ⊕
˘̀∈σ̆⊥∩τ̆ ∨̃

98̆H̃,δ̆H̃
( ˘̀)
)
,

with the τ̆ -stratum

(4̃8̆H̃,δ̆H̃
)τ̆ ∼= SpecOC̃8̆H̃,δ̆H̃

(⊕
˘̀∈τ̆⊥

9̃8̆H̃,δ̆H̃
( ˘̀)
)

(as a closed subscheme of (4̃8̆H̃,δ̆H̃)σ̆ (τ̆ )) defined by the sheaf of ideals

Ĩσ̆ ,τ̆ :=
⊕

˘̀∈σ̆⊥∩τ̆∨0

9̃8̆H̃,δ̆H̃
( ˘̀).
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Let X8̆H̃,δ̆H̃,σ̆ ,τ̆ denote the formal completion of (4̃8̆H̃,δ̆H̃)σ̆ (τ̆ ) along (4̃8̆H̃,δ̆H̃)τ̆ ,
which can be canonically identified as a closed formal subscheme of X8̆H̃,δ̆H̃,τ̆ , induc-
ing the closures of the [(8̃H̃, δ̃H̃, σ̃ )]-strata on any good formal (8̆H̃, δ̆H̃, τ̆ )-model.
(See [Lan 2008, Definition 6.3.1.11] for the definition of good formal models, and
see [Lan 2008, Definition 6.3.2.16 in the revision] for the labeling of the strata by
equivalence classes of triples of the form [(8̃H̃, δ̃H̃, σ̃ )].) By (5) of Theorem 1.41,
the strata-preserving canonical isomorphism (M̃tor

H̃,6̃)
∧

Z̃
[(8̆H̃,δ̆H̃,τ̆ )]

∼= X8̆H̃,δ̆H̃,τ̆
then

induces a canonical isomorphism

(Ntor)∧
Z̃
[(8̆H̃,δ̆H̃,τ̆ )]

∼= X8̆H̃,δ̆H̃,σ̆ ,τ̆
.

(Alternatively, one may refer directly to the gluing construction of M̃tor
H̃ in [Lan

2008, §6.3.3], based on the crucial [Lan 2008, Proposition 6.3.2.13].)
By the theory of two-step constructions (see [Faltings and Chai 1990, Chapter III

Theorem 10.2] and [Lan 2008, §4.5.6 in the revision]), the degeneration data of
the pullback of (G, λ, i, αH) to affine open formal subschemes of X8̆H̃,δ̆H̃,σ̆ ,τ̆

can
be obtained from the degeneration data of pullback of (G̃, λ̃, ĩ, α̃H̃) to affine open
formal subschemes of X̃8̆H̃,δ̆H̃,τ̆

by restricting objects defined on X̆ and Y̆ to the
subgroups X and Y . Therefore, in order to verify (6) of Theorem 1.41, it suffices
to verify the following:

Condition 3.8 (cf. [Faltings and Chai 1990, Chapter VI, Definition 1.3]). For
each (8̆H̃, δ̆H̃, τ̆ ) as above, the image of τ̆ in P8H under the (canonical) second
morphism in (3.7) is contained in some cone τ ⊂ P+8H in the cone decomposition
68H .

If Condition 3.8 is satisfied (for κ = (H̃, 6̃, σ̃ )), then the structural morphism
f : N→ MH extends to a (unique) morphism f tor

: Ntor
→ Mtor

H , which is étale
locally given by morphisms between toric schemes equivariant under (surjective)
morphisms between tori. By construction, we have a commutative diagram

Ntor

f tor

��

X8̆H̃,δ̆H̃,σ̆ ,τ̆
oo

��

// C̃8̆H̃,δ̆H̃

��

Mtor
H X8H,δH,τoo // C8H,δH

(3.9)

of canonical morphisms whenever the image of τ̆ under the (canonical) second
morphism in (3.7) is contained in τ .

Remark 3.10. Condition 3.8 is analogous to the condition in [Pink 1990, 6.25(b)],
used in for example [Harris and Zucker 1994, Lemma 1.6.5] and related works
based on [Ash et al. 1975]. Unfortunately, we must point out that, apart from some
pleasant (and often suggestive) analogies, there is no logical implication between



924 Kai-Wen Lan

the analytic theory in [Ash et al. 1975; Pink 1990], and the algebraic theory in
[Faltings and Chai 1990; Lan 2008]. (One cannot even use G(Q) in the algebraic
theory.) The applicability of Condition 3.8 in our work cannot be proved using
[Pink 1990, 6.25(b)].

As planned in step (4) of Section 2C, let us take KQ,H,6 to be the subset of
Kpre

Q,H,6 consisting of elements κ satisfying Condition 3.8. Since Condition 3.8 can
be achieved by replacing any given 6̃ with a refinement, we see that KQ,H,6 is
nonempty and has an induced directed partial order.

From now on, assume that our fixed choice κ = (H̃, 6̃, σ̃ ) lies in KQ,H,6 .

3C. Logarithmic smoothness of f tor. The aim of this subsection is to carry out
step (5) of Section 2C.

We need to show that the morphism f tor is log smooth (as in [Kato 1989, 3.3] and
[Illusie 1994, 1.6]) if we equip Ntor and Mtor

H with the canonical fine log structures
given respectively by the relative Cartier divisors with simple normal crossings
given by the complements Ntor

−N and Mtor
H −MH with their reduced structures.

According to [Kato 1989, 3.12], we have the following:

Lemma 3.11. To show that the morphism f tor is log smooth, it suffices to show that
the first morphism in the canonical exact sequence

( f tor)∗(�1
Mtor
H /S0
[d log∞])→�1

Ntor/S0
[d log∞]→�1

Ntor/Mtor
H
→ 0 (3.12)

is injective, and that �1
Ntor/Mtor

H
is locally free of finite rank.

By (4) of Theorem 1.41, the extended Kodaira–Spencer morphism [Lan 2008,
Definition 4.6.3.32] for G→Mtor

H induces an isomorphism

KSG/Mtor
H /S0 : KSG/Mtor

H
−→∼ �1

Mtor
H /S0
[d log∞]

over Mtor
H , while the extended Kodaira–Spencer morphism for G̃→ M̃tor

H̃ induces
an isomorphism

KSG̃/M̃tor
H̃ /S0
: KSG̃/M̃tor

H̃
−→∼ �1

M̃tor
H̃ /S0
[d log∞]

over M̃tor
H̃ . Over Ntor, we have canonical extensions

0→ T̃Ntor → G̃Ntor → G→ 0 and 0→ T̃∨Ntor → G̃∨Ntor → G
∨
→ 0

of group schemes, inducing exact sequences

0→ Lie∨G/Ntor → Lie∨G̃Ntor/Ntor → Lie∨T̃Ntor/Ntor → 0

and

0→ Lie∨
G
∨
/Ntor → Lie∨G̃∨

Ntor/N
tor → Lie∨T̃∨

Ntor/N
tor → 0.



Toroidal compactifications of PEL-type Kuga families 925

Therefore, there is a canonical surjection

KSG̃Ntor/Ntor � KST̃Ntor/Ntor, (3.13)

where KST̃Ntor/Ntor is the pullback of the sheaf

KST̃S0/S0
:= (Lie∨T̃S0/S0

⊗OS0
Lie∨T̃∨S0

/S0
)
/(

λ∗(y)⊗ z− λ∗(z)⊗ y
(b?x)⊗ y− x ⊗ (by)

)
x ∈Lie∨T̃S0

/S0
y,z ∈Lie∨

T̃∨S0
/S0

b∈O

defined (as for degenerating families in Definition 1.40) by the split tori T̃ and T̃∨

over S0 with respective character groups X̃ and Ỹ . The kernel

K := ker(KSG̃Ntor/Ntor � KST̃Ntor/Ntor)

contains KSG/Ntor as a natural subsheaf, and the quotient of K by KSG/Ntor is
isomorphic to

(Lie∨G/Ntor ⊗ONtor Lie∨T̃∨
Ntor/N

tor)/
(
(b?x)⊗ y− x ⊗ (by)

)
x ∈Lie∨

G/Ntor

y ∈Lie∨
T̃∨
Ntor /N

tor

b∈O

∼= HomO⊗ZONtor (LieT̃∨
Ntor/N

tor,Lie∨G/Ntor)

∼= HomO⊗ZONtor (HomZ(Ỹ ,ONtor),Lie∨G/Ntor)

∼= HomO(Ỹ∨,Lie∨G/Ntor)

∼= HomO(Q∨,Lie∨G/Ntor).

Since the pullback of (G, λ, i, αH) under Ntor
→Mtor

H is isomorphic to (G, λ, i, αH),
we have canonical isomorphisms

( f tor)∗KSG/Mtor
H
∼= KSG/Ntor

and

( f tor)∗(HomO(Q∨,Lie∨G/Mtor
H
))∼= HomO(Q∨,Lie∨G/Ntor).

Since the étale local structure of M̃tor
H̃ along the [(8̆H̃, δ̆H̃, τ̆ )]-stratum is the same as

4̃8̆H̃,δ̆H̃
(τ̆ ), the calculation in the proof of [Lan 2008, Proposition 6.2.5.14] shows

that the isomorphism KSG̃/M̃tor
H̃ /S0

induces by restriction (to the closure Ntor of the
[(8̃H̃, δ̃H̃, σ̃ )]-stratum) an isomorphism

K−→∼ �1
Ntor/S0

[d log∞] (3.14)
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making the diagram

( f tor)∗KSG/Mtor
H

oKSG/Mtor
H /S0

��

� � // K

o (3.14)
��

( f tor)∗(�1
Mtor
H /S0
[d log∞]) // �1

Ntor/S0
[d log∞]

commutative. In particular, the bottom arrow (which is the first morphism in (3.12))
is injective, and the isomorphism (3.14) induces a canonical isomorphism

( f tor)∗(HomO(Q∨,Lie∨G/Mtor
H
))−→∼ �1

Ntor/Mtor
H

(3.15)

of coherent sheaves over Ntor. (The restriction of (3.15) to N is compatible with the
composition of isomorphisms (2.17) because of the same calculation in the proof
of [Lan 2008, Proposition 6.2.5.14].)

Thus the desired isomorphism (2.16) is a consequence of (3.15). Moreover, since
HomO(Q∨,Lie∨G/Mtor

H
) (see Remark 2.14) is locally free of finite rank over Mtor

H , the
isomorphism (3.15) shows that the sheaf �1

Ntor/Mtor
H

is also locally free of finite rank
over Ntor. By Lemma 3.11, this shows that f tor is log smooth, and completes the
proof of (2) and (3a) of Theorem 2.15.

3D. Equidimensionality of f tor. Let us take a closer look at the diagram (3.9). By
construction of f tor, given any stratum Z[(8H,δH,τ )] of Mtor

H , the preimage

Z̃[(8H,δH,τ )] := ( f tor)−1(Z[(8H,δH,τ )])

has a stratification formed by Z̃
[(8̆H̃,δ̆H̃,τ̆ )]

, where τ̆ runs through cones in 6̃8̆H̃
satisfying the following conditions:

(1) τ̆ ⊂ P+
8̆H̃

.

(2) τ̆ has a face σ̆ that is a 08̆H̃-translation of the image of σ̃ ⊂ P+
8̃H̃

under the
first morphism in (3.7).

(3) The image of τ̆ under the (canonical) second morphism in (3.7) is contained
in τ ⊂ P+8H .

The formal completion (Ntor)∧
Z̃[(8H,δH,τ )]

admits a canonical morphism

(Ntor)∧
Z̃[(8H,δH,τ )]

→ C8H,δH,

whose precomposition with the canonical morphism

(Ntor)∧
Z̃
[(8̆H̃,δ̆H̃,τ̆ )]

→ (Ntor)∧
Z̃[(8H,δH,τ )]

,
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for any stratum Z̃[(8̆H̃,δ̆H̃,τ̆ )] of Z̃[(8H,δH,τ )], coincides with the composition of canon-
ical morphisms X8̆H̃,δ̆H̃,σ̆ ,τ̆ → C̃8̆H̃,δ̆H̃→ C8H,δH by its very construction.

Since f tor is étale locally given by morphisms between toric schemes equivariant
under (surjective) morphisms between tori, to determine if f tor is equidimensional
(cf. [Faltings and Chai 1990, Chapter VI, Definition 1.3 and Remark 1.4]), it
suffices to determine if the relative dimension of each of the induced (smooth)
morphism Z̃[(8̆H̃,δ̆H̃,τ̆ )] → Z[(8H,δH,τ )] between strata is at most dimMH(N), the
relative dimension of f : N→MH.

By abuse of language, we define the R-dimension of a cone to be the R-dimension
of its R-span. Then the codimension of N = Z̃[(8̃H̃,δ̃H̃ ,̃σ )] in M̃tor

H̃ is dimR(̃σ ) =

dimR((S8̃H̃)
∨

R) because σ̃ is top-dimensional. The codimension of

Z̃[(8̆H̃,δ̆H̃,τ̆ )]
∼= (4̃8̆H̃,δ̆H̃

)τ̆

in M̃tor
H̃ is equal to dimR(τ̆ ). Therefore, the codimension of Z̃[(8̆H̃,δ̆H̃,τ̆ )] in Ntor is

equal to dimR(τ̆ )− dimR(̃σ )= dimR(τ̆ )− dimR((S8̃H̃)
∨

R). On the other hand, the
codimension of Z[(8H,δH,τ )]

∼= (48H,δH)τ in Mtor
H is dimR(τ ). Hence we have

dimZ[(8H,δH,τ )]
(̃Z
[(8̆H̃,δ̆H̃,τ̆ )]

)

= dimMH(N)− (dimR(τ̆ )− dimR((S8̃H̃)
∨

R))+ dimR(τ ). (3.16)

Let τ ′ denote the image of τ̆ in (S8H)∨R. By assumption on τ̆ , we have τ ′ ⊂ τ . If
τ ′ = τ , then

dimR(τ )= dimR(τ
′)≤ dimR(τ̆ )− dimR((S8̃H̃)

∨

R),

and hence (3.16) implies

dimZ[(8H,δH,τ )]
(̃Z
[(8̆H̃,δ̆H̃,τ̆ )]

)≤ dimMH(N).

(If this is true for all Z̃
[(8̆H̃,δ̆H̃,τ̆ )]

, then f tor is equidimensional.) On the other
hand, suppose τ ′ ( τ . Then there exists a face of τ ′′ of τ ′ such that τ ′′ ⊂ τ
and dimR(τ

′′) < dimR(τ ). Note that τ ′′ is the image of at least one face of τ̆
satisfying the three conditions in the first paragraph of this section. By dropping
redundant basis vectors, we may assume moreover that this face τ̆ ′′ of τ̆ satisfies
dimR(τ

′′)= dimR(τ̆
′′)− dimR((S8̃H̃)

∨

R). Then we have

dimR(τ ) > dimR(τ
′′)= dimR(τ̆

′′)− dimR((S8̃H̃)
∨

R),

and hence (3.16) implies

dimZ[(8H,δH,τ )]
(̃Z
[(8̆H̃,δ̆H̃,τ̆

′′)]) > dimMH(N),

which means f tor cannot be equidimensional.



928 Kai-Wen Lan

This motivates the following strengthening of Condition 3.8:

Condition 3.17 (cf. [Faltings and Chai 1990, Chapter VI, Definition 1.3]). For
each (8̆H̃, δ̆H̃, τ̆ ) such that Z

[(8̆H̃,δ̆H̃,τ̆ )]
is (a stratum) in Ntor, the image of τ̆ ⊂ P+8H

under the (canonical) second morphism in (3.7) is exactly some cone τ ⊂ P+8H in
the cone decomposition 68H .

Proposition 3.18. The morphism f tor
: Ntor

→Mtor
H is equidimensional (with rel-

ative dimension equal to the one of f : N → MH), and hence flat, if and only
if Condition 3.17 is satisfied, if and only if f tor is log integral (see [Kato 1989,
Definition 4.3]).

Proof. The equivalence between Condition 3.17 and equidimensionality has been
explained above. Since both Ntor and Mtor

H are regular (because they are smooth
over S0= Spec(OF0,(�))), the equidimensionality and flatness of f tor are equivalent
by [EGA IV3 1966, 15.4.2 b)⇔ e′)]. By [Kato 1989, Proposition 4.1(2)], the log
integrality of f tor is equivalent to the flatness of each of the canonical morphisms
Z[τ∨] ↪→ Z[τ̆∨] (defined when Z[(8̆H̃,δ̆H̃,τ̆ )] is mapped to Z[(8H,δH,τ )]), which is
equivalent to the equidimensionality of any such morphism (by the smoothness of
Z[τ∨] and Z[τ̆∨] over Z, and by [EGA IV3 1966, 15.4.2 b)⇔ e′)] again), which
is equivalent to Condition 3.17 by the same (dimension comparison) argument. �

Proposition 3.19 (cf. [Faltings and Chai 1990, Chapter VI, Remark 1.4]). Condition
3.17 can be achieved by replacing both the cone decompositions 6̃ and 6 with
some refinements.

