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Fields of moduli of three-point G-covers
with cyclic p-Sylow, I

Andrew Obus

We examine in detail the stable reduction of G-Galois covers of the projective
line over a complete discrete valuation field of mixed characteristic (0, p), where
G has a cyclic p-Sylow subgroup of order pn . If G is further assumed to be
p-solvable (that is, G has no nonabelian simple composition factors with order
divisible by p), we obtain the following consequence: Suppose f : Y → P1 is
a three-point G-Galois cover defined over C. Then the n-th higher ramification
groups above p for the upper numbering for the extension K/Q vanish, where
K is the field of moduli of f . This extends work of Beckmann and Wewers.
Additionally, we completely describe the stable model of a general three-point
Z/pn-cover, where p > 2.
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1. Introduction

1A. Overview. This paper focuses on understanding how primes of Q ramify in
the field of moduli of three-point Galois covers of the Riemann sphere. Our main
result, Theorem 1.3, generalizes results of Beckmann and Wewers (Theorems 1.1
and 1.2) about ramification of primes p where p divides the order of the Galois
group and the p-Sylow subgroup of the Galois group is cyclic.

Let X be the Riemann sphere P1
C

, and let f : Y→ X be a finite branched cover of
Riemann surfaces. By GAGA [Serre 1955–1956], Y is isomorphic to an algebraic
variety, and f is the analytification of an algebraic, regular map. By a theorem of
Weil, if the branch points of f are Q-rational (for example, if the cover is branched
at three points, which we can always take to be 0, 1, and∞— such a cover is called
a three-point cover), then the equations of the cover f can themselves be defined
over Q (in fact, over some number field). Let

σ ∈ Gal(Q/Q)= GQ.

Since X is defined over Q, we have that σ acts on the set of branched covers of X
by acting on the coefficients of the defining equations. We write f σ : Y σ → Xσ

for the cover thus obtained. If f : Y → X is a G-Galois cover, then so is f σ . Let
0in
⊂ GQ be the subgroup consisting of those σ that preserve the isomorphism

class of f as well as the G-action. That is, 0in consists of those elements σ of GQ

such that there is an isomorphism φ : Y → Y σ commuting with the action of G that
makes the following diagram commute:

Y
φ //

f
��

Y σ

f σ

��
X Xσ

(1-1)

The fixed field Q0in
is known as the field of moduli of f (as a G-cover). It is the

intersection of all the fields of definition of f as a G-cover (that is, those fields of def-
inition K of f such that the action of G can also be written in terms of polynomials
with coefficients in K ); see [Coombes and Harbater 1985, Proposition 2.7].

Now, since a branched G-Galois cover f : Y → X of the Riemann sphere is
given entirely in terms of combinatorial data (the branch locus C , the Galois group
G, and the monodromy action of π1(X\C) on Y ), it is reasonable to try to draw
inferences about the field of moduli of f based on these data. However, not much
is known about this, and this is the goal toward which we work.

The problem of determining the field of moduli of three-point covers has appli-
cations toward analyzing the fundamental exact sequence

1→ π1(P
1
Q
\ {0, 1,∞})→ π1(P

1
Q \ {0, 1,∞})→ GQ→ 1,
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where π1 is the étale fundamental group functor. Our knowledge of this object
is limited (note that a complete understanding would yield a complete under-
standing of GQ). The exact sequence gives rise to an outer action of GQ on
5 = π1(P

1
Q
\ {0, 1,∞}). This outer action would be particularly interesting to

understand. Knowing about fields of moduli sheds light as follows: Say the G-
Galois cover f corresponds to the normal subgroup N ⊂ 5 so that 5/N ∼= G.
Then the group 0in consists exactly of those elements of GQ whose outer action on
5 both preserves N and descends to an inner action on 5/N ∼= G.

1B. Main result. One of the first major results in this direction is due to Beckmann:

Theorem 1.1 [Beckmann 1989]. Let f : Y → X be a branched G-Galois cover of
the Riemann sphere with branch points defined over Q. Then p ∈Q can be ramified
in the field of moduli of f as a G-cover only if p is ramified in the field of definition
of a branch point, or p | |G|, or there is a collision of branch points modulo some
prime dividing p. In particular, if f is a three-point cover and if p - |G|, then p is
unramified in the field of moduli of f .

This result was partially generalized by Wewers:

Theorem 1.2 [Wewers 2003b]. Let f : Y → X be a three-point G-Galois cover
of the Riemann sphere, and suppose that p exactly divides |G|. Then p is tamely
ramified in the field of moduli of f as a G-cover.

In fact, Wewers shows somewhat more, in that he computes the index of tame
ramification of p in the field of moduli in terms of some invariants of f .

To state our main theorem, which is a further generalization, we will need some
group theory. We call a finite group G p-solvable if its only simple composition
factors with order divisible by p are isomorphic to Z/p. Clearly, any solvable group
is p-solvable. Our main result is this:

Theorem 1.3. Let f : Y → X be a three-point G-Galois cover of the Riemann
sphere, and suppose that a p-Sylow subgroup P ⊂G is cyclic of order pn . Let K/Q
be the field of moduli of f . Then, if G is p-solvable, the n-th higher ramification
groups for the upper numbering of (the Galois closure of ) K/Q above p vanish.

Remark 1.4. (i) Beckmann’s and Wewers’s theorems cover the cases n = 0, 1 in
the notation above (and Wewers does not need the assumption of p-solvability).

(ii) The paper [Obus 2011b] will show that the result of Theorem 1.3 holds in
many cases, even when G is not p-solvable, provided that the normalizer of
P acts on P via a group of order 2.

(iii) If the normalizer of P in G is equal to the centralizer, then G is always
p-solvable. This follows from [Zassenhaus 1958, Theorem 4, p. 169].
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(iv) We will show (Proposition B.2) that if G has a cyclic p-Sylow subgroup and is
not p-solvable, it must have a simple composition factor with order divisible by
pn . There seem to be limited examples of simple groups with cyclic p-Sylow
subgroups of order greater than p. Furthermore, many of the examples that do
exist are in the form discussed in part (ii) of this remark (for instance, PSL2(q),
where pn exactly divides q2

− 1).

Our main technique for proving Theorem 1.3 will be an analysis of the stable
reduction of the cover f to characteristic p (Section 4). This is also the main
technique used in [Wewers 2003b] to prove Theorem 1.2. The argument there relies
on the fact that the stable reduction of a three-point G-Galois cover to characteristic
p is relatively simple when p exactly divides |G|. When higher powers of p
divide |G|, the stable reduction can be significantly more complicated. Many of the
technical results needed for dealing with this situation are proven in [Obus 2012],
and we will recall them as necessary. In particular, our proof depends on an analysis
of effective ramification invariants, which are generalizations of the invariants σb

of [Raynaud 1999; Wewers 2003b]
In proving Theorem 1.3, we will essentially be able to reduce to the case where

G ∼= Z/pn oZ/m at the cost of having to determine the minimal field of definition
of the stable model of f , rather than just the field of moduli. In particular, if the
normalizer and centralizer of P are equal, the proof of Theorem 1.3 boils down to
understanding the stable model of an arbitrary three-point Z/pn-cover. A complete
description of this stable model has been given when p>3 and in certain cases when
p = 3 in [Coleman and McCallum 1988]. We give a complete enough description
for our purposes for arbitrary p in Lemma 7.8. Additionally, our description for
p = 2 is used in [Obus 2011c] to complete the proof of a product formula due to
Colmez for periods of CM-abelian varieties [Colmez 1993].

We should remark that when G ∼=Z/pnoZ/m, the cover f is very much like an
auxiliary cover; see [Raynaud 1999; Wewers 2003b; Obus 2011b]. Our assumption
of p-solvability allows us to avoid the auxiliary cover construction.

For other work on understanding stable models of mixed characteristic G-covers
where the residue characteristic divides |G|, see for instance [Lehr and Matignon
2006; Matignon 2003; Raynaud 1990; Saïdi 2007; 1998a; 1998b]. These papers
focus mostly on the case where G is a p-group, while allowing more than three
branch points. For an application to computing the stable reduction of modular
curves, see [Bouw and Wewers 2004].

1C. Section-by-section summary and walkthrough. In Sections 2A–2D, we recall
well-known facts about group theory, fields of moduli, ramification, and models of
P1. In Section 3, we give some explicit results on the reduction of Z/pn-torsors.
In Section 4, we recall the relevant results about stable reduction from [Raynaud
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1999; Obus 2012]. The most important of these is the vanishing cycles formula,
which we then apply in the specific case of a p-solvable three-point cover. In
Section 5, we recall the construction of deformation data given in [Obus 2012],
which is a generalization of that given in [Henrio 2000a]. We also recall the effective
local vanishing cycles formula from [Obus 2012]. In Section 6, we relate the field
of moduli of a cover to that of its quotient covers. In Section 7, we prove our
main result, Theorem 1.3. After reducing to a local problem, we first assume that
G∼=Z/pnoZ/m, with p -m. We deal separately with the cases m> 1 (Section 7A)
and m = 1 (Section 7B). Then, it is an easy application of the results of Section 6
to obtain the full statement of Theorem 1.3.

Appendix A gives a full description of the stable model of a general three-point
Z/pn-cover when p>3 and in certain cases when p=3. It uses different techniques
than [Coleman and McCallum 1988]. Furthermore, the techniques there can be
adapted to give a full description whenever p = 2 or p = 3. Appendix B examines
what kinds of groups with cyclic p-Sylow subgroups are not p-solvable, and thus
are not covered by Theorem 1.3. Some technical calculations from Section 3 and
Section 7B are postponed to Appendix C. Appendices Appendix A and Appendix B
are not necessary for the proof of Theorem 1.3, and Appendix C is only necessary
when p ≤ 3.

1D. Notation and conventions. The letter k will always represent an algebraically
closed field of characteristic p > 0.

If H is a subgroup of a finite group G, then NG(H) is the normalizer of H in G
and ZG(H) is the centralizer of H in G. If G has a cyclic p-Sylow subgroup P ,
and p is understood, we write mG = |NG(P)/ZG(P)|.

If K is a field, then K is its algebraic closure, and G K is its absolute Galois
group. If H ≤ G K , we write K H for the fixed field of H in K . Similarly, if 0
is a group of automorphisms of a ring A, we write A0 for the fixed ring under 0.
If K is discretely valued, then K ur is the completion of the maximal unramified
algebraic extension of K .

If K is any field and a ∈ K , then K ( n√a ) denotes a minimal field extension
of K containing an n-th root of a (not necessarily the ring K [x]/(xn

− a)). For
instance, Q(

√
9 )∼=Q. In cases where K does not contain the n-th roots of unity, it

will not matter which (conjugate) extension we take.
If R is any local ring, then R̂ is the completion of R with respect to its maximal

ideal. If R is any ring with a nonarchimedean absolute value | · | , then R{T } is the
ring of power series

∑
∞

i=0 ci T i such that limi→∞ |ci |=0. If R is a discrete valuation
ring with fraction field K of characteristic 0 and residue field of characteristic p,
we normalize the absolute value on K and on any subring of K so that |p| = 1/p.
We normalize the valuation on R so that p has valuation 1.
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A branched cover f : Y → X is a finite, surjective, generically étale morphism
of geometrically connected, smooth, proper curves. If f is of degree d and G is a
finite group of order d with G ∼= Aut(Y/X), then f is called a Galois cover with
(Galois) group G. If we choose an isomorphism i :G→Aut(Y/X), then the datum
( f, i) is called a G-Galois cover (or just a G-cover, for short). We will usually
suppress the isomorphism i , and speak of f as a G-cover.

Suppose f : Y → X is a G-cover of smooth curves, and K is a field of definition
for X . Then the field of moduli of f relative to K (as a G-cover) is the fixed field
in K/K of 0in

⊂ G K , where

0in
= {σ ∈ G K | f σ ∼= f (as G-covers)}

(see Section 1A). If X is P1, then the field of moduli of f means the field of moduli
of f relative to Q. Unless otherwise stated, a field of definition (or moduli) means
a field of definition (or moduli) as a G-cover (see Section 1A). If we do not want
to consider the G-action, we will always explicitly refer to the field of definition
(or moduli) as a mere cover. For two covers to be isomorphic as mere covers, the
isomorphism φ of Section 1A does not need to commute with the G-action.

2. Background material

2A. Finite, p-solvable groups with cyclic p-Sylow subgroups. The following
proposition is a structure theorem on p-solvable groups that is integral to the
paper (recall that a group G is p-solvable if its only simple composition factors
with order divisible by p are isomorphic to Z/p). Note that for any finite group
G, there is a unique maximal prime-to-p normal subgroup (as the subgroup of G
generated by two normal prime-to-p subgroups is also normal and prime to p).

Proposition 2.1. Suppose G is a p-solvable finite group with cyclic p-Sylow sub-
group of order pn , n ≥ 1. Let N be the maximal prime-to-p normal subgroup of
G. Then G/N ∼= Z/pn oZ/mG , where the conjugation action of Z/mG on Z/pn

is faithful.

Proof. Clearly, G/N has no nontrivial normal subgroups of prime-to-p order. Since
G is p-solvable, so is G/N . Thus, a minimal normal subgroup of G/N , being
the product of isomorphic simple groups [Aschbacher 2000, 8.2, 8.3], must be
isomorphic to Z/p. It is readily verified that mG =mG/N , so the proposition follows
from [Obus 2012, Lemma 2.3]. �

2B. G-covers versus mere covers. Let f : Y→ X be a G-cover of smooth, proper,
geometrically connected curves. Let K be a field of definition for X , and let L/K
be a field containing the field of moduli of f as a mere cover (which is equivalent
to L being a field of definition of f as a mere cover; see [Coombes and Harbater
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1985, Proposition 2.5]. This gives rise to a homomorphism h : GL → Out(G) as
follows. For σ ∈ GL , consider the diagram (1-1), which we reproduce here:

Y
φ //

f
��

Y σ

f σ

��
X Xσ

The isomorphism φ is well defined up to composition with an element of G acting
on Y σ . Thus, the map hσ given by hσ (g) := φ ◦ g ◦ φ−1 is well defined as an
element of Out(G) (the input is thought of as an automorphism of Y , and the output
is thought of as an automorphism of Y σ ). Then L contains the field of moduli of f
(as a G-cover) if and only if hσ is inner (because then there will be a choice of φ
making the diagram G-equivariant).

2C. Wild ramification. We state here some facts from [Serre 1979, IV] and derive
some consequences. Let K be a complete discrete valuation field with residue
field k. If L/K is a finite Galois extension of fields with Galois group G, then L
is also a complete discrete valuation field with residue field k. Here G is of the
form P o Z/m, where P is a p-group and m is prime to p. The group G has a
filtration G = G0 ⊇ Gi (i ∈ R≥0) for the lower numbering, and G ⊇ Gi for the
upper numbering (i ∈ R≥0). If i ≤ j , then Gi ⊇ G j and Gi

⊇ G j ; see [Serre 1979,
IV, Section 1, Section 3]. The subgroups Gi and Gi are known respectively as the
i -th higher ramification groups for the lower and upper numbering. One knows that
G0 = G0

= G, and that for sufficiently small ε > 0, Gε = Gε
= P . For sufficiently

large i , Gi = Gi
= {id}. Any i such that Gi ) Gi+ε for all ε > 0 is called an

upper jump of the extension L/K . Likewise, if Gi ) Gi+ε , then i is called a lower
jump of L/K . The lower jumps are all prime-to-p integers. The greatest upper
jump (that is, the greatest i such that Gi

6= {id}) is called the conductor of higher
ramification of L/K . The upper numbering is invariant under quotients [Serre 1979,
IV, Proposition 14]. That is, if H ≤ G is normal, and M = L H , then the i-th higher
ramification group for the upper numbering for M/K is Gi/(Gi

∩ H)⊆ G/H .

Lemma 2.2. Let K ⊆ L ⊆ L ′ be a tower of field extensions such that L ′/L is tame,
L/K is ramified, and L ′/K , L/K are finite Galois. Then the conductor of L ′/K is
equal to the conductor of L/K .

Proof. This is an easy consequence of [Serre 1979, IV, Proposition 14]. �

Lemma 2.3. Let L1, . . . , L` be finite Galois extensions of K with compositum L
in some algebraic closure of K . Denote by hi the conductor of L i/K and by h the
conductor of L/K . Then h =maxi (hi ).
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Proof. Write G = Gal(L/K ) and Ni = Gal(L/L i ). Suppose g ∈ G j
⊆ Gal(L/K ).

Since L is the compositum of the L i , the intersection of the Ni is trivial. So g is
trivial if and only if its image in each G/Ni is trivial. Because the upper numbering
is invariant under quotients, this shows that G j is trivial if and only if the j-th
higher ramification group for the upper numbering for L i/K is trivial for all i . This
means that h =maxi (hi ). �

If A and B are the valuation rings of K and L , respectively, sometimes we
will refer to the conductor and higher ramification groups of the extension B/A.
If f : Y → X is a branched cover of curves and f (y) = x , then we refer to the
higher ramification groups of ÔY,y/ÔX,x as the higher ramification groups at y (or,
if f is Galois, and we only care about groups up to isomorphism, as the higher
ramification groups above x).

We include two well-known lemmas. The first follows easily from the Hurwitz
formula; see also [Stichtenoth 2009, Propositions 3.7.8, 6.4.1]. For the second, see
[Pries 2002, Theorem 1.4.1 (i)].

Lemma 2.4. Let f : Y→P1 be a Z/p-cover of curves over an algebraically closed
field k of characteristic p, ramified at exactly one point of order p. If the conductor
of higher ramification at this point is h, then the genus of Y is (h− 1)(p− 1)/2.

Lemma 2.5. Let f : Y → P1 be a Z/p-cover of k-curves, branched at one point.
Then f can be given birationally by an equation y p

− y = g(x), where the terms
of g(x) ∈ k[x] have prime-to-p degree (the branch point is x = ∞). If h is the
conductor of higher ramification at∞, then h = deg(g).

2D. Semistable models of P1. Let R be a mixed characteristic (0, p) complete
discrete valuation ring with residue field k and fraction field K . If X is a smooth
curve over K , then a semistable model for X is a relative flat curve X R→ Spec R
with X R×R K ∼= X and semistable special fiber (that is, the special fiber is reduced
with only ordinary double points for singularities). If X R is smooth, it is called a
smooth model.

Models. Let X ∼= P1
K . Write v for the valuation on K . Let X R be a smooth model

of X over R. Then there is an element T ∈ K (X) such that K (T )∼= K (X) and the
local ring at the generic point of the special fiber of X R is the valuation ring of
K (T ) corresponding to the Gauss valuation (which restricts to v on K ). We say that
our model corresponds to the Gauss valuation on K (T ), and we call T a coordinate
of X R . Conversely, if T is any rational function on X such that K (T ) ∼= K (X),
there is a smooth model X R of X such that T is a coordinate of X R . In simple
terms, T is a coordinate of X R if and only if, for all a, b ∈ R, the subvarieties of
X R cut out by T − a and T − b intersect exactly when v(a− b) > 0.
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Now, let X ′R be a semistable model of X over R. The special fiber of X ′R is
a tree-like configuration of copies of P1

k . Each irreducible component W of the
special fiber X of X ′R yields a smooth model of X by blowing down all other
irreducible components of X . If T is a coordinate on the smooth model of X with
W as special fiber, we will say that T corresponds to W .

Disks and annuli. We give a brief overview here. For more details, see [Henrio
2000b].

Let X ′R be a semistable model for X = P1
K . Suppose x is a smooth point of

the special fiber X of X ′R on the irreducible component W . Let T be a coordinate
corresponding to W such that T = 0 specializes to x . Then the set of points of
X (K ) which specialize to x is the open p-adic disk D given by v(T ) > 0. The ring
of functions on the formal disk corresponding to D is ÔX,x ∼= R{T }.

Now, let x be an ordinary double point of X at the intersection of components W
and W ′. Then the set of points of X (K ) which specialize to x is an open annulus
A. If T is a coordinate corresponding to W such that T = 0 specializes to W ′ \W ,
then A is given by 0< v(T ) < e for some e ∈ v(K×). The ring of functions on the
formal annulus corresponding to A is

ÔX,x ∼=
R[[T,U ]]
(T U− pe)

.

Observe that e is independent of the coordinate.
Suppose we have a preferred coordinate T on X and a semistable model X ′R

of X whose special fiber X contains an irreducible component X0 corresponding
to the coordinate T . If W is any irreducible component of X other than X0, then
since X is a tree of copies of P1, there is a unique nonrepeating sequence of
consecutive, intersecting components X0, . . . ,W . Let W ′ be the component in this
sequence that intersects W . Then the set of points in X (K ) that specialize to the
connected component of W in X \W ′ is a closed p-adic disk D. If the established
preferred coordinate (equivalently, the preferred component X0) is clear, we will
abuse language and refer to the component W as corresponding to the disk D, and
vice versa. If U is a coordinate corresponding to W , and U =∞ does not specialize
to the connected component of W in X \W ′, then the ring of functions on the
formal disk corresponding to D is R{U }.

3. Étale reduction of torsors

Let R be a mixed characteristic (0, p) complete discrete valuation ring with residue
field k and fraction field K . Let π be a uniformizer of R. Recall that we normalize
the valuation of p (not π) to be 1. For any scheme or algebra S over R, write SK

and Sk for its base changes to K and k, respectively.
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The following lemma will be used in the proof of Lemma 7.8 to analyze cyclic
covers of closed p-adic disks given by explicit equations.

Lemma 3.1. Assume that R contains the pn-th roots of unity. Let X = Spec A,
where A= R{T }. Let f : YK → X K be a µpn -torsor given by the equation y pn

= g,
where g = 1+

∑
∞

i=1 ci T i . Suppose one of the following two conditions holds:

(i) mini v(ci )= n+ 1/(p− 1) and v(ci ) > n+ 1/(p− 1) for all i divisible by p.

(ii) p is odd, v(c1) > n, v(cp) > n, and mini 6=1,p v(ci ) = n + 1/(p − 1). Also,
v(ci ) > n+ 1/(p− 1) for all i > p divisible by p. Lastly,

v

(
cp −

cp
1

p(p−1)n+1

)
> n+

1
p− 1

.

Let h be the largest i (6= p) such that v(ci )= n+ (1)/p− 1. Then f : YK → X K

splits into a union of pn−1 disjoint µp-torsors. Let Y be the normalization of X in
the total ring of fractions of YK . Then the map Yk→ Xk is étale and is birationally
equivalent to the union of pn−1 disjoint Artin–Schreier covers of P1

k , each with
conductor h.

Proof. Suppose (i) holds. We claim that g has a pn−1-st root 1+ au in A such that
a ∈ R, v(a)= (p)/p−1, and the reduction u of u in Ak = k[T ] is of degree h with
only prime-to-p degree terms. By [Henrio 2000a, Chapter 5, Proposition 1.6] (the
étale reduction case) and Lemma 2.5, this suffices to prove the lemma.

We prove the claim. Write g = 1+ bw with b ∈ R and v(b) = n+ 1/(p− 1).
Suppose n > 1. Then, using the binomial theorem, a pn−1-st root of g is given by

pn−1√g = 1+
1/pn−1

1!
bw+

(1/pn−1)((1/pn−1)− 1)
2!

(bw)2+ · · · .

Since v(b)= n+1/(p−1), this series converges and is in A. Since the coefficients
of all terms in this series of degree ≥ 2 have valuation greater than p/(p− 1), the
series can be written as pn−1√g= 1+au, where a= b/pn−1

∈ R, v(a)= p/(p−1),
and u congruent to w (mod π ). By assumption, the reduction w of w has degree h
and only prime-to-p degree terms. Thus u does as well.

Now assume (ii) holds. It clearly suffices to show that there exists a ∈ A such
that a pn

g satisfies (i). Let a = 1+ ηT , where η =−c1/pn . Now, by assumption,
v(cp

1 )− (p−1)n−1≥min(v(cp), n+1/(p−1)). Since v(cp) > n, we derive that
v(cp

1 ) > pn+ 1. Thus v(η) > 1/p. Then there exists ε ∈Q>0 such that

(1+ ηT )pn
≡ 1− c1T −

( pn

p

) cp
1

p pn T p (mod pn+1/(p−1)+ε).

It is easy to show that
(pn

p

)
≡ pn−1 (mod pn) for all n ≥ 1. Furthermore, the

valuation of the T i term (1≤ i ≤ pn) in (1+ ηT )pn
is greater than i/p+ n− v(i).



Fields of moduli of three-point G-covers with cyclic p-Sylow, I 843

For any i other than 1 and p, this is greater than n+ 1/(p− 1) (here we use that p
is odd). So

(1+ ηT )pn
≡ 1− c1T −

cp
1

p(p−1)n+1 T p (mod pn+1/(p−1)+ε).

By the assumption that v(cp − cp
1 /p(p−1)n+1) > n+ (1)/p− 1, we now see that

(1+ηT )pn
g satisfies (i). In particular, (1+ηT )pn

g≡ 1 (mod pn+1/(p−1)), and, for
any i 6= 1, p such that v(ci )= n+ 1/(p− 1), the valuation of the coefficient of T i

in (1+ ηT )pn
g is n+ 1/(p− 1). �

An analogous result, which is necessary to prove our main theorem in the case
p = 2, is in Appendix C.

4. Stable reduction of covers

In this section, R is a mixed characteristic (0, p) complete discrete valuation ring
with residue field k and fraction field K . We set X ∼= P1

K , and we fix a smooth
model X R of X . Let f : Y → X be a G-Galois cover defined over K , with G
any finite group, such that the branch points of f are defined over K and their
specializations do not collide on the special fiber of X R . Assume that f is branched
at at least 3 points. By a theorem of Deligne and Mumford [1969, Corollary 2.7]
combined with work of Raynaud [1990; 1999] and Liu [2006], there is a minimal
finite extension K st/K with ring of integers Rst , and a unique model f st

:Y st
→ X st

of fK st := f ×K K st (called the stable model of f ) such that:

• The special fiber Y of Y st is semistable.

• The ramification points of fK st specialize to distinct smooth points of Y .

• Any genus zero irreducible component of Y contains at least three marked
points (that is, ramification points or points of intersection with the rest of Y ).

• G acts on Y st , and X st
= Y st/G.

The field K st is called the minimal field of definition of the stable model of f . If
we are working over a finite extension K ′/K st with ring of integers R′, we will
sometimes abuse language and call f st

×Rst R′ the stable model of f .

Remark 4.1. Our definition of the stable model is the definition used in [Wewers
2003b]. This differs from the definition in [Raynaud 1999], where ramification
points are allowed to coalesce on the special fiber.

Remark 4.2. Note that X st can be naturally identified with a blowup of X ×R Rst

centered at closed points. Furthermore, the nodes of Y lie above nodes of the special
fiber X of X st [Raynaud 1994, Lemme 6.3.5], and Y st is the normalization of X st

in K st(Y ).
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If Y is smooth, the cover f : Y→ X is said to have potentially good reduction. If
f does not have potentially good reduction, it is said to have bad reduction. In any
case, the special fiber f : Y → X of the stable model is called the stable reduction
of f . The strict transform of the special fiber of X Rst in X is called the original
component and will be denoted X0.

Each σ ∈ G K acts on Y (via its action on Y ). This action commutes with that of
G and is called the monodromy action. Then it is known that the extension K st/K
is the fixed field of the group 0st

≤ G K consisting of those σ ∈ G K such that σ
acts trivially on Y ; see, for instance, [Obus 2012, Proposition 2.9]. Thus K st is
clearly Galois over K . Since k is algebraically closed, the action of G K fixes X0

pointwise.

Lemma 4.3. Let X Rst be a smooth model for X ×K K st , and let YRst be its normal-
ization in K st(Y ). Suppose that the special fiber of YRst has irreducible components
whose normalizations have genus greater than 0. Then X st is a blow up of X Rst

(in other words, the stable reduction X contains a component corresponding to the
special fiber of X Rst ).

Proof. Consider a modification (X st)′→ X st centered on the special fiber such that
X Rst is a blow down of (X st)′. Let (Y st)′ be the normalization of (X st)′ in K st(Y ).
By the minimality of the stable model, we know that X st is obtained by blowing
down components of (X st)′ such that the components of (Y st)′ lying above them
are curves of genus zero. By our assumption, the component corresponding to the
special fiber of X Rst is not blown down in the map (X st)′→ X st . Thus X Rst is a
blow down of X st . �

4A. The graph of the stable reduction. As in [Wewers 2003b], we construct the
(unordered) dual graph G of the stable reduction of X . An unordered graph G

consists of a set of vertices V (G) and a set of edges E(G). Each edge has a source
vertex s(e) and a target vertex t (e). Each edge has an opposite edge e such that
s(e)= t (e) and t (e)= s(e). Also, e = e.

Given f , f , Y , and X as above, we construct two unordered graphs G and G′.
In our construction, G has a vertex v for each irreducible component of X and
an edge e for each ordered triple (x,W ′,W ′′), where W ′ and W ′′ are irreducible
components of X whose intersection is x . If e corresponds to (x,W ′,W ′′), then
s(e) is the vertex corresponding to W ′ and t (e) is the vertex corresponding to
W ′′. The opposite edge of e corresponds to (x,W ′′,W ′). We denote by G′ the
augmented graph of G constructed as follows: consider the set Bwild of branch
points of f with branching index divisible by p. For each x ∈ Bwild, we know
that x specializes to a unique irreducible component W x of X corresponding to a
vertex Ax of G. Then V (G′) consists of the elements of V (G) with an additional
vertex Vx for each x ∈ Bwild. Also, E(G′) consists of the elements of E(G) with
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two additional opposite edges for each x ∈ Bwild: one with source Vx and target Ax ,
and one with source Ax and target Vx . We write v0 for the vertex corresponding to
the original component X0.

We partially order the vertices of G (and G′) such that v1 � v2 if and only if
v1 = v2, v1 = v0, or v0 and v2 are in different connected components of G′\v1. The
set of irreducible components of X inherits the partial order �. If a � b, where a
and b are vertices of G (or G′) or irreducible components of X , we say that b lies
outward from a.

4B. Inertia groups of the stable reduction. Maintain the notation from the begin-
ning of Section 4.

Proposition 4.4 [Raynaud 1999, Proposition 2.4.11]. The following are the inertia
groups of f : Y → X at points of Y (note that points in the same G-orbit have
conjugate inertia groups):

(i) At the generic points of irreducible components, the inertia groups are p-
groups.

(ii) At each node, the inertia group is an extension of a cyclic, prime-to-p order
group by a p-group generated by the inertia groups of the generic points of the
crossing components.

(iii) If a point y ∈ Y above a branch point x ∈ X specializes to a smooth point
y on a component V of Y , then the inertia group at y is an extension of the
prime-to-p part of the inertia group at y by the inertia group of the generic
point of V .

(iv) At all other points q (automatically smooth, closed), the inertia group is equal
to the inertia group of the generic point of the irreducible component of Y
containing q.

If V is an irreducible component of Y , we will always write IV ≤ G for the inertia
group of the generic point of V and DV for the decomposition group.

For the rest of this subsection, assume G has a cyclic p-Sylow subgroup. When
G has a cyclic p-Sylow subgroup, the inertia groups above a generic point of an
irreducible component W ⊂ X are conjugate cyclic groups of p-power order. If they
are of order pi , we call W a pi -component. If i = 0, we call W an étale component,
and if i > 0, we call W an inseparable component. For an inseparable component
W , the morphism Y ×X W → W induced from f corresponds to an inseparable
extension of the function field k(W ).

As in [Raynaud 1999], we call an irreducible component W ⊆ X a tail if it is
not the original component and intersects exactly one other irreducible component
of X . Otherwise, it is called an interior component. A tail of X is called primitive
if it contains a branch point other than the point at which it intersects the rest of X .
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Otherwise it is called new. This follows [Wewers 2003b]. An inseparable tail that
is a pi -component will also be called a pi -tail. Thus one can speak of, for instance,
“new pi -tails” or “primitive étale tails.”

We call the stable reduction f of f monotonic if for every W �W ′, the inertia
group of W ′ is contained in the inertia group of W . In other words, the stable
reduction is monotonic if the generic inertia does not increase as we move outward
from X0 along X .

Proposition 4.5. If G is p-solvable, then f is monotonic.

Proof. By Proposition 2.1, we know that there is a prime-to-p group N such that
G/N ∼=Z/pnoZ/m. Since taking the quotient of a G-cover by a prime-to-p group
does not affect monotonicity, we may assume that G ∼= Z/pn oZ/mG . By [Obus
2012, Remark 4.5], it follows that f is monotonic. �

Proposition 4.6 [Obus 2012, Proposition 2.13]. If x ∈ X is branched of index pas,
where p - s, then x specializes to a pa-component of X.

Lemma 4.7 [Raynaud 1999, Proposition 2.4.8]. If W is an étale component of X ,
then W is a tail.

Lemma 4.8 [Obus 2012, Lemma 2.16]. If W is a pa-tail of X , then the component
W ′ that intersects W is a pb-component with b > a.

Proposition 4.9. Suppose f has monotonic stable reduction. Let K ′/K be a field
extension such that the following hold for each tail Xb of X :

(i) There exists a smooth point xb of X on Xb such that xb is fixed by G K ′ .

(ii) There exists a smooth point yb of Y on some component Y b lying above Xb

such that yb is fixed by G K ′ .

Then the stable model of f can be defined over a tame extension of K ′.

Proof. We claim that G K ′ acts on Y through a group of prime-to-p order. This will
yield the proposition.

Suppose γ ∈ G K ′ is such that γ p acts trivially on Y . For each tail Xb, we have
that γ fixes xb. Since γ fixes the original component pointwise, it fixes the point
of intersection of Xb with the rest of X . Any action on P1

k with order dividing p
and two fixed points is trivial, so γ fixes each Xb pointwise. By inward induction,
γ fixes X pointwise. So γ acts “vertically” on Y .

Now, γ also fixes each yb. By Propositions 4.4 and 4.6, the inertia of f st at yb

is an extension of a prime-to-p group by the generic inertia of f st on Y b. So some
prime-to-p power γ i of γ fixes Y b pointwise. Since p - i and the action of γ has
order p, it follows that γ fixes Y b pointwise. Since γ and G commute, γ fixes all
components above Xb pointwise.
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We proceed to show that γ acts trivially on Y by inward induction. Suppose
W is a component of X such that if W ′ � W , then γ fixes all components above
W ′ pointwise. Suppose W ′ � W is a component such that W ′ ∩W = {w} 6= ∅.
Let V be a component of Y above W , and let v be a point of V above w. By the
inductive hypothesis, γ fixes v. Since f is monotonic, Proposition 4.4 shows that
the p-part of the inertia group at v is the same as the generic inertia group of V .
Thus γ fixes V pointwise. Because γ commutes with G, it fixes all components
above W pointwise. This completes the induction. �

4C. Ramification invariants and the vanishing cycles formula. Maintain the no-
tation from the beginning of Section 4, and assume additionally that G has a cyclic
p-Sylow group P . Recall that mG = |NG(P)/ZG(P)|. Below, we define the
effective ramification invariant σb corresponding to each tail Xb of X .

Definition 4.10. Consider a tail Xb of X . Suppose Xb intersects the rest of X at xb.
Let Y b be a component of Y lying above Xb, and let yb be a point lying above xb.
Then the effective ramification invariant σb is defined as follows: If Xb is an étale
tail, then σb is the conductor of higher ramification for the extension ÔY b,yb

/ÔXb,xb

(see Section 2C). If Xb is a pi -tail (i > 0), then the extension ÔY b,yb
/ÔXb,xb

can be
factored as

ÔXb,xb

α
↪→ S

β
↪→ ÔY b,yb

,

where α is Galois and β is purely inseparable of degree pi . Then σb is the conductor
of higher ramification for the extension S/ÔXb,xb

.

The vanishing cycles formula [Raynaud 1999, 3.4.2 (5)] is a key formula that
helps us understand the structure of the stable reduction of a branched G-cover of
curves in the case where p exactly divides the order of G. The following theorem,
which is the most important ingredient in the proof of Theorem 1.3, generalizes
the vanishing cycles formula to the case where G has a cyclic p-Sylow group of
arbitrary order.

Theorem 4.11 (vanishing cycles formula [Obus 2012, Corollary 3.15]). Let f :
Y → X ∼=P1 be a G-Galois cover over K with bad reduction, branched only above
{0, 1,∞}, where G has a cyclic p-Sylow subgroup. Let f : Y → X be the stable
reduction of f . Let Bnew be an indexing set for the new étale tails and let Bprim be
an indexing set for the primitive étale tails. Then we have the formula∑

b∈Bnew

(σb− 1)+
∑

b∈Bprim

σb = 1. (4-1)

Lemma 4.12 [Obus 2012, Proposition 4.1]. If b indexes an inseparable tail Xb,
then σb is an integer.
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Lemma 4.13 [Obus 2012, Lemma 4.2(i)]. A new tail Xb (étale or inseparable) has
σb ≥ 1+ 1/m.

Lemma 4.14. Suppose Xb is a new inseparable pi -tail with effective ramification
invariant σb. Suppose further that the inertia group I ∼= Z/pi of some component
Y b above Xb is normal in G. Then Xb is a new (étale) tail of the stable reduction
of the quotient cover f ′ : Y/I → X with effective ramification invariant σb.

Proof. Let ( f ′)st
: (Y ′)st

→ (X ′)st be the stable model of f ′. Then, since (Y st)/I
is a semistable model of Y/I , we have that (Y ′)st is a contraction of (Y st)/I . Thus
(X ′)st is a contraction of X st . To prove the lemma, it suffices to prove that Xb is
not contracted in the map α : X st

→ (X ′)st .
By Lemmas 4.12 and 4.13, we know σb ≥ 2. A calculation using the Hurwitz

formula (cf. [Raynaud 1999, Lemme 1.1.6]) shows that the genus of Y b is greater
than zero. Since the quotient morphism Y→Y/I is radicial on Y b, the normalization
of X st in K st(Y/I ) has irreducible components of genus greater than zero lying
above Xb. By Lemma 4.3, Xb is a component of the special fiber of (X st)′, thus it
is not contracted by α. �

Proposition 4.15. Let f :Y→ X=P1
K be a three-point G-cover with bad reduction,

where G is p-solvable, G has cyclic p-Sylow subgroup, and mG > 1. Then X has
no inseparable tails or new tails.

Proof. Since taking the quotient of a G-cover by a prime-to-p group affects
neither ramification invariants (Lemma 2.2) nor inseparability, we may assume
by Proposition 2.1 that G ∼= Z/pn o Z/mG . Then all elements of G have either
p-power order or prime-to-p order. The resulting cover is branched at three points
(otherwise it would be cyclic), and at least two of these points have prime-to-p
branching index.

We first show there are no inseparable tails. Say there is an inseparable pi -tail
Xb with effective ramification invariant σb. By Lemma 4.12, σb is an integer. By
Lemma 4.13, σb > 1 if Xb does not contain the specialization of any branch point.
Assume for the moment that this is the case. Then σb ≥ 2. Let I be the common
inertia group of all components of Y above Xb. If f ′ : Y/I → X is the quotient
cover, then we know f ′ is branched at three points, with at least two having prime-
to-p ramification index. Thus the stable reduction f ′ has at least two primitive tails.
By Lemma 4.14, it also has a new tail corresponding to the image of Xb, which
has effective ramification invariant σb ≥ 2. Then the left-hand side of (4-1) for the
cover f ′ is greater than 1, so we have a contradiction.

We now prove that no branch point of f specializes to Xb. By Proposition 4.6,
such a branch point x would have ramification index pi s, where p - s. Since i ≥ 1,
the only possible branching index for x is pi (as it must be the order of an element
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of G). So in f ′ : Y/I → X , x has ramification index 1. Thus Z→ X is branched
in at most two points, which contradicts the fact that f ′ is not cyclic.

Now we show there are no new tails. Suppose there is a new tail Xb with
ramification invariant σb. If σb ∈ Z, we get the same contradiction as in the
inseparable case. If σb /∈ Z, and if Y b ⊆ Y is an irreducible component above Xb,
then Y b→ Xb is a Z/pi oZ/mb-cover branched at only one point, where i ≥ 1
and mb > 1. This violates the easy direction of Abhyankar’s conjecture, as this
group is not quasi-p; see, for instance, [SGA 1 1971, XIII, Corollaire 2.12]. �

5. Deformation data

Deformation data arise naturally from the stable reduction of covers. Much infor-
mation is lost when we pass from the stable model of a cover to its stable reduction,
and deformation data provide a way to retain some of this information. This process
is described in detail in [Obus 2012, Section 3.2], and we recall some facts here.

5A. Generalities. Let W be any connected smooth proper curve over k. Let H be
a finite group and χ a 1-dimensional character H→ F×p . A deformation datum over
W of type (H, χ) is an ordered pair (V , ω) such that V →W is an H -cover, ω is
a meromorphic differential form on V that is either logarithmic or exact (that is,
ω= du/u or du for u ∈ k(V )), and η∗ω= χ(η)ω for all η ∈ H . If ω is logarithmic
or exact, the deformation datum is called multiplicative or additive, respectively.
When V is understood, we will sometimes speak of the deformation datum ω.

If (V , ω) is a deformation datum and w ∈ W is a closed point, we define mw

to be the order of the prime-to-p part of the ramification index of V → W at w.
Define hw to be ordv(ω)+1, where v ∈ V is any point which maps to w ∈W . This
is well defined because η∗ω is a nonzero scalar multiple of ω for η ∈ H .

Lastly, define σx = hw/mw. We call w a critical point of the deformation datum
(V , ω) if (hw,mw) 6= (1, 1). Note that every deformation datum contains only a
finite number of critical points. The ordered pair (hw,mw) is called the signature
of (V , ω) (or of ω, if V is understood) at w, and σw is called the invariant of the
deformation datum at w.

5B. Deformation data arising from stable reduction. Maintain the notation of
Section 4. In particular, X ∼=P1

K , we have a G-cover f :Y→ X defined over K with
bad reduction and at least three branch points, there is a smooth model of X where the
reductions of the branch points do not coalesce, and f has stable model f st

: Y st
→

X st and stable reduction f :Y→ X . We assume further that G has a cyclic p-Sylow
subgroup. For each irreducible component of Y lying above a pr -component of X
with r > 0, we obtain r different deformation data. The details of this construction
are given in [Obus 2012, Construction 3.4], and we only give a sketch here.
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Suppose V is an irreducible component of Y with generic point η and nontrivial
generic inertia group I ∼= Z/pr

⊂ G. We write B = ÔY st ,η, and C = B I . The map
Spec B→ Spec C is given by a tower of r maps, each of degree p. We can write
these maps as Spec Ci+1→ Spec Ci for 1≤ i ≤ r such that B =Cr+1 and C =C1.
After a possible finite extension K ′/K st , each of these maps is given by an equation
y p
= z on the generic fiber, where z is well defined up to raising to a prime-to-p

power. The morphism on the special fiber is purely inseparable. To such a degree p
map, [Henrio 2000a, chapitre 5, définition 1.9] associates a meromorphic differential
form ωi , well defined up to multiplication by a scalar in F×p , on the special fiber
Spec Ci ×Rst k = Spec Ci/π , where π is a uniformizer of Rst . This differential
form is either logarithmic or exact. Since C/π ∼= k(V )pr ∼= k(V )pr−i+1 ∼= Ci/π

for any i , each ωi can be thought of as a differential form on V ′ = Spec C ×Rst k,
where k(V ′)= k(V )pr

.
Let H = DV /IV

∼= DV ′ . If W is the component of X lying below V , we have
that W = V ′/H . In fact, each (V ′, ωi ), for 1 ≤ i ≤ r , is a deformation datum of
type (H, χ) over W , where χ is given by the conjugation action of H on IV . The
invariant of σi at a point w ∈W will be denoted σi,w. We will sometimes call the
deformation datum (V ′, ω1) the bottom deformation datum for V .

For 1≤ i ≤ r , denote the valuation of the different of Ci ↪→ Ci+1 by δωi . If ωi

is multiplicative, then δωi = 1. Otherwise, 0< δωi < 1.
For the rest of this section, we will only concern ourselves with deformation

data that arise from stable reduction in the manner described above. We will use
the notation of Section 4 throughout.

Lemma 5.1 ([Obus 2012, Lemma 3.5], cf. [Wewers 2003b, Proposition 1.7]). Say
(V ′, ω) is a deformation datum arising from the stable reduction of a cover, and let
W be the component of X lying under V ′. Then a critical point x of the deformation
datum on W is either a singular point of X or the specialization of a branch point
of Y → X with ramification index divisible by p. In the first case, σx 6= 0, and in
the second case, σx = 0 and ω is logarithmic.

Proposition 5.2. Let (V ′, ω1) be the bottom deformation datum for some irre-
ducible component V of Y . If ω1 is multiplicative, then ωi = ω1 for 2 ≤ i ≤ r . In
particular, all ωi are multiplicative.

Proof. As is mentioned at the beginning of [Obus 2012, Section 3.2.2], we may
work over a finite extension K ′/K st containing the pr -th roots of unity. Let B and
C be as in our construction of deformation data. Let R′ be the ring of integers of
K ′. By Kummer theory, we can write B⊗R′ K ′ = (C⊗R′ K ′)[θ ]/(θ pr

− θ1). After
a further extension of K ′, we can assume v(θ1)= 0.

By [Henrio 2000a, chapitre 5, définition 1.9], if ω1 is logarithmic, then the
reduction θ1 of θ1 to k is not a p-th power in C ⊗R′ k. Again, by [Henrio 2000a,
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chapitre 5, définition 1.9], we thus know that ω1 = dθ1/θ1. It easy to see that
ωi arises from the equation y p

= θi where θi =
pi−1√

θ1. Under the pi−1-st power
isomorphism ι : Ci ⊗R′ k → C ⊗R′ k, ι(θi ) = θ1. So, again by [Henrio 2000a,
chapitre 5, définition 1.9], ωi is logarithmic and is equal to dθ1/θ1, which is equal
to ω1. �

Lemma 5.3. If f is a three-point cover, then the original component of X is
a pn-component, and all deformation data above the original component are
multiplicative.

Proof. Since G is p-solvable, we know by Proposition 2.1 that f : Y → X has a
quotient cover f ′ : Y ′→ X with Galois group Z/pn oZ/mG . Since Y → Y ′ is of
prime-to-p degree, we may assume that Y = Y ′ and G ∼=Z/pnoZ/mG . Let J <G
be the unique subgroup of order pn−1. Then the quotient cover η : Z = Y/J → X
has Galois group Z/poZ/mG . If all branch points of η have prime-to-p branching
index, then [Wewers 2003a, Section 1.4] shows that, in the language of that paper,
η is of multiplicative type. Then η has bad reduction by [ibid., Corollary 1.5],
and the original component for the stable reduction Z → X is a p-component.
Furthermore, the deformation datum on the irreducible component of Z above the
original component of X is multiplicative (also due to the same corollary).

If η has a branch point x with ramification index divisible by p, then η has
bad reduction. By Proposition 4.6, x specializes to a p-component. By [Wewers
2003b, Theorem 2, p. 992], this is the original component X0, which is the only
p-component. The deformation datum above X0 must be multiplicative here, as X0

contains the specialization of a branch point with p dividing the branching index
(see Lemma 5.1).

So in all cases, the original component is a p-component for η with multiplica-
tive deformation datum. Thus the bottom deformation datum above X0 for f is
multiplicative. Now, we claim that X0 is a pn-component for f . Let I be the inertia
group of a component of Y lying above X0. Since η is inseparable above X0, we
must have that I ) J . Thus |I | = pn , proving the claim. Finally, Proposition 5.2
shows that all the deformation data above X0 for f are multiplicative. �

5C. Effective invariants of deformation data. Maintain the Section 5B notation.
Recall that G′ is the augmented dual graph of X . To each edge e of G′ we will
associate an invariant σ eff

e , called the effective invariant.

Definition 5.4 (cf. [Obus 2012, Definition 3.10]).

• If s(e) corresponds to a pr -component W and t (e) corresponds to a pr ′-
component W ′ with r ≥ r ′, then r ≥ 1 by Lemma 4.7. Let ωi , 1≤ i ≤ r , be the
deformation data above W . If {w} =W ∩W ′, define σi,w to be the invariant
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of ωi at w. Then

σ eff
e :=

(r−1∑
i=1

p−1
pi σi,w

)
+

1
pr−1σr,w.

Note that this is a weighted average of the σi,w.

• If s(e) corresponds to a pr-component and t (e) corresponds to a pr ′-component
with r < r ′, then σ eff

e := −σ
eff
e .

• If either s(e) or t (e) is a vertex of G′ but not G, then σ eff
e := 0.

Lemma 5.5 [Obus 2012, Lemma 3.11 (i), (iii)].

(i) For any e ∈ E(G′), we have σ eff
e =−σ

eff
e .

(ii) If t (e) corresponds to an étale tail Xb, then σ eff
e = σb.

Lemma 5.6 (effective local vanishing cycles formula [Obus 2012, Lemma 3.12]).
Let v ∈ V (G′) correspond to a p j -component W of X with genus gv. Then∑

s(e)=v

(σ eff
e − 1)= 2gv − 2.

Lemma 5.7. Let e be an edge of G such that s(e)≺ t (e). Write W for the component
corresponding to t (e). Let 5e be the set of branch points of f with branching index
divisible by p that specialize to or outward from W . Let Be index the set of étale
tails Xb such that Xb �W . Then the following formula holds:

σ eff
e − 1=

∑
b∈Be

(σb− 1)− |5e|.

Proof. For the context of this proof, call a set A of edges of G′ admissible if:

• For each a ∈ A, we have s(e)� s(a)≺ t (a).

• For each b ∈ Be, there is exactly one a ∈ A such that t (a) � vb, where vb is
the vertex corresponding to Xb.

• For each c ∈5e, there is exactly one a ∈ A such that t (a) � vc, where vc is
the vertex corresponding to c.

For an admissible set A, write F(A)=
∑

a∈A(σ
eff
a − 1). We claim that F(A)=∑

b∈Be
(σb− 1)− |5e| for all admissible A. Since the set {e} is clearly admissible,

this claim proves the lemma.
Now, if A is an admissible set of edges, then we can form a new admissible

set A′ by eliminating an edge α such that t (α) is not a leaf of G′, and replacing it
with the set of all edges β such that t (α)= s(β). Since t (α) always corresponds
to a vertex of genus 0, Lemmas 5.5(i) and 5.6 show that F(A) = F(A′). By
repeating this process, we see that F(A)= F(D), where D consists of all edges
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d such that t (d)= vb or t (d)= vc with b ∈ Be or c ∈5e. But by Lemma 5.5(ii),
F(D)=

∑
b∈Be

(σb− 1)+
∑

c∈|5e|
(0− 1), proving the claim. �

The remainder of this section will be used only in Appendix A, and may be
skipped by a reader who does not wish to read that section.

Consider two intersecting components W and W ′ of X as in Definition 5.4.
Suppose W is a pr -component and W ′ is a pr ′-component, r ≥ r . If V and V ′

are intersecting components lying above W and W ′, respectively, then for each i ,
1≤ i ≤ r , there is a deformation datum with differential form ωi associated to V .
Likewise, for each i ′, 1≤ i ′≤ r ′, there is a deformation datum with differential form
ω′i ′ associated to V ′. Let (hi,w,mw) be the invariants of ωi at w, the intersection
point of W and W ′. Suppose v is an intersection point of V and V ′. We have the
following proposition relating the change in the differents of the deformation data
(see just before Lemma 5.1) and the épaisseur of the annulus corresponding to w:

Proposition 5.8. Let εw be the épaisseur of the formal annulus corresponding to w.

• If i = i ′+ r − r ′, then δωi − δ
′

ω′i ′
= εwσi,w(p− 1)/pi .

• If i ≤ r − r ′, then δωi = εwσi,w(p− 1)/pi .

Proof. Write Ii for the unique subgroup of order pi of the inertia group of f at v
in G. Let A= Spec ÔY st ,v . Let ε be the épaisseur of A/(Ir−i+1). Then, in the case
i = i ′+ r − r ′, [Henrio 2000a, chapitre 5, proposition 1.10] shows that

δωi − δ
′

ω′i ′
= εhi,w(p− 1).

In the case i < r − r ′, the same proposition shows δωi − 0 = εhi,w(p− 1). Also,
[Raynaud 1999, Proposition 2.3.2 (a)] shows that εw = pi mwε. The proposition
follows. �

It will be useful to work with the effective different, which we define now.

Definition 5.9. Let W be a pr -component of X , and let ωi , 1 ≤ i ≤ r , be the
deformation data above W . Define the effective different δeff

W
by

δeff
W
=

( r−1∑
i=1

δωi

)
+

p
p−1

δωr .

Lemma 5.10. Assume the notation of Proposition 5.8. Let e be an edge of G such
that s(e) corresponds to W and t (e) corresponds to W ′. Then

δeff
W
− δeff

W ′
= σ eff

e εw.

Proof. We sum the equations from Proposition 5.8 for 1≤ i ≤ r − 1. Then we add
p/(p− 1) times the equation for i = r . This exactly gives δeff

W
− δeff

W ′
= σ eff

e εw. �
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6. Quotient covers

In this section, we relate the minimal field of definition of the stable model of a
G-cover to that of its quotient G/N -covers when p - |N |. This allows a significant
simplification of the group theory in Section 7.

Lemma 6.1. Let f :Y→ X be any G-Galois cover of smooth, proper, geometrically
connected curves over any field (we do not assume that a p-Sylow subgroup of G is
cyclic). Suppose G has a normal subgroup N such that p - |N | and Z := Y/N. So
f factorizes as

Y
q
→ Z

η
→ X.

Suppose L is a field such that η : Z→ X is defined over L , and let ZL be a model
for Z over L. Suppose further that q : Y → Z can be defined over L , with respect to
the model ZL . Then the field of moduli L ′ of f with respect to L satisfies p - [L ′ : L].

Proof. Clearly, f is defined as a mere cover over L . So let YL be a model for Y
over L such that YL/N = ZL (and set X L = ZL/(G/N )). Then the cover YL→ X L

gives rise to a homomorphism h : GL → Out(G), as in Section 2B, whose kernel
is the subgroup of GL fixing the field of moduli of f . Since q is defined over
L , the image of h acts by inner automorphisms on N . Thus, there is a natural
homomorphism r : (im h)→ Out(G/N ). Since η is defined over L , the image of
r ◦h acts by inner automorphisms on G/N . Take α ∈ im h. It is easy to see that we
can find a representative α ∈ Aut(G) of α that fixes N pointwise and whose image
in Aut(G/N ) fixes G/N pointwise. If g ∈ G, then α(g) = gs for some s ∈ N .
Since α fixes N , we see that αi (g)= gsi . Since s ∈ N , we know s|N | is trivial, so
α|N | is trivial. Thus α has prime-to-p order, implying that GL/(ker h) does as well.
We conclude that the field of moduli L ′ of f relative to L is a prime-to-p extension
of L . �

For the next proposition, K is a characteristic zero complete discrete valuation
field with residue field k.

Proposition 6.2. Let f : Y → X ∼= P1
K be a G-cover with bad reduction and

stable model f st as in Section 4. Suppose G has a normal subgroup N such that
p - |N |, and let Z = Y/N. Let L/K be a finite extension such that the stable model
ηst
: Z st
→ X st of η : Z→ X and each of the branch points of the canonical map

q : Y → Z can be defined over L. Then the stable model f st of f can be defined
over a tame extension of L.

Proof. By [Liu 2006, Remark 2.21], the minimal modification (Z st)′ of Z st that
separates the specializations of the branch points of q is defined over L . Note that
q , being an N -cover, is tamely ramified. We claim that qst

: Y st
→ (Z st)′ is defined

over a tame extension of L (along with the N -action).
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The proof of the claim is almost completely contained in the proof of [Saïdi
1997, théorème 3.7], so we only give a sketch. Break up the formal completion Z

of (Z st)′ at its special fiber into three pieces: The piece Z1 is the disjoint union of
the formal annuli corresponding to the completion of each double point; the piece
Z2 is the disjoint union of the formal disks corresponding to the completion of the
specialization of each branch point of q; and the piece Z3 is Z\(Z1 ∪Z2). Let Ẑ1,
Ẑ2, and Ẑ3 be the respective special fibers of Z1, Z2, and Z3. Saïdi’s proof shows
how to lift the covers qst

|Ẑ1
and qst

|Ẑ3
to covers of Z1 and Z3, étale on the generic

fiber, after a possible tame extension of L . Now, each connected component Ci of
Z2 is isomorphic to Spf S[[zi ]], where S is the ring of integers of L . The special fiber
Ĉi of Ci is isomorphic to Spec k[[zi ]]. The cover qst

|Ĉi
is given by a disjoint union

of identical covers D̂i → Ĉi , each D̂i being given by extracting a mi -th root of zi ,
where mi is the branching index of the branch point of q specializing to Ĉi . Since
each branch point of q is defined over L , there is a unique lift (over L) of qst

|Ĉi
to

a cover of Ci , étale on the generic fiber outside the appropriate point. Using the
arguments of Saïdi’s proof, the covers of Z1, Z2, and Z3 patch together uniquely to
give a cover of Z defined over a tame extension of L . By Grothendieck’s existence
theorem, this cover is algebraic and it must be the base change of qst . Thus qst is
defined over a tame extension of L , and the claim is proved.

Let M/L be a tame extension such that qst is defined over M . By Lemma 6.1
applied to q : Y → Z and η : Z→ X , the field of moduli of f is contained in some
tame extension M ′ of M . Since M ′ has cohomological dimension 1, it follows
[Coombes and Harbater 1985, Proposition 2.5] that f can be defined (as a G-cover)
over M ′. Furthermore, G M ′ ≤ G M acts trivially on the special fiber Y of Y st . Thus
f st is defined over M ′. �

Remark 6.3. Suppose f : Y → X is a G-cover, N ≤ G is prime-to-p and normal,
and the field of moduli of f ′ : Y ′ := Y/N→ X is L . One can ask if this implies that
the field of moduli of f is a tame extension of L (Proposition 6.2 is the analogous
statement for the minimal field of definition of the stable model). If the answer to
this question is yes, then some of the proofs in Section 7 would be much easier.
Unfortunately, I believe the answer is no.

7. Proof of the main theorem

In this section, we will prove Theorem 1.3. Throughout Section 7, if G ∼= Z/pn o
Z/m and p - m, then Qi (0≤ i ≤ n) is the unique subgroup of order pi .

Let f : Y → X =P1 be a three-point Galois cover defined over Q. Our first step
is to reduce to a local problem, which is the content of Proposition 7.1. Let Qur

p
be the completion of the maximal unramified extension of Q. For an embedding
ι :Q ↪→Qur

p , let fι be the base change of f to Qur
p via ι. The following proposition



856 Andrew Obus

shows that, for the purposes of Theorem 1.3, we need only consider covers defined
over Qur

p .

Proposition 7.1. Let Kgl be the field of moduli of f (with respect to Q) and let
Kloc,ι be the field of moduli of fι with respect to Qur

p . Fix n ≥ 0 and suppose that
for all embeddings ι, the n-th higher ramification groups of the Galois closure L loc,ι

of Kloc,ι/Q
ur
p for the upper numbering vanish. Then all the n-th higher ramification

groups of the Galois closure Lgl of Kgl/Q above p for the upper numbering vanish.

Proof. Pick a prime q of Lgl above p. We will show that the n-th higher ramification
groups at q vanish. Choose a place r of Q above q. Then r gives rise to an
embedding ιr : Q ↪→ Qur

p preserving the higher ramification filtrations at r for
the upper numbering (and the lower numbering). Specifically, if L/Qur

p is a finite
extension such that the n-th higher ramification group for the upper numbering
vanishes, then the n-th higher ramification group for the upper numbering vanishes
for ι−1

r (L)/Q at the unique prime of ι−1
r (L) below r . By assumption, the n-th

higher ramification group for the upper numbering vanishes for L loc,ιr /Q
ur
p . Also,

the field L ′ := ι−1
r (L loc,ιr ) is Galois over Q. So if Kgl ⊆ L ′, then Lgl ⊆ L ′. We

know the n-th higher ramification groups for L ′/Q vanish. We are thus reduced to
showing that Kgl ⊆ L ′.

Pick σ ∈ GL ′ . Then σ extends by continuity to a unique automorphism τ in
GL loc,ιr

. By the definition of a field of moduli, f τιr
∼= fιr . But then f σ ∼= f . By the

definition of a field of moduli, Kgl ⊆ L ′. �

So, in order to prove Theorem 1.3, we can consider three-point covers defined
over Qur

p . In fact, we generalize slightly, and consider three-point covers defined
over algebraic closures of complete mixed characteristic discrete valuation fields
with algebraically closed residue fields. In particular, throughout this section, K0

is the fraction field of the ring R0 of Witt vectors over k. On all extensions of
K0, we normalize the valuation v so that v(p) = 1. Also, write Kn := K0(ζpn ),
with valuation ring Rn (here ζpn is a primitive n-th root of unity). Let G be a
finite, p-solvable group with a cyclic p-Sylow subgroup P of order pn . We assume
f : Y → X = P1 is a three-point G-Galois cover of curves, branched at 0, 1, and
∞, a priori defined over some finite extension K/K0. Since K has cohomological
dimension 1, the field of moduli of f relative to K0 is the same as the minimal
field of definition of f that is an extension of K0 [Coombes and Harbater 1985,
Proposition 2.5]. We will therefore go back and forth between fields of moduli and
fields of definition without further notice. Our default smooth model X R of X is
always the unique one such that the specializations of 0, 1, and∞ do not collide on
the special fiber. As in Section 4, the stable model of f is f st

: Y st
→ X st and the

stable reduction is f : Y → X . The original component of X will be denoted X0.
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We will first prove Theorem 1.3 in the case that G ∼= Z/pn oZ/mG . The cases
mG > 1 and mG = 1 have quite different flavors, and we deal with them separately.
We in fact determine more than we need for Theorem 1.3; namely, we determine
bounds on the higher ramification filtrations of the extension K st/K0, where K st

is the minimal field of definition of the stable model of f . In Section 7C, we will
generalize to the p-solvable case.

7A. The case where G ∼= Z/ pnoZ/mG , mG > 1. Let G ∼= Z/pnoZ/m be such
that the conjugation action of Z/m is faithful (note that this implies m = mG). We
will show that the field of moduli with respect to K0 of f as a mere cover is in fact
K0. Then, we will show that its field of moduli with respect to K0 as a G-cover is
contained in Kn . Lastly, we will show that its stable model can be defined over a
tame extension of Kn .

Let χ : Z/m→ F×p correspond to the conjugation action of Z/m on any order p
subquotient of Z/pn . Now, there is an intermediate Z/m-cover η : Z→ X where
Z = Y/Qn . If q : Y → Z is the quotient map, then f = η ◦ q. Because it will be
easier for our purposes here, let us assume that the three branch points of f are
x1, x2, x3 ∈ R0 and that they have pairwise distinct reduction to k (in particular, none
is∞). Since the m-th roots of unity are contained in K0, the cover η can be given
birationally by the equation zm

= (x − x1)
a1(x − x2)

a2(x − x3)
a3 with 0≤ ai < m

for all i ∈ {1, 2, 3}, where a1+ a2+ a3 ≡ 0 (mod m) and not all ai ≡ 0 (mod m).
Since g∗z/z is an m-th root of unity, we can and do choose z so that g∗z = χ(g)z
for any g ∈ Z/m. We know from Lemma 5.3 that the original component X0 is a
pn-component, and all of the deformation data above X0 are multiplicative.

Consider the Z/poZ/m-cover f ′ : Y ′→ X , where Y ′ = Y/Qn−1. The stable
reduction f ′ : Y ′→ X ′ of this cover has a multiplicative deformation datum (ω, χ)

over the original component X0. For all x ∈ X0, recall that (hx ,mx) is the signature
of the deformation datum at x , and σx = hx/mx (see Section 5). Also, since there
are no new tails (Proposition 4.15), it follows from [Wewers 2003b, Theorem 2,
p. 992] that the stable reduction X ′ consists only of the original component X0

along with a primitive étale tail X i for each branch point xi of f (or f ′) with
prime-to-p ramification index. The tail X i intersects X0 at the specialization of xi

to X0.

Proposition 7.2. For i = 1, 2, 3, let x i be the specialization of xi to X0. For short,
write hi , mi , and σi for hx i , mx i , and σx i .

(i) For i = 1, 2, 3, hi ≡ ai/ gcd(m, ai ) (mod mi ).

(ii) In fact, the hi depend only on the Z/m-cover η : Z→ X.

Proof. (i) (cf. [Wewers 2003a, Proposition 2.5]): Let Z0 be the unique irreducible
component lying above X0, and suppose that zi ∈ Z0 lies above x i . Let ti be the
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formal parameter at zi given by zα(x − xi )
β , where αai +βm = gcd(m, ai ). Then

ω =
(

c0thi−1
i +

∞∑
j=1

c j t
hi−1+ j
i

)
dti

in a formal neighborhood of zi . Recall that, for g ∈ Z/m, g∗z = χ(g)z and
g∗ω = χ(g)ω. Then

χ(g)= g∗ω
ω
=

(g∗ti
ti

)hi
=

(g∗z
z

)αhi
= χ(gαhi ).

So αhi ≡ 1 (mod m). It follows that hi gcd(m, ai )≡ hi (αai +βm)≡ ai (mod m).
It is clear that the ramification index mi at x i is m/ gcd(m, ai ). Dividing

hi gcd(m, ai )≡ ai (mod m)

by gcd(m, ai ) yields (i).

(ii) Since we know the congruence class of hi modulo mi , it follows that the
fractional part 〈σi 〉 of σi is determined by η : Z → X . But if xi corresponds to
a primitive tail, the vanishing cycles formula (4-1) shows that 0 < σi < 1. If xi

corresponds to a wild branch point, then σi = 0. Thus σi is determined by 〈σi 〉, so
it is determined by η : Z→ X . Since hi = σi mi , we are done. �

Corollary 7.3. The differential form ω corresponding to the cover f ′ : Y ′→ X is
determined (up to multiplication by an element of F×p ) by η : Z→ X.

Proof. Proposition 7.2 determines the divisor corresponding to ω from η : Z→ X .
Two meromorphic differential forms on a complete curve can have the same divisor
only if they differ by a scalar multiple. Also, if ω is logarithmic and c ∈ k, then cω
is logarithmic if and only if c ∈ Fp by basic properties of the Cartier operator; see,
for instance, [Wewers 2003a, p. 136]. �

We will now show that η : Z→ X determines not only the differential form ω,
but also the entire cover f : Y → X as a mere cover. This is the key lemma of this
section. We will prove it in several stages using an induction.

Lemma 7.4. Assume m > 1.

(i) If f : Y → X is a three-point Z/pn oZ/m-cover (with faithful conjugation
action of Z/m on Z/pn) defined over some finite extension K/K0, then it is
determined as a mere cover by the map η : Z = Y/Qn→ X.

(ii) If f : Y → X is a three-point Z/pn oZ/m-cover (with faithful conjugation
action of Z/m on Z/pn) defined over some finite extension K/K0, its field of
moduli (as a mere cover) with respect to K0 is K0, and f can be defined over
K0 (as a mere cover).



Fields of moduli of three-point G-covers with cyclic p-Sylow, I 859

(iii) In the situation of part (ii), the field of moduli of f (as a Z/pn oZ/m-cover)
with respect to K0 is contained in Kn = K0(ζpn ). Thus f can be defined over
Kn (as a Z/pn oZ/m-cover).

Proof. (i) We first assume n = 1, so G ∼= Z/poZ/m. Write Z st for Y st/Q1 and
Z for the special fiber of Z st . We know from Corollary 7.3 that η determines (up
to a scalar multiple in F×p ) the logarithmic differential form ω that is part of the
deformation datum (Z0, ω) on the irreducible component Z0 above X0. Let ξ
be the generic point of Z0. Then ω is of the form du/u, where u ∈ k(Z0) is the
reduction of some function u ∈ Ô(Z ′)st ,ξ . Moreover, by [Henrio 2000a, chapitre 5,
définition 1.9], we can choose u such that the cover Y → Z is given birationally by
extracting a p-th root of u (viewing u ∈ K (Z)∩ Ô(Z ′)st ,ξ ). That is,

K (Y )= K (Z)[t]/(t p
− u).

We wish to show that knowledge of du/u up to a scalar multiple c ∈ F×p determines
u up to raising to the c-th power, and then possibly multiplication by a p-th power
in K (Z) (as this shows Y ′→ X is uniquely determined as a mere cover). This is
equivalent to showing that knowledge of du/u determines u up to a p-th power
(that is, that if du/u = dv/v, then u/v is a p-th power in K (Z)).

Suppose that there exist u, v ∈ K (Z)∩ O(Z ′)st ,ξ such that du/u = dv/v. Then
u = κ v, with κ ∈ k(Z0)

p. Since κ is a p-th power, it lifts to some p-th power κ in
K . Multiplying v by κ , we can assume that u= v. Consider the cover Y ′→ Z given
birationally by the field extension K (Y ′)= K (Z)[t]/(t p

− u/v). Since u = v, we
have that u/v is congruent to 1 in the residue field of O(Z ′)st ,ξ . This means that the
cover Y ′→ Z cannot have multiplicative reduction; see [Henrio 2000a, chapitre 5,
proposition 1.6]. But the cover Y ′→ Z→ X is a Z/poZ/m-cover, branched at
three points, so it must have multiplicative reduction if the Z/p part is nontrivial
(Lemma 5.3). Thus it is trivial, which means that u/v is a p-th power in K (Z),
that is, u = φ pv for some φ ∈ K (Z). This proves the case n = 1.

For n > 1, we proceed by induction. We assume that (i) is known for Z/pn−1o
Z/m-covers. Given η : Z → X , we wish to determine u ∈ K (Z)×/(K (Z)×)pn

such that K (Y ) is given by K (Z)[t]/(t pn
− u). By the induction hypothesis, we

know that u is well-determined up to multiplication by a pn−1-st power. Suppose
that extracting pn-th roots of u and v both give Z/pn oZ/m-covers branched at
0, 1, and∞. Consider the cover Y ′→ Z→ X of smooth curves given birationally
by K (Y ′) = K (Z)[t]/(t pn

− u/v). Since u/v is a pn−1-st power in K (Z), this
cover splits into a disjoint union of pn−1 different Z/p o Z/m-covers. By our
previous argument, each of these covers can be given by extracting a p-th root of
some power of u itself! So pn−1√

u/v = ucw p, where w ∈ K (Z) and c ∈ Z. Thus
v = u1−pn−1cw−pn

, which means that extracting pn-th roots of either u or v gives
the same mere cover.
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(ii) We know that the cyclic cover η of part (i) is defined over K0 because we have
written it down explicitly. Now, for σ ∈ G K0 , f σ is a Z/pn o Z/m-cover with
quotient cover η, branched at 0, 1, and∞. By part (i), there is only one such (mere)
cover, so f σ ∼= f as mere covers. So the field of moduli of f as a mere cover with
respect to K0 is K0. It is also a field of definition by [Coombes and Harbater 1985,
Proposition 2.5].

(iii) Since f is defined over K0 as a mere cover, it is certainly defined over Kn as a
mere cover. We thus obtain a homomorphism h : G Kn →Out(G), as in Section 2B.
By Kummer theory, we can write Kn(Z) ↪→ Kn(Y ) as a Kummer extension with
Galois action defined over Kn . This means that the image of h acts trivially on
Z/pn . Furthermore, η : Z → X is defined over K0 as a Z/m-cover. Thus, if
r :Out(G)→Out(Z/m) is the natural map, the image of r ◦h acts trivially on Z/m.
But the only automorphisms of G satisfying both of these properties are inner, so h
is trivial. This shows that the field of moduli of f with respect to K0 is Kn . Since
K0 has cohomological dimension 1, we see that f : Y → X is defined over Kn as a
Z/pn oZ/m-cover. �

We know from Lemma 7.4 that f is defined over K0 as a mere cover and over
Kn as a G-cover. Recall from Section 4 that the minimal field of definition of the
stable model K st is the fixed field of the subgroup 0st

≤ G K0 that acts trivially on
the stable reduction f : Y → X . Recall also that the action of G Kn centralizes the
action of G.

