
Algebra &
Number
Theory

mathematical sciences publishers

Volume 6

2012
No. 6

Cusp form motives and admissible G-covers
Dan Petersen



msp
ALGEBRA AND NUMBER THEORY 6:6 (2012)

dx.doi.org/10.2140/ant.2012.6.1199

Cusp form motives and admissible G-covers
Dan Petersen

There is a natural Sn-action on the moduli space M1,n(B(Z/mZ)2) of twisted
stable maps into the stack B(Z/mZ)2, and so its cohomology may be decomposed
into irreducible Sn-representations. Working over Spec Z[1/m] we show that
the alternating part of the cohomology of one of its connected components is
exactly the cohomology associated to cusp forms for 0(m). In particular this
offers an alternative to Scholl’s construction of the Chow motive associated to
such cusp forms. This answers in the affirmative a question of Manin on whether
one can replace the Kuga–Sato varieties used by Scholl with some moduli space
of pointed stable curves.

1. Introduction

Deligne [1971] showed how one can associate a compatible system of `-adic Galois
representations for almost all ` to elliptic modular forms. Taking these ideas further,
one may wish to find a motive associated to modular forms, in the sense that
the different `-adic realizations of the motive are exactly the associated Galois
representations. This idea was carried out for elliptic modular forms by [Scholl
1990]. See also [Blasius and Rogawski 1993] where Chow motives are associated
to Hilbert modular forms.

The Galois representations associated to modular forms can often be realized as
subquotients of the cohomology of a smooth projective variety X . To show that
these subquotients are actually realizations of a motive, one needs to construct a
suitable idempotent correspondence in

Adim X (X × X)

that “cuts out” these pieces of the cohomology. The standard conjectures [Kleiman
1994] would imply that such correspondences exist in great generality. However,
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assuming that the standard conjectures will not be proven in the near future, it is
still interesting to construct such correspondences by ad hoc methods in cases of
interest.

Consider classical elliptic modular forms. Let 0(m) denote the level-m principal
congruence subgroup of SL(2,Z). The space of modular forms for 0(m) of weight
n+ 2 can be found as a subquotient of the cohomology of the n-th fibered power
of the universal elliptic curve (a Kuga–Sato variety) over the modular curve Y (m).
Specifically, one can find in the Betti cohomology the direct sum of the space of
holomorphic cusp forms and its complex conjugate, the space of antiholomorphic
cusp forms. The corresponding parts of the `-adic cohomology of the variety are
the Galois representations associated to the modular forms.

To assemble these realizations into a Chow motive, one would need first to find
a smooth compactification of the n-th fibered power of the universal curve. To
compactify, one can take fibered powers of the universal generalized elliptic curve
(in the sense of [Deligne and Rapoport 1973]) over X (m); this compactification
is however singular at the boundary. A desingularization of the boundary was
constructed by Deligne [1971], and Scholl [1990] showed that the projector given
by the “alternating” representation of the hyperoctahedral group

S2 oSn = (S2× · · ·×S2︸ ︷︷ ︸
n times

)o Sn

(which canonically acts on the n-th fibered power and its desingularization) cuts
out exactly the cohomology coming from cusp forms. Thus there exists a Chow
motive associated to cusp forms of given weight for 0(m).

From the point of view of moduli theory, the best possible way to construct a
smooth compactification of a moduli problem is to change the definition of the
moduli problem to allow also some appropriate degenerations of the objects one is
parametrizing. In this sense Deligne’s desingularization is not so natural. Taking
the n-th fibered power gives you a moduli space of elliptic curves equipped with
some level structure, with n+ 1 marked points which are allowed to coincide. This
suggests the possibility of constructing a smooth compactification by considering
pointed stable curves of genus one with some kind of level structure. This suggestion
was put forth by Manin [2005; 2006]. Not only would one then have a modular
interpretation of the points on the boundary, but also a space with far more structure:
for instance, stable curves have a well understood deformation theory, and they
form an operad. (The operadic point of view of stable curves also gets used in this
article when computing the contribution from the boundary.)

In level 1 this compactification would just be M1,n+1. This space is a smooth
and proper stack over Z and its cohomology defines a Chow motive. In [Consani
and Faber 2006] it is shown, independently of Manin’s question, that the projector
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given by the alternating representation of Sn+1 acting on M1,n+1 cuts out exactly
the space of cusp forms for SL(2,Z) of weight n+2. Thus an alternative to Scholl’s
construction is found, which however is only valid for modular forms of level 1 due
to a lack of an analogue of the space M1,n+1 for curves with level structure.

Fix a positive integer m, always assumed to be invertible on our base scheme. By
a level-m structure on a smooth curve C , we mean the choice of an isomorphism

(Z/mZ)2g(C) ∼= Pic0(C)[m].

To extend Consani and Faber’s construction to higher levels, one would need a
smooth and projective moduli space of pointed stable curves with level structure.
The problem of constructing such a compactification has a long history. A moduli
space Mg,n(m) of pointed smooth curves with level structure is easy to construct, in
particular as it is a scheme for m ≥ 3. On the boundary, one runs into problems
when trying to define a good notion of a level structure on curves not of compact
type, that is, curves whose Jacobian is an extension of an abelian variety by a torus.
The problem is roughly that these curves have “too little” m-torsion: for a torus
T , the m-torsion group T [m] has order mdim T , while for an abelian variety A the
m-torsion group has order m2 dim A.

When g= 1 and n= 1, a good modular compactification is described in [Deligne
and Rapoport 1973]. In [Abramovich et al. 2003] a smooth proper stack compacti-
fying Mg,n(m) for any g and n was constructed, seemingly as a byproduct of the
work of Abramovich, Vistoli and others on constructing a smooth and projective
moduli space of stable maps into a stack. In Section 3 we construct an explicit
isomorphism between the stack defined by Deligne and Rapoport and the one
defined by Abramovich, Corti and Vistoli when g = 1 and n = 1. Although this is
perhaps not so surprising, the author has not seen this observed anywhere in the
literature, and the isomorphism is a bit striking.

