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This paper is a combinatorial and computational study of the moduli space M tr
g of

tropical curves of genus g, the moduli space Atr
g of principally polarized tropical

abelian varieties, and the tropical Torelli map. These objects were studied recently
by Brannetti, Melo, and Viviani. Here, we give a new definition of the category of
stacky fans, of which M tr

g and Atr
g are objects and the Torelli map is a morphism.

We compute the poset of cells of M tr
g and of the tropical Schottky locus for genus

at most 5. We show that Atr
g is Hausdorff, and we also construct a finite-index

cover for the space Atr
3 which satisfies a tropical-type balancing condition. Many

different combinatorial objects, including regular matroids, positive-semidefinite
forms, and metric graphs, play a role.
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1. Introduction

This paper is a combinatorial and computational study of the tropical moduli spaces
M tr

g and Atr
g and the tropical Torelli map.

There is, of course, a vast (to say the least) literature on the subjects of algebraic
curves and moduli spaces in algebraic geometry. For example, two well-studied
objects are the moduli space Mg of smooth projective complex curves of genus g
and the moduli space Ag of g-dimensional principally polarized complex abelian

MSC2010: primary 14T05; secondary 14H10, 05C30.
Keywords: tropical geometry, tropical curves, metric graphs, Torelli map, moduli of curves, abelian

varieties.
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varieties. The Torelli map
tg :Mg→Ag

sends a genus-g algebraic curve to its Jacobian, which is a certain g-dimensional
complex torus. The image of tg is called the Torelli locus or the Schottky locus.
The problem of how to characterize the Schottky locus inside Ag is already very
deep. See, for example, [Grushevsky 2010].

The perspective we take in this paper is the perspective of tropical geometry
[Maclagan and Sturmfels 2009]. From this viewpoint, one replaces algebraic
varieties with piecewise-linear or polyhedral objects. These latter objects are
amenable to combinatorial techniques, but they still carry information about the
former ones. Roughly speaking, the information they carry has to do with what is
happening “at the boundary” or “at the missing points” of the algebraic object.

For example, the tropical analogue of Mg, denoted M tr
g , parametrizes certain

weighted metric graphs, and has a poset of cells corresponding to the boundary strata
of the Deligne–Mumford compactification Mg of Mg. Under this correspondence, a
stable curve C in Mg is sent to its so-called dual graph. The irreducible components
of C , weighted by their geometric genus, are the vertices of this graph, and each node
in the intersection of two components is recorded with an edge. The correspondence
in genus 2 is shown in Figure 1. A rigorous proof of this correspondence was given
in [Caporaso 2012, Section 5.3].

We remark that the correspondence above yields dual graphs that are just graphs,
not metric graphs. One can refine the correspondence using Berkovich analytifica-
tion, whereby an algebraic curve over a complete nonarchimedean valued field is
associated to its Berkovich skeleton, which is intrinsically a metric graph. In this
way, one obtains a map between classical and tropical moduli spaces. This very
interesting perspective is developed by Baker, Payne, and Rabinoff in [Baker et al.
2011]; see Section 5 in particular.
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Figure 1. Posets of cells of M tr
2 (left) and of M2 (right).
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The starting point of this paper is the article [BMV 2011], by Brannetti, Melo,
and Viviani, where the authors rigorously define a plausible category for tropical
moduli spaces called stacky fans. (The term “stacky fan” originates there, and is
unrelated, as far as we know, to the construction of [Borisov et al. 2005]). Those
authors further define the tropical versions M tr

g and Atr
g of Mg and Ag and a tropical

Torelli map between them, and prove many results about these objects, some of
which we will review here.

Preceding [BMV 2011] are the foundational papers [Mikhalkin 2006; Mikhalkin
and Zharkov 2008], in which tropical curves and Jacobians were first introduced and
studied in detail. The notion of tropical curves in [BMV 2011] is slightly different
from the original definition, in that curves now come equipped with vertex weights.
We should also mention the work of Caporaso [2012], who proves geometric results
on M tr

g considered just as a topological space, and Caporaso and Viviani [2010],
who prove a tropical Torelli theorem stating that the tropical Torelli map is “mostly”
injective, as originally conjectured in [Mikhalkin and Zharkov 2008].

In laying the groundwork for the results we will present here, we ran into some
inconsistencies in [BMV 2011]. It seems that the definition of a stacky fan there
is inadvertently restrictive. In fact, it excludes M tr

g and Atr
g themselves from being

stacky fans. Also, there is a topological subtlety in defining Atr
g , which we will

address in Section 4D. Thus, we find ourselves doing some foundational work here
too.

We begin in Section 2 by recalling the definition in [BMV 2011] of the tropical
moduli space M tr

g and presenting computations, summarized in Theorem 2.13,
for g ≤ 5. With M tr

g as a motivating example, we attempt a better definition of
stacky fans in Section 3. In Section 4, we define the space Atr

g , recalling the
beautiful combinatorics of Voronoi decompositions along the way, and prove that
it is Hausdorff. Note that our definition of this space, Definition 4.10, is different
from the one in [BMV 2011, §4.2], and corrects a minor error there. In Section 5,
we study the combinatorics of the zonotopal subfan. We review the tropical Torelli
map in Section 6; Theorem 6.4 presents computations on the tropical Schottky
locus for g ≤ 5. Tables 1 and 2 compare the number of cells in the stacky fans
M tr

g , the Schottky locus, and Atr
g for g ≤ 5. In Section 7, we partially answer a

question suggested by Diane Maclagan: we give finite-index covers of Atr
2 and Atr

3
that satisfy a tropical-type balancing condition.

2. The moduli space of tropical curves

In this section, we review the construction in [BMV 2011] of the moduli space
of tropical curves of a fixed genus g (see also [Mikhalkin 2006]). This space is
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denoted M tr
g . Then, we present explicit computations of these spaces in genus up to

5.
We will see that the moduli space M tr

g is not itself a tropical variety, in that it
does not have the structure of a balanced polyhedral fan [Maclagan and Sturmfels
2009, Definition 3.3.1]. That would be too much to expect, as it has automorphisms
built into its structure that precisely give rise to “stackiness.” Contrast this with the
situation of moduli space M0,n of tropical rational curves with n marked points,
constructed and studied in [Speyer and Sturmfels 2004; Mikhalkin 2007; Gathmann
et al. 2009]. As expected by analogy with the classical situation, this latter space is
well known to have the structure of a tropical variety that comes from the tropical
Grassmannian Gr(2, n).

2A. Definition of tropical curves. Before constructing the moduli space of tropical
curves, let us review the definition of a tropical curve.

First, recall that a metric graph is a pair (G, l), where G is a finite connected
graph, loops and parallel edges allowed, and l is a function

l : E(G)→ R>0

on the edges of G. We view l as recording lengths of the edges of G. The genus of
a graph G is the rank of its first homology group:

g(G)= |E | − |V | + 1.

Definition 2.1. A tropical curve C is a triple (G, l, w), where (G, l) is a metric
graph (so G is connected), and w is a weight function

w : V (G)→ Z≥0

on the vertices of G, with the property that every weight-zero vertex has degree at
least 3.

Definition 2.2. Two tropical curves (G, l, w) and (G ′, l ′, w′) are isomorphic if there
is an isomorphism of graphs G

∼=
−→ G ′ that preserves edge lengths and preserves

vertex weights.

We are interested in tropical curves only up to isomorphism. When we speak of
a tropical curve, we will really mean its isomorphism class.

Definition 2.3. Given a tropical curve C = (G, l, w), write

|w| :=
∑

v∈V (G)

w(v).

Then the genus of C is defined to be

g(C)= g(G)+ |w|.
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In this paper, we will restrict our attention to tropical curves of genus at least 2.
The combinatorial type of C is the pair (G, w), in other words, all of the data of

C except for the edge lengths.

Remark 2.4. Informally, we view a weight of k at a vertex v as k loops, based at
v, of infinitesimally small length. Each infinitesimal loop contributes once to the
genus of C . Furthermore, the property that only vertices with positive weight may
have degree 1 or 2 amounts to requiring that, were the infinitesimal loops really to
exist, every vertex would have degree at least 3.

Permitting vertex weights will ensure that the moduli space M tr
g , once it is

constructed, is complete. That is, a sequence of genus-g tropical curves obtained
by sending the length of a loop to zero will still converge to a genus-g curve.
Furthermore, permitting vertex weights allows the combinatorial types of genus-g
tropical curves to correspond precisely to dual graphs of stable curves in Mg, as
discussed in the introduction and in [Caporaso 2012, §5.3]. See Figure 1.

Figure 2 shows an example of a tropical curve C of genus 3. Note that if we
allow the edge lengths l to vary over all positive real numbers, we obtain all tropical
curves of the same combinatorial type as C . This motivates our construction of the
moduli space of tropical curves below. We will first group together curves of the
same combinatorial type, obtaining one cell for each combinatorial type. Then, we
will glue our cells together to obtain the moduli space.

2B. Definition of the moduli space of tropical curves. Fix g ≥ 2. Our goal now
is to construct a moduli space for genus-g tropical curves, that is, a space whose
points correspond to tropical curves of genus g and whose geometry reflects the
geometry of the tropical curves in a sensible way. The following construction is
due to [BMV 2011].

First, fix a combinatorial type (G, w) of genus g. What is a parameter space
for all tropical curves of this type? Our first guess might be a positive orthant
R
|E(G)|
>0 , that is, a choice of positive length for each edge of G. But we have

overcounted by symmetries of the combinatorial type (G, w). For example, in
Figure 2, (a, b, c)= (1, 2, 3) and (a, b, c)= (1, 3, 2) give the same tropical curve.

Furthermore, with foresight, we will allow lengths of zero on our edges as well,
with the understanding that a curve with some zero-length edges will soon be

a

c

b
01

Figure 2. A tropical curve of genus 3. Here, a, b, and c are fixed
positive real numbers.
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identified with the curve obtained by contracting those edges. This suggests the
following definition.