Lemma 7.5. If g ∈ G Kn acts on Y with order p, then g acts trivially on Y .

Proof. First, note that since each tail Xb of X is primitive (Proposition 4.15), each
contains the specialization of a K0-rational point (which must be fixed by g). As in
the proof of Proposition 4.9, g fixes all of X pointwise.

There are at least two primitive tails, because, for G ∼= Z/pn oZ/m with m > 1
and faithful conjugation action, a three-point G-cover must have at least two branch
points with prime-to-p branching index. Since G has trivial center, [Obus 2012,
Lemmas 5.4 and 5.8] shows that g acts trivially on X . �

Proposition 7.6. Assume m > 1. Let f : Y → X be a three-point G-cover, where
G ∼= Z/pn oZ/m (with faithful conjugation action of Z/m on Z/pn). Choose a
model for f over Kn , as in Lemma 7.4(iii). Then there is a tame extension K stab/Kn

such that the stable model f st
: Y st
→ X st is defined over K stab. In particular, the

n-th higher ramification groups for the upper numbering of K stab/K0 vanish.

Proof. By Lemma 7.5, no element of G Kn acts with order p on Y . So the subgroup
of G Kn that acts trivially on Y has prime-to-p index, and its fixed field K stab is a
tame extension of Kn . By [Serre 1979, Corollary to IV, Proposition 18], the n-th
higher ramification groups for the upper numbering of the extension Kn/K0 vanish.
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By Lemma 2.2, the n-th higher ramification groups for the upper numbering of
K stab/K0 vanish. �

7B. The case where G ∼= Z/ pn. Maintaining the notation of this section, we now
set G ∼= Z/pn . Finding the field of moduli is easy in this case, but understanding
the stable model (which is needed to apply Proposition 6.2) is more difficult.

Proposition 7.7. The field of moduli of f : Y → X relative to K0 is Kn = K0(ζpn ).

Proof. Since the field of moduli of f relative to K0 is the intersection of all
extensions of K0 which are fields of definition of f , it suffices to show that Kn

is the minimal such extension. By Kummer theory, f can be defined over K0

birationally by the equation y pn
= xa(x−1)b for some integral a and b. The Galois

action is generated by y 7→ ζpn y. This cover is clearly defined over Kn as a G-cover.
Since Y is connected, f is totally ramified above at least one of the branch points

x0 (that is, with index pn). Let y0 ∈ Y be the unique point above x0. Assume
f is defined over some finite extension K/K0 as a G-cover, where Y and X are
considered as K -varieties. Then, by [Raynaud 1999, Proposition 4.2.11], the residue
field K (y0) of y0 contains the pn-th roots of unity. Since y0 is totally ramified,
K (y0) = K (x0) = K , and thus K ⊇ Kn . So Kn is the minimal extension of K0

which is a field of definition of f . Thus Kn is the field of moduli of f with respect
to K0. �

In the rest of this section, we analyze the stable model of three-point G-covers
f :Y→ X (a complete description, at least in the case p>3, is given in Appendix A).
By Kummer theory, f can be given (over K0) by an equation of the form y pn

=

cxa(x − 1)b for any c ∈ K0 (note that different values of c might give different
models over subfields of K0). The ramification indices above 0, 1, and ∞ are
pn−v(a), pn−v(b), and pn−v(a+b), respectively. Since Y is connected, we must have
that at least two of a, b, and a+ b are prime to p. Note that if p = 2, then exactly
two of a, b, and a + b are prime to p. In all cases, we assume without loss of
generality that f is totally ramified above 0 and∞, and we set s to be such that ps

is the ramification index above 1. Then v(b)= n− s.
As in Section 4, write f st

: Y st
→ X st for the stable model of f , and f : Y → X

for the stable reduction.

Lemma 7.8 (cf. [Coleman and McCallum 1988, Section 3]). The stable reduction
X (over K0) contains exactly one étale tail Xb, which is a new tail with effective
invariant σb = 2.

If p > 3, or p = 3 and either s > 1 or s = n = 1, set d = a/(a+b). If p = 3 and
n > s = 1, set

d = a
a+b

+

3
√

32n+1
(b

3

)
a+ b

,
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where we choose any cube root. If p = 2, set

d = a
a+b

+

√
2nbi

(a+b)2
,

where i2
=−1 and the square root sign represents either square root.

Then Xb corresponds to the disk of radius |e| centered at d, where e ∈ K0 has
v(e)= 1

2(2n− s+ 1/(p− 1)).

Proof. By the Hasse–Arf theorem, the effective ramification invariant σ of any étale
tail is an integer. Clearly there are no primitive tails, as there are no branch points
with prime-to-p branching index. By Lemma 4.13, any new tail has σ ≥ 2. By the
vanishing cycles formula (4-1), there is exactly one new tail Xb and its invariant σb

is equal to 2.
We know that f is given by an equation of the form y pn

= g(x) := cxa(x − 1)b,
and that any value of c yields f over K0. Taking K sufficiently large, we may (and
do) assume that c= d−a(d−1)−b. Note that, in all cases, g(d)= 1, v(d)= v(a)= 0,
and v(d − 1)= v(b)= n− s.

Let K be a subfield of K0 containing K0(ζpn , e, d). Let R be the valuation ring of
K . Consider the smooth model X ′R of P1

K corresponding to the coordinate t , where
x=d+et . The formal disk D corresponding to the completion of Dk := X ′k\{t=∞}
in X ′R is the closed disk of radius 1 centered at t = 0, or, equivalently, the disk of
radius |e| centered at x = d; see Section 2D. Its ring of functions is R{t}.

In order to calculate the normalization of X ′R in K (Y ), we calculate the normal-
ization E of D in the fraction field of

R{t}[y]/(y pn
− g(x))= R{t}[y]/(y pn

− g(d + et)).

Now, g(d + et)=
∑a+b

`=0 c`t`, where

c` = e`
∑̀
j=0

( a
`− j

)(b
j

)
d j−`(d − 1)− j . (7-1)

If s= n and `≥ 3, then clearly v(c`)≥ v(e`)= `
2(n+1/(p−1))> n+1/(p−1).

If s < n and `≥ 3, then the j = ` term is the term of least valuation in (7-1), and
thus it has the same valuation as c`. We obtain

v(c`)= `v(e)+v(b)−v(`)−`(n−s)= n+ 1
p−1
+
`−2

2

(
s+ 1

p−1

)
−v(`) (7-2)

(unless, of course, c` = 0).
Now, assume either that p > 3, or if p = 3, then s > 1 or s = n = 1. Then d =

a/(a+b). It is easy to check, using (7-2), that v(c`)> n+1/(p−1) for `≥ 3. Equa-
tion (7-1) shows that c0 = 1, c1 = 0, and c2 = (a+b)3e2/(ab), which has valuation
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n+1/(p−1). Thus we are in the situation (i) of Lemma 3.1 (with h=2), and the spe-
cial fiber Ek of E is a disjoint union of pn−1 étale covers of Dk ∼=A1

k . Each of these
extends to an Artin–Schreier cover of conductor 2 over P1

k . By Lemma 2.4, these
have genus (p−1)/2> 0. Therefore, by Lemma 4.3, the component Xb correspond-
ing to D is included in the stable model. By Lemma 4.7, it is a tail. Since there is only
one tail of X , and it has effective ramification invariant 2, it must correspond to Xb.

For the cases where either p = 2, or p = 3 and n > s = 1, see Lemma C.2. �

Remark 7.9. The computation of Lemma 7.8 is similar to the relevant parts of
[Coleman and McCallum 1988, Section 3], in particular Lemma 3.6 and Case 5 of
Theorem 3.18. Our task is simplified because we know from the outset what we
are looking for, that is, a new tail with σb = 2.

Corollary 7.10. (i) If f is totally ramified above {0, 1,∞}, then X has no insep-
arable tails.

(ii) If p > 3 and f is totally ramified above only {0,∞}, then if X has an insepa-
rable tail, the tail contains the specialization of x = 1.

(iii) If p = 3, suppose f is totally ramified above only {0,∞} and ramified of index
3s above 1. Then any inseparable tail of X not containing the specialization of
x = 1 is a ps−1-tail (in particular, s≥ 2). Furthermore, such a tail corresponds
to the disk of radius |e′| centered at d ′, where v(e′)= n− s+ 2

3 and

d ′ = a
a+b

+

3
√

32(n−s+1)+1
(b

3

)
a+ b

.

(iv) If p = 2, suppose f is totally ramified above only {0,∞} and ramified of index
2s above 1. Then any inseparable tail of X not containing the specialization of
x = 1 is a p j -tail for some j < s. Furthermore, such a tail corresponds to the
disk of radius |e j | centered at d j , where v(e j )=

1
2(2n− s− j + 1),

d j =
a

a+b
+

√
2n− j bi
(a+b)2

,

and i2
=−1.

Proof. (i) Let d = a/(a + b) as in Lemma 7.8. Suppose there is an inseparable
p j -tail X c ⊂ X (we know j < n by Lemma 4.8). By Proposition 4.6, X c is a new
inseparable tail. By Lemma 4.14, X c is a new (étale) tail of the stable reduction of
Y/Q j → X . Its corresponding disk must contain d, by Lemma 7.8 (substituting
n− j for n in the statement). But this is absurd, because the disks corresponding to
X c and the étale tail Xb are disjoint.

(ii) Assume f is ramified above x = 1 of index ps , s < n. Let X c be a new
inseparable p j -tail of X , and σc its ramification invariant. By Lemma 4.13, σc > 1.
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Let Y c be a component of Y lying above X c. If j ≥ s, we see that Y/Q j → X is
branched at two points, and thus has genus zero. Since Q j ≤ IY c

, the constancy of
arithmetic genus in flat families shows that Y c has genus zero. But any component
Y c above X c must have genus greater than 1; see [Raynaud 1999, Lemme 1.1.6].
This is a contradiction.

Now suppose j < s. Then Y/Q j → X is a three-point cover. So we obtain the
same contradiction as in (i).

(iii) As in (ii), we see that any new inseparable p j -tail X c of X must satisfy j < s.
In particular, s ≥ 2. As in (i), X c must correspond to the same disk as the new étale
tail of the stable reduction of f ′ : Y/Q j → X , but the disk must not contain the
specialization of d = a/(a + b). By Lemma 7.8, this can only happen if f ′ has
degree greater than 3, but is branched of index 3 above 1. Thus j = s− 1. Thus f ′

is a Z/pn−s+1-cover. We conclude using Lemma 7.8, replacing n by n− s+ 1 and
s by 1.

(iv) Let j and X c be as in part (ii). As in (ii), we may assume j < s. As in (i), X c

is the new étale tail of the stable reduction of f ′ : Y/Q j → X . The cover f ′ is a
Z/pn− j -cover totally ramified above 0 and∞ and ramified of index 2s− j above 1.
We conclude using Lemma 7.8, replacing n by n− j and s by s− j . �

Corollary 7.11. In cases (ii), (iii), and (iv) above, x = 1 in fact specializes to an
inseparable tail.

Proof. If x = 1 specializes to a component W that is not a tail, then there exists a tail
X c lying outward from W . If X c is a pi -tail, then Lemma 4.8 and Proposition 4.6
show that i< s. By Lemma 4.14, X c is an étale tail of the stable model of Y/Qi→ X .
As i < s, this is still a three-point cover. So we may assume (still, for the sake of
contradiction) that there is an étale tail lying outwards from the specialization of
x = 1. By Lemma 7.8, we have σc = 2, and X c is the only étale tail of f .

Let e0 and e1 be the edge of G′ with source corresponding to W and target
corresponding to the branch point x=1 and, respectively, the immediately following
component of X in the direction of X c. Then σ eff

e1
= 2 by Lemma 5.7, and σ eff

e0
= 0.

The deformation data above W are multiplicative and identical, and σ eff is given
by a weighted average of invariants. So for any deformation datum ω above W ,
we have σx0 = 0 and σx1 = 2, where the points x0 and x1 correspond to e0 and e1,
respectively. Furthermore, σx = 1 for all x other than x0, x1, and the intersection
point x2 of W and the next most inward component.

Now, by a similar argument as in the first part of the proof of Corollary 7.10(ii),
any component of Y above W must have genus zero. Thus ω has degree −2. Since
ω has simple poles above x0 and simple zeroes above x1, it must have a double
pole above x2. But a logarithmic differential form cannot have a double pole. This
is a contradiction. �
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Remark 7.12. In Corollary 7.10(iv), there in fact does exist an inseparable p j -tail
for each 1≤ j < s. Each of these is the same as the unique new tail of the cover
Y/Q j → X . We omit the details.

We give the major result of this section:

Proposition 7.13. Assume G = Z/pn , n ≥ 1, and f : Y → X is a three-point
G-cover defined over K0, totally ramified above {0,∞} and ramified of index ps

above 1. Suppose f is given over K0 by y pn
= xa(x − 1)b.

(i) If s = n (that is, f is totally ramified above 1), then there is a model for f
defined over Kn = K0(ζpn ) whose stable model can be defined over a tame
extension K stab/Kn .

(ii) If p > 3 and s < n, then there is a model for f over Kn whose stable model
can be defined over a tame extension K stab/Kn(

pn−s√
a/(a+ b)).

(iii) If p = 3 and 1 = s < n, then there is a model for f over Kn

(
3
√

32n+1
(b

3

))
whose stable model can be defined over a tame extension K stab of

Kn

(
3
√

32n+1
(b

3

)
, 3n−1

√
a

a+b

)
.

(iv) Assume p = 3 and 1< s < n. Let

d ′ = a
a+b

+

3
√

3(2(n−s+1)+1)
(b

3

)
a+ b

.

Then there is a model for f over Kn whose stable model can be defined over a
tame extension K stab of

Kn

(
d ′, 3n−s

√
a

a+b
,

3n−s+1

√
(d ′)a(d ′−1)b

aabb(a+b)−(a+b)

)
.

(v) Assume p = 2. For 0≤ j < s, let

d j =
a

a+b
+

√
2n− j bi
(a+b)2

,

where i2
=−1, and the square root sign represents either square root. Then

there is a model for f over Kn whose stable model can defined over a tame
extension K stab of

K := Kn
( 2n−1√

d0,
2s−1√

d0− 1, 2n− j√
d j ,

2s− j√
d j − 1

)
1≤ j<s .

Proof. In each case of the proposition, let d be as in Lemma 7.8. Set

c = d−a(d − 1)−b.
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The model of f we will use will always be the one given by the equation y pn
=

cxa(x − 1)b. In all cases, there is a unique étale tail W of X containing the
specialization of x = d, which is a smooth point of X . Furthermore, the points in
the fiber of f above x = d are all Kn-rational.

(i) Since s = n, we have d = a/(a+ b) and a, b, a+ b are prime to p. Our model
for f is defined over Kn . By Corollary 7.10, the tail W is the unique tail of X .
Since the point x = d and all points in the fiber of f above x = d are Kn-rational,
their specializations are fixed by G Kn . By Proposition 4.9, the stable model of f is
defined over a tame extension of Kn .

(ii) and (iii) : By Corollary 7.10(ii, iii), there is a unique inseparable tail W ′ con-
taining the specialization of x = 1 (to a smooth point of X ). Now, consider
Y/Qs (note that Qs is the inertia group above x = 1). This is a cover of X given
birationally by the equation y pn−s

= cxa(x − 1)b. Since pn−s exactly divides b, we
set y′ = y/(x − 1)b/p(n−s)

. The new equation (y′)pn−s
= cxa shows that the points

above x = 1 in Y/Qs are defined over the field Kn−s(c, pn−s√
c)= Kn−s(d,

pn−s√
d),

and their specializations are thus fixed by its absolute Galois group. Since the map
Y st
→ Y st/Qs is radicial above W ′, all points of Y above the specialization of x = 1

are fixed by G
Kn−s(d,

pn−s√
d)

. By Proposition 4.9, the stable model of f is defined
over a tame extension of Kn(d,

pn−s√
d).

If p> 3 and s < n, then Kn(d,
pn−s√

d)= Kn(
pn−s√

a/(a+ b)), finishing the proof
of (ii). If p = 3 and s = 1, then

d = a
a+b

(
1+ B

a

)
,

where B = 3
√

32n+1
(b

3

)
. Since v(B) = n − 1

3 , the binomial theorem shows that

1+ B/a is a 3n−1-st power in Kn(B). Thus

Kn(d,
3n−1√

d)= Kn

(
3
√

32n+1
(b

3

)
, 3n−1

√
a

a+b

)
,

finishing the proof of (iii).

(iv) Here d = a/(a + b), and our model of f is defined over Kn . There is an
inseparable tail W ′ containing the specialization of x = 1 and a unique new in-
separable tail containing the specialization of x = d ′ by Corollary 7.10(iii). As
in parts (ii) and (iii), the fiber of f above the specialization of x = 1 is pointwise
fixed by the absolute Galois group of Kn(

3n−s√
a/(a+ b)). Likewise, the fiber of

f above the specialization of x = d ′ is fixed by the absolute Galois group of
Kn(

3n−s+1√
c(d ′)a(d ′− 1)b). By Proposition 4.9, the stable model of f is defined

over a tame extension of the compositum of these two fields, which is exactly the
field given in part (iv) of the proposition.



Fields of moduli of three-point G-covers with cyclic p-Sylow, I 867

(v) In this case, d = d0. Note that n ≥ 2, as there are no three-point Z/2-covers.
One sees that c = d−a

0 (d0 − 1)−b
∈ Kn (in fact, c ∈ K3 always, and c ∈ K2 for

n = 2). So our model of f is defined over Kn .
By Corollary 7.10(iv) (and Remark 7.12), there is a unique inseparable p j -tail

W j of X for each 1 ≤ j < s. Also, there is an inseparable tail containing the
specialization of x = 1 (even if these inseparable tails did not exist, our proof would
still carry through — only our K would overestimate the minimal field of definition
of the stable model). Each tail W j contains the specialization of x = d j to a smooth
point of X .

As in (iv), the fiber of f above the specialization of x = d j , for 1 ≤ j < s, is
pointwise fixed by GL j , where

L j = Kn

(
2n− j

√
da

j (d j−1)b

da
0 (d0−1)b

)
.

As in (ii) and (iii), the fiber above the specialization of x = 1 is pointwise fixed by
GL ′ , where

L ′ = Kn

(
2n−s
√

d−a
0 (d0− 1)−b

)
.

Keeping in mind that v(b)= n− s, we see that K (as defined in the proposition)
contains the compositum of L ′ and all the extensions L j . We conclude using
Proposition 4.9. �

Corollary 7.14. In each case covered in Proposition 7.13, the n-th higher ramifica-
tion group of K stab/K0 for the upper numbering vanishes.

Proof. We first note that any tame extension of a Galois extension of K0 is itself
Galois over K0. In case (i) of Proposition 7.13, K stab is contained in a tame extension
of Kn . The n-th higher ramification groups for the upper numbering for Kn/K0

vanish by [Serre 1979, Corollary to IV, Proposition 18]. By Lemma 2.2, the n-th
higher ramification groups vanish for K stab/K0 as well.

For case (ii) of Proposition 7.13, we note that v(a/(a+ b))= 0. So

Kn(
pn−s√

a/(a+ b))/K0

has trivial n-th higher ramification groups for the upper numbering by [Viviani
2004, Theorem 5.8]. We again conclude using Lemma 2.2.

For cases (iii) and (iv) of Proposition 7.13, Lemma C.3 shows that K stab is a
tame extension of an extension of K0 for which the n-th higher ramification groups
for the upper numbering vanish. For case (v), this fact is shown by Proposition C.5.
We again conclude using Lemma 2.2. �
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7C. The general p-solvable case. We maintain the notation of earlier subsections.

Proposition 7.15. Let G be a p-solvable finite group with a cyclic p-Sylow sub-
group P of order pn . If f : Y → X is a three-point G-cover of P1 defined over K0,
then there exists a field extension K ′/K0 such that:

(i) The cover f has a model whose stable model is defined over K ′.

(ii) The n-th higher ramification group of K ′/K0 for the upper numbering vanishes.

In particular, if K is the field of moduli of f relative to K0, then K ⊆ K ′, so the
n-th higher ramification group of K/K0 for the upper numbering vanishes.

Proof. By Proposition 2.1, we know that there is a prime-to-p subgroup N such that
G/N is of the form Z/pn oZ/mG . Let f †

: Y †
→ X be the quotient G/N -cover.

Suppose first that f † is a three-point cover. Then we know from Propositions
7.6 and 7.13, along with Corollary 7.14, that there exists a model of f † whose
stable model can be defined over a field K stab such that the n-th higher ramification
groups for the upper numbering for K stab/K0 vanish. Let f †

: Y †
→ X† be

the stable reduction of f †. The branch points of Y → Y † are all ramification
points of f †, because f † is branched at three points. Thus, by definition, their
specializations do not coalesce on Y †. Since G K stab acts trivially on Y †, it permutes
the ramification points of f † trivially, and thus these points are defined over K stab.
By Proposition 6.2, the stable model f st of f can be defined over a tame extension
K ′/K stab. By Lemma 2.2, K ′ satisfies the properties of the proposition.

Now, suppose that f † is branched at fewer than three points. Since char(K0)= 0,
the cover f † must be a Z/pn-cover branched at two points, say (without loss of
generality) 0 and ∞. Then the branch points of Y → Y † include the points of
Y † lying over x = 1, as well as the ramification points of f †. We may assume
that f †

: Y †
→ X is given by the equation y pn

= x , which is defined over Kn

as a Z/pn-cover. Then, the points lying above x = 1 are also defined over Kn .
By Proposition 6.2, we can take K ′ to be a tame extension of Kn . The n-th
higher ramification group of Kn/K0 for the upper numbering vanishes [Serre 1979,
Corollary to IV, Proposition 18]. By Lemma 2.2, the n-th higher ramification group
of K ′/K0 for the upper numbering vanishes. �

Theorem 1.3 now follows from Propositions 7.1 and 7.15.

Remark 7.16. The proofs of Propositions 7.6 and 7.13, and Corollary 7.14, which
are the main ingredients in the proof of Theorem 1.3, depend on writing down
explicit extensions and calculating their higher ramification groups. It would be
interesting to find a method to place bounds on the conductor without writing
down explicit extensions. Such a method might be more easily generalizable to the
non-p-solvable case.
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Appendix A. Explicit determination of the stable model of a three-point
Z/ pn-cover, p > 2

Throughout this appendix, we assume the notations of Section 7B (in particular, that
f : Y→ X is given by y pn

= cxa(x−1)b for some c, and that d is as in Lemma 7.8).
So G ∼= Z/pn , and Qi is the unique subgroup of order pi for 0 ≤ i ≤ n. For a
three-point G-cover f defined over K0, the methods of Section 7B are sufficient
to bound the conductor of the field of moduli of f above p. But we can also
completely determine the structure of the stable model of f (Propositions A.3, A.4,
and A.5). Although this is essentially already done in [Coleman and McCallum
1988, Section 3], we include this appendix for three reasons. First, we compute
the stable reduction of the cover f , as opposed to the curve Y . Second, we have
fewer restrictions than Coleman in the case p = 3 (we allow not only covers with
full ramification above all three branch points, but also covers with ramification
index 3 above one of the branch points). Most importantly, our proof requires
significantly less computation and guesswork, and takes advantage of the vanishing
cycles formula as well as the effective different (Definition 5.9). Indeed, the majority
of the computation required is already encapsulated in Lemma 7.8.

While it would be a somewhat tedious calculation, our proof can be adapted to
the case of all cyclic three-point covers without using new techniques. However,
for simplicity, we assume throughout this appendix that either p > 3, or that p = 3
and either f is totally ramified above three points, or f is totally ramified above
two points and ramified of index 3 above the third.

Lemma A.1. The stable reduction X cannot have a pi -component intersecting a
pi+ j -component for j ≥ 2.

Proof. Let X c be such a pi -component. Then, a calculation with the Hurwitz
formula shows that the genus of any component Y c above X c is greater than 0. By
Lemma 4.3, X c is a component of the stable reduction of the cover f ′ : Y/Qi→ X .
It is étale, and thus a tail by Lemma 4.7. Let σc be its effective ramification invariant.
By [Obus 2012, Lemma 4.2], σc ≥ p > 2. But this contradicts the vanishing cycles
formula (4-1). �

Lemma A.2. Suppose W is a pi -component of X that does not contain the special-
ization of a branch point of f and does not intersect a p j -component with j > i .
Then W intersects at least three other components.

Proof. Let V be an irreducible component of Y lying above W . Let V ′ be the
smooth, proper curve with function field k(V )pi

. Then f st induces a natural map
α : V ′→W . By Proposition 4.4(i, ii), this map is tamely ramified and is branched
only at points where W intersects another component. If there are only two such
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points, then α is totally ramified, and V ′ (and thus V ) has genus zero. This violates
the three-point condition of the stable model. �

We now give the structure of the stable reduction when f has three totally
ramified points.

Proposition A.3. Suppose that f is totally ramified above all three branch points.
Then X is a chain, with one pn−i -component X i for each i for 0 ≤ i ≤ n (X0 is
the original component). For each i > 0, the component Xn−i corresponds to the
closed disk of radius p−(1/2)(i+1/(p−1)) centered at d = a/(a+ b).

Proof. We know from Lemma 7.8 and Corollary 7.10 that X has only one tail,
so it must be a chain. The original component contains the specializations of the
branch points, so it must be a pn-component. By Lemma A.1, there must be a
pn−i -component for each i , 0≤ i ≤ n. Also, by Lemma A.2, there cannot be two
intersecting components W ≺W ′ of X with the same size inertia groups. Since f
is monotonic by Proposition 4.5, there must be exactly one pi -component of X for
each 0≤ i ≤ n.

It remains to show that the disks are as claimed. For i = n, this follows from
Lemma 7.8. For i < n, consider the cover Y/Qn−i → X . The stable model of
this cover is a contraction of Y st/Qn−i → X st . By Lemma 7.8 (using i in place of
n), the stable reduction of Y/Qn−i → X has a new étale tail corresponding to a
closed disk centered at d with radius p−(1/2)(i+1/(p−1)). Thus X also contains such
a component. This is true for every i , proving the proposition. �

Things are more complicated when f has only two totally ramified points:

Proposition A.4. Suppose that f is totally ramified above 0 and∞, and ramified
of index ps above 1, for some 0< s < n. If p = 3, assume further that s = 1. Then
the augmented dual graph G′ of the stable reduction of X is as in Figure 1.

In particular, the original component X0 is a pn-component, as labeled in
Figure 1. For s+ 1≤ i < n, Xn−i is a pi -component corresponding to the disk of

X0 X1 X2 Xn−s−1

X∗

X†
1

Xn−s Xn−s+1 Xn−1 Xn
0

∞

Figure 1. The augmented dual graph G′ of the stable reduction of
a three-point Z/pn-cover with two totally ramified points, p 6= 2.



Fields of moduli of three-point G-covers with cyclic p-Sylow, I 871

radius p−(1/2)(n−i+1/(p−1)) centered at d. For 0 ≤ i ≤ s, Xn−i is a pi -component
corresponding to the disk of radius p−(1/2)(2n−s−i+1/(p−1)) centered at d. The
component X∗ is a ps+1-component corresponding to the disk of radius p−(n−s)

centered at d. The component X† is a ps-component corresponding to the disk of
radius p−(n−s+1/(p−1)) centered at 1. The vertices corresponding to 0, 1, and∞
are marked as 0, 1, and∞.

Proof. Recall that v(1− d) = v(b) = n− s so long as p ≥ 3. By Corollary 7.11
and Lemma 7.8, X contains exactly two tails: an inseparable tail X† containing
the specialization of x = 1, and an étale tail Xn containing the specialization of
d. There must be a component of X “separating” 1 and d, that is, corresponding
to the disk centered at d (equivalently, 1) of radius |1− d| = p−(n−s). Call this
component X∗. Then X looks like a chain from the original component X0 to X∗
followed by two chains: one going out to X† and one going out to Xn .

Let us first discuss the component X∗. Consider the cover f ′ : Y st/Qs→ X st .
For any edge e of G′ corresponding to a singular point on X , we will take (σ eff

e )′

to mean the effective invariant for the cover f ′. Now, the generic fiber of f ′ is a
cover branched at two points, so Y st/Qs has genus 0 fibers. By Lemma 2.4, any
tail Xb for the blow-down of the special fiber f ′ of f ′ to a stable curve must have
σb= 1. Lemma 5.7 shows that if s(e)≺ t (e), then (σ eff

e )′= 1. Since the deformation
data above X0 are multiplicative, the effective different (δeff)′ for f ′ above X0 is
n− s+ 1/(p− 1). So above X∗ it is

n− s+ 1
p−1

− (n− s)= 1
p−1

> 0

by Lemma 5.10 applied to each of the singular points between X0 and X∗ in
succession. This means that X∗ is an inseparable component for f ′, which means
that it is at least a ps+1-component for f .

Next, we examine the part of X between X0 and X∗. By Lemma A.1, there
must be a pi -component of X for each i such that s+ 1≤ i ≤ n. Then if we take
f ′i :Y

st/Qi→ X st , the effective different for f ′i above X0 is n−i+1/(p−1). As in
the previous paragraph, Lemma 5.10 shows that above a component corresponding
to the closed disk of radius p−(n−i+1/(p−1)) centered at d, the effective different
for f ′i will be 0. This means that this component is the innermost pi -component.
In Figure 1, we label this component Xn−i . In particular, the ps+1-component
Xn−s−1 corresponds to the closed disk of radius p−(n−s−1+1/(p−1)) around d . Note
that X∗ corresponds to the closed disk of radius p−(n−s) around d, and thus lies
outward from Xn−s−1. By monotonicity, X∗ is a ps+1-component. By Lemma A.2,
X∗ intersects Xn−s−1, and for s + 1 < i ≤ n, there is exactly one pi -component,
namely Xn−i . So the part of X between X0 and X∗ is as in Figure 1, and radii of
the corresponding disks are as in the proposition.
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Now, let us examine the part of X between X∗ and X†. We have seen that
X∗ is a ps+1-component, and X† is a ps-component by Proposition 4.6. So, by
Lemma A.2, this part of X consists only of these two components. Recall that if we
quotient out Y st by Qs , the effective different above X∗ is 1/(p− 1). Also, recall
that the effective invariant (σ eff

e )′ for s(e), t (e) corresponding to X∗, X† is 1. So
by Lemma 5.10, the épaisseur of this annulus is 1/(p− 1), and X† corresponds to
the disk of radius p−(n−s+1/(p−1)) centered at 1.

Lastly, let us examine the part of X between X∗ and the new tail Xn . We know
there must be a pi -component for each i , 0≤ i ≤ s+ 1. This component must be
unique, by Lemma A.2. These components are labeled Xn−i in Figure 1 (with the
exception of X∗, which corresponds to i = s+ 1). We calculate the radius of the
closed disk corresponding to each Xn−i . For i = s, the radius is p−(n−s+1/(p−1))

for the same reasons as for X†. For i = 0, we already know from Lemma 7.8
that the radius is p−(1/2)(2n−s+1/(p−1)). For 1 ≤ i ≤ s − 1, we consider the cover
Y/Qi→ X . The stable model of this cover is a contraction of Y st/Qi→ X st . Since
Y/Qi → X is still a three-point cover, we can use Lemma 7.8 (with n− i and s− i
in place of n and s) to obtain that the stable reduction of Y/Qi → X has a new tail
corresponding to a closed disk centered at d with radius p−(1/2)(2n−s−i+1/(p−1)).
This is the component Xn−i . �

Propositions A.3 and A.4 give us the entire structure of the stable reduction X .
The following proposition gives us the structure of Y .

Proposition A.5. Suppose we are in the situation of either Proposition A.3 or A.4.
If W is a pi -component of X which does not intersect a pi+1-component, then
f −1(W ) consists of pn−i connected components, each of which is a genus zero
radicial extension of W . If W borders a pi+1-component W ′, then f −1(W ) consists
of pn−i−1 connected components, each a radicial extension of an Artin–Schreier
cover of W , branched of order p at the point of intersection w of W and W ′. The
conductor of this cover at its unique ramification point is 2, unless we are in the
situation of Proposition A.4 and i ≥ s, in which case the conductor is 1.

The rest of the structure of Y is determined by the fact that Y is tree-like (that is,
the dual graph of its irreducible components is a tree).

Proof. That Y is tree-like follows from [Raynaud 1990, théorème 1]. This means
that any two irreducible components of Y can intersect at at most one point. Every-
thing else except the statement about the conductors follows from Proposition 4.4,
Lemma A.1, and the fact that if H is a cyclic p-group, then an H -Galois cover of
P1 branched at one point with inertia groups Z/p must, in fact, be a Z/p-cover.
We omit the details.

For the remainder of the proof, let W be a pi -component intersecting a pi+1-
component W ′.
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Suppose we are in the situation of Proposition A.4 and i ≥ s. Then Y/Qi → X
is branched at two points, so Y has genus zero. So any component of the special
fiber of Y st/Qi must also have genus zero. Since Qi acts trivially above W ,
every component above W must have genus zero. If such a component is a radicial
extension of an Artin–Schreier cover, then Lemma 2.4 shows that the Artin–Schreier
cover must have conductor 1.

Now, suppose that f has three totally ramified points or that we are in the
situation of Proposition A.4 and i < s. Then W is the unique pi -component of X
(Propositions A.3 and A.4), and is thus the unique étale tail of the stable reduction
of the three-point cover f ′ :Y/Qi→ X . By Lemma 7.8, the irreducible components
above W in the stable reduction of f ′ : Y/Qi → X are Artin–Schreier covers with
conductor 2. Since W is a pi -component, the irreducible components of Y above
W are radicial extensions of Artin–Schreier covers with conductor 2. �

Appendix B. Composition series of groups with cyclic p-Sylow subgroup

In this appendix, we prove Proposition B.2, which shows that a finite, non-p-
solvable group with cyclic p-Sylow subgroup has a unique composition factor with
order divisible by p. Before we prove Proposition B.2, we prove a lemma. Our
proof depends on the classification of finite simple groups.

Lemma B.1. Let S be a nonabelian finite simple group with a (nontrivial) cyclic p-
Sylow subgroup. Then any element x ∈Out(S) with order p lifts to an automorphism
x ∈ Aut(S) with order p.

Proof. All facts about finite simple groups used in this proof that are not clear from
the definitions or otherwise cited can be found in [Conway et al. 1985].

First, note that no nonabelian simple group has a cyclic 2-Sylow subgroup, so
we assume p 6= 2. Note also that no primes other than 2 divide the order of the
outer automorphism group of any alternating or sporadic group. So we may assume
that S is of Lie type.

We first show that p does not divide the order g of the graph automorphism
group or the order d of the diagonal automorphism group of S. The only simple
groups S of Lie type for which an odd prime divides g are those of the form O+8 (q).
In this case 3|g. But O+8 (q) contains (O+4 (q))

2 in block form, and the order of
O+4 (q) is (1/(4, q2

− 1))(q2(q2
− 1)2). This is divisible by 3, so O+8 (q) contains

the group Z/3×Z/3, and does not have a cyclic 3-Sylow subgroup.
The simple groups S of Lie type for which an odd prime p divides d are the

following:

(1) PSLn(q), for p|(n, q − 1).

(2) PSUn(q2), for p|(n, q + 1).
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(3) E6(q), for p = 3 and 3|(q − 1).

(4) 2 E6(q2), p = 3 and 3|(q + 1).

Now, PSLn(q) contains a split maximal torus ((Z/q)×)n−1. Since p|(q − 1), this
group contains (Z/p)n−1, which is not cyclic, as p|n and p 6= 2. So a p-Sylow sub-
group of PSLn(q) is not cyclic. The diagonal matrices in PSUn(q2) form the group
(Z/(q+1))n−1, which also contains a noncyclic p-group (as p> 2 and p|(n, q+1)).
The group E6(q) has a split maximal torus ((Z/q)×)6 [Humphreys 1975, Section
35], and thus contains a noncyclic 3-group. Lastly, 2 E6(q2) is constructed as a
subgroup of E6(q2). When q ≡ −1 (mod 3), the ratio |E6(q2)|/|2 E6(q2)| is not
divisible by 3, so a 3-Sylow subgroup of 2 E6(q2) is isomorphic to one of E6(q2),
which we already know is not cyclic.

So if there exists an element x ∈ Out(S) of order p, then p divides f , the order
of the group of field automorphisms. Also, since the group of field automorphisms
is cyclic and p does not divide d or g, a p-Sylow subgroup of Out(S) is cyclic.
This means that all elements of order p in Out(S) are conjugate in Out(S), up to a
power with exponent prime to p. At the same time, there exists an automorphism α

in Aut(S) which has order p and is not inner. Namely, we view S as the Fq -points
of some Z-scheme, where q = ℘ f for some prime ℘, and we act on these points
by the ( f/p)-th power of the Frobenius at ℘. Let α be the image of α in Out(S).
Since there exists c prime to p such that αc is conjugate to x in Out(S), there exists
some x conjugate to αc in Aut(S) such that x is the image of x in Out(S). Since
αc has order p, so does x . It is the automorphism we seek. �

The main theorem we wish to prove in this section states that a finite group
with a cyclic p-Sylow subgroup is either p-solvable or “as far from p-solvable as
possible.”

Proposition B.2. Let G be a finite group with a cyclic p-Sylow subgroup P of
order pn . Then at least one of the following two statements is true:

• G is p-solvable.

• G has a simple composition factor S with pn
| |S|.

Proof. We may replace G by G/N , where N is the maximal prime-to-p normal
subgroup of G. So assume that any nontrivial normal subgroup of G has order
divisible by p. Let S be a minimal normal subgroup of G. Then S is a direct
product of isomorphic simple groups [Aschbacher 2000, 8.2, 8.3]. Since G has
cyclic p-Sylow subgroup and no nontrivial normal subgroups of prime-to-p order,
we see that S is a simple group with p | |S|. If S∼=Z/p, then [Obus 2012, Corollary
2.4 (i)] shows that G is p-solvable. So assume, for a contradiction, that pn - |S| and
S � Z/p. Then G/S contains a subgroup of order p. Let H be the inverse image
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of this subgroup in G. It follows that H is an extension of the form

1→ S→ H → H/S ∼= Z/p→ 1. (B-1)

We claim that H cannot have a cyclic p-Sylow subgroup, thus obtaining the desired
contradiction.

To prove our claim, we show that H is in fact a semidirect product So H/S,
that is, we can lift H/S to a subgroup of H . Let x be a generator of H/S. We
need to find a lift x of x which has order p. It suffices to find x lifting x such that
conjugation by x p on S is the trivial isomorphism, as S is center-free. Since the
possible choices of x correspond to the possible automorphisms of S which lift the
outer automorphism φx given by x , we need only find an automorphism of S of
order p which lifts φx . Since φx has order p, our desired automorphism is provided
by Lemma B.1, finishing the proof. �

Remark B.3. As was mentioned in the introduction, there are limited examples of
simple groups with cyclic p-Sylow subgroups of order greater than p. For instance,
there are no sporadic groups or alternating groups. There are some of the form
PSLr (`), including all groups of the form PSL2(`) with vp(`

2
− 1) > 1 and p, `

odd. There is also the Suzuki group Sz(32). All other examples are too large to be
included in [Conway et al. 1985].

Appendix C. Computations for p= 2, 3

We collect some technical computations involving small primes that would have
disrupted the continuity of the main text.

For the following proposition, R is a mixed characteristic (0, 2) complete discrete
valuation ring with residue field k and fraction field K . For any scheme S over R,
we write Sk and SK for S×R k and S×R K , respectively.

Proposition C.1. Assume that R contains the 2n-th roots of unity, where n ≥ 2. Let
X = Spec A, where A = R{T }. Let f : YK → X K be a µ2n -torsor given by the
equation y2n

= s, where s ≡ 1+ c1T + c2T 2 (mod 2n+1), such that v(c2) = n, c2

is a square in R, and c2
1/c2 ≡ 2n+1i (mod 2n+2), where i is either square root of

−1. Then f : YK → X K splits into a union of 2n−2 disjoint µ4-torsors. Let Y be
the normalization of X in the total ring of fractions of YK . Then the map Yk→ Xk

is étale, and is birationally equivalent to the union of 2n−2 disjoint Z/4-covers of
P1

k , each branched at one point, with first upper jump equal to 1.

Proof. Using the binomial theorem, we see that 2n−2√
s exists in A and is congruent

to 1+b1T +b2T 2 (mod 8), with b1 = c1/2n−2 and b2 = c2/2n−2. Then v(b2)= 2,
b2 is a square in R, and b2

1/b2 ≡ 8i (mod 16). Thus, we reduce to the case n = 2.
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Let Z K ∼= YK /µ2. The natural maps r : Z K → X K and q : YK → Z K are given
by the equations

z2
= g, y2

= z,

respectively. Let us write g′ = g(1+ T
√
−b2)

2 and z′ = z(1+ T
√
−b2). Then r is

also given by the equation
(z′)2 = g′.

Now, g′ = 1 + 2T
√
−b2 + ε, where ε is a power series whose coefficients all

have valuation greater than 2 (note that, by assumption, v(b1) =
5
2 ). By [Henrio

2000a, chapitre 5, proposition 1.6] and Lemma 2.5, the torsor r has (nontrivial)
étale reduction Zk → Xk , which is birationally equivalent to an Artin–Schreier
cover with conductor 1. By Lemma 2.4, Zk has genus zero. Let U be such that
1− 2U = z′. Then the cover Zk→ Xk is given by the equation

(u)2− u = T
√
(−b2/4),

where an overline represents reduction modulo π . Then u is a parameter for Zk ,
and the normalization of A in Z K is R{U }.

It remains to show that q has étale reduction. The cover q is given by the equation

y2
= z = z′(1+ T

√
−b2)

−1
= (1− 2U )(1+ T

√
−b2)

−1. (C-1)

By [Henrio 2000a, chapitre 5, proposition 1.6], it will suffice to show that, up
to multiplication by a square in R{U }, the right-hand side of (C-1) is congruent
to 1 (mod 4) in R{U }. Equivalently, we must show that the right-hand side is
congruent modulo 4 to a square in R{U }. Modulo 4, we can rewrite the right-hand
side as

1− 2U − T
√
−b2. (C-2)

We also have that

(1−2U )2 = z2(1+T
√
−b2)

2
= g(1+T

√
−b2)

2
≡ 1+T (b1+2

√
−b2) (mod 8).

Rearranging, this yields that

−4U+4U 2

(b1/
√
−b2)+2

≡ T
√
−b2 (mod 4).

Since b2
1/b2 ≡ 8i (mod 16), it is clear that b2

1/(−b2)≡ 8i (mod 16). One can then
show that b1/

√
−b2 ≡ 2+2i (mod 4). We obtain T

√
−b2 ≡ 2iU −2iU 2 (mod 4).

So (C-2) is congruent to 1− (2+ 2i)U + 2iU 2 modulo 4. This is (1− (1+ i)U )2,
so we are done. �

Lemma C.2. Lemma 7.8 holds when p = 2, and also when p = 3 and n > s = 1.
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Proof. Use the notation of Lemma 7.8, and let R/W (k) be a large enough finite
extension. As in the proof of Lemma 7.8, we must show that if D is the formal disk
with ring of functions R{t}, then the normalization E of D in the fraction field of
R{t}[y]/(y pn

−g(d+et)) has special fiber with irreducible components of positive
genus. Here g(d + et)=

∑
∞

`=0 c`t`, and

c` = e`
∑̀
j=0

( a
`− j

)(b
j

)
d j−`(d − 1)− j . (C-3)

In (C-3), v(a)= 0, v(b)= n− s, v(d)= 0, v(d − 1)= n− s, and

v(e)= 1
2

(
2n− s+ 1

p−1

)
.

First, assume that p = 3 and n > s = 1. Then d = a
a+b +

3
√

32n+1(b
3)

a+b . Using (C-3),
one calculates c0 = 1,

c1 = e
(
(a+b)d−a

d(d−1)

)
= e

( 3
√

32n+1
(b

3

)
d(d−1)

)
,

and v(c2)= n+ 1
2 . By (7-2), we have v(c`)≥ n+ 1

2 except when `= 3. Furthermore,
each term in (C-3) for `= 3, other than j = 3, has valuation greater than n+ 1

2 . So

c3 ≡ e3
(b

3

)
(d − 1)−3 (mod 3n+ 1

2+ε),

for some ε > 0. Thus v(c1) = n+ 5
12 > n and v(c3) = n+ 1

4 > n. Note also that
v(c`) > n+ 1

2 for ` ≥ 4. Now, c3
1/3

2n+1
= e3

(b
3

)
(d − 1)−3d−3. Since v(d − 1) =

n− s > 1
4 , and v(e3

(b
3

)
(d − 1)−3)= n+ 1

4 , we obtain that

c3
1

32n+1 ≡ e3
(b

3

)
(d − 1)−3

≡ c3 (mod 3n+ 1
2+ε)

for some ε > 0. We are now in the situation (ii) of Lemma 3.1 (with h = 2), and
we conclude using Lemma 2.4.

Next, assume p = 2. First, note that n > s as there are no three-point Z/2n-
covers of P1 that are totally ramified above all three branch points. Consider (C-3).
Clearly c0 = 1. We claim that v(c2)= n, that c2

1/c2 ≡ 2n+1i (mod 2n+2), and that
v(c`)≥ n+1 for `≥ 3. We may assume that K contains

√
c2. Given the claim, we

can apply Proposition C.1 to see that the special fiber Ek of E is a disjoint union
of 2n−2 étale Z/4-covers of the special fiber Dk of D, each of which extends to
a cover φ : E ′k → P1

k branched at one point with first upper jump equal to 1. By
[Pries 2006, Lemma 19], such a cover has conductor at least 2. A Hurwitz formula
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calculation shows that the each component of E ′k has positive genus, proving the
lemma.

Now we prove the claim. The term in (C-3) for c2 with lowest valuation corre-
sponds to j = 2, and this term has valuation 2v(e)+ v(b)− 1− 2v(d − 1), which
is equal to n. For c`, `≥ 3, we have v(c`)= n+ 1+ ((`− 2)/2)(s+ 1)− v(`) by
(7-2). Since s ≥ 1, we obtain v(c`)≥ n+ 1 for `≥ 3.

Lastly, we must show that c2
1/c2 ≡ 2n+1i (mod 2n+2). Choose

d = a
a+b

+

√
2nbi

(a+b)2

as in Lemma 7.8. Using (C-3), we compute

c2
1

c2
=

(a(d−1)+bd)2(a
2

)
(d−1)2+abd(d−1)+

(b
2

)
d2
.

Then the congruence
c2

1
c2
≡ 2n+1i (mod 2n+2) is equivalent to

2((a+b)d−a)2

−bd2 ≡ 2n+1i (mod 2n+2)

(as the other terms in the denominator become negligible). Plugging in d to

2((a+b)d−a)2

−bd2 ,

we obtain

2n+1bi
−b(a2+(2a/(a+b))

√
2nbi+2nbi/(a+b)2)

≡ 2n+1i (mod 2n+2).

This is equivalent to −1/a2
≡ 1 (mod 2), as the terms in the denominator, other

than −ba2, are negligible. This is certainly true, as a is odd. This completes the
proof of the claim, and thus the lemma. �

Lemma C.3. Let p = 3, let n > s be positive integers, and let a and b be integers
with v3(a)= 0 and v3(b)= n− s. Write K0 = Frac(W (k)) and, for all i > 0, write
Ki = K0(ζ3i ), where ζ3i is a primitive 3i -th root of unity. If s = 1, then the n-th
higher ramification groups for the upper numbering of

Kn

(
3
√

32n+1
(b

3

)
, 3n−1

√
a

a+b

)/
K0

vanish. If s > 1, let

d ′ = a
a+b

+

3
√

32(n−s+1)+1
(b

3

)
a+b

.
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Then the n-th higher ramification groups for the upper numbering of

Kn

(
d ′, 3n−s

√
a

a+b
,

3n−s+1

√
(d ′)a(d ′− 1)b

aabb(a+ b)−(a+b)

)/
K0

vanish.

Proof. Assume s = 1. Then 32n+1
(b

3

)
has valuation 3n− 1. Since n ≥ 2, the n-th

higher ramification groups for the upper numbering of

L = K1

(
3
√

32n+1
(b

3

))/
K0

vanish by [Viviani 2004, Theorem 6.5]. Also, the n-th higher ramification groups
for the upper numbering of

L = Kn

(
3n−1
√

a
a+b

)/
K0

vanish by [Viviani 2004, Theorem 5.8]. By Lemma 2.3,

Kn

(
3
√

32n+1
(b

3

)
, 3n−1

√
a

a+b

)/
K0

has trivial n-th higher ramification groups for the upper numbering.
Now, assume s > 1. We use case (ii) of Corollary 7.14 and Lemma 2.3 to reduce

to showing that the conductor of K/K0 is less than n, where

K := Kn

(
d ′, 3n−s+1

√
(d ′)a(d ′−1)b

aabb(a+b)−(a+b)

)/
K0.

Since v(b) = n − s and v(a) = 0, one calculates that d ′′ := d ′/(a/(a + b)) can
be written as 1+ r , where v(r) = n− s + 2

3 . The same is true for (d ′′)a . By the
binomial expansion, (d ′′)a is a 3n−s-th power in Kn(d ′). Thus so is (d ′′)a((d ′ −
1)b/bb(a+b)−b). So we can write K =Kn(d ′,

3√d ′′′), for some d ′′′∈Kn(d ′). Using
Lemma 2.3 again, we need only show that the conductor h of K1(d ′,

3√d ′′′)/K0 is
less than n. Note that n ≥ 3.

Let L = K1(d ′) and M = K1(d ′,
3√d ′′′ ). By [Obus 2011a, Lemma 3.2], the

conductor of L/K1 is 3. Since the lower numbering is invariant under subgroups,
the greatest lower jump for the higher ramification filtration of L/K0 is 3. Thus the
conductor of L/K0 is 3

2 . By [Obus 2011a, Lemma 3.2], the conductor of M/L is
≤ 9. Applying [Obus 2011a, Lemma 2.1] to K0 ⊆ L ⊆ M yields that h is either 3

2
or satisfies h ≤ 3

2 +
1
6(9− 3) < 3≤ n. �

For the rest of the appendix, K0 is the fraction field of W (k), where k is alge-
braically closed of characteristic 2. We set Kr := K0(ζ2r ).
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We state an easy lemma from elementary number theory without proof:

Lemma C.4. Choose d ∈Q, and a square root i of−1 in K2. Let v be the standard
2-adic valuation. If v(d) is even, then di is a square in K3, but not in K2. Also, d is
a square in K2. If v(d) is odd, then di is a square in K2, and d is a square in K3.

We turn to the field extension in Proposition 7.13(v). Recall that n ≥ 2 is a
positive integer, and s is an integer satisfying 0< s < n. Also, a is an odd integer
and b is an integer exactly divisible by 2n−s . For each 0≤ j < s, set

d j =
a

a+b
+

√
2n− j bi
(a+b)2

,

where i2
=−1 and the square root symbol represents either square root. Lastly, as

in Proposition 7.13 (iii), set

K := Kn
( 2n−1√

d0,
2s−1√

d0− 1, 2n− j√
d j ,

2s− j√
d j − 1

)
1≤ j<s .

For the purpose of the proof below, we let v` be the valuation on K` normalized
so that a uniformizer has valuation 1 (in contrast to the convention for the rest of
this paper).

Proposition C.5. Let L be the Galois closure of K over K0. Then the conductor
hL/K0 is less than n.

Proof. Note that hKn/K0 = n − 1. Thus, by Lemma 2.3, we need only consider
the extensions Kn−1(

2n−1√
d0), Ks−1(

2s−1√
d0− 1), Kn− j (

2n− j√d j ) (1≤ j < s), and
Ks− j (

2s− j√d j − 1 ) (1≤ j < s) of K0, and we consider them separately. Write `( j)
for the smallest ` such that d j ∈ K`. By Lemma C.4, we have that `( j) = 2 for
s+ j odd and `( j)= 3 for s+ j even. By [Obus 2011a, Corollary 4.4], we need
only consider those fields Kc(

2c√d j ) and Kc(
2c√d j − 1 ) such that c + `( j) > n.

Since `( j)≤ 3 for all j , we are reduced to bounding the conductors of the (Galois
closures of the) following fields over K0:

Kn−1(
2n−1√

d j ) j∈{0,1}, Kn−2(
2n−2√

d2 ), Kn−2(
2n−2√

d j − 1) j∈{0,1}.

For any of the above field extensions involving d j , we may assume that s > j .

• Let M be the Galois closure of Kn−1(
2n−1√d j ) over K0, where j ∈ {0, 1}. First,

assume `( j)= 2. Then v2(d j −1)= v2(b)= 2(n− s) > 1. We conclude using
[Obus 2011a, Corollary 4.4] (with c = n − 1, ` = 2, and tα = d j − 1) that
hM/K0 < n.

Now, assume `( j)= 3. Suppose d j ∈ (K×3 )
2. We know that v3(d j − 1)=

4(n− s)≥ 4. By [Obus 2011a, Lemma 3.1], if (d ′j )
2
= d j , then v3(d ′j −1) > 1.

Then M is the Galois closure of Kn−1(
2n−2√d j

′ ) over K0. We conclude using
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[Obus 2011a, Corollary 4.4] (with c = n − 2, ` = 3, and tα = d ′j − 1) that
hM/K0 < n.

Lastly, suppose d j /∈ (K×3 )
2. Write d j = α jβ

2, where β2
= a/(a+ b), and

β ∈ K2 (Lemma C.4). Write α j = 1+ t j . One can find γ j ∈ K3 such that
α j = α

′

jγ
2
j , where α′j = 1+ t ′j and v3(t ′j ) is odd; this is the main content of

[Obus 2011a, Lemma 3.2(i)]. Then d j = α
′

j (βγ j )
2. By [Obus 2011a, Remark

3.4], we have

v3(t ′j )≥ v3(t j )= 4
(

n− s+ j
2

)
> 5,

the last inequality holding because n > s > j . This means that

v3(γ
2
j − 1)= v3

(α j−α
′

j

α′j

)
≥ v3(t j ) > 5.

Also, v3(β
2
− 1) = 4(n − s) ≥ 4. So v3((βγ j )

2
− 1) ≥ 4. By [Obus 2011a,

Lemma 3.1], we obtain v3(βγ j − 1) > 1. We conclude using [Obus 2011a,
Corollary 4.3] (with c= n−1, `= 3, tα′ = t ′j , and tβ =βγ j−1) that hM/K0 < n.

• Let M be the Galois closure of Kn−2(
2n−2√

d2 ) over K0. If `(2) = 2, then
hM/K0 < n by [Obus 2011a, Corollary 4.4] (with c = n − 2 and ` = 2). So
assume `(2)= 3. Since v3(d2− 1)= 4(n− s) > 1, we obtain that hM/K0 < n
by [Obus 2011a, Corollary 4.4] (with c = n− 2, `= 3, and tα = d2− 1).

• Let M be the Galois closure of Kn−2(
2n−2√d j − 1) over K0, where j ∈ {0, 1}.

As in the previous case, we may assume that `(2)= 3. By Lemma C.4, there
exists γ ∈ K3 such that γ 2

= −b/(a+ b). Write d j − 1 = α′jγ
2. Then M is

contained in the compositum of the Galois closures M ′ of Kn−2
(

2n−2
√
α′j
)

and

M ′′ of Kn−2( 2n−3√
γ ) over K0.

Now, v3(α
′

j − 1) = 4(n − (s + j/2)− (n − s)) = 4((s − j/2)) > 1. By
[Obus 2011a, Corollary 4.4] (with c= n−2, `= 3, and tα = α′j −1), we have
hM ′/K0 < n. Also by [Obus 2011a, Corollary 4.4] (with c = n− 3, `= 3, and
tα = γ − 1), we have hM ′′/K0 < n. By Lemma 2.3, we have hM/K0 < n. �
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Toroidal compactifications of PEL-type
Kuga families

Kai-Wen Lan

We explain how compactifications of Kuga families of abelian varieties over
PEL-type Shimura varieties, including for example all those products of universal
abelian schemes, can be constructed (up to good isogenies not affecting the
relative cohomology) by a uniform method. We also calculate the relative
cohomology and explain its various properties crucial for applications to the
cohomology of automorphic bundles.
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Introduction

To study the relations between automorphic forms and Galois representations, it
is desirable to understand the cohomology of Shimura varieties with coefficients
in algebraic representations of the associated reductive groups (i.e., the so-called
automorphic bundles).

In the case of PEL-type Shimura varieties, the associated reductive groups
are (up to center) twists of products of symplectic, orthogonal, or general linear
groups. According to Weyl’s construction [1997] (see also [Fulton and Harris 1991;
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Goodman and Wallach 2009]), all algebraic representations of a classical group
can be realized as summands in the tensor powers of the standard representation of
the group. In geometry, one is led to consider the cohomology of fiber products
of the universal families of abelian varieties over the PEL-type Shimura varieties.
Such fiber products are special cases of what we will call PEL-type Kuga families,
or simply Kuga families. When the PEL-type Shimura variety in question is not
compact, the total spaces of such Kuga families are not compact either.

To study cohomology properly, one is often led to the question of the existence
of projective smooth compactifications with good properties, such as allowing the
Hecke operators to act on their cohomology spaces (but not necessarily the geometric
spaces). In what follows, let us simply call such compactifications good compactifi-
cations. In characteristic zero, such questions can often be handled by the embedded
resolution of singularities due to Hironaka [1964a; 1964b]. However, more explicit
theories exist in our context. The work of Mumford and his collaborators in [Ash
et al. 1975] provides a systematic collection of good compactifications of Shimura
varieties with explicit descriptions of local structures, while the work of Pink [1990]
provides a systematic construction of good compactifications of the Kuga families as
well. These compactifications are called toroidal compactifications. Their methods
are analytic in nature and cannot be truly generalized in mixed characteristics.

Based on the theory of degeneration of polarized abelian varieties initiated by
Mumford [1972], Faltings and Chai [Faltings 1985; Chai 1985; Faltings and Chai
1990] constructed good compactifications over the integers for Siegel moduli spaces
defined by the moduli space of principally polarized abelian varieties. In [Faltings
and Chai 1990], they also constructed good compactifications of fiber products
of the universal families by gluing weak relatively complete models along the
boundary. We ought to point out that, although most works on compactifications
spend most of their pages on the construction of boundary charts, it is only the
gluing argument that validates the whole construction. (This is not necessarily
the case for works using the moduli-theoretic approach, such as [Alexeev and
Nakamura 1999; Alexeev 2002; Olsson 2008]. However, the questions there are
not less challenging: What can one say about the boundary structures? Are they
equally useful for applications to cohomology?) Thus, even if the construction
of toroidal compactifications of Siegel moduli spaces in [Faltings and Chai 1990,
Chapter IV] has been generalized for all PEL-type Shimura varieties in [Lan 2008],
the gluing of weak relatively complete models has to be carried out separately
when one works along the original idea of [Faltings and Chai 1990, Chapter VI].
(This is the case in for example [Rozensztajn 2006], in which the assumption
that the boundary divisors are regular, i.e., have no crossings, unfortunately rules
out all cases where choices of cone decompositions are needed for the Shimura
varieties.)
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Note that gluing is not just about techniques of descent. Any theory of descent
requires an input of some descent data. Since a naive generalization of the con-
structions in [Faltings and Chai 1990, Chapter IV] introduces unwanted boundary
components, which have to be studied and removed carefully by imposing liftability
and pairing conditions as in [Lan 2008], we have reason to believe that a naive
generalization of the construction in [Faltings and Chai 1990, Chapter VI, §1]
requires delicate modifications, without which even the strongest descent theory
cannot be applied.

The aim of this article is to avoid any further argument of gluing, and to treat all
PEL-type cases on an equal footing. We shall reduce the construction of toroidal
compactifications of PEL-type Kuga families to the construction of toroidal com-
pactifications of Shimura varieties in [Lan 2008], by systematically realizing the
Kuga families as locally closed boundary strata in the toroidal compactifications
of (larger) PEL-type Shimura varieties. Partly inspired by Kato’s theory of log
abelian schemes, we can show that, up to refinements of cone decompositions, the
structural morphisms from the Kuga families to the Shimura varieties extend (up to
good isogenies not affecting the relative cohomology) to log smooth morphisms
with nice properties between the toroidal compactifications. This approach differs
fundamentally from the one in [Faltings and Chai 1990, Chapter VI]. As Chai
pointed out, although no technique can be truly shared between analytic and
algebraic constructions, our idea is close in spirit to that of [Pink 1990]. (See
Remark 3.10 below.)

Since we replace Faltings and Chai’s construction with a different one, we need
to explain that our simpler (but perhaps cruder) construction is not less useful.
Thus our second task is to calculate the relative (log) de Rham cohomology of the
compactified families. We show that such relative cohomology not only enjoys
the same expected properties as in [Faltings and Chai 1990, Chapter VI, §1],
but also admits natural Hecke actions defined by parabolic subgroups of larger
reductive algebraic groups, because our construction uses toroidal boundaries of
larger Shimura varieties. This exhibits a large class of endomorphisms on our
cohomology spaces, including ones needed in the geometric realization of Weyl’s
construction (i.e., the realization of automorphic bundles as summands in the relative
cohomology of Kuga families).

The outline of this article is as follows. In Section 1, we review some of the
results we need from [Lan 2008]. We consider the investment of this summary
worthwhile because, although we do not need to carry out another gluing argument,
we do need the full strength of the long work [Lan 2008]. In Section 2, we define
what we mean by PEL-type Kuga families, state our main theorem, and give
an outline of the proof. In Section 3, we carry out the construction of toroidal
compactifications for these Kuga families that admit log smooth morphisms to the
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Shimura varieties in question. (This section serves roughly the same purpose as
[Faltings and Chai 1990, Chapter VI, §1].) In Sections 4 and 5, we show that these
toroidal compactifications are indeed good by justifying what we mentioned in
the previous paragraph. (These two sections serve roughly the same purpose as
[Faltings and Chai 1990, Chapter VI, §2].) We would like to mention that the use
of nerve spectral sequences in Section 4 imitates immediate analogues in [Harris
and Zucker 1994; 2001] (based on techniques that can be traced back to [Kempf
et al. 1973, Chapter I, §3]), while the use of log extensions of polarizations is
inspired by Kato’s idea of (relative) log Picard groups [Illusie 1994, 3.3]. (See
Remark 5.7.) The article ends with Section 6, in which we explain how to define
canonical extensions of the so-called principal bundles.

Although used as the main motivation for our construction, applications to
cohomology of automorphic bundles will be deferred to some forthcoming papers.
There the readers will find the construction of proper smooth integral models useful
for studying cohomology with not only rational coefficients, but also integral and
torsion coefficients.

We shall follow [Lan 2008, Notations and Conventions] unless otherwise spec-
ified. (Although our references to [Lan 2008] use the numbering in the original
version, the reader is advised to consult the errata and revision (available online)
for corrections of typos and minor mistakes, and for improved exposition.)

1. PEL-type moduli problems and their compactifications

In this section, we summarize definitions and main results in [Lan 2008] that will
be needed in this article. We will emphasize definitions such as the ones involved
in the description of boundary structures, but will have to be less comprehensive on
some fundamental definitions including the ones of level structures.

1A. Linear algebraic data. Let O be an order in a finite-dimensional semisimple
algebra over Q with a positive involution ?. Here an involution means an antiauto-
morphism of order two, and positivity of ? means TrO⊗ZR/R(xx?) > 0 for any x 6= 0
in O⊗Z R. We assume that O is mapped to itself under ?. We shall denote the
center of O⊗Z Q by F .

Let Z(1) := ker(exp : C→ C×), which is a free Z-module of rank one. Any
choice

√
−1 of a square-root of −1 in C determines an isomorphism (2π

√
−1)−1

:

Z(1)−→∼ Z, but there is no canonical isomorphism between Z(1) and Z. For any
commutative Z-algebra R, we denote by R(1) the module R⊗Z Z(1).

By a PEL-type O-lattice (L , 〈 · , · 〉, h) (as in [Lan 2008, Definition 1.2.1.3]), we
mean the following data:

(1) An O-lattice, namely a Z-lattice L with the structure of an O-module.
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(2) An alternating pairing 〈 · , · 〉 : L × L → Z(1) satisfying 〈bx, y〉 = 〈x, b?y〉
for any x, y ∈ L and b ∈ O, together with an R-algebra homomorphism
h : C→ EndO⊗ZR(L ⊗Z R) satisfying:
(a) For any z ∈C and x, y ∈ L⊗Z R, we have 〈h(z)x, y〉 = 〈x, h(zc)y〉, where

C→ C : z 7→ zc is the complex conjugation.
(b) For any choice of

√
−1 in C, the R-bilinear pairing

(2π
√
−1)−1

〈 · , h(
√
−1) · 〉 : (L ⊗Z R)× (L ⊗Z R)→ R

is symmetric and positive definite. (This last condition forces 〈 · , · 〉 to be
nondegenerate.)

The tuple (O,? , L , 〈 · , · 〉, h) (over Z) then gives us an integral version of the tuple
(B,? , V, 〈 · , · 〉, h) (over Q) in [Kottwitz 1992] and related works. (We favor lattices
over Z rather than their analogues over Q (or over Z(p) for some p) because we
will work with isomorphism classes rather than isogeny classes; cf. Remark 1.7.)

Definition 1.1 [Lan 2008, Definition 1.2.1.5]. Let a PEL-typeO-lattice (L , 〈 · ,· 〉,h)
be given as above. For any Z-algebra R, set

G(R) :=
{
(g, r) ∈ GLO⊗Z R(L ⊗Z R)×Gm(R) : 〈gx, gy〉 = r〈x, y〉,∀x, y ∈ L

}
.

In other words, G(R) is the group of symplectic automorphisms of L⊗Z R (respect-
ing the pairing 〈 · , · 〉 up to a scalar multiple; cf. [Lan 2008, Definition 1.1.4.11]).
For any Z-algebra homomorphism R→ R′, we have by definition a natural homo-
morphism G(R)→ G(R′), making G a group functor (or in fact an affine group
scheme) over Z.

The projection to the second factor (g, r) 7→ r defines a morphism ν : G→Gm,
which we call the similitude character. For simplicity, we shall often denote
elements (g, r) in G by simply g, and denote by ν(g) the value of r when we need
it. (If L 6= {0}, then the value of r is uniquely determined by g. Hence there is
little that we lose when suppressing r from the notation. However, this is indeed an
abuse of notation when L = {0}, in which case we have G=Gm.)

Let � be any set of rational primes. (It can be either an empty set, a finite
set, or an infinite set.) We denote by Z(�) the unique localization of Z (at the
multiplicative subset of Z generated by nonzero integers prime to �) having � as
its set of height one primes, and denote by Ẑ� (resp. A∞,�, resp. A�) the integral
adeles (resp. finite adeles, resp. adeles) away from �. Then we have definitions
for G(Q), G(A∞,�), G(A∞), G(R), G(A�), G(A), G(Z), G(Z/nZ), G(Ẑ�), G(Ẑ),
U�(n) := ker(G(Ẑ�) → G(Ẑ�/nẐ�) = G(Z/nZ)) for any n prime to �, and
U(n) := ker(G(Ẑ)→ G(Ẑ/nẐ)= G(Z/nZ)).

Following Pink [1990, 0.6], we define the neatness of open compact subgroupsH
of G(Ẑ�) as follows: View G(Ẑ�) as a subgroup of GLO⊗ZẐ�(L⊗Z Ẑ�)×Gm(Ẑ

�).
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(Or we may use any faithful linear algebraic representation of G.) Then, for each
rational prime p > 0 not in �, it makes sense to talk about eigenvalues of elements
gp in G(Zp), which are elements in Q̄×p . Let g = (gp) ∈ G(Ẑ�), with p running
through rational primes such that � - p. For each such p, let 0gp be the subgroup
of Q̄×p generated by eigenvalues of gp. For any embedding Q̄ ↪→ Q̄p, consider the
subgroup (Q̄× ∩0gp)tors of torsion elements of Q̄× ∩0gp , which is independent of
the choice of the embedding Q̄ ↪→ Q̄p.

Definition 1.2 [Lan 2008, Definition 1.4.1.8]. We say that g = (gp) is neat if⋂
p 6∈�(Q̄

×
∩0gp)tors = {1}. We say that an open compact subgroup H of G(Ẑ�) is

neat if all its elements are neat.

Remark 1.3. The usual Serre’s lemma that no nontrivial root of unity can be
congruent to 1 modulo n if n ≥ 3 shows that H is neat if H⊂ U�(n) for some n ≥ 3
such that � - n.

Remark 1.4. Definition 1.2 makes no reference to the group G(Q) of rational
elements. For the related notion of neatness for arithmetic groups, see [Borel 1969,
17.1].

1B. Definition of moduli problems. Let us fix a PEL-type O-lattice (L , 〈 · , · 〉, h)
as in the previous section. Let F0 be the reflex field of (L ⊗Z R, 〈 · , · 〉, h) defined
as in [Kottwitz 1992, page 389] or [Lan 2008, Definition 1.2.5.4]. We shall denote
the ring of integers in F0 by OF0 , and use similar notations for other number fields.
(This is in conflict with the notation of the order O, but the precise interpretation
will be clear from the context.)

Let Disc = DiscO/Z be the discriminant of O over Z (as in [Lan 2008, Defini-
tion 1.1.1.6]; see also [Lan 2008, Proposition 1.1.1.12]). Closely related to Disc is
the invariant Ibad for O defined in [Lan 2008, Definition 1.2.1.17], which is either 2
or 1, depending on whether type D factors are involved. Let L#

:= {x ∈ L ⊗Z Q :

〈x, y〉 ∈Z(1),∀y ∈ L} denote the dual lattice of L with respect to the pairing 〈 · , · 〉.

Definition 1.5. We say that a prime number p is bad if p| Ibad Disc[L#
: L]. We

say a prime number p is good if it is not bad. We say that � is a set of good primes
if it does not contain any bad primes.

Let us fix a choice of a set � of good primes. By abuse of notation, let OF0,(�) be
the localization of OF0 at the multiplicative set generated by rational prime numbers
not in �. Let S0 := Spec(OF0,(�)) and let (Sch /S0) be the category of schemes
over S0. For any open compact subgroup H of G(Ẑ�), there is an associated moduli
problem MH defined as follows:

Definition 1.6 [Lan 2008, Definition 1.4.1.4]. The moduli problem MH is de-
fined as the category fibered in groupoids over (Sch /S0) whose fiber over each
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S is the groupoid MH(S) described as follows: The objects of MH(S) are tuples
(G, λ, i, αH), where:

(1) G is an abelian scheme over S.

(2) λ : G→ G∨ is a polarization of degree prime to �.

(3) i : O → EndS(G) defines an O-structure of (G, λ) (satisfying the Rosati
condition i(b)∨ ◦ λ= λ ◦ i(b?) for any b ∈O).

(4) LieG/S with its O⊗Z Z(�)-module structure given naturally by i satisfies the
determinantal condition in [Lan 2008, Definition 1.3.4.2] given by

(L ⊗Z R, 〈 · , · 〉, h).

(5) αH is an (integral) level-H structure of (G, λ, i) of type (L ⊗Z Ẑ�, 〈 · , · 〉) as
in [Lan 2008, Definition 1.3.7.8].