Proof. Instead of taking refinements of 6̃ and 6 separately, we consider the mor-
phism P8̆H̃ � P8H in (3.7) and consider the graph of 6̃. More precisely, using the
canonical morphisms X ↪→ X̆ and Y ↪→ Y̆ compatible with φ and φ̆, we obtain canon-
ical morphisms X ′ := X̆⊕X→ X̆ and Y ′ := Y̆⊕Y→ Y̆ compatible with φ′ := φ̆⊕φ
and φ̆, inducing morphisms S8̆H̃⊕S8H � S8̆H̃ and P8̆H̃ ↪→P8̆H̃⊕P8H . The image
of this latter morphism is the graph of P8̆H̃ � P8H . Let us define

...
S ′ by X ′, Y ′, and

φ′ as in (1.21), and let S′ be its free quotient. Define P′ accordingly as the subset of
(S′)∨R consisting of positive semidefinite pairings with admissible radicals, contain-
ing the graph of P8̆H̃ � P8H canonically as an admissible boundary component (cf.
Definition 1.28). The cone decomposition 6̃8̆H̃ defines a cone decomposition on
this graph, which might fail to be projective or smooth with respect to the structure
of the ambient space. But we can find a projective smooth cone decomposition of
P′, admissible with respect to the actions of all elements in GLO(X ′)×GLO(Y ′)
respecting φ′, such that its restriction to the graph refine the cone decomposition
defined by 6̃8̆H̃ . Thus we obtain a simultaneous smooth projective refinement of
6̃8̆H̃ and 68H , such that image of cones in 6̃8̆H̃ under P8̆H̃ � P8H are cones
in 68H . Since this construction is compatible with surjections between different
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choices of 8̆H̃ and 8H, we can conclude by induction on magnitude of cusp labels
(8H, δH) as in the proofs of [Lan 2008, Propositions 6.3.3.3 and 7.3.1.5]. �

Remark 3.20. We will not need Propositions 3.18 and 3.19 in what follows. We
supply them here because knowing flatness or log integrality of f tor is useful in
many applications.

3E. Hecke actions. The aim of this subsection is to explain the proof of statements
(4) and (5) of Theorem 2.15, with (4c) and (5c) conditional on (3b) and (3c) of
Theorem 2.15. These statements might seem elaborate, but they are self-explanatory
and based on the following simple idea: Since N and Ntor are constructed using
the toroidal compactifications of M̃H̃, we can use the Hecke actions on M̃H̃ and
their (compatible) extensions to toroidal compactifications provided by [Lan 2008,
Proposition 6.4.3.4 in the revision].

Let gh , H′, 6′, gl , and Q′ be as in (4) and (5) of Theorem 2.15. (For proving (4)
and (5) of Theorem 2.15, we may assume in what follows either gh = 1 or gl = 1,
although the theory works in a more general context.) Using the splitting δ̃ of Z̃, we
obtain an element g̃ in P̃Z̃(A

∞,�) such that Gr̃Z
−1(g̃)= gh , and such that Gr̃Z

0(g̃) is
identified with g−1

l under ϕ̃0 :Gr̃Z
0 −→
∼ Q0⊗Z Ẑ�∼= Q⊗Z Ẑ�. (See Section 3A.) Let

H̃′ be a (necessarily neat) subgroup of G̃(Ẑ�) such that g̃−1H̃′g̃⊂ H̃, and such that
H′ = Gr̃Z

−1(H̃′ ∩ PZ̃(Ẑ
�)). By [Lan 2008, Proposition 6.4.3.4 in the revision], there

exist some choices of 6̃′ such that the canonical morphism [g̃] : M̃H̃′→ M̃H̃ extends
canonically to [g̃]tor

: M̃tor
H̃′,6̃′ → M̃tor

H̃,6̃ . By replacing 6̃′ with a refinement such
that it satisfies Condition 3.8 (with 6′ and) with some choice of σ̃ ′, and such that
the morphism [g̃]tor sends the stratum Z̃[(8̆H̃′ ,δ̆H̃′ ,̃σ ′)] to Z̃[(8̆H̃,δ̆H̃ ,̃σ )], we see that the
induced morphism from the closure of Z̃[(8̆H̃′ ,δ̆H̃′ ,̃σ ′)] to the closure of Z̃[(8̆H̃,δ̆H̃ ,̃σ )]
gives the existences of the morphisms [gh]κ ′,κ , [gh]

tor
κ ′,κ , [gl]

∗

κ ′,κ , and ([gl]
∗

κ ′,κ)
tor

as in (4a), (4b), (5a), and (5b) of Theorem 2.15, where κ ′ = (H̃′, 6̃′, σ̃ ′) lies in
KQ′,H′,6′ , except that (2.24) and (2.26) still have to be explained.

As in the case of showing Ri ( f tor
κ ′,κ)∗ONtor

κ′
= 0 for i > 0 in Section 3A, since

the morphisms [gh]
tor
κ ′,κ and ([gl]

∗

κ ′,κ)
tor are étale locally given by equivariant mor-

phisms between toric schemes, we have (by [Kempf et al. 1973, Chapter I, §3])
Ri ([gh]

tor
κ ′,κ)∗(O(N′

κ′
)
tor) = 0 and Ri ([gl]

∗

κ ′,κ)
tor
∗
(O(N′

κ′
)
tor) = 0 for i > 0, which are

(2.24) and (2.26) of Theorem 2.15.
The remaining statements in (4c) and (5c) of Theorem 2.15 now follow if we

assume statements (3b) and (3c) of Theorem 2.15. (See the end of Section 5, p. 957.)

4. Calculation of formal cohomology

Throughout this section, unless otherwise specified, we fix the choice of an arbitrary
(locally closed) stratum Z[(8H,δH,τ )] of Mtor

H . The aim of this section is to calculate
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the relative cohomology of the pullback of the structure morphism f tor to the formal
completion (Mtor

H )
∧

Z[(8H,δH,τ )]
. (See (5) of Theorem 1.41 for a description of this for-

mal completion. See also the first paragraph of Section 3D for a description of the for-
mal completion (Ntor)∧

Z̃[(8H,δH,τ )]
of Ntor along Z̃[(8H,δH,τ )] = ( f tor)−1(Z[(8H,δH,τ )]).)

4A. Formal fibers of f tor. Let 08̆H̃,τ be the subgroup of elements in 08̆H̃ stabiliz-
ing (both) X and Y and inducing an element in 08H,τ (the subgroup of 08H formed
by elements mapping τ to itself). Since we have tacitly assumed that 08H,τ is trivial
by Condition 1.29 and [Lan 2008, Lemma 6.2.5.27 in the revision], 08̆H̃,τ is also the
subgroup of elements in 08̆H̃ fixing (both) X and Y . Let 08̃H̃,8H be the subgroup
of elements in HomO(X̃ , X) sending φ̃(Ỹ ) to φ(Y ) that are compatible with ϕ̃−2,H̃,
ϕ̃0,H̃, ϕ−2,H, and ϕ0,H. Note that these compatibility conditions imply that the
subgroup 08̃H̃,8H has index prime to � in HomO(X̃ , X). The two surjections

sX̆ : X̆ � X̃ and sY̆ : Y̆ � Ỹ

identify 08̃H̃,8H as a subgroup of 08̆H̃,τ . (More precisely, any t ∈08̃H̃,8H defines a
translation action x 7→ x+ t (sX̆ (x)) on X̆ , inducing compatibly a translation action
on Y̆ , and hence defining an element in 08̆H̃,τ fixing both X and Y .)

Since 08̃H̃,8H does not modify sX̆ and sY̆ , it does not modify the first morphism
in (3.7). Therefore, if we denote the image of σ̃ in P8̆H̃ by σ̆ , then 08̃H̃,8H maps
σ̆ to itself. On the other hand, by Condition 1.29 (and Lemma 3.1), if a cone
τ̆ ⊂ P+

8̆H̃
in 68̆H̃ has a face that is a 08̆H̃,τ -translation of σ̆ , then it cannot have a

different face that is also a 08̆H̃,τ -translation of σ̆ . Let us denote by 68̆H̃,σ̆ ,τ the
subset of 68̆H̃ consisting of cones τ̆ satisfying the following conditions (cf. similar
conditions in the first paragraph of Section 3D):

(1) τ̆ ⊂ P+8̆H̃ .

(2) τ̆ has σ̆ as a face.

(3) The image of τ̆ under the (canonical) second morphism in (3.7) is contained
in τ ⊂ P+8H .

Then, to obtain a complete list of representatives of the cusp labels [(8̆H̃, δ̆H̃, τ̆ )]
parametrizing the strata of Z̃[(8H,δH,τ )], it suffices to take representatives of 68̆H̃,σ̆ ,τ
modulo the action of08̃H̃,8H . (That is, we do not have to consider08̃H̃,8H-translates
of σ̆ .)

Let 4̃8̆H̃,δ̆H̃(τ ) denote the toroidal embedding of 4̃8̆H̃,δ̆H̃ formed by gluing the
affine toroidal embeddings 4̃8̆H̃,δ̆H̃(τ̆ ) over C̃8̆H̃,δ̆H̃ , where τ̆ runs through cones in
68̆H̃,σ̆ ,τ . To minimize confusion, we shall distinguish 4̃8̆H̃,δ̆H̃(τ̆1) and 4̃8̆H̃,δ̆H̃(τ̆2)

even when [(8̆H̃, δ̆H̃, τ̆1)] = [(8̆H̃, δ̆H̃, τ̆2)]. For each τ̆ as above (having σ̆ as a
face), recall that we have denoted the closure of the σ̆ -stratum of 4̃8̆H̃,δ̆H̃(τ̆ ) by
(4̃8̆H̃,δ̆H̃)σ̆ (τ̆ ). Let (4̃8̆H̃,δ̆H̃)σ̆ (τ ) denote the union of all such (4̃8̆H̃,δ̆H̃)σ̆ (τ̆ ), let
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(4̃8̆H̃,δ̆H̃)τ denote the union of all such (4̃8̆H̃,δ̆H̃)τ̆ , and let X8̆H̃,δ̆H̃,σ̆ ,τ denote the
formal completion of (4̃8̆H̃,δ̆H̃)σ̆ (τ) along (4̃8̆H̃,δ̆H̃)τ .

For each τ̆ ∈ 68̆H̃,σ̆ ,τ , consider the open subscheme Uτ̆ of (4̃8̆H̃,δ̆H̃)τ formed
by the union of all (locally closed) strata of (4̃8̆H̃,δ̆H̃)τ that contains the stratum
(4̃8̆H̃,δ̆H̃)τ̆ in its closure, and consider the open formal subscheme Uτ̆ of X8̆H̃,δ̆H̃,σ̆ ,τ
supported on Uτ̆ . The subscheme Uτ̆ of (4̃8̆H̃,δ̆H̃)τ is the closed subscheme of
4̃8̆H̃,δ̆H̃(τ̆ ) given by the intersection of 4̃8̆H̃,δ̆H̃(τ̆ ) and (4̃8̆H̃,δ̆H̃)τ in 4̃8̆H̃,δ̆H̃(τ ).
The formal subscheme Uτ̆ of X8̆H̃,δ̆H̃,σ̆ ,τ is the formal completion of (4̃8̆H̃,δ̆H̃)σ̆ (τ̆ )
along Uτ̆ . The collection {Uτ̆ }τ̆∈68̆H̃,σ̆ ,τ

forms an open covering of (4̃8̆H̃,δ̆H̃)τ . We
can interpret X8̆H̃,δ̆H̃,σ̆ ,τ as constructed by gluing the collection {Uτ̆ }τ̆∈68̆H̃,σ̆ ,τ

of
formal schemes along their intersections (of supports).

Explicitly, let us denote by τ̆∨
σ̆

the intersection of (τ̆ ′)∨0 for τ̆ ′ running through
faces of τ̆ in 68̆H̃,σ̆ ,τ (including τ̆ itself). Then we have the canonical isomorphism

Uτ̆
∼= SpecOC̃

8̆H̃,δ̆H̃

(( ⊕
˘̀∈τ̆∨

98̆H̃,δ̆H̃
( ˘̀)
)/( ⊕

˘̀∈τ̆∨
σ̆

98̆H̃,δ̆H̃
( ˘̀)
))

of schemes affine over C̃8̆H̃,δ̆H̃ . As OC̃8̆H̃,δ̆H̃
-modules, we have a canonical isomor-

phism ( ⊕
˘̀∈τ̆∨

98̆H̃,δ̆H̃
( ˘̀)
)/( ⊕

˘̀∈τ̆∨
σ̆

98̆H̃,δ̆H̃
( ˘̀)
)
∼=

⊕
˘̀∈τ̆∨−τ̆∨

σ̆

98̆H̃,δ̆H̃
( ˘̀).

If we equip τ̆∨ − τ̆∨
σ̆

with the semigroup structure induced by the canonical bi-
jection (τ̆∨ − τ̆∨

σ̆
)→ τ̆∨/τ̆∨

σ̆
, then we may interpret

⊕
˘̀∈τ̆∨−τ̆∨

σ̆
98̆H̃,δ̆H̃

( ˘̀) as an
OC̃8̆H̃,δ̆H̃

-algebra, with algebra structure given by canonical isomorphisms

98̆H̃,δ̆H̃
( ˘̀) ⊗OC̃

8̆H̃,δ̆H̃

98̆H̃,δ̆H̃
( ˘̀′)−→∼ 98̆H̃,δ̆H̃

( ˘̀+ ˘̀′)

(
inherited from those of O4̃8̆H̃,δ̆H̃

∼=
⊕
˘̀∈S8̆H̃

9̃8̆H̃,δ̆H̃
( ˘̀)
)

if ˘̀+ ˘̀′ ∈ τ̆∨− τ̆∨
σ̆

and by

98̆H̃,δ̆H̃
( ˘̀)⊗OC̃

8̆H̃,δ̆H̃

98̆H̃,δ̆H̃
( ˘̀′)→ 0

otherwise. Then we have a canonical isomorphism

Uτ̆
∼= SpecOC̃

8̆H̃,δ̆H̃

( ⊕
˘̀∈τ̆∨−τ̆∨

σ̆

98̆H̃,δ̆H̃
( ˘̀)
)
.

By definition, we have

τ̆∨− τ̆∨σ̆ =
( ⋃
τ̆ ′ face of τ̆
in 6

8̆H̃,σ̆ ,τ

(
(τ̆ ′)⊥ ∩ τ̆∨

))
⊂ σ̆⊥ ∩ τ̆∨.
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The formal scheme Uτ̆ , being the formal completion of

(4̃8̆H̃,δ̆H̃
)σ̆ (τ̆ )∼= SpecOC̃

8̆H̃,δ̆H̃

( ⊕
˘̀∈σ̆⊥∩τ̆∨

9̃8̆H̃,δ̆H̃
( ˘̀)
)

along Uτ̆ , can be canonically identified with the relative formal spectrum of the
OC̃8̆H̃,δ̆H̃

-algebra
⊕̂
˘̀∈σ̆⊥∩τ̆∨98̆H̃,δ̆H̃

( ˘̀) over C̃8̆H̃,δ̆H̃ , where
⊕̂

denotes the com-
pletion of the sum with respect to the OC̃8̆H̃,δ̆H̃

-ideal
⊕
˘̀∈σ̆⊥∩τ̆∨

σ̆
98̆H̃,δ̆H̃(

˘̀). Note
that all the above canonical isomorphisms correspond to canonical morphisms
of OC̃8̆H̃,δ̆H̃ -algebras formed by sums of sheaves of the form 9̃8̆H̃,δ̆H̃(

˘̀) (with
OC̃8̆H̃,δ̆H̃ -algebra structures inherited from that of O4̃8̆H̃,δ̆H̃ ).

The descriptions above imply the following simple but important facts:

Lemma 4.1. Suppose τ̆ and τ̆ ′ are two cones in 68̆H̃,σ̆ ,τ such that τ̆ ′ is a face of τ̆ .

(1) We have a canonical open immersion Uτ̆ ′ ↪→ Uτ̆ (resp. Uτ̆ ′ ↪→Uτ̆ ) of formal
subschemes of X8̆H̃,δ̆H̃,σ̆ ,τ

.