Definition 2.5. Given a combinatorial type (G, w), let the automorphism group
Aut(G, w) be the set of all permutations ϕ : E(G)→ E(G) that arise from weight-
preserving automorphisms of G. That is, Aut(G, w) is the set of permutations
ϕ : E(G)→ E(G) that admit a permutation π : V (G)→ V (G) which preserves
the weight function w, and such that if an edge e ∈ E(G) has endpoints v and w,
then ϕ(e) has endpoints π(v) and π(w).

Now, the group Aut(G, w) acts naturally on the set E(G), and hence on the
orthant R

E(G)
≥0 , with the latter action given by permuting coordinates. We define

C(G, w) to be the topological quotient space

C(G, w)=
R

E(G)
≥0

Aut(G, w)
.

Next, we define an equivalence relation on the points in the union∐
C(G, w),

as (G, w) ranges over all combinatorial types of genus g. Regard a point x ∈
C(G, w) as an assignment of lengths to the edges of G. Now, given two points
x ∈C(G, w) and x ′ ∈C(G ′, w′), let x ∼ x ′ if the two tropical curves obtained from
them by contracting all edges of length zero are isomorphic. Note that contracting
a loop, say at vertex v, means deleting that loop and adding 1 to the weight of v.
Contracting a nonloop edge, say with endpoints v1 and v2, means deleting that edge
and identifying v1 and v2 to obtain a new vertex whose weight is w(v1)+w(v2).

Now we glue the cells C(G, w) along ∼ to obtain our moduli space:

Definition 2.6. The moduli space M tr
g is the topological space

M tr
g :=

∐
C(G, w) /∼,

where the disjoint union ranges over all combinatorial types of genus g, and ∼ is
the equivalence relation defined above.

In fact, the space M tr
g carries additional structure: it is an example of a stacky

fan. We will define the category of stacky fans in Section 3.

Example 2.7. Figure 3 is a picture of M tr
2 . Its cells are quotients of polyhedral cones;

the dotted lines represent symmetries, and faces labeled by the same combinatorial
type are in fact identified. The poset of cells, which we will investigate next for
higher g, is shown in Figure 1. It has two vertices, two edges and two 2-cells.
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Figure 3. The stacky fan M tr
2 .

Remark 2.8. One can also construct the moduli space of genus-g tropical curves
with n marked points using the same methods, as done, for example, in [Caporaso
2011].

2C. Explicit computations of M tr
g . Our next goal will be to compute the space

M tr
g for g at most 5. The computations were done in Mathematica, and the code is

available in the Electronic Supplement and at the author’s website.
What we compute, to be precise, is the partially ordered set Pg on the cells of M tr

g .
This poset is defined in Lemma 2.10. Our results, summarized in Theorem 2.13,
provide independent verification of the first six terms of the sequence A174224 in
[Sloane 2011], which counts the number of tropical curves of genus g:

0, 0, 7, 42, 379, 4555, 69808, 1281678, . . . .

This sequence, along with much more data along these lines, was first obtained by
an algorithm described in [Maggiolo and Pagani 2011].
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Definition 2.9. Given two combinatorial types (G, w) and (G ′, w′) of genus g, we
say that (G ′, w′) is a specialization, or contraction, of (G, w) if it can be obtained
from (G, w) by a sequence of edge contractions. Here, contracting a loop means
deleting it and adding 1 to the weight of its base vertex; contracting a nonloop edge,
say with endpoints v1 and v2, means deleting the edge and identifying v1 and v2 to
obtain a new vertex whose weight we set to w(v1)+w(v2).

Lemma 2.10. The relation of specialization on genus-g combinatorial types yields
a graded partially ordered set Pg on the cells of M tr

g . The rank of a combinatorial
type (G, w) is |E(G)|.

Proof. It is clear that we obtain a poset; furthermore, (G ′, w′) is covered by (G, w)
precisely if (G ′, w′) is obtained from (G, w) by contracting a single edge. The
formula for the rank then follows. �

For example, P2 is shown in Figure 1; it also appeared in [BMV 2011, Figure 1].
The poset P3 is shown in Figure 4. It is color-coded according to the Torelli map,
as explained in Section 6.

Our goal is to compute Pg. We do so by first listing its maximal elements, and
then computing all possible specializations of those combinatorial types. For the first
step, we use [BMV 2011, Proposition 3.2.4(i)], which characterizes the maximal
cells of M tr

g : they correspond precisely to combinatorial types (G, 0), where G is a
connected 3-regular graph of genus g, and 0 is the zero-weight function on V (G).
Connected, 3-regular graphs of genus g are equivalently characterized as connected,
3-regular graphs on 2g− 2 vertices. These have been enumerated:

Proposition 2.11. The number of maximal cells of M tr
g is equal to the (g− 1)-st

term in the sequence

2, 5, 17, 71, 388, 2592, 21096, 204638, 2317172, 30024276, 437469859, . . . .

Proof. This is sequence A005967 in [Sloane 2011], whose g-th term is the number
of connected 3-regular graphs on 2g vertices. �

In fact, the connected, 3-regular graphs of genus g have been conveniently written
down for g at most 6. This work was done in the 1970s by Balaban, a chemist
whose interests along these lines were in molecular applications of graph theory.
The graphs for g ≤ 5 appear in [Balaban 1976], and the 388 genus-6 graphs appear
in [Balaban 1970].

Given the maximal cells of M tr
g , we can compute the rest of them:

Algorithm 2.12. Input: Maximal cells of M tr
g .

Output: Poset of all cells of M tr
g .

1. Initialize Pg to be the set of all maximal cells of M tr
g , with no relations. Let L

be a list of elements of Pg.
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Figure 4. Poset of cells of M tr
3 , color-coded according to their

images in Atr
3 via the tropical Torelli map.

2. While L is nonempty:
Let (G, w) be the first element of L . Remove (G, w) from L . Compute
all one-edge contractions of (G, w).
For each such contraction (G ′, w′):

If (G ′, w′) is isomorphic to an element (G ′′, w′′) already in the poset
Pg, add a cover relation (G ′′, w′′)≤ (G, w).
Else, add (G ′, w′) to Pg and add a cover relation (G ′, w′) ≤ (G, w).
Add (G ′, w′) to the list L .

3. Return Pg.
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We implemented this algorithm in Mathematica. The most costly step is com-
puting graph isomorphisms in Step 2. Our results are summarized in the following
theorem. By an f -vector of a poset, we mean the vector whose i-th entry is the
number of elements of rank i − 1. (The term “f -vector” originates from counting
faces of polytopes).

Theorem 2.13. We obtained the following computational results:

(i) The moduli space M tr
3 has 42 cells and f -vector

(1, 2, 5, 9, 12, 8, 5).

Its poset of cells P3 is shown in Figure 4.

(ii) The moduli space M tr
4 has 379 cells and f -vector

(1, 3, 7, 21, 43, 75, 89, 81, 42, 17).

(iii) The moduli space M tr
5 has 4555 cells and f -vector

(1, 3, 11, 34, 100, 239, 492, 784, 1002, 926, 632, 260, 71).

The posets P4 and P5 are much too large to display here, but are available in the
Electronic Supplement and at the author’s website.

Remark 2.14. The data of P3, illustrated in Figure 4, is related to, but not the same
as, the enumeration by T. Brady [1993, Appendix A] of the cells of the deformation
retract K3 of Outer space [Culler and Vogtmann 1986] modulo the action of the
group Out(F3). In that setting, one only needs to consider bridgeless graphs with
all vertices of weight zero, thus throwing out all but eight cells of the poset P3. In
turn, the cells of K3/Out(Fn) correspond to chains in the poset on those eight cells.
It is these chains that are listed by Brady.

Note that the pure part of M tr′
g , that is, those tropical curves in M tr′

g with all
vertex weights zero, is a quotient of rank-g Outer space by the action of the outer
automorphism group Out(Fg). We believe that further exploration of the connection
between Outer space and M tr

g would be interesting to researchers in both tropical
geometry and geometric group theory.

Remark 2.15. What is the topology of M tr
g ? Of course, M tr

g is always contractible:
there is a deformation retract onto the unique 0-dimensional cell. So to make this
question interesting, we restrict our attention to the subspace M tr′

g of M tr
g consisting

of graphs with total edge length 1, say. For example, by looking at Figure 3, we
can see that M tr′

2 is still contractible. We would like to know if the space M tr′
g is

also contractible for larger g.
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3. Stacky fans

In Section 2, we defined the space M tr
g . In Sections 4 and 6, we will define the

space Atr
g and the Torelli map t tr

g : M
tr
g → Atr

g . For now, however, let us pause and
define the category of stacky fans, of which M tr

g and Atr
g are objects and t tr

g is a
morphism. The reader is invited to keep M tr

g in mind as a running example of a
stacky fan.

The purpose of this section is to offer a new definition of stacky fans, Definition 3.2,
which we hope fixes an inconsistency in [BMV 2011, Definition 2.1.1]. We believe
that their condition for integral-linear gluing maps is too restrictive and fails for
M tr

g and Atr
g . See Remark 3.6. However, we do think that their definition of a stacky

fan morphism is correct, so we repeat it in Definition 3.5. We also prove that M tr
g

is a stacky fan according to our new definition. The proof for Atr
g is deferred to

Section 4C.

Definition 3.1. A rational open polyhedral cone in Rn is a subset of Rn of the
form {a1x1 + · · · + at xt : ai ∈ R>0}, for some fixed vectors x1, . . . , xt ∈ Zn . By
convention, we also allow the trivial cone {0}.

Definition 3.2. Let X1 ⊆ Rm1, . . . , Xk ⊆ Rmk be full-dimensional rational open
polyhedral cones. For each i = 1, . . . , k, let Gi be a subgroup of GLmi (Z) that fixes
the cone X i setwise, and let X i/Gi denote the topological quotient thus obtained.
The action of Gi on X i extends naturally to an action of Gi on the Euclidean closure
X i , and we let X i/Gi denote the quotient.

Suppose that we have a topological space X and, for each i = 1, . . . , k, a
continuous map

αi : X i/Gi → X.

Write Ci = αi (X i/Gi ) and C i = αi (X i/Gi ) for each i . Given Y ⊆ X i , we will
abuse notation by writing αi (Y ) for αi applied to the image of Y under the map
X i � X i/Gi .