The isomorphisms (G, λ, i, αH)∼isom. (G ′, λ′, i ′, α ′H) of MH(S) are given by (naive)
isomorphisms f : G −→∼ G ′ such that λ= f ∨ ◦ λ′ ◦ f , f ◦ i(b)= i ′(b) ◦ f for all
b ∈O, and f ◦αH = α

′
H (symbolically).

Remark 1.7. The definition here using isomorphism classes is not as canonical
as the ones proposed by Grothendieck and Deligne using quasiisogeny classes (as
in [Kottwitz 1992]). For the relation between their definitions and ours, see [Lan
2008, §1.4]. We introduce the definition (using isomorphisms) here mainly because
this is the definition most concrete for the study of compactifications.

Theorem 1.8 [Lan 2008, Theorem 1.4.1.12 and Corollary 7.2.3.10]. The moduli
problem MH is a smooth separated algebraic stack of finite type over S0. It is
representable by a quasiprojective scheme if the objects it parametrizes have no
nontrivial automorphism, which is in particular the case when H is neat (as in
Definition 1.2).

We shall insist from now on the following technical condition on PEL-type
O-lattices:

Condition 1.9 [Lan 2008, Condition 1.4.3.9]. The PEL-typeO-lattice (L , 〈 · , · 〉, h)
is chosen such that the action of O on L extends to an action of some maximal order
O′ in B containing O.

1C. Cusp labels. Although there is no rational boundary components in the theory
of arithmetic compactifications (in mixed characteristics), we have developed in
[Lan 2008, §5.4] the notion of cusp labels that serves a similar purpose. (While
G(Q) plays an important role in the analytic theory over C, it does not play any
obvious role in the algebraic theory over OF0,(�). This is partly due to the so-called
failure of Hasse’s principle; see for example [Kottwitz 1992, §8] and [Lan 2008,
Remark 1.4.3.11].)
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Unlike in the analytic theory over C, where boundary components are naturally
parametrized by group-theoretic objects, the only algebraic machinery we have is
the theory of semiabelian degenerations of abelian varieties with PEL structures.
The cusp labels are (by their very design) part of the parameters (which we call the
degeneration data) for such (semiabelian) degenerations.

Definition 1.10 [Lan 2008, §1.2.6]. Let R be any noetherian Z-algebra. Suppose
we have an increasing filtration F = {F−i } on L ⊗Z R, indexed by nonpositive
integers −i , such that F0 = L ⊗Z R.

(1) We say that F is integrable if, for any i , GrF
−i := F−i/F−i−1 is integrable in the

sense that GrF
−i
∼= Mi ⊗Z R (as R-modules) for some O-lattice Mi .

(2) We say that F is split if there exists (noncanonically) some isomorphism
GrF
:= ⊕i GrF

−i −→
∼ F0 of R-modules.

(3) We say that F is admissible if it is both integrable and split.

(4) Let m be an integer. We say that F is m-symplectic with respect to (L , 〈 · , · 〉)
if, for any i , F−m+i and F−i are annihilators of each other under the pairing
〈 · , · 〉 on F0.

We shall only work with m = 3, and we shall suppress m in what follows. The
fact that Ẑ� involves bad primes (cf. Definition 1.5) is the main reason that we
may have to allow nonprojective filtrations.

Definition 1.11 [Lan 2008, Definition 5.2.7.1]. We say that a symplectic admissible
filtration Z on L ⊗Z Ẑ� is fully symplectic with respect to (L , 〈 · , · 〉) if there is a
symplectic admissible filtration ZA� = {Z−i,A�} on L ⊗Z A� that extends Z in the
sense that Z

−i,A� ∩ (L ⊗Z Ẑ�)= Z−i in L ⊗Z A� for all i .

Definition 1.12 [Lan 2008, Definition 5.2.7.3]. A symplectic-liftable admissible
filtration Zn on L/nL is called fully symplectic-liftable with respect to (L , 〈 · , · 〉)
if it is the reduction modulo n of some admissible filtration Z on L ⊗Z Ẑ� that is
fully symplectic with respect to (L , 〈 · , · 〉) as in Definition 1.11.

Degenerations into semiabelian schemes induce filtrations on Tate modules and
on Lie algebras of the generic fibers. While the symplectic-liftable admissible
filtrations represent (certain orbits of) filtrations on L ⊗Z Ẑ� induced by filtrations
on Tate modules via the level structures, the fully symplectic-liftable ones are
equipped with (certain orbits of) filtrations on L ⊗Z R induced by the filtrations on
Lie algebras via the Lie algebra condition (4) in Definition 1.6. (One may interpret
the Lie algebra condition as the “de Rham” (or rather “Hodge”) component of a
certain “complete level structure”, the direct product of whose “`-adic” components
being a level structure in the usual sense.) Such (orbits of) filtrations are the crudest
invariants of degenerations we consider.
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Definition 1.13 [Lan 2008, Definition 5.4.1.3]. Given a fully symplectic admissible
filtration Z on L ⊗Z Ẑ� with respect to (L , 〈 · , · 〉) as in Definition 1.11, a torus
argument 8 for Z is a tuple 8 := (X, Y, φ, ϕ−2, ϕ0), where:

(1) X and Y are O-lattices of the same O-multirank (see [Lan 2008, Defini-
tion 5.2.2.5]), and φ : Y ↪→ X is an O-equivariant embedding.

(2) ϕ−2 : GrZ
−2 −→

∼ Hom
Ẑ�(X ⊗Z Ẑ�, Ẑ�(1)) and ϕ0 : GrZ

0 −→
∼ Y ⊗Z Ẑ� are

isomorphisms (of Ẑ�-modules) such that the pairing 〈 · , · 〉20 : GrZ
−2×GrZ

0→

Ẑ�(1) defined by Z is the pullback of the pairing

〈 · , · 〉φ : Hom
Ẑ�(X ⊗Z Ẑ�, Ẑ�(1))× (Y ⊗Z Ẑ�)→ Ẑ�(1)

defined by the composition

Hom
Ẑ�(X ⊗Z Ẑ�, Ẑ�(1))× (Y ⊗Z Ẑ�)

Id×φ
→ Hom

Ẑ�(X ⊗Z Ẑ�, Ẑ�(1))× (X ⊗Z Ẑ�)→ Ẑ�(1),

with the sign convention that 〈 · , · 〉φ(x, y) = x(φ(y)) = (φ(y))(x) for any
x ∈ Hom

Ẑ�(X ⊗Z Ẑ�, Ẑ�(1)) and any y ∈ Y ⊗Z Ẑ�.

Definition 1.14 [Lan 2008, Definitions 5.4.1.4 and 5.4.1.5]. Given a fully symplectic-
liftable admissible filtration Zn on L/nL with respect to (L , 〈 · , · 〉) as in Definition
1.12, a torus argument 8n at level n for Zn is a tuple 8n := (X, Y, φ, ϕ−2,n, ϕ0,n),
where:

(1) X and Y are O-lattices of the same O-multirank, and φ : Y ↪→ X is an
O-equivariant embedding.

(2) ϕ−2,n : GrZ
−2,n −→

∼ Hom(X/nX, (Z/nZ)(1)) (resp. ϕ0,n : GrZ
0,n −→
∼ Y/nY ) is

an isomorphism that is the reduction modulo n of some isomorphism ϕ−2 :

GrZ
−2 −→
∼ Hom

Ẑ�(X ⊗Z Ẑ�, Ẑ�(1)) (resp. ϕ0 :GrZ
0 −→
∼ (Y ⊗Z Ẑ�)), such that

8= (X, Y, φ, ϕ−2, ϕ0) form a torus argument as in Definition 1.13.
We say in this case that 8n is the reduction modulo n of 8.

Two torus arguments8n = (X, Y, φ, ϕ−2,n, ϕ0,n) and8′n = (X
′, Y ′, φ′, ϕ′

−2,n, ϕ
′

0,n)

at level n are equivalent if and only if there exists a pair of isomorphisms

(γX : X ′ −→∼ X, γY : Y −→∼ Y ′)

(of O-lattices) such that φ = γXφ
′γY , ϕ′

−2,n =
tγXϕ−2,n , and ϕ′0,n = γYϕ0,n . In

this case, we say that 8n and 8′n are equivalent under the pair of isomorphisms
γ = (γX , γY ), which we denote as γ = (γX , γY ) :8n −→

∼ 8′n .

The torus arguments record the isomorphism classes of the torus parts of de-
generations of abelian schemes with PEL structures. These are the second crudest
invariants of degenerations we consider.
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Definition 1.15 [Lan 2008, Definition 5.4.1.9]. A (principal) cusp label at level n
for a PEL-type O-lattice (L , 〈 · , · 〉, h), or a cusp label of the moduli problem Mn ,
is an equivalence class [(Zn,8n, δn)] of triples (Zn,8n, δn), where:

(1) Zn is an admissible filtration on L/nL that is fully symplectic-liftable in the
sense of Definition 1.12.

(2) 8n is a torus argument at level n for Zn .

(3) δn : GrZ
n −→
∼ L/nL is a liftable splitting.

Two triples (Zn,8n, δn) and (Z′n,8
′
n, δ
′
n) are equivalent if Zn and Z′n are identical,

and if 8n and 8′n are equivalent as in Definition 1.14.

The liftable splitting δn in any triple (Zn,8n, δn) is noncanonical and auxiliary
in nature. Such splittings are needed for analyzing the “degeneration of pairings” in
general PEL cases (unlike in the special case in [Faltings and Chai 1990, Chapter IV,
§6]).

To proceed from principal cusp labels at level n to general cusp labels at level
H, where H is an open compact subgroup of G(Ẑ�), we form étale orbits of
the objects we have thus defined. The precise definitions are complicated (see
[Lan 2008, Definitions 5.4.2.1, 5.4.2.2, and 5.4.2.4]) but the idea is simple: For
any H as above, consider those n ≥ 1 sufficiently divisible such that � - n and
U�(n)⊂H. Then we have a compatible system of finite groups Hn =H/U�(n),
and an object at level H is simply defined to be a compatible system of étale
Hn-orbits of objects at running levels n as above. Then we arrive at the notions
of torus arguments 8H = (X, Y, φ, ϕ−2,n, ϕ0,n) at level H, and of representatives
(ZH,8H, δH) of cusp labels [(ZH,8H, δH)] at level H. (The liftability condition is
implicit in such a definition, as in the definition of level structures we omitted.) By
abuse of language, we call these H-orbits of 8= (X, Y, φ, ϕ−2, ϕ0), (Z,8, δ), and
[(Z,8, δ)], respectively.

For simplicity, we shall often omit ZH from the notation.

Lemma 1.16 [Lan 2008, Lemma 5.2.7.5 in the revision]. Let Zn be an admissi-
ble filtration on L/nL that is fully symplectic-liftable with respect to (L , 〈 · , · 〉).
Let (GrZ

−1, 〈 · , · 〉11) be induced by some fully symplectic lifting Z of Zn , and let
(GrZ
−1,R, 〈 · , · 〉11,R, h−1) be determined by [Lan 2008, Proposition 5.1.2.2 in the

revision] by any extension ZA� in Definition 1.11 (which has the same reflex field F0

as (L ⊗Z R, 〈 · , · 〉, h) does). Then there is associated (noncanonically) a PEL-type
O-lattice (LZ

n, 〈 · , · 〉
Z
n, hZ

n) satisfying Condition 1.9 such that:

(1) [(LZ
n)

#
: LZ

n] is prime to �.

(2) There exist (noncanonical) O-equivariant isomorphisms

(GrZ
−1, 〈 · , · 〉11)−→

∼ (LZn ⊗Z Ẑ�, 〈 · , · 〉Zn )
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and

(GrZ
−1,R, 〈 · , · 〉11,R, h−1)−→

∼ (LZn ⊗Z R, 〈 · , · 〉Zn , hZn ).

(3) The moduli problem M
Zn
n defined by the noncanonical (LZn , 〈 · , · 〉Zn , hZn ) as

in Definition 1.6 is canonical in the sense that it depends (up to isomorphism)
only on Zn , but not on the choice of (LZn , 〈 · , · 〉Zn , hZn ).

Definition 1.17 [Lan 2008, Definition 5.4.2.6]. The PEL-type O-lattice

(LZH, 〈 · , · 〉ZH, hZH)

is a fixed (noncanonical) choice of any of the PEL-typeO-lattice (LZn , 〈 · , · 〉Zn , hZn )

in Lemma 1.16 for any element Zn in any ZHn (in ZH={ZHn }, a compatible collection
of étale orbits ZHn at various levels n such that � - n and U�(n)⊂H). The elements
of Hn leaving Zn invariant induce a subgroup of G(LZn ,〈 · ,· 〉Zn ,hZn )(Z/nZ). Let Hh

be the preimage of this subgroup under

G(LZn ,〈 · ,· 〉Zn ,hZn )(Ẑ
�)� G(LZn ,〈 · ,· 〉Zn ,hZn )(Z/nZ).

Then we define MZH
H to be the moduli problem defined by (LZn , 〈 · , · 〉Zn , hZn ) with

level-Hh structures as in Lemma 1.16. (The isomorphism class of this final moduli
problem is independent of the choice of (LZH, 〈 · , · 〉ZH, hZH)= (LZn , 〈 · , · 〉Zn , hZn ).)

Such boundary moduli problems MZH
H are the fundamental building blocks in

the construction of toroidal boundary charts for MH. (They actually appear in the
boundary of the minimal compactification of MH, which we call cusps. They are
parametrized by the cusp labels of MH.)

It is important to study the relations among cusp labels of different multiranks.

Definition 1.18 [Lan 2008, Definition 5.4.1.15]. A surjection

(Zn,8n, δn)� (Z′n,8
′

n, δ
′

n)

between representatives of cusp labels at level n, where 8n = (X, Y, φ, ϕ−2,n, ϕ0,n)

and8′n= (X
′,Y ′,φ′,ϕ′

−2,n,ϕ
′

0,n), is a pair (of surjections) (sX : X � X ′,sY :Y �Y ′)
(of O-lattices) such that:

(1) Both sX and sY are admissible surjections (i.e., with kernels defining filtrations
that are admissible in the sense of Definition 1.10), and they are compatible
with φ and φ′ in the sense that sXφ = φ

′sY .

(2) Z′
−2,n is an admissible submodule of Z−2,n , and the natural embedding GrZ′

−2,n↪→

GrZ−2,n satisfies ϕ−2,n ◦ (GrZ′
−2,n ↪→ GrZ−2,n )= s∗X ◦ϕ

′

−2,n .

(3) Z−1,n is an admissible submodule of Z′
−1,n , and the natural surjection GrZ0,n �

GrZ′
0,n satisfies sY ◦ϕ0,n = ϕ

′

0,n ◦ (GrZ0,n � GrZ′
0,n).
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In this case, we write s = (sX , sY ) : (Zn,8n, δn)� (Z′n,8
′
n, δ
′
n)

By taking orbits as before, there is a corresponding notion for general cusp labels:

Definition 1.19 [Lan 2008, Definition 5.4.2.12]. A surjection (ZH,8H, δH) �
(Z′H,8

′
H, δ

′
H) between representatives of cusp labels at level H, where 8H =

(X, Y, φ, ϕ−2,H, ϕ0,H) and 8′H = (X
′, Y ′, φ′, ϕ′

−2,H, ϕ
′

0,H), is a pair (of surjections)
s = (sX : X � X ′, sY : Y � Y ′) (of O-lattices) such that:

(1) Both sX and sY are admissible surjections, and they are compatible with φ and
φ′ in the sense that sXφ = φ

′sY .

(2) Z′H and (ϕ′
−2,H, ϕ

′

0,H) are assigned to ZH and (ϕ−2,H, ϕ0,H) respectively under
s = (sX , sY ) as in [Lan 2008, Lemma 5.4.2.11].

In this case, we write s = (sX , sY ) : (ZH,8H, δH)� (Z′H,8
′
H, δ

′
H).

Definition 1.20 [Lan 2008, Definition 5.4.2.13]. We say that there is a surjection
from a cusp label at level H represented by some (ZH,8H, δH) to a cusp label at
level H represented by some (Z′H,8

′
H, δ

′
H) if there is a surjection (sX , sY ) from

(ZH,8H, δH) to (Z′H,8
′
H, δ

′
H).

This is well defined by [Lan 2008, Lemma 5.4.1.16].
The surjection among cusp labels can be naturally seen when we have the

so-called two-step degenerations (see [Faltings and Chai 1990, Chapter III, §10]
and [Lan 2008, §4.5.6 in the revision]). This notion will be further developed in
Definitions 1.32, 1.37, and 1.38 below.

1D. Cone decompositions. For any torus argument 8n = (X, Y, φ, ϕ−2,n, ϕ0,n) at
level n, consider the finitely generated commutative group (i.e., Z-module)

...
S8n := ((

1
n Y )⊗Z X)/

(
y⊗ φ(y′)− y′⊗ φ(y)

(b 1
n y)⊗ χ − ( 1

n y)⊗ (b?χ)

)
y,y′∈Y

χ∈X, b∈O

(1.21)

and set S8n :=
...
S8n,free, the free quotient of

...
S8n . (See [Lan 2008, (6.2.3.5) and Con-

vention 6.2.3.26].) Then, for a general torus argument 8H = (X, Y, φ, ϕ−2,H, ϕ0,H)

at level H, there is a recipe [Lan 2008, Lemma 6.2.4.4] that gives a corresponding
free commutative group S8H (which can be identified with a finite index subgroup
of some S8n ).

The group S8H provides indices for certain “Laurent series expansions” near the
boundary strata. In the modular curve case, it is canonically isomorphic to Z, which
means there is a canonical parameter q near the boundary — i.e., the cusps. The
expansion of modular forms with respect to this parameter then gives the familiar
q-expansion along the cusps. The compactification of the modular curves can be
described locally near each of the cusps by Spec(R[q i

]i∈Z) ↪→ Spec(R[q i
]i∈Z≥0)
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for some suitable base ring R. For MH, we would like to have an analogous theory
in which the torus with the character group S8H can be partially compactified
by adding normal crossings divisors in a smooth scheme. This is best achieved
by the theory of toroidal embeddings developed in [Kempf et al. 1973]. Many
terminologies in such a theory will naturally show up in our description of the
toroidal boundary charts, and we will review them in what follows.

Let S∨8H :=HomZ(S8H,Z) be the Z-dual of S8H , and let (S8H)∨R :=S∨8H⊗Z R=

HomZ(S8H,R). By construction of S8H , the R-vector space (S8H)∨R is isomorphic
to the space of Hermitian pairings (| · , · |) : (Y⊗ZR)×(Y⊗ZR)→O⊗ZR= B⊗

Q
R,

by sending a Hermitian pairing (| · , · |) to the function y⊗ φ(y′) 7→ TrB/Q(|y, y′|)
in HomR((Y ⊗Z R)× (Y ⊗Z R),R)∼= (S8H)∨R. (See [Lan 2008, Lemma 1.1.4.6].)

Definition 1.22 [Lan 2008, beginning of §6.1.1]. (1) A subset of (S8H)∨R is called
a cone if it is invariant under the natural multiplication action of R×>0 on the
R-vector space (S8H)∨R.

(2) A cone in (S8H)∨R is nondegenerate if its closure does not contain any nonzero
R-vector subspace of (S8H)∨R.

(3) A rational polyhedral cone in (S8H)∨R is a cone in (S8H)∨R of the form σ =

R>0v1+ . . .+R>0vn with v1, . . . , vn ∈ (S8H)∨Q = S∨8H ⊗Z Q.

(4) A supporting hyperplane of σ is a hyperplane P in (S8H)∨R such that σ does
not overlap with both sides of P .

(5) A face of σ is a rational polyhedral cone τ such that τ = σ ∩ P for some
supporting hyperplane P of σ . (Here an overline on a cone means its closure
in the ambient space (S8H)∨R.)

Let P8H be the subset of (S8H)∨R corresponding to positive semidefinite Hermitian
pairings (| · , · |) : (Y⊗ZR)×(Y⊗ZR)→ B⊗

Q
R, with radical (namely the annihilator

of the whole space) admissible in the sense that it is the R-span of some admissible
submodule Y ′ of Y . (We say a submodule Y ′ of Y is admissible if Y ′ ⊂ Y defines
an admissible filtration on Y ; cf. Definition 1.10. In particular, the quotient Y/Y ′ is
also an O-lattice.)

Definition 1.23 [Lan 2008, Definitions 6.2.4.1 and 5.4.1.6]. The group 08H is the
subgroup of elements γ = (γX , γY ) in GLO(X)×GLO(Y ) satisfying φ = γXφγY ,
ϕ−2,H =

tγXϕ−2,H, and ϕ0,H = γYϕ0,H (if we view the latter two as collections of
orbits).

The group 08H acts on S8H , and its induced action preserves the subset P8H
of (S8H)∨R. (The group 08H is the automorphism group of the torus argument 8H.
Such automorphism groups show up naturally because torus arguments are only
determined up to isomorphism.)



898 Kai-Wen Lan

Definition 1.24 [Lan 2008, Definition 6.1.1.12]. A 08H-admissible rational poly-
hedral cone decomposition of P8H is a collection 6 = {σ j } j∈J with some indexing
set J such that:

(1) Every σ j is a nondegenerate rational polyhedral cone.

(2) P8H is the disjoint union of all the σ j ’s in 6. For each j ∈ J , the closure of σ j

in P8H is a disjoint union of σk’s with k ∈ J . In other words, P8H =
∐

j∈J σ j

is a stratification of P8H .

(3) 6 is invariant under the action of 08H on (S8H)∨R, in the sense that 08H
permutes the cones in 6. Under this action, the set 6/08H of 08H-orbits is
finite.

Definition 1.25 [Lan 2008, Definition 6.1.1.13]. A rational polyhedral cone σ in
(S8H)∨R is smooth with respect to the integral structure given by S∨8H if we have
σ = R>0v1+ . . .+R>0vn with v1, . . . , vn part of a Z-basis of S∨8H .

Definition 1.26 [Lan 2008, Definition 6.1.1.14]. A 08H-admissible smooth ratio-
nal polyhedral cone decomposition of P8H is a 08H-admissible rational polyhedral
cone decomposition {σ j } j∈J of P8H in which every σ j is smooth.

Definition 1.27 [Lan 2008, Definition 7.3.1.1]. Let

68H = {σ j } j∈J

be any 08H-admissible rational polyhedral cone decomposition of P8H . An
(invariant) polarization function on P8H for the cone decomposition 68H is a
08H-invariant continuous piecewise linear function pol8H : P8H→ R≥0 such that:

(1) pol8H is linear (i.e., coincides with a linear function) on each cone σ j in 68H .
(In particular, pol8H(t x)= tpol8H(x) for any x ∈ P8H and t ∈ R≥0.)

(2) pol8H((P8H∩S∨8H)−{0})⊂Z>0. (In particular, pol8H(x)> 0 for any nonzero
x in P8H .)

(3) pol8H is linear (in the above sense) on a rational polyhedral cone σ in P8H if
and only if σ is contained in some cone σ j in 68H .

(4) For any x, y ∈ S8H , we have pol8H(x + y) ≥ pol8H(x)+ pol8H(y). This is
called the convexity of pol8H .

If such a polarization function exists, then we say that the 08H-admissible rational
polyhedral cone decomposition 68H is projective.

Definition 1.28. An admissible boundary component of P8H is the image of P8′H
under the embedding (S8′H)

∨

R ↪→ (S8H)∨R defined by some surjection (8H, δH)�
(8′H, δ

′
H). (See Definition 1.19.)

We shall always assume that the following technical condition is satisfied:
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Condition 1.29 (cf. [Faltings and Chai 1990, Chapter IV, Remark 5.8(a)]; see
also [Lan 2008, Condition 6.2.5.25 in the revision]). The cone decomposition
68H = {σ j } j∈J of P8H is chosen such that, for any j ∈ J , if γ σ j ∩ σ j 6= {0} for
some γ ∈ 08H , then γ acts as the identity on the smallest admissible boundary
component of P8H containing σ j .

This condition is used to ensure that there are no self-intersections of toroidal
boundary strata when the level H is neat.

To describe the toroidal boundary of MH, we will need not only cusp labels but
also the cones:

Definition 1.30 [Lan 2008, Definition 6.2.6.1]. Let (8H, δH) and (8′H, δ
′
H) be two

representatives of cusp labels at level H, let σ ⊂ (S8H)∨R, and let σ ′ ⊂ (S8′H)
∨

R. We
say that the two triples (8H, δH, σ ) and (8′H, δ

′
H, σ

′) are equivalent if there exists
a pair of isomorphisms γ = (γX : X ′ −→∼ X, γY : Y −→∼ Y ′) (of O-lattices) such that:

(1) The two representatives (8H, δH) and (8′H, δ
′
H) are equivalent under γ (as in

[Lan 2008, Definition 5.4.2.4], the general level analogue of Definition 1.15).

(2) The isomorphism (S8′H)
∨

R −→
∼ (S8H)∨R induced by γ sends σ ′ to σ .

In this case, we say that the two triples (8H, δH, σ ) and (8′H, δ
′
H, σ

′) are equivalent
under the pair of isomorphisms γ = (γX , γY ).

Definition 1.31 [Lan 2008, Definition 6.2.6.2]. Let (8H, δH) and (8′H, δ
′
H) be

two representatives of cusp labels at level H, and let 68H (resp. 68′H) be a
08H-admissible (resp. 08′H-admissible) smooth rational polyhedral cone decom-
position of P8H (resp. P8′H). We say that the two triples (8H, δH, 68H) and
(8′H, δ

′
H, 68′H) are equivalent if (8H, δH) and (8′H, δ

′
H) are equivalent under some

pair of isomorphisms γ = (γX : X ′ −→∼ X, γY : Y −→∼ Y ′), and if under one (and
hence every) such γ the cone decomposition68H of P8H is identified with the cone
decomposition 68′H of P8′H . In this case we say that the two triples (8H, δH, 68H)
and (8′H, δ

′
H, 68′H) are equivalent under the pair of isomorphisms γ = (γX , γY ).

The compatibility among cone decompositions over different cusp labels is
described as follows:

Definition 1.32 [Lan 2008, Definition 6.2.6.4]. Let (8H, δH) and (8′H, δ
′
H) be

two representatives of cusp labels at level H, and let 68H (resp. 68′H) be a
08H-admissible (resp. 08′H-admissible) smooth rational polyhedral cone decom-
position of P8H (resp. P8′H). A surjection (8H, δH, 68H) � (8′H, δ

′
H, 68′H) is

given by a surjection s = (sX : X � X ′, sY : Y � Y ′) : (8H, δH)� (8′H, δ
′
H) (see

Definition 1.19) that induces an embedding P8′H ↪→ P8H such that the restriction
68H |P8′H

of the cone decomposition68H of P8H to P8′H is the cone decomposition
68′H of P8′H .
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This allows us to define:

Definition 1.33 [Lan 2008, Condition 6.3.3.1 and Definition 6.3.3.2]. A compatible
choice of admissible smooth rational polyhedral cone decomposition data for MH is
a complete set6={68H} of compatible choices of68H (satisfying Condition 1.29)
such that, for every surjection (8H, δH)� (8′H, δ

′
H) of representatives of cusp labels,

the cone decompositions 68H and 68′H define a surjection (8H, δH, 68H) �
(8′H, δ

′
H, 68′H) as in Definition 1.32.

Definition 1.34 [Lan 2008, Definition 7.3.1.3]. We say that a compatible choice
6 = {68H} of admissible smooth rational polyhedral cone decomposition data for
MH (see Definition 1.33) is projective if it satisfies the following condition: There
is a collection pol = {pol8H : P8H → R≥0} of polarization functions labeled by
representatives (8H, δH) of cusp labels, each pol8H being a polarization function
of the cone decomposition 68H in 6 (see Definition 1.27), which are compatible
in the following sense: For any surjection (8H, δH)� (8′H, δ

′
H) of representatives

of cusp labels (see Definition 1.19) inducing an embedding P8′H ↪→ P8H , we have
pol8H |P8′H

= pol8′H .

The most important relations among cone decompositions and among compatible
choices of them are the so-called refinements:

Definition 1.35 [Lan 2008, Definition 6.2.6.3]. Let (8H, δH) and (8′H, δ
′
H) be

two representatives of cusp labels at level H, and let 68H (resp. 68′H) be a
08H-admissible (resp. 08′H-admissible) smooth rational polyhedral cone decom-
position of P8H (resp. P8′H). We say that the triple (8H, δH, 68H) is a refinement
of the triple (8′H, δ

′
H, 68′H) if (8H, δH) and (8′H, δ

′
H) are equivalent under some

pair of isomorphisms γ = (γX , γY ), and if under one (and hence every) such γ
the cone decomposition 68H of P8H is identified with a refinement of the cone
decomposition 68′H of P8′H . In this case we say that the triple (8H, δH, 68H) is a
refinement of the triple (8′H, δ

′
H, 68′H) under the pair of isomorphisms γ = (γX , γY ).

Definition 1.36 [Lan 2008, Definition 6.4.2.2]. Let 6 = {68H} and 6′ = {6′8H}
be two compatible choices of admissible smooth rational polyhedral cone decom-
position data for MH. We say that 6 refines 6′ if the triple (8H, δH, 68H) is a
refinement of the triple (8H, δH, 6′8H), as in Definition 1.35, for (8H, δH) running
through all representatives of cusp labels.

Finally, we would like to describe the relations among the equivalence classes
[(8H, δH, σ )], which will describe the “incidence relations” among (closures of)
the toroidal boundary strata.

Definition 1.37 [Lan 2008, Definition 6.3.2.14]. Let (8H, δH) be a representative
of a cusp label at level H, and let σ ⊂ P+8H be a nondegenerate smooth rational
polyhedral cone. We say that a triple (8′H, δ

′
H, σ

′) is a face of (8H, δH, σ ) if:
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(1) (8′H, δ
′
H) is the representative of some cusp label at level H, such that there

exists a surjection s = (sX , sY ) : (8H, δH)� (8′H, δ
′
H) as in Definition 1.19.

(2) σ ′⊂P+8′H is a nondegenerate smooth rational polyhedral cone, such that for one
(and hence every) surjection s = (sX , sY ) as above, the image of σ ′ under the
induced embedding P8′H ↪→ P8H is contained in the 08H-orbit of a face of σ .

Note that this definition is insensitive to the choices of representatives in the
classes [(8H, δH, σ )] and [(8′H, δ

′
H, σ

′)]. This justifies the following:

Definition 1.38 [Lan 2008, Definition 6.3.2.15]. We say that the equivalence class
[(8′H, δ

′
H, σ

′)] of (8′H, δ
′
H, σ

′) is a face of the equivalence class [(8H, δH, σ )]
of (8H, δH, σ ) if some triple equivalent to (8′H, δ

′
H, σ

′) is a face of some triple
equivalent to (8H, δH, σ ).

1E. Arithmetic toroidal compactifications.

Definition 1.39 [Lan 2008, Definition 5.3.2.1]. Let S be a normal locally noetherian
algebraic stack. A tuple (G, λ, i, αH) over S is called a degenerating family of type
MH, or simply a degenerating family when the context is clear, if there exists a
dense subalgebraic stack S1 of S, such that S1 is defined over Spec(OF0,(�)), and
such that:

(1) By viewing group schemes as relative schemes (cf. [Hakim 1972]), G is a
semiabelian scheme over S whose restriction GS1 to S1 is an abelian scheme. In
this case, the dual semiabelian scheme G∨ exists (up to unique isomorphism),
whose restriction G∨S1

to S1 is the dual abelian scheme of GS1 .

(2) λ :G→G∨ is a group homomorphism that induces by restriction a prime-to-�
polarization λS1 of GS1 .

(3) i :O→EndS(G) is a homomorphism that defines by restriction an O-structure
iS1 :O→ EndS1(GS1) of (GS1, λS1).

(4) (GS1, λS1, iS1, αH)→ S1 defines a tuple parametrized by the moduli problem
MH.

We will only talk about (semiabelian) degenerations (of abelian varieties with
PEL structures) of this form.

Definition 1.40 [Lan 2008, Definition 6.3.1]. Let (G, λ, i, αH) be a degenerating
family of type MH over S (as in Definition 1.39) over S0 = Spec(OF0,(�)). Let
Lie∨G/S := e∗G�

1
G/S be the dual of LieG/S , and let Lie∨G∨/S := e∗G�

1
G∨/S be the

dual of LieG∨/S . Note that λ : G → G∨ induces an O-equivariant morphism
λ∗ : Lie∨G∨/S→ Lie∨G/S . (Here the O-action on Lie∨G/S is a left action after twisting
by the involution ? .) Then we define the sheaf KS=KS(G,λ)/S =KS(G,λ,i,αH)/S by
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setting

KS := (Lie∨G/S ⊗OS
Lie∨G∨/S)/

(
λ∗(y)⊗ z− λ∗(z)⊗ y

(b?x)⊗ y− x ⊗ (by)

)
x ∈Lie∨G/S

y,z ∈Lie∨G∨/S
b∈O

.

Analogues of the sheaf KS appear naturally in the deformation theory of abelian
varieties with PEL structures (without degenerations). The point of Definition 1.40 is
that it extends the conventional definition (for abelian schemes with PEL structures)
to the context of (semiabelian) degenerating families (see Definition 1.39).

Theorem 1.41 [Lan 2008, Theorems 6.4.1.1 and 7.3.3.4]. To each compatible
choice 6 = {68H} of admissible smooth rational polyhedral cone decomposition
data as in Definition 1.33, there is associated a proper smooth algebraic stack
Mtor
H,6 over S0 = Spec(OF0,(�)), which is an algebraic space when H is neat (as in

Definition 1.2), containing MH as an open dense subalgebraic stack, together with
a degenerating family (G, λ, i, αH) over Mtor

H (as in Definition 1.39) such that:

(1) The restriction (GMH, λMH, iMH, αH) of the degenerating family (G, λ, i, αH)
to MH is the tautological (i.e., universal) tuple over MH.

(2) Mtor
H has a stratification by locally closed subalgebraic stacks

Mtor
H,6 =

∐
[(8H,δH,σ )]

Z[(8H,δH,σ )],

with [(8H, δH, σ )] running through a complete set of equivalence classes of
(8H, δH, σ ) (as in Definition 1.30) with σ ⊂ P+8H and σ ∈ 68H ∈ 6. (Here
ZH is suppressed in the notation by our convention.)

In this stratification, the [(8′H, δ
′
H, σ

′)]-stratum Z[(8′H,δ ′H,σ ′)] lies in the clo-
sure of the [(8H, δH, σ )]-stratum Z[(8H,δH,σ )] if and only if [(8H, δH, σ )] is a
face of [(8′H, δ

′
H, σ

′)] as in Definition 1.38.
The [(8H, δH, σ )]-stratum Z[(8H,δH,σ )] is smooth and isomorphic to the

support of the formal algebraic stack X8H,δH,σ/08H,σ for any representative
(8H, δH, σ ) of [(8H, δH, σ )], where the formal algebraic stack X8H,δH,σ (be-
fore quotient by 08H,σ , the subgroup of 08H formed by elements mapping σ to
itself) admits a canonically defined structure of a torus-torsor over an abelian
scheme over the smooth algebraic stack MZH

H in Definition 1.17. (Note that
ZH and the isomorphism class of MZH

H depend only on the class [(8H, δH, σ )],
but not on the choice of the representative (8H, δH, σ ).)

In particular, MH is an open dense stratum in this stratification.

(3) The complement of MH in Mtor
H,6 (with its reduced structure) is a relative Cartier

divisor D∞,H with normal crossings, such that each connected component of a
stratum of Mtor

H −MH is open dense in an intersection of irreducible components
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of D∞,H (including possible self-intersections). WhenH is neat, the irreducible
components of D∞,H have no self-intersections (cf. Condition 1.29, [Lan 2008,
Remark 6.2.5.26 in the revision], and [Faltings and Chai 1990, Chapter IV,
Remark 5.8(a)]).

(4) The extended Kodaira–Spencer morphism [Lan 2008, Definition 4.6.3.32] for
G→Mtor

H induces an isomorphism

KSG/Mtor
H /S0 : KSG/Mtor

H
−→∼ �1

Mtor
H /S0
[d log∞]

(see Definition 1.40). Here the sheaf �1
Mtor
H /S0
[d log∞] is the sheaf of modules

of log 1-differentials on Mtor
H over S0, with respect to the relative Cartier divisor

D∞,H with normal crossings.

(5) The formal completion
(Mtor

H )
∧

Z[(8H,δH,σ )]

of Mtor
H along the [(8H, δH, σ )]-stratum Z[(8H,δH,σ )] is canonically isomor-

phic to the formal algebraic stack X8H,δH,σ/08H,σ for any representative
(8H, δH, σ ) of [(8H, δH, σ )]. (To form the formal completion along a given
locally closed stratum, we first remove the other strata appearing in the closure
of this stratum from the total space, and then form the formal completion of
the remaining space along this stratum.)

This isomorphism respects stratifications in the sense that, given any for-
mally étale morphism Spf(R, I )→ X8H,δH,σ/08H,σ inducing a morphism
Spec(R)→48H,δH(σ )/08H,σ , the stratification of Spec(R) (inherited from
48H,δH(σ )/08H,σ ; see [Lan 2008, Proposition 6.3.1.6 and Definition 6.3.2.16
in the revision]) makes the induced morphism Spec(R) → Mtor

H a strata-
preserving morphism.

The pullback to (Mtor
H )
∧
Z[(8H,δH,σ )]

of the degenerating family (G, λ, i, αH)
over Mtor

H is the Mumford family

( ♥G, ♥λ, ♥i, ♥αH)

over X8H,δH,σ/08H,σ (see [Lan 2008, §6.2.5]) after we identify the bases using
the isomorphism. (Here both the pullback of (G, λ, i, αH) and the Mumford
family ( ♥G, ♥λ, ♥i, ♥αH) are considered as relative schemes with additional
structures; cf. [Hakim 1972].)

(6) Let S be an irreducible noetherian normal scheme over S0. Suppose we have a
degenerating family (G†, λ†, i†, α

†
H) of type MH over S as in Definition 1.39.

Then (G†, λ†, i†, α
†
H) → S is the pullback of (G, λ, i, αH) → Mtor

H via a
(necessarily unique) morphism S→Mtor

H (over S0) if and only if the following
condition is satisfied:
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Consider any dominant morphism Spec(V )→ S centered at a geometric
point s̄ of S, where V is a complete discrete valuation ring with quotient field
K , algebraically closed residue field k, and discrete valuation υ. Let

(G‡, λ‡, i‡, α
‡
H)→ Spec(V )

be the pullback of (G†, λ†, i†, α
†
H)→ S. This pullback family defines an object

of DEGPEL,MH over Spec(V ), which corresponds to a tuple

(A‡, λ
‡
A, i‡

A, X‡, Y ‡, φ‡, c‡, (c∨)‡, τ ‡, [(α
\
H)

‡
])

in DDPEL,MH (under [Lan 2008, Theorem 5.3.1.17]). Then we have a fully
symplectic-liftable admissible filtration Z‡

H determined by [(α\H)
‡
]. Moreover,

the étale sheaves X‡ and Y ‡ are necessarily constant, because the base ring V
is strict local. Hence it makes sense to say we also have a uniquely determined
torus argument 8‡

H at level H for Z‡
H.

On the other hand, we have objects8H(G‡), S8H(G‡), and B(G‡) (see [Lan
2008, Construction 6.3.1.1]), which define objects 8‡

H, S
8

‡
H

and in particular
B‡
: S

8
‡
H
→ Inv(V ) over the special fiber. Then

υ ◦ B‡
: S

8
‡
H
→ Z

defines an element of S∨
8

‡
H

, where υ : Inv(V )→Z is the homomorphism induced
by the discrete valuation of V .

Then the condition is that, for any Spec(V )→ S as above, and for any
choice of δ‡

H (which is immaterial, because this choice will not be used), there
is a cone σ ‡ in the cone decomposition 6

8
‡
H

of P
8

‡
H

(given by the choice of 6;
cf. Definition 1.33) such that σ ‡ contains all the υ ◦ B‡ obtained in this way.

(7) If H is neat and 6 is projective (see Definition 1.34), then Mtor
H,6 is projective

(and hence a scheme) over S0.

Statement (1) means the tautological tuple over MH extends to a degenerating
family (G, λ, i, αH) over Mtor

H . (Since Mtor
H is normal, this extension is unique by

a result of Raynaud; see [Raynaud 1970, IX, 1.4] or [Faltings and Chai 1990,
Chapter I, Proposition 2.7].) Statements (2)–(5) and (7) are self-explanatory. State-
ment (6) can be interpreted as a “universal property” for the degenerating family
(G, λ, i, αH)→Mtor

H among degenerating families over normal locally noetherian
bases, as in Definition 1.39, satisfying moreover some conditions describing the
“degenerating patterns” over pullbacks to complete discrete valuation rings with
algebraically closed residue fields. This “universal property” will be crucial in the
main construction of this article (in Section 3A below).



Toroidal compactifications of PEL-type Kuga families 905

2. Kuga families and their compactifications

Let O, ?, (L , 〈 · , · 〉), h, and � be as in the previous section. Then we have a moduli
problem MH over S0 = Spec(OF0,(�)) for each open compact H of G(Ẑ�), with a
toroidal compactification Mtor

H,6 for each choice of 6.
For simplicity, let us maintain the following:

Convention 2.1. All morphisms between schemes or algebraic stacks over S0 =

Spec(OF0,(�)) will be defined over S0, unless otherwise specified.

2A. PEL-type Kuga families. Let Q be anyO-lattice. Consider the abelian scheme
GMH over MH in (1) of Theorem 1.41. By [Lan 2008, Proposition 5.2.3.8], the
group functor HomO(Q,GMH) over MH is representable by a proper smooth group
scheme which is an extension of a finite étale group scheme, whose rank has no
prime factors other than those of Disc, by an abelian scheme HomO(Q,GMH)

◦,
which we call the fiberwise geometric identity component of HomO(Q,GMH).

Example 2.2. If Q ∼= O⊕s for some integer s ≥ 0, then HomO(Q,GMH)
◦
=

HomO(Q,GMH)
∼= G×s

MH
is the s-fold fiber product of GMH over MH.

Example 2.3. If O ∼= Mk(OF ) and Q is of finite index in O⊕k
F for some integer

k ≥ 1, then the relative dimension of HomO(Q,GMH)
◦ over MH is 1/k of the

relative dimension of GMH over MH.

Definition 2.4. A PEL-type Kuga family over MH is an abelian scheme N→MH
that is Z×(�)-isogenous to HomO(Q,GMH)

◦ for some O-lattice Q.

Consider Diff−1
= Diff−1

O/Z, the inverse different of O over Z [Lan 2008, Defini-
tion 1.1.1.11] with its canonical left O-module structure. Since the trace pairing
Diff−1

×O→ Z : (y, x) 7→ TrO/Z(yx) is perfect by definition, for each O-lattice
Q, we may identify Q∨ := HomZ(Q,Z) with HomO(Q,Diff−1). By composition
with the involution ?

:O −→∼ Oop, the natural right action of O on Diff−1 induced
a left action of O on Diff−1, which commutes with the natural left action of O
on Diff−1. Accordingly, the Z-module Q∨ is torsion-free and has a canonical left
O-structure induced by the right action of Oop on Diff−1 (and ?

: O −→∼ Oop). In
other words, Q∨ is an O-lattice. Then the trace pairing induces a perfect pairing

〈 · , · 〉Q : Q∨× Q→ Z : ( f, x) 7→ TrO/Z( f (x)).

For any b ∈O, f ∈ Q∨, and x ∈ Q, we have

〈b f, x〉Q = TrO/Z( f (x)b?)= TrO/Z(b? f (x))= TrO/Z( f (b?x))= 〈 f, b?x〉.

Lemma 2.5. There exists an embedding jQ : Q∨ ↪→ Q of O-lattices inducing an
isomorphism jQ : Q∨⊗Z Z(�) −→

∼ Q⊗Z Z(�) of O⊗Z Z(�)-modules such that the
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pairing
〈 j−1

Q ( · ), · 〉Q : (Q⊗Z R)× (Q⊗Z R)→ R

is positive definite.

Proof. By the explicit classification [Lan 2008, (1.2.1.10), Proposition 1.2.1.13, and
Lemma 1.2.1.23], there exists an isomorphism jQ,0 : Q∨⊗Z R−→∼ Q⊗Z R of O⊗Z

R-modules such that the induced pairing 〈 j−1
Q,0( · ), · 〉Q : (Q⊗ZR)×(Q⊗ZR)→R is

positive definite. If � is the set of all rational prime numbers, then necessarilyO=Z,
and the lemma is clear. Otherwise, we know that IsomO⊗ZZ(�)

(Q∨⊗Z Z(�), Q⊗Z

Z(�)) is dense in IsomO⊗ZR(Q∨ ⊗Z R, Q ⊗Z R) (with the topology induced by
R). Hence there exists an element jQ,1 : Q∨ ⊗Z Z(�) −→

∼ Q ⊗Z Z(�) close to
jQ,0 in IsomO⊗ZR(Q∨⊗Z R, Q⊗Z R) such that the induced pairing 〈 j−1

Q,1( · ), · 〉Q :

(Q⊗ZR)×(Q⊗ZR)→R is still positive definite. By multiplying jQ,1 by a positive
element in Z×(�), we may assume that it maps Q∨ to a submodule of Q. Then the
induced morphism jQ : Q∨→ Q satisfies the requirement of the lemma. �

Lemma 2.6. The abelian scheme HomZ(Q∨,G∨MH) is isomorphic to the dual
abelian scheme of HomZ(Q,GMH).

Proof. Let s be the common rank of Q and Q∨ as free Z-modules. Let {e1, . . . , es}

be a Z-basis of Q, and let {e∨1 , . . . , e∨s } be the dual Z-basis of Q∨, such that
e∨i (e j ) = δi j for any 1 ≤ i, j ≤ s. Then the choices of bases define canonical
isomorphisms

HomZ(Q,GMH)
∼= G×s

MH
(2.7)

and
HomZ(Q∨,G∨MH)

∼= (G∨MH)
×s . (2.8)

As a result, HomZ(Q∨,G∨MH)
∼= G×s

MH
is isomorphic to the dual abelian scheme of

HomZ(Q,GMH)
∼= (G∨MH)

×s . �

Lemma 2.9. Let jQ : Q∨ ↪→ Q be as in Lemma 2.5. Then the isogeny

λMH, jQ ,Z : HomZ(Q,GMH)→ HomZ(Q∨,G∨MH)

induced canonically by jQ and λMH : GMH→ G∨MH , which is of degree prime to �

because both [Q : jQ(Q∨)] and deg(λMH) are prime to �, is a polarization.

Proof. We need to show that the invertible sheaf

(IdHomZ(Q,GMH )
, λMH, jQ ,Z)

∗PHomZ(Q,GMH )

is relative ample over MH. Using the choice of basis {e1, . . . , es} (resp. {e∨1 , . . . , e∨s })
of Q (resp. Q∨) as in the proof of Lemma 2.6, the morphism jQ can be represented
by e∨i 7→

∑
1≤ j≤s ai j e j for some integers ai j , for each 1≤ i ≤ s. These integers form
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a positive definite matrix a = (ai j ), because the induced pairing 〈 j−1
Q ( · ), · 〉Q :

(Q ⊗Z R)× (Q ⊗Z R)→ R is positive definite. By completion of squares for
quadratic forms, we know that there exist an integer m ≥ 1 such that ma = ud t u
for some matrices d and u with integral coefficients, where d = diag(d1, . . . , ds) is
diagonal with positive entries. As a result, the morphism mλMH, jQ ,Z factors as a
composition

mλMH, jQ ,Z = [
t u]∗ ◦ λMH,d,Z ◦ [u]

∗

of morphisms

[u]∗ : HomZ(Q,GMH)→ HomZ(Q,GMH),

λMH,d,Z : HomZ(Q,GMH)→ HomZ(Q∨,G∨MH),

[
t u]∗ : HomZ(Q∨,G∨MH)→ HomZ(Q∨,G∨MH).

If we identify HomZ(Q,GMH) and HomZ(Q∨,G∨MH) as dual abelian schemes
of each other using the canonical isomorphisms (2.7) and (2.8) defined by the
dual bases {e1, . . . , es} and {e∨1 , . . . , e∨s }, then [ t u]∗ = ([u]∗)∨, and λMH,d,Z =

(d1λMH)× (d2λMH)× . . .× (dsλMH) : G
×s
MH
→ (G∨MH)

×s is a polarization. Since
[u]∗ is finite, this implies that λMH, jQ ,Z is also a polarization, as desired. �

Proposition 2.10. The abelian scheme HomO(Q∨,G∨MH)
◦ is Z×(�)-isogenous to the

dual abelian scheme of HomO(Q,GMH)
◦.

Proof. Since λMH, jQ ,Z is a polarization by Lemma 2.9, the induced morphism

λMH, jQ : HomO(Q,GMH)
◦ ↪→ HomZ(Q,GMH)

λMH, jQ ,Z
→ HomZ(Q∨,G∨MH)� (HomO(Q,GMH)

◦)
∨ (2.11)

is also a polarization. (Since the condition of being a polarization can be checked
fiber by fiber [Deligne and Pappas 1994, 1.2–1.4], it suffices to note that the
restriction of an ample invertible sheaf to a closed subscheme is again ample.)
Since λMH, jQ ,Z maps HomO(Q,GMH)

◦ onto the subscheme HomO(Q∨,G∨MH)
◦ of

HomZ(Q∨,G∨MH), we obtain an isogeny

HomO(Q∨,G∨MH)
◦
→ (HomO(Q,GMH)

◦)
∨
.

The degree of this isogeny is prime to � because λMH, jQ ,Z is. �

Corollary 2.12 (of the proof of Proposition 2.10). Let jQ : Q∨ ↪→ Q be as in
Lemma 2.5. Then the canonical morphism

λMH, jQ : HomO(Q,GMH)
◦
→ (HomO(Q,GMH)

◦)
∨

induced by jQ and λMH : GMH → G∨MH (as in (2.11)) is a polarization of degree
prime to �.
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Corollary 2.13. If a Kuga family N→MH is Z×(�)-isogenous to HomO(Q,GMH)
◦

for some O-lattice Q, then we have canonical isomorphisms over MH:

LieN/MH
∼= HomO(Q,LieG/MH), LieN∨/MH

∼= HomO(Q∨,LieG∨/MH),

Lie∨N/MH
∼= HomO(Q∨,Lie∨G/MH), Lie∨N∨/MH

∼= HomO(Q,Lie∨G∨/MH).

Remark 2.14. We do not need to choose a polarization N→N∨ in the isomorphisms
in Corollary 2.13. The sheaves on the right-hand sides of the isomorphisms are
locally free because the order O is maximal at any good prime (see Definition 1.5
and [Lan 2008, Proposition 1.1.1.17]), and because lattices over maximal orders
are projective modules (see [Lan 2008, Proposition 1.1.1.20]).

2B. Main theorem. (Convention 2.1 will persist until the end of this article.)

Theorem 2.15. Let Q be anyO-lattice. Suppose thatH is neat (as in Definition 1.2),
so that the moduli problem MH it defines is representable by a quasiprojective
scheme, and so that Mtor

H =Mtor
H,6 is a proper smooth algebraic space over S0. Then

there is a directed partially ordered set KQ,H,6 parametrizing the following data:

(1) For each κ ∈KQ,H,6 , there is a Z×(�)-isogeny κ isog
: HomO(Q,GMH)

◦
→ Nκ

over MH, together with an open immersion κ tor
: Nκ ↪→ Ntor

κ of schemes over
S0, such that the scheme Ntor

κ is projective and smooth over S0, and that the
complement of Nκ in Ntor

κ (with its reduced structure) is a relative Cartier
divisor E∞,κ with simple normal crossings.

For each relation κ ′ � κ in KQ,H,6 , there is a proper log étale morphism
f tor
κ ′,κ : N

tor
κ ′ → Ntor

κ extending the canonical Z×(�)-isogeny

fκ ′,κ := κ isog
◦ ((κ ′)isog)−1

: Nκ ′→ Nκ

such that Ri ( f tor
κ ′,κ)∗ONtor

κ′
= 0 for i > 0.

(2) For each κ ∈ KQ,H,6 , the structural morphism fκ : Nκ →MH extends (nec-
essarily uniquely) to a morphism f tor

κ : N
tor
κ →Mtor

H , which is proper and log
smooth (as in [Kato 1989, 3.3] and [Illusie 1994, 1.6]) if we equip Ntor

κ and
Mtor
H with the canonical (fine) log structures given respectively by the relative

Cartier divisors with (simple) normal crossings E∞,κ and D∞,H (see (1) above
and (3) of Theorem 1.41). Then we have the following commutative diagram:

Nκ

fκ
proper
smooth

��

� � +NCD
// Ntor

κ

f tor
κ

proper
log smooth

��

projective
smooth

&&

MH
� �

+NCD

// Mtor
H proper

smooth

// S0

If κ ′ � κ , then we have the compatibility f tor
κ ′ = f tor

κ ◦ f tor
κ ′,κ .
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(3) Let us fix a choice of κ ∈ KQ,H,6 and suppress the subscript κ from the
notation. (All canonical isomorphisms will be required to be compatible with
the canonical isomorphisms defined by pullback under f tor

κ ′,κ for each relation
κ ′ � κ .) Then the following are true:

(3a) Let�1
Ntor/S0

[d log∞] and�1
Mtor
H /S0
[d log∞] denote the sheaves of modules

of log 1-differentials over S0 given by the (respective) canonical log structures
defined in (2). Let

�1
Ntor/Mtor

H
:= (�1

Ntor/S0
[d log∞])/(( f tor)∗(�1

Mtor
H /S0
[d log∞])).

Then there is a canonical isomorphism

( f tor)∗(HomO(Q∨,Lie∨G/Mtor
H
))∼=�

1
Ntor/Mtor

H
(2.16)

between locally free sheaves over Ntor, extending the composition of canonical
isomorphisms

f ∗(HomO(Q∨,Lie∨GMH/MH
))∼= f ∗Lie∨N/MH

∼=�
1
N/MH

(2.17)

over N.

(3b) For any integer b ≥ 0, there exists a canonical isomorphism
Rb f tor
∗
(�a

Ntor/Mtor
H
)

∼=
(∧b

(HomO(Q∨,LieG∨/Mtor
H
))
)
⊗OMtor

H

(∧a
(HomO(Q∨,Lie∨G/Mtor

H
))
)
. (2.18)

of locally free sheaves over Mtor
H , compatible with cup products and exterior

products, extending the canonical isomorphism over MH induced by the com-
position of canonical isomorphisms

Rb f∗(ON)∼=
∧bLieN∨/MH

∼=
∧b
(HomO(Q∨,LieG∨MH/MH

)). (2.19)

(3c) Let�•Ntor/Mtor
H
:=
∧
•
�1

Ntor/Mtor
H

be the log de Rham complex associated with
f tor
: Ntor

→Mtor
H (with differentials inherited from �•N/MH). Let the (relative)

log de Rham cohomology be defined by

H i
log-dR(N

tor/Mtor
H ) := Ri f tor

∗
(�•

Ntor/Mtor
H
).

Then the (relative) Hodge spectral sequence

Ea,b
1 := Rb f tor

∗
(�a

Ntor/Mtor
H
)⇒ Ha+b

log-dR(N
tor/Mtor

H ) (2.20)

degenerates at E1 terms, and defines a Hodge filtration on H i
log-dR(N

tor/Mtor
H )

with locally free graded pieces given by Rb f tor
∗
(�a

Ntor/Mtor
H
) for integers a+b= i ,

extending the canonical Hodge filtration on H i
dR(N/MH).

As a result, for any integer i ≥ 0, there is a canonical isomorphism∧i H 1
log-dR(N

tor/Mtor
H )−→

∼ H i
log-dR(N

tor/Mtor
H ),
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compatible with the Hodge filtrations defined by (2.20), extending the canoni-
cal isomorphism

∧i H 1
dR(N/MH) −→∼ H i

dR(N/MH) over MH (defined by cup
product).

(3d) For any jQ : Q∨ ↪→ Q as in Lemma 2.5, the Z×(�)-polarization λMH, jQ :

HomO(Q,GMH)
◦
→ (HomO(Q,GMH)

◦)∨ in Corollary 2.12 defines canoni-
cally (as in [Deligne and Pappas 1994, 1.5]) a perfect pairing

〈 · , · 〉λMH, jQ
: H 1

dR(N/MH)× H 1
dR(N/MH)→ OMH(1).

Then H 1
log-dR(N

tor/Mtor
H ) is the unique subsheaf of (MH ↪→Mtor

H )∗(H
1
dR(N/MH))

satisfying the following conditions:

(i) H 1
log-dR(N

tor/Mtor
H ) is locally free of finite rank over OMtor

H
.

(ii) The sheaf f tor
∗
(�1

Ntor/Mtor
H
) can be identified as the subsheaf of

(MH ↪→Mtor
H )∗( f∗(�1

N/MH
))

formed (locally) by sections that are also sections of H 1
log-dR(N

tor/Mtor
H ).

(Here we are viewing all these sheaves canonically as subsheaves of
(MH ↪→Mtor

H )∗(H
1
dR(N/MH)).)

(iii) H 1
log-dR(N

tor/Mtor
H ) is self-dual under the push-forward

(MH ↪→Mtor
H )∗〈 · , · 〉λMH, jQ

.

(3e) The Gauss–Manin connection

∇ : H •

dR(N/MH)→ H •

dR(N/MH)⊗OMH
�1

MH/S0
(2.21)

extends to an integrable connection

∇ : H •

log-dR(N
tor/Mtor

H )→ H •

log-dR(N
tor/Mtor

H )⊗OMtor
H
�1

Mtor
H /S0

(2.22)

with log poles along D∞,H, called the extended Gauss–Manin connection,
satisfying the usual Griffith transversality with the Hodge filtration defined by
(2.20).

(4) (Hecke actions.) Suppose we have an element gh ∈ G(A∞,�), and suppose we
have a (neat) open compact subgroup H′ of G(Ẑ�) such that g−1

h H′gh ⊂ H.
Suppose 6′ = {6′

8′H′
} is a compatible choice of admissible smooth rational

polyhedral cone decomposition data for MH′ , which gh-refines 6 (as in [Lan
2008, Definition 6.4.3.3]; the notion was called “dominance” in the original
version, but changed to the more common “refinement” in the revision). Then
there is also a directed partially ordered set KQ,H′,6′ parametrizing (for κ ′ ∈
KQ,H′,6′) Z×(�)-isogenies HomO(Q,GMH′ )

◦
→ N′κ ′ over MH′ , together with

open immersions N′κ ′ ↪→ (N′κ ′)
tor of schemes over S0, satisfying analogues of

properties (1)–(3) above. The constructions of KQ,H,6 and KQ,H′,6′ (and the
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objects they parametrize) satisfy the compatibility with gh in the sense that, for
each κ ∈KQ,H,6 , there is an element κ ′ ∈KQ,H′,6′ such that the following are
true:

(4a) There exists a (necessarily unique) finite étale morphism [gh]κ ′,κ :N
′

κ ′→Nκ
covering the morphism [gh] : MH′ → MH given by [Lan 2008, Proposi-
tion 6.4.3.4], inducing a prime-to-� isogeny N′κ ′ → Nκ ×MH MH′ , which
agrees with the Z×(�)-isogeny induced by (κ ′)isog, κ isog, and the Z×(�)-isogeny
GMH′ → GMH×MH MH′ realizing GMH×MH MH′ as a Hecke twist of GMH′ by
gh . (Here all the base changes from MH to MH′ use the morphism [gh].)

(4b) There exists a (necessarily unique) proper log étale morphism

[gh]
tor
κ ′,κ : (N

′

κ ′)
tor
→ Ntor

κ (2.23)

extending the morphism [gh]κ ′,κ and covering the morphism [gh]
tor
:Mtor

H′,6′→

Mtor
H,6 given by [Lan 2008, Proposition 6.4.3.4], such that

Ri ([gh]
tor
κ ′,κ)∗O(N′

κ′
)
tor = 0 (2.24)

for any i > 0.

(4c) There is a canonical isomorphism

([gh]
tor)∗Ha+b

log-dR(N
tor
κ /M

tor
H,6)−→

∼ Ha+b
log-dR((N

′

κ ′)
tor
/Mtor

H′,6′)

respecting the Hodge filtrations and compatible with the canonical isomor-
phisms

([gh]
tor
κ ′,κ)

∗�1
Ntor
κ /M

tor
H,6
−→∼ �1

(N′
κ′
)
tor
/Mtor

H′,6′
,

([gh]
tor)∗LieG∨/Mtor

H,6
−→∼ LieG∨/Mtor

H′,6′
,

([gh]
tor)∗Lie∨G/Mtor

H,6
−→∼ Lie∨G/Mtor

H′,6′
,

and the canonical isomorphisms in (3) for Ntor
κ and (N′κ ′)

tor.

(5) (Z×(�)-isogenies.) Let gl be an element of GLO⊗ZA∞,�(Q ⊗Z A∞,�). Then
the submodule gl(Q ⊗Z Ẑ�) in Q ⊗Z A∞,� determines a unique O-lattice
Q′ (up to isomorphism), together with a unique choice of an isomorphism
[gl]Q : Q⊗Z Z(�) −→

∼ Q′⊗Z Z(�), inducing an isomorphism Q⊗Z A∞,� −→∼

Q′⊗Z A∞,� matching gl(Q⊗Z Ẑ�) with Q′⊗Z Ẑ�, and inducing a canonical
Z×(�)-isogeny

[gl]
∗

Q : HomO(Q′,GMH)
◦
→ HomO(Q,GMH)

◦
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defined by [gl]Q . For HomO(Q′,GMH)
◦, there is also a directed partially

ordered set KQ′,H,6 parametrizing (for κ ′ ∈KQ′,H,6) Z×(�)-isogenies

HomO(Q′,GMH)
◦
→ N′κ ′

over MH, together with open immersions N′κ ′ ↪→ (N′κ ′)
tor of schemes over S0,

satisfying analogues of properties (1)–(3) above. The constructions of KQ,H,6
and KQ′,H,6 (and the objects they parametrize) satisfy the compatibility with
gl in the sense that, for each κ ∈ KQ,H,6 , there is an element κ ′ ∈ KQ′,H,6
such that the following are true:

(5a) The Z×(�)-isogeny [gl]
∗

κ ′,κ := κ
isog
◦ [gl]

∗

Q ◦ ((κ
′)isog)−1

: N′κ ′ → Nκ is an
isogeny (not just a quasiisogeny), and hence defines a finite étale morphism.

(5b) There exists a (necessarily unique) proper log étale morphism

([gl]
∗

κ ′,κ)
tor
: (N′κ ′)

tor
→ Ntor

κ (2.25)

extending the morphism [gl]
∗

κ ′,κ over MH, such that

Ri ([gl]
∗

κ ′,κ)
tor
∗

O(N′
κ′
)
tor = 0 (2.26)

for any i > 0.

(5c) For any integer i ≥ 0, there is a canonical isomorphism

(([gl]
∗

κ ′,κ)
tor
)∗ : H i

log-dR(N
tor
κ /M

tor
H,6)−→

∼ H i
log-dR((N

′

κ ′)
tor
/Mtor

H,6)

extending the canonical isomorphism

([gl]
∗

κ ′,κ)
∗
: H i

dR(Nκ/MH)−→∼ H i
dR(N

′

κ ′/MH)

induced by [gl]Q , respecting the Hodge filtrations and inducing canonical
isomorphisms

(([gl]
∗

κ ′,κ)
tor
)∗ : Rb f tor

∗
(�a

Ntor
κ /M

tor
H
)−→∼ Rb f tor

∗
(�a

(N′
κ′
)
tor
/Mtor

H
)

(for integers a+ b = i) compatible (under the canonical isomorphisms in (3)
for Ntor

κ and (N′κ ′)
tor) with the canonical isomorphisms

([gl]
∗

Q)
∗
: HomO(Q∨,LieG∨/Mtor

H
)−→∼ HomO((Q′)

∨
,LieG∨/Mtor

H
)

and

([gl]
∗

Q)
∗
: HomO(Q∨,Lie∨G/Mtor

H
)−→∼ HomO((Q′)

∨
,Lie∨G/Mtor

H
).
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2C. Outline of the proof. The proof of Theorem 2.15 consists of seven steps:

(1) Find a PEL-type O-lattice (L̃, 〈 · , · 〉̃ , h̃), a fully symplectic admissible filtra-
tion Z̃ on L̃ ⊗Z Ẑ�, a torus argument 8̃, and a splitting δ̃ for Z̃, such that, for
some choices of H̃, 6̃, and σ̃ , the [(8̃H̃, δ̃H̃, σ̃ )]-stratum Z̃

[(8̃H̃,δ̃H̃ ,̃σ )]
of the

toroidal compactification M̃tor
H̃ = M̃tor

H̃,6̃ has a canonical structure of an abelian
scheme over MH, and such that there exists a canonical Z×(�)-isogeny

κ isog
: HomO(Q,GMH)

◦
→ Z̃

[(8̃H̃,δ̃H̃ ,̃σ )]
.

Then we take Nκ to be this Z̃
[(8̃H̃,δ̃H̃ ,̃σ )]

.
Take Kpre

Q,H,6 to be the set of all such triples κ = (H̃, 6̃, σ̃ ), with directed
partial order defined by the relation

κ ′ = (H̃′, 6̃′, σ̃ ′)� κ = (H̃, 6̃, σ̃ )

when H̃′ ⊂ H̃ and 6̃′ refines 6̃ as in [Lan 2008, Definition 6.4.2.8], and
when the [(8̃H̃′, δ̃H̃′, σ̃

′)]-stratum of M̃tor
H̃′,6̃′ is mapped (surjectively) to the

[(8̃H̃,δ̃H̃,σ̃ )]-stratum of M̃tor
H̃ = M̃tor

H̃,6̃ under the canonical morphism M̃tor
H̃′,6̃′→

M̃tor
H̃,6̃ given by [Lan 2008, Proposition 6.4.2.9].
For κ=(H̃, 6̃, σ̃ ), take Ntor

κ to be the closure of the [(8̃H̃, δ̃H̃, σ̃ )]-stratum in
M̃tor
H̃,6̃ . For κ ′=(H̃′, 6̃′, σ̃ ′)�κ=(H̃, 6̃, σ̃ ), the morphism f tor

κ ′,κ :N
tor
κ ′ →Ntor

κ is
just the morphism induced by the canonical proper morphism M̃tor

H̃′,6̃′→ M̃tor
H̃,6̃

given by [Lan 2008, Proposition 6.4.2.9].

(2) Show that Ntor
κ is projective and smooth over S0 for κ ∈Kpre

Q,H,6 .

(3) Find a condition on κ that guarantees the existence of a morphism f tor
κ :N

tor
κ →

Mtor
H extending the structural morphism fκ : Nκ→MH.

(4) Take KQ,H,6 to be the subset of Kpre
Q,H,6 consisting of elements κ satisfying

the condition we have found. Show that this subset is nonempty and has an
induced directed partial order by showing that the conditions we need can be
achieved after suitable refinements of cone decompositions. This verifies (1)
and (2) of Theorem 2.15.

(5) For each κ ∈KQ,H,6 , verify that the morphism f tor
κ : N

tor
κ →Mtor

H extending
Nκ→MH is log smooth, and verify (3a) of Theorem 2.15.

(6) Assuming (3b) and (3c), verify (4) and (5) of Theorem 2.15 using the Hecke
actions on the double tower {M̃H̃,6̃}H̃,6̃ .

(7) Verify (3b), (3c), and (3d) of Theorem 2.15 using explicit descriptions of the
formal fibers of f tor

κ along (locally closed) strata of Mtor
H . (A crucial step for

(3b) requires the notion of log extensions of polarizations we mentioned in the
introduction.)
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We will carry out these steps in Sections 3–5. We will make frequent references
to results cited in Section 1, and also to the original statements in [Lan 2008].

2D. System of notation. Although the underlying ideas are simple, the notation
can be quite heavy. (This seems unavoidable in general works on compactifications.)
We decided to keep the notation informative (and hence complicated), because
we believe it is more difficult to keep track of three sets of cusp labels and cone
decompositions with simplified notation. We understand that the heaviness of
notation will inevitably be an enormous burden on the readers, and hence we would
like to provide some guidance by explaining the key features in the system of
notation, as follows:

• The superscript tor stands for toroidal compactifications (or objects related to
them). For morphisms this typically means extensions to morphisms between
toroidal compactifications.

• Depending on the context, the overlines can have different meanings:

– For geometric objects they almost always mean closures.
– For sheaves of differentials (or related objects) they mean the log versions.
– Notable exceptions (to the above two) are in Sections 3B–3C below, where

overlines can also stand for quotients of group schemes or sheaves.

• Objects for the “given” moduli problem MH and its compactifications are
denoted as in Section 1.

• Objects for the “larger” moduli problem M̃H̃ (mentioned in step (1) above) will
be denoted with either ˜ (tilde) or ˘ (breve) on top of the symbols in Section 1.
The difference is the following:

– Symbols with ˜ will be used for defining M̃H̃ and its compactifications
M̃tor
H̃,6̃ , and for realizing the Kuga families we would like to compactify as

boundary strata Z̃[(8̃H̃,δ̃H̃ ,̃σ )] of M̃tor
H̃,6̃ .

– Symbols with ˘ will be used for the boundary strata of M̃tor
H̃,6̃ appearing in

the closure of the realizations

Z̃
[(8̃H̃,δ̃H̃ ,̃σ )]

.

(These strata are parametrized by faces [(8̆H̃, δ̆H̃, τ̆ )] of [(8̃H̃, δ̃H̃, σ̃ )].)
In other words, they parametrize the boundary strata of the toroidal com-
pactification of the Kuga families we consider.

• In the local descriptions of toroidal boundary structures, we will encounter
notations of the forms ( · )(σ ) and ( · )σ .

– When the object ( · ) being modified is a scheme with action by some torus,
( · )(σ ) will stand for the affine toroidal embedding adding the σ -stratum
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(which then also adds all the strata for nontrivial faces of σ ), while ( · )σ
will stand for the closed σ -stratum (without the nontrivial face strata).

– The formal version of ( · )σ (often denoted in Fraktur) will mean the formal
completion of ( · )(σ ) along ( · )σ .

The notation will be most heavy in Sections 4–5, where the calculation of relative
cohomology is carried out in detail. For readers only interested in applications
to cohomology of Shimura varieties, the statements of Theorem 2.15, the two
propositions in Section 3D, and the applications in Section 6 are all they need.

3. Constructions of compactifications and morphisms

3A. Kuga families as toroidal boundary strata. The goal of this subsection is to
carry out steps (1) and (2) of Section 2C.

Let Q be an O-lattice as in Theorem 2.15. Identify Q∨ with HomO(Q,Diff−1)

and give it an O-lattice structure as in Section 2A. The (surjective) trace map
TrO/Z : Diff−1

→ Z induces a perfect pairing

〈 · , · 〉Q : Q∨× Q→ Z : ( f, x) 7→ TrO/Z( f (x)).

By extension of scalars, the pairing 〈 · , · 〉Q induces a perfect pairing between
Q∨ ⊗Z Q and Q ⊗Z Q. By Condition 1.9, the action of O on L extends to an
action of some maximal order O′ in B containing O. Let us fix the choice of such
a maximal order O′. By [Lan 2008, Proposition 1.1.1.17], O⊗Z Z(p) 6=O′⊗Z Z(p)

for a prime number p > 0 only when p|Disc. Let Q0 := O′ · Q ⊂ Q ⊗Z Q and
Q−2 := HomO(Q,Diff−1

O′/Z)(1)⊂ Q∨⊗Z Q(1). Then the induced pairing

〈 · , · 〉Q : Q−2× Q0→Q(1)

has values in Z(1). The localizations of this pairing at primes of Z are perfect
except at those dividing Disc.