Once we are armed with a smooth and proper moduli space Mg,n(m) of pointed
stable curves with level-m structure, we show in Sections 4 and 5 of this paper
that Consani and Faber’s construction carries over to this setting as well: the pair
of M1,n(m) and the projector given by the alternating representation of Sn defines
the Chow motive of cusp forms of weight n+ 1 for 0(m). The alternating part of
the cohomology of the open part M1,n(m) is exactly the cohomology coming from
all modular forms, that is, both Eisenstein series and cusp forms. The alternating
part of the cohomology of the boundary is isomorphic to the space of Eisenstein
series only, and when one computes the cohomology of the total space M1,n(m)
the Eisenstein series “cancel” exactly, leaving only the contribution from cusp
forms.

Finally in Section 6 of the paper we show that in this set-up, the Hecke corre-
spondences can be given a modular interpretation over the boundary as well.
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2. Background

Twisted stable maps, admissible covers and level structures. Abramovich and Vis-
toli [2002] introduced a stack generalizing the Kontsevich space Mg,n(X) of stable
maps to a projective variety, namely the stack Mg,n(X) of so called twisted stable
maps, into a tame Deligne–Mumford stack X with projective coarse moduli space.
To this end Abramovich and Vistoli first define the notion of a pointed twisted curve:
this is a DM-stack C whose coarse moduli space C is a pointed nodal curve with the
property that C→C is an isomorphism away from the nodes and the marked points,
with specific restrictions on the type of “stacky” structure C may have. Roughly
speaking, the fibers of C→ C should all be cyclotomic gerbes. See [Abramovich
and Vistoli 2002] for a precise definition. With this definition in place, there is a
proper moduli stack Mg,n(X) parametrizing flat families of twisted curves equipped
with a representable map to X, such that the induced map of coarse moduli spaces
C→ X is stable in the sense of Kontsevich.

There is an important open and closed substack Mbal
g,n(X) of Mg,n(X) which

parametrizes twisted stable maps where the source curve is balanced. These are
exactly the twisted curves that are smoothable, that is, which can be written as
stable limits of smooth curves.

Let G be a finite group. We assume that |G| is invertible on our base scheme, so
the classifying stack BG is tame. The specific stack Mbal

g,n(BG) has an alternative
description in terms of admissible covers, as explained in [Abramovich et al. 2003].

Definition 2.1. Let C be a pointed nodal curve and G a finite group. An admissible
torsor for G over C consists of a morphism of curves P→ C and an action of G
on P , such that

(1) the curve C is identified with the scheme quotient P/G,

(2) the map P→ C is an admissible cover,

(3) the restriction of P→ C away from the nodes and markings of C , with the
given G-action, is a torsor for the group G.

Then [Abramovich et al. 2003] shows that giving a representable morphism from
a balanced twisted curve C to BG is canonically the same as giving an admissible
G-torsor over the coarse moduli space of C: given C→ BG one gets a G-torsor
over C whose total space P is a nodal curve, and the composition P → C→ C
is an admissible torsor; conversely, given an admissible torsor P→ C , the stack
quotient [P/G] is a balanced twisted curve.

Since perhaps most readers are more comfortable with admissible covers than
with twisted curves, we shall stick to the language of admissible covers as far as
possible in this article.
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As mentioned in the introduction, the existence of the stack Mg,n(BG) allows
one to give a modular compactification of the space Mg,n(m) of smooth pointed
curves with level structure. Let G = (Z/mZ)2g. In particular, we assume m is
invertible. Suppose we are given a smooth curve C and a level-m structure on
C , that is, a not necessarily symplectic isomorphism Pic0(C)[m] ∼= G. Let π1(C)
denote the étale fundamental group of C . Since the points of Pic0(C)[m] correspond
to cyclic étale covers of degree m of C , one gets an isomorphism

Pic0(C)[m] ∼= π1(C)/mπ1(C),

and hence a bijection between isomorphisms Pic0(C)[m] ∼= G and surjective mor-
phisms π1(C)→ G, that is, connected G-torsors over C . See [Grothendieck 1971,
XIII, 2.12]. So the level structure induces a representable map C→ BG, and when
2− 2g− n < 0 we find a morphism

Mg,n(m)→Mg,n(BG).

This morphism is not an open immersion. The problem is that every point of
Mg,n(BG) has G in its automorphism group, coming from the automorphisms of the
admissible torsors, while a level structure should generally have no automorphisms.
This defect is fixed by composing with the rigidification map

Mg,n(BG)→Mg,n(BG)( G,

(where we follow the notation of [Romagny 2005]) in the sense that the com-
posed map is an isomorphism onto an open substack. The closure of Mg,n(m) in
Mg,n(BG)( G is the desired compactification.

The stacks Mg,n(BG) and Mg,n(BG)( G share the same coarse moduli space
[Abramovich et al. 2003, Theorem 5.1.5], and in particular they have the same
rational and `-adic cohomology. Since in this article we shall only be interested
in their cohomology, we propose to ignore the process of rigidification (except in
Section 3) as it would mostly be a small nuisance.

Thus we define Mg,n(m) to be the closure of the image of Mg,n(m) already in
Mg,n(BG). One can describe this closure explicitly: it is the open and closed
substack of Mg,n(BG) consisting of connected admissible G-torsors which are
unramified over each marked point. Then Mg,n(m) is a smooth [Abramovich et al.
2003, Theorem 3.0.2] and proper DM-stack over Spec Z[1/m].

The stack Mg,n(m) has φ(m)=|U (Z/mZ)| components, each of which is defined
over Spec Z[1/m, ζm] and which are permuted by Gal(Q(ζm)/Q), where ζm is a
primitive m-th root of unity. Any one of these components may be taken as the
moduli space of curves with symplectic level-m structure.
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3. Comparison of DR and ACV moduli stacks

Fix an integer m. Deligne and Rapoport [1973] defined a moduli stack parametrizing
generalized elliptic curves with full level-m structure over Spec Z[1/m]. We denote
it by MDR(m) in this section. Just as in the case of Mg,n(m), it consists of φ(m) open
and closed substacks, all of which are individually defined over Spec Z[1/m, ζm].
A choice of a primitive root ζm lets us identify one of these components with
the modular curve X (m) parametrizing elliptic curves with symplectic level-m
structure.

In this section we show that the stack M1,1(m) is isomorphic to MDR(m), provided
that one includes the rigidification procedure as in [Abramovich et al. 2003]. The
isomorphism is quite simple: one finds that when P→C is an admissible G-torsor,
the curve P is in a canonical way a generalized elliptic curve in the sense of [Deligne
and Rapoport 1973], and this construction provides the isomorphism.