Suppose that the following properties hold for each index i :

(i) The restriction of αi to X i
Gi

is a homeomorphism onto Ci .

(ii) We have an equality of sets X =
∐

Ci .

(iii) For each cone X i and for each face Fi of X i , αi (Fi ) = C l for some l. Fur-
thermore, dim Fi = dim X l = ml , and there is an R-invertible linear map
L : span〈Fi 〉 ∼= Rml → Rml such that

• L(Fi )= X l ,
• L(Zmi ∩ span(Fi ))= Zml , and
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• the following diagram commutes:

Fi

L
��

αi

))
C l .

X l
αl

55

We say that C l is a stacky face of C i in this situation.

(iv) For each pair i, j ,
C i ∩C j = Cl1 ∪ · · · ∪Clt ,

where Cl1, . . . ,Clt are the common stacky faces of C i and C j .

Then we say that X is a stacky fan, with cells {X i/Gi }.

Remark 3.3. Condition (iii) essentially says that X i has a face Fi that looks “exactly
like” X l , even taking into account where the lattice points are. It plays the role of the
usual condition on polyhedral fans that the set of cones is closed under taking faces.
Condition (iv) replaces the usual condition on polyhedral fans that the intersection
of two cones is a face of each. Here, we instead allow unions of common faces.

Theorem 3.4. The moduli space M tr
g is a stacky fan with cells

C(G, w)=
R

E(G)
>0

Aut(G, w)

as (G, w) ranges over genus-g combinatorial types. Its points are in bijection with
tropical curves of genus g.

Proof. Recall that

M tr
g =

∐
C(G, w)
∼

,

where ∼ is the relation generated by contracting zero-length edges. Thus, each
equivalence class has a unique representative (G0, w, l) corresponding to an honest
metric graph: one with all edge lengths positive. This gives the desired bijection.

Now we prove that M tr
g is a stacky fan. For each (G, w), let

αG,w : C(G, w)→
∐

C(G ′, w′)
∼

be the natural map. Now we check each of the requirements to be a stacky fan, in
the order (ii), (iii), (iv), and (i).

For (ii), the fact that
M tr

g =
∐

C(G, w)

follows immediately from the observation above.
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Let us prove (iii). Given a combinatorial type (G, w), the corresponding closed
cone is R

E(G)
≥0 . A face F of R

E(G)
≥0 corresponds to setting edge lengths of some

subset S of the edges to zero. Let (G ′, w′) be the resulting combinatorial type,
and let π : E(G) \ S → E(G ′) be the natural bijection (it is well-defined up to
(G ′, w′)-automorphisms, but this is enough). Then π induces an invertible linear
map,

Lπ : RE(G)\S
−→ RE(G ′),

with the desired properties. Note also that the stacky faces of C(G, w) are thus all
possible specializations C(G ′, w′).

For (iv), given two combinatorial types (G, w) and (G ′, w′), then

C(G, w)∩C(G ′, w′)

consists of the union of all cells corresponding to common specializations of (G, w)
and (G ′, w′). As noted above, these are precisely the common stacky faces of
C(G, w) and C(G ′, w′).

For (i), we show that αG,w restricted to C(G, w) = R
E(G)
>0 /Aut(G, w) is a

homeomorphism onto its image. It is continuous by definition of αG,w and injective
by definition of ∼. Let V be closed in C(G, w), say V =W ∩C(G, w) where W is
closed in C(G, w). To show that αG,w(V ) is closed in αG,w(C(G, w)), it suffices
to show that αG,w(W ) is closed in M tr

g . Indeed, the fact that the cells C(G, w) are
pairwise disjoint in M tr

g implies that

αG,w(V )= αG,w(W )∩αG,w(C(G, w)).

Now, note that M tr
g can equivalently be given as the quotient of the space∐

(G,w)

R
E(G)
≥0

by all possible linear maps Lπ arising as in the proof of (iii). All of the maps
Lπ identify faces of cones with other cones. Now let W̃ denote the lift of W to
R

E(G)
≥0 ; then for any other type (G ′, w′), we see that the set of points in R

E(G ′)
≥0 that

are identified with some point in W̃ is both closed and Aut(G ′, w′)-invariant, and
passing to the quotient R

E(G ′)
≥0 /Aut(G ′, w′) gives the claim. �

We close this section with the definition of a morphism of stacky fans. The
tropical Torelli map, which we will define in Section 6, will be an example.

Definition 3.5 [BMV 2011, Definition 2.1.2]. Let

X1 ⊆ Rm1, . . . , Xk ⊆ Rmk , Y1 ⊆ Rn1, . . . , Yl ⊆ Rnl

be full-dimensional rational open polyhedral cones. Let G1 ⊆ GLm1(Z), . . . ,Gk ⊆

GLmk (Z), H1 ⊆ GLn1(Z), . . . , Hl ⊆ GLnl (Z) be groups stabilizing X1, . . . , Xk ,
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Y1, . . . , Yl , respectively. Let X and Y be stacky fans with cells{
X i

Gi

}k

i=1
and

{
Y j

H j

}l

j=1
.

Denote by αi and β j the maps X i/Gi → X and Y j/H j → Y that are part of the
stacky fan data of X and Y .

A morphism of stacky fans from X to Y is a continuous map π : X → Y such
that for each cell X i/Gi there exists a cell Y j/H j such that

(i) π
(
αi
(
X i/Gi

))
⊆ β j

(
Y j/H j

)
, and

(ii) there exists an integral-linear map

L : Rmi → Rn j ,

that is, a linear map defined by a matrix with integer entries, restricting to a
map

L : X i → Y j ,

such that the following diagram commutes:

X i //

L
��

αi (X i/Gi )

π

��
Y j // β j (Y j/H j ).

Remark 3.6. Here is why we believe the original definition of a stacky fan, [BMV
2011, Definition 2.1.1], is too restrictive. The original definition requires that for
every pair of cones X i and X j , there exists a linear map L : X i → X j that induces
the inclusion

αi

(
X i

Gi

)
∩α j

(
X j

G j

)
↪→ α j

(
X j

G j

)
.

We claim that such a map does not always exist in the cases of M tr
g and Atr

g . For
example, let X i be the maximal cone of M tr

2 drawn on the left in Figure 3, and let
X j be the maximal cone drawn on the right. There is no map from X i to X j that
takes each of the three facets of X i isomorphically to a single facet of X j , as would
be required. There is a similar problem for Atr

g .

4. Principally polarized tropical abelian varieties

The purpose of this section is to construct the moduli space of principally polarized
tropical abelian varieties, denoted Atr

g . Our construction is different from the one in
[BMV 2011], though it is still very much inspired by the ideas in that paper. The
reason for presenting a new construction here is that a topological subtlety in the
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construction there prevents their space from being a stacky fan as claimed in [BMV
2011, Theorem 4.2.4].

We begin in Section 4A by recalling the definition of a principally polarized
tropical abelian variety. In Section 4B, we review the theory of Delone subdivisions
and the main theorem of Voronoi reduction theory. We construct Atr

g in Section 4C
and prove that it is a stacky fan and that it is Hausdorff. We remark on the difference
between our construction and the one in [BMV 2011] in Section 4D.

4A. Definition of principally polarized tropical abelian variety. Fix g ≥ 1. Fol-
lowing [Mikhalkin and Zharkov 2008; BMV 2011], we define a principally polarized
tropical abelian variety (pptav) to be a pair

(Rg/3, Q),

where 3 is a lattice of rank g in Rg (that is, a discrete subgroup of Rg that is
isomorphic to Zg), and Q is a positive-semidefinite quadratic form on Rg whose
nullspace is rational with respect to 3. We say that the nullspace of Q is rational
with respect to 3 if the subspace ker(Q) ⊆ Rg has a vector space basis whose
elements are each of the form

a1λ1+ · · ·+ akλk, ai ∈Q, λi ∈3.

We say that Q has rational nullspace if its nullspace is rational with respect to Zg.
We say that two pptavs (Rg/3, Q) and (Rg/3′, Q′) are isomorphic if there

exists a matrix X ∈ GLg(R) such that

• left multiplication by X−1 sends 3 isomorphically to 3′, that is, the map
X−1
:Rg
→Rg sending a column vector v to X−1v restricts to an isomorphism

of lattices 3 and 3′, and

• Q′ = X T Q X .

Note that any pptav (Rg/3, Q) is isomorphic to one of the form (Rg/Zg, Q′),
namely by taking X to be any matrix sending Zg to 3 and setting Q′ = X T Q X .
Furthermore, (Rg/Zg, Q) and (Rg/Zg, Q′) are isomorphic if and only if there exists
X ∈ GLg(Z) with X T Q X = Q′.

Remark 4.1. Since we are interested in pptavs only up to isomorphism, we might
be tempted to define the moduli space of pptavs to be the quotient of the topological
space S̃g

≥0, the space of positive-semidefinite matrices with rational nullspace, by
the action of GLg(Z). That is what is done in [BMV 2011]. That quotient space
is the correct moduli space of pptavs set-theoretically. But it has an undesirable
topology: as we will see in Section 4D, it is not even Hausdorff!

We will fix this problem by putting a different topology on the set of pptavs. We
will first group matrices together into cells according to their Delone subdivisions,
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and then glue the cells together to obtain the full moduli space. We review the
theory of Delone subdivisions next.

4B. Voronoi reduction theory. Recall that a matrix has rational nullspace if its
kernel has a basis consisting of vectors with entries in Q.

Definition 4.2. Let S̃g
≥0 denote the set of g× g positive-semidefinite matrices with

rational nullspace. By regarding a g×g symmetric real matrix as a vector in R(
g+1

2 ),
with one coordinate for each diagonal and above-diagonal entry of the matrix, we
view S̃g

≥0 as a subset of R(
g+1

2 ).

The group GLg(Z) acts on S̃g
≥0 on the right by changing basis:

Q · X = X T Q X, for all X ∈ GLg(Z), Q ∈ S̃g
≥0.