(2) The canonical restriction morphism from Uτ̆ to Uτ̆ ′ corresponds to the canoni-
cal morphism ⊕̂

˘̀∈σ̆⊥∩τ̆∨

98̆H̃,δ̆H̃
( ˘̀)→

⊕̂
˘̀∈σ̆⊥∩(τ̆ ′)∨

98̆H̃,δ̆H̃
( ˘̀)

of OC̃8̆H̃,δ̆H̃
-algebras, where the two symbols

⊕̂
denote completions of the sums

with respect to the sheaves of ideals
⊕

˘̀∈σ̆⊥∩τ̆∨
σ̆

98̆H̃,δ̆H̃
( ˘̀) and

⊕
˘̀∈σ̆⊥∩(τ̆ ′)∨

σ̆

98̆H̃,δ̆H̃
( ˘̀),

respectively.

(3) The canonical restriction morphism from Uτ̆ to Uτ̆ ′ corresponds to the canoni-
cal morphism ⊕

˘̀∈τ̆∨−τ̆∨
σ̆

98̆H̃,δ̆H̃
( ˘̀)→

⊕
˘̀∈(τ̆ ′)∨−(τ̆ ′)∨

σ̆

98̆H̃,δ̆H̃
( ˘̀)

of OC̃8̆H̃,δ̆H̃
-algebras, which maps 98̆H̃,δ̆H̃(

˘̀) to 98̆H̃,δ̆H̃(
˘̀) when

˘̀ ∈ (τ̆∨− (τ̆ ′)∨σ̆ )= (τ̆
∨
− τ̆∨σ̆ )∩ ((τ̆

′)∨− (τ̆ ′)∨σ̆ ),

and to zero otherwise.

(4) The correspondences in (2) and (3) above are canonically compatible with
each other.

By Condition 1.29 (and Lemma 3.1), the action of 08̃H̃,8H induces only the
trivial action on each stratum it stabilizes. Therefore, the quotient morphism

X8̆H̃,δ̆H̃,σ̆ ,τ
→ X8̆H̃,δ̆H̃,σ̆ ,τ

/08̃H̃,8H
(4.2)
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of formal schemes over S0 is a local isomorphism. The morphism (4.2) is not defined
over C̃8̆H̃,δ̆H̃ when the action of 08̃H̃,8H on C̃8̆H̃,δ̆H̃ is nontrivial. Nevertheless,
since 08̃H̃,8H acts trivially on 8H, it acts trivially on C8H,δH , and hence (4.2) is
defined over C8H,δH .

Proposition 4.3. There is a canonical isomorphism

(Ntor)∧
Z̃[(8H,δH,τ )]

∼= X8̆H̃,δ̆H̃,σ̆ ,τ
/08̃H̃,8H

(4.4)

of formal schemes over C8H,δH , characterized by the identifications

(Ntor)∧
Z̃
[(8̆H̃,δ̆H̃,τ̆ )]

∼= X8̆H̃,δ̆H̃,σ̆ ,τ̆

of formal schemes over C̃8̆H̃,δ̆H̃ (compatible with the canonical morphisms

(Ntor)∧
Z̃[(8̆H̃,δ̆H̃,τ̆ )]

→ (Ntor)∧
Z̃[(8H,δH,τ )]

and C̃8̆H̃,δ̆H̃→ C8H,δH). (The formation of the formal completion here is similar
to the one in (5) of Theorem 1.41.)

Proof. Let τ̆ ∈ 68̆H̃,σ̆ ,τ . Let Ũτ̆ denote the completion of 4̃8̆H̃,δ̆H̃(τ̆ ) along Uτ̆ ,
which contains Uτ̆ as a closed formal subscheme (with the same support Uτ̆ ).

Since Uτ̆ is the union of (4̃8̆H̃,δ̆H̃)τ̆ ′ with τ̆ ′ running through faces of τ̆ in
68̆H̃,σ̆ ,τ

, which are cones in P+
8̆H̃

, the tautological degeneration data over Ũτ̆

satisfies the positivity condition (with respect to the ideal defining Uτ̆ ), and we
obtain by Mumford’s construction a degenerating family ( ♥G̃, ♥̃λ, ♥ĩ, ♥α̃H̃)→ Ũτ̆
as in [Lan 2008, §6.2.5; especially the paragraph preceding Definition 6.2.5.17],
called a Mumford family. Note that a Mumford family is defined in the sense of
relative schemes, namely as a functorial assignment to each affine open formal
subscheme Spf(R) of Ũτ̆ a degenerating family over Spec(R). Therefore (6) of
Theorem 1.41 applies, and implies the existence of a canonical (strata-preserving)
morphism Ũτ̆ → M̃tor

H̃ under which ( ♥G̃, ♥̃λ, ♥ĩ, ♥α̃H̃)→ Ũτ̆ is the pullback of
(G̃, λ̃, ĩ, α̃H̃)→ M̃tor

H̃ . Moreover, if τ̆ ′ ∈68̆H̃,σ̆ ,τ , then the morphisms from Ũτ̆ and
from Ũτ̆ ′ to M̃tor

H̃ agree over the intersection Ũτ̆ ∩ Ũτ̆ ′ .
By taking the closures of the [(8̃H̃, δ̃H̃, σ̃ )]-strata (not as closed subschemes

of the supports, but as closed formal subschemes, as in the second last paragraph
preceding Condition 3.8), we obtain canonical morphisms Uτ̆ → Ntor for all τ̆ in
68̆H̃,σ̆ ,τ

, which patch together, cover all strata above [(8H, δH, τ )], and define
(4.4) as desired. �

By (5) of Theorem 1.41, we have a canonical isomorphism

(Mtor
H )
∧

Z[(8H,δH,τ )]
∼= X8H,δH,τ . (4.5)
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By the very constructions, we may and we shall identify the pullback of f tor to
(Mtor

H )
∧

Z[(8H,δH,τ )]
with the canonical morphism X8̆H̃,δ̆H̃,σ̆ ,τ/08̃H̃,8H→X8H,δH,τ . By

abuse of notation, we shall also denote this pullback by

f tor
: X8̆H̃,δ̆H̃,σ̆ ,τ

/08̃H̃,8H
→ X8H,δH,τ .

For each τ̆ ∈ 68̆H̃,σ̆ ,τ , let U[τ̆ ] denote the image of Uτ̆ under (4.2), which is
isomorphic to Uτ̆ as a formal scheme over C8H,δH . By admissibility of 68̆H̃ ,
we know that the set 68̆H̃,σ̆ ,τ/08̃H̃,8H is finite. Then X8̆H̃,δ̆H̃,σ̆ ,τ/08̃H̃,8H can
be constructed by gluing the finite collection {U[τ̆ ]}[τ̆ ]∈68̆H̃,σ̆ ,τ /08̃H̃,8H

of formal
schemes over their intersections. Let us denote by

f tor
[τ̆ ] : U[τ̆ ]→ X8H,δH,τ

the restriction of f tor to U[τ̆ ]. If we choose a representative τ̆ of [τ̆ ], then we can
identify f tor

[τ̆ ]
: U[τ̆ ]→X8H,δH,τ with the canonical morphism f tor

τ̆ : Uτ̆ →X8H,δH,τ
induced by the canonical morphism X8̆H̃,δ̆H̃,σ̆ ,τ → X8H,δH,τ . Let us denote by

gτ̆ : Uτ̆ → X8H,δH,τ ×C8H,δH C̃8̆H̃,δ̆H̃, h : C̃8̆H̃,δ̆H̃→ C8H,ZH,

and

hτ : X8H,δH,τ ×C8H,δH C̃8̆H̃,δ̆H̃→ X8H,δH,τ

the canonical morphisms. Then we have a canonical identification f tor
τ̆
= hτ ◦ gτ̆ .

(Note that gτ̆ is a morphism between affine formal schemes over C̃8̆H̃,δ̆H̃ , and that
hτ is the pullback of h to the affine formal scheme X8H,δH,τ over C8H,δH .)

For simplicity, let us view OX8H,δH,τ
and OZ[(8H,δH,τ )]

as sheaves over C8H,δH , and
suppress (X8H,δH,τ → C8H,δH)∗ and (Z[(8H,δH,τ )]→ C8H,δH)∗ from the notation.
For push-forwards (to C8H,δH) of sheaves over X8H,δH,τ , we shall use the notation⊕̂

to denote the completion with respect to (the push-forward of) the ideal of
definition of OX8H,δH,τ

.
Based on Lemma 4.1, we have the following important facts:

Lemma 4.6. (1) For any τ̆ ∈68̆H̃,σ̆ ,τ , and any integer d ≥ 0, we have the canoni-
cal isomorphisms

Rd( f tor
τ̆ )∗(OUτ̆ )

∼=
⊕̂

˘̀∈σ̆⊥∩τ̆∨

Rdh∗(98̆H̃,δ̆H̃(
˘̀)) (4.7)

and

Rd( f tor
τ̆
)∗(OUτ̆

)∼=
⊕

˘̀∈τ̆∨−τ̆∨
σ̆

Rdh∗(98̆H̃,δ̆H̃(
˘̀)) (4.8)

over C8H,δH .
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(2) For any γ ∈ 08̃H̃,8H , we have a commutative diagram

Uτ̆
γ

//

gτ̆
��

Uγ τ̆

gγ τ̆
��

X8H,δH,τ ×C8H,δH C̃8̆H̃,δ̆H̃
γ

//

hτ
��

X8H,δH,τ ×C8H,δH C̃8̆H̃,δ̆H̃

hτ
��

X8H,δH,τ X8H,δH,τ

of formal schemes, (naturally) compatible with the commutative diagram

Uτ̆

γ
//

gτ̆
��

Uγ τ̆

gγ τ̆
��

(48H,δH)τ ×C8H,δH C̃8̆H̃,δ̆H̃
γ

//

hτ
��

(48H,δH)τ ×C8H,δH C̃8̆H̃,δ̆H̃

hτ
��

(48H,δH)τ (48H,δH)τ

of their supports. Then (4.7) and (4.8) are compatible with the canoni-
cal isomorphisms γ ∗OUγ τ̆ → OUτ̆ induced by the canonical isomorphisms
γ ∗98̆H̃,δ̆H̃

(γ ˘̀)−→∼ 98̆H̃,δ̆H̃
( ˘̀) over C̃8̆H̃,δ̆H̃ .

(3) For any integer d ≥ 0, if τ̆ ′ is a face of τ̆ , then the canonical morphism
Rd( f tor

τ̆
)∗OUτ̆ → Rd( f tor

τ̆ ′
)∗OUτ̆ ′ induced by restriction from Uτ̆ to Uτ̆ ′ corre-

sponds to the morphism⊕̂
˘̀∈σ̆⊥∩τ̆∨

Rdh∗(98̆H̃,δ̆H̃(
˘̀))→

⊕̂
˘̀∈σ̆⊥∩(τ̆ ′)∨

Rdh∗(98̆H̃,δ̆H̃(
˘̀))

over C8H,δH , and the canonical morphism Rd( f tor
τ̆
)∗OUτ̆

→ Rd( f tor
τ̆ ′
)∗OUτ̆ ′

induced by restriction from Uτ̆ to Uτ̆ ′ corresponds to the morphism⊕
˘̀∈τ̆∨−τ̆∨

σ̆

Rdh∗(98̆H̃,δ̆H̃(
˘̀))→

⊕
˘̀∈(τ̆ ′)∨−(τ̆ ′)∨

σ̆

Rdh∗(98̆H̃,δ̆H̃(
˘̀))

over C8H,δH . Both of these morphisms send Rdh∗(98̆H̃,δ̆H̃(
˘̀)) (identically) to

Rdh∗(98̆H̃,δ̆H̃(
˘̀)) when it is defined on both sides, and to zero otherwise.

4B. Relative cohomology of structural sheaves. Using (4.5), we shall identify
(Mtor

H )
∧

Z[(8H,δH,τ )]
with X8H,δH,τ , and identify Z[(8H,δH,τ )] with (48H,δH)τ . For sim-

plicity of notation, we shall use X8H,δH,τ and Z[(8H,δH,τ )] more often than their
counterparts.
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Recall that C8H,δH is an abelian scheme over the moduli problem MZH
H (see

Definition 1.17). Let (A, λA, i A, αHh ) be the tautological tuple over MZH
H . Let T

(resp. T∨) be the split torus with character group X (resp. Y ). For simplicity of
notation, we shall denote the pullbacks of A, A∨, T , and T∨, respectively, by the
same symbols. The pullback of G (resp. G∨) to X8H,ZH,τ is an extension of A (resp.
A∨) by T (resp. T∨), and this extension is a pullback of the tautological extension
G\ (resp. G∨,\) over C8H,δH . For simplicity, we shall also denote the pullbacks of
G\ and G∨,\, respectively, by the same symbols.

Lemma 4.9. The morphism h : C̃8̆H̃,δ̆H̃ → C8H,δH is proper and smooth, and is
a torsor under the pullback to C8H,δH of an abelian scheme Z×(�)-isogenous to
HomO(X̃ , A)◦→MZH

H .

Proof. For simplicity, let us denote the kernel of C̃8̆H̃,δ̆H̃→ C8H,δH by C , viewed
as a scheme over MZH

H .
While the abelian scheme C̃8̆H̃,δ̆H̃→MZH

H parametrizes liftings of pairs of the
form (c̆ : X̆→ A∨, c̆∨ : Y̆→ A)→MZH

H satisfying the compatibility c̆φ̆= λAc̆∨ and
the liftability and pairing conditions, and while the abelian scheme C8H,δH→MZH

H
parametrizes liftings of pairs of the form (c : X → A∨, c∨ : Y → A) satisfying
the compatibility cφ = λAc∨ and the liftability and pairing conditions, the scheme
C→MZH

H parametrizes lifts of pairs of the form (c̃ : X̃→ A∨, c̃∨ : Ỹ→ A) satisfying
the compatibility c̃φ̃=λAc̃∨ and the liftability and pairing conditions induced by the
ones of the pairs over C̃8̆H̃,δ̆H̃→MZH

H . Therefore, the same (component annihilating)
argument in [Lan 2008, §6.2.3–6.2.4] shows that the kernel C of h is an abelian
scheme Z×(�)-isogenous to HomO(X̃ , A)◦.

Consequently, all geometric fibers of h are smooth and have the same dimension
(as the relative dimension of C→MZH

H ). Since both C̃8̆H̃,δ̆H̃ and C8H,δH are smooth
over S0, the morphism h is smooth by [EGA IV3 1966, 15.4.2 e′)⇒ b)] and [EGA
IV4 1967, 17.5.1 b)⇒ a)]. By [Bosch et al. 1990, §2.2, Proposition 14], smooth
morphisms between schemes have sections étale locally. This shows that h is
a torsor under the pullback of C to C8H,δH . (Regardless of this argument, the
morphism h is proper because the morphism C̃8̆H̃,δ̆H̃→MZH

H is.) �

The nerve of the open covering {Uτ̆ }τ̆∈68̆H̃,σ̆ ,τ of X8̆H̃,δ̆H̃,σ̆ ,τ , or equivalently
the open covering {Uτ̆ }τ̆∈68̆H̃,σ̆ ,τ

of (4̃8̆H̃,δ̆H̃)σ̆ (τ ) (by the supports of the formal
schemes {Uτ̆ }τ̆∈68̆H̃,σ̆ ,τ ), defines a simplicial complex Ñσ̆ ,τ formed (up to scaling by
the multiplicative action of R>0, inducing homotopy equivalences harmless for our
purpose) by the union of the cones τ̆ in 68̆H̃,σ̆ ,τ (with natural incidence relations
among their closures inherited from their realizations as locally closed subsets of
(S8̆H̃)

∨

R). Then the nerve of the open covering

{U[τ̆ ]}[τ̆ ]∈68̆H̃,σ̆ ,τ /08̃H̃,8H
of (Ntor)∧

Z̃[(8H,δH,τ )]
∼= X8̆H̃,δ̆H̃,σ̆ ,τ/08̃H̃,8H,



Toroidal compactifications of PEL-type Kuga families 937

or equivalently the open covering

{Uτ̆ }τ̆∈68̆H̃,σ̆ ,τ
/08̃H̃,8H

of Z̃[(8H,δH,τ )]
∼= (4̃8̆H̃,δ̆H̃)τ/08̃H̃,8H

of the supports of formal schemes, is naturally identified with Nσ̆ ,τ :=Ñσ̆ ,τ/08̃H̃,8H
.

The simplicial complex Ñσ̆ ,τ has a closed covering by the closures τ̆ cl (in
Ñσ̆ ,τ ) of the cones τ̆ in 68̆H̃,σ̆ ,τ , which induces a closed covering of Nσ̆ ,τ by the
closures [τ̆ ]cl (in Nσ̆ ,τ ) of the subsets [τ̆ ] of 68̆H̃,σ̆ ,τ/08̃H̃,8H . For any sheaf M on
(4̃8̆H̃,δ̆H̃)τ/08̃H̃,8H

(such as O(Ntor)∧
Z̃[(8H,δH,τ )]

∼= OX8̆H̃,δ̆H̃,σ̆ ,τ
/08̃H̃,8H

), define for any

integer d ≥ 0 the local system Hd(M) on Nσ̆ ,τ which associates with each [τ̆ ] in
68̆H̃,σ̆ ,τ/08̃H̃,8H

the coefficients

Hd(M)([τ̆ ]cl) := H d(U[τ̆ ],M|U[τ̆ ]).