Let (L̃, 〈 · , · 〉̃ , h̃) be the symplectic O-lattice given by the following data:

(1) An O-lattice L̃ := Q−2⊕ L ⊕ Q0, where Q−2 and Q0 are defined as above.
(Note that L̃ satisfies Condition 1.9 by construction.)

(2) A symplectic O-pairing 〈 · , · 〉̃ : L̃ × L̃→ Z(1) defined (symbolically) by the
matrix

〈x, y〉̃ := t

x−2

x−1

x0

 〈 · , · 〉Q

〈 · , · 〉

−
t
〈 · , · 〉Q

y−2

y−1

y0

 ,
namely by

〈x, y〉̃ := 〈x−2, y0〉Q +〈x−1, y−1〉− 〈y−2, x0〉Q,
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where x =

x−2

x−1

x0

 and y =

y−2

y−1

y0

 are elements of L̃ = Q−2 ⊕ L ⊕ Q0

expressed (vertically) in terms of components in the direct summands.

Let jQ : Q∨ ↪→ Q be an embedding of O-lattices given by Lemma 2.5, so that
the pairing 〈 j−1

Q ( · ), · 〉Q : (Q⊗Z R)× (Q⊗Z R)→R is positive definite. Consider
the R-algebra homomorphism h̃ : C→ EndO⊗ZR(L̃ ⊗Z R) defined by

z = z1+
√
−1 z2

7→ h̃(z) :=

 z1 IdQ−2⊗ZR −z2((2π
√
−1) ◦ j−1

Q )

h(z)
z2( jQ ◦ (2π

√
−1)−1) z1 IdQ0⊗ZR

 ,
where 2π

√
−1 :Z−→∼ Z(1) and (2π

√
−1)−1

:Z(1)−→∼ Z stand for the isomorphisms
defined by the choice of

√
−1 in C, and where the matrix acts (symbolically) on

elements of L̃ ⊗Z R by left multiplication. In other words,

h̃(z)

x−2

x−1

x0

=
 z1x−2− z2((2π

√
−1) ◦ j−1

Q )(x0)

h(z)x−1

z2( jQ ◦ (2π
√
−1)−1)(x−2)+ z1x0

 .
Then h̃ is a polarization of (L̃, 〈 · , · 〉̃ ) making (L̃, 〈 · , · 〉̃ , h̃) a PEL-type O-lattice.
Note that the reflex field of (L̃ ⊗Z R, 〈 · , · 〉̃ , h̃) is also F0.

By construction of (L̃, 〈 · , · 〉̃ ), there is a fully symplectic admissible filtration
on L̃ ⊗Z Ẑ� induced by

0⊂ Q−2 ⊂ Q−2⊕ L ⊂ Q−2⊕ L ⊕ Q0 = L̃.

More precisely, we have

Z̃−3 := 0,

Z̃−2 := Q−2⊗Z Ẑ�,

Z̃−1 := (Q−2⊗Z Ẑ�)⊕ (L ⊗Z Ẑ�),

Z̃0 := (Q−2⊗Z Ẑ�)⊕ (L ⊗Z Ẑ�)⊕ (Q0⊗Z Ẑ�)= L̃ ⊗Z Ẑ�,

so that there are canonical isomorphisms

Gr̃Z
−2
∼= Q−2⊗Z Ẑ�, Gr̃Z

−1
∼= L ⊗Z Ẑ�, Gr̃Z

0
∼= Q0⊗Z Ẑ�

matching the pairings Gr̃Z
−2×Gr̃Z

0 → Ẑ�(1) and Gr̃Z
−1×Gr̃Z

−1→ Ẑ�(1) induced
by 〈 · , · 〉̃ with 〈 · , · 〉Q and 〈 · , · 〉, respectively.
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Let X̃ := HomO(Q−2,Diff−1(1)) and Ỹ := Q0. The pairing

〈 · , · 〉Q : Q−2× Q0→ Z(1)

induces a canonical embedding φ̃ : Ỹ ↪→ X̃ and there are canonical isomor-
phisms ϕ̃−2 : Gr̃Z

−2 −→
∼ Hom

Ẑ�(X̃ ⊗Z Ẑ�, Ẑ�(1)) and ϕ̃0 : Gr̃Z
0 −→
∼ Ỹ ⊗Z Ẑ� (of

Ẑ�-modules). These data define a torus argument 8̃ := (X̃ , Ỹ , φ̃, ϕ̃−2, ϕ̃0) for Z̃ as
in Definition 1.13.

Let δ̃ be the obvious splitting of Z̃ induced by the equality Q−2⊕ L ⊕ Q0 = L̃ .
Let G̃ be the group functor defined by (L̃, 〈 · , · 〉̃ ) as in Definition 1.1. For any

Ẑ�-algebra R, let P̃Z̃(R) denote the subgroup of G̃(R) consisting of elements g such
that g(̃Z−2⊗

Ẑ� R)= Z̃−2⊗
Ẑ� R and g(̃Z−1⊗

Ẑ� R)= Z̃−1⊗
Ẑ� R. Any element g

in P̃Z̃(R) defines an isomorphism

Gr̃Z
−1(g) : Gr̃Z

−1⊗Ẑ� R −→∼ Gr̃Z
−1⊗Ẑ� R,

which corresponds under the canonical isomorphism Gr̃Z
−1⊗Ẑ� R ∼= L ⊗Z R above

to an element of G(R). This defines in particular a homomorphism

Gr̃Z
−1 : P̃Z̃(Ẑ

�)→ G(Ẑ�).

Let H̃ be any neat open compact subgroup of G̃(Ẑ�) such that the image
Gr̃Z
−1(H̃∩ P̃Z̃(Ẑ

�)) is exactly H. (Such an H̃ exists because the pairing 〈 · , · 〉̃ is the
direct sum of the pairings on Q−2⊕ Q0 and on L .) The data of O, (L̃, 〈 · , · 〉̃ , h̃),
�, and H̃⊂ G̃(Ẑ�) define a moduli problem M̃H̃ as in Definition 1.6.

Take any compatible choice 6̃ of admissible smooth rational polyhedral cone
decomposition data for M̃H̃ that is projective (see Definitions 1.33 and 1.34). Since
H̃ is neat, any such 6̃ defines a toroidal compactification M̃tor

H̃ = M̃tor
H̃,6̃ which is

projective and smooth over S0 by (7) of Theorem 1.41.
Let (̃Z, 8̃, δ̃) be as above, and let (̃ZH̃, 8̃H̃ = (X̃ , Ỹ , φ̃, ϕ̃−2,H̃, ϕ̃0,H̃), δ̃H̃) be the

induced triple at level H̃, inducing a cusp label [(̃ZH̃, 8̃H̃, δ̃H̃)] at level H̃.
Let σ̃ ⊂ P+

8̃H̃
be any top-dimensional nondegenerate rational polyhedral cone

in the cone decomposition 6̃8̃H̃ in 6̃. Then, by (2) of Theorem 1.41, we have a
stratum Z̃[(8̃H̃,δ̃H̃ ,̃σ )] of M̃tor

H̃ .
Since σ̃ is a top-dimensional cone in 6̃8̃H̃ , the locally closed stratum Z̃[(8̃H̃,δ̃H̃ ,̃σ )]

(not its closure) is a zero-dimensional torus bundle over the abelian scheme C̃8̃H̃,δ̃H̃
over MH. In other words, Z̃[(8̃H̃,δ̃H̃ ,̃σ )] is canonically isomorphic to C̃8̃H̃,δ̃H̃ . By the
construction of C̃8̃H̃,δ̃H̃ in [Lan 2008, §§6.2.3–6.2.4], it is canonically Z×(�)-isogenous
to the abelian scheme HomO(Q,GMH)

◦. Let us define Nκ to be this stratum
Z̃[(8̃H̃,δ̃H̃ ,̃σ )], and denote the canonical morphism Nκ → MH by fκ . This gives
the Z×(�)-isogeny κ isog

: HomO(Q,GMH)
◦
→ Nκ . Note that Nκ = Z̃[(8̃H̃,δ̃H̃ ,̃σ )] is

canonically isomorphic to C̃8̃H̃,δ̃H̃ for every 6̃ and every top-dimensional cone σ̃
in 6̃8̃H̃ .
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As planned in step (1) of Section 2C, let us take Kpre
Q,H,6 to be the set of all

possible such triples κ = (H̃, 6̃, σ̃ ), with directed partial order defined by the
relation κ ′ = (H̃′, 6̃′, σ̃ ′) � κ = (H̃, 6̃, σ̃ ) when H̃′ ⊂ H̃, when 6̃′ refines 6̃
as in [Lan 2008, Definition 6.4.2.8], and when (8̃H̃′, δ̃H̃′, σ̃

′) refines (8̃H̃, δ̃H̃, σ̃ )
as in [Lan 2008, Definition 6.4.2.6]. In this case, the [(8̃H̃′, δ̃H̃′, σ̃

′)]-stratum of
M̃tor
H̃′,6̃′ is mapped to the [(8̃H̃, δ̃H̃, σ̃ )]-stratum of M̃tor

H̃,6̃ by the canonical morphism
M̃tor
H̃′,6̃′→ M̃tor

H̃,6̃ given by [Lan 2008, Proposition 6.4.2.9]. Note that the induced
morphism fκ ′,κ : Nκ ′ → Nκ , which is κ isog

◦ ((κ ′)isog)−1 by definition, can be
identified with the canonical Z×(�)-isogeny C̃8̃H̃′ ,δ̃H̃′ → C̃8̃H̃,δ̃H̃ . In particular, it is
surjective and is an isogeny of degree prime to �.

For κ = (H̃, 6̃, σ̃ ), take Ntor
κ to be the closure of Z̃

[(8̃H̃,δ̃H̃ ,̃σ )]
in M̃tor

H̃,6̃ . Then we
obtain the canonical immersion κ tor

: Nκ ↪→ Ntor
κ .

When κ ′ = (H̃′, 6̃′, σ̃ ′) � κ = (H̃, 6̃, σ̃ ), the morphism f tor
κ ′,κ : N

tor
κ ′ → Ntor

κ is
simply the morphism induced by the canonical proper morphism M̃tor

H̃′,6̃′→ M̃tor
H̃,6̃

given by [Lan 2008, Proposition 6.4.2.9]. Note that the latter morphism is étale
locally given by equivariant morphisms between toric schemes, and the same is
true for the induced morphism f tor

κ ′,κ : N
tor
κ ′ → Ntor

κ . Therefore, both the morphism
M̃tor
H̃′,6̃′→M̃tor

H̃,6̃ and the induced morphism f tor
κ ′,κ :N

tor
κ ′ →Ntor

κ are log étale essentially
by definition (see [Kato 1989, Theorem 3.5]). Moreover, as in [Faltings and Chai
1990, Chapter V, Remark 1.2(b)] and in the proof of [Lan 2008, Lemma 7.1.1.3],
we have Ri ( f tor

κ ′,κ)∗ONtor
κ′
= 0 for i > 0 by [Kempf et al. 1973, Chapter I, §3].

Lemma 3.1. Under the assumption that H̃ is neat, the closure of every stratum in
M̃tor
H̃,6̃ has no self-intersection.

Proof. According to Definitions 1.33 and 1.34, the collection 6̃ of cone decomposi-
tions for M̃H̃ satisfies Condition 1.29. Hence [Lan 2008, Lemma 6.2.5.27 in the
revision] implies that the closure of any stratum does not intersect itself. (See also
[Faltings and Chai 1990, Chapter IV, Remark 5.8a].) �

Corollary 3.2. For any κ=(H̃,6̃, σ̃ )∈Kpre
Q,H,6 , the closure Ntor

κ of Nκ=Z̃
[(8̃H̃,δ̃H̃ ,̃σ )]

in M̃tor
H̃,6̃ is projective and smooth over S0, and the complement of Nκ in Ntor

κ (with
its reduced structure) is a relative Cartier divisor with simple normal crossings.
Thus the collection of open embeddings κ tor

: Nκ ↪→ Ntor
κ , with κ ∈Kpre

Q,H,6 , satisfies
(1) of Theorem 2.15.

Proof. Combine Lemma 3.1 with (3) and (7) of Theorem 1.41. �

From now on, let us fix a choice of κ = (H̃, 6̃, σ̃ )∈Kpre
Q,H,6 , and suppress κ and

6̃ from the notation. The compatibility of various objects under compositions with
or pullbacks by f tor

κ ′,κ : N
tor
κ ′ → Ntor

κ (for κ ′ � κ in Kpre
Q,H,6) will be obvious from the

constructions.
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3B. Extendability of structural morphisms. The goal of this subsection is to carry
out steps (3) and (4) of Section 2C.

Let (G̃, λ̃, ĩ, α̃H̃) be the degenerating family of type M̃H̃ over M̃tor
H̃ . By construc-

tion of N as a boundary stratum of M̃tor
H̃ , the restriction G̃N of G̃ to N is an extension

of the pullback of the abelian scheme GMH over MH to N by f : N→ MH, by
the split torus T̃N over N with character group X̃ . The data of λ̃, ĩ , and α̃H̃ induce
respectively a polarization, an O-endomorphism structure, and a level H-structure
on the abelian part of G̃N, which agree with the pullbacks of the data λ, i , and αH
over MH to N by f : N→MH. By normality of (the closure) Ntor (of N in M̃tor

H̃ ),
and by a result of Raynaud (see [Raynaud 1970, IX 2.4] or [Faltings and Chai 1990,
Chapter I, Proposition 2.9]), the embedding T̃N ↪→ G̃N of group schemes extends
(uniquely) to an embedding T̃Ntor ↪→ G̃Ntor of group schemes, and the quotient

G := G̃Ntor/T̃Ntor

is a semiabelian scheme whose restriction to N can be identified with the pullback
of G from MH to N. Similarly, we obtain G

∨
:= G̃∨Ntor/T̃∨Ntor . By another result of

Raynaud (see [Raynaud 1970, IX 1.4] or [Faltings and Chai 1990, Chapter I, Propo-
sition 2.7]), the semiabelian G carries (unique) additional structures λ : G→ G

∨
,

i , and αH such that the restriction of (G, λ, i, αH) to N is the pullback of the
tautological tuple over MH by f : N→ MH, and so that (G, λ, i, αH) defines a
degenerating family of type MH over Ntor.

Now the question is whether the structural morphism f : N→ MH extends
(necessarily uniquely) to a (proper) morphism f tor

: Ntor
→ Mtor

H between the
compactifications. By (6) of Theorem 1.41, this extendability can be verified after
pullback to complete discrete valuation rings (with algebraically closed residue
fields).

The stratification of M̃tor
H̃ induces one on Ntor. By (2) of Theorem 1.41, the

strata of Ntor are parametrized by the faces of [(8̃H̃, δ̃H̃, σ̃ )] (as in Definition 1.38).
Concretely, the faces of [(8̃H̃, δ̃H̃, σ̃ )] are equivalence classes [(8̆H̃, δ̆H̃, τ̆ )] of
H̃-orbits of data of the following form:

(1) A fully symplectic admissible filtration Z̆= {Z̆−i } on L̃ ⊗Z Ẑ� satisfying

Z̃−2 ⊂ Z̆−2 ⊂ Z̆−1 ⊂ Z̃−1. (3.3)

Any such filtration Z̆ induces a fully symplectic admissible filtration Z =
{Z−i } on L ⊗Z Ẑ� by Z−2 := Z̆−2/̃Z−2 and Z−1 := Z̆−1/̃Z−2, so that there is a
canonical isomorphism

Z0/Z−1 ∼= Z̃−1/Z̆−1. (3.4)
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Conversely, any fully symplectic admissible filtration Z on L ⊗Z Ẑ� induces a
fully symplectic admissible filtration Z̆ on L̃ ⊗Z Ẑ� satisfying (3.3) and (3.4).

(2) A torus argument 8̆= (X̆ , Y̆ , φ̆, ϕ̆−2, ϕ̆0) for Z̆ (as in Definition 1.13), together
with admissible surjections sX̆ : X̆ � X̃ and sY̆ : Y̆ � Ỹ satisfying sX̆ φ̆ = φ̃sY̆
and other natural compatibilities with ϕ̆−2, ϕ̆0, ϕ̃−2, and ϕ̃0. (See Definitions
1.18–1.20.)

Any 8̆, sX̆ , and sY̆ determine a torus argument 8= (X, Y, φ, ϕ−2, ϕ0) for
Z by X := ker(sX̆ ), Y := ker(sY̆ ), and φ := φ̆|Y , so that there is a commutative
diagram

0 // Y //

φ

��

Y̆
sY̆

//

φ̆

��

Ỹ //

φ̃

��

0

0 // X // X̆ sX̆

// X̃ // 0

(3.5)

whose horizontal rows are exact sequences.

(3) The existence of some splitting of Z̆, inducing some liftable splitting δ̆H̃ defining
the cusp label (Z̆H̃, 8̆H̃, δ̆H̃) at level H̃.

Given the liftable splitting δ̃H̃, the existence of the liftable splitting δ̆H̃ is
equivalent to the existence of some liftable splitting δH of ZH. Then we see that
there is a canonical bijection between cusp labels [(ZH,8H, δH)] at levelH and
cusp labels [(Z̆H̃, 8̆H̃, δ̆H̃)] at level H̃ admitting a surjection to [(̃ZH̃, 8̃H̃, δ̃H̃)].

(4) Let 8H (resp. 8̆H̃) be the torus argument for ZH (resp. Z̃H̃) at level H (resp.
H̃) induced by 8 (resp. 8̆). Then (3.5) induces morphisms

S8H ↪→ S8̆H̃ � S8̃H̃, (3.6)

where the first morphism is canonical, and where the second morphism is
defined by sX̆ and sY̆ , whose composition is zero. (In general, the morphisms
in (3.6) do not form an exact sequence.)

The dual of (3.6) defines morphisms

P+
8̃H̃
↪→ P8̆H̃ � P8H, (3.7)

where the first morphism is defined by sX̆ and sY̆ , and where the second
morphism is canonical, whose composition is zero.

Then τ̆ ⊂ P+
8̆H̃

is a cone in the cone decomposition 6̃8̆H̃ having a face σ̆
that is a 08̆H̃-translation (see Definition 1.23) of the image of σ̃ ⊂ P+

8̃H̃
under

the first morphism in (3.7).
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By (5) of Theorem 1.41, the formal completion

(M̃tor
H̃ )
∧

Z̃
[(8̆H̃,δ̆H̃,τ̆ )]

is isomorphic to the formal scheme X̃8̆H̃,δ̆H̃,τ̆ = X̃8̆H̃,δ̆H̃,τ̆/08̆H̃,τ̆ for any repre-
sentative (8̆H̃,δ̆H̃,τ̆ ) of [(8̆H̃,δ̆H̃,τ̆ )]. Here 08̆H̃,τ̆ is trivial by [Lan 2008, Lemma
6.2.5.27 in the revision], and X̃8̆H̃,δ̆H̃,τ̆ is the formal completion of 4̃8̆H̃,δ̆H̃(τ̆ ) along
its τ̆ -stratum (4̃8̆H̃,δ̆H̃)τ̆ .

Let us describe the structure of the scheme 4̃8̆H̃,δ̆H̃(τ̆ ) in more detail:

(1) By construction, 4̃8̆H̃,δ̆H̃(τ̆ ) is a scheme over M̃
Z̆H̃
H̃ , the latter of which is

isomorphic to MZH
H because of (3.3) and (3.4). (Note that M̃

Z̆H̃
H̃
∼= MZH

H is a
scheme by [Lan 2008, Corollary 7.2.3.10].)

By abuse of notation, we shall simply denote the push-forward

(4̃8̆H̃,δ̆H̃
(τ̆ )� C̃8̆H̃,δ̆H̃)∗O4̃8̆H̃,δ̆H̃ (τ̆ )

by O4̃8̆H̃,δ̆H̃ (τ̆ )
, and view O4̃8̆H̃,δ̆H̃ (τ̆ )

as an OC̃8̆H̃,δ̆H̃
-algebra when there is no

confusion. We shall adopt a similar convention for other affine morphisms.

(2) Let (A, λA, i A, ϕ−1,H) be the tautological object over MZH
H . Then C̃8̆H̃,δ̆H̃ is

the abelian scheme over MH parametrizing liftings (to level H̃) of data of the
form (c̆ : X̆→ A∨, c̆∨ : Y̆ → A), compatible with φ̆ : Y̆ ↪→ X̆ and satisfying
certain liftability and pairing conditions (coming from the so-called symplectic-
liftability on the level structures). By construction, C̃8̆H̃,δ̆H̃ is Z×(�)-isogenous
to HomO(Y̆ , A)◦.

(3) The scheme 4̃8̆H̃,δ̆H̃ is a torsor over C̃8̆H̃,δ̆H̃ under (the pullback of) the split
torus E8̆H̃ = Hom(S8̆H̃,Gm), which can be identified with the relative spec-
trum

SpecOC̃
8̆H̃,δ̆H̃

( ⊕
˘̀∈S8̆H̃

9̃8̆H̃,δ̆H̃
( ˘̀)
)
,

where 9̃8̆H̃,δ̆H̃( ˘̀) is the subsheaf of O4̃8̆H̃,δ̆H̃
(considered as an OC̃8̆H̃,δ̆H̃

-algebra
by our convention) on which E8̆H̃ acts by the character ˘̀. In the case when
˘̀ = [y̆ ⊗ χ̆ ], where y̆ ∈ Y̆ and χ̆ ∈ X̆ , there is a canonical identification
9̃8̆H̃,δ̆H̃(

˘̀) and the pullback of (c̆∨(y̆), c̆(χ̆))∗PA over C̃8̆H̃,δ̆H̃ . (See [Lan
2008, Convention 6.2.3.26 and end of §6.2.4].)

(4) Consider the subsemigroups of S8̆H̃ (see [Lan 2008, Definitions 6.1.1.9 and
6.1.2.5]) given by

τ̆∨ = { ˘̀ ∈ S8̆H̃ : 〈
˘̀, y〉 ≥ 0,∀y ∈ τ̆ },

τ̆∨0 = {
˘̀ ∈ S8̆H̃ : 〈

˘̀, y〉> 0,∀y ∈ τ̆ },

τ̆⊥ = { ˘̀ ∈ S8̆H̃ : 〈
˘̀, y〉 = 0,∀y ∈ τ̆ } ∼= τ̆∨/τ̆∨0 .
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The scheme 4̃8̆H̃,δ̆H̃(τ̆ ) is constructed as an affine toroidal embedding

4̃8̆H̃,δ̆H̃
↪→ 4̃8̆H̃,δ̆H̃

(τ̆ )

along τ̆ over the abelian scheme C̃8̆H̃,δ̆H̃ , which can be identified with the
relative spectrum

SpecOC̃
8̆H̃,δ̆H̃

( ⊕
˘̀∈τ̆∨

9̃8̆H̃,δ̆H̃
( ˘̀)
)
.

(5) Finally, the sheaf of ideals

Ĩτ̆ =
⊕
˘̀∈τ̆∨0

9̃8̆H̃,δ̆H̃
( ˘̀)

(see [Lan 2008, Lemma 6.1.2.6]) defines the τ̆ -stratum (4̃8̆H̃,δ̆H̃
)τ̆ , which can

be identified with the relative spectrum

SpecOC̃
8̆H̃,δ̆H̃

( ⊕
˘̀∈τ̆⊥

9̃8̆H̃,δ̆H̃
( ˘̀)
)
.

Here Ĩτ̆ is an O4̃8̆H̃,δ̆H̃(τ̆ )
-ideal represented as an OC̃8̆H̃,δ̆H̃

-submodule of O4̃8̆H̃,δ̆H̃(τ̆ )
(the latter being viewed as an OC̃8̆H̃,δ̆H̃

-algebra by our convention).

Suppose σ̆ is the face of τ̆ that is a 08̆H̃-translation of the image of σ̃ ⊂ P+
8̃H̃

under the first morphism in (3.7). Similar to the definition of τ̆∨, τ̆∨0 , and τ̆⊥ above,
consider the following subsemigroups of S8̆H̃ :

σ̆∨ = { ˘̀ ∈ S8̆H̃ : 〈
˘̀, y〉 ≥ 0,∀y ∈ σ̆ },

σ̆∨0 = {
˘̀ ∈ S8̆H̃ : 〈

˘̀, y〉> 0,∀y ∈ σ̆ },

σ̆⊥ = { ˘̀ ∈ S8̆H̃ : 〈
˘̀, y〉 = 0,∀y ∈ σ̆ } ∼= σ̆∨/σ̆∨0 .

Note that τ̆∨⊂ σ̆∨ and τ̆⊥⊂ σ̆⊥, but τ̆∨0 6⊂ σ̆
∨

0 in general. The closure (4̃8̆H̃,δ̆H̃)σ̆ (τ̆ )
of the σ̆ -stratum on 4̃8̆H̃,δ̆H̃(τ̆ )

∼= SpecOC̃
8̆H̃,δ̆H̃

(⊕
˘̀∈τ̆∨ 9̃8̆H̃,δ̆H̃

( ˘̀)
)

is defined by the

sheaf of ideals
⊕
˘̀∈σ̆∨0 ∩τ̆

∨ 9̃8̆H̃,δ̆H̃
( ˘̀). Then we have a canonical isomorphism

(4̃8̆H̃,δ̆H̃
)σ̆ (τ̆ )∼= SpecOC̃

8̆H̃,δ̆H̃

( ⊕
˘̀∈σ̆⊥∩τ̆ ∨̃

98̆H̃,δ̆H̃
( ˘̀)
)
,

with the τ̆ -stratum

(4̃8̆H̃,δ̆H̃
)τ̆ ∼= SpecOC̃8̆H̃,δ̆H̃

(⊕
˘̀∈τ̆⊥

9̃8̆H̃,δ̆H̃
( ˘̀)
)

(as a closed subscheme of (4̃8̆H̃,δ̆H̃)σ̆ (τ̆ )) defined by the sheaf of ideals

Ĩσ̆ ,τ̆ :=
⊕

˘̀∈σ̆⊥∩τ̆∨0

9̃8̆H̃,δ̆H̃
( ˘̀).
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Let X8̆H̃,δ̆H̃,σ̆ ,τ̆ denote the formal completion of (4̃8̆H̃,δ̆H̃)σ̆ (τ̆ ) along (4̃8̆H̃,δ̆H̃)τ̆ ,
which can be canonically identified as a closed formal subscheme of X8̆H̃,δ̆H̃,τ̆ , induc-
ing the closures of the [(8̃H̃, δ̃H̃, σ̃ )]-strata on any good formal (8̆H̃, δ̆H̃, τ̆ )-model.
(See [Lan 2008, Definition 6.3.1.11] for the definition of good formal models, and
see [Lan 2008, Definition 6.3.2.16 in the revision] for the labeling of the strata by
equivalence classes of triples of the form [(8̃H̃, δ̃H̃, σ̃ )].) By (5) of Theorem 1.41,
the strata-preserving canonical isomorphism (M̃tor

H̃,6̃)
∧

Z̃
[(8̆H̃,δ̆H̃,τ̆ )]

∼= X8̆H̃,δ̆H̃,τ̆
then

induces a canonical isomorphism

(Ntor)∧
Z̃
[(8̆H̃,δ̆H̃,τ̆ )]

∼= X8̆H̃,δ̆H̃,σ̆ ,τ̆
.

(Alternatively, one may refer directly to the gluing construction of M̃tor
H̃ in [Lan

2008, §6.3.3], based on the crucial [Lan 2008, Proposition 6.3.2.13].)
By the theory of two-step constructions (see [Faltings and Chai 1990, Chapter III

Theorem 10.2] and [Lan 2008, §4.5.6 in the revision]), the degeneration data of
the pullback of (G, λ, i, αH) to affine open formal subschemes of X8̆H̃,δ̆H̃,σ̆ ,τ̆

can
be obtained from the degeneration data of pullback of (G̃, λ̃, ĩ, α̃H̃) to affine open
formal subschemes of X̃8̆H̃,δ̆H̃,τ̆

by restricting objects defined on X̆ and Y̆ to the
subgroups X and Y . Therefore, in order to verify (6) of Theorem 1.41, it suffices
to verify the following:

Condition 3.8 (cf. [Faltings and Chai 1990, Chapter VI, Definition 1.3]). For
each (8̆H̃, δ̆H̃, τ̆ ) as above, the image of τ̆ in P8H under the (canonical) second
morphism in (3.7) is contained in some cone τ ⊂ P+8H in the cone decomposition
68H .

If Condition 3.8 is satisfied (for κ = (H̃, 6̃, σ̃ )), then the structural morphism
f : N→ MH extends to a (unique) morphism f tor

: Ntor
→ Mtor

H , which is étale
locally given by morphisms between toric schemes equivariant under (surjective)
morphisms between tori. By construction, we have a commutative diagram

Ntor

f tor

��

X8̆H̃,δ̆H̃,σ̆ ,τ̆
oo

��

// C̃8̆H̃,δ̆H̃

��

Mtor
H X8H,δH,τoo // C8H,δH

(3.9)

of canonical morphisms whenever the image of τ̆ under the (canonical) second
morphism in (3.7) is contained in τ .

Remark 3.10. Condition 3.8 is analogous to the condition in [Pink 1990, 6.25(b)],
used in for example [Harris and Zucker 1994, Lemma 1.6.5] and related works
based on [Ash et al. 1975]. Unfortunately, we must point out that, apart from some
pleasant (and often suggestive) analogies, there is no logical implication between
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the analytic theory in [Ash et al. 1975; Pink 1990], and the algebraic theory in
[Faltings and Chai 1990; Lan 2008]. (One cannot even use G(Q) in the algebraic
theory.) The applicability of Condition 3.8 in our work cannot be proved using
[Pink 1990, 6.25(b)].

As planned in step (4) of Section 2C, let us take KQ,H,6 to be the subset of
Kpre

Q,H,6 consisting of elements κ satisfying Condition 3.8. Since Condition 3.8 can
be achieved by replacing any given 6̃ with a refinement, we see that KQ,H,6 is
nonempty and has an induced directed partial order.

From now on, assume that our fixed choice κ = (H̃, 6̃, σ̃ ) lies in KQ,H,6 .

3C. Logarithmic smoothness of f tor. The aim of this subsection is to carry out
step (5) of Section 2C.

We need to show that the morphism f tor is log smooth (as in [Kato 1989, 3.3] and
[Illusie 1994, 1.6]) if we equip Ntor and Mtor

H with the canonical fine log structures
given respectively by the relative Cartier divisors with simple normal crossings
given by the complements Ntor

−N and Mtor
H −MH with their reduced structures.

According to [Kato 1989, 3.12], we have the following:

Lemma 3.11. To show that the morphism f tor is log smooth, it suffices to show that
the first morphism in the canonical exact sequence

( f tor)∗(�1
Mtor
H /S0
[d log∞])→�1

Ntor/S0
[d log∞]→�1

Ntor/Mtor
H
→ 0 (3.12)

is injective, and that �1
Ntor/Mtor

H
is locally free of finite rank.

By (4) of Theorem 1.41, the extended Kodaira–Spencer morphism [Lan 2008,
Definition 4.6.3.32] for G→Mtor

H induces an isomorphism

KSG/Mtor
H /S0 : KSG/Mtor

H
−→∼ �1

Mtor
H /S0
[d log∞]

over Mtor
H , while the extended Kodaira–Spencer morphism for G̃→ M̃tor

H̃ induces
an isomorphism

KSG̃/M̃tor
H̃ /S0
: KSG̃/M̃tor

H̃
−→∼ �1

M̃tor
H̃ /S0
[d log∞]

over M̃tor
H̃ . Over Ntor, we have canonical extensions

0→ T̃Ntor → G̃Ntor → G→ 0 and 0→ T̃∨Ntor → G̃∨Ntor → G
∨
→ 0

of group schemes, inducing exact sequences

0→ Lie∨G/Ntor → Lie∨G̃Ntor/Ntor → Lie∨T̃Ntor/Ntor → 0

and

0→ Lie∨
G
∨
/Ntor → Lie∨G̃∨

Ntor/N
tor → Lie∨T̃∨

Ntor/N
tor → 0.
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Therefore, there is a canonical surjection

KSG̃Ntor/Ntor � KST̃Ntor/Ntor, (3.13)

where KST̃Ntor/Ntor is the pullback of the sheaf

KST̃S0/S0
:= (Lie∨T̃S0/S0

⊗OS0
Lie∨T̃∨S0

/S0
)
/(

λ∗(y)⊗ z− λ∗(z)⊗ y
(b?x)⊗ y− x ⊗ (by)

)
x ∈Lie∨T̃S0

/S0
y,z ∈Lie∨

T̃∨S0
/S0

b∈O

defined (as for degenerating families in Definition 1.40) by the split tori T̃ and T̃∨

over S0 with respective character groups X̃ and Ỹ . The kernel

K := ker(KSG̃Ntor/Ntor � KST̃Ntor/Ntor)

contains KSG/Ntor as a natural subsheaf, and the quotient of K by KSG/Ntor is
isomorphic to

(Lie∨G/Ntor ⊗ONtor Lie∨T̃∨
Ntor/N

tor)/
(
(b?x)⊗ y− x ⊗ (by)

)
x ∈Lie∨

G/Ntor

y ∈Lie∨
T̃∨
Ntor /N

tor

b∈O

∼= HomO⊗ZONtor (LieT̃∨
Ntor/N

tor,Lie∨G/Ntor)

∼= HomO⊗ZONtor (HomZ(Ỹ ,ONtor),Lie∨G/Ntor)

∼= HomO(Ỹ∨,Lie∨G/Ntor)

∼= HomO(Q∨,Lie∨G/Ntor).

Since the pullback of (G, λ, i, αH) under Ntor
→Mtor

H is isomorphic to (G, λ, i, αH),
we have canonical isomorphisms

( f tor)∗KSG/Mtor
H
∼= KSG/Ntor

and

( f tor)∗(HomO(Q∨,Lie∨G/Mtor
H
))∼= HomO(Q∨,Lie∨G/Ntor).

Since the étale local structure of M̃tor
H̃ along the [(8̆H̃, δ̆H̃, τ̆ )]-stratum is the same as

4̃8̆H̃,δ̆H̃
(τ̆ ), the calculation in the proof of [Lan 2008, Proposition 6.2.5.14] shows

that the isomorphism KSG̃/M̃tor
H̃ /S0

induces by restriction (to the closure Ntor of the
[(8̃H̃, δ̃H̃, σ̃ )]-stratum) an isomorphism

K−→∼ �1
Ntor/S0

[d log∞] (3.14)
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making the diagram

( f tor)∗KSG/Mtor
H

oKSG/Mtor
H /S0

��

� � // K

o (3.14)
��

( f tor)∗(�1
Mtor
H /S0
[d log∞]) // �1

Ntor/S0
[d log∞]

commutative. In particular, the bottom arrow (which is the first morphism in (3.12))
is injective, and the isomorphism (3.14) induces a canonical isomorphism

( f tor)∗(HomO(Q∨,Lie∨G/Mtor
H
))−→∼ �1

Ntor/Mtor
H

(3.15)

of coherent sheaves over Ntor. (The restriction of (3.15) to N is compatible with the
composition of isomorphisms (2.17) because of the same calculation in the proof
of [Lan 2008, Proposition 6.2.5.14].)

Thus the desired isomorphism (2.16) is a consequence of (3.15). Moreover, since
HomO(Q∨,Lie∨G/Mtor

H
) (see Remark 2.14) is locally free of finite rank over Mtor

H , the
isomorphism (3.15) shows that the sheaf �1

Ntor/Mtor
H

is also locally free of finite rank
over Ntor. By Lemma 3.11, this shows that f tor is log smooth, and completes the
proof of (2) and (3a) of Theorem 2.15.

3D. Equidimensionality of f tor. Let us take a closer look at the diagram (3.9). By
construction of f tor, given any stratum Z[(8H,δH,τ )] of Mtor

H , the preimage

Z̃[(8H,δH,τ )] := ( f tor)−1(Z[(8H,δH,τ )])

has a stratification formed by Z̃
[(8̆H̃,δ̆H̃,τ̆ )]

, where τ̆ runs through cones in 6̃8̆H̃
satisfying the following conditions:

(1) τ̆ ⊂ P+
8̆H̃

.

(2) τ̆ has a face σ̆ that is a 08̆H̃-translation of the image of σ̃ ⊂ P+
8̃H̃

under the
first morphism in (3.7).

(3) The image of τ̆ under the (canonical) second morphism in (3.7) is contained
in τ ⊂ P+8H .

The formal completion (Ntor)∧
Z̃[(8H,δH,τ )]

admits a canonical morphism

(Ntor)∧
Z̃[(8H,δH,τ )]

→ C8H,δH,

whose precomposition with the canonical morphism

(Ntor)∧
Z̃
[(8̆H̃,δ̆H̃,τ̆ )]

→ (Ntor)∧
Z̃[(8H,δH,τ )]

,
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for any stratum Z̃[(8̆H̃,δ̆H̃,τ̆ )] of Z̃[(8H,δH,τ )], coincides with the composition of canon-
ical morphisms X8̆H̃,δ̆H̃,σ̆ ,τ̆ → C̃8̆H̃,δ̆H̃→ C8H,δH by its very construction.

Since f tor is étale locally given by morphisms between toric schemes equivariant
under (surjective) morphisms between tori, to determine if f tor is equidimensional
(cf. [Faltings and Chai 1990, Chapter VI, Definition 1.3 and Remark 1.4]), it
suffices to determine if the relative dimension of each of the induced (smooth)
morphism Z̃[(8̆H̃,δ̆H̃,τ̆ )] → Z[(8H,δH,τ )] between strata is at most dimMH(N), the
relative dimension of f : N→MH.

By abuse of language, we define the R-dimension of a cone to be the R-dimension
of its R-span. Then the codimension of N = Z̃[(8̃H̃,δ̃H̃ ,̃σ )] in M̃tor

H̃ is dimR(̃σ ) =

dimR((S8̃H̃)
∨

R) because σ̃ is top-dimensional. The codimension of

Z̃[(8̆H̃,δ̆H̃,τ̆ )]
∼= (4̃8̆H̃,δ̆H̃

)τ̆

in M̃tor
H̃ is equal to dimR(τ̆ ). Therefore, the codimension of Z̃[(8̆H̃,δ̆H̃,τ̆ )] in Ntor is

equal to dimR(τ̆ )− dimR(̃σ )= dimR(τ̆ )− dimR((S8̃H̃)
∨

R). On the other hand, the
codimension of Z[(8H,δH,τ )]

∼= (48H,δH)τ in Mtor
H is dimR(τ ). Hence we have

dimZ[(8H,δH,τ )]
(̃Z
[(8̆H̃,δ̆H̃,τ̆ )]

)

= dimMH(N)− (dimR(τ̆ )− dimR((S8̃H̃)
∨

R))+ dimR(τ ). (3.16)

Let τ ′ denote the image of τ̆ in (S8H)∨R. By assumption on τ̆ , we have τ ′ ⊂ τ . If
τ ′ = τ , then

dimR(τ )= dimR(τ
′)≤ dimR(τ̆ )− dimR((S8̃H̃)

∨

R),

and hence (3.16) implies

dimZ[(8H,δH,τ )]
(̃Z
[(8̆H̃,δ̆H̃,τ̆ )]

)≤ dimMH(N).

(If this is true for all Z̃
[(8̆H̃,δ̆H̃,τ̆ )]

, then f tor is equidimensional.) On the other
hand, suppose τ ′ ( τ . Then there exists a face of τ ′′ of τ ′ such that τ ′′ ⊂ τ
and dimR(τ

′′) < dimR(τ ). Note that τ ′′ is the image of at least one face of τ̆
satisfying the three conditions in the first paragraph of this section. By dropping
redundant basis vectors, we may assume moreover that this face τ̆ ′′ of τ̆ satisfies
dimR(τ

′′)= dimR(τ̆
′′)− dimR((S8̃H̃)

∨

R). Then we have

dimR(τ ) > dimR(τ
′′)= dimR(τ̆

′′)− dimR((S8̃H̃)
∨

R),

and hence (3.16) implies

dimZ[(8H,δH,τ )]
(̃Z
[(8̆H̃,δ̆H̃,τ̆

′′)]) > dimMH(N),

which means f tor cannot be equidimensional.
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This motivates the following strengthening of Condition 3.8:

Condition 3.17 (cf. [Faltings and Chai 1990, Chapter VI, Definition 1.3]). For
each (8̆H̃, δ̆H̃, τ̆ ) such that Z

[(8̆H̃,δ̆H̃,τ̆ )]
is (a stratum) in Ntor, the image of τ̆ ⊂ P+8H

under the (canonical) second morphism in (3.7) is exactly some cone τ ⊂ P+8H in
the cone decomposition 68H .

Proposition 3.18. The morphism f tor
: Ntor

→Mtor
H is equidimensional (with rel-

ative dimension equal to the one of f : N → MH), and hence flat, if and only
if Condition 3.17 is satisfied, if and only if f tor is log integral (see [Kato 1989,
Definition 4.3]).

Proof. The equivalence between Condition 3.17 and equidimensionality has been
explained above. Since both Ntor and Mtor

H are regular (because they are smooth
over S0= Spec(OF0,(�))), the equidimensionality and flatness of f tor are equivalent
by [EGA IV3 1966, 15.4.2 b)⇔ e′)]. By [Kato 1989, Proposition 4.1(2)], the log
integrality of f tor is equivalent to the flatness of each of the canonical morphisms
Z[τ∨] ↪→ Z[τ̆∨] (defined when Z[(8̆H̃,δ̆H̃,τ̆ )] is mapped to Z[(8H,δH,τ )]), which is
equivalent to the equidimensionality of any such morphism (by the smoothness of
Z[τ∨] and Z[τ̆∨] over Z, and by [EGA IV3 1966, 15.4.2 b)⇔ e′)] again), which
is equivalent to Condition 3.17 by the same (dimension comparison) argument. �

Proposition 3.19 (cf. [Faltings and Chai 1990, Chapter VI, Remark 1.4]). Condition
3.17 can be achieved by replacing both the cone decompositions 6̃ and 6 with
some refinements.

Proof. Instead of taking refinements of 6̃ and 6 separately, we consider the mor-
phism P8̆H̃ � P8H in (3.7) and consider the graph of 6̃. More precisely, using the
canonical morphisms X ↪→ X̆ and Y ↪→ Y̆ compatible with φ and φ̆, we obtain canon-
ical morphisms X ′ := X̆⊕X→ X̆ and Y ′ := Y̆⊕Y→ Y̆ compatible with φ′ := φ̆⊕φ
and φ̆, inducing morphisms S8̆H̃⊕S8H � S8̆H̃ and P8̆H̃ ↪→P8̆H̃⊕P8H . The image
of this latter morphism is the graph of P8̆H̃ � P8H . Let us define

...
S ′ by X ′, Y ′, and

φ′ as in (1.21), and let S′ be its free quotient. Define P′ accordingly as the subset of
(S′)∨R consisting of positive semidefinite pairings with admissible radicals, contain-
ing the graph of P8̆H̃ � P8H canonically as an admissible boundary component (cf.
Definition 1.28). The cone decomposition 6̃8̆H̃ defines a cone decomposition on
this graph, which might fail to be projective or smooth with respect to the structure
of the ambient space. But we can find a projective smooth cone decomposition of
P′, admissible with respect to the actions of all elements in GLO(X ′)×GLO(Y ′)
respecting φ′, such that its restriction to the graph refine the cone decomposition
defined by 6̃8̆H̃ . Thus we obtain a simultaneous smooth projective refinement of
6̃8̆H̃ and 68H , such that image of cones in 6̃8̆H̃ under P8̆H̃ � P8H are cones
in 68H . Since this construction is compatible with surjections between different
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choices of 8̆H̃ and 8H, we can conclude by induction on magnitude of cusp labels
(8H, δH) as in the proofs of [Lan 2008, Propositions 6.3.3.3 and 7.3.1.5]. �

Remark 3.20. We will not need Propositions 3.18 and 3.19 in what follows. We
supply them here because knowing flatness or log integrality of f tor is useful in
many applications.

3E. Hecke actions. The aim of this subsection is to explain the proof of statements
(4) and (5) of Theorem 2.15, with (4c) and (5c) conditional on (3b) and (3c) of
Theorem 2.15. These statements might seem elaborate, but they are self-explanatory
and based on the following simple idea: Since N and Ntor are constructed using
the toroidal compactifications of M̃H̃, we can use the Hecke actions on M̃H̃ and
their (compatible) extensions to toroidal compactifications provided by [Lan 2008,
Proposition 6.4.3.4 in the revision].

Let gh , H′, 6′, gl , and Q′ be as in (4) and (5) of Theorem 2.15. (For proving (4)
and (5) of Theorem 2.15, we may assume in what follows either gh = 1 or gl = 1,
although the theory works in a more general context.) Using the splitting δ̃ of Z̃, we
obtain an element g̃ in P̃Z̃(A

∞,�) such that Gr̃Z
−1(g̃)= gh , and such that Gr̃Z

0(g̃) is
identified with g−1

l under ϕ̃0 :Gr̃Z
0 −→
∼ Q0⊗Z Ẑ�∼= Q⊗Z Ẑ�. (See Section 3A.) Let

H̃′ be a (necessarily neat) subgroup of G̃(Ẑ�) such that g̃−1H̃′g̃⊂ H̃, and such that
H′ = Gr̃Z

−1(H̃′ ∩ PZ̃(Ẑ
�)). By [Lan 2008, Proposition 6.4.3.4 in the revision], there

exist some choices of 6̃′ such that the canonical morphism [g̃] : M̃H̃′→ M̃H̃ extends
canonically to [g̃]tor

: M̃tor
H̃′,6̃′ → M̃tor

H̃,6̃ . By replacing 6̃′ with a refinement such
that it satisfies Condition 3.8 (with 6′ and) with some choice of σ̃ ′, and such that
the morphism [g̃]tor sends the stratum Z̃[(8̆H̃′ ,δ̆H̃′ ,̃σ ′)] to Z̃[(8̆H̃,δ̆H̃ ,̃σ )], we see that the
induced morphism from the closure of Z̃[(8̆H̃′ ,δ̆H̃′ ,̃σ ′)] to the closure of Z̃[(8̆H̃,δ̆H̃ ,̃σ )]
gives the existences of the morphisms [gh]κ ′,κ , [gh]

tor
κ ′,κ , [gl]

∗

κ ′,κ , and ([gl]
∗

κ ′,κ)
tor

as in (4a), (4b), (5a), and (5b) of Theorem 2.15, where κ ′ = (H̃′, 6̃′, σ̃ ′) lies in
KQ′,H′,6′ , except that (2.24) and (2.26) still have to be explained.

As in the case of showing Ri ( f tor
κ ′,κ)∗ONtor

κ′
= 0 for i > 0 in Section 3A, since

the morphisms [gh]
tor
κ ′,κ and ([gl]

∗

κ ′,κ)
tor are étale locally given by equivariant mor-

phisms between toric schemes, we have (by [Kempf et al. 1973, Chapter I, §3])
Ri ([gh]

tor
κ ′,κ)∗(O(N′

κ′
)
tor) = 0 and Ri ([gl]

∗

κ ′,κ)
tor
∗
(O(N′

κ′
)
tor) = 0 for i > 0, which are

(2.24) and (2.26) of Theorem 2.15.
The remaining statements in (4c) and (5c) of Theorem 2.15 now follow if we

assume statements (3b) and (3c) of Theorem 2.15. (See the end of Section 5, p. 957.)

4. Calculation of formal cohomology

Throughout this section, unless otherwise specified, we fix the choice of an arbitrary
(locally closed) stratum Z[(8H,δH,τ )] of Mtor

H . The aim of this section is to calculate
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the relative cohomology of the pullback of the structure morphism f tor to the formal
completion (Mtor

H )
∧

Z[(8H,δH,τ )]
. (See (5) of Theorem 1.41 for a description of this for-

mal completion. See also the first paragraph of Section 3D for a description of the for-
mal completion (Ntor)∧

Z̃[(8H,δH,τ )]
of Ntor along Z̃[(8H,δH,τ )] = ( f tor)−1(Z[(8H,δH,τ )]).)

4A. Formal fibers of f tor. Let 08̆H̃,τ be the subgroup of elements in 08̆H̃ stabiliz-
ing (both) X and Y and inducing an element in 08H,τ (the subgroup of 08H formed
by elements mapping τ to itself). Since we have tacitly assumed that 08H,τ is trivial
by Condition 1.29 and [Lan 2008, Lemma 6.2.5.27 in the revision], 08̆H̃,τ is also the
subgroup of elements in 08̆H̃ fixing (both) X and Y . Let 08̃H̃,8H be the subgroup
of elements in HomO(X̃ , X) sending φ̃(Ỹ ) to φ(Y ) that are compatible with ϕ̃−2,H̃,
ϕ̃0,H̃, ϕ−2,H, and ϕ0,H. Note that these compatibility conditions imply that the
subgroup 08̃H̃,8H has index prime to � in HomO(X̃ , X). The two surjections

sX̆ : X̆ � X̃ and sY̆ : Y̆ � Ỹ

identify 08̃H̃,8H as a subgroup of 08̆H̃,τ . (More precisely, any t ∈08̃H̃,8H defines a
translation action x 7→ x+ t (sX̆ (x)) on X̆ , inducing compatibly a translation action
on Y̆ , and hence defining an element in 08̆H̃,τ fixing both X and Y .)

Since 08̃H̃,8H does not modify sX̆ and sY̆ , it does not modify the first morphism
in (3.7). Therefore, if we denote the image of σ̃ in P8̆H̃ by σ̆ , then 08̃H̃,8H maps
σ̆ to itself. On the other hand, by Condition 1.29 (and Lemma 3.1), if a cone
τ̆ ⊂ P+

8̆H̃
in 68̆H̃ has a face that is a 08̆H̃,τ -translation of σ̆ , then it cannot have a

different face that is also a 08̆H̃,τ -translation of σ̆ . Let us denote by 68̆H̃,σ̆ ,τ the
subset of 68̆H̃ consisting of cones τ̆ satisfying the following conditions (cf. similar
conditions in the first paragraph of Section 3D):

(1) τ̆ ⊂ P+8̆H̃ .

(2) τ̆ has σ̆ as a face.

(3) The image of τ̆ under the (canonical) second morphism in (3.7) is contained
in τ ⊂ P+8H .

Then, to obtain a complete list of representatives of the cusp labels [(8̆H̃, δ̆H̃, τ̆ )]
parametrizing the strata of Z̃[(8H,δH,τ )], it suffices to take representatives of 68̆H̃,σ̆ ,τ
modulo the action of08̃H̃,8H . (That is, we do not have to consider08̃H̃,8H-translates
of σ̆ .)

Let 4̃8̆H̃,δ̆H̃(τ ) denote the toroidal embedding of 4̃8̆H̃,δ̆H̃ formed by gluing the
affine toroidal embeddings 4̃8̆H̃,δ̆H̃(τ̆ ) over C̃8̆H̃,δ̆H̃ , where τ̆ runs through cones in
68̆H̃,σ̆ ,τ . To minimize confusion, we shall distinguish 4̃8̆H̃,δ̆H̃(τ̆1) and 4̃8̆H̃,δ̆H̃(τ̆2)

even when [(8̆H̃, δ̆H̃, τ̆1)] = [(8̆H̃, δ̆H̃, τ̆2)]. For each τ̆ as above (having σ̆ as a
face), recall that we have denoted the closure of the σ̆ -stratum of 4̃8̆H̃,δ̆H̃(τ̆ ) by
(4̃8̆H̃,δ̆H̃)σ̆ (τ̆ ). Let (4̃8̆H̃,δ̆H̃)σ̆ (τ ) denote the union of all such (4̃8̆H̃,δ̆H̃)σ̆ (τ̆ ), let
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(4̃8̆H̃,δ̆H̃)τ denote the union of all such (4̃8̆H̃,δ̆H̃)τ̆ , and let X8̆H̃,δ̆H̃,σ̆ ,τ denote the
formal completion of (4̃8̆H̃,δ̆H̃)σ̆ (τ) along (4̃8̆H̃,δ̆H̃)τ .

For each τ̆ ∈ 68̆H̃,σ̆ ,τ , consider the open subscheme Uτ̆ of (4̃8̆H̃,δ̆H̃)τ formed
by the union of all (locally closed) strata of (4̃8̆H̃,δ̆H̃)τ that contains the stratum
(4̃8̆H̃,δ̆H̃)τ̆ in its closure, and consider the open formal subscheme Uτ̆ of X8̆H̃,δ̆H̃,σ̆ ,τ
supported on Uτ̆ . The subscheme Uτ̆ of (4̃8̆H̃,δ̆H̃)τ is the closed subscheme of
4̃8̆H̃,δ̆H̃(τ̆ ) given by the intersection of 4̃8̆H̃,δ̆H̃(τ̆ ) and (4̃8̆H̃,δ̆H̃)τ in 4̃8̆H̃,δ̆H̃(τ ).
The formal subscheme Uτ̆ of X8̆H̃,δ̆H̃,σ̆ ,τ is the formal completion of (4̃8̆H̃,δ̆H̃)σ̆ (τ̆ )
along Uτ̆ . The collection {Uτ̆ }τ̆∈68̆H̃,σ̆ ,τ

forms an open covering of (4̃8̆H̃,δ̆H̃)τ . We
can interpret X8̆H̃,δ̆H̃,σ̆ ,τ as constructed by gluing the collection {Uτ̆ }τ̆∈68̆H̃,σ̆ ,τ

of
formal schemes along their intersections (of supports).

Explicitly, let us denote by τ̆∨
σ̆

the intersection of (τ̆ ′)∨0 for τ̆ ′ running through
faces of τ̆ in 68̆H̃,σ̆ ,τ (including τ̆ itself). Then we have the canonical isomorphism

Uτ̆
∼= SpecOC̃

8̆H̃,δ̆H̃

(( ⊕
˘̀∈τ̆∨

98̆H̃,δ̆H̃
( ˘̀)
)/( ⊕

˘̀∈τ̆∨
σ̆

98̆H̃,δ̆H̃
( ˘̀)
))

of schemes affine over C̃8̆H̃,δ̆H̃ . As OC̃8̆H̃,δ̆H̃
-modules, we have a canonical isomor-

phism ( ⊕
˘̀∈τ̆∨

98̆H̃,δ̆H̃
( ˘̀)
)/( ⊕

˘̀∈τ̆∨
σ̆

98̆H̃,δ̆H̃
( ˘̀)
)
∼=

⊕
˘̀∈τ̆∨−τ̆∨

σ̆

98̆H̃,δ̆H̃
( ˘̀).

If we equip τ̆∨ − τ̆∨
σ̆

with the semigroup structure induced by the canonical bi-
jection (τ̆∨ − τ̆∨

σ̆
)→ τ̆∨/τ̆∨

σ̆
, then we may interpret

⊕
˘̀∈τ̆∨−τ̆∨

σ̆
98̆H̃,δ̆H̃

( ˘̀) as an
OC̃8̆H̃,δ̆H̃

-algebra, with algebra structure given by canonical isomorphisms

98̆H̃,δ̆H̃
( ˘̀) ⊗OC̃

8̆H̃,δ̆H̃

98̆H̃,δ̆H̃
( ˘̀′)−→∼ 98̆H̃,δ̆H̃

( ˘̀+ ˘̀′)

(
inherited from those of O4̃8̆H̃,δ̆H̃

∼=
⊕
˘̀∈S8̆H̃

9̃8̆H̃,δ̆H̃
( ˘̀)
)

if ˘̀+ ˘̀′ ∈ τ̆∨− τ̆∨
σ̆

and by

98̆H̃,δ̆H̃
( ˘̀)⊗OC̃

8̆H̃,δ̆H̃

98̆H̃,δ̆H̃
( ˘̀′)→ 0

otherwise. Then we have a canonical isomorphism

Uτ̆
∼= SpecOC̃

8̆H̃,δ̆H̃

( ⊕
˘̀∈τ̆∨−τ̆∨

σ̆

98̆H̃,δ̆H̃
( ˘̀)
)
.

By definition, we have

τ̆∨− τ̆∨σ̆ =
( ⋃
τ̆ ′ face of τ̆
in 6

8̆H̃,σ̆ ,τ

(
(τ̆ ′)⊥ ∩ τ̆∨

))
⊂ σ̆⊥ ∩ τ̆∨.
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The formal scheme Uτ̆ , being the formal completion of

(4̃8̆H̃,δ̆H̃
)σ̆ (τ̆ )∼= SpecOC̃

8̆H̃,δ̆H̃

( ⊕
˘̀∈σ̆⊥∩τ̆∨

9̃8̆H̃,δ̆H̃
( ˘̀)
)

along Uτ̆ , can be canonically identified with the relative formal spectrum of the
OC̃8̆H̃,δ̆H̃

-algebra
⊕̂
˘̀∈σ̆⊥∩τ̆∨98̆H̃,δ̆H̃

( ˘̀) over C̃8̆H̃,δ̆H̃ , where
⊕̂

denotes the com-
pletion of the sum with respect to the OC̃8̆H̃,δ̆H̃

-ideal
⊕
˘̀∈σ̆⊥∩τ̆∨

σ̆
98̆H̃,δ̆H̃(

˘̀). Note
that all the above canonical isomorphisms correspond to canonical morphisms
of OC̃8̆H̃,δ̆H̃ -algebras formed by sums of sheaves of the form 9̃8̆H̃,δ̆H̃(

˘̀) (with
OC̃8̆H̃,δ̆H̃ -algebra structures inherited from that of O4̃8̆H̃,δ̆H̃ ).

The descriptions above imply the following simple but important facts:

Lemma 4.1. Suppose τ̆ and τ̆ ′ are two cones in 68̆H̃,σ̆ ,τ such that τ̆ ′ is a face of τ̆ .

(1) We have a canonical open immersion Uτ̆ ′ ↪→ Uτ̆ (resp. Uτ̆ ′ ↪→Uτ̆ ) of formal
subschemes of X8̆H̃,δ̆H̃,σ̆ ,τ

.

(2) The canonical restriction morphism from Uτ̆ to Uτ̆ ′ corresponds to the canoni-
cal morphism ⊕̂

˘̀∈σ̆⊥∩τ̆∨

98̆H̃,δ̆H̃
( ˘̀)→

⊕̂
˘̀∈σ̆⊥∩(τ̆ ′)∨

98̆H̃,δ̆H̃
( ˘̀)

of OC̃8̆H̃,δ̆H̃
-algebras, where the two symbols

⊕̂
denote completions of the sums

with respect to the sheaves of ideals
⊕

˘̀∈σ̆⊥∩τ̆∨
σ̆

98̆H̃,δ̆H̃
( ˘̀) and

⊕
˘̀∈σ̆⊥∩(τ̆ ′)∨

σ̆

98̆H̃,δ̆H̃
( ˘̀),

respectively.

(3) The canonical restriction morphism from Uτ̆ to Uτ̆ ′ corresponds to the canoni-
cal morphism ⊕

˘̀∈τ̆∨−τ̆∨
σ̆

98̆H̃,δ̆H̃
( ˘̀)→

⊕
˘̀∈(τ̆ ′)∨−(τ̆ ′)∨

σ̆

98̆H̃,δ̆H̃
( ˘̀)

of OC̃8̆H̃,δ̆H̃
-algebras, which maps 98̆H̃,δ̆H̃(

˘̀) to 98̆H̃,δ̆H̃(
˘̀) when

˘̀ ∈ (τ̆∨− (τ̆ ′)∨σ̆ )= (τ̆
∨
− τ̆∨σ̆ )∩ ((τ̆

′)∨− (τ̆ ′)∨σ̆ ),

and to zero otherwise.

(4) The correspondences in (2) and (3) above are canonically compatible with
each other.

By Condition 1.29 (and Lemma 3.1), the action of 08̃H̃,8H induces only the
trivial action on each stratum it stabilizes. Therefore, the quotient morphism

X8̆H̃,δ̆H̃,σ̆ ,τ
→ X8̆H̃,δ̆H̃,σ̆ ,τ

/08̃H̃,8H
(4.2)
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of formal schemes over S0 is a local isomorphism. The morphism (4.2) is not defined
over C̃8̆H̃,δ̆H̃ when the action of 08̃H̃,8H on C̃8̆H̃,δ̆H̃ is nontrivial. Nevertheless,
since 08̃H̃,8H acts trivially on 8H, it acts trivially on C8H,δH , and hence (4.2) is
defined over C8H,δH .

Proposition 4.3. There is a canonical isomorphism

(Ntor)∧
Z̃[(8H,δH,τ )]

∼= X8̆H̃,δ̆H̃,σ̆ ,τ
/08̃H̃,8H

(4.4)

of formal schemes over C8H,δH , characterized by the identifications

(Ntor)∧
Z̃
[(8̆H̃,δ̆H̃,τ̆ )]

∼= X8̆H̃,δ̆H̃,σ̆ ,τ̆

of formal schemes over C̃8̆H̃,δ̆H̃ (compatible with the canonical morphisms

(Ntor)∧
Z̃[(8̆H̃,δ̆H̃,τ̆ )]

→ (Ntor)∧
Z̃[(8H,δH,τ )]

and C̃8̆H̃,δ̆H̃→ C8H,δH). (The formation of the formal completion here is similar
to the one in (5) of Theorem 1.41.)

Proof. Let τ̆ ∈ 68̆H̃,σ̆ ,τ . Let Ũτ̆ denote the completion of 4̃8̆H̃,δ̆H̃(τ̆ ) along Uτ̆ ,
which contains Uτ̆ as a closed formal subscheme (with the same support Uτ̆ ).

Since Uτ̆ is the union of (4̃8̆H̃,δ̆H̃)τ̆ ′ with τ̆ ′ running through faces of τ̆ in
68̆H̃,σ̆ ,τ

, which are cones in P+
8̆H̃

, the tautological degeneration data over Ũτ̆

satisfies the positivity condition (with respect to the ideal defining Uτ̆ ), and we
obtain by Mumford’s construction a degenerating family ( ♥G̃, ♥̃λ, ♥ĩ, ♥α̃H̃)→ Ũτ̆
as in [Lan 2008, §6.2.5; especially the paragraph preceding Definition 6.2.5.17],
called a Mumford family. Note that a Mumford family is defined in the sense of
relative schemes, namely as a functorial assignment to each affine open formal
subscheme Spf(R) of Ũτ̆ a degenerating family over Spec(R). Therefore (6) of
Theorem 1.41 applies, and implies the existence of a canonical (strata-preserving)
morphism Ũτ̆ → M̃tor

H̃ under which ( ♥G̃, ♥̃λ, ♥ĩ, ♥α̃H̃)→ Ũτ̆ is the pullback of
(G̃, λ̃, ĩ, α̃H̃)→ M̃tor

H̃ . Moreover, if τ̆ ′ ∈68̆H̃,σ̆ ,τ , then the morphisms from Ũτ̆ and
from Ũτ̆ ′ to M̃tor

H̃ agree over the intersection Ũτ̆ ∩ Ũτ̆ ′ .
By taking the closures of the [(8̃H̃, δ̃H̃, σ̃ )]-strata (not as closed subschemes

of the supports, but as closed formal subschemes, as in the second last paragraph
preceding Condition 3.8), we obtain canonical morphisms Uτ̆ → Ntor for all τ̆ in
68̆H̃,σ̆ ,τ

, which patch together, cover all strata above [(8H, δH, τ )], and define
(4.4) as desired. �

By (5) of Theorem 1.41, we have a canonical isomorphism

(Mtor
H )
∧

Z[(8H,δH,τ )]
∼= X8H,δH,τ . (4.5)



934 Kai-Wen Lan

By the very constructions, we may and we shall identify the pullback of f tor to
(Mtor

H )
∧

Z[(8H,δH,τ )]
with the canonical morphism X8̆H̃,δ̆H̃,σ̆ ,τ/08̃H̃,8H→X8H,δH,τ . By

abuse of notation, we shall also denote this pullback by

f tor
: X8̆H̃,δ̆H̃,σ̆ ,τ

/08̃H̃,8H
→ X8H,δH,τ .

For each τ̆ ∈ 68̆H̃,σ̆ ,τ , let U[τ̆ ] denote the image of Uτ̆ under (4.2), which is
isomorphic to Uτ̆ as a formal scheme over C8H,δH . By admissibility of 68̆H̃ ,
we know that the set 68̆H̃,σ̆ ,τ/08̃H̃,8H is finite. Then X8̆H̃,δ̆H̃,σ̆ ,τ/08̃H̃,8H can
be constructed by gluing the finite collection {U[τ̆ ]}[τ̆ ]∈68̆H̃,σ̆ ,τ /08̃H̃,8H

of formal
schemes over their intersections. Let us denote by

f tor
[τ̆ ] : U[τ̆ ]→ X8H,δH,τ

the restriction of f tor to U[τ̆ ]. If we choose a representative τ̆ of [τ̆ ], then we can
identify f tor

[τ̆ ]
: U[τ̆ ]→X8H,δH,τ with the canonical morphism f tor

τ̆ : Uτ̆ →X8H,δH,τ
induced by the canonical morphism X8̆H̃,δ̆H̃,σ̆ ,τ → X8H,δH,τ . Let us denote by

gτ̆ : Uτ̆ → X8H,δH,τ ×C8H,δH C̃8̆H̃,δ̆H̃, h : C̃8̆H̃,δ̆H̃→ C8H,ZH,

and

hτ : X8H,δH,τ ×C8H,δH C̃8̆H̃,δ̆H̃→ X8H,δH,τ

the canonical morphisms. Then we have a canonical identification f tor
τ̆
= hτ ◦ gτ̆ .

(Note that gτ̆ is a morphism between affine formal schemes over C̃8̆H̃,δ̆H̃ , and that
hτ is the pullback of h to the affine formal scheme X8H,δH,τ over C8H,δH .)

For simplicity, let us view OX8H,δH,τ
and OZ[(8H,δH,τ )]

as sheaves over C8H,δH , and
suppress (X8H,δH,τ → C8H,δH)∗ and (Z[(8H,δH,τ )]→ C8H,δH)∗ from the notation.
For push-forwards (to C8H,δH) of sheaves over X8H,δH,τ , we shall use the notation⊕̂

to denote the completion with respect to (the push-forward of) the ideal of
definition of OX8H,δH,τ

.
Based on Lemma 4.1, we have the following important facts:

Lemma 4.6. (1) For any τ̆ ∈68̆H̃,σ̆ ,τ , and any integer d ≥ 0, we have the canoni-
cal isomorphisms

Rd( f tor
τ̆ )∗(OUτ̆ )

∼=
⊕̂

˘̀∈σ̆⊥∩τ̆∨

Rdh∗(98̆H̃,δ̆H̃(
˘̀)) (4.7)

and

Rd( f tor
τ̆
)∗(OUτ̆

)∼=
⊕

˘̀∈τ̆∨−τ̆∨
σ̆

Rdh∗(98̆H̃,δ̆H̃(
˘̀)) (4.8)

over C8H,δH .
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(2) For any γ ∈ 08̃H̃,8H , we have a commutative diagram

Uτ̆
γ

//

gτ̆
��

Uγ τ̆

gγ τ̆
��

X8H,δH,τ ×C8H,δH C̃8̆H̃,δ̆H̃
γ

//

hτ
��

X8H,δH,τ ×C8H,δH C̃8̆H̃,δ̆H̃

hτ
��

X8H,δH,τ X8H,δH,τ

of formal schemes, (naturally) compatible with the commutative diagram

Uτ̆

γ
//

gτ̆
��

Uγ τ̆

gγ τ̆
��

(48H,δH)τ ×C8H,δH C̃8̆H̃,δ̆H̃
γ

//

hτ
��

(48H,δH)τ ×C8H,δH C̃8̆H̃,δ̆H̃

hτ
��

(48H,δH)τ (48H,δH)τ

of their supports. Then (4.7) and (4.8) are compatible with the canoni-
cal isomorphisms γ ∗OUγ τ̆ → OUτ̆ induced by the canonical isomorphisms
γ ∗98̆H̃,δ̆H̃

(γ ˘̀)−→∼ 98̆H̃,δ̆H̃
( ˘̀) over C̃8̆H̃,δ̆H̃ .

(3) For any integer d ≥ 0, if τ̆ ′ is a face of τ̆ , then the canonical morphism
Rd( f tor

τ̆
)∗OUτ̆ → Rd( f tor

τ̆ ′
)∗OUτ̆ ′ induced by restriction from Uτ̆ to Uτ̆ ′ corre-

sponds to the morphism⊕̂
˘̀∈σ̆⊥∩τ̆∨

Rdh∗(98̆H̃,δ̆H̃(
˘̀))→

⊕̂
˘̀∈σ̆⊥∩(τ̆ ′)∨

Rdh∗(98̆H̃,δ̆H̃(
˘̀))

over C8H,δH , and the canonical morphism Rd( f tor
τ̆
)∗OUτ̆

→ Rd( f tor
τ̆ ′
)∗OUτ̆ ′

induced by restriction from Uτ̆ to Uτ̆ ′ corresponds to the morphism⊕
˘̀∈τ̆∨−τ̆∨

σ̆

Rdh∗(98̆H̃,δ̆H̃(
˘̀))→

⊕
˘̀∈(τ̆ ′)∨−(τ̆ ′)∨

σ̆

Rdh∗(98̆H̃,δ̆H̃(
˘̀))

over C8H,δH . Both of these morphisms send Rdh∗(98̆H̃,δ̆H̃(
˘̀)) (identically) to

Rdh∗(98̆H̃,δ̆H̃(
˘̀)) when it is defined on both sides, and to zero otherwise.

4B. Relative cohomology of structural sheaves. Using (4.5), we shall identify
(Mtor

H )
∧

Z[(8H,δH,τ )]
with X8H,δH,τ , and identify Z[(8H,δH,τ )] with (48H,δH)τ . For sim-

plicity of notation, we shall use X8H,δH,τ and Z[(8H,δH,τ )] more often than their
counterparts.
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Recall that C8H,δH is an abelian scheme over the moduli problem MZH
H (see

Definition 1.17). Let (A, λA, i A, αHh ) be the tautological tuple over MZH
H . Let T

(resp. T∨) be the split torus with character group X (resp. Y ). For simplicity of
notation, we shall denote the pullbacks of A, A∨, T , and T∨, respectively, by the
same symbols. The pullback of G (resp. G∨) to X8H,ZH,τ is an extension of A (resp.
A∨) by T (resp. T∨), and this extension is a pullback of the tautological extension
G\ (resp. G∨,\) over C8H,δH . For simplicity, we shall also denote the pullbacks of
G\ and G∨,\, respectively, by the same symbols.

Lemma 4.9. The morphism h : C̃8̆H̃,δ̆H̃ → C8H,δH is proper and smooth, and is
a torsor under the pullback to C8H,δH of an abelian scheme Z×(�)-isogenous to
HomO(X̃ , A)◦→MZH

H .

Proof. For simplicity, let us denote the kernel of C̃8̆H̃,δ̆H̃→ C8H,δH by C , viewed
as a scheme over MZH

H .
While the abelian scheme C̃8̆H̃,δ̆H̃→MZH

H parametrizes liftings of pairs of the
form (c̆ : X̆→ A∨, c̆∨ : Y̆→ A)→MZH

H satisfying the compatibility c̆φ̆= λAc̆∨ and
the liftability and pairing conditions, and while the abelian scheme C8H,δH→MZH

H
parametrizes liftings of pairs of the form (c : X → A∨, c∨ : Y → A) satisfying
the compatibility cφ = λAc∨ and the liftability and pairing conditions, the scheme
C→MZH

H parametrizes lifts of pairs of the form (c̃ : X̃→ A∨, c̃∨ : Ỹ→ A) satisfying
the compatibility c̃φ̃=λAc̃∨ and the liftability and pairing conditions induced by the
ones of the pairs over C̃8̆H̃,δ̆H̃→MZH

H . Therefore, the same (component annihilating)
argument in [Lan 2008, §6.2.3–6.2.4] shows that the kernel C of h is an abelian
scheme Z×(�)-isogenous to HomO(X̃ , A)◦.