Definition 4.3. Given Q ∈ S̃g
≥0, define Del(Q) as follows. Consider the map

l : Zg
→ Zg

×R sending x ∈ Zg to (x, xT Qx). View the image of l as an infinite
set of points in Rg+1, one above each point in Zg, and consider the convex hull of
these points. The lower faces of the convex hull (the faces that are visible from
(0,−∞)) can now be projected to Rg by the map π : Rg+1

→ Rg that forgets the
last coordinate. This produces an infinite periodic polyhedral subdivision of Rg,
called the Delone subdivision of Q and denoted Del(Q).

Now, we group together matrices in S̃g
≥0 according to the Delone subdivisions to

which they correspond.

Definition 4.4. Given a Delone subdivision D, let

σD = {Q ∈ S̃g
≥0 : Del(Q)= D}.

Proposition 4.5 [Voronoï 1908; 1909]. The set σD is an open rational polyhedral
cone in S̃g

≥0.

Let σD denote the Euclidean closure of σD in R(
g+1

2 ), so σD is a closed rational
polyhedral cone. We call it the secondary cone of D.

Example 4.6. Figure 5 shows the decomposition of S̃2
≥0 into secondary cones. Here

is how to interpret the picture. First, points in S̃2
≥0 are 2×2 real symmetric matrices,

so we regard them as points in R3. Then S̃2
≥0 is a cone in R3. Instead of drawing

the cone in R3, however, we only draw a hyperplane slice of it. Since it was a cone,
our drawing does not lose information. For example, what looks like a point in
the picture, labeled by the matrix

(
1 0
0 0

)
, really is the ray in R3 passing through the

point (1, 0, 0).

Now, the action of the group GLg(Z) on S̃g
≥0 extends naturally to an action

(say, on the right) on subsets of S̃g
≥0. In fact, given X ∈ GLg(Z) and D a Delone
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(1
0

0
0

)

( 1
1

1
1

)

( 0
0

0
1

)

( 1
−1
−1

1

)

Figure 5. Infinite decomposition of S̃2
≥0 into secondary cones.

subdivision,
σ D · X = σ X−1 D and σD · X = σX−1 D.

So GLg(Z) acts on the set

{σD : D is a Delone subdivision of Rg
}.

Furthermore, GLg(Z) acts on the set of Delone subdivisions, with action induced
by the action of GLg(Z) on Rg. Two cones σD and σD′ are GLg(Z)-equivalent if
and only if D and D′ are.

Theorem 4.7 (Main theorem of Voronoi reduction theory [Voronoï 1908; 1909]).
The set of secondary cones

{σD : D is a Delone subdivision of Rg
}

yields an infinite polyhedral fan whose support is S̃g
≥0, known as the second Voronoi

decomposition. There are only finitely many GLg(Z)-orbits of this set.
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4C. Construction of Atr
g . Equipped with Theorem 4.7, we will now construct

our tropical moduli space Atr
g . We will show that its points are in bijection with

the points of S̃g
≥0/GLg(Z), and that it is a stacky fan whose cells correspond to

GLg(Z)-equivalence classes of Delone subdivisions of Rg.

Definition 4.8. Given a Delone subdivision D of Rg, let

Stab(σD)= {X ∈ GLg(Z) : σD · X = σD}

be the setwise stabilizer of σD .

Now, the subgroup Stab(σD)⊆ GLg(Z) acts on the open cone σD , and we may
extend this action to an action on its closure σD .

Definition 4.9. Given a Delone subdivision D of Rg, let

C(D)= σD/Stab(σD).

Thus, C(D) is the topological space obtained as a quotient of the rational polyhedral
cone σD by a group action.

Now, by Theorem 4.7, there are only finitely many GLg(Z)-orbits of secondary
cones σD. Thus, we may choose D1, . . . , Dk Delone subdivisions of Rg such
that σD1

, . . . , σDk
are representatives for GLg(Z)-equivalence classes of secondary

cones. (Note that we do not need anything like the axiom of choice to select these
representatives. Rather, we can use [Vallentin 2003, Algorithm 1]. We start with a
particular Delone triangulation and then walk across codimension-1 faces to all of
the other ones; then we compute the faces of these maximal cones to obtain the
nonmaximal ones. The key idea that allows the algorithm to terminate is that all
maximal cones are related to each other by finite sequences of “bistellar flips” as
described in [Vallentin 2003, §2.4]).

Definition 4.10. Let D1, . . . , Dk be Delone subdivisions such that σD1
, . . . , σDk

are
representatives for GLg(Z)-equivalence classes of secondary cones in Rg. Consider
the disjoint union

C(D1)q · · · qC(Dk),

and define an equivalence relation∼ on it as follows. Given Qi ∈ σDi
and Q j ∈ σD j

,
let [Qi ] and [Q j ] be the corresponding elements in C(Di ) and C(D j ), respectively.
Now let

[Qi ] ∼ [Q j ]

if and only if Qi and Q j are GLg(Z)-equivalent matrices in S̃g
≥0. Since Stab(σDi

)

and Stab(σD j
) are subgroups of GLg(Z), the relation ∼ is defined independently

of the choice of representatives Qi and Q j , and is clearly an equivalence relation.
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D1 D2 D3 D4

Figure 6. Cells of Atr
2 . Note that D4 is the trivial subdivision of

R2, consisting of R2 itself.

We now define the moduli space of principally polarized tropical abelian vari-
eties, denoted Atr

g , to be the topological space

Atr
g =

k∐
i=1

C(Dk)/∼ .

Example 4.11. Let us compute Atr
2 . Combining the taxonomies in [Vallentin 2003,

§4.1 and §4.2], we may choose four representatives D1, D2, D3, and D4 for orbits
of secondary cones as in Figure 6.

We can describe the corresponding secondary cones as follows: Let

R12 =
( 1
−1
−1

1

)
, R13 =

( 1
0

0
0

)
, R23 =

( 0
0

0
1

)
.

Then
σD1
= R≥0〈R12, R13, R23〉, σD2

= R≥0〈R13, R23〉,

σD3
= R≥0〈R13〉, σD4

= {0}.

Note that each closed cone σD2
, σD3

, and σD4
is just a face of σD1

. One may
check — and we will, in Section 5 — that for each j = 2, 3, 4, two matrices Q and
Q′ in σD j

are Stab(σD j
)-equivalent if and only if they are Stab(σD1

)-equivalent.
Thus, gluing the cones C(D2), C(D3), and C(D4) to C(D1) does not change C(D1).
We will see in Theorem 5.10 that the action of Stab(σD1

) on σD1
is an S3-action

that permutes the three rays of σD1
. So we may pick a fundamental domain, say

the closed cone
C = R≥0

〈(0
0

0
1

)
,
( 1

0
0
1

)
,
( 2
−1
−1

2

)〉
,

and conclude that C(D1), and hence Atr
2 , is homeomorphic to C . See Figure 7 on

the next page for a picture of Atr
2 . Of course, Atr

2 has further structure, as the next
theorem shows.

Theorem 4.12. The space Atr
g constructed in Definition 4.10 is a stacky fan with

cells σDi
/Stab(σDi

) for i = 1, . . . , k.

Proof. For each i = 1, . . . , k, let αi be the composition
σDi

Stab(σDi
)

γi
↪−→

k∐
j=1

C(D j )
q
−→

( k∐
j=1

C(D j )
)/
∼,
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D1

D2

D2

D2

D3

D3

D3

D4

Figure 7. The stacky fan Atr
2 . The shaded area represents a choice

of fundamental domain.

where γi is the inclusion of C(Di )= σDi
/Stab(σDi

) into
∐k

j=1 C(D j ) and q is the
quotient map. Now we check the four conditions listed in Definition 3.2 for Atr

g to
be a stacky fan.

First, we prove that the restriction of αi to σDi
/Stab(σDi

) is a homeomorphism
onto its image. Now, αi is continuous since both γi and q are. To show that
αi |σDi

/Stab(σDi
) is one-to-one onto its image, let Q, Q′ ∈ σDi

such that

αi ([Q])= αi ([Q′]).

Then [Q] ∼ [Q′], so there exists A ∈ GLg(Z) such that Q′ = AT Q A. Hence
Q′ ∈ ATσDi

A = σA−1 Di
. Thus σA−1 Di

and σDi
intersect, hence σA−1 Di

= σDi
and

A ∈ Stab(σDi
). So [Q] = [Q′].

Thus, αi |σDi
/Stab(σDi

) has a well-defined inverse map, and we wish to show that
this inverse map is continuous. Let X ⊆ σDi

/Stab σDi
be closed; we wish to

show that αi (X) is closed in αi (σDi
/Stab σDi

). Write X = Y ∩σDi
/Stab σDi

where
Y ⊆ σDi

/Stab σDi
is closed. Then

αi (X)= αi (Y )∩αi

(
σDi

Stab σDi

)
;

this follows from the fact that GLg(Z)-equivalence never identifies a point on the
boundary of a closed cone with a point in the relative interior. So we need only
show that αi (Y ) is closed in Atr

g . To be clear: we want to show that given any closed
Y ⊆ σDi

/Stab σDi
, the image αi (Y )⊆ Atr

g is closed.
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Let Ỹ ⊆ σDi
be the preimage of Y under the quotient map

σDi
−�

σDi

Stab σDi

.

Then, for each j = 1, . . . , k, let

Ỹ j = {Q ∈ σD j
: Q ≡GLg(Z) Q′ for some Q′ ∈ Ỹ } ⊆ σD j

.

We claim each Ỹ j is closed in σD j
. First, notice that for any A ∈ GLg(Z), the

cone ATσDi
A intersects σD j

in a (closed) face of σD j
(after all, the cones form a

polyhedral subdivision). In other words, A defines an integral-linear isomorphism
L A : FA,i → FA, j sending X 7→ AT X A, where FA,i is a face of σDi

and FA, j is a
face of σD j

. Moreover, the map L A is entirely determined by three choices: the
choice of FA,i , the choice of FA, j , and the choice of a bijection between the rays of
FA,i and FA, j . Thus there exist only finitely many distinct such maps. Therefore

Ỹ j =
⋃

A∈GLg(Z)

L A(Ỹ ∩ FA,i )=

s⋃
k=1

L Ak (Ỹ ∩ FAk ,i )

for some choice of finitely many matrices A1, . . . , As ∈ GLg(Z). Now, each L A is
a homeomorphism, so each L A(Ỹ ∩ FA,i ) is closed in FA, j and hence in σD j

. So
Ỹ j is closed.