Recall that MDR(m)(T ) is the groupoid of flat families of semistable (that is,
each rational component has at least two markings) curves of genus one E→ T ,
such that the singular fibers are Néron m-gons, together with a group scheme
structure on E sm

→ T making the singular fibers isomorphic to Gm ×Z/mZ, and
an isomorphism E sm

[m] ∼= (Z/mZ)2.
There is a canonical map M1,1(m)→ B(Z/mZ)2: pulling back the (Z/mZ)2-

torsor over E sm along the identity section T → E sm we get a torsor on T , and this
is clearly functorial. This tells us how to interpret the 2-fiber product

M1,1(m)×B(Z/mZ)2 Spec Z[1/m],

which (after writing out the definition) is the stack parametrizing elliptic curves
with a torsor, together with the added data of a trivialization of the torsor over the
identity section.

Proposition 3.1. There is an isomorphism

MDR(m)∼=M1,1(m)×B(Z/mZ)2 Spec Z[1/m].

Proof. We define mutually inverse functors from both stacks to each other. Start
with an object of MDR(m)(T ), so we have a generalized elliptic curve E→ T and
a (Z/mZ)2-action on E coming from the action of E sm on E . Let E ′ denote the
scheme quotient under this action. The image of the given section of E gives us a
section of E ′.

We claim that E ′→ T is a stable curve of genus one, and E→ E ′ an admissible
cover. On a geometric fiber where E is smooth, E ′ is also smooth, and E → E ′

is étale. When E is a Néron m-gon, E ′ is a nodal rational curve with ramification
index m at the node. Since E sm, hence also (Z/mZ)2, acts freely on the smooth
locus, the restriction of E→ E ′ to the smooth locus is a (Z/mZ)2-torsor. Thus we
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have an object of M1,1(m)(T ). Moreover, by construction we also have a lifting of
the section T → E ′ to a section T → E , which gives us a trivialization of the torsor
on T obtained by pulling back E→ E ′ along T → E ′. Clearly this is functorial.

Conversely, an object of (M1,1(m) ×B(Z/mZ)2 Spec Z[1/m] )(T ) is an elliptic
curve E→ T , an admissible torsor P→ E , and a trivialization of the torsor over
the identity section. We claim that P → T is a semistable curve of genus one
whose geometric fibers are either smooth elliptic curves or Néron m-gons. On the
smooth locus this is clear. Over a geometric fiber where E→ T is nodal, we know
that the ramification index of P→ E at the node is necessarily m by [Abramovich
et al. 2003, 6.1.2]. Since P is a nodal curve of arithmetic genus one, and (Z/mZ)2

necessarily acts transitively on the dual graph of the fiber, the only possibility then
is that it is a Néron m-gon. Also, the trivialization of the torsor gives us a section
T → P , contained in the smooth locus of P .

We claim that there is a unique structure of generalized elliptic curve on P→ T
such that the given section is the identity section, and the action of (Z/mZ)2 is
given by an isomorphism (Z/mZ)2 ∼= Psm

[m]. By [Deligne and Rapoport 1973,
II.3.2] it suffices to show that (Z/mZ)2 acts trivially on Pic0

P/T , and by [ibid., II.1.7]
it suffices to show that (Z/mZ)2 preserves the cyclic ordering of the vertices of
the dual graph of P . Suppose not: then there is a nonidentity g ∈ (Z/mZ)2 which
maps an irreducible component C of P to itself and interchanges the two nodes of
C . But then since no automorphism of P1 is fixed-point free, there is a fixed point
in the smooth locus, contradicting that Psm

→ E is a torsor. �

Proposition 3.2. There is an isomorphism

M1,1(m)×B(Z/mZ)2 Spec Z[1/m] →M1,1(m)( (Z/mZ)2.

That is, trivializing the torsor over the identity is the same as rigidifying the stack.

Proof. The forgetful map M1,1(m)×B(Z/mZ)2 Spec Z[1/m] →M1,1(m) composed
with the quotient map M1,1(m)→M1,1(m)((Z/mZ)2 provides us with the morphism
stated in the proposition. To show that it is an isomorphism, it suffices to show that
it is a monomorphism and essentially surjective, and the former may be checked on
geometric points. Over an algebraically closed field, the automorphism group of a
point of the rigidified stack is exactly the quotient of the automorphism group of
the original point by the group we are rigidifying along [Abramovich et al. 2003,
Theorem 5.1.5]. Thus it is clear that the map is a monomorphism. To show it
is essentially surjective, we need to prove that for an admissible torsor P → C
over a base scheme S, there is locally on S a trivialization of the torsor over the
identity. But this is the same thing as trivializing the pullback of P→ C along the
identity section S→ C , so it comes down to the fact that a torsor on S admits a
local trivialization. �
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Remark 3.3. One reason to be interested in this kind of result is that it may help in
understanding the reduction of Mg,n(BG) at primes dividing the order of G. Recall
that we work over Spec Z[1/m] throughout this article, since in [Abramovich et al.
2003] the stack Mg,n(BG) is only shown to have any nice properties at all when
|G| is invertible on the base. After the publication of that article, the reduction of
Mg,n(BG) at bad primes has been tentatively studied, for instance in [Abramovich
et al. 2011, Section 6] for the case G = µ2. However, the reduction of X (m) at
primes dividing m is much better understood: the appropriate analogue of level
structures that should be used to give a modular interpretation over Spec Z on the
open part Y (m) was worked out in detail in [Katz and Mazur 1985]. In [Conrad
2007] the boundary is given a modular interpretation as well, and it is shown that
X (m) is then a flat proper Deligne–Mumford stack over Spec Z. A natural first step
for studying the reduction of Mg,n(BG) may then be to see what the appropriate
analogues of the theorems and methods for modular curves are in this particular
case. Recent progress on the questions raised in this paragraph can be found in
[Niles 2012], which in particular proves a generalization of the results of this section
over Spec Z.

Remark 3.4. As a sanity check, let us study the boundary of M1,1(m). We already
know from the results of this section that the boundary should consist of a finite set
of points, namely φ(m) times the number of cusps of the curve X (m). Recall from
[Diamond and Shurman 2005, Section 3.8] that the number of cusps of X (m) is

1
2

m2
∏
p|m

(
1− 1

p2

)
if m ≥ 3, and 3 if m = 2. Moreover, following their derivation of this formula, the
factor

m2
∏
p|m

(
1− 1

p2

)
arises as the number of order m elements of (Z/mZ)2.