Then, by [Godement 1958, II, 5.4.1], there is a spectral sequence

Ec,d
2 := H c(Nσ̆ ,τ ,Hd(M))⇒ H c+d((4̃8̆H̃,δ̆H̃

)τ/08̃H̃,8H
,M). (4.10)

The construction of Nσ̆ ,τ depends only on the cone decomposition 68̆H̃,σ̆ ,τ , while
the constructions of both Hd(M) and the spectral sequence (4.10) are compatible
with restrictions to affine open subschemes of Z[(8H,δH,τ )]. Therefore, we can
define the sheaves Hd(M) (of local systems on Nσ̆ ,τ ) over Z[(8H,δH,τ )], and obtain
a spectral sequence

Ec,d
2 := H c(Nσ̆ ,τ ,Hd(M))⇒ Rc+d f tor

∗
(M). (4.11)

Here H c(Nσ̆ ,τ ,Hd(M)) is interpreted as a sheaf on Z[(8H,δH,τ )], and the formation
of (4.11) is compatible with morphisms in M. In particular, we have compatible
spectral sequences

Ec,d
2 := H c(Nσ̆ ,τ ,Hd(O(Ntor)∧

Z̃[(8H,δH,τ )]
))⇒ Rc+d f tor

∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
) (4.12)

and

Ec,d
2 := H c(Nσ̆ ,τ ,Hd(OZ̃[(8H,δH,τ )]

))⇒ Rc+d f tor
∗
(OZ̃[(8H,δH,τ )]

). (4.13)

To calculate the left-hand sides of (4.12) and (4.13), we define the sheaves
Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ

) and Hd(O(4̃8̆H̃,δ̆H̃ )τ
) of local systems on Ñσ̆ ,τ (in the obvious way),

which, by Lemma 4.6, carry canonical equivariant actions of the group 08̃H̃,8H ,
and descend to the sheaves Hd(O(Ntor)∧

Z̃[(8H,δH,τ )]
) and Hd(OZ̃[(8H,δH,τ )]

) on Nσ̆ ,τ , re-
spectively. Hence we obtain compatible spectral sequences

Ec−e,e
2 := H c−e(08̃H̃,8H

, H e(Ñσ̆ ,τ ,Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ
)))

⇒ H c(Nσ̆ ,τ ,Hd(O(Ntor)∧
Z̃[(8H,δH,τ )]

)) (4.14)
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and

Ec−e,e
2 := H c−e(08̃H̃,8H

, H e(Ñσ̆ ,τ ,Hd(O(4̃8̆H̃,δ̆H̃ )τ
)))

⇒ H c(Nσ̆ ,τ ,Hd(OZ̃[(8H,δH,τ )]
)). (4.15)

Lemma 4.16. For any d ≥ 0, the canonical morphisms

Rdh∗(OX8H,δH,τ×C8H,δH
C̃8̆H̃,δ̆H̃

)→ H 0(Ñσ̆ ,τ ,Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ
)) (4.17)

and

Rdh∗(OZ[(8H,δH,τ )]×C8H,δH
C̃8̆H̃,δ̆H̃

)→ H 0(Ñσ̆ ,τ ,Hd(O(4̃8̆H̃,δ̆H̃ )τ
)) (4.18)

are isomorphisms compatible with each other. Moreover, for any integer e > 0, we
have

H e(Ñσ̆ ,τ ,Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ
))= 0 (4.19)

and
H e(Ñσ̆ ,τ ,Hd(O(4̃8̆H̃,δ̆H̃ )τ

))= 0. (4.20)

Proof. By (4.7), we have

Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ
)(τ̆ cl)∼= Rd( f tor

τ̆ )∗(OUτ̆ )
∼=

⊕̂
˘̀∈σ̆⊥∩τ̆∨

Rdh∗(98̆H̃,δ̆H̃(
˘̀)),

and for any face τ̆ ′ of τ̆ , the canonical morphism

Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ
)(τ̆ cl)→Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ

)((τ̆ ′)
cl
)

sends the subsheaf Rdh∗(98̆H̃,δ̆H̃( ˘̀)) either (identically) to Rdh∗(98̆H̃,δ̆H̃( ˘̀)) when
˘̀ ∈ σ̆⊥∩ (τ̆ ′)∨, or to zero otherwise. Since

⋃
˘̀∈τ̆∨ τ̆

cl
=
⋃
˘̀∈τ̆∨ τ̆ is a convex subset

of Ñσ̆ ,τ for any given ˘̀ ∈ σ̆⊥, this shows (4.19) as usual (by the argument in [Kempf
et al. 1973, Chapter I, §3]). On the other hand, since

⋂
τ̆∈68̆H̃,σ̆ ,τ

(σ̆⊥∩ τ̆∨)= τ∨, we
see that (4.17) is an isomorphism. The proofs for (4.20) and (4.18) are similar. �

Lemma 4.21. The topological space Nσ̆ ,τ is homotopic to the real torus

T8̃H̃,8H := (08̃H̃,8H)
∨

R/08̃H̃,8H
,

whose cohomology groups (by contractibility of (08̃H̃,8H)
∨

R) are

H j (T8̃H̃,8H,Z)∼= H j (08̃H̃,8H
,Z)∼=

∧j
(HomZ(08̃H̃,8H

,Z))

for any j ≥ 0. Over C8H,δH , we have a canonical isomorphism

H j (08̃H̃,8H
,Z)⊗Z OC8H,δH

∼=
∧j
(HomO(Q∨,LieT∨/C8H,δH )). (4.22)
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Proof. Since σ̃ is a top-dimensional cone in P+
8̃H̃

, any τ̆ ∈68̆H̃,σ̆ ,τ (which has σ̆ as
a face) is generated by σ̆ and some rational basis vectors not contained in the image
of the first morphism in (3.7). Moreover, the image of τ̆ under the second morphism
in (3.7) is contained in τ ⊂ P+8H . By choosing some (noncanonical) splitting of
sX̆ ⊗Z Q : X̆ ⊗Z Q � X̃ ⊗Z Q, we can decompose the real vector space (S8̆H̃)

∨

R

(noncanonically) as a direct sum (S8̃H̃)
∨

R ⊕ (08̃H̃,8H)
∨

R ⊕ (S8H)
∨

R, on which the
action of 08̃H̃,8H is realized by its canonical translation action on the second factor.
Along the directions of (S8̃H̃)

∨

R and (S8H)∨R, we can contract the simplicial complex
Ñσ̆ ,τ (say, towards some arbitrarily chosen points in the convex sets σ̃ and τ ) in a
way compatible with the actions of 08̃H̃,8H . Therefore, Nσ̆ ,τ = Ñσ̆ ,τ/08̃H̃,8H is
homotopic to the real torus T8̃H̃,8H = (08̃H̃,8H)

∨

R/08̃H̃,8H .
The canonical isomorphism (4.22) then follows from the composition of the

following canonical isomorphisms:

H j (08̃H̃,8H
,Z)⊗Z OC8H,δH

∼=
(∧j

(HomZ(08̃H̃,8H
,Z))

)
⊗Z OC8H,δH

∼=
(∧j

(HomZ(HomO(X̃ , X),Z(�)))
)
⊗Z(�)

OC8H,δH

∼=
∧j
(HomO(Q∨,HomZ(Y,OC8H,δH )))

∼=
∧j
(HomO(Q∨,LieT∨/C8H,δH ))). �

Lemma 4.23. There are compatible canonical isomorphisms

Rdh∗(OX8H,δH,τ×C8H,δH
C̃8̆H̃,δ̆H̃

)∼=
∧d
(HomO(Q∨,LieA∨/X8H,δH,τ

)

and

Rdh∗(OZ[(8H,δH,τ )]×C8H,δH
C̃8̆H̃,δ̆H̃

)∼=
∧d
(HomO(Q∨,LieA∨/Z[(8H,δH,τ )]))

for any integer d ≥ 0.

Proof. By Lemma 4.9, the morphism h : C̃8̆H̃,δ̆H̃ → C8H,δH is a torsor under an
abelian scheme Z×(�)-isogenous to HomO(Q, A)◦ (and hence has a section étale
locally). Since the cohomology of abelian schemes (with coefficients in the structural
sheaves) are free and are compatible with arbitrary base changes (see [Berthelot
et al. 1982, Proposition 2.5.2; Mumford 1970, §5]), we obtain compatible canonical
isomorphisms

Rdh∗(OX8H,δH,τ×C8H,δH
C̃8̆H̃,δ̆H̃

)∼=
∧d
(Lie(HomO(Q,A)◦)∨/X8H,δH,τ

)

∼=
∧d
(HomO(Q∨,LieA∨/X8H,δH,τ

)),

Rdh∗(OZ[(8H,δH,τ )]×C8H,δH
C̃8̆H̃,δ̆H̃

)∼=
∧d
(Lie(HomO(Q,A)◦)∨/Z[(8H,δH,τ )]

)

∼=
∧d
(HomO(Q∨,LieA∨/Z[(8H,δH,τ )]))

for any integer d ≥ 0. �
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Proposition 4.24. There are compatible canonical isomorphisms

H c(Nσ̆ ,τ ,Hd(O(Ntor)∧
Z̃[(8H,δH,τ )]

))∼=
(∧c

(HomO(Q∨,LieT∨/X8H,δH,τ
))
)
⊗OX8H,δH,τ(∧d

(HomO(Q∨,LieA∨/X8H,δH,τ
))
)

(4.25)

and

H c(Nσ̆ ,τ ,Hd(OZ̃[(8H,δH,τ )]
))∼=

(∧c
(HomO(Q∨,LieT∨/Z[(8H,δH,τ )]))

)
⊗OZ[(8H,δH,τ )](∧d

(HomO(Q∨,LieA∨/Z[(8H,δH,τ )]))
)

(4.26)

for any integers c, d ≥ 0.

Proof. By Lemma 4.16, the spectral sequences (4.14) and (4.15) degenerate and
show that for any integers c and d we have compatible canonical isomorphisms

H c(Nσ̆ ,τ ,Hd(O(Ntor)∧
Z̃[(8H,δH,τ )]

))

∼= H c(08̃H̃,8H
, H 0(Ñσ̆ ,τ ,Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ

)))

∼= H c(08̃H̃,8H
,Z)⊗Z Rdh∗(OX8H,δH,τ×C8H,δH

C̃8̆H̃,δ̆H̃
) (4.27)

and

H c(Nσ̆ ,τ ,Hd(OZ̃[(8H,δH,τ )]
))

∼= H c(08̃H̃,8H
, H 0(Ñσ̆ ,τ ,Hd(O(4̃8̆H̃,δ̆H̃ )τ

)))

∼= H c(08̃H̃,8H
,Z)⊗Z Rdh∗(OZ[(8H,δH,τ )]×C8H,δH

C̃8̆H̃,δ̆H̃
). (4.28)

Now combine (4.27) and (4.28) with Lemmas 4.21 and 4.23. �

Lemma 4.29. The spectral sequence (4.12) degenerates at E2 terms. Consequently,
since the choice of the stratum Z[(8H,δH,τ )] is arbitrary, by Grothendieck’s funda-
mental theorem [EGA III1 1961, 4.1.5] (and by fpqc descent for the property of
local freeness [SGA 1 1971, VIII, 1.11]), the sheaf Rb f tor

∗
(ONtor) is locally free of

the same rank as
∧b
(HomO(Q∨,LieG∨/Mtor

H
)) over Mtor

H .
If , for every maximal point s of Z[(8H,δH,τ )] (see [Grothendieck 1971, 0 2.1.2]),

we have

dimk(s)((Rb f tor
∗
(OZ̃[(8H,δH,τ )]

))⊗OZ[(8H,δH,τ )]
k(s))

≥ dimk(s)((Rb f tor
∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
))⊗OX8H,δH,τ

k(s)), (4.30)
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then the spectral sequence (4.13) degenerates at E2 terms as well, and there is a
canonical isomorphism

Rb f tor
∗
(ONtor)⊗OMtor

H
OZ[(8H,δH,τ )]

−→∼ Rb f tor
∗
(OZ̃[(8H,δH,τ )]

). (4.31)

Proof. Let Spf(R, I ) be any connected affine open formal subscheme of X8H,δH,τ ,
with the ideal of definition I satisfying rad(I ) = I for simplicity. Since Mtor

H is
smooth and of finite type over S0 = Spec(OF0,(�)), the ring R is a noetherian
domain. (See [Matsumura 1980, 33.I and 34.A].) Since Z[(8H,δH,τ )] is a smooth
subscheme of Mtor

H , the quotient R/I is also a noetherian domain. Let K := Frac(R)
and k := Frac(R/I ) be the fraction fields. By abuse of notation, we shall denote
pullbacks of schemes to Spec(K ) (resp. Spec(k)) by the subscript K (resp. k).

Since we have an exact sequence

0→ LieT∨/X8H,δH,τ
→ LieG∨,\/X8H,δH,τ

→ LieA∨/X8H,δH,τ
→ 0

of locally free sheaves, we have an equality∑
c+d=b

dimK
(∧c

(HomO(Q∨,LieA∨K ))
)
⊗K

(∧d
(HomO(Q∨,LieT∨K ))

)
= dimK

(∧b
(HomO(Q∨,LieG∨,\K

))
)

= dimK
(∧b

(HomO(Q∨,LieG∨K ))
)
, (4.32)

and an analogous equality with K replaced with k.
By construction of the spectral sequences (4.12) and (4.13), by the canonical

isomorphisms (4.25) and (4.26), and by the equality (4.32), we have∑
c+d=b

dimK (H c(Nσ̆ ,τ ,Hd(O(Ntor)∧
Z̃[(8H,δH,τ )]

))⊗OX8H,δH,τ
K )

= dimK
(∧b

(HomO(Q∨,LieG∨K ))
)

≥ dimK ((Rb f tor
∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
))⊗OX8H,δH,τ

K ) (4.33)

and∑
c+d=b

dimk(H c(Nσ̆ ,τ ,Hd(OZ̃[(8H,δH,τ )]
))⊗OZ[(8H,δH,τ )]

k)

= dimk
(∧b

(HomO(Q∨,LieG∨k ))
)

≥ dimk(Rb f tor
∗
(OZ̃[(8H,δH,τ )]

)⊗OZ[(8H,δH,τ )]
k). (4.34)

Since the pullback of f tor to the open dense subscheme MH of Mtor
H is simply

the abelian scheme f : N′→MH, we have
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(Rb f tor
∗
(ONtor))⊗OMtor

H
OMH
∼= Rb f∗(ON)

∼=
∧bLieN∨/MH

∼=
∧b
(HomO(Q∨,LieG∨MH/MH

)).

Since the canonical morphism Spec(K )→ Mtor
H factors through some maximal

point of MH, this implies that the inequality in (4.33) is an equality, and hence
that the spectral sequence (4.12) degenerates at E2 terms after pullback to K .
Since all E2 terms of this spectral sequence are locally free sheaves, this shows
that (4.12) degenerates at E2 terms after pullback to R. Since the choice of R is
arbitrary, this shows that (4.12) degenerates over the whole X8H,δH,τ , and hence
Rb f tor
∗
(ONtor) is locally free of the same rank as

∧b
(HomO(Q∨,LieG∨/Mtor

H
)) over

Mtor
H . (Nevertheless, since f tor is not necessarily flat, this does not imply that the

formation of Rb f tor
∗
(ONtor) is compatible with arbitrary base change.)

Since the canonical morphism Spec(k) → Z[(8H,δH,τ )] factors through some
maximal point of Z[(8H,δH,τ )], the inequality (4.30) implies that

dimk(Rb f tor
∗
(OZ̃[(8H,δH,τ )]

)⊗OZ[(8H,δH,τ )]
k)

≥ dimk((Rb f tor
∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
))⊗OX8H,δH,τ

k)

= dimK ((Rb f tor
∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
))⊗OX8H,δH,τ

K ),

and hence the equality in (4.33) implies the equality in (4.34), because

dimk
(∧b

(HomO(Q∨,LieG∨k ))
)
= dimK

(∧b
(HomO(Q∨,LieG∨K ))

)
.

Therefore, by the same reasoning as in the case of (4.12) above, the spectral sequence
(4.13) also degenerates at E2 terms. Since the spectral sequences (4.12) and (4.13)
are compatible with each other (by their very construction), their degeneracy implies
that the canonical morphism

Rb f tor
∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
)⊗OX8H,δH,τ

OZ[(8H,δH,τ )]
→ Rb f tor

∗
(OZ̃[(8H,δH,τ )]

)

is an isomorphism (by comparing graded pieces) and induces (4.31). �

Remark 4.35. By upper semicontinuity for proper flat morphisms (see [Mumford
1970, §5 Corollary (a)]), the assumption (4.30) is satisfied when f tor is flat, or
equivalently when Condition 3.17 is satisfied (by Proposition 3.18), which can be
achieved by refining both 6̃ and 6 (by Proposition 3.19).