Finally, let Y j be the image of Ỹ j ⊆ σD j
under the quotient map

σD j

πi
−�

σD j

Stab σD j

.

Since π−1
j (Y j )= Ỹ j , we have that Y j is closed. Then the inverse image of αi (Y )

under the quotient map
k∐

j=1
C(D j )−→

( k∐
j=1

C(D j )
)/
∼

is precisely Y1q· · ·qYk , which is closed. Hence αi (Y ) is closed. This finishes the
proof that αi |σDi

/Stab(σDi
) is a homeomorphism onto its image.

Property (ii) of being a stacky fan follows from the fact that any matrix Q ∈ S̃g
≥0

is GLg(Z)-equivalent only to some matrices in a single chosen cone, say σDi
, and

no others. Here, Del(Q) and Di are GLg(Z)-equivalent. Thus, given a point in Atr
g

represented by Q ∈ S̃g
≥0, Q lies in αi (σDi

/Stab σDi
) and no other α j (σD j

/Stab σD j
),

and is the image of a single point in σDi
/Stab σDi

since αi was shown to be bijective
on σDi

/Stab σDi
. This shows that

Atr
g =

k∐
i=1

αi

(
σDi

Stab σDi

)
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as a set.
Third, a face F of some cone σDi

is σD(F), where D(F) is a Delone subdivision
that is a coarsening of Di [Vallentin 2003, Proposition 2.6.1]. Then there exists
D j and A ∈GLg(Z) with σD(F) · A= σD j

(recall that A acts on a point p ∈ S̃g
≥0 by

p 7→ AT p A). Restricting A to the linear span of σD(F) gives a linear map

L A : span(σD(F))−→ span(σD j
)

with the desired properties. Note, therefore, that σDk
is a stacky face of σDi

precisely
if Dk is GLg(Z)-equivalent to a coarsening of Di .

The fourth property then follows: the intersection

αi (σDi
)∩α j (σD j

)=
⋃
αk(σDk

),

where σDk
ranges over all common stacky faces. �

Proposition 4.13. The construction of Atr
g in Definition 4.10 does not depend on

our choice of D1, . . . , Dk . More precisely, suppose D′1, . . . , D′k are another choice
of representatives such that D′i and Di are GLg(Z)-equivalent for each i . Let Atr′

g be
the corresponding stacky fan. Then there is an isomorphism of stacky fans between
Atr

g and Atr′
g .

Proof. For each i , choose Ai ∈ GLg(Z) with

σDi
· Ai = σD′i

.

Then we obtain a map

C(D1)q · · · qC(Dk)
(A1,...,Ak)
−−−−−−→ C(D′1)q · · · qC(D′k)

descending to a map
Atr

g −→ Atr′
g ,

and this map is an isomorphism of stacky fans, as evidenced by the inverse map
Atr′

g → Atr
g constructed from the matrices A−1

1 , . . . , A−1
k . �

Theorem 4.14. The moduli space Atr
g is Hausdorff.

Remark 4.15. Theorem 4.14 complements the theorem of Caporaso that M tr
g is

Hausdorff [Caporaso 2012, Theorem 5.2].

Proof. Let σD1
, . . . , σDk

be representatives for GLg(Z)-classes of secondary cones.
Let us regard Atr

g as a quotient of the cones themselves, rather than the cones modulo
their stabilizers; thus

Atr
g =

( k∐
i=1
σDk

)/
∼,



Combinatorics of the tropical Torelli map 1155

where ∼ denotes GLg(Z)-equivalence as usual. Denote by βi the natural maps

βi : σDi
→ Atr

g .

Now suppose p 6= q ∈ Atr
g . For each i = 1, . . . , k, pick disjoint open sets Ui and Vi

in σDi
such that β−1

i (p)⊆Ui and β−1
i (q)⊆ Vi . Let

U := {x ∈ Atr
g : β

−1
i (x)⊆Ui for all i},

V := {x ∈ Atr
g : β

−1
i (x)⊆ Vi for all i}.

By construction, we have p ∈ U and q ∈ V . We claim that U and V are disjoint
open sets in Atr

g .
Suppose x ∈ U ∩ V . Now β−1

i (x) is nonempty for some i , hence Ui ∩ Vi is
nonempty, which is a contradiction. Hence U and V are disjoint. So we just need
to prove that U is open (similarly, V is open). It suffices to show that for each
j = 1, . . . , k, the set β−1

j (U ) is open. Now,

β−1
j (U )= {y ∈ σD j

: β−1
i β j (y)⊆Ui for all i}

=
⋂
i
{y ∈ σD j

: β−1
i β j (y)⊆Ui }.

Write Ui j for the sets in the intersection above, so that β−1
j (U )=

⋂
i Ui j , and

let Zi = σDi
\ Ui . Note that Ui j consists of those points in σD j

that are not
GLg(Z)-equivalent to any point in Zi . Then, just as in the proof of Theorem 4.12,
there exist finitely many matrices A1, . . . , As ∈ GLg(Z) such that

σD j
\Ui j = {y ∈ σD j

: y ∼ z for some z ∈ Zi } =
⋃s

l=1(A
T
l Zi Al ∩ σD j

),

which shows that σD j
\Ui j is closed. Thus the Ui j are open and so β−1

j (U ) is open
for each j . Hence U is open; similarly, V is open. �

Remark 4.16. Actually, we could have done a much more general construction
of Atr

g . We made a choice of decomposition of S̃g
≥0: we chose the second Voronoi

decomposition, whose cones are secondary cones of Delone subdivisions. This
decomposition has the advantage that it interacts nicely with the Torelli map, as we
will see. But, as rightly pointed out in [BMV 2011], we could use any decomposition
of S̃g

≥0 that is “GLg(Z)-admissible.” This means that it is an infinite polyhedral
subdivision of S̃g

≥0 such that GLg(Z) permutes its open cones in a finite number
of orbits. See [Ash et al. 1975, §II] for the formal definition. Every result in this
section can be restated for a general GLg(Z)-admissible decomposition: each such
decomposition produces a moduli space which is a stacky fan, which is independent
of any choice of representatives, and which is Hausdorff. The proofs are all the
same. In this paper, though, we chose to fix a specific decomposition purely for the
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sake of concreteness and readability, invoking only what we needed to build up to
the definition of the Torelli map.

4D. The quotient space S̃g
≥0/ GLg(Z). We briefly remark on the construction of

Atr
g originally proposed in [BMV 2011]. There, the strategy is to try to equip the

quotient space S̃g
≥0/GLg(Z) directly with a stacky fan structure. To do this, one

maps a set of representative cones σD , modulo their stabilizers Stab(σD), into the
space S̃g

≥0/GLg(Z), via the map

iD : σD/Stab(σD)→ S̃g
≥0/GLg(Z)

induced by the inclusion σD ↪→ S̃g
≥0.

The problem is that the map iD above may not be a homeomorphism onto
its image. In fact, the image of σD/Stab(σD) in S̃g

≥0/GLg(Z) may not even be
Hausdorff, even though σD/Stab(σD) certainly is. The following example shows
that the cone σD3

, using the notation of Example 4.11, exhibits such behavior. Note
that Stab(σD3

) happens to be trivial in this case.

Example 4.17. Let {Xn}n≥1 and {Yn}n≥1 be the sequences of matrices

Xn =

(
1 1/n

1/n 1/n2

)
, Yn =

(
1/n2 0

0 0

)
,

in S̃2
≥0. Then we have

{Xn} →

(
1 0
0 0

)
, {Yn} →

(
0 0
0 0

)
.

On the other hand, for each n, Xn ≡GL2(Z) Yn even while
(

1 0
0 0

)
6≡GL2(Z)

(
0 0
0 0

)
. This

example then descends to non-Hausdorffness in the topological quotient. It can
easily be generalized to g > 2.

Thus, we disagree with the claim in the proof of [BMV 2011, Theorem 4.2.4]
that the open cones σD , modulo their stabilizers, map homeomorphically onto their
image in S̃g

≥0/GLg(Z). However, we emphasize that our construction in Section 4C
is just a minor modification of the ideas already present in [BMV 2011].

5. Regular matroids and the zonotopal subfan

In the previous section, we defined the moduli space Atr
g of principally polarized

tropical abelian varieties. In this section, we describe a particular stacky subfan of
Atr

g whose cells are in correspondence with simple regular matroids of rank at most
g. This subfan is called the zonotopal subfan and denoted Azon

g because its cells
correspond to those classes of Delone triangulations which are dual to zonotopes;
see [BMV 2011, §4.4]. The zonotopal subfan Azon

g is important because, as we
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shall see in Section 6, it contains the image of the Torelli map. For g ≥ 4, this
containment is proper. Our main contribution in this section is to characterize the
stabilizing subgroups of all zonotopal cells.

We begin by recalling some basic facts about matroids. A good reference is
[Oxley 1992]. The connection between matroids and the Torelli map seems to have
been first observed by Gerritzen [1982], and our approach here can be seen as an
continuation of his work in the late 1970s.

Definition 5.1. A matroid is said to be simple if it has no loops and no parallel
elements.

Definition 5.2. A matroid M is regular if it is representable over every field;
equivalently, M is regular if it is representable over R by a totally unimodular
matrix. (A totally unimodular matrix is a matrix such that every square submatrix
has determinant in {0, 1,−1}.)

Next, we review the correspondence between simple regular matroids and zono-
topal cells.

Construction 5.3. Let M be a simple regular matroid of rank at most g, and let
A be a g× n totally unimodular matrix that represents M. Let v1, . . . , vn be the
columns of A. Then let σA ⊆ R(

g+1
2 ) be the rational open polyhedral cone

R>0〈v1v
T
1 , . . . , vnv

T
n 〉.

Example 5.4. Here is an example of Construction 5.3 at work. Let M be the
uniform matroid U2,3; equivalently M is the graphic matroid M(K3). Then M is
represented by the 2× 3 totally unimodular matrix A =

( 1
0

0
1

1
−1

)
, and σA is the

open cone generated by the matrices
( 1

0
0
1

)
,
( 0

0
0
1

)
, and

( 1
−1
−1

1

)
. It is the cone σD1

in
Example 4.11 and is shown in Figure 7.