Let us see how one may compute this number of cusps also by considering
admissible G-torsors over a rational curve with a node, where G = (Z/mZ)2. We
work over a separably closed field. Let us first consider admissible torsors over the
normalization of the curve. Such torsors correspond to tame covers of P1

\ {x, y},
where x and y are two points. Fix an isomorphism

π tame
1 (P1

\ {x, y})∼= Ẑ

and a choice σ of generator of tame inertia around x . Tame G-coverings correspond
bijectively to homomorphisms π tame

1 → G by [Grothendieck 1971, XIII, 2.12]. By
[Abramovich et al. 2003, 6.1.2], σ should map to an element of order m, of which
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there are
m2
∏
p|m

(
1− 1

p2

)
.

Note that all of the resulting G-covers are disconnected since the homomorphism
surely is not surjective. Extend the covering to a branched cover of P1 using
Abhyankar’s lemma [Grothendieck 1971, appendice 1, 5.2]. The condition that we
should obtain a connected admissible torsor over the nodal curve imposes restrictions
on how to identify the fibers over the two branch points. Both branch points are
torsors for the group G/H , where H is the stabilizer, so there are |G/H | = m
possible isomorphisms (as torsors) between the fibers. If we choose a global section
of the admissible torsor over P1 and thus get compatible trivializations of the torsors
over both branch points, the condition that we should get a connected cover can be
expressed by saying that the identity on one fiber should be glued to a generator on
the other. There are thus φ(m) such gluings, and all of them produce nonisomorphic
admissible torsors. However, after gluing the branch points together, we can no
longer tell the points x and y apart and hence neither σ and σ−1. So we no longer
have an element of order m in G, only a distinguished unordered pair {g, g−1

}.
When m ≤ 2 this makes no difference as g = g−1 for all g ∈ G, but for m ≥ 3 we
must divide the number of points on the boundary by two. Thus we obtain exactly
the right number of cusps.

4. The alternating part of cohomology

Remark 4.1. Throughout this section, H•c denotes compactly supported cohomol-
ogy taking values in either the category of mixed Hodge structures or `-adic Galois
representations. We occasionally write out Q-coefficients or mention the phrase
“Hodge structure” for notational convenience, but this should not be interpreted as a
preference for either cohomology theory.

Let us split the space M1,n(m) into three pieces according to the dual graph of
the base curve C :

(1) the interior M1,n(m) where the dual graph has a single vertex of genus one;

(2) the subspace M#
1,n(m) where the dual graph is a necklace, that is, an N -cycle

of genus zero vertices for some positive integer N ;

(3) the union of all remaining strata. Explicitly, these are all graphs where a
nonempty forest of genus zero vertices has been attached to one of the dual
graphs appearing in case (1) or (2).

We write M#
1,n for M#

1,n(1). We begin by computing the alternating part of the
cohomology of each of these pieces separately.
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If M is any Sn-module, let M[sgn] denote the subspace where Sn acts by the
alternating representation.

Contribution from the interior. The arguments in the next proposition are similar
to those in [Consani and Faber 2006], and we omit some details.

Proposition 4.2. Let π :E→M1,1(m) denote the universal elliptic curve. Let n> 1.
Then

H i
c (M1,n(m),Q)[sgn] ∼=

{
H 1

c (M1,1(m),Symn−1 R1π∗Q) if i = n,
0 otherwise.

Proof. We first show that the natural Sn-equivariant open embedding

M1,n(m) ↪→ En−1

into the (n−1)-st fibered power of the universal curve induces an isomorphism
H•c (M1,n(m))[sgn] ∼= H•c (E

n−1)[sgn]. From the long exact sequence

H•c (M1,n(m))→ H•c (E
n−1)→ H•c (T )→ H•+1

c (M1,n(m))

(see [Peters and Steenbrink 2008, Corollary 5.51]), where T denotes the comple-
ment, it suffices to show that the alternating representation does not occur in the
cohomology of T . This in turn reduces, by the same exact sequence and inclusion-
exclusion, to showing this fact for a subspace of En−1 defined by two or more
points coinciding. But on any such subspace there is a transposition acting trivially,
showing that the alternating representation cannot occur in its cohomology.

Next, consider the projection map σ : En−1
→M1,1(m). The first observation

is that the action of Sn maps each fiber to itself: this is clear for the subgroup
of the last n− 1 points, and for the first point one also needs to compose with a
translation on the elliptic curve. Hence it makes sense to study the Sn-action on the
complex R•σ!Q= R•σ∗Q. By computing fiberwise it is seen [Consani and Faber
2006, Proposition 1] that the alternating part is concentrated in degree n− 1 and
forms a subspace isomorphic to Symn−1 R1π∗Q. Moreover, it is known that the
local system Symn−1 R1π∗Q (respectively the smooth `-adic sheaf Symn−1 R1π∗Q`)
has nonvanishing cohomology only in degree 1. The Leray spectral sequence
with compact support for σ degenerates at the E2 level: since M1,1(m) is a non-
compact curve, there can be at most two nonzero columns. Thus one finds that the
alternating part of the cohomology is concentrated in degree n and isomorphic to
H 1

c (M1,1(m),Symn−1 R1π∗Q), as claimed. �

Contribution from necklaces. In this section we study the alternating part of the
cohomology of M#

1,n(m) and show that χc
(
M#

1,n(m)
)
[sgn] has weight zero.

A first observation is that there is a surjection

M#
1,n(m)→M#

1,1(m)= ∂M1,1(m)
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given by forgetting points, with the property that each fiber is mapped to itself under
the Sn-action, and the fibers are permuted transitively by the action of SL(2,Z/mZ)

on M1,n(m). Hence it is sufficient to consider the cohomology of a single fiber over
a cusp of ∂M1,1(m). Let X be such a fiber.

Consider a geometric point ξ of X corresponding to an admissible torsor P→C .
Suppose we forget all but one of the marked points of C . Then we may stabilize C to
a nodal rational curve C ′, and as in [Abramovich and Vistoli 2002, Proposition 9.1.1]
we get a unique admissible torsor P ′→ C ′ over the stabilized curve. (The previous
sentence just describes the forgetting points-morphism.) Then the admissible torsor
P→ C is determined up to isomorphism by the admissible torsor P ′→ C ′— that
is, which cusp of M1,1(m) the point ξ maps to — and the stabilization map C→C ′.
This fact is easiest to see using twisted curves, where the corresponding torsor
P→ C is simply the pullback of P ′→ C′.