Consequently, all geometric fibers of h are smooth and have the same dimension
(as the relative dimension of C→MZH

H ). Since both C̃8̆H̃,δ̆H̃ and C8H,δH are smooth
over S0, the morphism h is smooth by [EGA IV3 1966, 15.4.2 e′)⇒ b)] and [EGA
IV4 1967, 17.5.1 b)⇒ a)]. By [Bosch et al. 1990, §2.2, Proposition 14], smooth
morphisms between schemes have sections étale locally. This shows that h is
a torsor under the pullback of C to C8H,δH . (Regardless of this argument, the
morphism h is proper because the morphism C̃8̆H̃,δ̆H̃→MZH

H is.) �

The nerve of the open covering {Uτ̆ }τ̆∈68̆H̃,σ̆ ,τ of X8̆H̃,δ̆H̃,σ̆ ,τ , or equivalently
the open covering {Uτ̆ }τ̆∈68̆H̃,σ̆ ,τ

of (4̃8̆H̃,δ̆H̃)σ̆ (τ ) (by the supports of the formal
schemes {Uτ̆ }τ̆∈68̆H̃,σ̆ ,τ ), defines a simplicial complex Ñσ̆ ,τ formed (up to scaling by
the multiplicative action of R>0, inducing homotopy equivalences harmless for our
purpose) by the union of the cones τ̆ in 68̆H̃,σ̆ ,τ (with natural incidence relations
among their closures inherited from their realizations as locally closed subsets of
(S8̆H̃)

∨

R). Then the nerve of the open covering

{U[τ̆ ]}[τ̆ ]∈68̆H̃,σ̆ ,τ /08̃H̃,8H
of (Ntor)∧

Z̃[(8H,δH,τ )]
∼= X8̆H̃,δ̆H̃,σ̆ ,τ/08̃H̃,8H,
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or equivalently the open covering

{Uτ̆ }τ̆∈68̆H̃,σ̆ ,τ
/08̃H̃,8H

of Z̃[(8H,δH,τ )]
∼= (4̃8̆H̃,δ̆H̃)τ/08̃H̃,8H

of the supports of formal schemes, is naturally identified with Nσ̆ ,τ :=Ñσ̆ ,τ/08̃H̃,8H
.

The simplicial complex Ñσ̆ ,τ has a closed covering by the closures τ̆ cl (in
Ñσ̆ ,τ ) of the cones τ̆ in 68̆H̃,σ̆ ,τ , which induces a closed covering of Nσ̆ ,τ by the
closures [τ̆ ]cl (in Nσ̆ ,τ ) of the subsets [τ̆ ] of 68̆H̃,σ̆ ,τ/08̃H̃,8H . For any sheaf M on
(4̃8̆H̃,δ̆H̃)τ/08̃H̃,8H

(such as O(Ntor)∧
Z̃[(8H,δH,τ )]

∼= OX8̆H̃,δ̆H̃,σ̆ ,τ
/08̃H̃,8H

), define for any

integer d ≥ 0 the local system Hd(M) on Nσ̆ ,τ which associates with each [τ̆ ] in
68̆H̃,σ̆ ,τ/08̃H̃,8H

the coefficients

Hd(M)([τ̆ ]cl) := H d(U[τ̆ ],M|U[τ̆ ]).

Then, by [Godement 1958, II, 5.4.1], there is a spectral sequence

Ec,d
2 := H c(Nσ̆ ,τ ,Hd(M))⇒ H c+d((4̃8̆H̃,δ̆H̃

)τ/08̃H̃,8H
,M). (4.10)

The construction of Nσ̆ ,τ depends only on the cone decomposition 68̆H̃,σ̆ ,τ , while
the constructions of both Hd(M) and the spectral sequence (4.10) are compatible
with restrictions to affine open subschemes of Z[(8H,δH,τ )]. Therefore, we can
define the sheaves Hd(M) (of local systems on Nσ̆ ,τ ) over Z[(8H,δH,τ )], and obtain
a spectral sequence

Ec,d
2 := H c(Nσ̆ ,τ ,Hd(M))⇒ Rc+d f tor

∗
(M). (4.11)

Here H c(Nσ̆ ,τ ,Hd(M)) is interpreted as a sheaf on Z[(8H,δH,τ )], and the formation
of (4.11) is compatible with morphisms in M. In particular, we have compatible
spectral sequences

Ec,d
2 := H c(Nσ̆ ,τ ,Hd(O(Ntor)∧

Z̃[(8H,δH,τ )]
))⇒ Rc+d f tor

∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
) (4.12)

and

Ec,d
2 := H c(Nσ̆ ,τ ,Hd(OZ̃[(8H,δH,τ )]

))⇒ Rc+d f tor
∗
(OZ̃[(8H,δH,τ )]

). (4.13)

To calculate the left-hand sides of (4.12) and (4.13), we define the sheaves
Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ

) and Hd(O(4̃8̆H̃,δ̆H̃ )τ
) of local systems on Ñσ̆ ,τ (in the obvious way),

which, by Lemma 4.6, carry canonical equivariant actions of the group 08̃H̃,8H ,
and descend to the sheaves Hd(O(Ntor)∧

Z̃[(8H,δH,τ )]
) and Hd(OZ̃[(8H,δH,τ )]

) on Nσ̆ ,τ , re-
spectively. Hence we obtain compatible spectral sequences

Ec−e,e
2 := H c−e(08̃H̃,8H

, H e(Ñσ̆ ,τ ,Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ
)))

⇒ H c(Nσ̆ ,τ ,Hd(O(Ntor)∧
Z̃[(8H,δH,τ )]

)) (4.14)
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and

Ec−e,e
2 := H c−e(08̃H̃,8H

, H e(Ñσ̆ ,τ ,Hd(O(4̃8̆H̃,δ̆H̃ )τ
)))

⇒ H c(Nσ̆ ,τ ,Hd(OZ̃[(8H,δH,τ )]
)). (4.15)

Lemma 4.16. For any d ≥ 0, the canonical morphisms

Rdh∗(OX8H,δH,τ×C8H,δH
C̃8̆H̃,δ̆H̃

)→ H 0(Ñσ̆ ,τ ,Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ
)) (4.17)

and

Rdh∗(OZ[(8H,δH,τ )]×C8H,δH
C̃8̆H̃,δ̆H̃

)→ H 0(Ñσ̆ ,τ ,Hd(O(4̃8̆H̃,δ̆H̃ )τ
)) (4.18)

are isomorphisms compatible with each other. Moreover, for any integer e > 0, we
have

H e(Ñσ̆ ,τ ,Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ
))= 0 (4.19)

and
H e(Ñσ̆ ,τ ,Hd(O(4̃8̆H̃,δ̆H̃ )τ

))= 0. (4.20)

Proof. By (4.7), we have

Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ
)(τ̆ cl)∼= Rd( f tor

τ̆ )∗(OUτ̆ )
∼=

⊕̂
˘̀∈σ̆⊥∩τ̆∨

Rdh∗(98̆H̃,δ̆H̃(
˘̀)),

and for any face τ̆ ′ of τ̆ , the canonical morphism

Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ
)(τ̆ cl)→Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ

)((τ̆ ′)
cl
)

sends the subsheaf Rdh∗(98̆H̃,δ̆H̃( ˘̀)) either (identically) to Rdh∗(98̆H̃,δ̆H̃( ˘̀)) when
˘̀ ∈ σ̆⊥∩ (τ̆ ′)∨, or to zero otherwise. Since

⋃
˘̀∈τ̆∨ τ̆

cl
=
⋃
˘̀∈τ̆∨ τ̆ is a convex subset

of Ñσ̆ ,τ for any given ˘̀ ∈ σ̆⊥, this shows (4.19) as usual (by the argument in [Kempf
et al. 1973, Chapter I, §3]). On the other hand, since

⋂
τ̆∈68̆H̃,σ̆ ,τ

(σ̆⊥∩ τ̆∨)= τ∨, we
see that (4.17) is an isomorphism. The proofs for (4.20) and (4.18) are similar. �

Lemma 4.21. The topological space Nσ̆ ,τ is homotopic to the real torus

T8̃H̃,8H := (08̃H̃,8H)
∨

R/08̃H̃,8H
,

whose cohomology groups (by contractibility of (08̃H̃,8H)
∨

R) are

H j (T8̃H̃,8H,Z)∼= H j (08̃H̃,8H
,Z)∼=

∧j
(HomZ(08̃H̃,8H

,Z))

for any j ≥ 0. Over C8H,δH , we have a canonical isomorphism

H j (08̃H̃,8H
,Z)⊗Z OC8H,δH

∼=
∧j
(HomO(Q∨,LieT∨/C8H,δH )). (4.22)
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Proof. Since σ̃ is a top-dimensional cone in P+
8̃H̃

, any τ̆ ∈68̆H̃,σ̆ ,τ (which has σ̆ as
a face) is generated by σ̆ and some rational basis vectors not contained in the image
of the first morphism in (3.7). Moreover, the image of τ̆ under the second morphism
in (3.7) is contained in τ ⊂ P+8H . By choosing some (noncanonical) splitting of
sX̆ ⊗Z Q : X̆ ⊗Z Q � X̃ ⊗Z Q, we can decompose the real vector space (S8̆H̃)

∨

R

(noncanonically) as a direct sum (S8̃H̃)
∨

R ⊕ (08̃H̃,8H)
∨

R ⊕ (S8H)
∨

R, on which the
action of 08̃H̃,8H is realized by its canonical translation action on the second factor.
Along the directions of (S8̃H̃)

∨

R and (S8H)∨R, we can contract the simplicial complex
Ñσ̆ ,τ (say, towards some arbitrarily chosen points in the convex sets σ̃ and τ ) in a
way compatible with the actions of 08̃H̃,8H . Therefore, Nσ̆ ,τ = Ñσ̆ ,τ/08̃H̃,8H is
homotopic to the real torus T8̃H̃,8H = (08̃H̃,8H)

∨

R/08̃H̃,8H .
The canonical isomorphism (4.22) then follows from the composition of the

following canonical isomorphisms:

H j (08̃H̃,8H
,Z)⊗Z OC8H,δH

∼=
(∧j

(HomZ(08̃H̃,8H
,Z))

)
⊗Z OC8H,δH

∼=
(∧j

(HomZ(HomO(X̃ , X),Z(�)))
)
⊗Z(�)

OC8H,δH

∼=
∧j
(HomO(Q∨,HomZ(Y,OC8H,δH )))

∼=
∧j
(HomO(Q∨,LieT∨/C8H,δH ))). �

Lemma 4.23. There are compatible canonical isomorphisms

Rdh∗(OX8H,δH,τ×C8H,δH
C̃8̆H̃,δ̆H̃

)∼=
∧d
(HomO(Q∨,LieA∨/X8H,δH,τ

)

and

Rdh∗(OZ[(8H,δH,τ )]×C8H,δH
C̃8̆H̃,δ̆H̃

)∼=
∧d
(HomO(Q∨,LieA∨/Z[(8H,δH,τ )]))

for any integer d ≥ 0.

Proof. By Lemma 4.9, the morphism h : C̃8̆H̃,δ̆H̃ → C8H,δH is a torsor under an
abelian scheme Z×(�)-isogenous to HomO(Q, A)◦ (and hence has a section étale
locally). Since the cohomology of abelian schemes (with coefficients in the structural
sheaves) are free and are compatible with arbitrary base changes (see [Berthelot
et al. 1982, Proposition 2.5.2; Mumford 1970, §5]), we obtain compatible canonical
isomorphisms

Rdh∗(OX8H,δH,τ×C8H,δH
C̃8̆H̃,δ̆H̃

)∼=
∧d
(Lie(HomO(Q,A)◦)∨/X8H,δH,τ

)

∼=
∧d
(HomO(Q∨,LieA∨/X8H,δH,τ

)),

Rdh∗(OZ[(8H,δH,τ )]×C8H,δH
C̃8̆H̃,δ̆H̃

)∼=
∧d
(Lie(HomO(Q,A)◦)∨/Z[(8H,δH,τ )]

)

∼=
∧d
(HomO(Q∨,LieA∨/Z[(8H,δH,τ )]))

for any integer d ≥ 0. �
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Proposition 4.24. There are compatible canonical isomorphisms

H c(Nσ̆ ,τ ,Hd(O(Ntor)∧
Z̃[(8H,δH,τ )]

))∼=
(∧c

(HomO(Q∨,LieT∨/X8H,δH,τ
))
)
⊗OX8H,δH,τ(∧d

(HomO(Q∨,LieA∨/X8H,δH,τ
))
)

(4.25)

and

H c(Nσ̆ ,τ ,Hd(OZ̃[(8H,δH,τ )]
))∼=

(∧c
(HomO(Q∨,LieT∨/Z[(8H,δH,τ )]))

)
⊗OZ[(8H,δH,τ )](∧d

(HomO(Q∨,LieA∨/Z[(8H,δH,τ )]))
)

(4.26)

for any integers c, d ≥ 0.

Proof. By Lemma 4.16, the spectral sequences (4.14) and (4.15) degenerate and
show that for any integers c and d we have compatible canonical isomorphisms

H c(Nσ̆ ,τ ,Hd(O(Ntor)∧
Z̃[(8H,δH,τ )]

))

∼= H c(08̃H̃,8H
, H 0(Ñσ̆ ,τ ,Hd(OX8̆H̃,δ̆H̃,σ̆ ,τ

)))

∼= H c(08̃H̃,8H
,Z)⊗Z Rdh∗(OX8H,δH,τ×C8H,δH

C̃8̆H̃,δ̆H̃
) (4.27)

and

H c(Nσ̆ ,τ ,Hd(OZ̃[(8H,δH,τ )]
))

∼= H c(08̃H̃,8H
, H 0(Ñσ̆ ,τ ,Hd(O(4̃8̆H̃,δ̆H̃ )τ

)))

∼= H c(08̃H̃,8H
,Z)⊗Z Rdh∗(OZ[(8H,δH,τ )]×C8H,δH

C̃8̆H̃,δ̆H̃
). (4.28)

Now combine (4.27) and (4.28) with Lemmas 4.21 and 4.23. �

Lemma 4.29. The spectral sequence (4.12) degenerates at E2 terms. Consequently,
since the choice of the stratum Z[(8H,δH,τ )] is arbitrary, by Grothendieck’s funda-
mental theorem [EGA III1 1961, 4.1.5] (and by fpqc descent for the property of
local freeness [SGA 1 1971, VIII, 1.11]), the sheaf Rb f tor

∗
(ONtor) is locally free of

the same rank as
∧b
(HomO(Q∨,LieG∨/Mtor

H
)) over Mtor

H .
If , for every maximal point s of Z[(8H,δH,τ )] (see [Grothendieck 1971, 0 2.1.2]),

we have

dimk(s)((Rb f tor
∗
(OZ̃[(8H,δH,τ )]

))⊗OZ[(8H,δH,τ )]
k(s))

≥ dimk(s)((Rb f tor
∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
))⊗OX8H,δH,τ

k(s)), (4.30)



Toroidal compactifications of PEL-type Kuga families 941

then the spectral sequence (4.13) degenerates at E2 terms as well, and there is a
canonical isomorphism

Rb f tor
∗
(ONtor)⊗OMtor

H
OZ[(8H,δH,τ )]

−→∼ Rb f tor
∗
(OZ̃[(8H,δH,τ )]

). (4.31)

Proof. Let Spf(R, I ) be any connected affine open formal subscheme of X8H,δH,τ ,
with the ideal of definition I satisfying rad(I ) = I for simplicity. Since Mtor

H is
smooth and of finite type over S0 = Spec(OF0,(�)), the ring R is a noetherian
domain. (See [Matsumura 1980, 33.I and 34.A].) Since Z[(8H,δH,τ )] is a smooth
subscheme of Mtor

H , the quotient R/I is also a noetherian domain. Let K := Frac(R)
and k := Frac(R/I ) be the fraction fields. By abuse of notation, we shall denote
pullbacks of schemes to Spec(K ) (resp. Spec(k)) by the subscript K (resp. k).

Since we have an exact sequence

0→ LieT∨/X8H,δH,τ
→ LieG∨,\/X8H,δH,τ

→ LieA∨/X8H,δH,τ
→ 0

of locally free sheaves, we have an equality∑
c+d=b

dimK
(∧c

(HomO(Q∨,LieA∨K ))
)
⊗K

(∧d
(HomO(Q∨,LieT∨K ))

)
= dimK

(∧b
(HomO(Q∨,LieG∨,\K

))
)

= dimK
(∧b

(HomO(Q∨,LieG∨K ))
)
, (4.32)

and an analogous equality with K replaced with k.
By construction of the spectral sequences (4.12) and (4.13), by the canonical

isomorphisms (4.25) and (4.26), and by the equality (4.32), we have∑
c+d=b

dimK (H c(Nσ̆ ,τ ,Hd(O(Ntor)∧
Z̃[(8H,δH,τ )]

))⊗OX8H,δH,τ
K )

= dimK
(∧b

(HomO(Q∨,LieG∨K ))
)

≥ dimK ((Rb f tor
∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
))⊗OX8H,δH,τ

K ) (4.33)

and∑
c+d=b

dimk(H c(Nσ̆ ,τ ,Hd(OZ̃[(8H,δH,τ )]
))⊗OZ[(8H,δH,τ )]

k)

= dimk
(∧b

(HomO(Q∨,LieG∨k ))
)

≥ dimk(Rb f tor
∗
(OZ̃[(8H,δH,τ )]

)⊗OZ[(8H,δH,τ )]
k). (4.34)

Since the pullback of f tor to the open dense subscheme MH of Mtor
H is simply

the abelian scheme f : N′→MH, we have
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(Rb f tor
∗
(ONtor))⊗OMtor

H
OMH
∼= Rb f∗(ON)

∼=
∧bLieN∨/MH

∼=
∧b
(HomO(Q∨,LieG∨MH/MH

)).

Since the canonical morphism Spec(K )→ Mtor
H factors through some maximal

point of MH, this implies that the inequality in (4.33) is an equality, and hence
that the spectral sequence (4.12) degenerates at E2 terms after pullback to K .
Since all E2 terms of this spectral sequence are locally free sheaves, this shows
that (4.12) degenerates at E2 terms after pullback to R. Since the choice of R is
arbitrary, this shows that (4.12) degenerates over the whole X8H,δH,τ , and hence
Rb f tor
∗
(ONtor) is locally free of the same rank as

∧b
(HomO(Q∨,LieG∨/Mtor

H
)) over

Mtor
H . (Nevertheless, since f tor is not necessarily flat, this does not imply that the

formation of Rb f tor
∗
(ONtor) is compatible with arbitrary base change.)

Since the canonical morphism Spec(k) → Z[(8H,δH,τ )] factors through some
maximal point of Z[(8H,δH,τ )], the inequality (4.30) implies that

dimk(Rb f tor
∗
(OZ̃[(8H,δH,τ )]

)⊗OZ[(8H,δH,τ )]
k)

≥ dimk((Rb f tor
∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
))⊗OX8H,δH,τ

k)

= dimK ((Rb f tor
∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
))⊗OX8H,δH,τ

K ),

and hence the equality in (4.33) implies the equality in (4.34), because

dimk
(∧b

(HomO(Q∨,LieG∨k ))
)
= dimK

(∧b
(HomO(Q∨,LieG∨K ))

)
.

Therefore, by the same reasoning as in the case of (4.12) above, the spectral sequence
(4.13) also degenerates at E2 terms. Since the spectral sequences (4.12) and (4.13)
are compatible with each other (by their very construction), their degeneracy implies
that the canonical morphism

Rb f tor
∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
)⊗OX8H,δH,τ

OZ[(8H,δH,τ )]
→ Rb f tor

∗
(OZ̃[(8H,δH,τ )]

)

is an isomorphism (by comparing graded pieces) and induces (4.31). �

Remark 4.35. By upper semicontinuity for proper flat morphisms (see [Mumford
1970, §5 Corollary (a)]), the assumption (4.30) is satisfied when f tor is flat, or
equivalently when Condition 3.17 is satisfied (by Proposition 3.18), which can be
achieved by refining both 6̃ and 6 (by Proposition 3.19).

Corollary 4.36. For any integer b ≥ 0, the canonical (cup product) morphism∧b
(R1 f tor

∗
(ONtor))→ Rb f tor

∗
(ONtor) is an isomorphism.

Proof. As in Lemma 4.29, by properness of f tor, this is true if and only if it is
true over the formal completion along each stratum Z[(8H,δH,τ )], which is the case
because the canonical morphism induces isomorphisms on all graded pieces defined
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by spectral sequences such as (4.12), which are compatible with cup products by
the very construction (see [Godement 1958, II, §5–6]). �

4C. Degeneracy of the (relative) Hodge spectral sequence. As in (3c) of Theorem
2.15, let H i

log-dR(N
tor/Mtor

H ) := Ri f tor
∗
�•Ntor/Mtor

H
be the (relative) log de Rham coho-

mology. By the definition of H i
log-dR(N

tor/Mtor
H ) as the “relative hypercohomology”,

the natural (Hodge) filtration on the complex �•Ntor/Mtor
H

defines the (relative) Hodge
spectral sequence (2.20):

Ea,b
1 := Rb f tor

∗
(�a

Ntor/Mtor
H
)⇒ Ha+b

log-dR(N
tor/Mtor

H ).

By (3a) of Theorem 2.15 (which we have proved in Section 3C), there is a canonical
isomorphism

�a
Ntor/Mtor

H
∼=
∧a[

( f tor)∗(HomO(Q∨,Lie∨G/Mtor
H
))
]

∼= ( f tor)∗
[∧a

(HomO(Q∨,Lie∨G/Mtor
H
))
]

of locally free sheaves over Ntor. Then (by the projection formula [EGA I 1960,
chapitre 0, 5.4.10.1]) we have canonical isomorphisms

Rb f tor
∗
(�a

Ntor/Mtor
H
)∼= (Rb f tor

∗
(ONtor))⊗OMtor

H

(∧a
(HomO(Q∨,Lie∨G/Mtor

H
))
)
. (4.37)

Lemma 4.38. If Rb f tor
∗
(ONtor) is locally free for every integer b≥0, then the spectral

sequence (2.20) degenerates at the E1 terms.

Proof. By (4.37), if Rb f tor
∗
(ONtor) is locally free for every integer b ≥ 0, then all

the E1 terms Rb f tor
∗
(�a

Ntor/Mtor
H
) of the spectral sequence (2.20) are locally free.

Therefore, to show that (2.20) degenerates at E1 terms, it suffices to show that it
degenerates at E1 terms over the open dense subscheme MH of Mtor

H , which is true
because f tor

|N = f : N→MH is an abelian scheme. (See for example [Berthelot
et al. 1982, Proposition 2.5.2].) �

This proves (3c) of Theorem 2.15, because the local freeness of Rb f tor
∗
(ONtor)

has been established in Section 4B for every integer b ≥ 0.

4D. Gauss–Manin connections with log poles. In Section 3C, we proved the log
smoothness of f tor

:Ntor
→Mtor

H by verifying Lemma 3.11. For simplicity, let us set

�1
Mtor
H /S0
:=�1

Mtor
H /S0
[d log∞] and �1

Ntor/S0
:=�1

Ntor/S0
[d log∞].

Then (3.12) can be rewritten as the exact sequence

0→ ( f tor)∗(�1
Mtor
H /S0

)→�1
Ntor/S0

→�1
Ntor/Mtor

H
→ 0, (4.39)
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which induces the Koszul filtration [Katz 1972, 1.2, 1.3]

Ka(�•Ntor/S0
) := image(�•−a

Ntor/S0
⊗ON

( f tor)∗(�a
Mtor
H /S0

)→�•Ntor/S0
)

on �•Ntor/S0
, with graded pieces Gra

K(�
•

Ntor/S0
)∼=�

•−a
Ntor/Mtor

H
⊗ON

( f tor)∗(�a
Mtor
H /S0

).
On the other hand, we have the Hodge filtration

Fa(�•Ntor/S0
) :=�

•≥a
Ntor/S0

on �•Ntor/S0
, giving the Hodge filtration

Fa(H i
log-dR(N

tor/Mtor
H )) := image(Ri f tor

∗
(Fa(�•Ntor/S0

))→ Ri f tor
∗
(�•Ntor/S0

))

on H i
log-dR(N

tor/Mtor
H ). By applying R• f tor

∗
to the short exact sequence

0→�•−1
Ntor/Mtor

H
⊗ON

( f tor)∗(�1
Mtor
H /S0

)→ K2/K0
→�•Ntor/S0

→ 0, (4.40)

we obtain in the long exact sequence the connecting homomorphisms

H i
log-dR(N

tor/Mtor
H )= Ri f tor

∗
(�•

Ntor/Mtor
H
)

∇
→ Ri+1 f tor

∗
(�•−1

Ntor/Mtor
H
⊗ON

�1
Mtor
H /S0

)∼= H i
log-dR(N

tor/Mtor
H )⊗OMH

�1
Mtor
H /S0

. (4.41)

As explained in [Katz 1972, 1.4], the pullback of ∇ in (4.41) to MH is nothing but
the usual Gauss–Manin connection on H i

dR(N/MH). Since the sheaves involved in
(4.41) are all locally free,

∇ : H i
log-dR(N

tor/Mtor
H )→ H i

log-dR(N
tor/Mtor

H )⊗OMH
�1

Mtor
H /S0

satisfies the necessary conditions for being an integrable connection with log poles
(because its restriction to the dense subscheme MH does). If we take the F-filtration
on (4.40), we obtain

0→ (Fa−1(�•
Ntor/Mtor

H
)⊗ON

( f tor)∗(�1
Mtor
H /S0

))[−1]→ Fa(K2/K0)→ Fa(�•Ntor/S0
)→ 0

and hence the Griffith transversality

∇(Fa(H i
log-dR(N

tor/Mtor
H )))⊂ Fa−1(H i

log-dR(N
tor/Mtor

H ))⊗OMH
�1

Mtor
H /S0

(as in [Katz 1972, Proposition 1.4.1.6]). This proves (3e) of Theorem 2.15.

Remark 4.42. By (3c) of Theorem 2.15, the (relative) Hodge spectral sequence

Ea,i−a
1 := Ri−a f tor

∗
(�a

Ntor/Mtor
H
)⇒ H i

log-dR(N
tor/Mtor

H )

degenerates. Then we have Gra
F(H

i
log-dR(N

tor/Mtor
H ))
∼= Ri−a f tor

∗
(�a

Ntor/Mtor
H
), and we

can conclude (as in [Katz 1972, Proposition 1.4.1.7]) that the induced morphism
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∇ : Gra
F H i

log-dR(N
tor/Mtor

H )→ Gra−1
F H i

log-dR(N
tor/Mtor

H )⊗OMH
�1

Mtor
H /S0

agrees with
the morphism

Ri−a f tor
∗
(�a

Ntor/Mtor
H
)→ Ri−a+1 f tor

∗
(�a−1

Ntor/Mtor
H
)⊗OMH

�1
Mtor
H /S0

defined by cup product with the Kodaira–Spencer class defined by the extension
class of (4.39). We will revisit a special case of this in Section 6B.

5. Polarizations

The aim of this section is to prove (3b) and (3d) of Theorem 2.15, by studying the
log extension of polarizations on the relative de Rham cohomology.

5A. Identification of Rb f tor
∗ (ONtor). By Corollary 2.12, any morphism jQ :Q∨ ↪→Q

in Lemma 2.5 (together with the tautological polarization λMH : GMH→ G∨MH over
MH) induces canonically a polarization

λMH, jQ : HomO(Q,GMH)
◦
→ (HomO(Q,GMH)

◦)
∨

of degree prime to �, and hence an isomorphism

dλMH, jQ : HomO(Q,LieGMH/MH
)−→∼ HomO(Q∨,LieG∨MH/MH

).

Therefore, it induces canonically a Z×(�)-polarization λMH, jQ : N → N∨, and
hence an isomorphism dλMH, jQ : LieN/MH → LieN∨/MH . Over Mtor

H , the mor-
phisms jQ : Q∨ ↪→ Q and dλ : LieG/Mtor

H
→ LieG∨/Mtor

H
induce canonically an

isomorphism dλ jQ : HomO(Q,LieG/Mtor
H
) −→∼ HomO(Q∨,LieG∨/Mtor

H
) extending

dλMH, jQ : HomO(Q,LieGMH/MH
)−→∼ HomO(Q∨,LieG∨MH/MH

).

Let us define DerNtor/Mtor
H
:= HomONtor (�

1
Ntor/Mtor

H
,ONtor). Its restriction to MH can

be canonically identified with DerN/MH := HomON(�
1
N/MH

,ON).
Let us denote by  :MH→Mtor

H the canonical open immersion. Then we have
the commutative diagram

f tor
∗
(DerNtor/Mtor

H
)

∼

can.� _

res.
��

HomO(Q,LieGMH/MH
)

� _

res.
��

∗( f∗(DerN/MH))
∼

can.

��

∗(HomO(Q,LieGMH/MH
))

∗(dλMH, jQ )

��

∗(R1 f∗(ON))
∼

can.
∗(HomO(Q,LieG∨MH/MH

))

R1 f tor
∗
(ONtor)

?�

res.

OO

HomO(Q,LieG∨/Mtor
H
)

?�

res.

OO

dλ jQ

��

(5.1)
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of sheaves over Mtor
H , with the dotted arrow induced by ∗(dλMH, jQ ). By abuse of

notation, let us denote the dotted arrow also by ∗(dλMH, jQ ). We have the following
simple observation:

Lemma 5.2. If ∗(dλMH, jQ ) maps the image of the canonical injection

f tor
∗
(DerNtor/Mtor

H
) ↪→ ∗( f∗(DerN/MH))

isomorphically to the image of the canonical injection

R1 f tor
∗
(ONtor) ↪→ ∗(R1 f∗(ON)),

then (5.1) induces the desired canonical isomorphism

R1 f tor
∗
(ONtor)∼= HomO(Q,LieG∨/Mtor

H
) (5.3)

extending the canonical isomorphism R1 f∗(ON)∼=HomO(Q,LieG∨MH/MH
) over MH.

Remark 5.4. The question is whether the assumption of Lemma 5.2 can be satisfied.
Since this is a question about morphisms between locally free sheaves over the
normal base scheme Mtor

H , it suffices to verify the statement after localizations at
points of codimension one. Therefore, since the statement is tautologically true
over MH, it suffices to verify it over Mtor

H ⊗Z Q.

5B. Logarithmic extension of polarizations. By construction (see Section 3A),
X̃∨(1) ∼= HomO(X̃ ,Diff−1(1)) is the submodule Q−2 of Q∨ ⊗Z Z(�)(1), and Ỹ
is the submodule Q0 of Q ⊗Z Z(�). Therefore, the embedding jQ : Q∨ ↪→ Q
corresponds to an element ˜̀ jQ of S8̃H̃ ⊗Z Z(�). The positive definiteness of the
induced pairing 〈 j−1

Q ( · ), · 〉Q then translates to the strong positivity condition that
〈 ˜̀ jQ , y〉> 0 for any y ∈ P8̃H̃ −{0}. By replacing jQ with a multiple by a positive
integer prime to �, we may and we shall assume that ˜̀ jQ ∈S8̃H̃ (without altering the
above strong positivity condition). Then we obtain an invertible sheaf 98̃H̃,δ̃H̃( ˜̀ jQ )

over the abelian scheme N→MH. Note that ˜̀ jQ ∈ σ̃
∨

0 .

Lemma 5.5. The invertible sheaf 98̃H̃,δ̃H̃( ˜̀ jQ ) is relatively ample over MH, and
induces twice of a Z×(�)-polarization λ98̃H̃,δ̃H̃ ( ˜̀ jQ ) : N→ N∨ (namely a Z×(�)-isogeny
whose sufficiently divisible positive multiple is a polarization). Under the canonical
isomorphisms in Corollary 2.13, the induced morphism

dλ98̃H̃,δ̃H̃ (
˜̀ jQ )
: LieN/MH→ LieN∨/MH

is twice a positive Z×(�)-multiple of

dλMH, jQ : HomO(Q,LieGMH/MH
)−→∼ HomO(Q∨,LieG∨MH/MH

).

In particular, dλ98̃H̃,δ̃H̃ ( ˜̀ jQ ) is an isomorphism over MH⊗Z Q.
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Proof. Just note that the morphism λ98̃H̃,δ̃H̃ (
˜̀ jQ )

is twice a positive Z×(�)-multiple of
the Z×(�)-polarization λMH, jQ in Corollary 2.12. �

The invertible sheaf 98̃H̃,δ̃H̃( ˜̀ jQ ) over N defines a global section of R1 f∗(O×N),
and the morphism

d log : O×N→�1
N/MH

, a 7→ a−1da

induces a global section D ˜̀ jQ = d log(98̃H̃,δ̃H̃( ˜̀ jQ )) of R1 f∗(�1
N/MH

). Then it is
standard (cf. [Lan 2008, Proposition 2.1.5.14]) that the cup product with D ˜̀ jQ
induces a composition of morphisms

f∗(DerN/MH)

⋃
D ˜̀ jQ
→ R1 f∗(DerN/MH ⊗ON

�1
N/MH

)
can.
→ R1 f∗(ON),

and that this morphism f∗(DerN/MH)→ R1 f∗(ON) can be identified with the mor-
phism dλ98̃H̃,δ̃H̃ ( ˜̀ jQ ) under the canonical isomorphisms

f∗(DerN/MH)∼= LieN/MH and R1 f∗(ON)∼= LieN∨/MH .

The first question is whether we can extend the morphism f∗(DerN/MH)→ R1 f∗(ON)

to Mtor
H ; and the second question is whether the extended morphism is an isomor-

phism, at least in codimension one.
A naive approach is to extend the invertible sheaf 98̃H̃,δ̃H̃( ˜̀ jQ ) to Ntor. Since

Ntor is projective and smooth over S0 = Spec(OF0,(�)), it is locally noetherian
and locally factorial. Then [EGA IV4 1967, 21.6.11] implies that the canonical
restriction morphism Pic(Ntor)→ Pic(N) is surjective.

However, since f tor
: Ntor

→ Mtor
H is not smooth, we have little control on

the canonical restriction morphism R1 f tor
∗
(�1

Ntor/Mtor
H
)

res.
→ ∗(R1 f∗(�1

N/MH
)), and

there is no obvious reason that the image of the class defined by any extension of
98̃H̃,δ̃H̃(

˜̀ jQ ) should induce an isomorphism extending dλ98̃H̃,δ̃H̃ ( ˜̀ jQ ) (at least) in
codimension one. (This is mentioned in [Faltings and Chai 1990, Chapter VI, end
of §2], but with no details.)

An alternative approach is to consider the canonical restriction morphism

R1 f tor
∗
(�1

Ntor/Mtor
H
)

res.
→ ∗(R1 f∗(�1

N/MH
)). (5.6)

By Lemma 4.29, and by (3a) of Theorem 2.15, R1 f tor
∗
(�1

Ntor/Mtor
H
) is locally free

over Mtor
H . Therefore, the morphism (5.6) is injective.

Remark 5.7. The use of R1 f tor
∗
(�1

Ntor/Mtor
H
) is inspired by Kato’s idea of (relative)

log Picard groups mentioned in [Illusie 1994, 3.3]. An application of this idea has
been carried out in [Olsson 2004].
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So far we have refrained from introducing the log structures (because they had
not been necessary), but they are needed (at least formally) here. We shall adopt a
notation slightly different from those of [Kato 1989; Illusie 1994]. Let ̆ : N→ Ntor

denote the canonical open immersion. Then the canonical (fine) log structure on Ntor

(which we have been using so far) given by Ntor
−N (with its reduced structure) can

be defined explicitly as the sheaf of monoids O
×

Ntor := ONtor ∩ ̆∗O
×

N (sheafification of
the obvious presheaf), with associated sheaf of groups O

×,gp
Ntor . Clearly, the restriction

of O
×,gp
Ntor to N is canonically isomorphic to O×N .

Definition 5.8. A relative log invertible sheaf over f tor
: Ntor

→Mtor
H is a global

section of R1 f tor
∗
(O
×,gp
Ntor ).

Since we do not assume that f tor is flat (or log integral), the appropriate inter-
pretation of relative log invertible sheaves can be quite delicate (and beyond this
article).

Lemma 5.9. To define a global section of R1 f tor
∗
(O
×,gp
Ntor ), it suffices to have the

following data:

(1) A collection of schemes Uα over Ntor forming an étale covering. We shall
denote the fiber product Uα×Ntor Uβ (i.e., “intersection” in the étale topology)
by Uαβ , denote Uαβ |N := Uαβ ×Ntor N by Uαβ , and use similar notations for
higher fiber products.

(2) A usual invertible sheaf Lα over each Uα.

(3) A comparison isomorphism Lα|Uαβ
∼= Lβ |Uαβ

over each Uαβ , satisfying the
usual cocycle condition over triple fiber products Uαβγ .

Proof. Since the restriction morphism O
×,gp
Ntor (Uαβ)→ O

×,gp
Ntor (Uαβ)∼= O×N(Uαβ) is a

bijection when the image of Uαβ in Ntor is sufficiently small, the data above define a
section of H 1(Ntor,O

×,gp
Ntor ), which then defines a section of H 0(Mtor

H , R1 f tor
∗
(O
×,gp
Ntor ))

by the Leray spectral sequence in low degrees. (See [Godement 1958, I 4.5.1].) �

In the construction of toroidal compactifications in [Lan 2008, §6.3.3] (following
[Faltings and Chai 1990, Chapter IV, §5]), there is a strata-preserving étale covering
Ũ→ M̃tor

H̃ (serving as an étale presentation for the algebraic stack M̃tor
H̃ ), where

Ũ is a finite union of the so-called good algebraic models of M̃tor
H̃ . (See [Lan

2008, Definition 6.3.2.5].) By taking the closures of the [(8̃H̃, δ̃H̃, σ̃ )]-strata, we
obtain a strata-preserving étale covering Ŭ→ Ntor, with strata labeled by triples
[(8̆H̃, δ̆H̃, τ̆ )] having [(8̃H̃, δ̃H̃, σ̃ )] as a face.

Each connected component Uα of Ŭ is given by the closure of the [(8̃H̃, δ̃H̃, σ̃ )]-
stratum in a so-called good algebraic (8̆H̃, δ̆H̃, τ̆ )-model Ũα = Spec(R̃α)→ M̃tor

H̃ ,
where (8̆H̃, δ̆H̃, τ̆ ) is a representative of some [(8̆H̃, δ̆H̃, τ̆ )] having [(8̃H̃, δ̃H̃, σ̃ )]
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as a face (cf. second property in [Lan 2008, Definition 6.3.2.5]), which we may
assume to satisfy τ̆ ∈ 68̆H̃,σ̆ ,τ . (See Section 4A. There are usually many α for
each [(8̆H̃, δ̆H̃, τ̆ )].) Then we also have a strata-preserving étale morphism Uα→

(4̃8̆H̃,δ̆H̃
)σ̆ (τ̆ ), which we shall call a good algebraic (8̆H̃, δ̆H̃, τ̆ )-model of Ntor. The

(open) [(8̃H̃, δ̃H̃, σ̃ )]-stratum in Uα is exactly the open subscheme Uα :=Uα×Ntor N

of Uα.

Lemma 5.10. Suppose that, for each τ̆ ∈68̆H̃,σ̆ ,τ , we have chosen an element ˘̀ jQ ,τ̆

in τ̆∨0 that is mapped to ˜̀ jQ in σ̃∨0 under the second morphism in (3.6), and that
˘̀ jQ ,γ τ̆ = γ

˘̀ jQ ,τ̆ for any γ ∈08̃H̃,8H . (Note that the choice of ˘̀ jQ ,τ̆ is unique only up
to translation by σ̆⊥.) Let Ŭ→ Ntor be any strata-preserving étale covering formed
by a finite union of good algebraic models. Then the choices of { ˘̀ jQ ,τ̆ }τ̆∈68̆H̃,σ̆ ,τ

and Ŭ determine a relative log invertible sheaf L over Ntor
→Mtor

H extending the
rigidified invertible sheaf 98̃H̃,δ̃H̃( ˜̀ jQ ) over N, in the following sense: For each
good algebraic (8̆H̃, δ̆H̃, τ̆ )-model Uα of Ntor, with τ̆ ∈68̆H̃,σ̆ ,τ , let Lα denote the
pullback of 98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ ) under the composition Uα→ (4̃8̆H̃,δ̆H̃)σ̆ (τ̆ )→ C̃8̆H̃,δ̆H̃ .
Then Lα|Uα

is canonically isomorphic to the pullback of 98̃H̃,δ̃H̃(
˜̀ jQ ) (from N ∼=

C̃8̃H̃,δ̃H̃) to Uα . Furthermore, the collection {(Uα,Lα)} satisfies the requirements in
Lemma 5.9, and defines a log invertible sheaf as in Definition 5.8.

Proof. Let (G̃, λ̃, ĩ, α̃H̃) be the degenerating family of type M̃H̃ over M̃tor
H̃ . Let

B(G̃) : S8̃H̃(G̃)→ Inv(M̃tor
H̃ ) be constructed as in [Lan 2008, Construction 6.3.1.1].

If Ũα is a good algebraic (8̆H̃, δ̆H̃, τ̆ )-model, then for any ˘̀ ∈ S8̆H̃ , the invertible
sheaf B(G̃)(Ũα)( ˘̀) over Ũα is canonically isomorphic to the pullback of98̆H̃,δ̆H̃(

˘̀)

under the composition Ũα→ (4̃8̆H̃,δ̆H̃
)σ̆ (τ̆ )→ C̃8̆H̃,δ̆H̃ (cf. third property in [Lan

2008, Definition 6.3.2.5]).
Given that B(G̃) is defined over M̃tor

H̃ and functorial with respect to pullback
morphisms Ũαβ → Ũα, the restriction of the pullback of 98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ ) to the
[(8̃H̃, δ̃H̃, σ̃ )]-stratum of Ũα is isomorphic to the pullback of 98̃H̃,δ̃H̃( ˜̀ jQ ) when
(8̃H̃, δ̃H̃, σ̃ ) is a face of [(8̆H̃, δ̆H̃, τ̆ )]. In other words, Lα|Uα

is isomorphic to the
pullback of 98̃H̃,δ̃H̃( ˜̀ jQ ) over each Uα. Since the isomorphisms Lα|Uαβ

∼= Lβ |Uαβ

induced by such identifications satisfy the cocycle condition (because 98̃H̃,δ̃H̃( ˜̀ jQ )

is defined on N), the claim follows, as desired. �

Remark 5.11. Any (usual) invertible sheaf over Ntor extending 98̃H̃,δ̃H̃( ˜̀ jQ ) satis-
fies the requirements in Lemma 5.9 trivially. The point of Lemma 5.10 is that it
provides an explicit extension of 98̃H̃,δ̃H̃( ˜̀ jQ ) (useful for our later argument) over
an étale covering of Ntor. (We do not have such an explicit description of a global
invertible sheaf extension over Ntor.)
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Definition 5.12. To any relative log invertible sheaf L over Ntor
→Mtor

H defined by
a global section of R1 f tor

∗
(O
×,gp
Ntor ), we define d log(L) to be the image of L under the

canonical morphism R1 f tor
∗
(O
×,gp
Ntor )→ R1 f tor

∗
(�1

Ntor/Mtor
H
) induced by the canonical

morphism d log : O
×,gp
Ntor →�1

Ntor/Mtor
H

.

Corollary 5.13. There exists a (unique) global section Dtor
˜̀ jQ

of R1 f tor
∗
(�1

Ntor/Mtor
H
)

whose image under the canonical injection (5.6) is ∗(D ˜̀ jQ ), and which satisfies
Dtor
˜̀ jQ
= d log(L) for any L constructed in Lemma 5.10 (with any choices of ˘̀ jQ ,τ̆ ’s).

Proof. Existence is clear because there is always some (usual) invertible sheaf
over Ntor extending 98̃H̃,δ̃H̃(

˜̀ jQ ) (by [EGA IV4 1967, 21.6.11], since Ntor is locally
noetherian and locally factorial, as mentioned above). Uniqueness is clear because
(5.6) is injective. Once we know the unique existence of Dtor

˜̀ jQ
, it has to agree with

d log(L) for any L constructed in Lemma 5.10. �

Thus we are led to state the following:

Proposition 5.14. Cup product with the global section Dtor
˜̀ jQ

of R1 f tor
∗
(�1

Ntor/Mtor
H
)

in Corollary 5.13 induces a composition of morphisms

f tor
∗
(DerNtor/Mtor

H
)

⋃
Dtor
˜̀ jQ

−→ R1 f tor
∗
(DerNtor/Mtor

H
⊗ONtor �

1
Ntor/Mtor

H
)

can.
−→ R1 f tor

∗
(ONtor). (5.15)

This composition is an isomorphism over Mtor
H ⊗ZQ. (By Lemma 5.2 and Remark 5.4,

this implies the existence of the canonical isomorphism (5.3).)

We will carry out the proof of Proposition 5.14 in the next subsection.

5C. Induced morphisms over formal fibers. We fix the choices of { ˘̀ jQ ,τ̆ }τ̆∈68̆H̃,σ̆ ,τ

and Ŭ, so that L is constructed as in Lemma 5.10, and so that Dtor
˜̀ jQ
= d log(L) as in

Corollary 5.13.
Since f tor is proper and the sheaves involved are all coherent, by Grothendieck’s

fundamental theorem [EGA III1 1961, 4.1.5], Proposition 5.14 can be verified by
pulling back to formal completions along strata of Mtor

H . Let us fix the choice of a
cusp label [(8H, δH, σ )] of Mtor

H , and consider the canonical morphism

ı : X8H,δH,τ ∼= (M
tor
H )
∧

Z[(8H,δH,σ )]
→Mtor

H .

By abuse of notation, we shall also denote by ı∗( · ) the pullbacks of objects un-
der pullbacks of the morphism ı . We would like to show that the morphism
ı∗ f tor
∗
(DerNtor/Mtor

H
)→ ı∗R1 f tor

∗
(ONtor) defined by cup product with ı∗(Dtor

˜̀ jQ
) is an

isomorphism over X8H,δH,τ ⊗Z Q.
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As said in Section 4A, the pullback of f tor to X8H,δH,τ can be identified with the
canonical morphism X8̆H̃,δ̆H̃,σ̆ ,τ/08̃H̃,8H → X8H,δH,τ , and X8̆H̃,δ̆H̃,σ̆ ,τ/08̃H̃,8H
has a finite open covering by the collection {U[τ̆ ]}[τ̆ ]∈68̆H̃,σ̆ ,τ /08̃H̃,8H

of open formal
subschemes. Let τ̆∈68̆H̃,σ̆ ,τ be a representative of [τ̆ ]∈68̆H̃,σ̆ ,τ/08̃H̃,8H . For each
such τ̆ , recall that the formal scheme Uτ̆ is the completion of (4̃8̆H̃,δ̆H̃)σ̆ (τ̆ ) along Uτ̆ .
By abuse of notation, let us denote the pullback of98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ ) over C̃8̆H̃,δ̆H̃ to Uτ̆

by the same notation. For any γ ∈08̃H̃,8H , since ˘̀ jQ ,γ τ̆ = γ
˘̀ jQ ,τ̆ (see Lemma 5.10),

we have a canonical isomorphism γ ∗98̆H̃,δ̆H̃(
˘̀ jQ ,γ τ̆ ) −→

∼ 98̆H̃,δ̆H̃(
˘̀ jQ ,τ̆ ), where

γ :Uτ̆ −→∼ Uγ τ̆ is the canonical isomorphism (see Lemma 4.6). Hence98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ )

descends to an unambiguous invertible sheaf 98̆H̃,δ̆H̃( ˘̀ jQ ,[τ̆ ]) on U[τ̆ ].
The étale covering Ŭ→ Ntor induces (by taking formal completion along the

pullback of Z[(8H,δH,σ )]) a formally étale covering of (Ntor)∧Z[(8H,δH,σ )]
. If Uα is a good

algebraic (8̆H̃, δ̆H̃, τ̆ )-model of Ntor, then the formal completion (Uα)
∧

Z[(8H,δH,σ )]
of

Uα along the pullback of Z[(8H,δH,σ )] is formally étale over Uτ̆ .

Lemma 5.16. The pullback of Lα to (Uα)
∧

Z[(8H,δH,σ )]
is isomorphic to the pullback

of 98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ ) from Uτ̆ .

Proof. The canonical morphisms

(Uα)
∧

Z[(8H,δH,σ )]
→Uα→ Ntor and (Uα)

∧

Z[(8H,δH,σ )]
→ Uτ̆ → Ntor

are induced respectively by morphisms

(Ũα)
∧

Z[(8H,δH,σ )]
→ Ũα→ M̃tor

H̃ and (Ũα)
∧

Z[(8H,δH,σ )]
→ Ũτ̆ → M̃tor

H̃

over M̃tor
H̃ . Under both these morphisms, the pullback of (G̃, λ̃, ĩ, α̃H̃)→ M̃tor

H̃ is
canonically isomorphic to the pullback of the Mumford family (as in the proof of
Proposition 4.3). Since the isomorphism class of the pullback ofLα to (Uα)

∧

Z[(8H,δH,σ )]

is determined by the pullback of B(G̃) : S8̃H̃(G̃)→ Inv(M̃tor
H̃ ) (as in the proof of

Lemma 5.10), we can pullback along (Uα)
∧

Z[(8H,δH,σ )]
→ Uτ̆ → Ntor and conclude

that Lα is isomorphic to the pullback of 98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ ) from Uτ̆ . �

By Lemma 4.29, we have

ı∗ f tor
∗
(ONtor)∼= f tor

∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
)∼= H 0(Nσ̆ ,τ ,H0(O(Ntor)∧

Z̃[(8H,δH,τ )]
)),

and ı∗R1 f tor
∗
(ONtor)∼= R1 f tor

∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
) is equipped with a decreasing filtration

with (locally free) graded pieces

Gr0(ı∗R1 f tor
∗
(ONtor))∼= H 0(Nσ̆ ,τ ,H1(O(Ntor)∧

Z̃[(8H,δH,τ )]
))

and

Gr1(ı∗R1 f tor
∗
(ONtor))∼= H 1(Nσ̆ ,τ ,H0(O(Ntor)∧

Z̃[(8H,δH,τ )]
)).
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Thus, to show that (5.15) is an isomorphism over Mtor
H ⊗Z Q, it suffices (by com-

parison of ranks of locally free sheaves) to show that it induces surjections from
subquotients of ı∗ f tor

∗
(DerNtor/Mtor

H
) to these graded pieces over X8H,δH,τ ⊗Z Q.

By tensoring the above filtration with ı∗�1
Ntor/Mtor

H
(and by (3.15)), we obtain a

decreasing filtration on ı∗R1 f tor
∗
(�1

Ntor/Mtor
H
) with

Gr0(ı∗R1 f tor
∗
(�1

Ntor/Mtor
H
))∼= H 0(Nσ̆ ,τ ,H1(ı∗�1

Ntor/Mtor
H
))

and

Gr1(ı∗R1 f tor
∗
(�1

Ntor/Mtor
H
))∼= H 1(Nσ̆ ,τ ,H0(ı∗�1

Ntor/Mtor
H
)).

Since DerNtor/Mtor
H
∼= ( f tor)∗(HomO(Q,LieGMH/MH

)), we have

ı∗ f tor
∗
(DerNtor/Mtor

H
)∼= H 0(Nσ̆ ,τ ,H0(ı∗DerNtor/Mtor

H
)),

and the morphism

ı∗ f tor
∗
(DerNtor/Mtor

H
)→ H 0(Nσ̆ ,τ ,H1(O(Ntor)∧

Z̃[(8H,δH,τ )]
))

induced by (5.15) can be identified with the morphism

H 0(Nσ̆ ,τ ,H0(ı∗DerNtor/Mtor
H
))→ H 0(Nσ̆ ,τ ,H1(O(Ntor)∧

Z̃[(8H,δH,τ )]
)) (5.17)

given by cup product with the image of ı∗(Dtor
˜̀ jQ
) in Gr0(ı∗R1 f tor

∗
(�1

Ntor/Mtor
H
)) ∼=

H 0(Nσ̆ ,τ ,H1(ı∗�1
Ntor/Mtor

H
)).

For simplicity, let us define X̃8H,δH,τ := X8H,δH,τ ×C8H,δH C̃8̆H̃,δ̆H̃ . Then the
structural morphism X8̆H̃,δ̆H̃,σ̆ ,τ →X8H,δH,τ factors as X8̆H̃,δ̆H̃,σ̆ ,τ → X̃8H,δH,τ →

X8H,δH,τ . Over X8̆H̃,δ̆H̃,σ̆ ,τ , there is an exact sequence

0→ (X8̆H̃,δ̆H̃,σ̆ ,τ → C̃8̆H̃,δ̆H̃)
∗(�1

C̃8̆H̃,δ̆H̃/C8H,δH
)

→ ı∗�1
Ntor/Mtor

H
→�1

X8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

→ 0

of locally free sheaves, where ı∗�1
Ntor/Mtor

H

∼=�1
X8̆H̃,δ̆H̃,σ̆ ,τ

/X8H,δH,τ
. By taking duals,

we obtain an exact sequence

0→ DerX8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

→ ı∗DerNtor/Mtor
H

→ (X8̆H̃,δ̆H̃,σ̆ ,τ → C̃8̆H̃,δ̆H̃)
∗(DerC̃8̆H̃,δ̆H̃/C8H,δH

)→ 0.

We have similar sequences with X8̆H̃,δ̆H̃,σ̆ ,τ replaced with the locally isomorphic
quotient X8̆H̃,δ̆H̃,σ̆ ,τ/08̃H̃,8H . (For simplicity, in the notation of such differentials,
we shall suppress the locally isomorphic quotients by 08̃H̃,8H .)
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Since 98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ ) is the pullback of an invertible sheaf on C̃8̆H̃,δ̆H̃ , the image
of ı∗(Dtor

˜̀ jQ
) in H 0(Nσ̆ ,τ ,H1(ı∗�1

Ntor/Mtor
H
)) lies locally over each Uτ̆ in the image of

(Uτ̆ → C8H,δH)
∗R1h∗(�1

C̃8̆H̃,δ̆H̃/C8H,δH
)

−→∼ H1((Uτ̆ → C̃8̆H̃,δ̆H̃)
∗(�1

C̃8̆H̃,δ̆H̃/C8H,δH
))→H1(ı∗�1

Ntor/Mtor
H
).

Hence (5.17) factors as

H 0(Nσ̆ ,τ ,H0(ı∗DerNtor/Mtor
H
))

� H 0(Nσ̆ ,τ ,H0((X8̆H̃,δ̆H̃,σ̆ ,τ → C̃8̆H̃,δ̆H̃)
∗(DerC̃8̆H̃,δ̆H̃/C8H,δH

)))

−→∼ (X8H,δH,τ → C8H,δH)
∗R0h∗(DerC̃8̆H̃,δ̆H̃/C8H,δH

)

→ (X8H,δH,τ → C8H,δH)
∗R1h∗(OC̃8̆H̃,δ̆H̃

)

−→∼ H 0(Nσ̆ ,τ ,H1(O(Ntor)∧
Z̃[(8H,δH,τ )]

)).

Lemma 5.18. The morphism

R0h∗(DerC̃8̆H̃,δ̆H̃/C8H,δH
)→ R1h∗(OC̃8̆H̃,δ̆H̃

)

defined by cup product with d log(98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ )) depends only on the image ˜̀ jQ of
˘̀ jQ ,τ̆ in S8̃H̃ under the second morphism in (3.6) (and hence is independent of the
choice of ˘̀ jQ ,τ̆ ). Moreover, this morphism is surjective over X8H,δH,τ ⊗Z Q.

Proof. By Lemma 4.9, the morphism h : C̃8̆H̃,δ̆H̃ → C8H,δH is a torsor under its
kernel C , which is an abelian scheme Z×(�)-isogenous to HomO(Q, A)◦→ MZH

H .
The restriction of 98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ ) to C depends only on the image ˜̀ jQ of ˘̀ jQ ,τ̆ in
σ̃∨0 , and is relatively ample by the same proofs of Corollary 2.12 and Lemma 5.5
(with GMH→MH replaced with A→MZH

H ). Hence the lemma follows. �

Corollary 5.19. The morphism (5.17) is surjective over Mtor
H ⊗Z Q. Its kernel is the

subsheaf H 0(Nσ̆ ,τ ,H0(DerX8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

)) of H 0(Nσ̆ ,τ ,H0(ı∗DerNtor/Mtor
H
)).

Now consider the induced morphism

H 0(Nσ̆ ,τ ,H0(DerX8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

)) ↪→ H 0(Nσ̆ ,τ ,H0(ı∗DerNtor/Mtor
H
))

−→∼ R0 f tor
∗
(ı∗DerNtor/Mtor

H
)→ R1 f tor

∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
)

defined by cup product with ı∗(Dtor
˜̀ jQ
). This composition has image in

H 1(Nσ̆ ,τ ,H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

)),
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because its further composition with

R1 f tor
∗
(O(Ntor)∧

Z̃[(8H,δH,τ )]
)� H 0(Nσ̆ ,τ ,H1(O(Ntor)∧

Z̃[(8H,δH,τ )]
))

is zero (by Corollary 5.19). Thus the question is whether cup product with ı∗(Dtor
˜̀ jQ
)

induces a morphism

H 0(Nσ̆ ,τ ,H0(DerX8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

))→ H 1(Nσ̆ ,τ ,H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

)) (5.20)

surjective over X8H,δH,τ ⊗Z Q.

Lemma 5.21. Suppose τ̆ ∈ 68̆H̃,σ̆ ,τ , and ˘̀ ∈ σ̆⊥. Suppose V is an affine open
formal subscheme of X̃8H,δH,τ over which the pullback of 98̆H̃,δ̆H̃( ˘̀) is a principal
ideal of OV generated by some section x. Let U := Uτ̆ ×X̃8H,δH,τ

V and let O
×,gp
U be

the pullback of O
×,gp
Ntor to U. Let

O
×,gp
V := (U→V)∗(O

×,gp
U ).

Then there exists a canonical injection 98̆H̃,δ̆H̃( ˘̀) ↪→ O
×,gp
V over V, and the value

of the section d log(x) of (U→V)∗�
1
U/X8H,δH,τ

determines a canonical section of
�1

U/X̃8H,δH,τ
(which is independent of the choice of the generator x).

Proof. If we replace x with ax , for some a ∈ O×V, then d log(ax) = d log(a)+
d log(x)= d log(x) because d log(a)= 0 in (U→V)∗�

1
U/X8H,δH,τ

. �

Corollary 5.22. Suppose τ̆ ∈ 68̆H̃,σ̆ ,τ , and ˘̀ ∈ σ̆⊥. Then the local generators of
98̆H̃,δ̆H̃(

˘̀) in Lemma 5.21 determine a well-defined section of �1
Uτ̆ /X̃8H,δH,τ

, which
we denote by d log(98̆H̃,δ̆H̃( ˘̀)).

Proof. Since 98̆H̃,δ̆H̃( ˘̀) is defined over X̃8H,δH,τ (or rather C̃8̆H̃,δ̆H̃), we can always
cover Uτ̆ by open formal subschemes U as in Lemma 5.21. �

Lemma 5.23. For any τ̆ , τ̆ ′ ∈ 68̆H̃,σ̆ ,τ such that τ̆ and τ̆ ′ are adjacent to each
other, let us define the section u[τ̆ ],[τ̆ ′] of H0(�1

X8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

)([τ̆ ]cl
∩ [τ̆ ′]

cl
) to

be
d log(98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ −

˘̀ jQ ,τ̆ ′))

(as in Corollary 5.22). Then this is well defined and determines a section u of
H 1(Nσ̆ ,τ ,H0(ı∗�1

Ntor/Mtor
H
)) that induces by cup product the same morphism as

(5.20).

Proof. If τ̆ and τ̆ ′ are adjacent, then γ τ̆ and γ ′τ̆ ′ are adjacent for γ, γ ′ ∈ 08̃H̃,8H
only when γ = γ ′ (by Condition 1.29; cf. Lemma 3.1), in which case

˘̀jQ ,γ τ̆ −
˘̀jQ ,τ̆ = γ

˘̀jQ ,τ̆ −
˘̀jQ ,τ̆ = γ

˘̀jQ ,τ̆
′ − ˘̀jQ ,τ̆

′ = ˘̀jQ ,γ τ̆
′ − ˘̀jQ ,τ̆

′
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(because 08̃H̃,8H acts by the same translation on ˘̀ jQ ,τ̆ and ˘̀ jQ ,τ̆ ′). This shows
that the assignment of u[τ̆ ],[τ̆ ′] is independent of the choices of the respective
representatives τ̆ and τ̆ ′ of [τ̆ ] and [τ̆ ′], and that u is well defined.

Cup product with u induces the same morphism as (5.20) because the canonical
morphism

DerX8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

⊗ ı∗�1
Ntor/Mtor

H
→ O(Ntor)∧

Z̃[(8H,δH,τ )]

factors through

DerX8̆H̃,δ̆H̃,σ̆ ,τ
/X̃8H,δH,τ

⊗�1
X8̆H̃,δ̆H̃,σ̆ ,τ

/X̃8H,δH,τ
→ O(Ntor)∧

Z̃[(8H,δH,τ )]
,

and because cup product with the image of ı∗(Dtor
˜̀ jQ
) in H 0(Nσ̆ ,τ ,H1(ı∗�1

Ntor/Mtor
H
))

induces the zero morphism (cf. the paragraph preceding Lemma 5.18). �

Consider any sequence τ̆1, τ̆2, . . . , τ̆k of adjacent cones in 68̆H̃,σ̆ ,τ , such that
τ̆k = γ τ̆1 for some γ ∈ 08̃H̃,8H . The union of the cones in any such sequence
form a subset of Ñσ̆ ,τ contractible to a path joining a point in τ̆ with its translation
by γ in γ τ̆ , whose image in Nσ̆ ,τ defines a loop. Suppose we have a class s in
H 1(Nσ̆ ,τ ,H0(O(Ntor)∧

Z̃[(8H,δH,τ )]
)) represented by a collection of sections

s[τ̆ ],[τ̆ ′] ∈H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

)([τ̆ ]cl
∩ [τ̆ ′]

cl
)

for [τ̆ ], [τ̆ ′] ∈68̆H̃,σ̆ ,τ/08̃H̃,8H , and suppose we define formally sτ̆ ,τ̆ ′ = s[τ̆ ],[τ̆ ′] for
any τ̆ , τ̆ ′ ∈68̆H̃,σ̆ ,τ . Then we can define the path integral of s along the sequence
τ̆1, τ̆2, . . . , τ̆k to be the sum

k−1∑
i=1

sτ̆i ,τ̆i+1 .

This defines a morphism

H 1(Nσ̆ ,τ ,H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

))→ OX8H,δH,τ
. (5.24)

Note that this is a realization of the cap product

H1(Nσ̆ ,τ ,Z)× H 1(Nσ̆ ,τ ,H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

))

→ H0(Nσ̆ ,τ ,H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

))∼= OX8H,δH,τ
.

Lemma 5.25. For any ˘̀ ∈ S8̆H̃ that is mapped to ˜̀ jQ in σ̃∨0 under the second
morphism in (3.6), the assignment γ 7→ d log(98̆H̃,δ̆H̃(γ

˘̀ − ˘̀)) for γ ∈ 08̃H̃,8H
induces a morphism

08̃H̃,8H
⊗Z OX8̆H̃,δ̆H̃,σ̆ ,τ

→�1
X8̆H̃,δ̆H̃,σ̆ ,τ

/X̃8H,δH,τ
,

which is an isomorphism over X8̆H̃,δ̆H̃,σ̆ ,τ
⊗Z Q.
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Proof. Since γ ˘̀ and ˘̀ have the same image ˜̀ jQ in σ̃∨0 under the second morphism
in (3.6), the difference γ ˘̀− ˘̀ lands in σ̆⊥. For any ˘̀′ ∈ σ̆⊥, an elementary matrix
calculation (using any splitting of sX̆ ⊗Z Q : X̆ ⊗Z Q � X̃ ⊗Z Q) shows that
γ ˘̀′ − ˘̀′ lies in S8H = (S8H ⊗Z Q) ∩ S8̆H̃ (identified as the image of the first
morphism in (3.6)). Therefore, we have (γ1γ2 ˘̀ − ˘̀)− (γ1 ˘̀ − ˘̀)− (γ2 ˘̀ − ˘̀) =

γ1(γ2 ˘̀− ˘̀)−(γ2 ˘̀− ˘̀)∈ S8H , which shows that the assignment γ 7→ γ ˘̀− ˘̀ defines
a group homomorphism 08̃H̃,8H

→ (σ̆⊥/S8H). By the choice of jQ , the element
˜̀ jQ is represented by a positive definite matrix with respect to any choice of basis,
and hence the homomorphism 08̃H̃,8H

→ (σ̆⊥/S8H) induced by γ 7→ γ ˘̀ − ˘̀ is
injective (by another elementary matrix calculation over Q). By comparison of
dimensions, this shows that the induced injective homomorphism

08̃H̃,8H
⊗Z Q→ (σ̆⊥/S8H)⊗Z Q

is bijective. Since �1
X8̆H̃,δ̆H̃,σ̆ ,τ

/X̃8H,δH,τ
is generated over OX8̆H̃,δ̆H̃,σ̆ ,τ

by

{d log(98̆H̃,δ̆H̃(
˘̀′)) : ˘̀′ representatives of σ̆⊥/S8H},

the lemma follows. �

Lemma 5.26. Let τ̆1, τ̆2, . . . , τ̆k be a sequence of adjacent cones in 68̆H̃,σ̆ ,τ , such
that τ̆k = γ τ̆1 6= τ̆1 for some γ ∈ 08̃H̃,8H . Then the composition of (5.20) and (5.24)
is surjective over X8̆H̃,δ̆H̃,σ̆ ,τ

⊗Z Q.

Proof. If γ τ̆1 6= τ̆1, then ˘̀ jQ ,γ τ̆1 = γ
˘̀ jQ ,τ̆1 6=

˘̀ jQ ,τ̆1 by the proof of Lemma 5.25. By
Lemma 5.25, this implies that d log(98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆1 −

˘̀ jQ ,τ̆k )) defines a nonzero
section of �1

X8̆H̃,δ̆H̃,σ̆ ,τ /X̃8H,δH,τ
over every U[τ̆ ] ⊗Z Q. Let t be any section of

H 0(Nσ̆ ,τ ,H0(ı∗DerNtor/Mtor
H
)). Cup product with u (see Lemma 5.23) sends t to the

class s in H 1(Nσ̆ ,τ ,H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

)) represented (up to a sign convention) by
the collection of sections

s[τ̆ ],[τ̆ ′] ∈H0(O(Ntor)∧
Z̃[(8H,δH,τ )]

)([τ̆ ]cl
∩ [τ̆ ′]

cl
)

determined by sτ̆ ,τ̆ ′ = t ∪ (d log(98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆ −
˘̀ jQ ,τ̆ ′))) for any τ̆ , τ̆ ′ ∈ 68̆H̃,σ̆ ,τ .

Therefore, if locally there exists t such that t∪(d log(98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆1−
˘̀ jQ ,τ̆k ))) is the

pullback of (local) generators of OX8H,δH,τ⊗ZQ, which is possible by Lemma 5.25,
then the path integral

k−1∑
i=1

sτ̆i ,τ̆i+1 =

k−1∑
i=1

t ∪ (d log(98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆i −
˘̀ jQ ,τ̆i+1)))

= t ∪ (d log(98̆H̃,δ̆H̃( ˘̀ jQ ,τ̆1 −
˘̀ jQ ,τ̆k )))

is defined locally by generators of OX8H,δH,τ⊗ZQ. This shows that the composition
of (5.20) with (5.24) is surjective over X8̆H̃,δ̆H̃,σ̆ ,τ

⊗Z Q, as desired. �
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Corollary 5.27. The morphism (5.20) is surjective over X8̆H̃,δ̆H̃,σ̆ ,τ
⊗Z Q.

Proof. By Lemma 4.21, (4.25), and Lemma 5.25, the morphism (5.20) is surjective
over X8̆H̃,δ̆H̃,σ̆ ,τ

⊗Z Q if its composition with (5.24) is surjective over X8̆H̃,δ̆H̃,σ̆ ,τ
⊗Z

Q for some collection of sequences τ̆1, τ̆2, . . . , τ̆k defining loops in Nσ̆ ,τ generating
H1(Nσ̆ ,τ ,Z). Hence the corollary follows from Lemma 5.26. �

Now Proposition 5.14 follows from the combination of Corollaries 5.19 and
5.27. By Lemma 5.2 and Remark 5.4, Proposition 5.14 implies the existence of the
canonical isomorphism (5.3). Thus Corollary 4.36 implies:

Corollary 5.28. For any integer b ≥ 0, we have a canonical isomorphism

Rb f tor
∗
(ONtor)∼=

∧b
(HomO(Q∨,LieG∨/Mtor

H
))

of locally free sheaves over Mtor
H , compatible with cup products and exterior products,

extending the composition of canonical isomorphisms (2.19) over MH.

This completes the proof of (3b) and (3d) of Theorem 2.15, using respectively
(3a) and (3c) of Theorem 2.15. As explained in Section 3E, this also makes (4c) and
(5c) of Theorem 2.15 unconditional. The proof of Theorem 2.15 is now complete.

6. Canonical extensions of principal bundles

6A. Principal bundles. Consider (GMH, λMH, iMH, αH)→MH, the restriction of
the degenerating family (G, λ, i, αH)→Mtor

H , which is isomorphic to the tautological
tuple over MH; and consider the relative de Rham cohomology H 1

dR(GMH/MH) and
the relative de Rham homology H dR

1 (GMH/MH):=HomOMH
(H 1

dR(GMH/MH),OMH).
We have the canonical pairing 〈 · , · 〉λ : H dR

1 (GMH/MH) × H dR
1 (GMH/MH) →

OMH(1) defined as the composition of (Id×λMH)∗ followed by the perfect pairing
H dR

1 (GMH/MH)× H dR
1 (G

∨

MH
/MH)→ OMH(1) defined by the first Chern class of

the Poincaré invertible sheaf over GMH ×MH G∨MH . (See for example [Deligne
and Pappas 1994, 1.5].) Under the assumption that λMH has degree prime to �,
we know that λMH is separable, that (λMH)∗ is an isomorphism, and hence that
the pairing 〈 · , · 〉λ above is perfect. Let 〈 · , · 〉λ also denote the induced pair-
ing on H 1

dR(GMH/MH)× H 1
dR(GMH/MH) by duality. By [Berthelot et al. 1982,

Lemma 2.5.3], we have canonical short exact sequences

0→ Lie∨G∨MH/MH
→ H dR

1 (GMH/MH)→ LieGMH/MH
→ 0

and

0→ Lie∨GMH/MH
→ H 1

dR(GMH/MH)→ LieG∨MH/MH
→ 0.

The submodules Lie∨G∨MH/MH
and Lie∨GMH/MH

are maximal totally isotropic with
respect to 〈 · , · 〉λ.
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Consider the O⊗Z C-module

L ⊗Z C→ (L ⊗Z C)/Ph, (6.1)

where Ph := {
√
−1x − h(

√
−1)x : x ∈ L ⊗Z R} ⊂ L ⊗Z C.