Corollary 4.36. For any integer b ≥ 0, the canonical (cup product) morphism∧b
(R1 f tor

∗
(ONtor))→ Rb f tor

∗
(ONtor) is an isomorphism.

Proof. As in Lemma 4.29, by properness of f tor, this is true if and only if it is
true over the formal completion along each stratum Z[(8H,δH,τ )], which is the case
because the canonical morphism induces isomorphisms on all graded pieces defined
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by spectral sequences such as (4.12), which are compatible with cup products by
the very construction (see [Godement 1958, II, §5–6]). �

4C. Degeneracy of the (relative) Hodge spectral sequence. As in (3c) of Theorem
2.15, let H i

log-dR(N
tor/Mtor

H ) := Ri f tor
∗
�•Ntor/Mtor

H
be the (relative) log de Rham coho-

mology. By the definition of H i
log-dR(N

tor/Mtor
H ) as the “relative hypercohomology”,

the natural (Hodge) filtration on the complex �•Ntor/Mtor
H

defines the (relative) Hodge
spectral sequence (2.20):

Ea,b
1 := Rb f tor

∗
(�a

Ntor/Mtor
H
)⇒ Ha+b

log-dR(N
tor/Mtor

H ).

By (3a) of Theorem 2.15 (which we have proved in Section 3C), there is a canonical
isomorphism

�a
Ntor/Mtor

H
∼=
∧a[

( f tor)∗(HomO(Q∨,Lie∨G/Mtor
H
))
]

∼= ( f tor)∗
[∧a

(HomO(Q∨,Lie∨G/Mtor
H
))
]

of locally free sheaves over Ntor. Then (by the projection formula [EGA I 1960,
chapitre 0, 5.4.10.1]) we have canonical isomorphisms

Rb f tor
∗
(�a

Ntor/Mtor
H
)∼= (Rb f tor

∗
(ONtor))⊗OMtor

H

(∧a
(HomO(Q∨,Lie∨G/Mtor

H
))
)
. (4.37)

Lemma 4.38. If Rb f tor
∗
(ONtor) is locally free for every integer b≥0, then the spectral

sequence (2.20) degenerates at the E1 terms.

Proof. By (4.37), if Rb f tor
∗
(ONtor) is locally free for every integer b ≥ 0, then all

the E1 terms Rb f tor
∗
(�a

Ntor/Mtor
H
) of the spectral sequence (2.20) are locally free.

Therefore, to show that (2.20) degenerates at E1 terms, it suffices to show that it
degenerates at E1 terms over the open dense subscheme MH of Mtor

H , which is true
because f tor

|N = f : N→MH is an abelian scheme. (See for example [Berthelot
et al. 1982, Proposition 2.5.2].) �

This proves (3c) of Theorem 2.15, because the local freeness of Rb f tor
∗
(ONtor)

has been established in Section 4B for every integer b ≥ 0.

4D. Gauss–Manin connections with log poles. In Section 3C, we proved the log
smoothness of f tor

:Ntor
→Mtor

H by verifying Lemma 3.11. For simplicity, let us set

�1
Mtor
H /S0
:=�1

Mtor
H /S0
[d log∞] and �1

Ntor/S0
:=�1

Ntor/S0
[d log∞].

Then (3.12) can be rewritten as the exact sequence

0→ ( f tor)∗(�1
Mtor
H /S0

)→�1
Ntor/S0

→�1
Ntor/Mtor

H
→ 0, (4.39)
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which induces the Koszul filtration [Katz 1972, 1.2, 1.3]

Ka(�•Ntor/S0
) := image(�•−a

Ntor/S0
⊗ON

( f tor)∗(�a
Mtor
H /S0

)→�•Ntor/S0
)

on �•Ntor/S0
, with graded pieces Gra

K(�
•

Ntor/S0
)∼=�

•−a
Ntor/Mtor

H
⊗ON

( f tor)∗(�a
Mtor
H /S0

).
On the other hand, we have the Hodge filtration

Fa(�•Ntor/S0
) :=�

•≥a
Ntor/S0

on �•Ntor/S0
, giving the Hodge filtration

Fa(H i
log-dR(N

tor/Mtor
H )) := image(Ri f tor

∗
(Fa(�•Ntor/S0

))→ Ri f tor
∗
(�•Ntor/S0

))

on H i
log-dR(N

tor/Mtor
H ). By applying R• f tor

∗
to the short exact sequence

0→�•−1
Ntor/Mtor

H
⊗ON

( f tor)∗(�1
Mtor
H /S0

)→ K2/K0
→�•Ntor/S0

→ 0, (4.40)

we obtain in the long exact sequence the connecting homomorphisms

H i
log-dR(N

tor/Mtor
H )= Ri f tor

∗
(�•

Ntor/Mtor
H
)

∇
→ Ri+1 f tor

∗
(�•−1

Ntor/Mtor
H
⊗ON

�1
Mtor
H /S0

)∼= H i
log-dR(N

tor/Mtor
H )⊗OMH

�1
Mtor
H /S0

. (4.41)

As explained in [Katz 1972, 1.4], the pullback of ∇ in (4.41) to MH is nothing but
the usual Gauss–Manin connection on H i

dR(N/MH). Since the sheaves involved in
(4.41) are all locally free,

∇ : H i
log-dR(N

tor/Mtor
H )→ H i

log-dR(N
tor/Mtor

H )⊗OMH
�1

Mtor
H /S0

satisfies the necessary conditions for being an integrable connection with log poles
(because its restriction to the dense subscheme MH does). If we take the F-filtration
on (4.40), we obtain

0→ (Fa−1(�•
Ntor/Mtor

H
)⊗ON

( f tor)∗(�1
Mtor
H /S0

))[−1]→ Fa(K2/K0)→ Fa(�•Ntor/S0
)→ 0

and hence the Griffith transversality

∇(Fa(H i
log-dR(N

tor/Mtor
H )))⊂ Fa−1(H i

log-dR(N
tor/Mtor

H ))⊗OMH
�1

Mtor
H /S0

(as in [Katz 1972, Proposition 1.4.1.6]). This proves (3e) of Theorem 2.15.

Remark 4.42. By (3c) of Theorem 2.15, the (relative) Hodge spectral sequence

Ea,i−a
1 := Ri−a f tor

∗
(�a

Ntor/Mtor
H
)⇒ H i

log-dR(N
tor/Mtor

H )

degenerates. Then we have Gra
F(H

i
log-dR(N

tor/Mtor
H ))
∼= Ri−a f tor

∗
(�a

Ntor/Mtor
H
), and we

can conclude (as in [Katz 1972, Proposition 1.4.1.7]) that the induced morphism
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∇ : Gra
F H i

log-dR(N
tor/Mtor

H )→ Gra−1
F H i

log-dR(N
tor/Mtor

H )⊗OMH
�1

Mtor
H /S0

agrees with
the morphism

Ri−a f tor
∗
(�a

Ntor/Mtor
H
)→ Ri−a+1 f tor

∗
(�a−1

Ntor/Mtor
H
)⊗OMH

�1
Mtor
H /S0

defined by cup product with the Kodaira–Spencer class defined by the extension
class of (4.39). We will revisit a special case of this in Section 6B.

5. Polarizations

The aim of this section is to prove (3b) and (3d) of Theorem 2.15, by studying the
log extension of polarizations on the relative de Rham cohomology.

5A. Identification of Rb f tor
∗ (ONtor). By Corollary 2.12, any morphism jQ :Q∨ ↪→Q

in Lemma 2.5 (together with the tautological polarization λMH : GMH→ G∨MH over
MH) induces canonically a polarization

λMH, jQ : HomO(Q,GMH)
◦
→ (HomO(Q,GMH)

◦)
∨

of degree prime to �, and hence an isomorphism

dλMH, jQ : HomO(Q,LieGMH/MH
)−→∼ HomO(Q∨,LieG∨MH/MH

).

Therefore, it induces canonically a Z×(�)-polarization λMH, jQ : N → N∨, and
hence an isomorphism dλMH, jQ : LieN/MH → LieN∨/MH . Over Mtor

H , the mor-
phisms jQ : Q∨ ↪→ Q and dλ : LieG/Mtor

H
→ LieG∨/Mtor

H
induce canonically an

isomorphism dλ jQ : HomO(Q,LieG/Mtor
H
) −→∼ HomO(Q∨,LieG∨/Mtor

H
) extending

dλMH, jQ : HomO(Q,LieGMH/MH
)−→∼ HomO(Q∨,LieG∨MH/MH

).

Let us define DerNtor/Mtor
H
:= HomONtor (�

1
Ntor/Mtor

H
,ONtor). Its restriction to MH can

be canonically identified with DerN/MH := HomON(�
1
N/MH

,ON).
Let us denote by  :MH→Mtor

H the canonical open immersion. Then we have
the commutative diagram

f tor
∗
(DerNtor/Mtor

H
)

∼

can.� _

res.
��

HomO(Q,LieGMH/MH
)

� _

res.
��

∗( f∗(DerN/MH))
∼

can.

��

∗(HomO(Q,LieGMH/MH
))

∗(dλMH, jQ )

��

∗(R1 f∗(ON))
∼

can.
∗(HomO(Q,LieG∨MH/MH

))

R1 f tor
∗
(ONtor)

?�

res.

OO

HomO(Q,LieG∨/Mtor
H
)

?�

res.

OO

dλ jQ

��

(5.1)
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of sheaves over Mtor
H , with the dotted arrow induced by ∗(dλMH, jQ ). By abuse of

notation, let us denote the dotted arrow also by ∗(dλMH, jQ ). We have the following
simple observation:

Lemma 5.2. If ∗(dλMH, jQ ) maps the image of the canonical injection

f tor
∗
(DerNtor/Mtor

H
) ↪→ ∗( f∗(DerN/MH))

isomorphically to the image of the canonical injection

R1 f tor
∗
(ONtor) ↪→ ∗(R1 f∗(ON)),

then (5.1) induces the desired canonical isomorphism

R1 f tor
∗
(ONtor)∼= HomO(Q,LieG∨/Mtor

H
) (5.3)

extending the canonical isomorphism R1 f∗(ON)∼=HomO(Q,LieG∨MH/MH
) over MH.

Remark 5.4. The question is whether the assumption of Lemma 5.2 can be satisfied.
Since this is a question about morphisms between locally free sheaves over the
normal base scheme Mtor

H , it suffices to verify the statement after localizations at
points of codimension one. Therefore, since the statement is tautologically true
over MH, it suffices to verify it over Mtor

H ⊗Z Q.

5B. Logarithmic extension of polarizations. By construction (see Section 3A),
X̃∨(1) ∼= HomO(X̃ ,Diff−1(1)) is the submodule Q−2 of Q∨ ⊗Z Z(�)(1), and Ỹ
is the submodule Q0 of Q ⊗Z Z(�). Therefore, the embedding jQ : Q∨ ↪→ Q
corresponds to an element ˜̀ jQ of S8̃H̃ ⊗Z Z(�). The positive definiteness of the
induced pairing 〈 j−1

Q ( · ), · 〉Q then translates to the strong positivity condition that
〈 ˜̀ jQ , y〉> 0 for any y ∈ P8̃H̃ −{0}. By replacing jQ with a multiple by a positive
integer prime to �, we may and we shall assume that ˜̀ jQ ∈S8̃H̃ (without altering the
above strong positivity condition). Then we obtain an invertible sheaf 98̃H̃,δ̃H̃( ˜̀ jQ )

over the abelian scheme N→MH. Note that ˜̀ jQ ∈ σ̃
∨

0 .

Lemma 5.5. The invertible sheaf 98̃H̃,δ̃H̃( ˜̀ jQ ) is relatively ample over MH, and
induces twice of a Z×(�)-polarization λ98̃H̃,δ̃H̃ ( ˜̀ jQ ) : N→ N∨ (namely a Z×(�)-isogeny
whose sufficiently divisible positive multiple is a polarization). Under the canonical
isomorphisms in Corollary 2.13, the induced morphism

dλ98̃H̃,δ̃H̃ (
˜̀ jQ )
: LieN/MH→ LieN∨/MH

is twice a positive Z×(�)-multiple of

dλMH, jQ : HomO(Q,LieGMH/MH
)−→∼ HomO(Q∨,LieG∨MH/MH

).

In particular, dλ98̃H̃,δ̃H̃ ( ˜̀ jQ ) is an isomorphism over MH⊗Z Q.
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Proof. Just note that the morphism λ98̃H̃,δ̃H̃ (
˜̀ jQ )

is twice a positive Z×(�)-multiple of
the Z×(�)-polarization λMH, jQ in Corollary 2.12. �

The invertible sheaf 98̃H̃,δ̃H̃( ˜̀ jQ ) over N defines a global section of R1 f∗(O×N),
and the morphism

d log : O×N→�1
N/MH

, a 7→ a−1da

induces a global section D ˜̀ jQ = d log(98̃H̃,δ̃H̃( ˜̀ jQ )) of R1 f∗(�1
N/MH

). Then it is
standard (cf. [Lan 2008, Proposition 2.1.5.14]) that the cup product with D ˜̀ jQ
induces a composition of morphisms

f∗(DerN/MH)

⋃
D ˜̀ jQ
→ R1 f∗(DerN/MH ⊗ON

�1
N/MH

)
can.
→ R1 f∗(ON),

and that this morphism f∗(DerN/MH)→ R1 f∗(ON) can be identified with the mor-
phism dλ98̃H̃,δ̃H̃ ( ˜̀ jQ ) under the canonical isomorphisms

f∗(DerN/MH)∼= LieN/MH and R1 f∗(ON)∼= LieN∨/MH .

The first question is whether we can extend the morphism f∗(DerN/MH)→ R1 f∗(ON)

to Mtor
H ; and the second question is whether the extended morphism is an isomor-

phism, at least in codimension one.
A naive approach is to extend the invertible sheaf 98̃H̃,δ̃H̃( ˜̀ jQ ) to Ntor. Since

Ntor is projective and smooth over S0 = Spec(OF0,(�)), it is locally noetherian
and locally factorial. Then [EGA IV4 1967, 21.6.11] implies that the canonical
restriction morphism Pic(Ntor)→ Pic(N) is surjective.

However, since f tor
: Ntor

→ Mtor
H is not smooth, we have little control on

the canonical restriction morphism R1 f tor
∗
(�1

Ntor/Mtor
H
)

res.
→ ∗(R1 f∗(�1

N/MH
)), and

there is no obvious reason that the image of the class defined by any extension of
98̃H̃,δ̃H̃(

˜̀ jQ ) should induce an isomorphism extending dλ98̃H̃,δ̃H̃ ( ˜̀ jQ ) (at least) in
codimension one. (This is mentioned in [Faltings and Chai 1990, Chapter VI, end
of §2], but with no details.)

An alternative approach is to consider the canonical restriction morphism

R1 f tor
∗
(�1

Ntor/Mtor
H
)

res.
→ ∗(R1 f∗(�1

N/MH
)). (5.6)

By Lemma 4.29, and by (3a) of Theorem 2.15, R1 f tor
∗
(�1

Ntor/Mtor
H
) is locally free

over Mtor
H . Therefore, the morphism (5.6) is injective.

Remark 5.7. The use of R1 f tor
∗
(�1

Ntor/Mtor
H
) is inspired by Kato’s idea of (relative)

log Picard groups mentioned in [Illusie 1994, 3.3]. An application of this idea has
been carried out in [Olsson 2004].
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So far we have refrained from introducing the log structures (because they had
not been necessary), but they are needed (at least formally) here. We shall adopt a
notation slightly different from those of [Kato 1989; Illusie 1994]. Let ̆ : N→ Ntor

denote the canonical open immersion. Then the canonical (fine) log structure on Ntor

(which we have been using so far) given by Ntor
−N (with its reduced structure) can

be defined explicitly as the sheaf of monoids O
×

Ntor := ONtor ∩ ̆∗O
×

N (sheafification of
the obvious presheaf), with associated sheaf of groups O

×,gp
Ntor . Clearly, the restriction

of O
×,gp
Ntor to N is canonically isomorphic to O×N .

Definition 5.8. A relative log invertible sheaf over f tor
: Ntor

→Mtor
H is a global

section of R1 f tor
∗
(O
×,gp
Ntor ).

Since we do not assume that f tor is flat (or log integral), the appropriate inter-
pretation of relative log invertible sheaves can be quite delicate (and beyond this
article).