One is tempted to conclude that the admissible torsor P→ C is determined up
to isomorphism by C and the point in ∂M1,1(m) it maps to under stabilization, and
hence that the fiber X has the same coarse moduli space as M#

1,n . This is however
not true, since in the previous paragraph the map C→ C ′ had to be included in the
data.

Definition 4.3. Let M"
1,n denote the moduli space of stable n-pointed curves of

genus 1 whose dual graph forms a necklace, equipped with an orientation on the
edges of the dual graph inducing a cyclic ordering of the vertices.

Proposition 4.4. If m ≤ 2, then the coarse moduli space of X is the coarse moduli
space of M#

1,n . If m ≥ 3, X has coarse moduli space M"
1,n .

Proof. As before, let P→ C be a geometric point of X, and P ′→ C ′ the point of
∂M1,1(m) it maps to under the forgetting points-morphism.

The nodal rational curve C ′ has a unique nontrivial automorphism, so given the
pointed curve C , the map C→ C ′ is determined up to this involution. Let x be the
node of C ′. Under the isomorphism

π tame
1 (C ′ \ {x})∼= Ẑ,

this involution induces multiplication by −1. In general an automorphism of C
induces the identity on C ′ or this involution, according to whether the automorphism
preserves or reverses the cyclic ordering of the vertices in the necklace. Thus the
admissible torsor P→ C is uniquely determined by C precisely if the class of P ′

in the group
Hom(π tame

1 (C ′ \ {x}), (Z/mZ)2)

is invariant under multiplication by −1; otherwise, P is uniquely determined by C
once we fix a cyclic ordering of its dual graph. By [Abramovich et al. 2003, 6.1.2] the
class of P ′ has order m in the group, so it is invariant under −1 if and only if m ≤ 2.
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There is clearly a forgetful morphism from X to M#
1,n when m ≤ 2, and to M"

1,n
when m ≥ 3. The discussion above shows that this forgetful morphism is bijective
on isomorphism classes. �

Remark 4.5. While we have an isomorphism of coarse moduli spaces in the
previous proposition, the fiber X is far from being isomorphic to M#

1,n or M"
1,n ,

respectively. First of all there is the issue of rigidification, but even taking that into
account one also has so-called “ghost automorphisms” [Abramovich et al. 2003,
Section 7]. In fact the forgetting points-morphisms are never representable when
one works with the spaces Mg,n(BG).

Remark 4.6. An alternative proof of the preceding proposition uses the evaluation
maps Mg,n(X)→ I(X) [Abramovich 2008]. When X= BG and G is abelian, the
points of I(BG) correspond (after a choice of a primitive root) to the elements of
G, and we can describe the evaluation maps as associating to each marked point
the monodromy around the marking of the corresponding admissible torsor. This
clarifies the relationship with the computations in π tame

1 above. One can define
evaluation maps not just for markings but also for each branch of a node, and so
for every half-edge of the dual graph one gets a decoration by an element of G.
For instance, Jarvis and Kimura remark that “the moduli spaces Mg,n(BG) have
boundary strata indexed by stable graphs whose tails and half-edges are decorated
by elements of G (up to conjugation)” [2002].

It is not hard to show that specifying the decoration of a single half-edge on a
necklace determines all of the other decorations, since the product of both elements
along an edge should always be the identity in G (otherwise the cover is not
admissible), and the product of all elements incident to a genus zero component
should also be the identity (by a computation in the [étale] fundamental group). By
[Abramovich et al. 2003, 6.1.2] all half-edges of a stratum in M#

1,n(m) are decorated
by an element of order m, so this decoration is invariant under the dihedral symmetry
if and only if m ≤ 2.

We now study the two generating series
∞∑

n=1
χc
(
M#

1,n
)
[sgn]tn

∈ K0(MHSQ)⊗Q[[t]]

and
∞∑

n=1
χc
(
M"

1,n
)
[sgn]tn

∈ K0(MHSQ)⊗Q[[t]]

of compactly supported Euler characteristics, taken in the Grothendieck ring of
rational mixed Hodge structures. The reason for passing to Euler characteristics is
that we want to compute with each stratum separately, and this is possible since the
compactly supported Euler characteristic satisfies the scissor relation



Cusp form motives and admissible G-covers 1211

χc(X \ Y )= χc(X)−χc(Y )

for Y ⊆ X constructible, as well as the usual Künneth formula.

Remark 4.7. Given a dual graph 0 corresponding to a stratum in Mg,n , the coho-
mology of the stratum is given by⊗

v∈Vert0
H•(Mg(v),n(v))Aut0 (1)

where the subscript denotes coinvariants with respect to the group action. In the
case of M"

1,n we must replace Aut0 with the cyclic subgroup of index two that
preserves the cyclic ordering.

The following is proven in [Consani and Faber 2006]:

Proposition 4.8. The Euler characteristic χc
(
M#

1,n

)
[sgn] is pure of weight zero.

We outline their proof, which uses the theory of modular operads. Let3=
⊕

n 3
n

be the ring of symmetric functions. We identify 3n with the representation ring
of Sn , and we identify virtual representations of Sn in the category of mixed
Hodge structures with elements of 3n

⊗ K0(MHSQ), as in [Getzler 1995]. First
the generating function

∞∑
n=1

χc
(
M#

1,n
)
∈3⊗̂K0(MHSQ)

is studied. This sum is naturally interpreted as a sum over graphs, and the so-called
semiclassical approximation provides an explicit expression for it. Let M be the
generating function

∞∑
n=3

χc(M0,n) ∈3⊗̂K0(MHSQ).

It follows from the main theorem of [Getzler 1998] (the semiclassical approximation)
that

∞∑
n=1

χc
(
M#

1,n
)
=

(
−

1
2

∞∑
n=1

φ(n)
n

log(1− pn)

)
◦
∂2M

∂p2
1
+

∂M
∂p2
(2+ ∂M

∂p2
)+ ∂2M

∂p2
1

4(1− p2 ◦
∂2M
∂p2

1
)
,

where ◦ denotes plethysm of symmetric functions. Consani and Faber proceed to
use results of Getzler on the structure of H•(M0,n) as an Sn-representation to show
that only the top-degree cohomology H n−3

c (M0,n), which is pure of weight zero,
can contribute nontrivially to the alternating part.