Proposition 5.5 [BMV 2011, Lemma 4.4.3, Theorem 4.4.4]. Let M be a simple
regular matroid of rank at most g, and let A be a g× n totally unimodular matrix
that represents M. Then the cone σA, defined in Construction 5.3, is a secondary
cone in S̃g

≥0. Choosing a different totally unimodular matrix A′ to represent M
produces a cone σA′ that is GLg(Z)-equivalent to σA. Thus, we may associate to M
a unique cell of Atr

g , denoted C(M).

Definition 5.6. The zonotopal subfan Azon
g is the union of cells in Atr

g

Azon
g =

⋃
M a simple regular
matroid of rank≤g

C(M).

We briefly recall the definition of the Voronoi polytope of a quadratic form in
S̃g
≥0, just in order to explain the relationship with zonotopes.
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Definition 5.7. Let Q ∈ S̃g
≥0, and let H = (ker Q)⊥ ⊆ Rg. Then

Vor(Q)= {x ∈ H : xT Qx ≤ (x − λ)T Q(x − λ) ∀λ ∈ Zg
}

is a polytope in H ⊆ Rg, called the Voronoi polytope of Q.

Theorem 5.8 [BMV 2011, Theorem 4.4.4, Definition 4.4.5]. The zonotopal subfan
Azon

g is a stacky subfan of Atr
g . It consists of those points of the tropical moduli space

Atr
g whose Voronoi polytope is a zonotope.

Remark 5.9. Suppose σ is an open rational polyhedral cone in Rn . Then any
A ∈GLn(Z) such that Aσ = σ must permute the rays of σ, since the action of A on
σ is linear. Furthermore, it sends a first lattice point on a ray to another first lattice
point; that is, it preserves lattice lengths. Thus, the subgroup Stab(σ ) ⊆ GLn(Z)

realizes some subgroup of the permutation group on the rays of σ (although if σ is
not full-dimensional then the action of Stab(σ ) on its rays may not be faithful).

Now, given a simple regular matroid M of rank ≤ g, we have almost computed
the cell of Atr

g to which it corresponds. Specifically, we have computed the cone
σA for A a matrix representing M , in Construction 5.3. The remaining task is to
compute the action of the stabilizer Stab(σA).

Note that σA has rays corresponding to the columns of A: a column vector vi

corresponds to the ray generated by the symmetric rank-1 matrix viv
T
i . In light of

Remark 5.9, we might conjecture that the permutations of rays of σA coming from
the stabilizer are the ones that respect the matroid M , that is, come from matroid
automorphisms. That is precisely the case and provides valuable local information
about Atr

g .

Theorem 5.10. Let A be a g× n totally unimodular matrix representing the simple
regular matroid M. Let H denote the group of permutations of the rays of σA which
are realized by the action of Stab(σA). Then

H ∼= Aut(M).

Remark 5.11. This seems to have been known in [Gerritzen 1982], but we present
a new proof here, one which might be easier to read. Our main tool is the combina-
torics of unimodular matrices.

Here is a nice fact about totally unimodular matrices: they are essentially deter-
mined by the placement of their zeroes.

Lemma 5.12 [Truemper 1992, Lemma 9.2.6]. Suppose A and B are g× n totally
unimodular matrices with the same support, that is, ai j 6= 0 if and only if bi j 6= 0
for all i and j . Then A can be transformed into B by negating rows and negating
columns.



Combinatorics of the tropical Torelli map 1159

Lemma 5.13. Let A and B be g × n totally unimodular matrices, with column
vectors v1, . . . , vn and w1, . . . , wn , respectively. Suppose that the map vi 7→ wi

induces an isomorphism of matroids

M[A]
∼=
−→ M[B];

that is, it takes independent sets to independent sets and dependent sets to dependent
sets. Then there exists X ∈ GLg(Z) such that

Xvi =±wi for each i = 1, . . . , n.

Proof. First, let r = rank(A)= rank(B), noting that the ranks are equal since the
matroids are isomorphic. Since the statement of Lemma 5.13 does not depend on
the ordering of the columns, we may simultaneously reorder the columns of A and
the columns of B and so assume that the first r rows of A (respectively B) form a
basis of M[A] (respectively M[B]). Furthermore, we may replace A by 6A and B
by 6′B, where 6,6′ ∈ GLg(Z) are appropriate permutation matrices, and assume
that the upper-left-most r × r submatrices of both A and B are nonsingular; in fact,
they have determinant ±1. Then, we can act further on A and B by elements of
GLg(Z) so that, without loss of generality, both A and B have the form[

Idr×r ∗

0 0

]
.

Note that after these operations, A and B are still totally unimodular; this follows
from the fact that totally unimodular matrices are closed under multiplication and
taking inverses. But then A and B are totally unimodular matrices with the same
support. Indeed, the support of a column vi of A, for each i = r + 1, . . . , n, is
determined by the fundamental circuit of vi with respect to the basis {v1, . . . , vr }

in M[A], and since M[A] ∼= M[B], each vi and wi have the same support.
Thus, by Lemma 5.12, there exists a diagonal matrix X ∈GLg(Z), whose diagonal

entries are ±1, such that X A can be transformed into B by a sequence of column
negations. This is what we claimed. �

Proof of Theorem 5.10. Let v1, . . . , vn be the columns of A. Let X ∈ Stab σA. Then
X acts on the rays of σA via

(viv
T
i ) · X = X T viv

T
i X = v jv

T
j

for some column v j . So v j = ±X T vi . But X T is invertible, so a set of vectors
{vi1, . . . , vik } is linearly independent if and only if {X T vi1, . . . , X T vik } is, so X
induces a permutation that is in Aut(M).
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Conversely, suppose we are given π ∈ Aut(M). Let B be the matrix

B =

 | |

vπ(1) · · · vπ(n)

| |

 .
Then M[A] = M[B], so, by Lemma 5.13, there exists X ∈ GLg(Z) such that

X T
· vi =±vπ(i) for each i . Then

X T viv
T
i X = (±vπ(i))(±vT

π(i))= vπ(i)v
T
π(i)

so X realizes π as a permutation of the rays of σA. �

6. The tropical Torelli map

The classical Torelli map tg :Mg→ Ag sends a curve to its Jacobian. Jacobians
were developed thoroughly in the tropical setting in [Mikhalkin and Zharkov 2008;
Zharkov 2010]. Here, we define the tropical Torelli map following [BMV 2011],
and recall the characterization of its image, the so-called Schottky locus, in terms
of cographic matroids. We then present a comparison of the number of cells in M tr

g ,
in the Schottky locus, and in Atr

g , for small g.

Definition 6.1. The tropical Torelli map

t tr
g : M

tr
g → Atr

g

is defined as follows. Consider the first homology group H1(G,R) of the graph G,
whose elements are formal sums of edges with coefficients in R lying in the kernel
of the boundary map. Given a genus-g tropical curve C = (G, l, w), we define a
positive-semidefinite form QC on H1(G,R)⊕R|w|, where

|w| :=
∑

w(v).

The form is 0 whenever the second summand R|w| is involved, and on H1(G,R)

it is

QC

( ∑
e∈E(G)

αe · e
)
=

∑
e∈E(G)

α2
e · l(e).

Here, the edges of G are oriented for reference, and the αe are real numbers such
that

∑
αe · e ∈ H1(G,R).

Now, pick a basis of H1(G,Z); this identifies H1(G,Z)⊕Z|w| with the lattice
Zg, and hence H1(G,R)⊕R|w| with Rg

= Zg
⊗Z R. Thus QC is identified with an

element of S̃g
≥0. Choosing a different basis gives another element of S̃g

≥0 only up
to a GLg(Z)-action, so we have produced a well-defined element of Atr

g , called the
tropical Jacobian of C .
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Theorem 6.2 [BMV 2011, Theorem 5.1.5]. The map

t tr
g : M

tr
g → Atr

g

is a morphism of stacky fans.

Note that the proof by Brannetti, Melo, and Viviani of Theorem 6.2 is correct
under the new definitions. In particular, the definition of a morphism of stacky fans
has not changed.

The next theorem tells us how the tropical Torelli map behaves, at least on the
level of stacky cells. Given a graph G, its cographic matroid is denoted M∗(G), and

M̃∗(G)

is then the matroid obtained by removing loops and replacing each parallel class
with a single element. See [BMV 2011, Definition 2.3.8].

Theorem 6.3 [BMV 2011, Theorem 5.1.5]. The map t tr
g sends the cell C(G, w) of

M tr
g surjectively to the cell C(M̃∗(G)).

We denote by Acogr
g the stacky subfan of Atr

g consisting of those cells

{C(M) : M a simple cographic matroid of rank≤ g}.

The cell C(M) was defined in Construction 5.3. Note that Acogr
g sits inside the

zonotopal subfan of Section 5:

Acogr
g ⊆ Azon

g ⊆ Atr
g .

Also, Acogr
g = Atr

g when g ≤ 3, but not when g ≥ 4 [BMV 2011, Remark 5.2.5]. The
previous theorem says that the image of t tr

g is precisely Acogr
g ⊆ Atr

g . So, in analogy
with the classical situation, we call Acogr

g the tropical Schottky locus.
Figures 4 and 8 illustrate the tropical Torelli map in genus 3. The cells of M tr

3
in Figure 4 are color-coded according to the color of the cells of Atr

3 in Figure 8
to which they are sent. These figures serve to illustrate the correspondence in
Theorem 6.3.

Our contribution in this section is to compute the poset of cells of Acogr
g , for

g ≤ 5, using Mathematica. First, we computed the cographic matroid of each graph
of genus ≤ g, and discarded the ones that were not simple. Then we checked
whether any two matroids obtained in this way were in fact isomorphic. Part of this
computation was done by hand in the genus-5 case, because it became intractable to
check whether two 12-element matroids were isomorphic. Instead, we used some
heuristic tests and then checked by hand that, for the few pairs of matroids passing
the tests, the original pair of graphs were related by a sequence of vertex cleavings
and Whitney flips. This condition ensures that they have the same cographic matroid;
see [Oxley 1992].
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.