Lemma 5.9. To define a global section of R1 f tor
∗
(O
×,gp
Ntor ), it suffices to have the

following data:

(1) A collection of schemes Uα over Ntor forming an étale covering. We shall
denote the fiber product Uα×Ntor Uβ (i.e., “intersection” in the étale topology)
by Uαβ , denote Uαβ |N := Uαβ ×Ntor N by Uαβ , and use similar notations for
higher fiber products.

(2) A usual invertible sheaf Lα over each Uα.

(3) A comparison isomorphism Lα|Uαβ
∼= Lβ |Uαβ

over each Uαβ , satisfying the
usual cocycle condition over triple fiber products Uαβγ .

Proof. Since the restriction morphism O
×,gp
Ntor (Uαβ)→ O

×,gp
Ntor (Uαβ)∼= O×N(Uαβ) is a

bijection when the image of Uαβ in Ntor is sufficiently small, the data above define a
section of H 1(Ntor,O

×,gp
Ntor ), which then defines a section of H 0(Mtor

H , R1 f tor
∗
(O
×,gp
Ntor ))

by the Leray spectral sequence in low degrees. (See [Godement 1958, I 4.5.1].) �

In the construction of toroidal compactifications in [Lan 2008, §6.3.3] (following
[Faltings and Chai 1990, Chapter IV, §5]), there is a strata-preserving étale covering
Ũ→ M̃tor

H̃ (serving as an étale presentation for the algebraic stack M̃tor
H̃ ), where

Ũ is a finite union of the so-called good algebraic models of M̃tor
H̃ . (See [Lan

2008, Definition 6.3.2.5].) By taking the closures of the [(8̃H̃, δ̃H̃, σ̃ )]-strata, we
obtain a strata-preserving étale covering Ŭ→ Ntor, with strata labeled by triples
[(8̆H̃, δ̆H̃, τ̆ )] having [(8̃H̃, δ̃H̃, σ̃ )] as a face.

Each connected component Uα of Ŭ is given by the closure of the [(8̃H̃, δ̃H̃, σ̃ )]-
stratum in a so-called good algebraic (8̆H̃, δ̆H̃, τ̆ )-model Ũα = Spec(R̃α)→ M̃tor

H̃ ,
where (8̆H̃, δ̆H̃, τ̆ ) is a representative of some [(8̆H̃, δ̆H̃, τ̆ )] having [(8̃H̃, δ̃H̃, σ̃ )]
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as a face (cf. second property in [Lan 2008, Definition 6.3.2.5]), which we may
assume to satisfy τ̆ ∈ 68̆H̃,σ̆ ,τ . (See Section 4A. There are usually many α for
each [(8̆H̃, δ̆H̃, τ̆ )].) Then we also have a strata-preserving étale morphism Uα→

(4̃8̆H̃,δ̆H̃
)σ̆ (τ̆ ), which we shall call a good algebraic (8̆H̃, δ̆H̃, τ̆ )-model of Ntor. The

(open) [(8̃H̃, δ̃H̃, σ̃ )]-stratum in Uα is exactly the open subscheme Uα :=Uα×Ntor N

of Uα.

Lemma 5.10. Suppose that, for each τ̆ ∈68̆H̃,σ̆ ,τ , we have chosen an element ˘̀ jQ ,τ̆

in τ̆∨0 that is mapped to ˜̀ jQ in σ̃∨0 under the second morphism in (3.6), and that
˘̀ jQ ,γ τ̆ = γ

˘̀ jQ ,τ̆ for any γ ∈08̃H̃,8H . (Note that the choice of ˘̀ jQ ,τ̆ is unique only up
to translation by σ̆⊥.) Let Ŭ→ Ntor be any strata-preserving étale covering formed
by a finite union of good algebraic models. Then the choices of { ˘̀ jQ ,τ̆ }τ̆∈68̆H̃,σ̆ ,τ

and Ŭ determine a relative log invertible sheaf L over Ntor
→Mtor

H extending the
rigidified invertible sheaf 98̃H̃,δ̃H̃( ˜̀ jQ ) over N, in the following sense: For each
good algebraic (8̆H̃, δ̆H̃, τ̆ )-model Uα of Ntor, with τ̆ ∈68̆H̃,σ̆ ,τ , let Lα denote the
pullback of 98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ ) under the composition Uα→ (4̃8̆H̃,δ̆H̃)σ̆ (τ̆ )→ C̃8̆H̃,δ̆H̃ .
Then Lα|Uα

is canonically isomorphic to the pullback of 98̃H̃,δ̃H̃(
˜̀ jQ ) (from N ∼=

C̃8̃H̃,δ̃H̃) to Uα . Furthermore, the collection {(Uα,Lα)} satisfies the requirements in
Lemma 5.9, and defines a log invertible sheaf as in Definition 5.8.

Proof. Let (G̃, λ̃, ĩ, α̃H̃) be the degenerating family of type M̃H̃ over M̃tor
H̃ . Let

B(G̃) : S8̃H̃(G̃)→ Inv(M̃tor
H̃ ) be constructed as in [Lan 2008, Construction 6.3.1.1].

If Ũα is a good algebraic (8̆H̃, δ̆H̃, τ̆ )-model, then for any ˘̀ ∈ S8̆H̃ , the invertible
sheaf B(G̃)(Ũα)( ˘̀) over Ũα is canonically isomorphic to the pullback of98̆H̃,δ̆H̃(

˘̀)

under the composition Ũα→ (4̃8̆H̃,δ̆H̃
)σ̆ (τ̆ )→ C̃8̆H̃,δ̆H̃ (cf. third property in [Lan

2008, Definition 6.3.2.5]).
Given that B(G̃) is defined over M̃tor

H̃ and functorial with respect to pullback
morphisms Ũαβ → Ũα, the restriction of the pullback of 98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ ) to the
[(8̃H̃, δ̃H̃, σ̃ )]-stratum of Ũα is isomorphic to the pullback of 98̃H̃,δ̃H̃( ˜̀ jQ ) when
(8̃H̃, δ̃H̃, σ̃ ) is a face of [(8̆H̃, δ̆H̃, τ̆ )]. In other words, Lα|Uα

is isomorphic to the
pullback of 98̃H̃,δ̃H̃( ˜̀ jQ ) over each Uα. Since the isomorphisms Lα|Uαβ

∼= Lβ |Uαβ

induced by such identifications satisfy the cocycle condition (because 98̃H̃,δ̃H̃( ˜̀ jQ )

is defined on N), the claim follows, as desired. �

Remark 5.11. Any (usual) invertible sheaf over Ntor extending 98̃H̃,δ̃H̃( ˜̀ jQ ) satis-
fies the requirements in Lemma 5.9 trivially. The point of Lemma 5.10 is that it
provides an explicit extension of 98̃H̃,δ̃H̃( ˜̀ jQ ) (useful for our later argument) over
an étale covering of Ntor. (We do not have such an explicit description of a global
invertible sheaf extension over Ntor.)
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Definition 5.12. To any relative log invertible sheaf L over Ntor
→Mtor

H defined by
a global section of R1 f tor

∗
(O
×,gp
Ntor ), we define d log(L) to be the image of L under the

canonical morphism R1 f tor
∗
(O
×,gp
Ntor )→ R1 f tor

∗
(�1

Ntor/Mtor
H
) induced by the canonical

morphism d log : O
×,gp
Ntor →�1

Ntor/Mtor
H

.

Corollary 5.13. There exists a (unique) global section Dtor
˜̀ jQ

of R1 f tor
∗
(�1

Ntor/Mtor
H
)

whose image under the canonical injection (5.6) is ∗(D ˜̀ jQ ), and which satisfies
Dtor
˜̀ jQ
= d log(L) for any L constructed in Lemma 5.10 (with any choices of ˘̀ jQ ,τ̆ ’s).

Proof. Existence is clear because there is always some (usual) invertible sheaf
over Ntor extending 98̃H̃,δ̃H̃(

˜̀ jQ ) (by [EGA IV4 1967, 21.6.11], since Ntor is locally
noetherian and locally factorial, as mentioned above). Uniqueness is clear because
(5.6) is injective. Once we know the unique existence of Dtor

˜̀ jQ
, it has to agree with

d log(L) for any L constructed in Lemma 5.10. �

Thus we are led to state the following:

Proposition 5.14. Cup product with the global section Dtor
˜̀ jQ

of R1 f tor
∗
(�1

Ntor/Mtor
H
)

in Corollary 5.13 induces a composition of morphisms

f tor
∗
(DerNtor/Mtor

H
)

⋃
Dtor
˜̀ jQ

−→ R1 f tor
∗
(DerNtor/Mtor

H
⊗ONtor �

1
Ntor/Mtor

H
)

can.
−→ R1 f tor

∗
(ONtor). (5.15)

This composition is an isomorphism over Mtor
H ⊗ZQ. (By Lemma 5.2 and Remark 5.4,

this implies the existence of the canonical isomorphism (5.3).)

We will carry out the proof of Proposition 5.14 in the next subsection.

5C. Induced morphisms over formal fibers. We fix the choices of { ˘̀ jQ ,τ̆ }τ̆∈68̆H̃,σ̆ ,τ

and Ŭ, so that L is constructed as in Lemma 5.10, and so that Dtor
˜̀ jQ
= d log(L) as in

Corollary 5.13.
Since f tor is proper and the sheaves involved are all coherent, by Grothendieck’s

fundamental theorem [EGA III1 1961, 4.1.5], Proposition 5.14 can be verified by
pulling back to formal completions along strata of Mtor

H . Let us fix the choice of a
cusp label [(8H, δH, σ )] of Mtor

H , and consider the canonical morphism

ı : X8H,δH,τ ∼= (M
tor
H )
∧

Z[(8H,δH,σ )]
→Mtor

H .

By abuse of notation, we shall also denote by ı∗( · ) the pullbacks of objects un-
der pullbacks of the morphism ı . We would like to show that the morphism
ı∗ f tor
∗
(DerNtor/Mtor

H
)→ ı∗R1 f tor

∗
(ONtor) defined by cup product with ı∗(Dtor

˜̀ jQ
) is an

isomorphism over X8H,δH,τ ⊗Z Q.
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As said in Section 4A, the pullback of f tor to X8H,δH,τ can be identified with the
canonical morphism X8̆H̃,δ̆H̃,σ̆ ,τ/08̃H̃,8H → X8H,δH,τ , and X8̆H̃,δ̆H̃,σ̆ ,τ/08̃H̃,8H
has a finite open covering by the collection {U[τ̆ ]}[τ̆ ]∈68̆H̃,σ̆ ,τ /08̃H̃,8H

of open formal
subschemes. Let τ̆∈68̆H̃,σ̆ ,τ be a representative of [τ̆ ]∈68̆H̃,σ̆ ,τ/08̃H̃,8H . For each
such τ̆ , recall that the formal scheme Uτ̆ is the completion of (4̃8̆H̃,δ̆H̃)σ̆ (τ̆ ) along Uτ̆ .
By abuse of notation, let us denote the pullback of98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ ) over C̃8̆H̃,δ̆H̃ to Uτ̆

by the same notation. For any γ ∈08̃H̃,8H , since ˘̀ jQ ,γ τ̆ = γ
˘̀ jQ ,τ̆ (see Lemma 5.10),

we have a canonical isomorphism γ ∗98̆H̃,δ̆H̃(
˘̀ jQ ,γ τ̆ ) −→

∼ 98̆H̃,δ̆H̃(
˘̀ jQ ,τ̆ ), where

γ :Uτ̆ −→∼ Uγ τ̆ is the canonical isomorphism (see Lemma 4.6). Hence98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ )

descends to an unambiguous invertible sheaf 98̆H̃,δ̆H̃( ˘̀ jQ ,[τ̆ ]) on U[τ̆ ].
The étale covering Ŭ→ Ntor induces (by taking formal completion along the

pullback of Z[(8H,δH,σ )]) a formally étale covering of (Ntor)∧Z[(8H,δH,σ )]
. If Uα is a good

algebraic (8̆H̃, δ̆H̃, τ̆ )-model of Ntor, then the formal completion (Uα)
∧

Z[(8H,δH,σ )]
of

Uα along the pullback of Z[(8H,δH,σ )] is formally étale over Uτ̆ .

Lemma 5.16. The pullback of Lα to (Uα)
∧

Z[(8H,δH,σ )]
is isomorphic to the pullback

of 98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ ) from Uτ̆ .

Proof. The canonical morphisms

(Uα)
∧

Z[(8H,δH,σ )]
→Uα→ Ntor and (Uα)

∧

Z[(8H,δH,σ )]
→ Uτ̆ → Ntor

are induced respectively by morphisms

(Ũα)
∧

Z[(8H,δH,σ )]
→ Ũα→ M̃tor

H̃ and (Ũα)
∧

Z[(8H,δH,σ )]
→ Ũτ̆ → M̃tor

H̃

over M̃tor
H̃ . Under both these morphisms, the pullback of (G̃, λ̃, ĩ, α̃H̃)→ M̃tor

H̃ is
canonically isomorphic to the pullback of the Mumford family (as in the proof of
Proposition 4.3). Since the isomorphism class of the pullback ofLα to (Uα)

∧

Z[(8H,δH,σ )]

is determined by the pullback of B(G̃) : S8̃H̃(G̃)→ Inv(M̃tor
H̃ ) (as in the proof of

Lemma 5.10), we can pullback along (Uα)
∧

Z[(8H,δH,σ )]
→ Uτ̆ → Ntor and conclude

that Lα is isomorphic to the pullback of 98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ ) from Uτ̆ . �

By Lemma 4.29, we have

ı∗ f tor
∗
(ONtor)∼= f tor

∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
)∼= H 0(Nσ̆ ,τ ,H0(O(Ntor)∧

Z̃[(8H,δH,τ )]
)),

and ı∗R1 f tor
∗
(ONtor)∼= R1 f tor

∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
) is equipped with a decreasing filtration

with (locally free) graded pieces

Gr0(ı∗R1 f tor
∗
(ONtor))∼= H 0(Nσ̆ ,τ ,H1(O(Ntor)∧

Z̃[(8H,δH,τ )]
))

and

Gr1(ı∗R1 f tor
∗
(ONtor))∼= H 1(Nσ̆ ,τ ,H0(O(Ntor)∧

Z̃[(8H,δH,τ )]
)).
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Thus, to show that (5.15) is an isomorphism over Mtor
H ⊗Z Q, it suffices (by com-

parison of ranks of locally free sheaves) to show that it induces surjections from
subquotients of ı∗ f tor

∗
(DerNtor/Mtor

H
) to these graded pieces over X8H,δH,τ ⊗Z Q.

By tensoring the above filtration with ı∗�1
Ntor/Mtor

H
(and by (3.15)), we obtain a

decreasing filtration on ı∗R1 f tor
∗
(�1

Ntor/Mtor
H
) with

Gr0(ı∗R1 f tor
∗
(�1

Ntor/Mtor
H
))∼= H 0(Nσ̆ ,τ ,H1(ı∗�1

Ntor/Mtor
H
))

and

Gr1(ı∗R1 f tor
∗
(�1

Ntor/Mtor
H
))∼= H 1(Nσ̆ ,τ ,H0(ı∗�1

Ntor/Mtor
H
)).

Since DerNtor/Mtor
H
∼= ( f tor)∗(HomO(Q,LieGMH/MH

)), we have

ı∗ f tor
∗
(DerNtor/Mtor

H
)∼= H 0(Nσ̆ ,τ ,H0(ı∗DerNtor/Mtor

H
)),

and the morphism

ı∗ f tor
∗
(DerNtor/Mtor

H
)→ H 0(Nσ̆ ,τ ,H1(O(Ntor)∧

Z̃[(8H,δH,τ )]
))

induced by (5.15) can be identified with the morphism

H 0(Nσ̆ ,τ ,H0(ı∗DerNtor/Mtor
H
))→ H 0(Nσ̆ ,τ ,H1(O(Ntor)∧

Z̃[(8H,δH,τ )]
)) (5.17)

given by cup product with the image of ı∗(Dtor
˜̀ jQ
) in Gr0(ı∗R1 f tor

∗
(�1

Ntor/Mtor
H
)) ∼=

H 0(Nσ̆ ,τ ,H1(ı∗�1
Ntor/Mtor

H
)).

For simplicity, let us define X̃8H,δH,τ := X8H,δH,τ ×C8H,δH C̃8̆H̃,δ̆H̃ . Then the
structural morphism X8̆H̃,δ̆H̃,σ̆ ,τ →X8H,δH,τ factors as X8̆H̃,δ̆H̃,σ̆ ,τ → X̃8H,δH,τ →

X8H,δH,τ . Over X8̆H̃,δ̆H̃,σ̆ ,τ , there is an exact sequence

0→ (X8̆H̃,δ̆H̃,σ̆ ,τ → C̃8̆H̃,δ̆H̃)
∗(�1

C̃8̆H̃,δ̆H̃/C8H,δH
)

→ ı∗�1
Ntor/Mtor

H
→�1

X8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

→ 0

of locally free sheaves, where ı∗�1
Ntor/Mtor

H

∼=�1
X8̆H̃,δ̆H̃,σ̆ ,τ

/X8H,δH,τ
. By taking duals,

we obtain an exact sequence

0→ DerX8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

→ ı∗DerNtor/Mtor
H

→ (X8̆H̃,δ̆H̃,σ̆ ,τ → C̃8̆H̃,δ̆H̃)
∗(DerC̃8̆H̃,δ̆H̃/C8H,δH

)→ 0.