Remark 4.9. In their proof of, Consani and Faber compute an exact expression for
χc
(
M#

1,n

)
[sgn]. However, we prefer to deduce this from Theorem 5.1.
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We claim that similarly

∞∑
n=1

χc
(
M"

1,n
)
=

(
−

∞∑
n=1

φ(n)
n

log(1− pn)

)
◦
∂2M

∂p2
1
. (2)

A combinatorial proof of Getzler’s semiclassical approximation, using wreath
product symmetric functions to directly sum over necklaces up to dihedral symmetry,
is given in [Petersen 2012]. In that proof, the first term of Getzler’s formula
corresponds to symmetries under rotation, and the second term corresponds to
symmetries under reflections. Then the above formulas show that going from
dihedral to cyclic symmetry corresponds to discarding all reflection terms (and
multiplying by two). However, as we shall see now, formula (2) can be proved
directly using little more than the definition of a plethysm of S-modules.

Definition 4.10. A (virtual) S-module V is the data of a (virtual) Sn-representation
V(n) for each positive integer n.

We consider only S-modules in the ring category of mixed Hodge structures.

Definition 4.11. Let V and W be S-modules. We define their direct sum V⊕W

componentwise. We define their tensor product by

(V⊗W)(n)=
⊕

k+l=n

IndSn
Sk×Sl

V(k)⊗W(l).

This makes the category of S-modules a symmetric monoidal category.

Definition 4.12. Let V and W be S-modules. The plethysm V ◦W is defined by

(V ◦W)(n)=
∞⊕

k=1

V(k)⊗A[Sk ] (W
⊗k)(n), (3)

where (W⊗k)(n) is considered as an Sk-module by permuting the factors.

As in the usual theory of symmetric functions, the definitions of product and
plethysm extend to virtual S-modules. Let M be the virtual S-module defined by

M(n)=
{
χc(M0,n) if n ≥ 3,
0 otherwise.

Note that (
∂2M

∂p2
1

)
(n)= ResSn+2

Sn
χc(M0,n+2)

for n ≥ 1. Let moreover Ass denote the S-module defined by

Ass(n)= IndSn
Z/nZ 1.
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Proposition 4.13.
(

Ass ◦ ∂
2M

∂p2
1

)
(n)= χc

(
M"

1,n
)
.

Proof. For any Sn-module M and any subgroup H of Sn ,

IndSn
H 1⊗A[Sn] M = 1⊗A[H ] M = MH ,

the coinvariants under H . Also,(
∂2M

∂p2
1

)⊗k

(n)=
⊕

n1+···+nk=n

k⊗
i=1

χc(M0,ni+2)

by the additivity and multiplicativity of the Euler characteristic. Hence we are done
by comparing equations (1) and (3). �

Proposition 4.14. There is an equality of generating series

∞∑
n=1

Ass(n)=−
∞∑

n=1

φ(n)
n

log(1− pn).

Proof. Use the results of [Macdonald 1995, Chapter 1, Section 7, Example 4]. See
also [Getzler and Kapranov 1998, Example 7.6.2]. �

Proposition 4.15. The alternating part of χc
(
M"

1,n

)
is pure of weight zero.

Proof. The alternating part of the right hand side of (2) is shown to have weight
zero in [Consani and Faber 2006, Lemma 7 and 8]. �

Remark 4.16. The notions of S-modules and plethysm arise naturally when study-
ing operads, an operad being exactly a monoid in the category of S-modules with
respect to plethysm. In this context the definition of plethysm can be understood
graphically. Namely, if V is an operad, one often thinks of V(n) as spanned by
graphs with one output leg and n input legs, with the Sn-action corresponding to
permutation of the inputs. Then V ◦W corresponds to attaching the output legs of
the graphs corresponding to W to the input legs of the graphs corresponding to V

in all possible ways.
This way of thinking also makes the previous propositions more or less trivial. By

our definition of Ass(n), we can think of it as the Sn-module spanned by necklaces
considered up to cyclic symmetry. To make this picture more operadic, we can
replace necklaces by corollas (single vertices with several input legs) by placing
a vertex in the middle of the necklace and drawing an input leg from each node
of the necklace to the vertex in the middle. Then Ass(n) is spanned by corollas
with n cyclically ordered input legs, or equivalently, by corollas equipped with an



1214 Dan Petersen

embedding in the plane up to ambient isotopy. (In terms of operads, Ass is the
underlying S-module of the cyclic associative operad shifted by one.)

Also, M(n) is given by marking n+ 2 points on P1 and then fixing two of them,
so in terms of dual graphs there are two fixed legs and the remaining are permuted
by the Sn-action. To attach n legs at a node of a necklace we need to have n+ 2
marked points on P1, where the last two vertices are those which we glue to the
incident components. Note that the last two vertices are naturally ordered as one is
attached to the edge incident in the clockwise direction of the dual graph, and the
other is attached counterclockwise.

So Ass ◦M is the result of attaching extra legs to a single cyclically oriented
corolla, or equivalently a necklace, which is exactly what we want.

The remaining strata.

Proposition 4.17. The alternating representation does not occur in the cohomology
of any stratum where a nonempty forest of genus zero vertices has been attached to
a stable dual graph.

Proof. Let 0 be the dual graph of such a stratum of M1,n(m). Let v be an extremal
vertex of one of the attached trees, say with N incident half-edges. Let 0′ be the
dual graph given by deleting v and these half-edges. The graph 0′ defines a stratum
of M1,n−N+1(m). If we let M(0) and M(0′) denote the corresponding strata, then
there is an isomorphism

M(0)→M(0′)×M0,N .

The morphism M(0)→M(0′) is the morphism that forgets all the points on the
component v, and the morphism to M0,N remembers only the markings on the
component. This is well-defined since there is at least one marked point on v, so
no automorphism of the dual graph could interchange the component with any
other. To define an inverse, use that any admissible torsor over the component
v is necessarily étale, and since P1 is simply connected the torsor is necessarily
trivial. Hence given an admissible torsor corresponding to an object of M(0′)

there is a unique extension to an admissible torsor over the attached component v
(corresponding to an object of M0,N ).