Figure 8. Poset of cells of Atr
3 = Acogr

3 . Each cell corresponds to
a cographic matroid, and, for convenience, we draw a graph G in
order to represent its cographic matroid M∗(G).

We obtained the following computational results:

Theorem 6.4. (i) The tropical Schottky locus Acogr
3 has nine cells and f -vector

(1, 1, 1, 2, 2, 1, 1).

(Its poset of cells is shown in Figure 8.)

(ii) The tropical Schottky locus Acogr
4 has 25 cells and f -vector

(1, 1, 1, 2, 3, 4, 5, 4, 2, 2).

(iii) The tropical Schottky locus Acogr
5 has 92 cells and f -vector

(1, 1, 1, 2, 3, 5, 9, 12, 15, 17, 15, 7, 4).
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g M tr
g Acogr

g Atr
g

2 2 1 1
3 5 1 1
4 17 2 3
5 71 4 222

Table 1. Number of maximal cells in the stacky fans M tr
g , Acogr

g ,
and Atr

g .

g M tr
g Acogr

g Atr
g

2 7 4 4
3 42 9 9
4 379 25 61
5 4555 92 179433

Table 2. Total number of cells in the stacky fans M tr
g , Acogr

g , and Atr
g .

Remark 6.5. Actually, since Acogr
3 = Atr

3 , the results of part (i) of Theorem 6.4
were already known, say in [Vallentin 2003].

Tables 1 and 2 show a comparison of the number of maximal cells and the number
of total cells, respectively, of M tr

g , Acogr
g , and Atr

g . The numbers in the first column
of Table 2 were obtained in [Maggiolo and Pagani 2011] and in Theorem 2.13. The
first column of Table 1 is from [Balaban 1976]. The results in the second column
are our contribution in Theorem 6.4. The third columns are due to [Engel 2000]
and [Engel and Grishukhin 2002]; computations for g > 5 were done in [Vallentin
2003].

It would be desirable to extend our computations of Acogr
g to g≥ 6, but this would

require some new ideas on effectively testing matroid isomorphisms.

7. Tropical covers via level structure

All tropical varieties are stacky fans: at least in the “constant coefficient” case
(see [Maclagan and Sturmfels 2009]), tropical varieties are polyhedral fans, and all
polyhedral fans are stacky fans in which every cone has only trivial symmetries. On
the other hand, stacky fans are not always tropical varieties. Indeed, one problem
with the spaces M tr

g and Atr
g is that although they are tropical moduli spaces, they

do not “look” very tropical: they do not satisfy a tropical balancing condition (see
[Maclagan and Sturmfels 2009]).

But what if we allow ourselves to consider finite-index covers of our spaces —
can we then produce a more tropical object? In what follows, we answer this
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question for the spaces Atr
2 and Atr

3 . The uniform matroid U 2
4 and the Fano matroid

F7 play a role. We are grateful to Diane Maclagan for suggesting this question and
the approach presented here.

Given n ≥ 1, let FPn denote the complete polyhedral fan in Rn associated to
projective space Pn , regarded as a toric variety. Concretely, we fix the rays of FPn

to be generated by

e1, . . . , en, en+1 := −e1− · · ·− en,

and each subset of at most n rays spans a cone in FPn . So FPn has n + 1 top-
dimensional cones. Given S ⊆ {1, . . . , n+ 1}, let cone(S) denote the open cone
R>0{ei : i ∈ S} in FPn , let cone(ı̂) := cone({1, . . . , ı̂, . . . , n+ 1}), and let cone(S)
be the closed cone corresponding to S. Note that the polyhedral fan FPn is also a
stacky fan: each open cone can be equipped with trivial symmetries. Its support is
the tropical variety corresponding to all of Tn .

By a generic point of Atr
g , we mean a point x lying in a cell of Atr

g of maximal
dimension such that any positive-semidefinite matrix X representing x is fixed only
by the identity element in GLg(Z).

7A. A tropical cover for Atr
3 . By the classification in [Vallentin 2003, §4.1–4.3],

we note that
Atr

3 =

( ∐
M⊆MK4

C(M)
)/
∼ .

In the disjoint union above, the symbol MK4 denotes the graphic (equivalently,
in this case, cographic) matroid of the graph K4, and M ⊆ M ′ means that M is
a submatroid of M ′, that is, obtained by deleting elements. The cell C(M) of a
regular matroid M was defined in Construction 5.3. There is a single maximal cell
C(MK4) in Atr

3 , and the other cells are stacky faces of it. The cells are also listed
in Figure 8.

Now define a continuous map

π : FP6
→ Atr

3

as follows. Let A be a 3× 6 unimodular matrix representing MK4, for example,

A =

1 0 0 1 1 0
0 1 0 −1 0 1
0 0 1 0 −1 −1

 ,
and let σA be the cone in S̃3

≥0 with rays {viv
T
i }, where the vi are the columns of

A, as in Construction 5.3. Fix, once and for all, a Fano matroid structure on the
set {1, . . . , 7}. For example, we could take F7 to have circuits {124, 235, 346, 457,
156, 267, 137}.
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Now, for each i = 1, . . . , 7, the deletion F7 \ {i} is isomorphic to MK4, so let

πı̂ : [7] \ {i} → E(MK4)

be any bijection inducing such an isomorphism. Now define

αı̂ : cone(ı̂)→ Atr
3

as the composition

cone(ı̂)
L ı̂
−−→ σA −�

σA

Stab σA
= C(MK4)−→ Atr

3 ,

where L ı̂ is the integral-linear map arising from πı̂ .
Now, each αı̂ is clearly continuous, and to paste them together into a map on all

of FP6, we need to show that they agree on intersections. Thus, fix i 6= j and let
S ⊆ {1, . . . , 7} \ {i, j}. We want to show that

αı̂ = α̂ on cone(S).

Indeed, the map L ı̂ sends cone(S) isomorphically to σA|πı̂ (S)
, where A|πı̂ (S) de-

notes the submatrix of A gotten by taking the columns indexed by πı̂ (S). Fur-
thermore, the bijection on the rays of the cones agrees with the isomorphism of
matroids

F7|S
∼=
−−−→ MK4|πı̂ (S).

Similarly, L ̂ sends cone(S) isomorphically to σA|π̂ (S)
, and the map on rays agrees

with the matroid isomorphism

F7|S
∼=
−−−→ MK4|π̂ (S).

Hence MK4|πı̂ (S)
∼= MK4|π̂ (S) and by Theorem 5.10, there exists X ∈GL3(Z) such

that this diagram commutes:

σA|πı̂ (S)

X��cone(S)

L ı̂ 33

L ̂
++ σA|π̂ (S)

.

We conclude that αı̂ and α̂ agree on cone(S), since L ı̂ and L ̂ differ only by a
GL3(Z)-action.

Therefore, we can glue the seven maps αı̂ together to obtain a continuous map
α : FP6

→ Atr
3 .

Theorem 7.1. The map α : FP6
→ Atr

3 is a surjective morphism of stacky fans. Each
of the seven maximal cells of FP6 is mapped surjectively onto the maximal cell of
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Atr
3 . Furthermore, the map α has finite fibers, and if x ∈ Atr

3 is a generic point, then
|α−1(x)| = 168.

Proof. By construction, α sends each cell cone(S) of FP6 surjectively onto the cell
of Atr

3 corresponding to the matroid F7|S , and each of these maps is induced by
some integral-linear map L ı̂ . That α is surjective then follows from the fact that
every submatroid of MK4 is a proper submatroid of F7. Also, by construction, α
maps each maximal cell cone(ı̂) of FP6 surjectively to the cell C(MK4) of Atr

3 .
By definition of the map αi , each x ∈ Atr

3 has only finitely many preimages
α−1

i (x) in cone(ı̂), so α has finite fibers. If x ∈ Atr
3 is a generic point, then x has

24= |Aut(MK4)| preimages in each of the seven maximal open cones cone(ı̂), so
|α−1(x)| = 168. �

7B. A tropical cover for Atr
2 . Our strategy in Theorem 7.1 for constructing a cov-

ering map FP6
→ Atr

3 was to use the combinatorics of the Fano matroid to paste
together seven copies of MK4 in a coherent way. In fact, an analogous, and easier,
argument yields a covering map FP3

→ Atr
2 . We will use U 2

4 to paste together four
copies of U 2

3 . Here, U d
n denotes the uniform rank-d matroid on n elements.

The space Atr
2 can be given by

Atr
2 =

( ∐
M⊆U 2

3

C(M)
)/
∼ .

It has a single maximal cell C(U 2
3 ), and the three other cells are stacky faces of it

of dimensions 0, 1, and 2. See Figure 7.
Analogously to Section 7A, let

A =
(

1 0 1
0 1 −1

)
,

say, and for each i = 1, . . . , 4, define

βı̂ : cone(ı̂)→ Atr
2

by sending cone(ı̂) to σA by a bijective linear map preserving lattice points. Here,
any of the 3! possible maps will do, because the matroid U 2

3 has full automorphisms.
Just as in Section 7A, we may check that the four maps αı̂ agree on their overlaps,

so we obtain a continuous map

β : FP3
→ Atr

2 .

Proposition 7.2. The map β : FP3
→ Atr

2 is a surjective morphism of stacky fans.
Each of the four maximal cells of FP3 maps surjectively onto the maximal cell of
Atr

2 . Furthermore, the map β has finite fibers, and if x ∈ Atr
2 is a generic point, then

|β−1(x)| = 24.
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Proof. The proof is exactly analogous to the proof of Theorem 7.1. Instead of
noting that every one-element deletion of F7 is isomorphic to MK4, we make the
easy observation that every one-element deletion of U 2

4 is isomorphic to U 2
3 . If

x ∈ Atr
2 is a generic point, then x has 6= |Aut(U 2

3 )| preimages in each of the four
maximal open cones of FP3. �

Remark 7.3. We do not know a more general construction for g ≥ 4. We seem to
be relying on the fact that all cells of Atr

g are cographic when g = 2, 3, but this is
not true when g ≥ 4: the Schottky locus is proper.