We have similar sequences with X8̆H̃,δ̆H̃,σ̆ ,τ replaced with the locally isomorphic
quotient X8̆H̃,δ̆H̃,σ̆ ,τ/08̃H̃,8H . (For simplicity, in the notation of such differentials,
we shall suppress the locally isomorphic quotients by 08̃H̃,8H .)
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Since 98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ ) is the pullback of an invertible sheaf on C̃8̆H̃,δ̆H̃ , the image
of ı∗(Dtor

˜̀ jQ
) in H 0(Nσ̆ ,τ ,H1(ı∗�1

Ntor/Mtor
H
)) lies locally over each Uτ̆ in the image of

(Uτ̆ → C8H,δH)
∗R1h∗(�1

C̃8̆H̃,δ̆H̃/C8H,δH
)

−→∼ H1((Uτ̆ → C̃8̆H̃,δ̆H̃)
∗(�1

C̃8̆H̃,δ̆H̃/C8H,δH
))→H1(ı∗�1

Ntor/Mtor
H
).

Hence (5.17) factors as

H 0(Nσ̆ ,τ ,H0(ı∗DerNtor/Mtor
H
))

� H 0(Nσ̆ ,τ ,H0((X8̆H̃,δ̆H̃,σ̆ ,τ → C̃8̆H̃,δ̆H̃)
∗(DerC̃8̆H̃,δ̆H̃/C8H,δH

)))

−→∼ (X8H,δH,τ → C8H,δH)
∗R0h∗(DerC̃8̆H̃,δ̆H̃/C8H,δH

)

→ (X8H,δH,τ → C8H,δH)
∗R1h∗(OC̃8̆H̃,δ̆H̃

)

−→∼ H 0(Nσ̆ ,τ ,H1(O(Ntor)∧
Z̃[(8H,δH,τ )]

)).

Lemma 5.18. The morphism

R0h∗(DerC̃8̆H̃,δ̆H̃/C8H,δH
)→ R1h∗(OC̃8̆H̃,δ̆H̃

)

defined by cup product with d log(98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ )) depends only on the image ˜̀ jQ of
˘̀ jQ ,τ̆ in S8̃H̃ under the second morphism in (3.6) (and hence is independent of the
choice of ˘̀ jQ ,τ̆ ). Moreover, this morphism is surjective over X8H,δH,τ ⊗Z Q.

Proof. By Lemma 4.9, the morphism h : C̃8̆H̃,δ̆H̃ → C8H,δH is a torsor under its
kernel C , which is an abelian scheme Z×(�)-isogenous to HomO(Q, A)◦→ MZH

H .
The restriction of 98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ ) to C depends only on the image ˜̀ jQ of ˘̀ jQ ,τ̆ in
σ̃∨0 , and is relatively ample by the same proofs of Corollary 2.12 and Lemma 5.5
(with GMH→MH replaced with A→MZH

H ). Hence the lemma follows. �

Corollary 5.19. The morphism (5.17) is surjective over Mtor
H ⊗Z Q. Its kernel is the

subsheaf H 0(Nσ̆ ,τ ,H0(DerX8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

)) of H 0(Nσ̆ ,τ ,H0(ı∗DerNtor/Mtor
H
)).

Now consider the induced morphism

H 0(Nσ̆ ,τ ,H0(DerX8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

)) ↪→ H 0(Nσ̆ ,τ ,H0(ı∗DerNtor/Mtor
H
))

−→∼ R0 f tor
∗
(ı∗DerNtor/Mtor

H
)→ R1 f tor

∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
)

defined by cup product with ı∗(Dtor
˜̀ jQ
). This composition has image in

H 1(Nσ̆ ,τ ,H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

)),
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because its further composition with

R1 f tor
∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
)� H 0(Nσ̆ ,τ ,H1(O(Ntor)∧

Z̃[(8H,δH,τ )]
))

is zero (by Corollary 5.19). Thus the question is whether cup product with ı∗(Dtor
˜̀ jQ
)

induces a morphism

H 0(Nσ̆ ,τ ,H0(DerX8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

))→ H 1(Nσ̆ ,τ ,H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

)) (5.20)

surjective over X8H,δH,τ ⊗Z Q.

Lemma 5.21. Suppose τ̆ ∈ 68̆H̃,σ̆ ,τ , and ˘̀ ∈ σ̆⊥. Suppose V is an affine open
formal subscheme of X̃8H,δH,τ over which the pullback of 98̆H̃,δ̆H̃( ˘̀) is a principal
ideal of OV generated by some section x. Let U := Uτ̆ ×X̃8H,δH,τ

V and let O
×,gp
U be

the pullback of O
×,gp
Ntor to U. Let

O
×,gp
V := (U→V)∗(O

×,gp
U ).

Then there exists a canonical injection 98̆H̃,δ̆H̃( ˘̀) ↪→ O
×,gp
V over V, and the value

of the section d log(x) of (U→V)∗�
1
U/X8H,δH,τ

determines a canonical section of
�1

U/X̃8H,δH,τ
(which is independent of the choice of the generator x).

Proof. If we replace x with ax , for some a ∈ O×V, then d log(ax) = d log(a)+
d log(x)= d log(x) because d log(a)= 0 in (U→V)∗�

1
U/X8H,δH,τ

. �

Corollary 5.22. Suppose τ̆ ∈ 68̆H̃,σ̆ ,τ , and ˘̀ ∈ σ̆⊥. Then the local generators of
98̆H̃,δ̆H̃(

˘̀) in Lemma 5.21 determine a well-defined section of �1
Uτ̆ /X̃8H,δH,τ

, which
we denote by d log(98̆H̃,δ̆H̃( ˘̀)).

Proof. Since 98̆H̃,δ̆H̃( ˘̀) is defined over X̃8H,δH,τ (or rather C̃8̆H̃,δ̆H̃), we can always
cover Uτ̆ by open formal subschemes U as in Lemma 5.21. �

Lemma 5.23. For any τ̆ , τ̆ ′ ∈ 68̆H̃,σ̆ ,τ such that τ̆ and τ̆ ′ are adjacent to each
other, let us define the section u[τ̆ ],[τ̆ ′] of H0(�1

X8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

)([τ̆ ]cl
∩ [τ̆ ′]

cl
) to

be
d log(98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ −

˘̀ jQ ,τ̆ ′))

(as in Corollary 5.22). Then this is well defined and determines a section u of
H 1(Nσ̆ ,τ ,H0(ı∗�1

Ntor/Mtor
H
)) that induces by cup product the same morphism as

(5.20).

Proof. If τ̆ and τ̆ ′ are adjacent, then γ τ̆ and γ ′τ̆ ′ are adjacent for γ, γ ′ ∈ 08̃H̃,8H
only when γ = γ ′ (by Condition 1.29; cf. Lemma 3.1), in which case

˘̀jQ ,γ τ̆ −
˘̀jQ ,τ̆ = γ

˘̀jQ ,τ̆ −
˘̀jQ ,τ̆ = γ

˘̀jQ ,τ̆
′ − ˘̀jQ ,τ̆

′ = ˘̀jQ ,γ τ̆
′ − ˘̀jQ ,τ̆

′
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(because 08̃H̃,8H acts by the same translation on ˘̀ jQ ,τ̆ and ˘̀ jQ ,τ̆ ′). This shows
that the assignment of u[τ̆ ],[τ̆ ′] is independent of the choices of the respective
representatives τ̆ and τ̆ ′ of [τ̆ ] and [τ̆ ′], and that u is well defined.

Cup product with u induces the same morphism as (5.20) because the canonical
morphism

DerX8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

⊗ ı∗�1
Ntor/Mtor

H
→ O(Ntor)∧

Z̃[(8H,δH,τ )]

factors through

DerX8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

⊗�1
X8̆H̃,δ̆H̃,σ̆ ,τ

/X̃8H,δH,τ
→ O(Ntor)∧

Z̃[(8H,δH,τ )]
,

and because cup product with the image of ı∗(Dtor
˜̀ jQ
) in H 0(Nσ̆ ,τ ,H1(ı∗�1

Ntor/Mtor
H
))

induces the zero morphism (cf. the paragraph preceding Lemma 5.18). �

Consider any sequence τ̆1, τ̆2, . . . , τ̆k of adjacent cones in 68̆H̃,σ̆ ,τ , such that
τ̆k = γ τ̆1 for some γ ∈ 08̃H̃,8H . The union of the cones in any such sequence
form a subset of Ñσ̆ ,τ contractible to a path joining a point in τ̆ with its translation
by γ in γ τ̆ , whose image in Nσ̆ ,τ defines a loop. Suppose we have a class s in
H 1(Nσ̆ ,τ ,H0(O(Ntor)∧

Z̃[(8H,δH,τ )]
)) represented by a collection of sections

s[τ̆ ],[τ̆ ′] ∈H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

)([τ̆ ]cl
∩ [τ̆ ′]

cl
)

for [τ̆ ], [τ̆ ′] ∈68̆H̃,σ̆ ,τ/08̃H̃,8H , and suppose we define formally sτ̆ ,τ̆ ′ = s[τ̆ ],[τ̆ ′] for
any τ̆ , τ̆ ′ ∈68̆H̃,σ̆ ,τ . Then we can define the path integral of s along the sequence
τ̆1, τ̆2, . . . , τ̆k to be the sum

k−1∑
i=1

sτ̆i ,τ̆i+1 .

This defines a morphism

H 1(Nσ̆ ,τ ,H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

))→ OX8H,δH,τ
. (5.24)

Note that this is a realization of the cap product

H1(Nσ̆ ,τ ,Z)× H 1(Nσ̆ ,τ ,H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

))

→ H0(Nσ̆ ,τ ,H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

))∼= OX8H,δH,τ
.

Lemma 5.25. For any ˘̀ ∈ S8̆H̃ that is mapped to ˜̀ jQ in σ̃∨0 under the second
morphism in (3.6), the assignment γ 7→ d log(98̆H̃,δ̆H̃(γ

˘̀ − ˘̀)) for γ ∈ 08̃H̃,8H
induces a morphism

08̃H̃,8H
⊗Z OX8̆H̃,δ̆H̃,σ̆ ,τ

→�1
X8̆H̃,δ̆H̃,σ̆ ,τ

/X̃8H,δH,τ
,

which is an isomorphism over X8̆H̃,δ̆H̃,σ̆ ,τ
⊗Z Q.
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Proof. Since γ ˘̀ and ˘̀ have the same image ˜̀ jQ in σ̃∨0 under the second morphism
in (3.6), the difference γ ˘̀− ˘̀ lands in σ̆⊥. For any ˘̀′ ∈ σ̆⊥, an elementary matrix
calculation (using any splitting of sX̆ ⊗Z Q : X̆ ⊗Z Q � X̃ ⊗Z Q) shows that
γ ˘̀′ − ˘̀′ lies in S8H = (S8H ⊗Z Q) ∩ S8̆H̃ (identified as the image of the first
morphism in (3.6)). Therefore, we have (γ1γ2 ˘̀ − ˘̀)− (γ1 ˘̀ − ˘̀)− (γ2 ˘̀ − ˘̀) =

γ1(γ2 ˘̀− ˘̀)−(γ2 ˘̀− ˘̀)∈ S8H , which shows that the assignment γ 7→ γ ˘̀− ˘̀ defines
a group homomorphism 08̃H̃,8H

→ (σ̆⊥/S8H). By the choice of jQ , the element
˜̀ jQ is represented by a positive definite matrix with respect to any choice of basis,
and hence the homomorphism 08̃H̃,8H

→ (σ̆⊥/S8H) induced by γ 7→ γ ˘̀ − ˘̀ is
injective (by another elementary matrix calculation over Q). By comparison of
dimensions, this shows that the induced injective homomorphism

08̃H̃,8H
⊗Z Q→ (σ̆⊥/S8H)⊗Z Q

is bijective. Since �1
X8̆H̃,δ̆H̃,σ̆ ,τ

/X̃8H,δH,τ
is generated over OX8̆H̃,δ̆H̃,σ̆ ,τ

by

{d log(98̆H̃,δ̆H̃(
˘̀′)) : ˘̀′ representatives of σ̆⊥/S8H},

the lemma follows. �

Lemma 5.26. Let τ̆1, τ̆2, . . . , τ̆k be a sequence of adjacent cones in 68̆H̃,σ̆ ,τ , such
that τ̆k = γ τ̆1 6= τ̆1 for some γ ∈ 08̃H̃,8H . Then the composition of (5.20) and (5.24)
is surjective over X8̆H̃,δ̆H̃,σ̆ ,τ

⊗Z Q.

Proof. If γ τ̆1 6= τ̆1, then ˘̀ jQ ,γ τ̆1 = γ
˘̀ jQ ,τ̆1 6=

˘̀ jQ ,τ̆1 by the proof of Lemma 5.25. By
Lemma 5.25, this implies that d log(98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆1 −

˘̀ jQ ,τ̆k )) defines a nonzero
section of �1

X8̆H̃,δ̆H̃,σ̆ ,τ /X̃8H,δH,τ
over every U[τ̆ ] ⊗Z Q. Let t be any section of

H 0(Nσ̆ ,τ ,H0(ı∗DerNtor/Mtor
H
)). Cup product with u (see Lemma 5.23) sends t to the

class s in H 1(Nσ̆ ,τ ,H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

)) represented (up to a sign convention) by
the collection of sections

s[τ̆ ],[τ̆ ′] ∈H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

)([τ̆ ]cl
∩ [τ̆ ′]

cl
)

determined by sτ̆ ,τ̆ ′ = t ∪ (d log(98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ −
˘̀ jQ ,τ̆ ′))) for any τ̆ , τ̆ ′ ∈ 68̆H̃,σ̆ ,τ .

Therefore, if locally there exists t such that t∪(d log(98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆1−
˘̀ jQ ,τ̆k ))) is the

pullback of (local) generators of OX8H,δH,τ⊗ZQ, which is possible by Lemma 5.25,
then the path integral

k−1∑
i=1

sτ̆i ,τ̆i+1 =

k−1∑
i=1

t ∪ (d log(98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆i −
˘̀ jQ ,τ̆i+1)))

= t ∪ (d log(98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆1 −
˘̀ jQ ,τ̆k )))

is defined locally by generators of OX8H,δH,τ⊗ZQ. This shows that the composition
of (5.20) with (5.24) is surjective over X8̆H̃,δ̆H̃,σ̆ ,τ

⊗Z Q, as desired. �
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Corollary 5.27. The morphism (5.20) is surjective over X8̆H̃,δ̆H̃,σ̆ ,τ
⊗Z Q.

Proof. By Lemma 4.21, (4.25), and Lemma 5.25, the morphism (5.20) is surjective
over X8̆H̃,δ̆H̃,σ̆ ,τ

⊗Z Q if its composition with (5.24) is surjective over X8̆H̃,δ̆H̃,σ̆ ,τ
⊗Z

Q for some collection of sequences τ̆1, τ̆2, . . . , τ̆k defining loops in Nσ̆ ,τ generating
H1(Nσ̆ ,τ ,Z). Hence the corollary follows from Lemma 5.26. �

Now Proposition 5.14 follows from the combination of Corollaries 5.19 and
5.27. By Lemma 5.2 and Remark 5.4, Proposition 5.14 implies the existence of the
canonical isomorphism (5.3). Thus Corollary 4.36 implies:

Corollary 5.28. For any integer b ≥ 0, we have a canonical isomorphism

Rb f tor
∗
(ONtor)∼=

∧b
(HomO(Q∨,LieG∨/Mtor

H
))

of locally free sheaves over Mtor
H , compatible with cup products and exterior products,

extending the composition of canonical isomorphisms (2.19) over MH.

This completes the proof of (3b) and (3d) of Theorem 2.15, using respectively
(3a) and (3c) of Theorem 2.15. As explained in Section 3E, this also makes (4c) and
(5c) of Theorem 2.15 unconditional. The proof of Theorem 2.15 is now complete.