Now suppose there exists a finite extension F ′0 of F0 in C, and a subset �′ of �,
such that F ′0 is unramified at all primes in �′, and such that, by setting R0 :=OF ′0,(�

′),
there exists an O ⊗Z R0-module L0 such that L0 ⊗R0

C ∼= (L ⊗Z C)/Ph . Once
the choice of F ′0 is fixed, the choice of L0 is unique up to isomorphism because
O⊗Z R0-modules are uniquely determined by their multiranks. (See [Lan 2008,
Lemma 1.1.3.4 and Definition 1.1.3.5] for the notion of multiranks.) Let

〈 · , · 〉can. : (L0⊕ L∨0 (1))× (L0⊕ L∨0 (1))→ R0(1)

be the alternating pairing defined by 〈(x1, f1), (x2, f2)〉can. := f2(x1)− f1(x2) (cf.
[Lan 2008, Lemma 1.1.4.16]).

Definition 6.2. For any R0-algebra R, set

G0(R) :=
{
(g, r) ∈ GLO⊗Z R((L0⊕ L∨0 (1))⊗R0

R)×Gm(R) :
〈gx, gy〉 = r〈x, y〉,∀x, y ∈ (L0⊕ L∨0 (1))⊗R0

R

}
,

P0(R) := {(g, r) ∈ G0(R) : g(L∨0 (1)⊗R0
R)= L∨0 (1)⊗R0

R},

M0(R) := GLO⊗Z R(L∨0 (1)⊗R0
R)×Gm(R),

where we view M0(R) canonically as a quotient of P0(R) by

P0(R)→M0(R) : (g, r) 7→ (g|L∨0 (1)⊗R0
R, r).

The assignments are functorial in R and define group functors G0, P0, and M0

over R0.

Lemma 6.3. For any complete local ring R over R0 with separably closed residue
field, there is an isomorphism

(L ⊗Z R, 〈 · , · 〉)∼= (L0⊕ L∨0 (1), 〈 · , · 〉can.)⊗R0
R,

and hence an isomorphism G(R)∼= G0(R). (Consequently, P0(R) can be identified
with a “parabolic” subgroup of G(R).)

(In practice, it is not necessary to take R to be complete local. Much smaller
rings would suffice for the existence of isomorphisms as in Lemma 6.3.)

In what follows, by abuse of notation, we shall replace MH etc. with their base
extensions from Spec(OF0,(�)) to Spec(R0), and replace S0 = Spec(OF0,(�)) with
Spec(R0).



Toroidal compactifications of PEL-type Kuga families 959

Definition 6.4. The principal P0-bundle over MH is the P0-torsor

EP0 := IsomO⊗ZOMH
((H dR

1 (GMH/MH), 〈 · , · 〉λ,OMH(1),Lie∨G∨MH/MH
),

((L0⊕ L∨0 (1))⊗R0
OMH, 〈 · , · 〉can.,OMH(1), L∨0 (1)⊗R0

OMH)),

the sheaf of isomorphisms of OMH-sheaves of symplectic O-modules with maximal
totally isotropic O⊗Z R0-submodules. (The group P0 acts as automorphisms on
(L ⊗Z OMH, 〈 · , · 〉λ,OMH(1), L∨0 (1)⊗R0

OMH) by definition. The third entries in
the tuples represent the values of the pairings.)

Definition 6.5. The principal M0-bundle over MH is the M0-torsor

EM0 := IsomO⊗ZOMH
((Lie∨G∨MH/MH

,OMH(1)), (L
∨

0 (1)⊗R0
OMH,OMH(1))),

the sheaf of isomorphisms of OMH-sheaves of O⊗Z R0-modules. (We view the
second entries in the pairs as an additional structure, inherited from the correspond-
ing objects for P0. The group M0 acts obviously on (L∨0 (1)⊗R0

OMH,OMH(1)) as
automorphisms, by definition.)

These define étale torsors because, by the theory of infinitesimal deformations
(cf. for example [Lan 2008, Chapter 2]) and the theory of Artin’s approximations
(cf. [Artin 1969, Theorem 1.10 and Corollary 2.5]),

(H dR
1 (GMH/MH), 〈 · , · 〉λ,OMH(1),Lie∨G∨MH/MH

)

and

((L0⊕ L∨0 (1))⊗R0
OMH, 〈 · , · 〉can.,OMH(1), L∨0 (1)⊗R0

OMH)

are étale locally isomorphic.

Definition 6.6. For any R0-algebra E , we denote by RepE(P0) (resp. RepE(M0))
the category of E-modules with algebraic actions of P0⊗R0

E (resp. M0⊗R0
E).

Definition 6.7. Let E be any R0-algebra. For any W ∈ RepE(P0), we define

EP0,E(W ) := (EP0 ⊗R0
E)×P0⊗R0

E W,

called the automorphic sheaf over MH⊗R0
E associated with W . It is called an

automorphic bundle if W is locally free of finite rank over E . We define similarly
EM0,E(W ) for W ∈ RepE(M0) by replacing P0 with M0 in the above expression.

Lemma 6.8. Let E be any R0-algebra. If we view an element W ∈ RepE(M0) as
an element in RepE(P0) via the canonical surjection P0 � M0, then we have a
canonical isomorphism EP0,E(W )∼= EM0,E(W ).
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6B. Canonical extensions. By taking Q = O, so that HomO(Q,GMH)
◦ ∼= GMH

and so that there exists some Z×(�)-isogeny κ isog
: GMH→ N as in Theorem 2.15,

the locally free sheaf H 1
dR(N/MH) ∼= H 1

dR(GMH/MH) extends to the locally free
sheaf H 1

log-dR(N
tor/Mtor

H ) over OMtor
H

. Let

H log-dR
1 (Ntor/Mtor

H ) := HomOMtor
H
(H 1

log-dR(N
tor/Mtor

H ),OMtor
H
).

Proposition 6.9. There exists a unique locally free sheaf H dR
1 (GMH/MH)

can over
OMtor

H
satisfying the following properties:

(1) The sheaf H dR
1 (GMH/MH)

can, canonically identified as a subsheaf of the quasi-
coherent sheaf (MH ↪→Mtor

H )∗(H
dR
1 (GMH/MH)), is self-dual under the pairing

(MH ↪→Mtor
H )∗〈 · , · 〉λ. We shall denote the induced pairing by 〈 · , · 〉can

λ .

(2) H dR
1 (GMH/MH)

can contains Lie∨G∨/Mtor
H

as a subsheaf totally isotropic under
〈 · , · 〉can

λ .

(3) The quotient sheaf H dR
1 (GMH/MH)

can/Lie∨G∨/Mtor
H

can be canonically identified
with the subsheaf LieG/Mtor

H
of (MH ↪→Mtor

H )∗LieGMH/MH
.

(4) The pairing 〈 · , · 〉can
λ induces an isomorphism LieG/Mtor

H
−→∼ LieG∨/Mtor

H
which

coincides with dλ.

(5) Let H 1
dR(GMH/MH)

can
:= HomOMtor

H
(H dR

1 (GMH/MH)
can,OMtor

H
). The Gauss–

Manin connection

∇ : H 1
dR(GMH/MH)→ H 1

dR(GMH/MH)⊗OMH
�1

MH/S0

extends to an integrable connection

∇ : H 1
dR(GMH/MH)

can
→ H 1

dR(GMH/MH)
can
⊗OMtor

H
�1

Mtor
H /S0

(6.10)

with log poles along D∞,H, called the extended Gauss–Manin connection, such
that the composition

Lie∨G/Mtor
H
↪→ H 1

dR(GMH/MH)
can

∇
→ H 1

dR(GMH/MH)
can
⊗OMtor

H
�1

Mtor
H /S0

� LieG∨/Mtor
H
⊗OMtor

H
�1

Mtor
H /S0

(6.11)

induces by duality the extended Kodaira–Spencer morphism

Lie∨G/Mtor
H
⊗OMtor

H
Lie∨G∨/Mtor

H
→�1

Mtor
H /S0

in [Lan 2008, Theorem 4.6.3.32], which factors through KS (in Definition 1.40)
and induces the extended Kodaira–Spencer isomorphism KSG/Mtor

H /S0 in (4) of
Theorem 1.41.
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With these characterizing properties, we say that (H dR
1 (GMH/MH)

can,∇) is the
canonical extension of (H dR

1 (GMH/MH),∇).

Proof. The uniqueness of H dR
1 (GMH/MH)

can is clear by the first four properties. To
show the existence, let us take H dR

1 (GMH/MH)
can to be the sheaf H log-dR

1 (Ntor/Mtor
H )

(for Q =O, as mentioned before this proposition). It is locally free with a Hodge
filtration by (3c) of Theorem 2.15. Moreover, by taking some integer N > 0
prime to � such that N Diff−1

⊂ O, we obtain by multiplication by N a mor-
phism jQ : Q∨ ∼= Diff−1 ↪→ Q = O as in Lemma 2.5 such that pullback by κ isog

identifies 〈 · , · 〉λMH, jQ
: H 1

dR(N/MH)× H 1
dR(N/MH)→ OMH(1) canonically with

〈 · , · 〉λMH
: H 1

dR(GMH/MH)× H 1
dR(GMH/MH)→ OMH(1). Then (1)–(3) follow

from (3d) of Theorem 2.15, and (4) follows from Proposition 5.14 (which is
used to prove (3b) of Theorem 2.15). It remains to verify (5). By definition,
H 1

dR(GMH/MH)
can ∼= H 1

log-dR(N
tor/Mtor

H ). The existence of ∇ in (6.10) follows
from (3e) of Theorem 2.15. By Remark 4.42, the pullback of (6.11) to MH is
induced by the usual Kodaira–Spencer class. Since the extended Kodaira–Spencer
morphism in [Lan 2008, Theorem 4.6.3.32] is defined exactly as a morphism
induced by the usual Kodaira–Spencer morphism (by normality of Mtor

H and local
freeness of the sheaves involved), it is induced by duality by (6.11), as desired. �

Remark 6.12. The notion of canonical extensions is closely related to the notion
of regular singularities of algebraic differential equations. (See [Deligne 1970] and
[Katz 1971] for the notion of regular singularities. See [Mumford 1977; Faltings
and Chai 1990, Chapter VI; Harris 1989; 1990; Milne 1990] for the notion of
canonical extensions over C, and see [Mokrane and Tilouine 2002] for an earlier
treatment of canonical extensions in mixed characteristics. See in particular [Harris
1989, Theorem 4.2] for the explanation of why and how the two notions are related.)

Then the principal bundle EP0 extends canonically to a principal bundle Ecan
P0

over
Mtor
H by setting

Ecan
P0
:= IsomO⊗ZOMtor

H
((H dR

1 (GMH/MH)
can, 〈 · , · 〉can

λ ,OMtor
H
(1),Lie∨G∨/Mtor

H
),

((L0⊕ L∨0 (1))⊗R0
OMtor

H
, 〈 · , · 〉can.,OMtor

H
(1), L∨0 (1)⊗R0

OMtor
H
)),

and the principal bundle EM0 extends canonically to a principal bundle Ecan
M0

over
Mtor
H by setting

Ecan
M0
:= IsomO⊗ZOMtor

H
((Lie∨G∨/Mtor

H
,OMtor

H
(1)), (L∨0 (1)⊗R0

OMtor
H
,OMtor

H
(1))).

Definition 6.13. Let E be any R0-algebra. For any W ∈ RepE(P0), we define

Ecan
P0,E(W ) := (Ecan

P0
⊗R0

E)×P0⊗R0
E W,
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called the canonical extension of EP0,E(W ), and define

Esub
P0,E(W ) := Ecan

P0,E(W )⊗OMtor
H

ID∞,H,

called the subcanonical extension of EP0,E(W ), where ID∞,H is the OMtor
H

-ideal
defining the relative Cartier divisor D∞,H (with its reduced structure) in (3) of
Theorem 1.41. We define similarly Ecan

M0,E(W ) and Esub
M0,E(W ) with P0 (and its

principal bundle) replaced accordingly with M0 (and its principal bundle).

Lemma 6.14. Let E be any R0-algebra. If we view an element in W ∈RepE(M0) as
an element in RepE(P0) in the canonical way, then we have canonical isomorphisms
Ecan

P0,E(W )∼= Ecan
M0,E(W ) and Esub

P0,E(W )∼= Esub
M0,E(W ).

6C. Fourier–Jacobi expansions. Let us fix a representative (Zn,8n, δn) of a cusp
label [(Zn,8n, δn)] for MH (as in Section 1C). As usual, we shall omit ZH from the
notation.

Definition 6.15. The principal M0-bundle over C8H,δH is the M0-torsor

E8H,δHM0
:= IsomO⊗ZOC8H,δH

((Lie∨G∨,\/C8H,δH
,OC8H,δH (1)),

(L∨0 (1)⊗R0
OC8H,δH ,OC8H,δH (1))),

with conventions as in Definition 6.5.

Then we define E8H,δHM0,E (W ) for any R0-algebra E and any W ∈ RepE(M0) as in
Definition 6.7.

Lemma 6.16. Let E be any R0-algebra. For any W ∈ RepE(M0), there is a
canonical isomorphism

(X8H,δH,σ →Mtor
H )
∗Ecan

M0
(W )∼= (X8H,δH,σ → C8H,δH)

∗E8H,δHM0
(W ).

Proof. This is because of the canonical isomorphism

(X8H,δH,σ →Mtor
H )
∗Lie∨G∨/Mtor

H
∼= (X8H,δH,σ → C8H,δH)

∗Lie∨G∨,\/C8H,δH
. �

By the construction of X8H,δH,σ → C8H,δH as a formal completion, we have a
natural morphism

(X8H,δH,σ → C8H,δH)∗OX8H,δH,σ
→

∏
`∈S8H

98H,δH(`)

of OC8H,δH -modules. By Lemma 6.16, we have the composition of canonical
morphisms
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0(Mtor
H , E

can
M0
(W ))→ 0(X8H,δH,σ , (X8H,δH,σ →Mtor

H )
∗Ecan

M0
(W ))

→ 0(X8H,δH,σ , (X8H,δH,σ → C8H,δH)
∗E8H,δHM0

(W ))

→
∏

`∈S8H

0(C8H,δH, 98H,δH(`)⊗OC8H,δH
E8H,δHM0

(W )),

which we call the morphism of algebraic Fourier–Jacobi expansions.

Definition 6.17. The `-th algebraic Fourier–Jacobi morphism

0(Mtor
H , E

can
M0
(W ))→ 0(C8H,δH, 98H,δH(`)⊗OC8H,δH

E8H,δHM0
(W ))

is the `-th factor of the morphism of algebraic Fourier–Jacobi expansions.

Remark 6.18. If GrZ
−1= {0}, then the abelian scheme C8H,δH→M

Zn
n is trivial (i.e.,

the structural morphism is an isomorphism), and M
Zn
n is finite over S0 = Spec(R0).

Hence 0(C8H,δH, 98H,δH(`) ⊗OC8H,δH
E8H,δHM0

(W )) ∼= 0(M
Zn
n ,OM

Zn
n ⊗R0

W ). In
this case, the Fourier–Jacobi expansions are often called q-expansions (because no
genuine “Jacobi theta functions” are involved).
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Idempotents in representation rings
of quivers

Ryan Kinser and Ralf Schiffler

For an acyclic quiver Q, we solve the Clebsch–Gordan problem for the pro-
jective representations by computing the multiplicity of a given indecomposable
projective in the tensor product of two indecomposable projectives. Motivated by
this problem for arbitrary representations, we study idempotents in the represen-
tation ring of Q (the free abelian group on the indecomposable representations,
with multiplication given by tensor product). We give a general technique for
constructing such idempotents and for decomposing the representation ring into
a direct product of ideals, utilizing morphisms between quivers and categorical
Möbius inversion.

1. Introduction

The problem of describing a tensor product of two representations of some alge-
braic object has appeared in many contexts. When the category of representations
in question has the Krull–Schmidt property (unique decomposition into indecom-
posables), the problem can be stated for representations X, Y, Z as “What is the
multiplicity of Z as a direct summand in X ⊗Y ?” This is sometimes referred to as
the Clebsch–Gordan problem, in honor of A. Clebsch and P. Gordan, who studied
the problem for certain Lie groups in the language of invariant theory.

These multiplicities for representations of the groups SU(2) and SO(3,R) give
rise to the Clebsch–Gordan coefficients used in quantum mechanics. In the case
of representations of GL(n,C), these multiplicities are the Littlewood–Richardson
coefficients, which play an important role in algebraic combinatorics and Schubert
calculus [Fulton 1997].

Tensor products of quiver representations have been studied by Strassen [2000]
in relation to orbit-closure degenerations, and Herschend [2008b] studied the rela-
tion to bialgebra structures on the path algebra. The Clebsch–Gordan problem for

The second author is supported by the NSF grants DMS-0908765 and DMS-1001637 and by the
University of Connecticut.
MSC2010: primary 16G20; secondary 19A22, 06A99.
Keywords: quiver, representation ring, tensor product, idempotents.
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quiver representations is solved explicitly in various situations where a classifica-
tion of indecomposables is known [Herschend 2009; 2008a; 2010], whereas other
results on tensor product multiplicities without a classification of indecomposables
have appeared in [Kinser 2008; 2010].

In this paper, we study the tensor products of representations of a quiver Q
in terms of the representation ring R(Q) of the quiver. This ring has a Z-basis
consisting of indecomposable representations of Q, with sum corresponding to
direct sum and product to tensor product. The same construction has been used
in modular representation theory of finite groups, where it is sometimes called the
Green ring [Benson 1986]. Besides the actual representations, R(Q) also contains
formal additive inverses of representations, and thus “differences” of representa-
tions. Understanding the multiplication in this ring can be easier than directly
working with the tensor product of representations. We recall the definition and
basic properties of R(Q) in Section 2.

In Section 3, we solve the Clebsch–Gordan problem for projective representa-
tions of an acyclic quiver Q with an explicit formula as follows. Let x, y, w be
vertices in Q and P(x), P(y), P(w) be the corresponding indecomposable projec-
tive representations.

Theorem 1. The multiplicity of P(w) in P(x)⊗ P(y) equals

nxwnyw −
∑
z→w

nxznyz,

where the sum is over all arrows with terminal vertex w, and ni j denotes the num-
ber of paths from i to j in the quiver.

The proof technique is to give an integral change of basis in the subring of R(Q)
spanned by projectives to a new basis consisting of orthogonal idempotents. These
are trivial to multiply, and then changing back to the original basis gives a multi-
plication formula for projective representations. This motivates the construction of
other sets of orthogonal idempotents in R(Q).

The projective representations of Q can be concretely presented in terms of
discrete data from Q, namely, the set of paths in Q. In Section 4.1, we review a
general method for constructing a representation which is not necessarily projective
from discrete data, using a morphism of quivers f : Q′→ Q, also called a coloring
of Q′ by Q, or a quiver over Q. We describe how such a morphism gives rise to a
representation of Q via linearization, which generalizes the process of passing from
a permutation representation of a finite group to the associated linear representation.
This can be thought of as the opposite course of action to taking a coefficient quiver
of a representation [Crawley-Boevey 1990].

Linearization allows us to study certain representations combinatorially from
the discrete data in a quiver over Q. A result of Herschend states that, under some
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mild technical hypotheses, linearization takes the fiber product of two quivers over
Q to the tensor product of their linearizations [Herschend 2010]. Thus we expect to
be able to analyze the tensor product of certain representations via quivers over Q.

The first main result of the paper, presented in Section 5, is a sufficient condition
for a collection of quivers over Q to give rise to a set of orthogonal idempotents in
R(Q) (Theorem 9). The basic idea is to form an acyclic category (a generalization
of a poset) from a collection of quivers over Q, then use a categorical form of
Möbius inversion to orthogonalize the linearizations of these quivers in R(Q).

The motivating application for Theorem 9 is covered in Section 6. For any
acyclic quiver Q, we define a category PIE of quivers over Q such that the objects
in PIE are in bijection with those indecomposable representations of Q which, after
restriction to some subquiver of Q, are either projective, injective, or of dimension 1
at each vertex. We describe morphisms and fiber products in PIE and show that PIE
satisfies the hypotheses of Theorem 9. This allows us to associate an idempotent
ex ∈ R(Q) to every object x ∈ PIE, and to prove our second main result:

Theorem 2. Let Q be an acyclic quiver. Then R(Q) has a direct product structure

R(Q)∼=
∏

x∈PIE0

〈ex 〉,

where 〈ex 〉 is the principal ideal generated by ex .

Finally, we present some closed-form expressions for certain values of the Möbius
function of PIE.

2. Background

A quiver (or directed graph) is given by Q= (Q0, Q1, s, t), where Q0 is a vertex set,
Q1 is an arrow set, and s, t are functions from Q1 to Q0 giving the start and terminal
vertex of an arrow, respectively. We assume Q0 and Q1 are finite in this paper. For
any quiver Q and field K , there is a category repK (Q) of representations of Q over
K . An object V = (Vx , ϕα) of repK (Q) is an assignment of a finite dimensional
K -vector space Vx to each vertex x ∈ Q0, and an assignment of a K -linear map
ϕα : Vsα → Vtα to each arrow α ∈ Q1. For any path p in Q, we get a K -linear
map ϕp by composition. Morphisms in repK (Q) are given by linear maps at each
vertex which form commutative diagrams over each arrow; see the book by Assem,
Simson, and Skowroński [Assem et al. 2006] for a precise definition of morphisms,
and other fundamentals of quiver representations. We will fix some arbitrary field
K throughout the paper and hence omit it from notation when possible.

There is a natural tensor product of quiver representations, induced by the tensor
product in the category of vector spaces. More precisely, the tensor product of
V = (Vx , ϕα) and W = (Wx , ψα) is defined pointwise: the representation V ⊗W =
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(Ux , ρα) is given by
Ux := Vx ⊗Wx for x ∈ Q0,

ρα := ϕα ⊗ψα for α ∈ Q1.

It is not difficult to see that ⊗ is an additive bifunctor which is commutative and
associative, and distributive over ⊕ (up to isomorphism). In other words, this gives
the category rep(Q) the structure of a tensor category in the sense of [Deligne and
Milne 1982].

The category rep(Q) has the Krull-Schmidt property [Assem et al. 2006, Theo-
rem I.4.10], meaning that each V ∈ rep(Q) has an essentially unique expression

V '
n⊕

i=1

Vi

as a direct sum of indecomposable representations Vi . That is, given any other
expression V '

⊕
Ṽi with each Ṽi indecomposable, there is a permutation σ of

{1, . . . , n} such that Ṽi ' Vσ i for all i . Thus the Clebsch–Gordan problem is well
defined for rep(Q).

Since the tensor product distributes over direct sum, to study V ⊗W we can
assume without loss of generality that V and W are indecomposable. A good
starting point would then be to have a description of indecomposable objects in
rep(Q). But a description of all indecomposables is not available for most quivers,
so we approach the problem by placing the representations of Q inside a ring
R(Q), in which addition corresponds to direct sum and multiplication corresponds
to tensor product (the split Grothendieck ring of rep(Q)). Analyzing the properties
of R(Q) (for example ideals, idempotents, nilpotents) gives a way of stating and
approaching problems involving tensor products of quiver representations even in
the absence of an explicit description of the isomorphism classes in rep(Q).

Let [V ] denote the isomorphism class of a representation V . Then define R(Q)
to be the free abelian group generated by isomorphism classes of representations
of Q, modulo the subgroup generated by all [V ⊕W ]− [V ]− [W ]. The operation

[V ] · [W ] := [V ⊗W ] for V,W ∈ rep(Q)

induces a well-defined multiplication on R(Q), making R(Q) into a commutative
ring, called the representation ring of Q.

The Krull–Schmidt property of rep(Q) gives that R(Q) is a free Z-module with
the indecomposable representations as a basis. The ring R(Q) generally depends
on the base field K , but we omit K from the notation since this is fixed in our
case. Also we usually omit the brackets [ ] and just refer to representations of Q
as elements of R(Q).
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Although we introduce “virtual representations” (those with some negative co-
efficient in the basis of indecomposables), every element r ∈ R(Q) can be written
as a formal difference

r = V −W, with V,W ∈ rep(Q).

Then any additive or multiplicative relation z = x + y or z = xy, respectively, can
be rewritten to give some isomorphism of actual representations of Q.

Remark 3. If one wishes to consider an ideal of relations I for a quiver Q, the
pointwise tensor product will not generally preserve these relations and thus not be
defined for representations of the bound quiver (Q, I ). However, if I is generated
by commutativity relations (that is, relations of the form p− q for paths p, q) then
the representations of (Q, I ) do generate a subring of R(Q). If I is generated by
zero relations (relations of the form p = 0 for p a path), then representations of
(Q, I ) generate an ideal in R(Q) since the tensor product of any map with a zero
map is still zero. The identity element of R(Q) will not satisfy the zero relations, so
the ring of representations satisfying I will not generally have an identity element.
Thus, if I consists of zero relations and commutativity relations, we can get a
representation ring R(Q, I ) without identity. Throughout the paper, we will not
assume that the rings of representations that we work with have identity elements,
and thus the term “subring” is taken to mean a nonempty subset of a ring which is
closed under subtraction and multiplication (and possibly with a different identity
element).

3. Projective representations

Let Q be a quiver without oriented cycles. For every vertex x ∈ Q0, let P(x)
denote the indecomposable projective representation at x . For any two vertices
x, y, denote by nxy the number of paths from x to y in Q. The vector space P(x)y

of the representation P(x) at a vertex y has a basis consisting of all paths from x
to y; thus dim P(x)y = nxy .

We will first show in this section that the tensor product of two projective rep-
resentations is projective, and then we compute the multiplicities cz

xy in the direct
sum decompositions

P(x)⊗ P(y)=
⊕
z∈Q0

cz
xy P(z).

Lemma 4. The tensor product of two projectives is projective.

Proof. Since the tensor product is distributive over the direct sum, it is enough to
show the statement for indecomposable projectives. Let i, j be two vertices in Q.
We need to show that P(i)⊗ P( j) is projective.
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We will proceed by induction on the number of vertices in Q. If this number
is one, then i = j , and P(i) is a representation of dimension one, since Q has no
oriented cycles, and thus P(i)⊗ P(i)= P(i) is projective.

Now suppose Q has more than one vertex, and let i0 be a sink in Q. If i = i0

then P(i) is the simple representation S(i), and P(i)⊗ P( j) is equal to P(i)⊕n j i ;
in particular, it is equal to zero if there is no path from j to i . This shows that the
lemma holds if i = i0, and a similar argument shows that the lemma holds if j = i0.

Suppose now that i and j are different from i0. Denote by Q′ the quiver obtained
from Q by deleting the vertex i0 and all arrows incident to it. Let P(i)|Q′ be the
representation of Q′ obtained by restricting to the subquiver Q′. Since i0 is a sink
in Q, we have that P(i)|Q′ is a projective Q′ representation and therefore the in-
duction hypothesis implies that P(i)|Q′⊗ P( j)|Q′ is a projective Q′ representation,
thus there is an isomorphism

f :
⊕

k

ck
i j PQ′(k) −→ P(i)|Q′ ⊗ P( j)|Q′,

for some ck
i j ≥ 0 and PQ′(k) the indecomposable projective Q′ representation at ver-

tex k. Let P̃ = (P̃x , ϕ̃α)i∈Q0,α∈Q1 be the corresponding projective Q representation,
more precisely,

P̃ =
⊕

k

ck
i j PQ(k).

Let us use the notation P(i)⊗ P( j)= (Mx , ϕα)x∈Q0,α∈Q1 . Then for every vertex
x , the vector space Mx has a basis consisting of pairs (ci , c j ), where ci is any path
from i to x and c j any path from j to x . On the other hand, since i, j are both
different from i0, the vector space Mi0 has a basis consisting of pairs (ciα, c jβ),
where α, β are arrows with terminal point i0, and ci is a path from i to s(α) and
c j is a path from j to s(β). The maps ϕα are given by ϕα(ci , c j )= (ciα, c jα), in
particular, ⊕

α:x→i0

ϕα :
⊕
α:x→i0

Mx → Mi0

is injective.
The morphism f induces a morphism f̃ = ( f̃x)x∈Q0 : P̃→ P(i)⊗ P( j), where

f̃x = fx if x 6= i0, and f̃i0 is defined on any path cα, with α an arrow with t (α)= i0,
as f̃i0(cα) = ϕα f̃s(α)(c). Clearly, f̃x is an isomorphism for every x 6= i0, and we
will show that f̃i0 is injective.
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Now in the commutative diagram⊕
α:t (α)=i0

P̃s(α)

⊕
α:t (α)=i0

ϕ̃α
//

⊕
α:t (α)=i0

f̃x

��

P̃i0

f̃i0

��⊕
α:t (α)=i0

Ms(α)

⊕
α:t (α)=i0

ϕα
// Mi0

the left column and the top row are isomorphisms, and the bottom row is injective.
Therefore the right column f̃i0 is injective too.

Thus f̃ : P̃ → P(i)⊗ P( j) is injective with semisimple projective cokernel
P(i0)

⊕t for some integer t , and we get a split short exact sequence

0→ P̃→ P(i)⊗ P( j)→ P(i0)
⊕t
→ 0,

since P(i0)
⊕t is projective. This shows that P(i)⊗ P( j) is projective. �

The lemma implies that the free abelian group generated by all indecomposable
projectives P(x), x ∈ Q0 has a ring structure whose addition is given by the direct
sum and multiplication by the tensor product (that is, the projectives span a subring
of R(Q)). As an additive group, this is isomorphic to ZQ0 and an isomorphism is
given by the Cartan matrix

C =
[
nxy
]

x,y∈Q0
=
[
dim P(1) · · · dim P(n)

]
,

where n= #Q0 and
[
dim P(1) · · · dim P(n)

]
is the n×n integer matrix whose x-th

column is equal to the dimension vector of P(x). The Cartan matrix is invertible.
Since the dimension vector is multiplicative with respect to the tensor product, this
is a ring isomorphism.

We also have that the (x, y) entry of the transposed inverse matrix (C−1)t can
be computed by the formula dim Hom(S(x), S(y))− dim Ext(S(x), S(y)); see for
example [Assem et al. 2006, III.3.13]. Therefore

(C−1)tx,y =

{
1 if x = y,
−(number of arrows x→ y) if x 6= y.

Let εx denote the standard basis vector [0, . . . , 0, 1, 0, . . . , 0]t with 1 at position
x , and define e(x) to be the inverse image of εx under the above isomorphism. In
other words

e(x)= [P(1) · · · P(n)]C−1εx ,

where [P(1) · · · P(n)] denotes the 1× n matrix whose entries are the indecompos-
able projective modules, and C−1εx is the x-th column of C−1.
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It follows that

e(x)= P(x)−
∑
x→y

P(y), (1)

where the sum is over all arrows starting at x , and

P(x)=
∑

z

nxze(z). (2)

We are now ready to prove the main result of this section.

Theorem 5. Let x, y ∈ Q0. Then

P(x)⊗ P(y)=
⊕
w∈Q0

cwxy P(w),

with cwxy = nxwnyw−
∑

z→w nxznyz , where the sum is over all arrows with terminal
vertex w.

Proof. The proof is a simple computation in the representations ring with the
orthogonal idempotents {e(z) | z ∈ Q0}. We have

P(x)⊗ P(y)=
∑

z nxze(z)
∑

z nyze(z)

=
∑

z nxznyze(z),

since the e(z) are orthogonal idempotents. Now using (1), we get

P(x)⊗ P(y)=
∑

z

nxznyz

(
P(z)−

∑
z→u

P(u)
)
.

For a fixed vertex w, we can compute cwxy by collecting terms. We then obtain
cwxy = nxwnyw −

∑
z→w nxznyz , where the sum is over all arrows with terminal

vertex w. This completes the proof. �

4. Linearization and Möbius rings

4.1. Quivers over Q and linearization. A morphism of quivers f ′ : Q′→ Q sends
vertices to vertices and arrows to arrows, and satisfies s( f ′(α)) = f ′(s(α)) and
t ( f ′(α)) = f ′(t (α)) for each arrow α ∈ Q′1. A quiver over Q is a pair (Q′, f ′)
where Q′ is a quiver, and f ′ : Q′→ Q is a morphism of quivers called the structure
map of (Q′, f ′). A morphism g of quivers over Q is a morphism of quivers which



Idempotents in representation rings of quivers 975

commutes with the structure maps to Q:

Q′ Q′′

Q

f ′ f ′′

g

	 (3)

So the collection of all quivers over a given Q forms a category denoted by ↓Q,
and we write g ∈ Hom↓Q(Q′, Q′′).

To simplify the notation, we consider the maps ϕα of a representation V to be
defined on the total vector space

⊕
x∈Q0

Vx by taking ϕα(Vy)= 0 when y 6= s(α).
If f ′ : Q′→ Q is a morphism of quivers then the pushforward f ′

∗
V = (Ux , ρα) ∈

rep(Q) of a representation V = (Vx , ϕα) ∈ rep(Q′) is given by

Ux :=
⊕

y∈ f ′−1(x)

Vy for x ∈ Q0, (4)

ρα :=
∑

β∈ f ′−1(α)

ϕβ for α ∈ Q1. (5)

Extending f ′
∗

linearly to R(Q′), we get an induced homomorphism

f ′
∗
: R(Q′)→ R(Q)

between additive groups, which will not generally be a ring homomorphism.
For a quiver Q, we denote by 1Q ∈ rep(Q) the identity representation of Q: it

has a one-dimensional vector space K at each vertex, and the identity map over
each arrow. (The name comes from the fact that this is the identity element of the
representation ring R(Q)). When S ⊂ Q is a subquiver, we can consider 1S to
be a representation of Q via extension by zero: that is, we assign the zero map
or vector space to each arrow or vertex outside of S. More generally, we can take
any quiver over Q and get a representation of Q by pushing forward the identity
representation. Thus we get a map on objects

L : ↓Q // rep(Q)

(Q′, f ′) � // f ′
∗
1Q′

which we call the linearization map. The representation f ′
∗
1Q′ has a standard basis

{ex | x ∈ Q′0}. For example, when (Q′, f ′) is the inclusion of a single vertex in Q,
then its linearization is the simple representation concentrated at that vertex. When
Q′ is a quiver of type A with some technical conditions on f ′, the linearization is a
string module. Similarly, we get a band module or tree module when Q is of type
Ã or when it is a tree, respectively.



976 Ryan Kinser and Ralf Schiffler

Remark 6. There is a natural way that one would try to make the linearization
functorial: if g is a morphism in ↓Q as illustrated in (3), one might try to send
a standard basis vector ex of f ′

∗
1Q′ to the vector eg(x) in f ′′

∗
1Q′′ . However, this

will not be a morphism of quiver representations, in general. To see this, one need
only take Q = •→ • and consider the map of quivers given by the inclusion of
the left vertex. The corresponding map of vector spaces just described would be a
nontrivial morphism from the simple representation of dimension vector (1, 0) to
the indecomposable of dimension vector (1, 1), which is not possible. By working
in some (not necessarily full) subcategory of ↓Q, one may have some success in
making the linearization functorial; see for example [Crawley-Boevey 1989; Kinser
2010, Theorem 18].

The categorical product of two objects (Q′, f ′)×Q (Q′′, f ′′), which we refer
to as the fiber product of Q′ and Q′′ over Q, exists in ↓Q. It can be realized
concretely as having vertex set

(Q′×Q Q′′)0 = {(x ′, x ′′) ∈ Q′0× Q′′0 | f ′(x ′)= f ′′(x ′′)}

consisting of pairs of vertices lying over the same vertex of Q, with an arrow

(x ′, x ′′)
(α′,α′′)
−−−−→ (y′, y′′)

for each pair of arrows (x ′ α′
−→ y′, x ′′ α

′′

−→ y′′)∈ Q′1×Q′′1 such that f ′(α′)= f ′′(α′′).
This common value should be taken as the value of the structure map on the arrow
(α′, α′′).

4.2. Acyclic categories and the Möbius function. In order to use an inclusion/ex-
clusion technique to orthogonalize elements of the representation ring, we need a
categorial analogue of Möbius inversion. This is provided by the work of Haigh
[1980], and one may also see the more recent works [Leinster 2008; Kozlov 2008,
Chapter 10]. We summarize here the tools that we need from this construction.

Following the terminology of Kozlov’s book, we call a small category acyclic
if the only endomorphisms are identity morphisms and only identity morphisms
are invertible. This terminology is justified by the observation that if we draw a
directed graph whose vertices are the objects and arrows are the morphisms of an
acyclic category, then this graph will be acyclic. For brevity, we denote by [x, y]C
the number of morphisms from an object x to an object y in C. An acyclic category
C with finitely many objects C0 and morphisms C1 admits a Möbius function

µC : C0×C0→ Z
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with the following properties:

µC(x, x)= 1 for all x,∑
z∈C0

[x, z]C µC(z, y)=
{

0 for x 6= y,
1 for x = y.

We drop the subscripts C when this can cause no confusion.
For example, when C is a poset (whose elements are taken to be the objects

of C, with a unique morphism from x to y if and only if x ≤ y), we get exactly the
classical Möbius function of the poset [Stanley 1997, Section 3.7].

For any acyclic category C, let HC be the Hom matrix associated to C, whose
rows and columns are indexed by the objects of C such that the entry Hxy in row x
and column y is [x, y]. One can choose an ordering of the objects of C such that
this matrix is upper triangular with ones on the diagonal since C is acyclic, and
then one can see from the definition of matrix multiplication that M def

= H−1 will
have the value µ(x, y) in row x , column y.

A few facts which will be used frequently are noted here:

(a) From the matrix description we see that∑
z∈C0

µ(x, z)[z, y] = 0

for all x 6= y.

(b) If [x, y] = 0, then µ(x, y)= 0.

(c) The value µ(x, y) can be recursively calculated as

µ(x, y)=−
∑

x<z≤y

[x, z]µ(z, y), (6)

where we write x ≤ y if there exists a morphism from x to y.

4.3. The Möbius ring of a finite acyclic category. The Möbius ring M(C) of an
acyclic category C [Haigh 1980] generalizes an object of the same name associated
to a poset [Greene 1973]. The additive group of M(C) is free on the set of objects of
C. A direct (but somewhat opaque) definition of the product xy of two basis vectors
can be given, but we will first give a more computationally useful formulation. For
each object x of C, define an element

δx
def
=

∑
z∈C0

µ(z, x)z (7)

in M(C). The additive group of M(C) is freely generated by {δx}x∈C0 also, since
the Hom matrix and its inverse (which have determinant 1) give the change of basis
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between this and the defining basis. Then we just declare these basis elements to
be orthogonal idempotents in M(C):

δxδy =

{
δx if x = y,
0 if x 6= y,

(8)

and extend by Z-linearity (so M(C) is commutative). We can recover the original
basis elements as

x =
∑
z∈C0

[z, x] δz, (9)

and by substitution the product of two such elements is then

xy =
∑
z∈C0

( ∑
w∈C0

µ(z, w)[w, x][w, y]
)

z, (10)

recovering the standard definition.

Lemma 7. If x is a terminal object for C (that is, each object of C has a unique
morphism to x), then x serves as the identity element of M(C).

Proof. If [w, x] = 1 for all w ∈ C0, the formula (10) simplifies to

xy =
∑
z∈C0

( ∑
w∈C0

µ(z, w)[w, y]
)

z.

The second sum is always 0 unless z = y, by fact (a) of the previous subsection,
and 1 when z = y; thus we have xy = y for all y ∈ C0. �

Remark 8. The finiteness of C can be relaxed in various ways. For example, the
definition (7) still makes sense if, for each object x , there are only finitely many
objects z such that [z, x] 6= 0.

5. Main result on Möbius rings

Let C be a full, acyclic subcategory of ↓Q. From here on, we will always assume
that each object of C is a connected quiver over Q. Let L : C→ rep Q be the
linearization, which we recall is defined only on the objects of C. Then L extends
by Z-linearity to a map M(C)→ R(Q), which we also denote by L . In this section,
we will show that L is a ring homomorphism when C satisfies suitable conditions,
and study the image of L in R(Q). We give sufficient conditions on the category
C so that this subring is isomorphic to the Möbius ring M(C) of the category C

and construct a basis of idempotents in that case.
We say that the category C is closed under fiber products if the fiber product of

quivers in C is a disjoint union of quivers in C. We need one more technical condi-
tion for linearization to behave well with respect to tensor product. Following the
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terminology of [Herschend 2010], we say that a morphism of quivers f ′ : Q′→ Q
is a wrapping if, for every pair of vertices i ′, j ′ ∈ Q′0, the induced map

{arrows from i ′ to j ′} f ′
−→{arrows from f ′(i ′) to f ′( j ′)}

is injective. Intuitively, this says that f ′ does not collapse parallel arrows. The
fiber product of two wrappings is again a wrapping.

Theorem 9. Let C be an acyclic subcategory of ↓Q whose objects are connected
and wrappings, which is closed under fiber products, and such that for all x, y ∈ C,

L(x) is indecomposable in rep Q and L(x) 6' L(y) if x 6= y. (11)

Then the subring of R(Q) generated by L(C) is isomorphic to the Möbius ring
M(C) of C.

Proof. The Möbius ring M(C) has the two Z-bases

{x | x ∈ C} and
{
δx =

∑
z∈C0

µ(z, x)z
∣∣∣ x ∈ C

}
.

Consider the linearization map

L : M(C)−→ R(Q), x = (Q′, f ′) 7→ L(x)= f ′
∗
1Q′ .

We will show that L is an injective ring homomorphism.
The map L is additive by definition, and by condition (11), L is injective. In

M(C) the product is given by xy =
∑

z∈C0
[z, x][z, y]δz , for x, y ∈ C, using the

basis of orthogonal idempotents. Now let x ×Q y = tiwi be the decomposition
into connected components, where each wi ∈ C. For a fixed z, the set of pairs of
maps {(z f

−→ x, z g
−→ y)} is in bijection with the set of maps

⋃
i {z

h
−→wi }, by

the universal property of fiber products and the assumption that elements of C are
connected quivers. This implies that [z, x][z, y] =

∑
i [z, wi ] and so after applying

L we have that
L(xy)=

∑
z∈C0

∑
i

[z, wi ]L(δz).

On the other hand, L(x)⊗ L(y) is isomorphic to the linearization of x ×Q y,
by [Herschend 2010, Corollary 1] (which requires that x, y be wrappings). In
the representation ring R(Q), this gives L(x)L(y) =

∑
i Lt (wi ). Now since we

already know L is a homomorphism of additive groups, we can use formula (9) to
obtain ∑

i

L(wi )=
∑

i

∑
z∈C0

[z, wi ] L(δz).

This shows that L is a ring homomorphism, and moreover, the image of L is the
subring of R(Q) generated by L(C); thus it is isomorphic to M(C). �
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Corollary 10. Let the assumptions be as in Theorem 9.

(1) The subring of R(Q) generated by L(C) has a basis B = {L(δx) | x ∈ C} of
orthogonal idempotents.

(2) When (Q, id) ∈ C, this results in a direct product decomposition

R(Q)∼=
∏
x∈C

〈L(δx)〉,

where 〈L(δx)〉 is the principal ideal of R(Q) generated by L(δx).

Proof. Statement (1) is immediate from the theorem. Then statement (2) follows
because the identity element of R(Q) is the linearization of the identity element
(Q, id) of M(C), so 1 =

∑
x L(δx) is a decomposition as a sum of orthogonal

idempotents in R(Q). �

6. The PIE category

In Section 3 we have seen that the projective representations of an acyclic quiver
Q span a subring of R(Q), in which multiplication can more easily be carried
out using a basis of orthogonal idempotents. The duality functor gives a ring
isomorphism R(Q) ∼= R(Qop), so the same can be said for the injective repre-
sentations of Q. In [Kinser 2010, Section 4.1], a similar construction is carried out
for the collection of idempotent representations of Q (those which are the identity
representation of some subquiver).

So the natural question arises as to whether these three sets of idempotents in
R(Q) have a common refinement. That is, we would like to find a subring of R(Q)
containing a complete set of orthogonal idempotents which span the set of projec-
tive, injective, and idempotent representations. The first problem one encounters
is that the tensor product of a projective with an idempotent representation (which
results in the restriction of the projective to a subquiver) is not necessarily projec-
tive, injective, or idempotent. So we need to enlarge the scope of representations
that we look at.

6.1. Subprojective and subinjective representations. Recall that the support of a
representation V of Q, written supp V , is the subquiver of Q consisting of the
vertices to which V assigns a nonzero vector space, and the arrows to which V
assigns a nonzero map. For an object X = (Q′, f ′) of ↓Q, we define supp X =
f ′(Q′), so that supp X = supp L(X)⊆ Q when X is a wrapping.

Definition 11. A representation V of a quiver is subprojective or subinjective if it
restricts to a projective or injective representation of its support, respectively.

To utilize Theorem 9 in the study of tensor products of these representations,
we must first present them as linearizations of some quivers over Q.
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Definition 12. A structure quiver for V ∈ rep(Q) is an object X ∈ ↓Q0 such that
L(X)' V . A structure quiver X = (Q′, f ′) for V is said to be minimal if any other
structure quiver Y = (Q′′, f ′′) for V has at least as many arrows as Q′.

In the language of [Ringel 1998], a structure quiver is a “coefficient quiver” in
some basis. By dimension reasons, any two structure quivers for a given V have
the same number of vertices over each vertex of Q. But the following example
shows a basic way that a structure quiver can fail to be minimal.

Example 13. Take for our base quiver

Q =
3 2 1

α

β

γ

and consider P(3), the projective representation associated to vertex 3. The “natu-
ral” structure quiver for P(3) is

Q′ =
3

2 1

2 1

α

β

γ

γ

(where we mark the vertices and edges according to what they lie over in Q). But
one can quickly see that the linearization of

Q′′ =
3

2 1

2 1

α

β

γ

γ

γ

will also give a representation isomorphic to P(3), and that we have an embedding
Q′ ⊆ Q′′ as quivers over Q.

6.2. Definition of the PIE category. We now present the natural structure quivers
for subprojective, subinjective, and idempotent representations of an acyclic quiver.
Then we justify calling them “natural” by showing that these are the unique mini-
mal structure quivers for these representations. For each subquiver T ⊆ Q, consider
the following quivers over Q.

• When T has a unique source t , we define the vertex set of the quiver PT

as the set of all paths in T starting at t ; the structure map as a quiver over



982 Ryan Kinser and Ralf Schiffler

Q sends such a path to its endpoint in Q. We put an arrow from the vertex
associated to a path p to the one for a path q in PT exactly when q is obtained
by concatenating a single arrow α onto the end of p; in this case, that arrow
in PT is sent to the arrow α ∈ Q1 by the structure map. So in Example 13, we
have Q′ = PQ . In [Enochs et al. 2004, Section 2], this is called the component
of the “(left) path space” of Q associated to t .

• When T has a unique sink, IT is defined dually; its vertex set is the collection
of all paths within T that end at the sink.

• For any subquiver T ⊆ Q, the inclusion of T into Q will be denoted by ET

when being considered as a quiver over Q.

It will always be implicit that PT or IT is only defined when T has a unique
source or sink, respectively.

Remark 14. There are coincidences among the P-, I -, and E-type objects, which
we record for reference later. Two distinct paths are said to be parallel if they start
at the same vertex and end at the same vertex. Then ET = PT if and only if T has
a unique source and no parallel paths, while ET = IT if and only if T has a unique
sink and no parallel paths. We have IT = PT exactly when T is just a single path,
in which case we get that these both equal ET as well.

Definition 15. Let PIE be the full subcategory of the category of quivers over Q
whose objects are all the PT , IT , and ET as T varies over all subquivers of Q.

Example 16. With Q as in Example 13, the distinct objects of PIE are as follows:

• The ten connected subquivers of Q.

• The P-type objects which are not subquivers:

Pαβ =
3

2

2

α

β

PQ =
3

2 1

2 1

α

β

γ

γ

• The I -type objects not included above:

Iαβ =

3

3

2

α

β

IQ =

3

3

2 1

α

β

γ
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Lemma 17. The objects of PIE are the unique minimal structure quivers for the
indecomposable subprojective, subinjective, and idempotent representations.

Proof. It is easy to see that L(PT ) is subprojective, L(IT ) is subinjective, and
L(ET ) is idempotent, and that each of these is indecomposable; this is just the
standard construction of projectives and injectives which can be found, for example,
in [Assem et al. 2006, Lemma III.2.4]. Thus, we need to show that they are minimal
and uniquely so.

If X = (Q′, f ′) is such that L(X) = L(ET ) is an idempotent representation,
there is exactly one vertex of Q′ over each vertex of T . Consequently, all arrows
of Q′ over a given α ∈ T1 must be parallel; taking precisely one arrow over each
α ∈ T1 is then the unique minimal choice, which is exactly the definition of ET .

Now the P-type and I -type cases are dual (each follows from the other by
working with quivers over Qop), so it is enough to prove the statement for the
P-type case. Suppose X = (Q′, f ′) is such that L(X)= L(PT ), and fix an arrow
α ∈ T1. Then the map L(X)α is injective with rank equal to the number of paths
in T from the source of T to s(α), by the description of projectives. Since a rank
r map cannot be the sum of strictly less than r rank one maps, the pushforward
construction (5) requires that Q′ must have at least this many arrows over α. So
PT is minimal since it has precisely this many arrows.

To see that it is unique, we use induction on the number of arrows in T . When T
has no arrows the uniqueness is clear. Now if T has arrows, let α be an arrow ending
at some sink of T , and denote by T̃ the connected component of T \α containing
the source of T (that is, remove α, and if that isolates the vertex t (α), discard that
vertex). Then working with representations over T̃ (which has a unique source),
we define Q̃′ = f ′−1(T̃ ) and see that the linearization of X̃ = (Q̃′, f ′) is L(PT̃ ).

Let {v′1, . . . , v
′
n} be the vertices of Q′ lying over s(α). Each v′i must have at least

one outgoing arrow α′i in Q′ lying over α, because otherwise the vector correspond-
ing to v′i in L(X) would be in the kernel of the linear map over α, which is not
possible since the maps in a projective representation are injective. By dimension
count at the vertex t (α), each α′i ends at a new vertex w′i of Q′ which is not in Q̃′.
By the assumption that X is a minimal structure quiver for L(PT ), we know that
Q′ has the same number of arrows as PT . If some v′i had more than one outgoing
arrow over α, that would leave Q̃′ with fewer arrows than PT̃ , contradicting the
fact that PT̃ is minimal. So there are exactly n arrows over α in Q′, and Q̃′ has
the same number of arrows as PT̃ . By induction, we get that X̃ = PT̃ , then the
remaining arrows over α are configured exactly so that X = PT . �

It is worth remarking that we have proven something slightly stronger, namely,
that an object of the PIE category actually embeds in any quiver over Q giving the
same linearization.
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6.3. Morphisms in PIE. In order to see that the Theorem 9 can be applied to PIE,
and eventually do some computations in its Möbius ring, we need to know the
cardinalities of Hom sets. We first record some simple facts, continuing to use the
notation [X, Y ] for the cardinality of Hom↓Q(X, Y ).

Lemma 18. Let X, Y be quivers over Q.

(a) [X, Y ] = 0 unless supp X ⊆ supp Y .

(b) For T ⊆ Q we have

[X, ET ] =

{
1 if supp(X)⊆ T,
0 otherwise.

(12)

Proof. We can see (a) immediately from the diagram (3) in the definition of mor-
phisms in ↓Q. Then specializing this diagram to the situation of (b), we see that
the dotted line in

Q′ ET

Q

f ′ ⊆

	

can only be filled in when supp(X)= f ′(Q′)⊆ T , and only by the morphism f ′. �

Describing maps to P-type objects is slightly more complicated, but we can get
enough of a description to count morphism sets in PIE.

Proposition 19. Let T ⊆ Q be a subquiver, and X = (Q′, f ′) a quiver over Q
with supp X ⊆ T .

(a) Given a map of vertex sets g0 : Q′0→ (PT )0 that respects the structure maps
to Q, there is a unique map of arrow sets g1 : Q′1→ (PT )1 which respects the
structure maps to Q and also the start vertex function s.

(b) The maps in (a) give a morphism g = (g0, g1) : Q′→ PT in ↓Q if and only
if , when regarding the vertices of PT as paths in T , the equation

g0(t (α′))= g0(s(α′)) f ′(α′) (13)

holds for each arrow α′ ∈ Q′1. (The operation on the right hand side is con-
catenation.)

Proof. Given a map between vertex sets as in the hypotheses of (a), we explicitly
describe the resulting map of arrows. For each α′ ∈ Q′1, the arrow g1(α

′) in PT

must start at g0(s(α′)) to respect the s function. To respect the structure maps to
Q, this arrow must be labeled with f ′(α′). But in PT , each vertex has at most one
outgoing arrow labeled by a given arrow in Q, and the assumption that supp X ⊆ T
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guarantees that there is such an arrow for this vertex. So we can define g1(α
′) as

the unique arrow of PT lying over f ′(α′) in Q and satisfying s(g1(α
′))= g0(s(α′)).

This shows (a).
Now suppose that the resulting map is a morphism in ↓Q. Then it must respect

both the start and terminal vertex functions s, t , and so an arrow s(α′) α′
−→ t (α′) is

sent to
g0(s(α′))

g1(α
′)

−−−→ g0(t (α′))

in PT , with g1(α
′) lying over f ′(α′). But the construction of PT is such that this

is equivalent to (13). Conversely, we need to see that the function t is respected
when this equation holds for all arrows. Since at least s(g1(α

′))= g0(s(α′)), any
arrow s(α′) α′

−→ t (α′) is sent to an arrow

g0(s(α′))
g1(α

′)
−−−→ t (g1(α

′))

in PT . But then g1(α
′) lying over f ′(α′) gives the equation of paths

t (g1(α
′))= g0(s(α′)) f ′(α′)

by the construction of PT again, which is exactly equal to g0(t (α′)) by assumption.
So t is respected by these maps of vertices and arrows, and thus g is a morphism
in ↓Q. �

Corollary 20. If Q′ has a unique source i ′, then any morphism g : Q′→ PT in ↓Q
is uniquely determined by g(i ′). Consequently, [PS, PT ] is equal to the number of
paths in T from the source of T to the source of S if S ⊆ T , and 0 otherwise.

Proof. Part (a) of Proposition 19 tells us that the images of arrows under g are
determined by the images of the vertices. Repeated use of (13) shows that g(i ′)
determines g( j ′) for any vertex j ′ lying on a path starting at i ′. Since i ′ is the
unique source, this determines g completely.

To show the second statement of the corollary, observe first that if S * T then
Lemma 18 (a) implies that [PS, PT ] = 0. Suppose now that S ⊆ T . Compatibility
with structure maps requires that any morphism in ↓Q sends the source of PS to
a vertex of PT associated to a path q in T ending at the source of S. Any such
choice extends to a morphism PS→ PT in the obvious way, by sending a path in
S to its concatenation with q , which is a path in T . Similarly, there is one obvious
way to define the map on arrows of PS . Now the previous paragraph implies that
this extension to the rest of PS is unique. �

Corollary 21. If there exists a morphism g : Q′→ PT in ↓Q, then any two arrows
with the same terminal vertex in Q′ must lie over the same arrow in Q. That is, for
α′, β ′ ∈ Q′1 with t (α′)= t (β ′), we have f ′(α′)= f ′(β ′). Consequently, we get that
[ES, PT ] = 0 unless ES = PS , and [IS, PT ] = 0 unless IS = PS .
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from\to ET PT IT

ES 1
0 unless 0 unless
ES = PS ES = IS

PS 1
# paths in T from 0 unless

source T to source S PS = IS = ES

IS 1
0 unless # paths in T from

IS = PS = ES sink S to sink T

Table 1. Summary of morphisms in PIE if S ⊆ T .

Proof. If there exists such a morphism g, we apply (13) to both α′ and β ′ and then
use the assumption that t (α′)= t (β ′) to get

g(s(α′)) f ′(α′)= g(t (α′))= g(t (β ′))= g(s(β ′)) f ′(β ′)

as paths in Q. Since a path can only end with one arrow, it must be that f ′(α′)=
f ′(β ′). Now if ES is distinct from PS , then the subquiver S must either have
parallel paths or more than one source. In either case, there will be two arrows in
ES with the same terminal vertex but different labels, preventing any morphism
from ES to PT . Similarly, if IS is distinct from PS , then there are distinct arrows
in IS with the same terminal vertex.

Thus there can be no morphism from IS to PT . �

The results of this subsection are summarized Table 1, keeping in mind that by
Lemma 18(a) we need S ⊆ T for any corresponding entry to be nonzero, though
we don’t write this in each entry of the table.

6.4. Fiber products in PIE.

Lemma 22. For T ⊆ Q and X = (Q′, f ′), we have ET ×Q X ' f ′−1(T ). In other
words, fiber product with ET restricts X to T .

Proof. The universal property of the fiber product can be quickly verified: suppose
we have a commutative diagram of quiver morphisms given by the solid lines in

Z

f ′−1(T ) Q′

ET Q

g

f ′f ′
h
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where Z is an arbitrary quiver over Q. We need to see that there is a unique map
along the dashed arrow making the diagram commutative everywhere. The outer
square shows that g(Z) ⊆ f ′−1(T ), so filling in the dashed arrow with g gives a
map from Z to f ′−1(T ) over Q making the two triangles commute. The upper
triangle shows that g is unique. �

We now show that PIE is closed under products with E-type objects. For a
vertex i in a quiver Q, denote by

−→

i the successor closure of i in Q, that is, the full
subquiver of Q containing the vertices which can be reached by a path starting at i .

Proposition 23. For any S, T ⊆ Q, the fiber product PS ×Q ET is a disjoint union
of P-type quivers over Q. More specifically, for each source i of S ∩ T , the quiver
P−→i appears as a component of PS ×Q ET with multiplicity equal to the number
of paths from the source of S to i in S, where the successor closure is taken inside
S ∩ T .

Proof. We know from the previous lemma that PS ×Q ET can be identified with a
subquiver of PS lying over S ∩ T . So, the vertices of PS ×Q ET can be identified
with paths starting at the source of S and ending in S ∩ T , with the arrows between
them exactly the ones in PS that lie over S ∩ T ; in particular, the arrows still fit the
description of those in a P-type quiver over Q. Now each path ending in S ∩ T
passes through precisely one source of S ∩ T , naturally partitioning the vertices as
described in the proposition. �

As one would expect, describing the fiber product of an arbitrary X = (Q′, f ′)
with P-type objects is more complicated. Roughly, we can think of X ×Q PS as a
path space for Q′ that records only the labels from Q which are traversed to get to
a vertex, rather than the exact path.

Proposition 24. The fiber product of a P-type and an I -type quiver over Q is a
disjoint union of paths in Q (that is, E-type quivers).

Proof. Let S, T ⊆ Q be subquivers, so that we want to describe PS ×Q IT . By the
definition of fiber products, we know that PS ×Q IT has support S ∩ T , over which
PS and IT decompose as disjoint unions of P-type and I -type quivers, respectively.
So if S 6= T , we can distribute the product over these disjoint unions and then
compute PS ×Q IT from the product of smaller P-type and I -type quivers. For
each of these products, we can repeat the process until we are left with products
over the same subquiver of Q in the base.

Hence we can assume without loss of generality that S = T = Q for the remain-
der of the proof. Since, by assumption, PQ and IQ are defined, it follows that Q
has a unique source i and a unique sink j . Then the vertices of PQ ×Q IQ lying
over k ∈ Q0 are pairs (p, q) consisting of a path p from i to k, and a path q from
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k to j ; in other words, each vertex corresponds to a maximal path pq in Q with a
distinguished vertex k. Unraveling the definitions, we see that an arrow

(p1, q1)
(a,b)
−−→ (p2, q2)

in PQ ×Q IQ occurs exactly when p1q1 and p2q2 are the same maximal path in Q
and a = b is an arrow between adjacent distinguished vertices on this path. Thus
each connected component of PQ ×Q IQ is a maximal path in Q. �

Example 25. Continuing with the setup of Examples 13 and 16, we get that

PQ ×Q IQ ' 3

3

2 1

2 1

a

b

c

c

can be identified with the two maximal paths in Q.

Proposition 26. The fiber product of two P-type quivers over Q is a disjoint union
of P-type quivers.

Proof. The same argument as in Proposition 24 allows us to reduce to the case
PQ ×Q PQ , where Q has unique source i . Then the vertices of PQ ×Q PQ can be
identified with pairs of paths (p, q) that start at i and end at the same vertex of Q,
and since each vertex of PQ has at most one incoming arrow, so must each vertex
of PQ ×Q PQ .

More precisely, an arrow

(p1, q1)
(a,b)
−−→ (p2, q2)

in PQ ×Q PQ occurs exactly when a and b lie over the same arrow c of Q, and
both p1c= p2 and q1c= q2 as paths in Q; in particular p2 and q2 are parallel paths
starting at i that end with the same arrow. So any pair of paths (p, q)∈ (PQ×Q PQ)0

that do not end with the same arrow give a source of PQ×Q PQ , and, for each vertex
of the form (pr, qr), where r varies over the paths starting at the common endpoint
j of p and q, there is a unique path in PQ ×Q PQ starting at (p, q) and ending
at (pr, qr). So in fact (p, q) is the unique source of a connected component of
PQ ×Q PQ which is isomorphic to P−→j . Since all vertices fall into some connected
component of this form (not forgetting the case where both p and q are the trivial
path at i), we see that PQ ×Q PQ is a disjoint union of P-type quivers. �

6.5. Main result on PIE. We now apply Theorem 9 to the category PIE.

Lemma 27. For any acyclic quiver Q, the corresponding PIE category satisfies
the hypotheses of Theorem 9.
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Proof. The category PIE was defined so that the objects are connected, wrappings,
and linearize to distinct indecomposables.

To see that PIE is acyclic, we demonstrate an ordering of its objects making
the Hom matrix upper triangular unipotent. First, we “block” the objects together
into sets BS = {PS, IS, ES} for each S ⊆ Q, keeping in mind our convention of
omitting PS or IS when the object is undefined, and the possibility of coincidences
among PS, IS and ES . If these blocks are ordered so that BS comes before BT

whenever S ⊆ T , the Hom matrix will be block lower triangular by Lemma 18(a).
On the diagonal are then the blocks where S = T , which we see from Table 1 are
always lower triangular: to get a nonzero entry above the main diagonal, we need
a coincidence ES = PS or ES = IS , but in this case the corresponding row and
column would be omitted as redundant since S = T .

The fact that PIE is closed under fiber products follows from applying Lemma 22
and Propositions 23, 24 and 26 to Q and Qop. �

As in Section 5, each object x of PIE, defines an idempotent

δx
def
=

∑
z∈PIE0

µ(z, x)z (14)

in M(PIE). Let ex = L(δx) be its image in R(Q). (Note that ex is different than
the e(x) of Section 3.)

We are ready for the main result of this section.

Theorem 28. Let Q be a quiver without oriented cycles. Then R(Q) has a direct
product structure

R(Q)∼=
∏

x∈PIE0

〈ex 〉,

where 〈ex 〉 is the principal ideal generated by ex .

Proof. According to Lemma 27, Theorem 9 and its corollary apply in this situation.
The result now follows. �

Example 29. Continuing with the setup of Example 16, we can roughly visualize
the PIE category as in Figure 1 (though we cannot count morphisms from this
visualization). To get the idempotent associated to x = Eαβ , for example, we start
by writing

ex = Eαβ +µ(Pαβ, Eαβ)Pαβ +µ(Iαβ, Eαβ)Iαβ +µ(Eα, Eαβ)Eα
+µ(Eβ, Eαβ)Eβ +µ(E3, Eαβ)E3+µ(E2, Eαβ)E2,

where we have used the definition of ex , that µ(x, x) = 1, and that µ(z, x) = 0
when [z, x] = 0. Then (6) can be used to calculate these coefficients, starting with
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EQ

Eαβ Eαγ Eβγ

Pαβ Iαβ

Eα Eβ Eγ

E3 E2 E1

Figure 1. Visualization of the category PIE. The nodes are objects
of PIE, and there is a path from x to y in the diagram if and only
if there exists a morphism from x to y in PIE.

the ones closest to Eαβ . For example, we first get

µ(Pαβ, Eαβ)= µ(Iαβ, Eαβ)=−1

from the fact that [x, x] = 1. Similarly, we can find µ(Eα, Eαβ)=µ(Eβ, Eαβ)= 1.
Then to get µ(E2, Eαβ), there is a unique morphism from E2 to each object in the
interval between E2 and Eαβ except Pαβ , for which we have [E2, Pαβ] = 2. So
here we find

µ(E2, Eαβ)=−1− 2(−1)− (−1)− 1− 1= 0.

A similar computation shows µ(E3, Eαβ)= 0, so that finally

ex = Eαβ − Pαβ − Iαβ + Eα + Eβ .

The entire basis of orthogonal idempotents for M(PIE) is:

{E1, E2, E3, Eα−E2−E3, Eβ−E2−E3, Eγ−E2−E1,

Pαβ−Eα−Eβ−E3, Iαβ−Eα−Eβ−E2,

Eαβ−Pαβ− Iαβ+Eα+Eβ, Eαγ−Eα−Eγ−E2,

Eβγ−Eβ−Eγ−E2, EQ−Eαβ−Eαγ−Eβγ+Eα+Eβ+Eγ−E2}.
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6.6. Computation of specific Möbius functions. Although one generally cannot
expect closed formulas for values of the Möbius function µ, even in the poset case,
we can calculate them for some pairs of objects in the PIE category. Given two
subquivers S, T ⊆ Q, we say that they have the same skeleton if, for every pair of
vertices v,w ∈ Q0, there is at least one edge between v and w in S exactly when
there is at least one edge between v and w in T . When S and T have the same
skeleton, PS exists if and only if PT exists, and similarly for I -type objects.

Proposition 30. Let S ⊆ T be subquivers of an acyclic quiver Q which have the
same skeleton, and write A= T1 \ S1 for the set of arrows of T which are not in S.
Then the following hold in case PS 6= ES 6= IS:

µ(ES, PT )= 0, (15)

µ(ES, ET )= (−1)#A, (16)

µ(PS, PT )= (−1)#A, (17)

µ(PS, ET )= (−1)#A+1, (18)

µ(PS, IT )= 0. (19)

When X = PS = ES 6= IS , we have the following formulas:

µ(X, ET )= 0, (20)

µ(X, PT )= (−1)#A, (21)

µ(X, IT )= 0. (22)

In the case that Y = PS = ES = IS , we have

µ(Y, ET )= (−1)#A+1, (23)

µ(Y, PT )= (−1)#A. (24)

Dual formulas also hold (that is, when P- and I -type objects are interchanged).

Proof. The key is that when S and T have the same skeleton, all the Hom sets
involved in finding the formulas of the proposition have at most one element. In
other words, we are computing values of the Möbius function of some poset in
each case. For a given T ⊆ Q, there is a unique minimal subquiver of Q with the
same skeleton as T . Remark 14 implies that this is the only possible subquiver
with the same skeleton as T which may be simultaneously P- and E-type.

Equations (15) and (19) follow from fact (b) of Section 4.2. The top row of
Table 1 shows that the full subcategory of PIE consisting of objects between ES

and ET (in the Hom order) is isomorphic to the poset of subsets of A. The Möbius
function of this poset is well known [Stanley 1997, 3.8.3], giving (16). The same
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argument gives (17), since the only objects Z for which there exist morphisms
PS→ Z→ PT are P-type. To see (18), we use (6) to compute

−µ(PS, ET )=
∑

PS<Z≤ET

[PS, Z ]µ(Z , ET )

= µ(ES, ET )+
∑

S(Q′⊆T

(
µ(EQ′, ET )+µ(PQ′, ET )

)
= µ(ES, ET ), (25)

where the rightmost equality follows from induction by canceling out pairwise each
term of the sum.

Now when X = PS = ES , the (25) still holds except that the term µ(ES, ET ) is
absent, so we get (20). Again, morphisms X→ PT can only factor through P-type
objects, so the same argument for (17) applies to give (21). In this case there are
still no morphisms from PS to IT , so (22) follows.

Finally, when Y = PS = ES = IS is just a path in Q, it has morphisms to objects
of all types in PIE. So we get

−µ(Y, ET )=
∑

PS<Z≤ET

[Y, Z ]µ(Z , ET )

=

∑
S(Q′⊆T

(
µ(EQ′, ET )+µ(PQ′, ET )+µ(IQ′, ET )

)
=

∑
S(Q′⊆T

µ(PQ′, ET )

=−

∑
S(Q′⊆T

µ(EQ′, ET )=−(−1)#A
= (−1)#A+1 (26)

by applying formulas from the first group and canceling some terms. The same
argument for (17) and (21) will give (24). By applying the formulas to Qop, we
get similar formulas on Q with P- and I -type objects interchanged. �

The hypothesis that S and T have the same skeleton can be relaxed for several
of the formulas; for example, the same proof shows that (15) and (19) hold for all
subquivers S and T when PS 6= ES .

7. Future directions

Here we suggest a few directions for future work.

(1) What are other examples of categories of quivers over Q satisfying the hypothe-
ses of the Theorem 9? For example, when Q is any quiver, Section 4 of [Herschend
2010] gives such a category (with infinitely many objects, but see Remark 8) in
the course of studying string and band modules. Or when Q is a rooted tree quiver,
there is a collection of “reduced quivers over Q” given in [Kinser 2010] which
satisfies these hypotheses.
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A result of Ringel states that if V is an exceptional representation of a quiver
(that is, Exti (V, V ) = 0, for all i ≥ 1), then V has a structure quiver which is a
tree [Ringel 1998]. This structure quiver is not unique, but one may try to give
“good” choices of structure quivers for some class of exceptional modules so that
Theorem 9 can be applied.

(2) Can we get more closed formulas for values of µ, in addition to Proposition 30
(for the PIE category, or any other example)?

(3) When does Theorem 9 give all of the idempotents of R(Q) (or how can it
be improved to give all idempotents)? That is, under what conditions on C is
it impossible to write each L(δx) as a nontrivial sum of idempotents? The PIE
category will not generally give all idempotents, but the rooted tree case mentioned
above does.

(4) Is there a representation theoretic interpretation for the idempotents obtained
from the PIE category? For example, given x ∈PIE0, what properties of V ∈ rep(Q)
are necessary or sufficient for ex V = 0? (See Propositions 32 and 35 of [Kinser
2010].)
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Cox rings and pseudoeffective cones of
projectivized toric vector bundles

José González, Milena Hering, Sam Payne and Hendrik Süß

We study projectivizations of a special class of toric vector bundles that includes
cotangent bundles whose associated Klyachko filtrations are particularly simple.
For these projectivized bundles, we give generators for the cone of effective
divisors and a presentation of the Cox ring as a polynomial algebra over the
Cox ring of a blowup of a projective space along a sequence of linear subspaces.
As applications, we show that the projectivized cotangent bundles of some toric
varieties are not Mori dream spaces and give examples of projectivized toric
vector bundles whose Cox rings are isomorphic to that of M0,n .

1. Introduction

Projectivizations of toric vector bundles over complete toric varieties are a large
class of rational varieties that have interesting moduli and share some of the pleas-
ant properties of toric varieties and other Mori dream spaces. Hering, Mustat,ă, and
Payne [Hering et al. 2010] showed that their cones of effective curves are polyhe-
dral and asked whether their Cox rings are indeed finitely generated. For rank-two
bundles an affirmative answer is given in [Hausen and Süß 2010; González 2010]
or can be derived from the results of [Knop 1993].

Here we apply general results of Hausen and Süß on Cox rings for varieties
with torus actions to give a presentation of the Cox ring for certain projectivized
toric vector bundles as a polynomial algebra over the Cox ring of the blowup of
projective space along a collection of linear subspaces. The question of finite gener-
ation for the Cox rings of these blowups is completely understood when the collec-
tion of linear subspaces consists of finitely many points in very general position,
through work of Mukai [2004], and Castravet and Tevelev [2006] in connection
with Hilbert’s fourteenth problem.