It follows in particular that

H•(M(0))= H•(M(0′))⊗ H•(M0,N ).

Now [Consani and Faber 2006, Lemma 5] describes which SN -representations may
occur in the cohomology of M0,N , and the fact that the alternating representation
cannot occur in the left hand side follows by the same Frobenius reciprocity argument
as in [ibid., Lemma 6]. �



Cusp form motives and admissible G-covers 1215

5. Cusp form motives

Let Vn denote the local system Symn R1π∗Q on M1,1(m), where π is the projection
from the universal elliptic curve. Consider for all n the natural morphisms

H 1
c (M1,1(m),Vn)→ H 1(M1,1(m),Vn).

We define the parabolic cohomology to be the image of this morphism, and the
Eisenstein cohomology to be the kernel. The parabolic cohomology is denoted
H 1
!
(M1,1(m),Vn). The weight filtration on H 1

c (M1,1(m),Vn) has only two steps,

0⊂W0 ⊂Wn+1 = H 1
c (M1,1(m),Vn),

where W0 is the Eisenstein cohomology and Wn+1/W0 is isomorphic to the parabolic
cohomology. See for instance [Faltings 1987, §4].

Theorem 5.1. The alternating part of the cohomology of M1,n(m) is pure of weight
n and coincides with the parabolic cohomology groups

H 1
!
(M1,1(m),Symn−1 R1π∗Q)

and H 1
!
(M1,1(m),Symn−1 R1π∗Q`) in Betti and `-adic cohomology, respectively.

Proof. The proof is similar to [Scholl 1990, Section 1]. Consider the long exact
sequence [Peters and Steenbrink 2008, Corollary 5.51]

H•c (M1,n(m))→ H•c (M1,n(m))→ H•c (∂M1,n(m))→ H•+1
c (M1,n(m)).

Take the alternating part of the sequence. H•c (M1,n(m))[sgn] is concentrated in
homological degree n by Proposition 4.2, so there is an isomorphism

H i
c (M1,n(m))[sgn] → H i

c (∂M1,n(m))[sgn]

for all i except n− 1 and n, and a surjection

H n
c (M1,n(m))[sgn] → H n

c (∂M1,n(m)[sgn].

Since M1,n(m) is a smooth and proper DM-stack, H i
c (∂M1,n(m))[sgn] is therefore

pure of weight i for all i except possibly i = n− 1.
Since we know that χc(∂M1,n(m))[sgn] has weight zero, this means that any

nonvanishing cohomology in H i
c (∂M1,n(m))[sgn] for i /∈ {0, n − 1} must cancel

against some cohomology in H n−1
c (∂M1,n(m))[sgn]. But H i

c (−) has weight at
most i for all i , so

H i
c (∂M1,n(m))[sgn] = 0 for all i ≥ n.

Moreover, since H i
c (∂M1,n(m))[sgn]∼=H i

c (M1,n(m))[sgn] for i /∈{n−1, n}, Poincaré
duality for M1,n(m) shows that H i

c (∂M1,n(m))[sgn] vanishes also for i < n− 1.
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Thus the alternating part of the above long exact sequence is concentrated in the
short exact sequence

0→ H n−1
c (∂M1,n(m))[sgn] → H n

c (M1,n(m))[sgn] → H n
c (M1,n(m))[sgn] → 0.

Now H n
c (M1,n(m))[sgn]∼= H 1

c (M1,1(m),Vn−1) by Proposition 4.2 and we know the
weight filtration on this cohomology group by the remarks preceding this proposition.
Since we also know the weights on the other two spaces in the sequence, the only
possibility is that the first map is the inclusion of the Eisenstein cohomology and
the second map is the projection to the parabolic cohomology. �

As first observed by Toën [2000], any smooth and projective DM-stack X of
finite type over a field k defines a Chow motive over k. In the special case of
X=Mg,n(BG), where G is a finite group, one can also argue as follows: Combining
the results of [Abramovich et al. 2007, Section 4] and [Kresch and Vistoli 2004,
Theorem 2.1], we get a finite morphism f : X → X of degree m where X is a
smooth and projective variety over k. We may then define h(X) to be the Chow
motive defined by X and the projector 1

m [ f
∗
] ◦ [ f∗].

The stack M1,n(m) is the disjoint union of φ(m) open and closed substacks, each
of which corresponds to symplectic level-m structure. Let Ms

1,n(m) be one of these
open and closed substacks.

Theorem 5.2. The Chow motive defined by Ms
1,n(m) and the projector onto the

alternating representation is the motive associated to cusp forms of weight n+ 1
for 0(m).

Proof. The results of Section 3 of this paper identifies the modular curve X (m)
with the rigidification of Ms

1,1(m), and similarly for Y (m) and Ms
1,1(m). The `-adic

Galois representations classically associated to cusp forms of level m and weight
n+ 1 are the parabolic cohomology groups

H 1
!
(Y (m),Symn−1 R1π∗Q`).

It remains to identify the parabolic cohomology groups on Ms
1,1(m) and Y (m) with

each other. Let ρ :Ms
1,1(m)→Ms

1,1(m)((Z/mZ)2∼= Y (m) be the rigidification. The
group (Z/mZ)2 acts trivially on the universal elliptic curve over Ms

1,1(m) and hence
also on Symn−1 R1π∗Q`, so R0ρ∗ is fiberwise an isomorphism of local systems
while all higher direct images vanish. Hence by the Leray spectral sequence the
two cohomology groups coincide. �

Remark 5.3. By assuming that n > 1 in the definition of the Chow motive M we
have ruled out cusp forms of weight 2. These motives are instead well understood
in terms of Jacobians of modular curves.
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6. Hecke operators

Let p and m be positive coprime integers. Throughout this section, we denote by
G the group (Z/mZ)2, and by H the group Z/pZ.

Definition 6.1. Let M1,n(m; p) be the open and closed substack of

M1,n(BG× B H)×B H Spec Z[1/pm]

where the admissible G-torsor and H -torsor are connected and unramified at the
marked points. The fiber product is taken over the evaluation map at the first marked
point, that is, the H -torsor is trivialized over that marking.

This stack will be used to define an Sn-equivariant correspondence from M1,n(m)
to itself, such that when p is a prime, the induced endomorphism of the realization
of the cusp form motive is exactly the Hecke operator Tp.

We define two maps

φ,ψ :M1,n(m; p)→M1,n(m).