6. Canonical extensions of principal bundles

6A. Principal bundles. Consider (GMH, λMH, iMH, αH)→MH, the restriction of
the degenerating family (G, λ, i, αH)→Mtor

H , which is isomorphic to the tautological
tuple over MH; and consider the relative de Rham cohomology H 1

dR(GMH/MH) and
the relative de Rham homology H dR

1 (GMH/MH):=HomOMH
(H 1

dR(GMH/MH),OMH).
We have the canonical pairing 〈 · , · 〉λ : H dR

1 (GMH/MH) × H dR
1 (GMH/MH) →

OMH(1) defined as the composition of (Id×λMH)∗ followed by the perfect pairing
H dR

1 (GMH/MH)× H dR
1 (G

∨

MH
/MH)→ OMH(1) defined by the first Chern class of

the Poincaré invertible sheaf over GMH ×MH G∨MH . (See for example [Deligne
and Pappas 1994, 1.5].) Under the assumption that λMH has degree prime to �,
we know that λMH is separable, that (λMH)∗ is an isomorphism, and hence that
the pairing 〈 · , · 〉λ above is perfect. Let 〈 · , · 〉λ also denote the induced pair-
ing on H 1

dR(GMH/MH)× H 1
dR(GMH/MH) by duality. By [Berthelot et al. 1982,

Lemma 2.5.3], we have canonical short exact sequences

0→ Lie∨G∨MH/MH
→ H dR

1 (GMH/MH)→ LieGMH/MH
→ 0

and

0→ Lie∨GMH/MH
→ H 1

dR(GMH/MH)→ LieG∨MH/MH
→ 0.

The submodules Lie∨G∨MH/MH
and Lie∨GMH/MH

are maximal totally isotropic with
respect to 〈 · , · 〉λ.
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Consider the O⊗Z C-module

L ⊗Z C→ (L ⊗Z C)/Ph, (6.1)

where Ph := {
√
−1x − h(

√
−1)x : x ∈ L ⊗Z R} ⊂ L ⊗Z C.

Now suppose there exists a finite extension F ′0 of F0 in C, and a subset �′ of �,
such that F ′0 is unramified at all primes in �′, and such that, by setting R0 :=OF ′0,(�

′),
there exists an O ⊗Z R0-module L0 such that L0 ⊗R0

C ∼= (L ⊗Z C)/Ph . Once
the choice of F ′0 is fixed, the choice of L0 is unique up to isomorphism because
O⊗Z R0-modules are uniquely determined by their multiranks. (See [Lan 2008,
Lemma 1.1.3.4 and Definition 1.1.3.5] for the notion of multiranks.) Let

〈 · , · 〉can. : (L0⊕ L∨0 (1))× (L0⊕ L∨0 (1))→ R0(1)

be the alternating pairing defined by 〈(x1, f1), (x2, f2)〉can. := f2(x1)− f1(x2) (cf.
[Lan 2008, Lemma 1.1.4.16]).

Definition 6.2. For any R0-algebra R, set

G0(R) :=
{
(g, r) ∈ GLO⊗Z R((L0⊕ L∨0 (1))⊗R0

R)×Gm(R) :
〈gx, gy〉 = r〈x, y〉,∀x, y ∈ (L0⊕ L∨0 (1))⊗R0

R

}
,

P0(R) := {(g, r) ∈ G0(R) : g(L∨0 (1)⊗R0
R)= L∨0 (1)⊗R0

R},

M0(R) := GLO⊗Z R(L∨0 (1)⊗R0
R)×Gm(R),

where we view M0(R) canonically as a quotient of P0(R) by

P0(R)→M0(R) : (g, r) 7→ (g|L∨0 (1)⊗R0
R, r).

The assignments are functorial in R and define group functors G0, P0, and M0

over R0.

Lemma 6.3. For any complete local ring R over R0 with separably closed residue
field, there is an isomorphism

(L ⊗Z R, 〈 · , · 〉)∼= (L0⊕ L∨0 (1), 〈 · , · 〉can.)⊗R0
R,

and hence an isomorphism G(R)∼= G0(R). (Consequently, P0(R) can be identified
with a “parabolic” subgroup of G(R).)

(In practice, it is not necessary to take R to be complete local. Much smaller
rings would suffice for the existence of isomorphisms as in Lemma 6.3.)

In what follows, by abuse of notation, we shall replace MH etc. with their base
extensions from Spec(OF0,(�)) to Spec(R0), and replace S0 = Spec(OF0,(�)) with
Spec(R0).
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Definition 6.4. The principal P0-bundle over MH is the P0-torsor

EP0 := IsomO⊗ZOMH
((H dR

1 (GMH/MH), 〈 · , · 〉λ,OMH(1),Lie∨G∨MH/MH
),

((L0⊕ L∨0 (1))⊗R0
OMH, 〈 · , · 〉can.,OMH(1), L∨0 (1)⊗R0

OMH)),

the sheaf of isomorphisms of OMH-sheaves of symplectic O-modules with maximal
totally isotropic O⊗Z R0-submodules. (The group P0 acts as automorphisms on
(L ⊗Z OMH, 〈 · , · 〉λ,OMH(1), L∨0 (1)⊗R0

OMH) by definition. The third entries in
the tuples represent the values of the pairings.)

Definition 6.5. The principal M0-bundle over MH is the M0-torsor

EM0 := IsomO⊗ZOMH
((Lie∨G∨MH/MH

,OMH(1)), (L
∨

0 (1)⊗R0
OMH,OMH(1))),

the sheaf of isomorphisms of OMH-sheaves of O⊗Z R0-modules. (We view the
second entries in the pairs as an additional structure, inherited from the correspond-
ing objects for P0. The group M0 acts obviously on (L∨0 (1)⊗R0

OMH,OMH(1)) as
automorphisms, by definition.)

These define étale torsors because, by the theory of infinitesimal deformations
(cf. for example [Lan 2008, Chapter 2]) and the theory of Artin’s approximations
(cf. [Artin 1969, Theorem 1.10 and Corollary 2.5]),

(H dR
1 (GMH/MH), 〈 · , · 〉λ,OMH(1),Lie∨G∨MH/MH

)

and

((L0⊕ L∨0 (1))⊗R0
OMH, 〈 · , · 〉can.,OMH(1), L∨0 (1)⊗R0

OMH)

are étale locally isomorphic.

Definition 6.6. For any R0-algebra E , we denote by RepE(P0) (resp. RepE(M0))
the category of E-modules with algebraic actions of P0⊗R0

E (resp. M0⊗R0
E).

Definition 6.7. Let E be any R0-algebra. For any W ∈ RepE(P0), we define

EP0,E(W ) := (EP0 ⊗R0
E)×P0⊗R0

E W,

called the automorphic sheaf over MH⊗R0
E associated with W . It is called an

automorphic bundle if W is locally free of finite rank over E . We define similarly
EM0,E(W ) for W ∈ RepE(M0) by replacing P0 with M0 in the above expression.

Lemma 6.8. Let E be any R0-algebra. If we view an element W ∈ RepE(M0) as
an element in RepE(P0) via the canonical surjection P0 � M0, then we have a
canonical isomorphism EP0,E(W )∼= EM0,E(W ).
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6B. Canonical extensions. By taking Q = O, so that HomO(Q,GMH)
◦ ∼= GMH

and so that there exists some Z×(�)-isogeny κ isog
: GMH→ N as in Theorem 2.15,

the locally free sheaf H 1
dR(N/MH) ∼= H 1

dR(GMH/MH) extends to the locally free
sheaf H 1

log-dR(N
tor/Mtor

H ) over OMtor
H

. Let

H log-dR
1 (Ntor/Mtor

H ) := HomOMtor
H
(H 1

log-dR(N
tor/Mtor

H ),OMtor
H
).

Proposition 6.9. There exists a unique locally free sheaf H dR
1 (GMH/MH)

can over
OMtor

H
satisfying the following properties:

(1) The sheaf H dR
1 (GMH/MH)

can, canonically identified as a subsheaf of the quasi-
coherent sheaf (MH ↪→Mtor

H )∗(H
dR
1 (GMH/MH)), is self-dual under the pairing

(MH ↪→Mtor
H )∗〈 · , · 〉λ. We shall denote the induced pairing by 〈 · , · 〉can

λ .

(2) H dR
1 (GMH/MH)

can contains Lie∨G∨/Mtor
H

as a subsheaf totally isotropic under
〈 · , · 〉can

λ .

(3) The quotient sheaf H dR
1 (GMH/MH)

can/Lie∨G∨/Mtor
H

can be canonically identified
with the subsheaf LieG/Mtor

H
of (MH ↪→Mtor

H )∗LieGMH/MH
.

(4) The pairing 〈 · , · 〉can
λ induces an isomorphism LieG/Mtor

H
−→∼ LieG∨/Mtor

H
which

coincides with dλ.

(5) Let H 1
dR(GMH/MH)

can
:= HomOMtor

H
(H dR

1 (GMH/MH)
can,OMtor

H
). The Gauss–

Manin connection

∇ : H 1
dR(GMH/MH)→ H 1

dR(GMH/MH)⊗OMH
�1

MH/S0

extends to an integrable connection

∇ : H 1
dR(GMH/MH)

can
→ H 1

dR(GMH/MH)
can
⊗OMtor

H
�1

Mtor
H /S0

(6.10)

with log poles along D∞,H, called the extended Gauss–Manin connection, such
that the composition

Lie∨G/Mtor
H
↪→ H 1

dR(GMH/MH)
can

∇
→ H 1

dR(GMH/MH)
can
⊗OMtor

H
�1

Mtor
H /S0

� LieG∨/Mtor
H
⊗OMtor

H
�1

Mtor
H /S0

(6.11)

induces by duality the extended Kodaira–Spencer morphism

Lie∨G/Mtor
H
⊗OMtor

H
Lie∨G∨/Mtor

H
→�1

Mtor
H /S0

in [Lan 2008, Theorem 4.6.3.32], which factors through KS (in Definition 1.40)
and induces the extended Kodaira–Spencer isomorphism KSG/Mtor

H /S0 in (4) of
Theorem 1.41.
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With these characterizing properties, we say that (H dR
1 (GMH/MH)

can,∇) is the
canonical extension of (H dR

1 (GMH/MH),∇).

Proof. The uniqueness of H dR
1 (GMH/MH)

can is clear by the first four properties. To
show the existence, let us take H dR

1 (GMH/MH)
can to be the sheaf H log-dR

1 (Ntor/Mtor
H )

(for Q =O, as mentioned before this proposition). It is locally free with a Hodge
filtration by (3c) of Theorem 2.15. Moreover, by taking some integer N > 0
prime to � such that N Diff−1

⊂ O, we obtain by multiplication by N a mor-
phism jQ : Q∨ ∼= Diff−1 ↪→ Q = O as in Lemma 2.5 such that pullback by κ isog

identifies 〈 · , · 〉λMH, jQ
: H 1

dR(N/MH)× H 1
dR(N/MH)→ OMH(1) canonically with

〈 · , · 〉λMH
: H 1

dR(GMH/MH)× H 1
dR(GMH/MH)→ OMH(1). Then (1)–(3) follow

from (3d) of Theorem 2.15, and (4) follows from Proposition 5.14 (which is
used to prove (3b) of Theorem 2.15). It remains to verify (5). By definition,
H 1

dR(GMH/MH)
can ∼= H 1

log-dR(N
tor/Mtor

H ). The existence of ∇ in (6.10) follows
from (3e) of Theorem 2.15. By Remark 4.42, the pullback of (6.11) to MH is
induced by the usual Kodaira–Spencer class. Since the extended Kodaira–Spencer
morphism in [Lan 2008, Theorem 4.6.3.32] is defined exactly as a morphism
induced by the usual Kodaira–Spencer morphism (by normality of Mtor

H and local
freeness of the sheaves involved), it is induced by duality by (6.11), as desired. �

Remark 6.12. The notion of canonical extensions is closely related to the notion
of regular singularities of algebraic differential equations. (See [Deligne 1970] and
[Katz 1971] for the notion of regular singularities. See [Mumford 1977; Faltings
and Chai 1990, Chapter VI; Harris 1989; 1990; Milne 1990] for the notion of
canonical extensions over C, and see [Mokrane and Tilouine 2002] for an earlier
treatment of canonical extensions in mixed characteristics. See in particular [Harris
1989, Theorem 4.2] for the explanation of why and how the two notions are related.)

Then the principal bundle EP0 extends canonically to a principal bundle Ecan
P0

over
Mtor
H by setting

Ecan
P0
:= IsomO⊗ZOMtor

H
((H dR

1 (GMH/MH)
can, 〈 · , · 〉can

λ ,OMtor
H
(1),Lie∨G∨/Mtor

H
),

((L0⊕ L∨0 (1))⊗R0
OMtor

H
, 〈 · , · 〉can.,OMtor

H
(1), L∨0 (1)⊗R0

OMtor
H
)),

and the principal bundle EM0 extends canonically to a principal bundle Ecan
M0

over
Mtor
H by setting

Ecan
M0
:= IsomO⊗ZOMtor

H
((Lie∨G∨/Mtor

H
,OMtor

H
(1)), (L∨0 (1)⊗R0

OMtor
H
,OMtor

H
(1))).

Definition 6.13. Let E be any R0-algebra. For any W ∈ RepE(P0), we define

Ecan
P0,E(W ) := (Ecan

P0
⊗R0

E)×P0⊗R0
E W,
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called the canonical extension of EP0,E(W ), and define

Esub
P0,E(W ) := Ecan

P0,E(W )⊗OMtor
H

ID∞,H,

called the subcanonical extension of EP0,E(W ), where ID∞,H is the OMtor
H

-ideal
defining the relative Cartier divisor D∞,H (with its reduced structure) in (3) of
Theorem 1.41. We define similarly Ecan

M0,E(W ) and Esub
M0,E(W ) with P0 (and its

principal bundle) replaced accordingly with M0 (and its principal bundle).

Lemma 6.14. Let E be any R0-algebra. If we view an element in W ∈RepE(M0) as
an element in RepE(P0) in the canonical way, then we have canonical isomorphisms
Ecan

P0,E(W )∼= Ecan
M0,E(W ) and Esub

P0,E(W )∼= Esub
M0,E(W ).

6C. Fourier–Jacobi expansions. Let us fix a representative (Zn,8n, δn) of a cusp
label [(Zn,8n, δn)] for MH (as in Section 1C). As usual, we shall omit ZH from the
notation.

Definition 6.15. The principal M0-bundle over C8H,δH is the M0-torsor

E8H,δHM0
:= IsomO⊗ZOC8H,δH

((Lie∨G∨,\/C8H,δH
,OC8H,δH (1)),

(L∨0 (1)⊗R0
OC8H,δH ,OC8H,δH (1))),

with conventions as in Definition 6.5.

Then we define E8H,δHM0,E (W ) for any R0-algebra E and any W ∈ RepE(M0) as in
Definition 6.7.

Lemma 6.16. Let E be any R0-algebra. For any W ∈ RepE(M0), there is a
canonical isomorphism

(X8H,δH,σ →Mtor
H )
∗Ecan

M0
(W )∼= (X8H,δH,σ → C8H,δH)

∗E8H,δHM0
(W ).

Proof. This is because of the canonical isomorphism

(X8H,δH,σ →Mtor
H )
∗Lie∨G∨/Mtor

H
∼= (X8H,δH,σ → C8H,δH)

∗Lie∨G∨,\/C8H,δH
. �

By the construction of X8H,δH,σ → C8H,δH as a formal completion, we have a
natural morphism

(X8H,δH,σ → C8H,δH)∗OX8H,δH,σ
→

∏
`∈S8H

98H,δH(`)

of OC8H,δH -modules. By Lemma 6.16, we have the composition of canonical
morphisms
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0(Mtor
H , E

can
M0
(W ))→ 0(X8H,δH,σ , (X8H,δH,σ →Mtor

H )
∗Ecan

M0
(W ))

→ 0(X8H,δH,σ , (X8H,δH,σ → C8H,δH)
∗E8H,δHM0

(W ))

→
∏

`∈S8H

0(C8H,δH, 98H,δH(`)⊗OC8H,δH
E8H,δHM0

(W )),

which we call the morphism of algebraic Fourier–Jacobi expansions.

Definition 6.17. The `-th algebraic Fourier–Jacobi morphism

0(Mtor
H , E

can
M0
(W ))→ 0(C8H,δH, 98H,δH(`)⊗OC8H,δH

E8H,δHM0
(W ))

is the `-th factor of the morphism of algebraic Fourier–Jacobi expansions.

Remark 6.18. If GrZ
−1= {0}, then the abelian scheme C8H,δH→M

Zn
n is trivial (i.e.,

the structural morphism is an isomorphism), and M
Zn
n is finite over S0 = Spec(R0).

Hence 0(C8H,δH, 98H,δH(`) ⊗OC8H,δH
E8H,δHM0

(W )) ∼= 0(M
Zn
n ,OM

Zn
n ⊗R0

W ). In
this case, the Fourier–Jacobi expansions are often called q-expansions (because no
genuine “Jacobi theta functions” are involved).
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