Let k be an algebraically closed field, and let X be a smooth projective toric
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variety of dimension d over k, corresponding to a fan 6 with n rays. Throughout,
we use r to denote the rank of a vector bundle on X (6). By a toric vector bundle
on X we mean a vector bundle admitting an action of the dense torus T in X that is
linear on fibers and compatible with the action on the base. By the projectivization
of a toric vector bundle we mean the bundle of rank-one quotients.

Theorem 1.1. Suppose k is uncountable, n > r ≥ d , and 1
r +

1
n−r ≤

1
2 . Then there

is a nonsplit toric vector bundle F of rank r on X (6) such that the Cox ring of the
projectivization P(F) is not finitely generated.

In particular, on any smooth projective toric surface corresponding to a fan with
at least nine rays, there is a rank-three toric vector bundle whose projectivization is
not a Mori dream space. The bundles that we construct in the proof of Theorem 1.1
are of a special form: in Klyachko’s classification, they correspond to collections
of filtrations each of which contains at most one nontrivial subspace; moreover
this subspace has codimension one, and this arrangement of hyperplanes is in very
general position. The inequality in the theorem is sharp; if 1

r +
1

n−r >
1
2 and the

hyperplanes are in general position, then the projectivization of any such bundle is
a Mori dream space. See Corollary 3.7.

Remark 1.2. The techniques used to prove Theorem 1.1 give more information
than just whether or not a Cox ring is finitely generated. In Section 3 we give pre-
sentations for the Cox rings of certain projectivized toric vector bundles as algebras
over Cox rings of blowups of projective spaces along linear subspace arrangements.
As one special case, we produce an example of a vector bundle on a toric surface
whose projectivization has the same Cox ring as M0,n . See Example 3.9.

Remark 1.3. If P(F) is a projectivized bundle whose Cox ring is not finitely gen-
erated, it may still happen that the section ring of the tautological quotient line
bundle O(1) on P(F) is finitely generated. However, Theorem 1.1 implies that
there also exist toric vector bundles F′ such that the section ring of O(1) on P(F′)

is not finitely generated.
Suppose P(F) is a projectivized toric vector bundle on X (6) whose Cox ring is

not finitely generated, and let L1, . . . ,Lk be line bundles that positively generate
the Picard group of X (6). Then the section ring of O(1) on the projectivization of
F′ = F⊕L1⊕ · · ·⊕Lk is not finitely generated. So Theorem 1.1 gives negative
answers to Questions 7.1 and 7.2 of [Hering et al. 2010].

A necessary, but not sufficient, condition for a projective variety to be a Mori
dream space is that its pseudoeffective cone be polyhedral. In many of the examples
covered by Theorem 1.1, it is unclear whether this condition holds. However, by
choosing the toric variety carefully, with an even larger number of rays, we produce
examples of projectivized toric vector bundles whose pseudoeffective cones are not
polyhedral.
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Theorem 1.4. Suppose k is uncountable, n− d > r ≥ d and 1
r +

1
n−d−r ≤

1
2 , and

assume there is some cone σ ∈6 such that every ray of 6 is contained in either σ
or −σ . Then there is a nonsplit toric vector bundle F of rank r on X (6) such that
the pseudoeffective cone of P(F) is not polyhedral.

Examples of toric varieties satisfying the hypotheses of Theorem 1.4 can be con-
structed through sequences of iterated blowups of (P1)d , as in Example 1.7, below.

The constructions used to prove Theorems 1.1 and 1.4 involve choosing bun-
dles that are very general in their moduli spaces. However, by choosing the fan
sufficiently carefully, one gets examples of smooth projective toric varieties in char-
acteristic zero whose projectivized cotangent bundles are not Mori dream spaces.
For these examples, the bundle is determined by the combinatorial data in the fan.

Theorem 1.5. Suppose d ≥ 3 and the characteristic of k is not two or three. Then
there exists a smooth projective toric variety X (6′) of dimension d over k such
that the Cox ring of the projectivized cotangent bundle on X (6′) is not finitely
generated.

In this respect, cotangent bundles behave quite differently from tangent bundles,
since the Cox ring of the projectivization of the tangent bundle on any smooth toric
variety is finitely generated [Hausen and Süß 2010, Theorem 5.9]. So, Theorem 1.5
shows that there are toric vector bundles F such that P(F) is a Mori dream space,
but the projectivized dual bundle P(F∨) is not.

Remark 1.6. In Theorems 1.1 and 1.4, we assume the field is uncountable in order
to choose a configuration of points in very general position in the projective space
Pr−1. Examples constructed by Totaro in his work on Hilbert’s 14th Problem over
finite fields [2008] show that this restriction on the cardinality of the field is not
necessary in some cases. For instance, to prove these theorems in the special case
where r is three, it is enough to find a configuration S of nine points in P2(k)

such that BlS P2 contains infinitely many −1-curves, and Totaro constructed such
configurations over Q and over Fp, for p > 3.

We conclude the introduction with an example of a projectivized rank three
bundle on an iterated blowup of P1

× P1 at seven points whose effective cone
agrees with the effective cone of P2 blown up at nine very general points, and
hence is not polyhedral.

Example 1.7. Let X (6) be the toric variety obtained by first blowing up one of
the toric fixed points on P1

×P1, then blowing up both of the toric fixed points in
the exceptional divisor, and then blowing up all four of the torus fixed points in the
new exceptional divisors. The corresponding fan is as shown in Figure 1.
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Figure 1. The fan of Example 1.7.

Note that every ray of the fan is contained in either the cone σ spanned by ρ10

and ρ11, or in −σ , and 1
3 +

1
11−2−3 =

1
2 . So X (6) satisfies the hypotheses of

Theorems 1.1 and 1.4.
Let F be a three-dimensional vector space, and define filtrations

Fρi ( j)=


F for j ≤ 0,
Fi for j = 1,
0 for j > 1,

where F1, . . . , F9 are two-dimensional subspaces in very general position, and F10

and F11 are zero. By [Klyachko 1989] these filtrations give rise to a toric vector
bundle F on X (6), see also Section 2. The subspaces F1, . . . , F9 correspond to a
set S = {p1, . . . , p9} of nine points in very general position in the projective plane
PF of one-dimensional quotients of F . Our first main construction, in Section 3,
shows that the Cox ring of P(F) is canonically isomorphic to a polynomial ring
in two variables over the Cox ring of the blowup BlS PF of the plane at this set
of points. Furthermore, in Section 5 we give an isomorphism of class groups
Cl(P(F))

∼
−→ Cl(BlS PF ) that takes O(1) to the pullback of the hyperplane class

of PF , and the class of P(F|Dρi
) to the class of the exceptional divisor Ei , for

i = 1, . . . , 9, and show that this isomorphism induces an identification of the effec-
tive cones of the two spaces. Therefore, the pseudoeffective cone of P(F), like the
pseudoeffective cone of BlS PF , is not polyhedral, and P(F) is not a Mori dream
space.

2. Preliminaries

We work over an uncountable field k of arbitrary characteristic with the exception
of the proof of Theorem 1.5, where we restrict to characteristic not two or three.
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Let T be a torus of dimension d, with character lattice M . Let X (6) be a
toric variety with dense torus T , and let ρ1, . . . , ρn be the rays of 6. We write
v j for the primitive generator in N = Hom(M,Z) of the ray ρ j , and Dρ j for the
corresponding prime T -invariant divisor in X (6).

Suppose F is a toric vector bundle of rank r on X (6). The Klyachko filtrations
associated to F are decreasing filtrations of the fiber F over the identity 1T , indexed
by the rays of 6,

· · · ⊃ Fρ j (k− 1)⊃ Fρ j (k)⊃ Fρ j (k+ 1)⊃ · · · ,

and characterized by the following property. If Uσ is the torus-invariant affine
open subvariety of X (6) corresponding to a cone σ in 6, then the torus T acts on
H 0(Uσ ,F) by (ts)(x)= t (s(t−1x)). If u is a character of the torus, then the space
of isotypical sections

H 0(Uσ ,F)u = {s ∈ H 0(Uσ ,F) | ts = χu(t)sfor all t ∈ T }

injects into F , by evaluation at 1T , and the image is

Fσu =
⋂
ρ j�σ

Fρ j (〈u, v j 〉).

In particular, if Fρ j (0)= F for all j then the space of T -invariant sections of F is
canonically isomorphic to F .

The Klyachko filtrations satisfy the following compatibility condition.

Klyachko’s compatibility condition. For each maximal cone σ ∈ 6, there are
lattice points u1, . . . , ur ∈ M and a decomposition into one-dimensional subspaces
F = L1⊕ · · ·⊕ Lr such that

Fρ j (k)=
⊕

〈ui ,v j 〉≥ k
L i ,

for each ρ j � σ and all k ∈ Z.

The bundle F can be recovered from the family of filtrations {Fρ j (k)}, and the
induced correspondence between toric vector bundles and finite dimensional vector
spaces with compatible families of filtrations gives an equivalence of categories.
See [Klyachko 1989] or the summary in [Payne 2008, Section 2] for details.

We write P(F) for the projective bundle Proj(Sym(F)) of rank one quotients of
F, and

π : P(F)→ X (6)

for its structure map. The fiber of P(F) over 1T is the projective space PF of
one-dimensional quotients of F . If F ′ is a linear subspace of F then

PF/F ′ ⊂ PF
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is a projective linear subspace of codimension equal to the dimension of F ′.
Following the usual convention, we write O(1) for the tautological quotient bun-

dle on P(F), which is relatively ample with respect to π , and O(m) for its mth
tensor power.

For our primary examples in this paper, we will focus on bundles whose filtra-
tions are especially simple, and in particular those satisfying

Fρ j (k)=


F for k ≤ 0,
F j for k = 1,
0 for k > 1,

(∗)

where F j is either 0 or a subspace of F of dimension at least two, and all of the
nonzero F j are distinct.

One reason for working with a bundle given by filtrations satisfying (∗) is that
the T -invariant global sections of O(m) on P(F), and their orders of vanishing
along the divisors π−1(Dρ j ), are particularly easy to understand. See Lemmas 5.1
and 5.2.

Remark 2.1. Suppose {Fρ j ( j)} is a collection of filtrations satisfying (∗) in which
all of the F j are hyperplanes. Using the fact that X (6) is smooth, one checks that
Klyachko’s compatibility condition for a cone σ is satisfied for some u1, . . . , ur if
and only if the hyperplanes F j for ρ j � σ intersect transversely. Since at most r
hyperplanes can meet transversely in a vector space of rank r , the condition r ≥ d
appearing in Theorems 1.1 and 1.4 is necessary for such a collection of filtrations
to define a toric vector bundle. If the F j are chosen in general position, then the
condition r ≥ d is also sufficient.

3. Torus quotients and Cox rings

Let X be a smooth variety whose divisor class group is finitely generated and
torsion free. Choose divisors D1, . . . , Dk whose classes form a basis for the class
group Cl(X). Then the Cox total coordinate ring of X is

R(X)=
⊕

(m1,...,mk)∈Zk

H 0(X,O(m1 D1+ · · ·+mk Dk)),

with the natural multiplication map of global sections. See [Hu and Keel 2000]
for further details and a discussion of the special properties of Mori dream spaces,
those varieties whose Cox rings are finitely generated. If X0 ⊂ X is an open sub-
variety whose complement has codimension at least two, then Cl(X0) and R(X0)

are naturally identified with Cl(X) and R(X), respectively.

Remark 3.1. Cox rings can be defined in greater generality, for possibly singular
and nonseparated prevarieties whose class groups are finitely generated, but may
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contain torsion [Hausen 2008]. Cox rings of smooth and separated varieties with
torsion free class groups suffice for all of the purposes of this paper, although we do
consider nonseparated quotients in some generalizations of Theorem 3.3 presented
in Section 6.

Our main technical result is a description of the Cox ring of certain projectivized
toric vector bundles as a polynomial ring over the Cox ring of a blowup of projec-
tive space. Let S be a finite set of projective linear subspaces of PF and let S′

be the set of intersections of subspaces in S. Say L1, . . . , Ls are the elements of
S′. We write BlS′ PF for the space obtained by blowing up first the points in S′,
then the strict transforms of the lines in S′, then the strict transforms of the two-
dimensional subspaces in S′, and so on. We write Ei for the exceptional divisor in
BlS′ PF dominating L i , and define

BlS PF = BlS′ PF r
⋃

L i 6∈S
Ei .

Example 3.2. Let x1, x2, and x3 be noncollinear points in P3, and let L i j be the
line through xi and x j , and set

S = {x1, L12, L13, L23}.

Then S′ = S ∪ {x2, x3} and BlS P3 is the space obtained by blowing up first the
points x1, x2, and x3, and then the strict transforms of the lines L12, L13, and L23,
and then removing the exceptional divisors over x2 and x3.

Our main technical result can now be stated as follows. Let F be a toric vector
bundle on a complete toric variety X given by filtrations satisfying the condition (∗)
discussed in Section 2. After renumbering, say the Fi are distinct linear subspaces
for i ≤ s, and F j is zero for s < j ≤ n. Let

S = {PF/F1, . . . ,PF/Fs }

be the set of projective linear subspaces in PF corresponding to F1, . . . , Fs .

Theorem 3.3. The Cox ring R(P(F)) is isomorphic to a polynomial ring in n− s
variables over R(BlS PF ).

Our proof of Theorem 3.3 will be an application of the following presentation
of Cox rings for certain varieties with torus actions.

Proposition 3.4. Let X be a smooth variety such that H 0(X,O∗X )=k
∗ and Cl(X) is

free, and let T be a torus acting on X. Suppose D1, . . . , Dh are irreducible divisors
in X with positive dimensional generic stabilizers, T acts freely on Xr(D1∪·· ·∪Dh),
and the geometric quotient is a smooth variety Y with free class group. Then R(X)
is isomorphic to a polynomial ring in h variables over R(Y ).
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Proof. This is the special case of [Hausen and Süß 2010, Theorem 1.1], where
X is smooth, the T -action on the complement of D1 ∪ · · · ∪ Dh is free, and the
geometric quotient Y is separated, with torsion free class group. Although stated
in the case where X is complete, the proof of that theorem is also given under the
assumption that H 0(X,O∗X )= k

∗ and Cl(X) is free, which is what we use here. �

We prove Theorem 3.3 by constructing a dominant rational map

ϕ : P(F) 99K BlS PF ,

and producing open sets U ⊂U ′ in P(F) with the following properties:

(1) The complement of U ′ has codimension 2 in P(F).

(2) There are n− s irreducible divisors in U ′ with positive dimensional generic
stabilizers, the complement of these divisors is U , and T acts freely on U .

(3) The restriction ϕ|U is regular and a geometric quotient.

(4) The complement of ϕ(U ) has codimension 2 in BlS PF .

To see that Theorem 3.3 follows from the existence of such a map, first note that
class groups, global invertible functions and Cox rings are all invariant under the
removal of sets of codimension 2. Therefore, (1) implies that H 0(U ′,O∗U ′) = k

∗,
the class group Cl(U ′) is free, and R(U ′) ∼=R(P(F)). Then, by Proposition 3.4,
properties (2) and (3) imply that R(U ′) is isomorphic to a polynomial ring in n− s
variables over R(ϕ(U )). Finally, (4) gives R(ϕ(U )) ∼= R(BlS PF ). Therefore,
(1)–(4) together imply that R(P(F)) is isomorphic to a polynomial ring in n− s
variables over R(BlS PF ).

We construct the birational map ϕ and open sets U and U ′ as follows. There is
a unique dominant, T -invariant rational map

ψ : P(F) 99K PF

that restricts to the identity on the fiber PF over 1T . Over the dense torus T , this
map takes a point x in the fiber over t to t−1

·x . One can also describe ψ as the ratio-
nal map associated to the T -invariant linear series H 0(P(F),O(1))0; the sections
of O(1) are canonically identified with sections of F, and evaluation at 1T maps
H 0(X,F)0 isomorphically onto F . Alternatively, ψ can be constructed directly
from the T -invariant sections of F, which generate all fibers over T , following the
general construction in [Lazarsfeld 2004, Example 6.1.15].

Since ψ is dominant, it induces a T -invariant rational map ϕ to BlS PF . To
prove Theorem 3.3, we produce open sets U ⊂U ′ in P(F) satisfying (1)–(4) with
respect to ϕ.

We write xi for the distinguished point in the codimension one orbit correspond-
ing to ρi ; see [Fulton 1993, Section 2.1]. The fiber of F over xi is canonically
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isomorphic to Fi ⊕ F/Fi ; this is the eigenspace decomposition for the action of
the one parameter subgroup corresponding to the primitive generator of ρi , which
is the stabilizer of xi . Let Zi be the projective linear subspace corresponding to PFi

in the fiber of P(F) over xi . Let Wi be the projective linear subspace corresponding
to PF/Fi in the fiber over 1T .

We now define U ′ to be the complement in P(F) of the following closed subsets:

• The preimages of the T -invariant closed subsets of codimension 2 in X .

• The torus orbit closures T · Zi , for Fi 6= 0.

• The torus orbit closures T ·Wi , for Fi 6= 0.

Note that the condition (∗) says that Fi has dimension at least 2 and codimension
at least 1 whenever it is nonzero. Therefore, every component of the complement
of U ′ has codimension at least 2.

This choice of closed subsets is closely related to the indeterminacy locus of ϕ.
On the fiber over 1T , this map is the birational inverse of the blowup morphism from
BlS PF to PF , so its indeterminacy locus is the discriminant, which is the union of
the Wi . The closures T ·W j may meet the fiber over xi , and these intersections are
also in the indeterminacy locus of ϕ because the indeterminacy locus is closed. In
the special case where i = j , the intersection of T ·Wi with the fiber over xi is the
linear subspace PF/Fi . Now, ϕ maps the fiber over xi into the exceptional divisor
over P(F/Fi ), via the canonical rational map

P(Fi ⊕ F/Fi ) 99K PF/Fi ×PFi ,

which is regular away from the linear subspaces Wi and Zi . In particular, Zi is
the only remaining indeterminacy locus of ϕ in the fiber over xi . Therefore, after
removing the preimage of the codimension 2 strata in X , the open set U ′ is simply
the locus where ϕ is regular.

For i = s+ 1, . . . , n, the subspace Fi is zero. Then the one parameter subgroup
corresponding to the primitive generator of ρi acts trivially on P(F|Oρi

). Let U be
the complement in U ′ of these n− s irreducible divisors with positive dimensional
stabilizers.

We claim that T acts freely on U . Over the dense torus, T acts freely on the base.
Over a codimension one orbit Oρi , the stabilizer on the base is the one-parameter
subgroup corresponding to the primitive generator of ρi . Because the eigenspace
decomposition of the fiber of F over xi is Fi ⊕ F/Fi , with the one parameter
subgroup acting by scaling on Fi and trivially on F/Fi , this subgroup acts freely
away from the T -orbits of the linear subspaces PFi and PF/Fi , both of which are
in the complement of U ′ and hence of U . Therefore, T acts freely on U .

To prove the theorem, it remains to show that ϕ|U is a geometric quotient and
the image ϕ(U ) has codimension 2 in BlS PF . We first treat the special case where
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the fan 6 has only a single ray ρ. Let Uρ be the toric variety corresponding to a
single ray ρ, and let F be the toric vector bundle on Uρ given by the filtration

Fρ(k)=


F for k ≤ 0,
Fρ for k = 1,
0 for k > 1,

where Fρ is a proper subspace of dimension at least two. Then F splits canonically
as a sum F= Fρ ⊕F/Fρ , where Fρ is the toric subbundle with fiber Fρ over 1T .
Let Z be the projective linear subspace PFρ in the fiber over xρ , and let W be the
projective linear subspace PF/Fρ in the fiber over 1T .

Proposition 3.5. The torus T acts freely on the open set

P(F)r (T · Z ∪ T ·W )

with geometric quotient BlW PF , and the preimage of Oρ under the structure map
surjects onto the exceptional divisor over W .

Proof. The open set P(F)r (T · Z ∪ T ·W ) is the set denoted U in the discus-
sion above, and hence T acts freely. We use a toric computation to compute the
geometric quotient.

The projectivization of any toric vector bundle G of rank r on Uρ is isomorphic
to a toric variety. The toric variety is canonical, but the isomorphism depends on
the choice of a splitting of the fiber over 1T ,

G = L1⊕ · · ·⊕ Lr ,

satisfying Klyachko’s compatibility condition. Fix such a splitting. For 1≤ j ≤ r ,
define the integer n j =max{k | Gρ(k) contains L j }. Let σ be the cone in NR×Rr

spanned by the standard vectors (0, e1), . . . , (0, er ) and

ṽρ = (vρ, n1e1+ · · ·+ nr er ),

where vρ is the primitive generator of ρ, and let 1 in NR× (R
r/(1, . . . , 1)) be the

fan whose maximal cones are projections of the facets of σ that contain ṽρ . Then
there is a natural isomorphism from P(G) to X (1) taking P(G|Oρ

) to the torus
invariant divisor corresponding to the image of ṽρ and the codimension one projec-
tivized subbundle corresponding to L j to the torus invariant divisor corresponding
to the image of (0, e j ). For further details on this construction, see [Oda 1988, pp.
58–59].

We now apply the preceding general construction to our particular bundle F. The
decomposition into line bundles induces a decomposition of F = L1⊕ · · · ⊕ Lr

into one-dimensional coordinate subspaces. After relabeling we may assume that
Fρ = L1 ⊕ · · · ⊕ Lk and so ṽρ = (vρ, e1 + · · · + ek). Then the complement
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P(F)r (T · Z ∪ T ·W ), with its induced toric structure, corresponds to the fan
1′ in NR× (R

r/(1, . . . , 1)) obtained by removing from the fan for P(F) the cones
containing either ṽρ and (0, ek+1), . . . , (0, er ) (corresponding to T · Z ), or all of
(0, e1), . . . , (0, ek) (corresponding to T ·W ).

The projection of NR×Rr/(1, . . . , 1) onto Rr/(1, . . . , 1) induces a map of fans
from 1′ to the fan of the blow up of PF along PF/Fρ . This map of fans satisfies
the conditions of [A’Campo-Neuen and Hausen 1999, Proposition 3.2], and hence
the corresponding morphism of toric varieties is a geometric quotient. �

We now apply the special case treated above, where the fan consists of a single
ray ρ, to prove the general case.

Proof of Theorem 3.3. By the discussion following Proposition 3.4, it remains to
show that ϕ|U is a geometric quotient and the complement of ϕ(U ) has codimen-
sion 2 in BlS PF . The property of being a geometric quotient is local on the base.
For each i , let Ui be the complement in BlS PF of the exceptional divisors over
W j for j 6= i .

We claim that the preimage of Ui under ϕ is the preimage in U of the T -invariant
affine open set Uρi , under the structure map π . Indeed, by Proposition 3.5, the
rational map ϕ takes the generic point of P(F)|Oρ j

to the generic point of the
exceptional divisor over W j . The part of U that lives over T maps into every Ui ,
but for the parts of U over codimension one orbits of X , only the part over Oρi

maps into Ui . This proves the claim.
The union of the sets Ui cover all but a codimension 2 locus in BlS PF, so it only

remains to show that the restriction of ϕ to the preimage of Ui is a geometric quo-
tient. Again, this follows from the local computation in Proposition 3.5, because
Ui is just the complement of the codimension 2 loci given by the strict transforms
of the W j for j 6= i in BlWi PF , and the restriction of ϕ to ϕ−1(Ui ) is the restriction
of the geometric quotient onto BlWi PF described in Proposition 3.5. �

Proof of Theorem 1.1. Let S be a subset of s very general points of PF ∼=Pr−1 such
that s ≥ r + 2+ 4

r−2 . Then R(BlS PF ) is not finitely generated, see [Mukai 2004].
Let X be any smooth toric variety of dimension at most dim(PF ) with at least s
rays. Then by Remark 2.1 there exists a vector bundle F on X satisfying (∗) such
that the nonzero Fi correspond to the points pi in S. The conclusion then follows
from Theorem 3.3. �

Remark 3.6. The isomorphism of Theorem 3.3 is not an isomorphism of graded
rings. However, the pull back by the quotient map ϕ constructed in the proof
of Theorem 3.3 induces a group homomorphism ϕ∗ : Cl(BlS(PF )→ Cl(P(F)).
Letting deg(xi )= [π

−1(Dρi )] for s+ 1≤ i ≤ n, we obtain a Cl(P(F))-grading of
the polynomial ring in n− s variables over the Cox ring of BlS(PF ) such that the
isomorphism of Theorem 3.3 is graded.
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Corollary 3.7. Suppose F is given by filtrations satisfying (∗) with the Fi being
hyperplanes in general position. If 1

r +
1

n−r >
1
2 then P(F) is a Mori dream space.

Proof. Suppose 1
r +

1
n−r >

1
2 . Then the blow up of Pr−1 at n points in general

position is a Mori dream space [Castravet and Tevelev 2006, Theorem 1.3], and
then so is the blow up Bls Pr−1 of Pr−1 at s points in general position, where
s is the number of rays ρ j such that F j is nonzero. The corollary then follows
immediately from Theorem 3.3, which says that R(P(F)) is finitely generated
over R(Bls Pr−1). �

If the points p1, . . . , ps are not in general position then P(F) can be a Mori
dream space, even when 1

r +
1

n−r ≤
1
2 . For instance, if p1, . . . , ps are collinear then

BlS PF is a rational variety with a torus action with orbits of codimension one, and
hence is a Mori dream space [Elizondo et al. 2004; Hausen and Süß 2010; Ottem
2011]. Also, if p1, . . . , ps lie on a rational normal curve, then BlS PF is a Mori
dream space [Castravet and Tevelev 2006, Theorem 1.2].

We conclude this section with the observation that the Cox ring of the blowup of
projective space along an arbitrary arrangement of linear subspaces can be realized
as the Cox ring of a projectivized toric vector bundle.

Corollary 3.8. Let S be an arbitrary arrangement of n linear subspaces of codi-
mension at least 2 in PF and let 6 be a fan with n rays that defines a smooth
projective toric surface. Then there is a toric vector bundle F on X (6) such that

R(P(F))∼=R(BlS PF ).

Proof. An arbitrary collection of filtrations of F indexed by the rays of 6 satisfies
Klyachko’s compatibility condition, because X (6) is a smooth surface [Klyachko
1989, Example 2.3.4]. Therefore, if S = {PF/F1, . . . ,PF/Fn } then the filtrations

Fρ j (k)=


F for k ≤ 0,
F j for k = 1,
0 for k > 1,

satisfy (∗) and determine a toric vector bundle on X (6). By Theorem 3.3, the Cox
ring R(P(F)) is isomorphic to R(BlS PF ). �

Example 3.9. Let S be the arrangement of all linear subspaces of codimension at
least 2 spanned by subsets of a set of r + 1 points in general position in k

r . Then
Kapranov’s construction [1993] shows that BlS Pr−1 is isomorphic to the Deligne–
Mumford moduli space M0,r+2. Therefore, there is a toric vector bundle F on a
smooth projective toric surface such that R(P(F)) is isomorphic to the Cox ring
of M0,n . It is not known whether this ring is finitely generated.
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4. Cotangent bundles

In the previous section, we gave a presentation of Cox rings of some projectivized
toric vector bundles as polynomial rings over Cox rings of certain blowups of pro-
jective space, and used this to give examples where Cox rings of projectivized toric
vector bundles are finitely generated, where they are not finitely generated, and
where they are isomorphic to the Cox ring of M0,n . We now apply the same meth-
ods and results to study Cox rings of projectivized cotangent bundles of smooth
projective toric varieties.

By [Klyachko 1989] the filtrations of cotangent bundles have the form

�ρ j (k)=


M ⊗ k for k ≤−1,
v⊥j for k = 0,
0 for k > 0.

If the fan does not contain any pair of opposite rays, then the filtrations for the
twist of the cotangent bundle by the anticanonical line bundle satisfy (∗). Since
twisting by a line bundle does not change the projectivization, Theorem 3.3 shows
that the Cox ring of the projectivized cotangent bundle is isomorphic to the Cox
ring of BlS(PM⊗k), where S is the set of points p j corresponding to v⊥j . The case
where the fan does contain opposite rays is treated on page 1014.

Example 4.1. For the cotangent bundle on projective space Pr , the corresponding
set S consists of r +1 points in linearly general position in Pr−1. Then R(P(�1

Pr ))

is identified with R(BlS Pr−1), which is isomorphic to the coordinate ring of the
Grassmannian Grass(2, r+2) in its Plücker embedding; see [Castravet and Tevelev
2006, Remark 3.9].

Example 4.1 is a special case of the Cox rings of wonderful varieties studied by
Brion [2007].

We now give an example of a smooth projective toric threefold whose projec-
tivized cotangent bundle is not a Mori dream space. The construction uses a partic-
ularly nice configuration of nine points in Z3, due to Totaro, such that, for any field
k of characteristic not two or three, the blowup of P2(k) at the corresponding nine
k-points is not a Mori dream space. The proof of Theorem 1.5 will be by induction
on dimension, starting from this example.

Example 4.2. In this example, we work over a field k of characteristic not two or
three. The vectors

v1 = (0, 0, 1), v2 = (0, 1, 0), v3 = (1, 1, 1), v4 = (−1,−2,−2)

span the four rays of a unique complete fan 64 in R3. The corresponding toric
variety X (64) is isomorphic to P3. Consider the vectors
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v5 = (1,1,2), v8 = (1,−1,1), v11 = (−1,−1,1), v13 = (−1,1,1),
v6 = (0,−1,1), v9 = (−1,−2,−1), v12 = (−1,0,1), v14 = (0,1,1),
v7 = (1,0,1), v10 = (−1,−1,0),

and let 6i be the stellar subdivision of 6i−1 along the ray spanned by vi , for 5≤
i ≤ 14. For each such i , the vector vi is the sum of two or three of the v j that span a
cone in 6i−1. Therefore, the toric variety X (6i ) is the blowup of X (6i−1) at either
a point or a torus invariant smooth rational curve. In particular, if we set 6 =614,
then the corresponding toric variety X (6) is smooth and projective. The twist F

of the cotangent bundle on X (6) by the anticanonical bundle O(Dρ1 + · · ·+ Dρ14)

is given by the vector space F = k
3 with filtrations

Fρi ( j)=


k

3 for j ≤ 0,
v⊥i for j = 1,
0 for j > 1.

Since the characteristic of k is not two or three, the points v⊥i are all distinct in
P2
k
, and hence the filtrations satisfy (∗). Twisting by a line bundle does not change

the projectivization, so Theorem 3.3 says that the Cox ring of the projectivized
cotangent bundle of X (6) is isomorphic to the Cox ring of BlS P2

k
, where S =

{v⊥1 , . . . , v
⊥

14}. The subset

S′ = {v⊥1 , v
⊥

3 , v
⊥

6 , v
⊥

7 , v
⊥

8 , v
⊥

11, v
⊥

12, v
⊥

13, v
⊥

14}

is the complete intersection of two smooth cubics, and the Cox ring of BlS′ P
2
k

is
not finitely generated [Totaro 2008, Theorem 2.1, Corollary 5.1 and Theorem 5.2].
It follows that BlS P2

k
is not a Mori dream space, and neither is the projectivized

cotangent bundle of X (6).

We use the following lemma on Cox rings of blowups of projective space at
finitely many points contained in a hyperplane in the proof of Theorem 1.5. Instances
of this basic fact have appeared, for instance in [Hassett and Tschinkel 2004,
Example 1.8]. However, lacking a suitable reference, we give a proof.

Lemma 4.3. Let S be a finite set of points contained in a hyperplane H in Pd , and
assume d > 2. Then the Cox ring of BlS Pd is isomorphic to a polynomial ring in
one variable over the Cox ring of BlS H.

Proof. Choose coordinates on Pd so that H is a coordinate hyperplane, and let Gm

act by scaling on the coordinate that cuts out H . The action of Gm lifts to an action
on BlS Pd , and we let Y be the locus of fixed points of this action. Then Gm acts
freely on BlS Pd r Y , with quotient BlS H . The strict transform of H is the only
divisor contained in Y , so the lemma follows by applying Proposition 3.4. �

Proof of Theorem 1.5. Let k be a field of characteristic not two or three. We must
show that, for each dimension d ≥ 3, there is a fan 6 in Rd such that
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(1) The toric variety X (6) is smooth and projective.

(2) The hyperplanes in k
d perpendicular to the primitive generators of the rays of

6 are distinct.

(3) The Cox ring of BlS Pd−1
k

is not finitely generated, where S is the set of points
corresponding to these hyperplanes.

For d = 3, we have Example 4.2, and we proceed by induction.
Suppose 6 is a fan in Rd satisfying (1), (2), and (3). Embed Rd as the last

coordinate hyperplane in Rd+1, and let 6′ be the fan in Rd+1 whose maximal
cones are spanned by a maximal cone of 6 together with either (1, . . . , 1) or
(1, . . . , 1,−1). The corresponding toric variety X (6′) is smooth and projective
and, since the characteristic of k is not two, the hyperplanes in k

d+1 perpendicular
to the rays of 6′ are distinct. It remains to show that 6′ satisfies (3). Let S′ be
the corresponding set of points in Pd

k
. Now S′ contains the subset S of points

corresponding to rays of 6, and S is contained in a hyperplane H . By hypothesis,
the Cox ring of BlS H is not finitely generated. By Lemma 4.3, it follows that
BlS Pd

k
is not a Mori dream space, and neither is BlS′ P

d . The theorem follows,
since the Cox ring of the projectivized cotangent bundle of X (6) is isomorphic to
the Cox ring of BlS′ P

d
k
, by Theorem 3.3. �

5. Pseudoeffective cones

In this section we prove Theorem 1.4. The techniques of the proof are independent
from those of Section 3.

The pseudoeffective cone of a projective variety X is the closure of the cone
spanned by the classes of all effective divisors in the space of numerical equiv-
alence classes of divisors N 1(X)R = N 1(X)⊗Z R. For projectivized toric vec-
tor bundles and for blowups of projective spaces at finite sets of points, linear
equivalence and numerical equivalence coincide and then we identify N 1(X)R and
Cl(X)R = Cl(X)⊗Z R.

Now we consider again a toric vector bundle F on a complete toric variety X (6).
Any effective divisor D on P(F) is linearly equivalent to a torus invariant effective
divisor; this can be seen by applying the Borel fixed-point theorem to the torus orbit
closure of the point [D] in the Chow variety of effective codimension 1 cycles on
P(F). So the pseudoeffective cone of P(F) is the closure of the cone generated
by classes of torus invariant prime divisors. Note that every torus invariant prime
divisor in P(F) is either the preimage of a torus invariant prime divisor in X (6)
or surjects onto X (6). If a torus invariant prime divisor surjects onto X (6) then
it must be the closure of the torus orbit of its intersection with the fiber over the
identity. We write DH for the closure of the torus orbit of a hypersurface H in PF .
One key step toward understanding the pseudoeffective cone of P(F) is to express
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the class of each such DH as a linear combination of O(1) and the π−1(Dρi ). Such
expressions may be somewhat complicated in general, but are relatively simple for
bundles given by filtrations of the special form discussed in Section 2.

Suppose the filtrations {Fρi ( j)} associated to the vector bundle F satisfy condi-
tion (∗) of Section 2 and all proper subspaces Fρi ( j)⊂ F are distinct hyperplanes.

Lemma 5.1. Restriction to the fiber PF gives an isomorphism from the space of
T -invariant global sections of O(m) on P(F) to Symm(F).

Proof. For any bundle F, global sections of O(m) on P(F) are naturally identified
with global sections of Symm F. Now, Symm F is a toric vector bundle, with fiber
Symm F over 1T , and since the filtrations defining F satisfy (∗), the filtrations
defining Symm F are given by

Symm Fρi ( j)=


Symm F for j ≤ 0,
Image(Sym j Fi ⊗Symm− j F→ Symm F) for 1≤ j ≤ m,
0 for j > m.

The space of T -invariant sections of Symm F is the intersection of all of these filtra-
tions evaluated at zero, and the lemma follows, because Symm Fρi (0) is Symm F
for every ray ρi . �

Let pi be the point in PF corresponding to the one-dimensional quotient F/Fi ,
whenever Fi is nonzero. We write D j for the T -invariant prime divisor π−1(Dρ j )

in P(F).

Lemma 5.2. Let H be a hypersurface of degree m in PF , and let mi be the multi-
plicity of H at pi . Then there is a linear equivalence

DH ∼ O(m)−
∑

i

mi (π
−1(Dρi )),

where the sum is over those i such that Fi is nonzero.

Proof. Let h ∈ Symm F be a defining equation for H . Then h corresponds to a
torus invariant section s of O(m) on P(F), by Lemma 5.1. If Fi is zero then s does
not vanish along Di and if Fi is nonzero then mi is the largest integer such that h is
contained in the image of Symmi Fi ⊗Symm−mi F in Symm F . The one parameter
subgroup corresponding to vi extends to an embedding of the affine line A1 in
X (6) meeting Dρi transversely at the image of zero. After restricting the section s
to the preimage of A1, we must show that its order of vanishing along the preimage
of zero is mi . The isotypical decomposition of the module of global sections of O(1)
on the preimage of A1, for the action of the one-parameter subgroup corresponding
to vi , is exactly

⊕
j Fρi ( j), and multiplication by the coordinate x on A1 decreases

degree by one. The sections of O(m) are given by the mth symmetric power of this
module, in which the image of Symk Fi ⊗Symm−k F in Symm F appears in degree
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k, for nonnegative integers k. It follows that the T -invariant section s is equal to
xmi times a section that is nonvanishing along the preimage of zero, and hence
vanishes to order mi , as required. �

Now, we fix a maximal cone σ and, after renumbering, we may assume σ is
spanned by ρ1, . . . , ρd . Moreover, for the remainder of the section we assume that

Fi = 0, for 1≤ i ≤ d.

The class of O(1) and the classes of Dd+1, . . . , Dn form a basis for Cl(P(F)).
Let f : BlS PF → PF be the blowup of PF at the finite set of distinct points
{pi }, corresponding to the nonzero Fi , for i > d . Let L be a hyperplane in PF , and
let Ei be the exceptional divisor over pi . Then f ∗L and {Ei } together form a basis
for Cl(BlS PF ).

We consider the linear map ϕ∗ :Cl(BlS PF )R→Cl(P(F))R, taking f ∗L to O(1)
and the class of Ei to the class of Di , for i > d . If H is a hypersurface of degree m
in PF passing through pi with multiplicity mi , then the class of the strict transform
of H in BlS PF is f ∗mL −

∑
i mi Ei . So Lemma 5.2 says that ϕ∗ maps the class

of the strict transform of H to the class of DH .

Remark 5.3. One can show that the map ϕ∗ is the map on class groups induced by
the map ϕ of the proof of Theorem 3.3; see [González 2011, Section 5]. However,
note that Lemmas 5.1 and 5.2 give an independent proof of the fact that we get a
morphism of class groups, without having to construct the morphism ϕ.

Proposition 5.4. The pseudoeffective cone of P(F) is generated by the image un-
der ϕ∗ of the pseudoeffective cone of BlS PF together with the classes of those Di

such that Fi is zero.

Proof. Every effective divisor on P(F) is in the cone generated by the classes DH ,
for hypersurfaces H in PF , and the classes Di . On BlS PF , every effective divisor
is in the cone generated by the classes of the strict transforms of the hypersurfaces
H in PF , and the classes Ei . Now, the classes Di such that Fi is nonzero are the
images under ϕ∗ of the classes Ei , and Lemma 5.2 says that the class of DH is the
image under ϕ∗ of the strict transform of the hypersurface H in PF . Therefore,
the cone of effective classes on P(F) is equal to the cone generated by the image
under ϕ∗ of the cone of effective classes on BlS PF together with the classes of
those Di such that Fi is zero. The proposition follows by taking closures. �

Proof of Theorem 1.4. Let σ be the cone spanned by ρ1, . . . , ρd , and choose the
toric variety X (6) so that each of the other rays ρi is contained in −σ . This can
be accomplished, as in Example 1.7, by taking a suitable sequence of blowups of
(P1)d . Choose the filtrations defining F so that Fd+1, . . . , Fn are distinct hyper-
planes, and Fi = 0 for i ≤ d.
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The choice of the filtrations ensures that ϕ∗ is an isomorphism on class groups,
since it maps the basis elements f ∗L , Ed+1, . . . , En for Cl(BlS PF ) to the basis
elements O(1), Dd+1, . . . , Dn for Cl(P(F)), respectively. Furthermore, the choice
of the fan 6 ensures that, for i ≤ d, the divisor Dρi is linearly equivalent to an
effective combination of the Dρ j , for j > d. So the classes of D1, . . . , Dd are
in the cone spanned by the classes of Di for i > d, and hence are in the image
under ϕ∗ of the pseudoeffective cone of BlS PF . Therefore, by Proposition 5.4,
the linear isomorphism ϕ∗ identifies the pseudoeffective cone of BlS PF with the
pseudoeffective cone of P(F). If Fd+1, . . . , Fn are in very general position, then
the inequalities on r and n imply that the pseudoeffective cone of BlS PF is not
polyhedral [Mukai 2004], and the theorem follows. �

Remark 5.5. As in Corollary 3.8, a similar construction produces toric vector
bundles F such that the effective cone of P(F) is canonically isomorphic to the
effective cone of BlS PF , for an arbitrary arrangement S of linear subspaces in PF .

6. Some generalizations

The techniques developed here can also be applied more generally to describe Cox
rings of toric vector bundles where the condition (∗) is weakened to allow Fi to
appear for multiple steps in the Klyachko filtrations, where some of the Fi are
allowed to be 1-dimensional, and where the subspaces are not necessarily distinct.
The results are similar to those in Section 3, only the presentations of the Cox rings
are slightly more complex.

Longer steps in the filtrations. Consider a toric vector bundle F given by Kly-
achko filtrations of the form

Fρ j (k)=


F for k ≤ 0,
F j for 1≤ k ≤ a j ,
0 for k > a j ,

for some positive integers a j , and distinct linear subspaces F j ( F of dimension
at least 2, for j = 1, . . . , s. The bundles that satisfy the condition (∗) are exactly
those where each a j is equal to 1. The Cox ring of P(F) can be analyzed just as
in Section 3, except that T does not act freely on U ; if D j denotes the preimage of
Oρ j in U , then D j has a stabilizer of order a j . In this case, the Cox ring of P(F)

is a finite extension of a polynomial ring over R(BlS PF ) with a presentation of
the form

R(P(F))∼=R(BlS PF )[x1, . . . , xn]/〈1E j − xa j
j | 1≤ j ≤ s〉,
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by [Hausen and Süß 2010, Theorem 1.1]. Here, 1Ei denotes the canonical section
of the bundle O(Ei ) associated to the exceptional divisor Ei over PF/Fi . It follows
that R(P(F)) is finitely generated if and only if R(BlS PF ) is finitely generated.

One-dimensional subspaces. We now discuss toric vector bundles given by Kly-
achko filtrations of the form (∗), but where some F j are allowed to be 1-dimension-
al. Consider the special case where the fan 6 consists of a single ray ρ, and F is
given by the filtration

Fρ(k)=


F for k ≤ 0,
L for k = 1,
0 for k > 1,

where L is 1-dimensional. The analysis of such a bundle is similar to that in
Proposition 3.5, except that T ·W is a divisor. Still, the torus T acts freely on
the toric variety P(F)r T · Z , and a toric computation shows that the geometric
quotient exists as a nonseparated toric prevariety; it is PF with the hyperplane
PF/L doubled.

Now, consider the general case, and let S be the set of linear subspaces of PF cor-
responding to the F j that have dimension at least 2. Suppose the rays are numbered
so that F1, . . . , F` are 1-dimensional and the rest are not. Then the analysis in the
proof of Theorem 3.3 produces open subsets U and U ′ satisfying (1)–(4), except
that the target of ϕ is BlS PF doubled along the strict transforms of the hyperplanes
Hi = PF/Fi for 1≤ i ≤ `. Then [Hausen and Süß 2010] gives a presentation of the
Cox ring R(P(F)) as a polynomial ring in n− s variables over

R(BlS PF )[x1, . . . , x`, y1, . . . , y`]/〈1Hi − xi yi | 1≤ i ≤ `〉, (1)

where 1Hi is the canonical section of O(Hi ). Setting the n−s free variables equal to
zero and y1, . . . , y` equal to 1, one can obtain R(BlS PF ) as a quotient of R(P(F)),
and hence R(P(F)) is finitely generated if and only if R(BlS PF ) is so.

Example 6.1. Using the above observations, in [Hausen and Süß 2010] the Cox
ring of the projectivized tangent bundle of a toric variety was calculated as fol-
lows. Let X be a toric variety associated to fan 6 with rays ρ1, . . . , ρn having
v1, . . . , vn ∈ N as their primitive generators. By [Klyachko 1989] the tangent
bundle TX corresponds to the filtrations of the form (∗) with Fρ j = k · v j ⊂ N ⊗ k.
In particular, all the subspaces are one-dimensional. Hence, the set S is empty and
R(BlS PF )=R(PF ) is simply the polynomial ring Sym(F). The element 1H j can
be identified with v j ∈ Sym(F). If there are no opposite rays in 6, by the formula
(1) we obtain

k[x1, . . . , xn, y1, . . . , yn]/
〈∑

i λi · xi yi
∣∣ λ ∈ kn , s.t.

∑
i λivi = 0

〉
as the Cox ring of P(TX ).
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Repetitions of subspaces and combinations. If some subspace is repeated, so Fi =

F j for some i 6= j , then the arguments in Section 3 again go through, but the
geometric quotient is nonseparated, with one copy of the exceptional divisor over
PF/Fi for each time that Fi appears. Again, this construction leads to a presentation
of R(P(F)) as a finitely generated algebra over R(BlS PF ) that is finitely generated
if and only if R(BlS PF ) is so.

These generalizations can be combined to give a presentation of the Cox ring of
an arbitrary toric vector bundle for which the Klyachko filtrations contain at most
one nontrivial subspace for each ray.

Proposition 6.2. Let F be a toric vector bundle corresponding to Klyachko filtra-
tions {Fρ( j)} such that at most one proper subspace of F appears in each filtration,
and let S be the collection of linear subspaces of PF corresponding to these proper
subspaces. Then R(P(F)) is finitely generated if and only if R(BlS PF ) is.

Remark 6.3. It may be possible to carry through a similar analysis for more gen-
eral toric vector bundles. However, even when the fan consists of a single ray,
if multiple proper subspaces occur in a single filtration then the torus quotients
that appear are weighted blowups of projective space instead of ordinary blowups.
Since very little is known about Cox rings of weighted blowups of projective space,
we have not considered such bundles in this work.

A bundle on the Losev–Manin moduli space. We conclude with an example of a
bundle on the Losev–Manin moduli space of pointed stable curves.

Let v0, . . . , vd be vectors that generate the rank-d lattice N and sum to zero.
Then the fan 6 whose nonzero cones are spanned by proper subsets of {v0, . . . , vd}

corresponds to projective space Pd , and the barycentric subdivision 6′ is the nor-
mal fan of a permutahedron. The corresponding toric variety is the Losev–Manin
moduli space Ld+1 of pointed stable curves studied in [Losev and Manin 2000].

Let F be the pullback of the cotangent bundle �Pd to the Losev–Manin moduli
space Ld+1 ∼= X (6′). The rays of 6′ are naturally indexed by the proper subsets
of {0, . . . , d}, where the primitive generator of the ray ρI is

vI =
∑
i∈I

vi .

The fiber of F over 1T is canonically identified with M ⊗Z k, and we write MI

for the linear subspace perpendicular to the linear span of the vi for i ∈ I . The
Klyachko filtrations corresponding to F are then

FρI (k)=


M ⊗ k for k ≤−1,
MI for k = 0,
0 for k > 0.
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These filtrations almost satisfy (∗), except that the subspaces MI corresponding to
sets I of size d− 1 are 1-dimensional, and the last nonzero subspace appears in the
wrong place in the filtration. Tensoring with an appropriate line bundle puts the
last nonzero subspace in the correct place in the filtration and does not change the
projectivization. Then, applying the computation for filtrations with 1-dimensional
subspaces (page 1013), we find that R(P(F)) is a polynomial ring in d+1 variables
over

R(BlS PF )[x1, . . . , x(d+1
2 )
, y1, . . . , y(d+1

2 )
]/
〈
1Hi − xi yi

∣∣ 1≤ i ≤
(d+1

2

)〉
,

where Hi runs over runs over all hyperplanes PF/FI with index sets I of size d− 1.
Now, S consists of all linear subspaces spanned by d + 1 points in general

position in PF ∼= Pd−1. As in Example 3.9, the blowup BlS PF is isomorphic to
the Deligne–Mumford moduli space M0,d+2.

Corollary 6.4. The projectivization of the pullback of the cotangent bundle on Pd

to the Losev–Manin moduli space Ld+1 is a Mori dream space if and only if M0,d+2

is a Mori dream space.
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Squareful numbers in hyperplanes
Karl Van Valckenborgh

Let n > 4. In this article, we will determine the asymptotic behavior of the size of
the set of integral points (a0 : · · · : an) on the hyperplane

∑n
i=0 X i = 0 in Pn such

that ai is squareful (an integer a is called squareful if the exponent of each prime
divisor of a is at least two) and |ai |6 B for each i ∈ {0, . . . , n}, when B goes to
infinity. For this, we will use the classical Hardy–Littlewood method. The result
obtained supports a possible generalization of the Batyrev–Manin program to
Fano orbifolds.

1. Introduction

The problem we consider can be related to a question Campana posed concerning
rational points on orbifolds. A good overview is given for example in [Abramovich
2009; Poonen 2006; Campana 2005]. Examining the orbifold (P1,1) with Q-
divisor 1= 1/2 · [0]+ 1/2 · [1]+ 1/2 · [∞], it is explained for example in [Poonen
2006] why it is reasonable to expect that the set

{(a1, a2, a3) ∈ Z3
: a1+ a2 = a3, a1, a2, a3 are squareful,

max{|a1|, |a2|, |a3|}6 B, gcd(a1, a2, a3)= 1}

will asymptotically behave as C · B1/2 as B tends to infinity.
Since this question turns out to be too difficult at the moment, we general-

ize to a higher-dimensional analogue (Pn−1,1), where now 1 is the Q-divisor
1 = 1/2 · [H0] + · · · + 1/2 · [Hn] with Hi the hyperplane defined by X i = 0 for
i ∈ {0, . . . , n − 1} and Hn defined by X0 + · · · + Xn−1 = 0. In analogy with
the one-dimensional case, a point P = (a0 : · · · : an−1) ∈ Pn−1(Q) (we assume
a0, . . . , an−1 ∈ Z and gcd(a0, . . . , an−1) = 1) will be called a rational point in
Campana’s sense on (Pn−1,1) if for every i ∈ {0, . . . , n} and every prime p
for which the reduction of P is contained in the reduction of Hi modulo p, we
have i p(P, Hi )> 2, where i p(P, Hi ) denotes the intersection number of P and Hi

above the prime p. These conditions will be satisfied if ai is squareful for every
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Keywords: squareful, Campana, asymptotic behavior.
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i ∈ {0, . . . , n− 1} and if
∑n−1

i=0 ai is also squareful. We denote the set of all such
rational points by (Pn−1,1)(Q). Using the height function

H(x0 : · · · : xn−1)=max
{
|x0|, . . . , |xn−1|,

∣∣∣∣n−1∑
i=0

xi

∣∣∣∣},
the set of points P ∈ (Pn−1,1)(Q) of bounded height is denoted (Pn−1,1)(Q)6B .

Defining the canonical divisor of the orbifold (Pn−1,1) as

K(Pn−1,1) = KPn−1 +1,

we have K(Pn−1,1) ∼ (−(n− 1)/2) · H in Pic(Pn−1)Q, where H is the hyperplane
class of Pn−1. Since the height function we use is associated to H , a very naïve gen-
eralization of Manin’s conjecture would predict that #(Pn−1,1)(Q)6B∼C·B(n−1)/2

for some constant C > 0, as B tends to infinity. Our main goal is to prove the
following theorem.

Theorem 1.1. For n > 4, there exists a δ > 0 so that

#(Pn−1,1)(Q)6B = C · B(n−1)/2
+ O(B(n−1)/2−δ)

for some constant C > 0.

In Section 5 we will give an explicit description of the constant C and examine
the distribution of rational points on the orbifold (Pn−1,1).

2. Description of the proof

Throughout the article, we will use the following notation.
We will denote the (n+ 1)-tuple (x0, . . . , xn) ∈ An+1 for any ring A by x . For

the nonzero integers we use the notation Z0, that is Z0 = Z \ {0}. If there exists a
constant C > 0 such that | f (x)|6 Cg(x) for real-valued functions f and g with
g only taking positive values, we write f (x)� g(x) or f (x) = O(g(x)). If C
depends on other parameters, this will be denoted explicitly when this dependence
is important for the computations. We will write f (x)∼ g(x) if f (x)/g(x) tends
to one if x goes to infinity. Also, we allow the small positive constant ε to take
different values at different points of the arguments. Finally, for any α ∈ R we will
write e(α)= exp(2π iα).

To prove Theorem 1.1, we first restrict ourselves to the set of points

(a0 : · · · : an−1) ∈ (P
n−1,1)(Q)

for which ai 6= 0 for each i ∈ {0, . . . , n − 1} and
∑n−1

i=0 ai 6= 0. We denote this
subset by (Pn−1,1)(Q)+. Also, (Pn−1,1)(Q)+6B indicates the intersection of
(Pn−1,1)(Q)+ with (Pn−1,1)(Q)6B .

By the definition of (Pn−1,1)(Q), we can identify (Pn−1,1)(Q)+6B with the
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set{
(a0 :. . .:an)∈H(Q) :ai ∈Z0, ai is squareful, gcd(a0, . . . , an)=1, max

06i6n
|ai |6 B

}
,

where H ⊂ Pn is the hyperplane defined by X0+ · · ·+ Xn = 0.
Since a squareful integer can be written uniquely (up to the sign of x) as x2 y3,

where y is squarefree, the latter set in turn corresponds to{
(x2

0 y3
0 : · · · : x

2
n y3

n) ∈ H(Q) : xi , yi ∈ Z0 and yi is squarefree,

gcd(x0 y0, . . . , xn yn)= 1, max
06i6n

|x2
i y3

i |6 B
}
. (1)

Definition. We define M(B) as the set{
(x, y) ∈ Z2n+2

0 :

n∑
i=0

x2
i y3

i = 0, gcd(x0 y0, . . . , xn yn)= 1,

max
06i6n

|x2
i y3

i |6 B,
n∏

i=0
µ2(|yi |)= 1

}
.

(Note that for any integer y ∈ Z, the condition µ2(|yi |)= 1 means that yi is square-
free.) Also, we denote by Ma,t(B) the set{

(x, y) ∈ Z2n+2
0 :

n∑
i=0

ai x2
i y3

i = t, max
06i6n

|ai x2
i y3

i |6 B,
n∏

i=0
µ′i (yi )= 1

}
,

where a0, . . . , an, t ∈ Z are fixed, gcd(a0, . . . , an)= 1 and
∏n

i=0 ai 6= 0. Here, µ′i
denotes an arbitrary function Z0→ {0, 1}, for each i ∈ {0, . . . , n}.

As a first step in the proof, we will use the classical Hardy–Littlewood circle
method to determine an expression for the cardinality of the set Ma,t(B). Notice
that in the definition of Ma,t(B), we replaced the function µ2( · ) in the definition
of M(B) with the more general function µ′i ( · ). We shall see that applying the
circle method is independent of this condition, but nevertheless necessary to de-
rive an asymptotic formula for #M(B) since squarefree conditions on multiples
of the yi will appear as we will explain below. We see that M(B) is a subset of
M(1,...,1),0(B) (if we take µ′i ( · ) to be µ2( · ) for each i), with the additional gcd
condition gcd(x0 y0, . . . , xn yn)= 1 on the solutions. We will take this gcd condition
into account using an adapted version of the Möbius inversion.

Identifying (Pn−1,1)(Q)+6B with (1), it readily follows that

#(Pn−1,1)(Q)+6B =
1

2n+2 #M(B),

which implies that an asymptotic formula for #M(B) induces an asymptotic for-
mula for #(Pn−1,1)(Q)+6B .

Finally, we will explain why this result suffices to prove Theorem 1.1.
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3. Calculating #Ma,t(B)

Let us first fix the framework of the circle method.
Let T be R/Z. For 0<16 1 and P > 1 (we always suppose B > 1), we define

M(1, q, a) as the image in T of {α ∈ R : |α− a/q|< P1−2
} with a, q ∈ Z and

M(1)=
⋃

16a6q6P1
gcd(a,q)=1

M(1, q, a).

We call M(1) the union of the major arcs and T \M(1)=m(1) the union of the
minor arcs. We shall clarify the constraint on the constant 1 and the dependence
of P on B in Proposition 3.7 and Theorem 3.8.

The circle method calculates #Ma,t(B) by integrating an exponential sum over
T , namely

#Ma,t(B)=
∫

T

∑
16|ai x2

i y3
i |6B

i=0,...,n

( n∏
i=0

µ′i (yi )

)
e(α f (x, y)) dα, (2)

where f (x, y)=
n∑

i=0
ai x2

i y3
i − t . We will denote the integrand of (2) by E(α) and

will set
Si (α)=

∑
16|ai x2 y3|6B

µ′i (y)e(αai x2 y3).

Therefore,

E(α)= e(−αt)
n∏

i=0

Si (α).

As usual, the integral over M(1) will provide the main term while the integral
over m(1) will only contribute to the error term.

Major arcs. We refer to [Schmidt 1984, Section 5; Davenport 2005, Chapter 4] for
avoid conflict with theorems. (Many authors improperly cite a detailed description
of the circle method over the major arcs for the classical case of diagonal equations.
In order to apply this to

∫
M(1)

E(α) dα, we will first fix y and thus consider the
diagonal equation f (x, y) = fy(x) = 0; afterwards we will take the sum of the
obtained expression over all admitted y.

Since we fix y, we only look at xi satisfying 1/|ai y3
i |

1/2 6 |xi |6 (B/|ai y3
i |)

1/2.
Most of the time, it suffices to consider only positive xi ; we will denote the corre-
sponding interval for positive xi with Di , that is,

Di =
[
1/|ai y3

i |
1/2, B1/2/|ai y3

i |
1/2]. (3)
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We will also use the notation

Bai ,yi = B1/2/|ai y3
i |

1/2. (4)

Note that since we consider only y with 16 |y3
i |6 B, we have 16 Bai ,yi 6 B1/2

for each i ∈ {0, . . . , n}.
Because we first wish to examine the exponential sum E(α) (for α ∈M(1)) for

some y fixed, we denote this part of E(α) by

Ey(α)=
∑

1/|ai y3
i |

1/26|xi |6Bai ,yi
i=0,...,n

e(α fy(x)).

Furthermore, for every positive integer q and every integer a relatively prime to q ,
we define

σy

(a
q

)
= q−(n+1)

∑
z∈(Z/qZ)n+1

e
(a fy(z)

q

)
, (5)

and for every β ∈ R,

τy,B(β)=

∫
D0

· · ·

∫
Dn

e(β fy(x)) dx . (6)

Proposition 3.1. For α = a/q +β ∈M(1; q, a), we have

Ey(α)= 2n+1σy

(a
q

)
τy,B(β)+ O

(
q
∑n

i=0 |ai y3
i |

1/2∏n
i=0 |ai y3

i |
1/2

B(n+2)/2 P1−2
)

under the condition B P1−2 > 1 on P and 1.

Proof. Combining positive and negative signs of xi , we have

Ey(α)= 2n+1e(−αt)
n∏

i=0

∑
xi∈Di

e(αai x2
i y3

i ). (7)

For α = a/q +β, the inner sum over xi equals∑
16zi 6q

e
(

aai z2
i y3

i
q

) ∑
vi∈Z

qvi+zi∈Di

e(βai (qvi + zi )
2 y3

i ). (8)

Euler’s summation formula (in its simplest version) implies∑
X6qv+z6Y

e(ζ(qv+ z)2)= 1
q

∫ Y

X
e(ζη2) dη+ O

(
1+ Y

q
|ζ |qY

)
for any real numbers 0 6 X < Y , ζ ∈ R, q, z ∈ N. Taking Y = Bai ,yi , ζ = βai y3

i
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and recalling the definition of Di in (3), we can rewrite (8) as∑
16zi 6q

e
(aai z2

i y3
i

q

)(1
q

∫
Di

e(βai x2
i y3

i ) dxi + O(1+ |β|B)
)
.

We substitute these expressions successively back into (7) and obtain the desired
main term. Using the trivial upper bounds∣∣∣∑

xi∈Di

e(αai x2
i y3

i )

∣∣∣+ ∣∣∣1q ∑
16zi 6q

e
(aai z2

i y3
i

q

) ∫
Di

e(βai x2
i y3

i ) dxi

∣∣∣� Bai ,yi ,

we get the total error term O
(
q(1+ |β|B)max06i6n

∏
j 6=i Ba j ,y j

)
. Using (4) and

1+ |β|B� P1−2 B, we complete the proof. �

From this result, we can now derive an expression for the integral of Ey(α) over
M(1) by first integrating the expression for Ey(α) obtained in Proposition 3.1
over M(1; q, a) and then summing over all admitted a and q .

We first define

Iε,t,B(L)=
∫
|γ |<L

e(−γ t/B) dγ
∫
[B−1/2,1]n+1

e
(
γ

n∑
i=0

εi x ′2i
)

dx ′,

(where εi = sgn(ai yi )) and

Sy,a,t(L)=
∑
q6L

∑
0< a

q 61
gcd(a,q)=1

σy

(a
q

)
.

We have ∫
|β|<P1−2

τy,B(β) dβ = B(n−1)/2∏n
i=0 |ai y3

i |
1/2

Iε,t,B(B P1−2),

and therefore∫
M(1)

Ey(α) dα =
2n+1Sy,a,t(P1)Iε,t,B(B P1−2)∏n

i=0 |ai y3
i |

1/2
· B(n−1)/2

+O
(∑n

i=0 |ai y3
i |

1/2∏n
i=0 |ai y3

i |
1/2

B(n+2)/2 P51−4
)
. (9)

Note that the integral Iε,t,B(L) only depends on the signs of y and a and no longer
on their actual values.

Next, we make the coefficient of B(n−1)/2 in this expression independent of B.
We first focus on the factor Sy,a,t(P1).
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The singular series.

Lemma 3.2. We have∣∣∣σy

(a
q

)∣∣∣� q−(n+1)/2
·

n∏
i=0

gcd(ai y3
i , q)1/2.

Proof. Using elementary properties of generalized Gauss sums (see for example
[Berndt et al. 1998, Chapter 1]), we obtain for positive integers a and c that∣∣∣∣c−1∑

n=0

e
(an2

c

)∣∣∣∣� gcd(a, c)1/2
√

c.

Applying this to (5) implies the statement. �

Corollary 3.3. For n > 4, the series

Sy,a,t =

∞∑
q=1

∑
0<a/q61

gcd(a,q)=1

σy

(a
q

)
, (10)

called the singular series, converges absolutely. In particular, we have

Sy,a,t �

∏n
i=0 |ai y3

i |
1/2+ε

lcm(a0 y3
0 , . . . , an y3

n)
1/2

(11)

and

Sy,a,t(P1)=Sy,a,t + O
( ∏n

i=0 |ai y3
i |

1/2+ε

lcm(a0 y3
0 , . . . , an y3

n)
1/2
· P1(−n+3)/2

)
(12)

for any ε > 0.

Proof. From the previous lemma, we deduce that

Sy,a,t �

∞∑
q=1

q−(n−1)/2
n∏

i=0

gcd(ai y3
i , q)1/2

�

∑
di |ai y3

i
i=0,...,n

(d0 · · · dn)
1/2

∞∑
q=1

lcm(d0,...,dn)|q

q−(n−1)/2

�

∑
di |ai y3

i
i=0,...,n

(d0 · · · dn)
1/2

lcm(d0, . . . , dn)(n−1)/2

∞∑
q=1

q−(n−1)/2.
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Since n > 4, the latter expression converges and we get

Sy,a,t �
∑

di |ai y3
i

i=0,...,n

(d0 · · · dn)
1/2

lcm(d0, . . . , dn)(n−1)/2

�

∏n
i=0 |ai y3

i |
1/2+ε

lcm(a0 y3
0 , . . . , a0 y3

0)
1/2

for any ε > 0. Moreover, we obtain in the same way that∣∣Sy,a,t −Sy,a,t(P1)
∣∣6 ∑

q>P1
q−(n−1)/2

n∏
i=0

gcd(ai y3
i , q)1/2

�

∑
di |ai y3

i
06i6n

(d0 · · · dn)
1/2

lcm(d0, . . . , dn)(n−1)/2

∞∑
q>P1

lcm(d0,...,dn)|q

q−(n−1)/2

�

∏n
i=0 |ai y3

i |
1/2+ε

lcm(a0 y3
0 , . . . , an y3

n)
1/2
· P1(−n+3)/2. �

Remark 3.4. One can prove (see for example [Davenport 2005, Lemmas 5.2-5.3])
for n > 4 that Sy,a,t can be written as an Euler product of p-adic densities

lim
l→∞

#{(x0, . . . , xn) ∈ (Z/plZ)n+1
:
∑n

i=0 ai y3
i x2

i ≡ t mod pl
}

pln .

The singular integral. Examining Iε,t,B(B P1−2) in (9), we have the following
proposition.

Proposition 3.5. For n > 3, we have

Iε,t,B(B P1−2)= Iε,t,B + O
(
B(1−n)/2 P (1−2)(1−n)/2) (13)

with

Iε,t,B =

∫
+∞

−∞

e(−γ t/B) dγ
∫
[B−1/2,1]n+1

e
(
γ

n∑
i=0

εi x2
i

)
dx

under the condition B P1−2 > 1.

Proof. As proved in [Davenport 2005, Proof of Theorem 4.1], we have∣∣∣∣∫ 1

B−1/2
e(γ εi x2

i ) dxi

∣∣∣∣�min{1, |γ |−1/2
},

and thus ∣∣∣∣∫
[B−1/2,1]n+1

e
(
γ

n∑
i=0

εi x2
i

)
dx
∣∣∣∣�min{1, |γ |−1/2

}
n+1. (14)
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This implies that the integral Iε,t,B converges, since∣∣Iε,t,B∣∣� ∫
+∞

−∞

min{1, |γ |−1/2
}

n+1dγ <+∞.

Also, ∣∣Iε,t,B(B P1−2)− Iε,t,B
∣∣� ∫

|γ |>B P1−2
|γ |−(n+1)/2dγ

� B(1−n)/2 P (1−2)(1−n)/2. �

Defining the singular integral as

Iε =

∫
+∞

−∞

dγ
∫
[0,1]n+1

e
(
γ

n∑
i=0

εi x2
i

)
dx, (15)

it follows from the last proof that this integral is also convergent.

Lemma 3.6. It holds that Iε,t,B→ Iε as B goes to infinity.

Proof. We have

∣∣Iε,t,B − Iε
∣∣6 ∫ +∞

−∞

∣∣(e(−γ t/B)− 1)
∣∣ dγ

∣∣∣∣∫
[B−1/2,1]n+1

e
(
γ

n∑
i=0

εi x2
i

)
dx
∣∣∣∣

+

∫
+∞

−∞

dγ
∣∣∣∣∫
([B−1/2,1]n+1)

c
e
(
γ

n∑
i=0

εi x2
i

)
dx
∣∣∣∣

= I1(B, t)+ I2(B),

where
(
[B−1/2, 1]n+1

)c denotes the complement of [B−1/2, 1]n+1 in the hypercube
[0, 1]n+1.

Since |(e(−γ t/B)− 1)| = 2| sin(πγ t B−1)|6min{2, 2π |γ ||t |B−1
}, we obtain

the following for I1(B, t), recalling (14):

I1(B, t)�
∫
+∞

−∞

min{1, π |γ ||t |B−1
} ·min{1, |γ |−1/2

}
n+1dγ.

Splitting up the latter integral into three parts according to the appropriate range
of γ , we get I1(B, t)� |t |B−1 for B big enough.

For I2(B), one has ∣∣∣∣∫ 1

0
e(γ εi x2

i ) dxi

∣∣∣∣�min{1, |γ |−1/2
}

and ∣∣∣∣∫ B−1/2

0
e(γ εi x2

i ) dxi

∣∣∣∣�min{B−1/2, |γ |−1/2
}.
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Applying the exclusion-inclusion principle to I2(B) and observing the symmetric
form of the integrand, we get

I2(B)�
n+1∑
i=1

∫
+∞

−∞

min{B−1/2, |γ |−1/2
}
i
·min{1, |γ |−1/2

}
n+1−i dγ.

It follows that I2(B)� B−1/2. Hence,∣∣Iε,t,B − Iε
∣∣�t B−1/2 (16)

for B big enough, completing the proof. �

Note that from Proposition 3.5 and (16), one has

Iε,t,B(B P1−2)= Iε + O
(
B−1/2

+ B(1−n)/2 P (1−2)(1−n)/2). (17)

We now return to the integral of Ey(α) over the major arcs.

Proposition 3.7. For n > 4 and for any 1 with 0<1< 1/5, there exists a δ > 0
so that ∫

M(1)

Ey(α) dα =
2n+1Sy,a,tIε∏n

i=0 |ai y3
i |

1/2
· B(n−1)/2

+ Oy,a
(
B(n−1)/2−δ). (18)

Proof. Substituting (12) and (17) into formula (9), we get∫
M(1)

Ey(α) dα =
2n+1Sy,a,tIε∏n

i=0 |ai y3
i |

1/2
· B(n−1)/2

+ O
( ∏n

i=0 |ai y3
i |
ε

lcm(a0 y3
0 , . . . , an y3

n)
1/2
· B(n−1)/2 P1(−n+3)/2

+
B(n−2)/2

+ P (1−2)(1−n)/2∏n
i=0 |ai y3

i |
1/2

+

∑n
i=0 |ai y3

i |
1/2∏n

i=0 |ai y3
i |

1/2
· B(n+2)/2 P51−4

)
. (19)

For this expression to be nontrivial, we have to determine P = P(B) and 1
properly (under the condition B P1−2>1) so that the error term is Oy,a(B(n−1)/2−δ)

for some δ > 0. Taking P = B1/2 and 0<1< 1/5 is satisfactory. �

We can now prove our estimate for the major arcs.

Theorem 3.8. For n > 4 and for any 1 with 0<1< 1/15, there exists a δ > 0 so
that ∫

M(1)

E(α) dα = Ca,t · B(n−1)/2
+ O

(
B(n−1)/2−δ),

where

Ca,t = 2n+1
∑

y∈Zn+1
0

( n∏
i=0

µ′i (yi )

)
Sy,a,tIε∏n

i=0 |ai y3
i |

1/2
,
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with Sy,a,t and Iε as defined above.

Proof. We sum (19) over all admitted yi such that 16 |y3
i |6 B, i ∈ {0, . . . , n}, and

denote the sum of the coefficients of the main term by Ca,t(B).
We obtain, using (11),

Sy,a,t∏n
i=0 |ai y3

i |
1/2
�

∏n
i=0 |ai y3

i |
ε

lcm(a0 y3
0 , . . . , an y3

n)
1/2

(20)

for any ε > 0. We have∑
max

06i6n
|y3

i |>B

∏n
i=0 |ai y3

i |
ε

lcm(a0 y3
0 , . . . , an y3

n)
1/2
�

∑
max

06i6n
|y3

i |>B

1
lcm(a0 y3

0 , . . . , an y3
n)

1/2−(n+1)ε

�

∑
max

06i6n
|y3

i |>B

1
lcm(y0, . . . , yn)3/2−3(n+1)ε

�

∑
N 3>B

#{(y0, . . . , yn) : lcm(y0, . . . , yn)= N }
N 3/2−3(n+1)ε

� B−1/6+(n+1)ε (21)

for any ε > 0. This allows us to replace Ca,t(B) by Ca,t .
We now turn to the error term in (19), summing over all admitted values of y

and putting P = B1/2 as before.
The first error term can be treated as the main term. The coefficients of the third

and fourth error terms will also converge without any extra conditions. Moreover,
the upper bound can be made independent of the ai . For the last error term however,
the coefficient will asymptotically contribute O(B1/3).