The map φ is induced from the obvious map BG × B H → BG. Concretely, we
just forget the admissible H -torsor.

To define the map ψ , consider an object of M1,n(m; p)(S). Let PG → C and
π : PH → C be the two admissible torsors. Since there is a distinguished lifting of
the identity section to PH it has a canonical structure of a generalized elliptic curve
(see the arguments of Section 3) and Psm

H → C sm is a morphism of group schemes
over S. One gets a dual isogeny

π∨ : C sm
→ Psm

H

defined by the property that π∨ ◦π = [p]. Thus the remaining sections S→C also
get canonical lifts to PH .

Moreover, we may pull back PG → C to an admissible cover π∗PG → PH ,
unramified away from the nodes. To see this, it is most convenient to work instead
with the associated twisted curves PG,PH and C. Then PG and PH are genuine
torsors over C and the pullback π∗PG is just the ordinary fibered product PH×C PG .
By the argument of [Abramovich et al. 2003, Lemma 2.2.1], π∗PG is untwisted.
Moreover, π∗PG is a connected curve: since the groups H and G have coprime
exponents by assumption, the surjectivity of the maps

π1(C)→ H and π1(C)→ G

implies the surjectivity of the product map to H ×G.
Hence π∗PG → PH is an n-pointed, in general only prestable, curve with a

connected admissible G-torsor, and by stabilization [Abramovich and Vistoli 2002,
Proposition 9.1.1] we get an object of M1,n(m)(S). This defines the map ψ .
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The argument above also shows how to define an Sn-action on M1,n(m; p). It
is clear how the subgroup permuting the last n− 1 points acts. For a permutation
switching the first and i-th point, we use the dual isogeny induced by the trivialization
of the H -torsor over the identity section to get a trivialization over the i-th section
as well. With this definition, both φ and ψ are Sn-equivariant.

Theorem 6.2. Let p be a prime. The composition [φ∗] ◦ [ψ∗] defines an endomor-
phism of the Chow motive M. The induced endomorphism of the Betti realization
coincides with the direct sum of the classical Hecke operator Tp acting on holo-
morphic cusp forms and its conjugate acting on antiholomorphic cusp forms, and
the induced endomorphism of the `-adic realizations is the `-adic analogue of the
Hecke operator, satisfying the Eichler–Shimura relation.

Proof. Like [Scholl 1990], we show that the induced endomorphism on the open part

H•(M1,n(m))[sgn]

coincides with the action of the Hecke operator on both cusp forms and Eisenstein
series. It may be helpful to compare this proof with the proof of Proposition 4.2.
Consider first the following diagram:

M1,n(m) �
φ

M1,n(m; p)
ψ- M1,n(m)

M1,1(m)
?

�φ
′

M1,1(m; p)
? ψ ′- M1,1(m)

?

By allowing markings to coincide we get an open embedding of all the spaces on
the top row into fibered powers of the respective universal elliptic curves over the
spaces on the bottom row:

En−1 �φ E′
n−1 ψ- En−1

M1,1(m)
?

�φ
′

M1,1(m; p)
? ψ ′- M1,1(m)

?

One checks that the definition of φ and ψ makes sense in exactly the same way
also on these bigger spaces, and that φ and ψ are equal to the (n−1)-st fibered
power of the morphism between universal curves induced by φ′ and ψ ′.

By the same arguments as in the proof of Proposition 4.2, one finds that: (i) these
open embeddings induce an isomorphism on the alternating part of the cohomology,
(ii) the degeneration of the Leray spectral sequence implies that the alternating
part of the cohomology of each space on the top row is given by the cohomology
of the local system Symn−1 R1π∗Q on each space on the bottom row, where π is
the projection from the universal curve. By the functoriality of the Leray spectral
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sequence, the endomorphism on H•(M1,n(m))[sgn] induced by [φ∗][ψ∗] is the
same as the one induced on

H 1(M1,1(m),Symn−1 R1π∗Q)

by φ′ and ψ ′. As in Section 3 we may rigidify M1,1(m) and M1,1(m; p) with respect
to the action of (Z/mZ)2; doing so, one finds by arguments very similar to those
of Section 3 that the resulting spaces are isomorphic to the spaces called Mm and
Mm,p, respectively, in [Deligne 1971], and that the maps φ′ and ψ ′ coincide with the
morphisms q1 and q2 defined in [Deligne 1971, Equation 3.14]. As in Theorem 5.2
rigidification induces an isomorphism on cohomology, and the proof follows by
[Deligne 1971, Proposition 3.18]. �

Remark 6.3. As done by [Scholl 1990], the Hecke operators can be used to decom-
pose the cusp form motives. Let f be a normalized newform of some weight and
level. We would like to associate a motive to f , which should be a submotive of the
motive M we have already associated to the space of all cusp forms of this weight and
level. We consider now M as a Chow motive modulo homological equivalence (say
with respect to Betti cohomology) instead, and consider the subalgebra H of End M
generated by all Tp. This subalgebra is semisimple because its image under the
Hodge realization is semisimple. The newform f lies in a 1-dimensional eigenspace
for all the Tp, and this eigenspace is a simple H -submodule, so there exists an
idempotent in the algebra H whose image is this eigenspace. This idempotent
defines a Chow motive modulo homological equivalence which is associated to f .

Remark 6.4. Another way of decomposing cusp form motives into smaller pieces
comes from looking also at the congruence subgroups 01(m) and 00(m). One
may define a space of pointed stable curves with 01(m)-level structure in much
the same way as we have done in this article by considering the moduli spaces
M1,n(BZ/mZ) instead of B(Z/mZ)2. Explicitly, we look at the open and closed
substack consisting of connected admissible torsors which are unramified over
each marked point. The arguments in this article go through with only very minor
changes. One finds by arguments similar to those in Section 3 that for n = 1 the
curve X1(m) is recovered, and just as in this article it is seen that by projecting
onto the alternating representation of Sn one isolates the part of the cohomology
associated to cusp forms. Moreover, there is an action of U (Z/mZ) on the space,
under which the cohomology decomposes into pieces indexed by the characters
of U (Z/mZ). This way one can construct also motives associated to spaces of
cusp forms of given level, weight and nebentypus. This has the advantage over the
construction with Hecke operators that it does not take us out of the category of
Chow motives modulo rational equivalence.
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