Remark 7.4. Although our constructions look purely matroidal, they come from
level structures on Atr

2 and Atr
3 with respect to the primes p = 3 and p = 2, re-

spectively. More precisely, in the genus-2 case, consider the decomposition of
S̃2
≥0 into secondary cones as in Theorem 4.7, and identify rays vvT and wwT if
v ≡±w (mod 3). Then we obtain FP3. The analogous statement holds, replacing
the prime 3 with 2, in genus 3.

Acknowledgments

The author thanks B. Sturmfels, D. Maclagan, and F. Vallentin for helpful discus-
sions, M. Melo and F. Viviani for comments on an earlier draft, F. Vallentin for
many useful references, K. Vogtmann for the reference to [Brady 1993], F. Shokrieh
for insight on Delone subdivisions, and R. Masuda for much help with typesetting.
The author is supported by a Graduate Research Fellowship from the National
Science Foundation.

References

[Ash et al. 1975] A. Ash, D. Mumford, M. Rapoport, and Y. Tai, Smooth compactification of locally
symmetric varieties, Lie Groups: History, Frontiers and Applications 4, Math. Sci. Press, Brookline,
MA, 1975. MR 56 #15642 Zbl 0334.14007

[Baker et al. 2011] M. Baker, S. Payne, and J. Rabinoff, “Nonarchimedean geometry, tropicalization,
and metrics on curves”, preprint, 2011. arXiv 1104.0320v1

[Balaban 1970] A. T. Balaban, “Chemical graphs VIII: Valence isomerism and general cubic graphs”,
Rev. Roum. Chim. 15:3 (1970), 463–486.

[Balaban 1976] A. T. Balaban, “Enumeration of cyclic graphs”, pp. 63–105 in Chemical applications
of graphs theory, edited by A. T. Balaban, Academic Press, New York, 1976.

[BMV 2011] S. Brannetti, M. Melo, and F. Viviani, “On the tropical Torelli map”, Adv. Math. 226:3
(2011), 2546–2586. MR 2012e:14121 Zbl 1218.14056

[Borisov et al. 2005] L. A. Borisov, L. Chen, and G. G. Smith, “The orbifold Chow ring of
toric Deligne–Mumford stacks”, J. Amer. Math. Soc. 18:1 (2005), 193–215. MR 2006a:14091
Zbl 1178.14057

[Brady 1993] T. Brady, “The integral cohomology of Out+(F3)”, J. Pure Appl. Algebra 87:2 (1993),
123–167. MR 94d:20057 Zbl 0798.20042



1168 Melody Chan

[Caporaso 2011] L. Caporaso, “Algebraic and tropical curves: comparing their moduli spaces”,
preprint, 2011. arXiv 1101.4821v3

[Caporaso 2012] L. Caporaso, “Geometry of tropical moduli spaces and linkage of graphs”, J. Combin.
Theory Ser. A 119:3 (2012), 579–598. MR 2871751 Zbl 1234.14043

[Caporaso and Viviani 2010] L. Caporaso and F. Viviani, “Torelli theorem for graphs and tropical
curves”, Duke Math. J. 153:1 (2010), 129–171. MR 2011j:14013 Zbl 1200.14025

[Culler and Vogtmann 1986] M. Culler and K. Vogtmann, “Moduli of graphs and automorphisms of
free groups”, Invent. Math. 84:1 (1986), 91–119. MR 87f:20048 Zbl 0589.20022

[Engel 2000] P. Engel, “The contraction types of parallelohedra in E5”, Acta Cryst. Sect. A 56:5
(2000), 491–496. MR 2001f:52046 Zbl 1188.52021

[Engel and Grishukhin 2002] P. Engel and V. Grishukhin, “There are exactly 222 L-types of prim-
itive five-dimensional lattices”, European J. Combin. 23:3 (2002), 275–279. MR 2003i:11090
Zbl 1017.52006

[Gathmann et al. 2009] A. Gathmann, M. Kerber, and H. Markwig, “Tropical fans and the moduli
spaces of tropical curves”, Compos. Math. 145:1 (2009), 173–195. MR 2009m:14085 Zbl 1169.
51021

[Gerritzen 1982] L. Gerritzen, “Die Jacobi–Abbildung über dem Raum der Mumfordkurven”, Math.
Ann. 261:1 (1982), 81–100. MR 84f:14021

[Grushevsky 2010] S. Grushevsky, “The Schottky problem”, preprint, 2010. arXiv 1009.0369v2

[Maclagan and Sturmfels 2009] D. Maclagan and B. Sturmfels, “Introduction to tropical geometry”,
preprint, 2009, Available at http://www.warwick.ac.uk/staff/D.Maclagan/papers/TropicalBook.pdf.

[Maggiolo and Pagani 2011] S. Maggiolo and N. Pagani, “Generating stable modular graphs”, J.
Symbolic Comput. 46:10 (2011), 1087–1097. MR 2012h:05084 Zbl 1238.14018

[Mikhalkin 2006] G. Mikhalkin, “Tropical geometry and its applications”, pp. 827–852 in Interna-
tional Congress of Mathematicians, vol. 2, edited by M. Sanz-Solé et al., Eur. Math. Soc., Zürich,
2006. MR 2008c:14077 Zbl 1103.14034

[Mikhalkin 2007] G. Mikhalkin, “Moduli spaces of rational tropical curves”, pp. 39–51 in Proceedings
of Gökova Geometry–Topology Conference 2006 (Gökova, 2006), edited by S. Akbulut et al., Gökova
Geometry/Topology Conference (GGT), Gökova, 2007. MR 2009i:14014 Zbl 1203.14027

[Mikhalkin and Zharkov 2008] G. Mikhalkin and I. Zharkov, “Tropical curves, their Jacobians and
theta functions”, pp. 203–230 in Curves and abelian varieties, edited by V. Alexeev et al., Contemp.
Math. 465, Amer. Math. Soc., Providence, RI, 2008. MR 2011c:14163 Zbl 1152.14028

[Oxley 1992] J. G. Oxley, Matroid theory, Oxford University Press, New York, 1992. MR 94d:05033
Zbl 0784.05002

[Sloane 2011] N. Sloane, “The on-line encyclopedia of integer sequences”, 2011, Available at http://
oeis.org.

[Speyer and Sturmfels 2004] D. Speyer and B. Sturmfels, “The tropical Grassmannian”, Adv. Geom.
4:3 (2004), 389–411. MR 2005d:14089 Zbl 1065.14071

[Truemper 1992] K. Truemper, Matroid decomposition, Academic Press, Boston, MA, 1992. MR
93h:05046 Zbl 0760.05001

[Vallentin 2003] F. Vallentin, Sphere coverings, lattices, and tilings (in low dimensions), thesis,
Technische Universität München, 2003, Available at http://www.cwi.nl/~vallenti/PAPERS/D3.pdf.

[Voronoï 1908] G. Voronoï, “Nouvelles applications des paramètres continus à la théorie des formes
quadratiques, Deuxième mémoire: Recherches sur les parallélloedres primitifs”, J. Reine Angew.
Math. 134 (1908), 198–287. JFM 39.0274.01



Combinatorics of the tropical Torelli map 1169

[Voronoï 1909] G. Voronoï, “Nouvelles applications des paramètres continus à la théorie des formes
quadratiques, Deuxième mémoire: Recherches sur les parallélloedres primitifs”, J. Reine Angew.
Math. 136 (1909), 67–178. JFM 40.0267.17

[Zharkov 2010] I. Zharkov, “Tropical theta characteristics”, pp. 165–168 in Mirror symmetry and
tropical geometry, edited by R. Castaño-Bernard et al., Contemp. Math. 527, Amer. Math. Soc.,
Providence, RI, 2010. MR 2012a:14139 Zbl 1213.14120

Communicated by Ravi Vakil
Received 2011-02-23 Revised 2011-07-11 Accepted 2011-08-13

mtchan@math.berkeley.edu Department of Mathematics, University of California Berkeley,
970 Evans Hall #3840, Berkeley, CA 94720-3840,
United States
http://math.berkeley.edu/~mtchan/

mathematical sciences publishers msp



Algebra & Number Theory
msp.berkeley.edu/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad University of Michigan, USA

Hélène Esnault Universität Duisburg-Essen, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Ehud Hrushovski Hebrew University, Israel

Craig Huneke University of Kansas, USA

Mikhail Kapranov Yale University, USA

Yujiro Kawamata University of Tokyo, Japan

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Victor Reiner University of Minnesota, USA

Karl Rubin University of California, Irvine, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Bernd Sturmfels University of California, Berkeley, USA

Richard Taylor Harvard University, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Andrei Zelevinsky Northeastern University, USA

Efim Zelmanov University of California, San Diego, USA

PRODUCTION
contact@msp.org

Silvio Levy, Scientific Editor

See inside back cover or www.jant.org for submission instructions.

The subscription price for 2012 is US $175/year for the electronic version, and $275/year (+$40 shipping outside the US) for
print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should
be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840,
USA.

Algebra & Number Theory (ISSN 1937-0652) at Mathematical Sciences Publishers, Department of Mathematics, University
of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://msp.org/
A NON-PROFIT CORPORATION

Typeset in LATEX
Copyright ©2012 by Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:contact@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org
http://msp.org/


Algebra & Number Theory
Volume 6 No. 6 2012

1061The smallest prime that does not split completely in a number field
XIANNAN LI

1097On the geometric realization of the inner product and canonical basis for quantum affine
sln

KEVIN MCGERTY

1133Combinatorics of the tropical Torelli map
MELODY CHAN

1171On fusion categories with few irreducible degrees
SONIA NATALE and JULIA YAEL PLAVNIK

1199Cusp form motives and admissible G-covers
DAN PETERSEN

1223Ideals of degree one contribute most of the height
AARON LEVIN and DAVID MCKINNON

1239Torsion des modules de Drinfeld de rang 2 et formes modulaires de Drinfeld
CÉCILE ARMANA

1937-0652(2012)6:6;1-9

A
lgebra

&
N

um
ber

Theory
2012

Vol.6,
N

o.6


	
	
	