This means the extra condition

1
3
+

n+2
2
+

51−4
2

<
n−1

2
⇔1<

1
15

has to be satisfied for the error term to behave properly. �

Note that (20) and (21) also provides a uniform upper bound of Ca,t , that is,
Ca,t 6 C , independently of a and t .

Minor arcs. The goal of this section is to prove the following theorem.

Theorem 3.9. For n > 4, there exists a δ > 0 so that∫
m(1)

E(α) dα = O
(
B(n−1)/2−δ).
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To treat the integral over the minor arcs, we will not fix y but examine the whole
equation at once. Recall that

E(α)= e(−αt)
n∏

i=0

Si (α)= e(−αt)
n∏

i=0

∑
16|ai x2 y3|6B

µ′i (y)e(αai x2 y3).

Using Hölder’s inequality repeatedly, we get for n > 4,∣∣∣∣∫
m(1)

E(α) dα
∣∣∣∣6 sup

α∈m(1)
(|S0(α)| · · · |Sn−4(α)|) max

j=n−3,...,n

∫ 1

0
|S j (α)|

4dα. (22)

To obtain a good upper bound of this expression, we first examine
∫ 1

0 |S j (α)|
4dα.

Lemma 3.10. For any ε > 0, we have∫ 1

0
|S j (α)|

4dα�ε B1+ε.

Proof. From now on, we will concentrate on the part of the sum where the variables
are positive. This will suffice to prove the theorem because of the symmetry.

Let
SY (α)=

∑
Y<y62Y

µ′j (y)
∑

16x6Ba j ,y

e(αa j x2 y3)

be the contribution to S j (α) for Y < y 6 2Y . Using Cauchy’s inequality, it follows
that∫ 1

0
|SY (α)|

4dα� Y
∫ 1

0
|SY (α)|

2
∑

Y<y62Y

µ′j (y)
∣∣∣∣ ∑
16x6Ba j ,y

e(αa j x2 y3)

∣∣∣∣2dα

� Y
∑

Y<y1,y2,y362Y

∑
16x16Ba j ,y1
16x26Ba j ,y2

16x3,x46Ba j ,y3

∫ 1

0
e(αa j G(x, y)) dα

6 Y · #Z(Y, B),

with G(x, y)= y3
3(x

2
4−x2

3)+x2
1 y3

1−x2
2 y3

2 and Z(Y, B)={(x, y)∈Z7
0 : y

3
3(x

2
3−x2

4)=

x2
1 y3

1 − x2
2 y3

2 , 16 xi < BY , Y < y j 6 2Y }, where BY = (B/Y 3)1/2.
If we make a distinction between solutions (x, y) ∈ Z7

0 of G(x, y)= 0 for which
x2

1 y3
1 − x2

2 y3
2 = 0 or not, it follows that both sets contain O(Y−1

· B1+ε) solutions.
Hence, we conclude that #Z(Y, B)�ε Y−1

· B1+ε, and thus∫ 1

0
|SY (α)|

4dα�ε B1+ε.
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Summing over all intervals (Y, 2Y ] with Y = 2k
� B1/3 and applying Cauchy’s

inequality twice on |S j (α)|
4
= |

∑
Y=2k�B1/3 SY (α)|

4, we get∫ 1

0
|S j (α)|

4dα� B3ε′
∑

Y=2k�B1/3

∫ 1

0
|SY (α)|

4dα� B3ε′
∑

Y=2k�B1/3

B1+ε
= B1+ε′′,

which completes the proof. �

Remark 3.11. Recalling the expression for #Ma,t(B) in (2) and putting n = 3,
a = (1, 1, 1, 1), t = 0 and µ′i ( · ) = µ

2( · ) for each i , this lemma implies that the
equation n1 + n2 = n3 + n4, where ni is squareful and 1 6 |ni | 6 B for each
i ∈ {1, 2, 3, 4}, has O(B1+ε) solutions.

In order to handle the first part of (22), namely supα∈m(1)(|S0(α)| · · · |Sn−4(α)|),
we will prove the following proposition.

Proposition 3.12. Let α ∈m(1). Then there exists a δ > 0 such that

|Si (α)| � B1/2−δ.

Proof. Let ψ > 0. We may henceforth assume that |ai |6 Bψ , since otherwise the
trivial upper bound yields

|Si (α)|6
∞∑

y=1

√
B

ai y3 � B(1−ψ)/2,

which is satisfactory. Similarly, we may assume that y 6 Bψ in Si (α). Thus, we
have

|Si (α)| � B(1−ψ)/2+
∑

y6Bψ
µ′i (y)

∣∣Ty(α)
∣∣,

with, if we set X =
√

B/(|ai |y3),

Ty(α)=
∑
x6X

e(αai y3x2).

Since |ai |y3x2 6 B, in particular X > B1/2−2ψ . Using the usual squaring and
differencing approach (see for example [Davenport 2005, Chapter 3]), we obtain∣∣Ty(α)

∣∣2 6 ∑
|h|6X

∣∣∣∣ ∑
x

x,x+h6X

e(2αai y3hx)
∣∣∣∣

�

∑
|h|6X

min{X, ‖2αai y3h‖−1
} � X + Bε ·

∑
y6Y

min{X, ‖αy‖−1
},

where Y = 2|ai |y3 X and ‖a‖ =min{|β| ∈ R : β ≡ a mod 1} for any real number a.
In order to estimate the sum over y, we will use the following lemma.
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Lemma 3.13 (Separation lemma). Let P, Q > 1 be reals, α ∈ T and a, q ∈ Z with
gcd(a, q)= 1 and |α− a/q|< q−2. Then∑

x6P

min
{ P Q

x
, ‖αx‖−1

}
� P Q

(
q−1
+ Q−1

+ q(P Q)−1) log(2q P).

Proof. A full proof is given in [Vaughan 1997, Lemma 2.2]. �

Choosing P = Y and Q = X , Lemma 3.13 implies∣∣Ty(α)
∣∣2� X + XY Bε

(1
q
+

1
X
+

q
XY

)
� XY B2ε

(1
q
+

1
X
+

q
XY

)
� B1+2ε

(1
q
+ B2ψ−1/2

)
+ q B2ε,

since X 6 Y and XY = 2|ai |y3 X2
= 2B. Hence,

|Si (α)| � B1/2−2ψ
+ B1/2+ε+ψ

( 1
√

q
+ Bψ−1/4

)
+
√

q Bε+ψ . (23)

According to Dirichlet, we can find a, q ∈ Z with gcd(a, q)= 1 and q 6 B(2−1)/4

such that |αq−a|< 1/B(2−1)/4= B(1−2)/4. (Note we also have |α−a/q|< 1/q2.)
Furthermore, it is necessary that q > B1/2: otherwise, we would have α ∈M(1).
With these boundaries for q in (23), a suitable small choice for ψ in terms of 1
leads to the statement. �

We are now able to prove Theorem 3.9.

Proof of Theorem 3.9. Combining Proposition 3.12 and Lemma 3.10 in (22), we
obtain ∣∣∣∣∫

m(1)
E(α) dα

∣∣∣∣� B(1/2−δ)(n−3)
· B1+ε6 B(n−1)/2−δ+ε < B(n−1)/2

for any 0< ε < δ. �

4. Towards the main problem

Combining the previous results, we are able to prove the following theorem.

Theorem 4.1. For n > 4, there exists a δ > 0 so that

#Ma,t(B)= Ca,t · B(n−1)/2
+ O

(
B(n−1)/2−δ),

with the constant Ca,t described in Theorem 3.8.

Proof. This follows directly from Theorem 3.8, Theorem 3.9 and (2). �
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Remark 4.2. Note that the error term is independent of a and t and recall we
also proved Ca,t can be bounded uniformly independent of a and t . This implies
that #Ma,t(B) 6 C · B(n−1)/2 for some constant C > 0. Indeed, when B < 1,
Ma,t(B)=∅, and for B > 1, it follows from Theorem 4.1 that

#Ma,t(B)6 C ′ · B(n−1)/2
+C ′′ · B(n−1)/2−δ 6 C · B(n−1)/2,

where C = 2 max{C ′,C ′′}.

Going back to M(B) (see definition on page 1021), we will now prove the
following theorem.

Theorem 4.3. For n > 4, there exists an explicit constant D and a δ > 0 such that

#M(B)= D · B(n−1)/2
+ O

(
B(n−1)/2−δ)

as B goes to infinity.

(The definition of the constant D is given in Lemma 4.5; in the next section, we
will give some indications about the interpretation of D.)

The only problem still left in proving Theorem 4.3 is to understand how we can
tackle the additional gcd condition gcd(x0 y0, . . . , xn yn)= 1 on the solutions. Note
that the Möbius inversion at hand leads to divisibility conditions on both xi and yi

which have to be handled with care.
Let e= (e0, . . . , en)∈Nn+1

0 and f = ( f0, . . . , fn)∈Nn+1
0 , where fi is squarefree

for each i ∈ {0, . . . , n}.

Definition. We denote the set{
(x, y)∈Z2n+2

0

n∑
i=0

x2
i y3

i =0, max
06i6n

|x2
i y3

i |6 B, ei |xi , fi |yi and
n∏

i=0

µ2(|yi |)=1
}

by N(e, f )(B).

Demanding that solutions in N(1,1)(B) satisfy gcd(x0 y0, . . . , xn yn)= 1 means
we wish to leave out those solutions of N(1,1)(B) for which there exists a prime p
and a subset I ⊂ {0, . . . , n} such that p|xi if i ∈ I and p|yi if i /∈ I (or i ∈ I c, where
I c denotes the complement of I in {0, . . . , n}) in order to get to M(B). Defining
for a prime p and subsets I, J ⊂ {0, . . . , n} the couple (ep,I , f p,J ) by ep,I

i = p

for i ∈ I and ep,I
i = 1 otherwise and analogously for f p,J , it hence follows that

M(B)= N(1,1)(B) \
⋃
(p,I )

N(ep,I , f p,I c
)(B). (24)

Notice that in this last union only a finite number of sets are nonempty since for a
prime p >

√
B, we get N(ep,I , f p,I c

)(B)=∅.
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Definition. Let S be a finite set of couples (p, I ). We can associate to S a couple
(e, f ) as follows: defining for each prime p the index sets Ip =∪(p,I )∈S I and Jp =

∪(p,I )∈S I c, the associated couple is given by ei =
∏
{p|i∈Ip}

p and fi =
∏
{p|i∈Jp}

p.
We then define

µ(e, f )=
∑
n>0

(−1)n #
{
sets S of cardinality n with associated couple (e, f )

}
.

Observing (24) together with this definition, we have

#M(B)=
∞∑

e=1

∑
(e, f )∈N2n+2

e=gcd(ei fi , i=0,...,n)

µ(e, f ) · #N(e, f )(B). (25)

The following lemma collects some properties of µ.

Lemma 4.4. There exists a function µ̃ : Z2n+2
→ Z such that

(i) µ(e, f ) =
∏

p µ̃(vp(e), vp( f )), where vp(e) = (vp(e0), . . . , vp(en)) (and
analogously for vp( f )),

(ii) µ̃(m, n)= 0 if mi = ni = 0 and (m, n) 6= (0, 0) or if mi > 1 for some i ,

(iii)
∑

I∪J={0,...,n} |µ̃(I, J )|6 22n+1
, where, for subsets I, J ⊂ {0, . . . , n}, µ̃(I, J )

denotes µ̃(m I
0, . . . ,m I

n,m′0
J
, . . . ,m′n

J
) with m I

i = 1 if i ∈ I and m I
i = 0

otherwise and mi
′ J
= 1 if i ∈ J and m′i

J
= 0 otherwise.

Proof. (i) and (ii) follow directly from the definition of µ immediately above. From
the same definition, it follows, if I ∪ J = {0, . . . , n}, and denoting by T a finite set
of subsets I ⊂ {0, . . . , n}, that

µ̃(I, J )=
∑

m

(−1)m #
{
sets T of cardinality m

such that I = ∪K∈T K and J = ∪K∈T K c}.
If we sum over all possible I and J such that I ∪ J = {0, . . . , n}, we get (iii). �

Consider now N(e, f )(B) for a couple (e, f ) for which µ(e, f ) 6= 0 and

gcd(ei fi , i = 0, . . . , n)= e,

i.e., a subset with nontrivial contribution to #M(B) (recall (25)). Since #N(e, f )(B)=
#Me2 f 3,0(B), choosing µ′i (yi )= µ

2( fi |yi |) (where e2 f 3
= (e2

0 f 3
0 , . . . , e2

n f 3
n )), we

know by Theorem 4.1 that

#N(e, f )(B)= Ce2 f 3,0 · B
(n−1)/2

+ O(B(n−1)/2−δ).
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Since e divides ei fi , we can write e2
i f 3

i = vi e2 for some vi ∈ N for each i in
{0, . . . , n}. Making the substitutions x ′i = xi/ei and y′i = yi/ fi , we see that N(e, f )(B)
corresponds to the set{
(x ′, y′)∈Z2n+2

0 :

n∑
i=0

vi x ′i
2 y′i

3
=0, max

06i6n
|vi x ′i

2 y′i
3
|6 B

e2 and
n∏

i=0

µ2( fi |y′i |)=1
}
,

where we eliminated e2 in the equation, and hence #N(e, f )(B) = #Mv,0(B/e2).
Letting B go to infinity, this implies that the main terms in the asymptotic formulas
of #Ne, f (B) and #Mv,0(B/e2) are equal, and in particular that

#N(e, f )(B)−Ce2 f 3,0 · B
(n−1)/2

= O
( B(n−1)/2−δ

en−1−2δ

)
. (26)

Notice we also obtain (recall Remark 4.2) that

#N(e, f )(B)6 C · B(n−1)/2

en−1 and Ce2 f 3,0 6
C

en−1 . (27)

From these results, we can now prove:

Lemma 4.5. The series D =
∞∑

e=1

∑
(e, f )∈N2n+2

gcd(ei fi , i=0,...,n)=e

µ(e, f ) ·Ce2 f 3,0 converges.

Proof. Substituting (27) into the definition of D and using the properties of µ in
Lemma 4.4, we get

|D| �
∞∑

e=1

∑
(e, f )∈N2n+2

gcd(ei fi , i=0,...,n)=e

|µ(e, f )|
en−1

6
∏

p

2∑
k=0

∑
(vp(e),vp( f ))∈N2n+2

mini {vp(ei )+vp( fi )}=k

|µp(vp(e), vp( f ))|
pk(n−1) 6

∏
p

(
1+ 2 22n+1

pn−1

)
,

which converges since n > 4. �

Proof of Theorem 4.3. From the definition of D and (26), it follows that

∣∣#M(B)− D · B(n−1)/2∣∣� ∞∑
e=1

∑
(e, f )∈N2n+2

gcd(ei fi , i=0,...,n)=e

∣∣µ(e, f )
∣∣ · B(n−1)/2−δ

e(n−1)−2δ .

Following the same reasoning as in Lemma 4.5, we then get∣∣#M(B)− D · B(n−1)/2∣∣� B(n−1)/2−δ
·

∏
p

(
1+ 2 22n+1

pn−1−2δ

)
,
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where the product converges for δ > 0 small enough since n > 4. This proves the
theorem. �

5. Rational points on the orbifold (Pn−1, 1)

We can now prove our main theorem.

Theorem 5.1. For n > 4, there exists a δ > 0 such that

#(Pn−1,1)(Q)6B = C · B(n−1)/2
+ O

(
B(n−1)/2−δ).

Here,

C = 1
2n+1

∞∑
e=1

∑
(e, f )∈N2n+2

gcd(ei fi , i=0,...,n)=e

µ(e, f )
∑

y∈Zn+1
0 /{±1}

fi yi squarefree

2n+1Sy,e2 f 3,0Iε∏n
i=0(e

2
i f 3

i |y
3
i |)

1/2
,

with Sy,a,t , Iε and the function µ as defined before. (By y ∈ Zn+1
0 /{±1}, we denote

the (n+ 1)-tuples (y0, . . . , yn) ∈ Zn+1
0 , defined up to sign as an (n+ 1)-tuple.)

Proof. The connection between (Pn−1,1)(Q)+6B and the set M(B) given by (1),
together with Theorem 4.3, implies that the theorem holds for #(Pn−1,1)(Q)+6B . It
remains to prove that, for n > 4, the set of points (a0 : · · · : an) ∈ (P

n−1,1)(Q)6B

with at least one zero coordinate (whose cardinality is � #(Pn−2,1)(Q)6B), is
asymptotically negligible compared to (Pn−1,1)(Q)+6B .

We will verify this for n = 4; by induction, the statement follows for n > 4.
As mentioned in Remark 3.11, it follows from Lemma 3.10 that

#(P2,1)(Q)+6B � B1+ε.

Combining this with the trivial upper bound #(P1,1)(Q)6B � B, we obtain

#(P2,1)(Q)6B � B1+ε < B3/2

for ε > 0 sufficiently small. �

Description of the constant. An alternative description of (Pn−1,1)(Q)+6B can
be obtained as follows. Consider y ∈ Zn+1

0 /{±1} with each yi squarefree. For
such y, let Q y denote the smooth quadric defined by the homogeneous polynomial
Fy(x)= y3

0 X2
0 + . . .+ y3

n X2
n ∈ Z[X0, . . . , Xn]. Furthermore, define the morphism

πy : Q y → H
(x0 : · · · : xn) 7→ (y3

0 x2
0 : · · · : y

3
n x2

n).
(28)

We will consider points (x0 : · · · : xn) ∈ Q y(Q) with xi ∈ Z such that
∏n

i=0 xi 6= 0
and gcd(x0 y0, . . . , xn yn)= 1. We denote this subset of Q y(Q) by Q y(Q)

+. This
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set is mapped into (Pn−1,1)(Q)+ by πy and, keeping in mind (1), we have

(Pn−1,1)(Q)+ =
∐

y∈Zn+1
0 /{±1}

yi squarefree

πy(Q y(Q)
+). (29)

This implies

#(Pn−1,1)(Q)+6B=
1

2n+1

∑
y∈Zn+1

0 /{±1}
yi squarefree

#
{
(x0 : · · · : xn)∈Q y(Q)

+
: max

06i6n
|x2

i y3
i |6 B

}
.

For a fixed y, an asymptotic expression for each of the latter sets using the
classical circle method is known (see [Davenport 2005, Chapter 8]) and a Möbius
inversion for the gcd condition gcd(x0 y0, . . . , xn yn)=1.

Moreover, from Lemma 4.5, it follows that we can change the order of summa-
tion for e and y in the constant C from Theorem 5.1 and thus, defining

CQ y =

∞∑
e=1

∑
(e, f )∈N2n+2

gcd(ei fi , i=0,...,n)=e
fi |yi

µ(e, f )
2n+1Sy,e2,0Jε∏n

i=0(ei |yi |
3/2)

, (30)

we have, for n > 4,

#(Pn−1,1)(Q)6B ∼

(
1

2n+1

∑
y∈Zn+1

0 /{±1}
yi squarefree

CQ y

)
· B(n−1)/2

as B goes to infinity.
This constant CQ y can be given a more geometrical interpretation using the

adelic space Q y(AQ) of the quadric Q y , as explained in [Peyre 1995, §5]. Here,
it has been shown that the refined version of the Manin conjecture is compatible
with the circle method for smooth quadrics in Pn

Q
and moreover, that rational points

on smooth quadrics are equidistributed. Considering the Tamagawa measure ωHy

(corresponding to the height function Hy defined as Hy(P) = max06i6n |x2
i y3

i |

where P = (x0 : · · · : xn) ∈ Q y(Q)) on Qy(AQ), the equidistribution of the rational
points on Q y implies that for every good open subset W (that is, an open subset
W for which ωHy (∂W )= 0, where ∂W =W \W ) of Q y(AQ), we have

#
{

P ∈ Q y(Q)
+
∩W | Hy(P)6 B

}
#
{

P ∈ Q y(Q)+ | Hy(P)6 B
} →

ωHy (W )

ωHy (Q y(AQ))

as B goes to infinity. We refer to [Peyre 1995] for more details on this matter. This
implies we can obtain a description of the constant CQ y in terms of the measure ωHy
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of a certain subset of the adelic space Q y(AQ) of the quadric Q y . More precisely,
it follows that

CQ y = ωHy (Q y(AQ)
†)/(n− 1),

where Q y(AQ)
† denotes the good open subset of Q y(AQ) defined by the gcd con-

dition gcd(x0 y0, . . . , xn yn) = 1 we imposed on Q y(Q). (Note that imposing the
open condition

∏n
i=0 xi 6= 0 does not change the measure.) We obtain the following

corollary.

Corollary 5.2. For n > 4, we have

#(Pn−1,1)(Q)6B ∼

( 1
2n+1

∑
y∈Zn+1

0 /{±1}
yi squarefree

CQ y

)
· B(n−1)/2 (31)

as B goes to infinity, where CQ y = ωHy (Q y(AQ)
†)/(n− 1).

The adelic space of the orbifold (Pn−1, 1). In order to define the adelic space of
the orbifold properly, we first have to explain how we can translate the definition
of “squarefulness” to the different completions of Q.

At each finite place v = p, a p-adic integer a ∈ Zp is squareful if vp(a) 6= 1.
Due to the structure of Q×p , this means that we can write a squareful p-adic integer
a uniquely as x2 y3 with x ∈ Z×p and y ∈ Z squarefree.

On the other hand, any real number a ∈ R can be written as (±1)3x2 and ought
to be considered as squareful.

Since we identified (Pn−1,1)(Q) with {(u0 : · · · : un) ∈ H(Q) : ui squareful}
(recall H ⊂ Pn is the hyperplane defined by X0+· · ·+ Xn = 0), we have, for each
v ∈ Val(Q), that

(Pn−1,1)(Qv)={(u0 : · · · : un)∈ H(Qv) : ui squareful}

= {(x2
0,v y3

0 : · · · : x
2
n,v y3

n)∈ H(Qv) : y ∈Zn+1
0 /{±1}, yi squarefree}.

This implies, recalling the definition of πy in (28),

(Pn−1,1)(Qv)=
⋃

y∈Zn+1
0 /{±1}

yi squarefree

πy(Q y(Qv)
†), (32)

where for a finite place v = p, Q y(Qp)
† is the open subset of Q y(Qp) defined by

the condition min06i6n(vp(xi,p yi ))= 0, and where Q y(R)
†
= Q y(R).

Note that the union considered is not disjoint, but that the image for different
y and y′ either coincides or is disjoint. Hence, it follows that, at each place
v ∈ Val(Q), (Pn−1,1)(Qv) can be described as a finite disjoint union of sets
πy(Q y(Qv)

†) for specified y ∈ Zn+1
0 /{±1}.
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Definition. We define the adelic space (Pn−1,1)(AQ) as

(Pn−1,1)(AQ)=
∏

v∈Val(Q)

(Pn−1,1)(Qv).

Remark 5.3. One may prove that (Pn−1,1)(Q) is dense in (Pn−1,1)(AQ). This
follows from the fact that weak approximation holds for smooth quadrics.

Distribution of rational points on (Pn−1, 1). We can now consider the probabil-
ity measure

µ
(Pn−1,1)
H6B =

1
#(Pn−1,1)(Q)6B

∑
P∈(Pn−1,1)(Q)

H(P)6B

δP (33)

on (Pn−1,1)(AQ). Here, we will investigate the convergence of µ(P
n−1,1)

H6B to a
specific measure on the adelic space of the orbifold, which we have yet to define,
when B goes to infinity. Keeping in mind the description of (Pn−1,1)(AQ) we
gave above, we can define this measure in the following natural way.

Definition. We define the measure ω(Pn−1,1) on (Pn−1,1)(AQ) as

ω(Pn−1,1)(U )=
∑

y∈Zn+1
0 /{±1}

yi squarefree

ωHy (π
−1
y (U )), (34)

where U is an open subset of (Pn−1,1)(AQ) (which is equipped with the subspace
topology coming from H(AQ)) and πy : Q y(AQ)

†
→ (Pn−1,1)(AQ). (Note that

the morphisms πy introduced in (28) define continuous maps πy : Q y(AQ) →

H(AQ) which map Q y(AQ)
† into (Pn−1,1)(AQ).)

Remark 5.4. From this definition of the measure ω(Pn−1,1), it follows that its sup-
port consists of the (disjoint) union of

πy(Q y(AQ)
†) (35)

for all y ∈ Zn+1
0 /{±1} with yi squarefree for each i ∈ {0, . . . , n}. This is a proper

subset of (Pn−1,1)(AQ).

In order to say something about the convergence of µ(P
n−1,1)

H6B , we first define
elementary open subsets of (Pn−1,1)(AQ).

An elementary open subset W of H(AQ) can be defined as

W =
∏

v∈Val(Q)

Wv,

such that Wv ⊂ H(Qv) is defined at finitely many finite places as Wp = red−1
M (X p),

where X p ⊂ H(Z/pM Z) and redM : H(Qp)→ H(Z/pM Z); Wp = H(Qp) for
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any other finite place. Furthermore, at the infinite place v =∞, we require W∞ =⋂
i, j (λi, j xi < x j )⊂ H(R) fixing one of the coordinates xi to one. Here, λi, j ∈R>0

depending on i and j .
To construct elementary open subsets on (Pn−1,1)(AQ), we can take the inter-

section with elementary open subsets of H(AQ).
We will now prove the following theorem.

Theorem 5.5. For every elementary open subset U of (Pn−1,1)(AQ), we have

µ
(Pn−1,1)
H6B (U )→

ω(Pn−1,1)(U )
ω(Pn−1,1)((P

n−1,1)(AQ))

as B goes to infinity.

Proof. Straightforward calculations show that for each admitted y, the inverse
image π−1

y (U ) of an elementary open subset U of (Pn−1,1)(AQ) defines a good

open subset of Q y(AQ)
†.

Now let U be an elementary open subset of (Pn−1,1)(AQ). Recalling (33), the
partition of (Pn−1,1)(Q)+ in (29), and Theorem 5.1, we get

µ
(Pn−1,1)
H6B (U )=

#
{
(u0 : · · · : un) ∈ (P

n−1,1)(Q)∩U :max06i6n |ui |6 B
}

#(Pn−1,1)(Q)6B

∼

∑
y #
{
(x0 : · · · : xn) ∈ Q y(Q)

+
∩π−1

y (U ) :max06i6n |y3
i x2

i |6 B
}∑

y #
{
(x0 : · · · : xn) ∈ Q y(Q)+ :max06i6n |y3

i x2
i |6 B

} .

(Here, we used the abbreviated notation
∑

y to sum over all admitted y ∈ Zn+1
0 .)

Combining the fact that rational points on smooth quadrics are equidistributed,
the definition of the measure in (34), and Theorem 5.1 enables us to complete the
proof. �
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A denominator identity
for affine Lie superalgebras

with zero dual Coxeter number
Maria Gorelik and Shifra Reif

We prove a denominator identity for nontwisted affine Lie superalgebras with
zero dual Coxeter number.

Introduction

0.1. Let g be a complex finite-dimensional contragredient Lie superalgebra. These
algebras were classified by V. Kac [1977] and the list (excluding Lie algebras) con-
sists of four series: A(m|n), B(m|n),C(m), D(m|n) and the exceptional algebras
D(2, 1, a), F(4),G(3). The finite-dimensional contragredient Lie superalgebras
with zero Killing form (or, equivalently, with dual Coxeter number equal to zero)
are A(n|n), D(n|n+ 1) and D(2, 1, a).

Denote by 1+0 (resp., 1+1) the set of positive even (resp., odd) roots of g. The
Weyl denominator R and the affine Weyl denominator R̂ are given by the formulas

R =
R0

R1
, R̂ =

R̂0

R̂1
,

where

R0 :=
∏

α∈1+0

(1− e−α), R̂0 := R0 ·
∞∏

k=1
(1− qk)rank g ∏

α∈10

(1− qke−α),

R1 :=
∏

α∈1+1

(1+ e−α), R̂1 := R1 ·
∞∏

k=1

∏
α∈11

(1+ qke−α).

Let ĝ be the nontwisted affinization of g, ĥ be the Cartan subalgebra of ĝ and
1̂+ be the set of positive roots of ĝ. The affine Weyl denominator is the Weyl
denominator of ĝ. Let ρ̂ ∈ ĥ be such that 2(ρ̂, α) = (α, α) for each simple root
α ∈ 1̂+.

Supported in part by the Minerva Foundation with funding from the German Federal Ministry for
Education and Research.
MSC2010: primary 17B67; secondary 17B22.
Keywords: Lie superalgebra, denominator identity.
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If g has a nonzero Killing form, the affine denominator identity, stated in [Kac
and Wakimoto 1994] and proven there and in [Gorelik 2011], takes the form

R̂eρ̂ =
∑
w∈T ′

w(Reρ̂), (1)

where T ′ is the affine translation group corresponding to the “largest” root sub-
system of 10. The affine denominator identity for strange Lie superalgebras Q(n),
which are not contragredient, was stated in [Kac and Wakimoto 1994] and proven
in [Zagier 2000].

For a parameter q and a formal variable x we introduce, after [De Sole and Kac
2005], the infinite products

(1+ x)∞q :=
∞∏

k=0

(1+ qk x) and (1− x)∞q :=
∞∏

k=0

(1− qk x).

These infinite products converge for any x ∈ C if the parameter q is a real number
0< q < 1. In particular, they are well defined for 0< x = q < 1 and (1± q)∞q :=∏
∞

n=1(1± qn).
For A(n− 1|n− 1)= gl(n|n) denote by str the restriction of the supertrace to

the Cartan subalgebra h⊂ g (thus str ∈ h∗).
In this paper we will prove the following theorem.

0.2. Theorem. Let g be a complex finite-dimensional contragredient Lie superal-
gebra with zero Killing form. One has

R̂eρ̂ · f (q, estr)=
∑

w∈T ′ w(Reρ̂) for A(n|n),
R̂eρ̂ · f (q)=

∑
w∈T ′ w(Reρ̂) for D(n+1|n), D(2, 1, a),

(2)

where T ′ is the affine translation group corresponding to the “smallest” root subsys-
tem of 10 (see 0.4 below) and f (q, estr), f (q) are given by the following formulas

f (q, estr)=
(1−q(−1)nestr)∞q ·(1−q(−1)ne−str)∞q

((1−q)∞q )2
for gl(n|n),

f (q)=
(
(1− q)∞q

)−1 for D(n+1|n).
(3)

0.3. The affine denominator identity for gl(2|2) was stated by V. Kac and M. Waki-
moto [1994] and proven in [Gorelik 2010] (with a proof different from the one
presented below).

As pointed by P. Etingof, the terms f (q, estr), f (q) can be interpreted using
“degenerate” cases n = 1; for example, for gl(1|1) we obtain the formula

R̂eρ̂ =
((1− q)∞q )

2

(1+ qestr)∞q · (1+ qe−str)∞q
Reρ̂,
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which is trivial since gl(1|1) has the only positive root β = str, which is odd.
Since sl(n|n)= {a ∈ gl(n|n) : str(a)= 0} and

rank sl(n|n)= 2n− 1= rank gl(n|n)− 1,

one has

f (q)=


(1− q)∞q for sl(2n|2n),

((1+q)∞q )
2

(1−q)∞q
for sl(2n+1|2n+1).

The root datum of D(2, 1, a) is the same as the root datum of D(2|1) so the
affine denominator identity for D(2, 1, a) is the same as the affine denominator
identity for D(2|1).

As it is shown in [Kac and Wakimoto 1994], the evaluation of the affine denomi-
nator identity (2) for A(1|1) gives the following Jacobi identity [1829]:

�(q)8 = 1+ 16
∞∑

j,k=1

(−1)( j+1)kk3q jk, (4)

where �(q)=
∑

j∈Z q j2
and thus the coefficient of qm in the power series expansion

of �(q)8 is the number of representation of a given integer as a sum of 8 squares
(taking into the account the order of summands).

0.4. In order to define T ′ for A(n|n), D(n+1|n) we present the set of even roots
in the form 10 =1

′
q1′′, where

1′ ∼=1′′ = An−1 for A(n− 1|n− 1)= gl(n|n),
1′ = Cn, 1

′′
= Dn+1 for D(n+1|n).

Let W ′ be the Weyl group of 1′ and Ŵ ′ be the corresponding affine Weyl group.
Then Ŵ ′ =W ′n T ′, where T ′ is a translation group, see [Kac 1990, Chapter VI].
By contrast to Lie superalgebras with nonzero Killing form, for D(n+1|n) the rank
of root system 1′ is smaller than the rank of 1′′. It is not possible to change T ′

to T ′′ in (1) and in (2) for D(n+1|n), since the sum
∑

w∈T ′′ w(Reρ̂) is not well
defined if 1′ 6∼=1′′ (see Remark 2.1.4).

The key point of our proof of Theorem 0.2 is Proposition 2.3.2, where it is
shown that the expansion of Y := R̂−1e−ρ̂

∑
w∈T ′ w(Reρ̂) contains only Ŵ -invariant

elements. This implies that Y = f (q) for g= D(n+1|n) and Y = f (q, e−str) for
gl(n|n). We determine f (q) and f (q, estr) using suitable evaluations.

1. Preliminaries

One readily sees (for instance, [Gorelik 2011, 1.5]) that Reρ̂ and R̂eρ̂ do not depend
on the choice of set of positive roots1+. As a result, in order to prove Theorem 0.2,
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it is enough to establish the identity (2) for one choice of 1+. Similarly, it is
enough to establish the identity for one choice of An−1 for gl(n|n). In Section 1.1
we describe our choice of the set of positive roots for gl(n|n), D(n+1|n). In
Section 1.2 we introduce notation for affine Lie superalgebra ĝ. In Section 1.3 we
introduce the algebra R of formal power series in which we expand R and R̂.

Note that if the dual Coxeter number of g is zero, then

ρ̂ = ρ =
1
2

( ∑
α∈1+0

α−
∑

α∈1+1

α
)
.

1.1. Root systems. Let g be gl(n|n) or D(n|n+1) and let h be its Cartan subalgebra.
We fix the following sets of simple roots:

5=

{
{ε1− δ1, δ1− ε2, ε2− δ2, . . . , εn − δn} for gl(n|n),
{ε1− δ1, δ1− ε2, ε2− δ2, . . . , εn − δn, δn ± εn+1} for D(n+1|n).

We fix a nondegenerate symmetric invariant bilinear form on g and denote by
(− ,−) the induced nondegenerate symmetric bilinear form on h∗; we normalize
the form in such a way that −(εi , ε j )= (δi , δ j )= δi j ; notice that {εi , δi : 1≤ i ≤ n}
(resp., {ε j , δi : 1≤ i ≤ n, 1≤ j ≤ n+ 1}) is an orthogonal basis of h∗ for gl(n|n)
(resp., for D(n+1|n)).

For this choice one has

10+ =

{
{εi−ε j }1≤i< j≤nq{δi−δ j }1≤i< j≤n for gl(n|n),
10+ = {εi±ε j }1≤i< j≤n+1q{δs±δt }1≤s<t≤n∪{2δs}1≤s≤n for D(n+1|n),

11+ =


{εi−δ j }1≤i≤ j≤n∪{δi−ε j }1≤i< j≤n for gl(n|n),
11+ = {εi−δs}1≤i≤s≤n∪{δs−ε j }1≤s< j≤n+1∪{δi+ε j }1≤i≤n;1≤ j≤n+1

for D(n+1|n).

For D(n+1|n) one has ρ = 0. For gl(n|n) one has str =
∑n

i=1(εi − δi ) and
ρ =− 1

2str.
Recall that sl(n|n) = {a ∈ gl(n|n) : str(a) = 0} and so h∗ for sl(n|n) is the

quotient of h∗ for gl(n|n) by Cstr.
By the above, 10 is the union of two irreducible root systems, and we write

10 =1
′′
q1′, where 1′′ lies in the span of the εi and 1′ lies in the span of the δi

(this notation is compatible with the notation in Section 0.4).

1.2. Nontwisted affinization. Let g=n−⊕h⊕n+ be any complex finite-dimensional
contragredient Lie superalgebra with a fixed triangular decomposition, and let 1+
be its set of positive roots. Let ĝ be the affinization of g and let ĥ be its Cartan
subalgebra, see [Kac 1990, Chapter VI]. Let 1̂= 1̂0q 1̂1 be the set of roots of ĝ.
We set

1̂+ =1+ ∪
( ∞⋃

k=1
{α+ kδ| α ∈1}

)
∪

( ∞⋃
k=1
{kδ}

)
,
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where δ is the minimal imaginary root. Let W and Ŵ be the Weyl groups of 10 and
1̂0. One has (ĥ∗)Ŵ = Cδ for g 6= gl(n|n) and (ĥ∗)Ŵ = Cδ⊕Cstr for g= gl(n|n).

We extend the nondegenerate symmetric invariant bilinear form from g to ĝ and
denote by (−,−) the induced nondegenerate symmetric bilinear form on ĥ∗ (the
above-mentioned form on h∗ is induced by this form on ĥ∗). For A ⊂ ĥ∗ we set
A⊥ = {µ ∈ ĥ∗ : ∀ν ∈ A, (µ, ν)= 0}.

1.2.1. In Section 1.1 we introduced the root systems 1′,1′′ for g= gl(n|n) and
g = D(n+1|n). Let W ′ and W ′′ be the Weyl groups of 1′ and 1′′, respectively.
One has W =W ′×W ′′. We denote by Ŵ ′ the Weyl group of the affine root system
1̂′. Recall that Ŵ ′ = W ′ n T ′, where T ′ is a translation group; see [Kac 1990,
Chapter VI].

1.2.2. For N ⊂ ĥ∗ we use the notation ZN for the set
∑

µ∈N Zµ. Set

Q+ :=
∑
µ∈1+

Z
≥0µ, Q := Z1+, Q̂± := ±

∑
µ∈1̂+

Z
≥0µ, Q̂ := Z1̂+.

We introduce the standard partial order on ĥ∗: µ≤ ν if (ν−µ) ∈ Q̂+.

1.3. The algebra R. We are going to use the notation of [Gorelik 2011, 1.4], which
we recall below. We retain the notation of Section 1.2.

1.3.1. Call a Q̂+-cone a set of the form (λ− Q̂+), where λ ∈ ĥ∗.
For a formal sum of the form Y :=

∑
ν∈ĥ∗ bνeν, bν ∈ Q define the support of

Y by supp(Y ) := {ν ∈ ĥ∗ : bν 6= 0}. Let R be a vector space over Q, spanned by
the sums of the form

∑
ν∈Q̂+ bνeλ−ν , where λ ∈ ĥ∗, bν ∈ Q. In other words, R

consists of the formal sums Y =
∑

ν∈ĥ∗ bνeν with the support lying in a finite union
of Q̂+-cones.

Clearly, R has a structure of commutative algebra over Q. If Y ∈R is such that
Y Y ′ = 1 for some Y ′ ∈R, we write Y−1

:= Y ′.

1.3.2. Action of the Weyl group. For w ∈ Ŵ set w
(∑

ν∈ĥ∗ bνeν
)
:=
∑

ν∈ĥ∗ bνewν .
By the above, wY ∈R if and only if w(supp Y ) is a subset of a finite union of Q̂+-
cones. For each subgroup W̃ of Ŵ we set RW̃ := {Y ∈R :wY ∈R for each w∈ W̃ };
notice that RW̃ is a subalgebra of R.

1.3.3. Infinite products. An infinite product of the form Y =
∏
ν∈X (1+ aνe−ν)r(ν),

where aν ∈ Q, r(ν) ∈ Z
≥0 and X ⊂ 1̂ is such that the set X \ 1̂+ is finite, can

be naturally viewed as an element of R; clearly, this element does not depend on
the order of factors. Let Y be the set of such infinite products. For any w ∈ Ŵ the
infinite product

wY :=
∏
ν∈X

(1+ aνe−wν)r(ν),
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is again an infinite product of the above form, since the set w1̂+ \ 1̂+ is finite (see
for example [Gorelik 2011, Lemma 1.2.8]). Hence Y is a Ŵ -invariant multiplicative
subset of RŴ .

The elements of Y are invertible in R: using the geometric series we can expand
Y−1. For example, (1− eα)−1

=−e−α(1− e−α)−1
=−

∑
∞

i=1 e−iα.

1.3.4. The subalgebra R′. Denote by R′ the localization of RŴ by Y. By the above,
R′ is a subalgebra of R. Observe that R′ 6⊂RŴ : for example, (1− e−α)−1

∈R′,
but (1− e−α)−1

=
∑
∞

j=0 e− jα
6∈RŴ . We extend the action of Ŵ from RŴ to R′

by setting w(Y−1Y ′) := (wY )−1(wY ′) for Y ∈ Y, Y ′ ∈RŴ .
Notice that an infinite product of the form Y =

∏
ν∈X (1+ aνe−ν)r(ν), where

aν, X are as above and r(ν) ∈ Z, lies in R′ and wY =
∏
ν∈X (1+ aνe−wν)r(ν). The

support supp(Y ) has a unique maximal element (with respect to the standard partial
order) and this element is given by the formula

max supp(Y )=−
∑

ν∈X\1̂+:aν 6=0

rνν.

1.3.5. Let W̃ be a subgroup of Ŵ . For Y ∈R′ we say that Y is W̃ -invariant (resp.,
W̃ -anti-invariant) if wY = Y (resp., wY = sgn(w)Y ) for each w ∈ W̃ .

Let Y =
∑

aµeµ ∈ RW̃ be W̃ -anti-invariant. Then awµ = (−1)sgn(w)aµ for
each µ and w ∈ W̃ . In particular, W̃ supp(Y ) = supp(Y ), and, moreover, for
each µ ∈ supp(Y ) one has StabW̃ µ ⊂ {w ∈ W̃ : sgn(w) = 1}. The condition
Y ∈RW̃ is essential: for example, for W̃ = {id, sα}, the expressions Y := eα− e−α ,
Y−1
= e−α(1− e−2α)−1 are W̃ -anti-invariant, supp(Y )= {±α} is sα-invariant, but

supp(Y−1)= {−α,−3α, . . .} is not sα-invariant.
For Y ∈RW̃ such that each W̃ -orbit in ĥ∗ has a finite intersection with supp(Y ),

introduce the sum
FW̃ (Y ) :=

∑
w∈W̃

sgn(w)wY.

This sum is well defined, but does not always belong to R. For Y =
∑

aµeµ one has
FW̃ (Y )=

∑
bµeµ, where bµ =

∑
w∈W̃ sgn(w)awµ; in particular, bµ = sgn(w)bwµ

for each w ∈ W̃ . One has

Y ∈RW̃ and FW̃ (Y ) ∈R H⇒


FW̃ (Y ) ∈RW̃ ,

supp(FW̃ (Y )) is W̃ -stable,
FW̃ (Y ) is W̃ -anti-invariant.

We call a vector λ ∈ ĥ∗ W̃ -regular if StabW̃ λ= {id}, and we say that the orbit
W̃λ is W̃ -regular if λ is W̃ -regular (so the orbit consists of W̃ -regular points). If W̃
is an affine Weyl group, then for any λ ∈ ĥ∗ the stabilizer StabW̃ λ is either trivial
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or contains a reflection. Thus for W̃ = Ŵ ′, Ŵ ′′ one has

Y ∈RW̃ and FW̃ (Y ) ∈R H⇒ supp(FW̃ (Y )) is a union of W̃ -regular orbits.

2. Proof

Unless stated otherwise, g is assumed to be one of the algebras gl(n|n), D(n+1|n).
As it is pointed out in Section 1, it is enough to establish the denominator identity

for a particular choice of 1+ and we do this for the choice described in Section 1.1.
Recall that the group T ′ was introduced in Section 1.2.1. The steps of the proof are
the following.

• In Section 2.1 we check that the sum FT ′(Reρ̂) is well-defined and belongs to R.

• In Section 2.2 we prove the inclusions

supp(FT ′(Reρ̂)), supp(R̂eρ̂)⊂U, (5)

where
U := {µ ∈ ρ̂− Q̂+ : (µ,µ)= (ρ̂, ρ̂)}. (6)

We remark that (5) holds for simple contragredient Lie superalgebras with
nonzero Killing form; see [Gorelik 2011, 2.4].

• In Section 2.3 we show that if the dual Coxeter number of g is zero, then the inclu-
sions (5) imply that supp

(
R̂−1e−ρ̂FT ′(Reρ̂)

)
⊂ Q̂Ŵ . As a result, R̂−1e−ρ̂FT ′(Reρ̂)

takes the form f (q) for g 6= gl(n|n) and f (q, estr) for gl(n|n).

• In Section 2.4 we compute f (q) for D(n+1|n) and f (q, estr) for gl(n|n). This
completes the proof of the identities (2).

2.1. In this subsection we show that for g= gl(n|n), D(n+1|n), the sum FT ′(Reρ̂)
is a well-defined element of R. Since ρ̂ = ρ is Ŵ -invariant, it is enough to verify
that FT ′(R) is a well-defined element of R.

Recall that T ′ = Z{tδi−δi+1}
n−1
i=1 for gl(n|n) and T ′ = Z{tδi }

n
i=1 for D(n+1|n),

where
tµ(α)= α− (α, µ)δ for any α ∈ Q̂. (7)

2.1.1. By Section 1.3.4 one has

max supp(w(R))=−
∑

α∈10+ :
wα<0

wα +
∑

β∈11+ :
wβ<0

wβ.

Forw∈T ′ writew= tµ, whereµ∈Z{δi−δi+1}1≤i<n for gl(n|n) andµ∈Z{δi }
n
i=1

for D(n+1|n). From (7) we get

{β ∈1i+|wβ < 0} = {β ∈1i+|(β, µ) > 0} for i = 0, 1.
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We obtain max supp(tµ(R))=−v(µ)+ (v(µ), µ)δ, where

v(µ) :=
∑

β∈10+ :
(β,µ)>0

β −
∑

β∈11+ :
(β,µ)>0

β.

In order to prove that FT ′(R) is a well-defined element of R we verify that

(i) (v(µ), µ)≤ 0 for all µ;

(ii) {µ : (v(µ), µ)≥−N } is finite for all N > 0.
(8)

Condition (ii) ensures that the sum FT ′(R)=
∑

µ tµ(R) is well-defined and condi-
tion (i) means that for each µ one has

max supp(tµ(R))=−v(µ)≤
∑
β∈11+

β

so supp
(
FT ′(R)

)
⊂
∑

β∈11+
β − Q̂+ and thus FT ′(R) ∈R.

2.1.2. Case gl(n|n). Recall thatw∈ T ′ has the formw= tµ, µ=
∑n

i=1 kiδi , where
the ki s are integers and

∑n
i=1 ki = 0. One has

{α ∈1+0 : (α, µ) > 0} = {δi − δ j : i < j, ki > k j },

{α ∈1+1 : (α, µ) > 0} = {εi − δ j : k j < 0, i ≤ j} ∪ {δi − ε j : ki > 0, i < j},

where 1≤ i, j ≤ n.
Write v(µ) = v′ + v′′, where v′ =

∑n
i=1 aiδi and v′′ lies in the span of the εi .

By the above, for ki > 0 one has ai ≤ (n− i)− (n− i)= 0 and for k j < 0 one has
a j ≥−( j − 1)+ j = 1. Therefore

(v(µ), µ)=
n∑

i=1
ai ki ≤

∑
ki<0

ki ≤ 0

and the set {µ : (v(µ), µ)≥−N } is a subset of the set {µ :
∑

ki<0 ki ≥−N }, which
is finite for any N , because the ki are integers and

∑n
i=1 ki = 0. This establishes

conditions (8).

2.1.3. Case D(n+1|n). Recall that w ∈ T ′ has the form w = tµ, µ =
∑

kiδi ,
where the ki s are integers. One has

{α ∈1+0 : (α, µ) > 0} =
{δi − δ j : i < j, ki > k j } ∪ {δi + δ j : i 6= j, ki + k j > 0} ∪ {2δi : ki > 0},

{α ∈1+1 : (α, µ) > 0} =
{εs − δ j : k j < 0, s ≤ j} ∪ {δi − εs : ki > 0, i < s} ∪ {δi + εs : ki > 0},

where 1≤ i, j ≤ n and 1≤ s ≤ n+ 1.
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Write v(µ)= v′+v′′, where v′ =
∑n

i=1 aiδi and v′′ lies in the span of the εi . By
the above, for ki > 0 one has ai ≤ (2n+ 1− i)− (2n+ 2− i)=−1 and for k j < 0
one has a j ≥−( j − 1)+ j = 1. Therefore

(v(µ), µ)=
n∑

i=1
ai ki ≤−

∑
ki>0

ki +
∑

k j<0
k j =−

n∑
1=1
|ki | ≤ 0,

so the set {µ : (v(µ), µ)≥−N } is a subset of {µ :
∑n

i=1 |ki | ≤ N }, which is finite
for any N . This establishes the conditions (8).

2.1.4. Remark. For gl(n|n) one can interchange 1′ and 1′′ so the sum FT ′′(R) is
well-defined. One readily sees that FT ′′(R) is not well-defined for D(n+1|n). For
instance, for n>1, for each k>0 one has v(−2kε1)=0 so max supp

(
t−2kε1(R)

)
=0

and the sum
∑
∞

k=1 t−2kε1(R) is not well-defined; hence FT ′′(R) is not well-defined
as well.

2.2. By Section 1.3.3, R̂ is an invertible element of R′. From representation theory
we know that since ĝ admits a Casimir element [Kac 1990, Chapter II], the character
of the trivial ĝ-module is a linear combination of the characters of Verma ĝ-modules
M(λ), where λ ∈ −Q̂ are such that (λ+ ρ̂, λ+ ρ̂)= (ρ̂, ρ̂). Since the character of
M(λ) is equal to R̂−1eλ, we obtain

1=
∑
λ∈Q̂−

(λ+ρ̂,λ+ρ̂)=(ρ̂,ρ̂)

aλ R̂−1eλ,

where aλ ∈ Z. This can be rewritten as

R̂eρ̂ =
∑

λ∈ρ̂−Q̂+
(λ,λ)=(ρ̂,ρ̂)

aλeλ,

that is supp(R̂)⊂U , see (6) for notation.
It remains to verify the inclusion supp

(
FT ′(Reρ̂)

)
⊂U . The denominator identity

for g (see [Kac and Wakimoto 1994; Gorelik 2012]) takes the form

Reρ = FW ′′

(
eρ∏

β∈S(1+ e−β)

)
,

where S := {εi − δi }
n
i=1 (the identity for gl(n|n) immediately follows from the

identity for sl(n|n)). Since ρ = ρ̂ is Ŵ -invariant, this implies

tµ(Reρ̂)= eρ̂
∑
w∈W ′′

sgn(w)
∏
β∈S

(1+ e−tµwβ)−1.
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For each tµ ∈ T ′ and w ∈W ′′ one has

supp
(∏
β∈S

(1+ e−tµwβ)−1)
⊂ V, where V := Z{tµwβ : β ∈ S} ∩ Q̂−.

Since (tµwβ, tµwβ ′) = (β, β ′) = (tµwβ, ρ̂) = (ρ̂, β) = 0 for any β, β ′ ∈ S, one
has (V, V ) = (V, ρ̂) = 0. Therefore V + ρ̂ ⊂ U so supp

(
tµ(Reρ̂)

)
⊂ U for each

µ. This establishes the required inclusion supp
(
FT ′(Reρ̂)

)
⊂U and completes the

proof of (5).

2.3. Let us deduce from (5) that the support of R̂−1eρ̂ ·FT ′(Reρ̂) consists of Ŵ -
invariant elements of Q̂−. We do this in two steps: first, proving Lemma 2.3.1,
which is valid for any simple contragredient Lie superalgebra and for gl(n|n),
and then, proving Proposition 2.3.2, which uses the fact that ρ̂ = ρ for g (this is
equivalent to the fact that the dual Coxeter number is zero).

The affine root system 1̂′ is a subsystem of 1̂0. Set 1̂′
+
= 1̂′ ∩ 1̂+ and let 5̂′

be the corresponding set of simple roots. Fix ρ̂ ′ ∈ ĥ∗ such that 2(ρ̂ ′, α) = (α, α)
for each α ∈ 5̂′.

2.3.1. Lemma. The term R̂1eρ̂
′
−ρ̂
·FT ′(Reρ̂) is a Ŵ ′-anti-invariant element of

RŴ ′ .

Proof. By Section 2.1.1, FT ′(Reρ̂) ∈R and thus R̂1eρ̂
′
−ρ̂
·FT ′(Reρ̂) ∈R.

Let R′0, R′′0 be the Weyl denominators for 1′,1′′ (i.e., R′0 =
∏
α∈1′+

(1− e−α)).

Notice that R′′0 eρ̂/R1 ∈ R′ so w
(
R′′0 eρ̂/R1

)
is well-defined. Below we will show

that the sum FŴ ′
(
R′′0 eρ̂/R1

)
is a well-defined element of R and will establish the

following formula

FT ′(Reρ̂)= FŴ ′

(
R′′0 eρ̂

R1

)
. (9)

It is easy to see that R̂0eρ̂
′

, R̂eρ̂ are Ŵ ′-anti-invariant elements of R′ (see, for
instance, [Gorelik 2011, 1.5.1]). Since R̂1eρ̂

′
−ρ̂
∈R′ and R̂1eρ̂

′
−ρ̂
· R̂eρ̂ = R̂0eρ̂

′

, we
conclude that R̂1eρ̂

′
−ρ̂ is a Ŵ ′-invariant element of R′. However, by Section 1.3.3,

R̂1 ∈ RŴ , and thus R̂1eρ̂
′
−ρ̂ is a Ŵ ′-invariant element of RŴ . Multiplying both

sides of formula (9) by R̂1eρ̂
′
−ρ̂ we obtain

R̂1eρ̂
′
−ρ̂
·FT ′(Reρ̂)= FŴ ′

(
R̂1

R1
· R′′0 eρ̂

′

)
. (10)

By Section 1.3.3, R̂1/R1 and R′′0 lie in RŴ . In the light of Section 1.3.5, the
formula (10) implies the assertion of the lemma.

Let us show that the right-hand side of (9) is well-defined. Since R′′0 and ρ̂ are
Ŵ ′-invariant, it is enough to check that FŴ ′(R

−1
1 ) is a well-defined element of R.



Denominator identity for affine Lie superalgebras 1053

By Section 1.3.4, for each w ∈ Ŵ ′ one has

max supp
(
w(R−1

1 )
)
=

∑
β∈11+ :
wβ<0

wβ.

In particular, supp
(
w(R−1

1 )
)
⊂ Q̂−, so, if the term FŴ ′(R

−1
1 ) is well-defined, it

lies in R. In order to see that FŴ ′(R
−1
1 ) is well-defined let us check that for each

ν ∈ Q̂− the set

X (ν) :=
{
w ∈ Ŵ ′ :

∑
β∈11+ :
wβ<0

wβ ≥ ν

}

is finite. One has

X (ν)⊂ {w ∈ Ŵ ′ : wβ ≥ ν for all β ∈11+}.

Write ν =−kδ+ν ′, where k ≥ 0, ν ′ ∈ Q, and write w ∈ X (ν) in the form w= tµy,
where tµ∈T ′, y∈W ′. Sincewβ= yβ−(yβ,µ)δ for β ∈11+, one has (yβ,µ)≥−k
for each β ∈ 11+. Since {εi − δi , δi − εi+1} ⊂ 11+, this gives |(µ, yδi )| ≤ k for
i = 1, . . . , n. Combining the facts that W ′ is a subgroup of signed permutation of
{δ j }

n
j=1 and that (µ, δi ) is integral for each i , we conclude that X (ν) is finite. Thus

FŴ ′
(
R′′0 eρ̂/R1

)
is a well-defined element of R.

Now let us prove the formula (9). Recall that ρ = ρ ′0+ ρ
′′

0 − ρ1, where

ρ ′0 :=
∑
α∈1′0+

α/2, ρ ′′0 :=
∑
α∈1′′0+

α/2, ρ1 :=
∑
β∈11+

β/2.

The Weyl denominator identity for 1′0 takes the form

R′0eρ
′

0 = FW ′(eρ
′

0).

Since R1eρ1 =
∏

β∈11+

(eβ/2+ e−β/2) is W -invariant and R′′0 eρ
′′

0 is W ′-invariant, we
get

Reρ =
R′′0 eρ

′′

0

R1eρ1
·FW ′(eρ

′

0)= FW ′

(
eρ
′

0 R′′0 eρ
′′

0

R1eρ1

)
= FW ′

(
R′′0 eρ

R1

)
.

Using the W -invariance of ρ̂− ρ, we obtain

FT ′
(
Reρ̂)= FT ′

(
FW ′

(
R′′0 eρ̂

R1

))
= FŴ ′

(
R′′0 eρ̂

R1

)
as required. This completes the proof. �
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2.3.2. Proposition. One has

supp(R̂−1e−ρ̂ ·FT ′(Reρ̂))⊂ (Q̂−)Ŵ = Q̂− ∩ Q̂⊥.

Proof. Set
Y := R̂−1e−ρ̂ ·FT ′(Reρ̂).

By Sections 2.1.1 and 1.3.3, FT ′(Reρ̂), R̂−1
∈R. Thus Y ∈R. One has

R̂0eρ̂
′

Y = R̂1eρ̂
′
−ρ̂
·FT ′(Reρ̂).

In the light of Lemma 2.3.1, we obtain

R̂0eρ̂
′

Y is a Ŵ ′-anti-invariant element of RŴ ′ . (11)

Write Y =Y1+Y2, where supp(Y1)= supp(Y )∩Q̂⊥ and supp(Y2)= supp(Y )\Q̂⊥.
Note that Y1, Y2 ∈R. Assume that Y2 6= 0. Let µ be a maximal element in supp(Y2).
One has supp(R̂−1)⊂ Q̂− and supp

(
FT ′(R)eρ̂

)
⊂ ρ̂− Q̂+, by Section 1.3.4 and (5)

respectively. Thus supp(Y )⊂ Q̂− and so µ ∈ Q̂−.
Since supp(Y1)⊂ Q̂⊥, Y1 is a Ŵ -invariant element of RŴ . Recall that R̂0eρ̂

′

is
a Ŵ ′-anti-invariant element of RŴ . Thus R̂0eρ̂

′

Y1 is a Ŵ ′-anti-invariant element of
RŴ ′ . In the light of (11), the product R̂0eρ̂

′

Y2 is also a Ŵ ′-anti-invariant element
of RŴ ′ . Clearly, ρ̂ ′ + µ is a maximal element in the support of R̂0eρ̂

′

Y2. By
Section 1.3.5, this support is a union of Ŵ ′-regular orbits (recall that regularity
means that each element has the trivial stabilizer in Ŵ ′), so ρ̂ ′+µ is a maximal
element in a regular Ŵ ′-orbit and thus 2(ρ̂ ′+µ, α)/(α, α) 6∈ Z

≤0 for each α ∈ 5̂′.
Since µ ∈ Q̂− one has 2(µ, α)/(α, α) ∈ Z for each α ∈ 5̂′. Taking into account
that 2(ρ̂ ′, α)/(α, α)= 1 for each α ∈ 5̂′, we obtain

2(µ, α)
(α, α)

∈ Z
≥0 for all α ∈ 5̂′. (12)

Recall that δ =
∑

α∈5̂′ kαα for some kα ∈ Z>0 (see [Kac 1990, Chapter VI]). Since
µ ∈ Q̂− one has (µ, δ) = 0. Combining with (12), we get (µ, α) = 0 for each
α ∈ 5̂′ so µ ∈ (1̂′)⊥.

Let us show that (µ,µ) = 0. Since (ρ̂, Q̂) = 0, it is equivalent to the equality
(µ+ ρ̂, µ+ ρ̂)= (ρ̂, ρ̂). Notice that µ+ ρ̂ is a maximal element in the support of
R̂eρ̂Y2. Let us check that

supp(R̂eρ̂Y2)⊂U = {ξ ∈ ρ̂− Q̂+ : (ξ, ξ)= (ρ̂, ρ̂)}. (13)

Indeed,
R̂eρ̂Y2 = FT ′(Reρ̂)− R̂eρ̂Y1

and, by (5),
supp

(
FT ′(Reρ̂)

)
⊂U and supp

(
R̂eρ̂

)
⊂U.
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By construction, supp(Y1)⊂ Q̂⊥∩ Q̂−. Recall that ρ̂ = ρ ∈Q1, so U ⊂Q · Q̂. In
particular, we have (U, supp(Y1))= 0. Since (supp(Y1), supp(Y1))= 0, we obtain
(supp(Y1)+U )⊂U and this establishes the inclusion (13). Hence (µ,µ)= 0.

Recall that µ ∈ (1̂′)⊥ ∩ Q̂−. One has

(1̂′)⊥ ∩ Q̂ = (Q̂⊥ ∩ Q̂)⊕Z1′′.

For every β ∈ Q̂⊥ ∩ Q̂, γ ∈1′′ one has (β, β) = (β, γ ) = 0 and (γ, γ ) 6= 0 if
γ 6= 0. Using the equality (µ,µ) = 0, we get µ ∈ Q̂⊥ ∩ Q̂, which contradicts to
the construction of Y2. Hence Y2 = 0 as required. �

2.3.3. Corollary. For g = D(n+1|n) one has f (q) · R̂eρ̂ = FT ′(Reρ̂) for some
f (q)=

∑
∞

k=0 akqk (ak ∈ Z). For g= gl(n|n) one has f (q, estr) · R̂eρ̂ =FT ′(Reρ̂)
for some f (q, estr)=

∑
∞

k=0
∑
∞

m=−∞ ak,mqkem·str (ak,m ∈ Z).

Proof. One has (Q̂)⊥∩ Q̂=Zδ+Zstr for gl(n|n) and (Q̂)⊥∩ Q̂=Zδ for D(n+1|n).
�

2.4. In this subsection we complete the proof of the denominator identities (2) by
proving the formulas (3). We prove them by taking a suitable evaluation of the term
R̂−1e−ρ̂FT ′(Reρ̂). Since ρ̂ is Ŵ -invariant, this term is equal to R̂−1FT ′(R), and,
by Corollary 2.3.3, it is equal to f (q) for D(n+1|n) and to f (q, estr) for gl(n|n).
Now we consider q as a real parameter between 0 and 1. We choose the evaluation
in such a way that the evaluation of R̂−1FT ′(R)= R̂−1∑

t∈T ′ t (R) is equal to the
evaluation of R̂−1 R. As a result, f (q) (resp., f (q, estr)) is equal to the evaluation
of R̂−1 R, which can be easily computed.

2.4.1. Case D(n+1|n). Take a complex parameter x and consider the evaluation
e−εi := xai , e−δ j := −xb j , where ai (i = 1, . . . , n+ 1) and b j ( j = 1, . . . , n) are
integers such that ai ± b j 6= 0, ai ± a j 6= 0, bi ± b j 6= 0, bi 6= 0 for all indexes i, j .
We denote by R̂ and R̂(x) the evaluation of R and R(x). The functions R(x) and
R̂(x) are meromorphic. One has

R(x)=

∏
1≤i< j≤n+1(1− xai±a j ) ·

∏
1≤i< j≤n(1− xbi±b j ) ·

∏
1≤i≤n(1− x2bi )∏

1≤i≤ j≤n(1− xai±b j )
∏

1≤ j<i≤n+1(1− xb j±ai )
.

One readily sees that R(x) has a pole at x = 1 of order |11+| − |10+| = n.
One has

R̂(x)
R(x)

∣∣∣∣
x=1
=
((1− q)∞q )

dim g0

((1− q)∞q )dim g1
= ((1− q)∞q )

dim g0−dim g1 = (1− q)∞q .

In particular, R̂(x) also has a pole of order n at x = 1.
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The evaluation of (t∑ ki δi (R))(x) is∏
1≤i< j≤n+1(1− xai±a j ) ·

∏
1≤i≤n(1− q−2ki x2bi ) ·

∏
1≤i< j≤n(1− q−ki∓k j xbi±b j )∏

1≤i≤ j≤n(1− q∓k j xai±b j )
∏

1≤ j<i≤n+1(1− q−k j xb j±ai )

which is a meromorphic function. Let s be the number of zeros among k1, . . . , kn .
Then at x = 1 the order of zero of the numerator is at least is n(n + 1) + s2,
and the order of zero of the denominator is 2(n + 1)s. Therefore at x = 1 the
function (t∑ ki δi (R))(x) has the pole of order at most 2(n+ 1)s− n(n+ 1)− s2

=

n+1−(n+1−s)2; in particular, (t∑ ki δi (R))(x) has the pole of order at most n and
it is equal to n if and only if n = s that is

∑
kiδi = 0 and (t∑ ki δi (R))(x)= R(x).

We conclude that
(R̂(x))−1

·

∑
t∈T ′:t 6=id

(t (R))(x)

is holomorphic at x = 1 and its value is zero, and that

(R̂(x))−1
·

∑
t∈T ′

(t (R))(x)

is holomorphic at x = 1 and its value is R(x)
R̂(x)

∣∣∣∣
x=1

. In the light of Corollary 2.3.3
we obtain

f (q)=
R(x)

R̂(x)

∣∣∣∣
x=1
= ((1− q)∞q )

−1.

2.4.2. Case gl(n|n). Fix y > 1. Take a complex parameter x and consider the
following evaluation

e−ε1 := y, e−εi := x i , for i = 2, . . . , n; e−δi := −x−i for i = 1, . . . , n.

The functions R(x), R̂(x) are meromorphic. One has

R(x)=

∏
1<i≤n(1− yx−i ) ·

∏
1<i< j≤n(1− x i− j ) ·

∏
1≤i< j≤n(1− x j−i )∏

1≤i≤n(1− yx i ) ·
∏

1<i≤ j≤n(1− x i+ j ) ·
∏

1≤ j<i≤n(1− x−i− j )
.

Therefore the function R(x) has a pole of order n− 1 at x = 1.
One has

R̂(x)
R(x)

∣∣∣∣
x=1
=
((1− q)∞q )

dim g0−2(n−1)
· ((1− qy)∞q )

n−1
· ((1− qy−1)∞q )

n−1

((1− q)∞q )dim g1−2n · ((1− qy)∞q )n · ((1− qy−1)∞q )
n .

Thus R̂(x) also has a pole of order n − 1 at x = 1. Since dim g0 = dim g1 and
estr
= (−1)n y−1 for x = 1 we obtain

R̂(x)
R(x)

∣∣∣∣
x=1
=

((1− q)∞q )
2

(1− q(−1)nestr)∞q · (1− q(−1)ne−str)∞q
.
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One has

(t∑ ki δi (R))(x, y)

=

∏
1<i≤n

(1−yx−i ) ·
∏

1<i< j≤n
(1−x i− j )·

∏
1≤i< j≤n

(1−qk j−ki x j−i )∏
1≤i≤n

(1−qki yx i ) ·
∏

1<i≤ j≤n
(1−qk j x i+ j ) ·

∏
1≤ j<i≤n

(1−q−k j x−i− j )
,

which is a meromorphic function.
Let s be the number of zeros among k1, . . . , kn . Then at x = 1 the order of zero

of the numerator is at least

(n− 1)(n− 2)+ s(s− 1)
2

,

and the order of zero of the denominator is (n−1)s. Therefore at x = 1 the function
(t∑ ki δi (R))(x, y) has a pole of order at most

(n− 1)s− (n−1)(n−2)+s(s−1)
2

=
3n−s−2−(n−s)2

2
,

so the order is at most n − 1 and it is equal to n − 1 if and only if s = n − 1, n.
Notice that s 6= n− 1, since

∑
ki = 0. Therefore the pole has order n− 1 if and

only if
∑

kiδi = 0.
We conclude that the function (R̂(x))−1(FT ′(R))(x) is holomorphic at x = 1

and its value is (R(x)/R̂(x))
∣∣
x=1. Using Corollary 2.3.3 we obtain

f (q, estr)=
R(x)

R̂(x)

∣∣∣∣
x=1
=
(1− q(−1)nestr)∞q · (1− q(−1)ne−str)∞q

((1− q)∞q )2
.

3. Other forms of denominator identity

Recall that the denominator identity for a basic Lie superalgebra can be written in
the form

Reρ = FW ]

(
eρ∏

β∈S(1+ e−β)

)
, (14)

where S ⊂ 5 is the maximal isotropic system, and W ] is the Weyl group of the
“largest” root subsystem of 10 (10 = 1

′
q1′′), see [Kac and Wakimoto 1994;

Gorelik 2012]; in particular, W ]
:= W ′′ for g = D(n+1|n), and W ]

:= W ′ or
W ]
:=W ′′ for g= gl(n|n).

If the dual Coxeter number of g is nonzero the affine denominator identity for g

can be written in the form

R̂eρ̂ = FŴ ]

(
eρ̂∏

β∈S(1+ e−β)

)
,
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see [Gorelik 2012, 2.1]. In this section we will show that for gl(n|n) the denominator
identity can be written in a similar form:

R̂eρ = f (q, estr) ·FŴ ′

(
eρ∏

β∈S(1+ e−β)

)
, (15)

and that the denominator identities for D(n+1|n) can not be written in a similar
form, since the expressions

FŴ ′′

(
eρ∏

β∈S(1+ e−β)

)
and FŴ ′

(
eρ∏

β∈S(1+ e−β)

)
(16)

are not well-defined.

3.1. Case D(n+1|n). Let us show that the expressions in (16) are not well-defined
for D(n+1|n). Fix 5 as in Section 1.1 and recall that ρ = 0.

We repeat the reasoning of Section 2.1.1. One has∑
β∈VS(w)

wβ ∈ supp
(

1∏
β∈S(1+ e−wβ)

)
⊂

∑
β∈VS(w)

wβ − Q̂+ ⊂ Q̂−,

where
VS(w)= {β ∈ S : wβ < 0}.

Therefore 1 ∈ supp
(
1/
∏
β∈S(1+ e−wβ)

)
if and only if wS ⊂1+.

Take S = {εi − δi }; then tµS ⊂1+ if (εi − δi , µ) < 0 for all i which holds for
all µ ∈

∑
Z<0εi and all µ ∈

∑
Z>0δi . Hence the sums in (16) contain infinitely

many summands equal to 1 and thus they are not well-defined.

3.2. Case gl(n|n). Fix 5 as in Section 1.1; then S = {εi − δi }.
In order to deduce the formula (15) from (14) and (2) it is enough to verify that

the expression

FŴ ′

(
eρ∏

β∈S(1+ e−β)

)
= eρFŴ ′

(
1∏

β∈S(1+ e−β)

)
is well-defined (since ρ is Ŵ -invariant). As in Section 2.1.1, this amounts to
showing that

X S(ν) :=

{
w ∈ Ŵ ′ :

∑
β∈VS(w)

wβ ≥−ν

}

is finite for any ν ∈ Q̂+ (where VS(w) is defined as in Section 3.1). As in
Section 2.1.1, writing ν = kδ+ ν+, where ν+ ∈ Z1, we get

X S(ν)⊂
{
tµy : µ ∈ T ′, y ∈W ′ s.t. (yβ,µ)≥−k for all β ∈ S

}
.
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Since y permutes δi s, tµy ∈ X S(ν) forces (δi , µ)≥−k for all i . Taking into account
that µ lies in the Z-span of δi and (µ,

∑n
i=1 δi ) = 0, we conclude that X S(ν) is

finite. This establishes (15).
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