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Aaron Levin and David McKinnon

Let k be a number field, f (x)∈ k[x] a polynomial over k with f (0) 6= 0, and O∗k,S
the group of S-units of k, where S is an appropriate finite set of places of k. In this
note, we prove that outside of some natural exceptional set T ⊂ O∗k,S , the prime
ideals of Ok dividing f (u), u ∈ O∗k,S \ T , mostly have degree one over Q; that is,
the corresponding residue fields have degree one over the prime field. We also
formulate a conjectural analogue of this result for rational points on an elliptic
curve over a number field, and deduce our conjecture from Vojta’s conjecture.
We prove this conjectural analogue in certain cases when the elliptic curve has
complex multiplication.

1. Introduction

If a is an algebraic integer in a number field k and f (x) ∈ Ok[x] a polynomial,
then the ideals dividing f (a) are simply the ideals I such that f (a)≡ 0 (mod I ).
Heuristically, the larger the cardinality of the residue ring Ok/I , the smaller the
probability that f (a) and 0 are the same.

The purpose of this paper is to make this notion precise, to generalize it, and to
prove it in the case described above. More specifically, in Theorem 2.1, using a
result of Corvaja and Zannier, we prove a precise version of this notion for Gm , and
in Theorem 3.4, we state a conjectural analogue of Theorem 2.1 for elliptic curves
over a number field, and show that it is a consequence of Vojta’s conjecture [1987;
2011].

A theorem of the second author proves Vojta’s conjecture in a relevant special case,
and we deduce an unconditional version of Theorem 3.4 in that case. Specifically,
if the elliptic curve E/k has complex multiplication, and if the algebraic point
P is defined over the compositum of k with End(E)⊗Q, then we can deduce
Theorem 3.4 without the hypothesis that Vojta’s conjectures are true.
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2. Main theorem

Let f (x) ∈ k[x] be a polynomial over a number field k. The heuristic mentioned in
the introduction suggests that a prime p of k is likelier to divide f (a) for a ∈ k if
the residue field Ok/p is small. Our main theorem will give one possible precise
interpretation of this notion, where we view Ok/p as being small if Ok/p has degree
one over its prime field. There is, however, an obvious way that our heuristic can
fail. Suppose, for example, that f and a, and hence f (a), are actually defined over
a proper subfield k ′ of k. Then the size of Ok′/(p∩Ok′), and not Ok/p, is clearly the
relevant quantity. In the simplest case, when k/Q is Galois and f is irreducible,
our main theorem says, in essence, that for S-units u of k this is in fact the only
way our heuristic can fail, that is, f (u) is “mostly” supported on primes of k of
degree one over Q unless f (u) is rational, in an appropriate sense, over a proper
subfield of k.

The statement of the main theorem requires a fair amount of notation. We
summarize this notation as follows:

k Extension of Q of degree d 6= 1
L Galois closure of k over Q

Gal(L/Q) The Galois group of L over Q

Ok Ring of integers of k
f (x) Nonconstant polynomial in Ok[x] with f (0) 6= 0
f1, . . . , fN The monic irreducible factors of f over L
S Finite set of places of k containing the archimedean places

such that if v ∈ S and v and v′ lie above the same rational
prime p ∈ Z then v′ ∈ S.

Ok,S Ring of S-integers of k
O∗k,S Group of S-units of k
τ The involution τ(u)= u−1 of O∗k,S .
O
∗φ
k,S For a homomorphism φ, the subgroup of O∗k,S consisting of

elements u such that φ(u)= u.
I ( f (u)) The ideal generated by f (u) in the ring Ok,S

J ( f (u)) Smallest ideal dividing I ( f (u)) such that for every prime
p dividing J ( f (u)), Ok,S/p has degree greater than one
over the prime field

N (I ) The norm of I over Q, for any ideal I of Ok or Ok,S

Hk(x) The relative multiplicative Weil height of x ∈ k
H(x) The absolute multiplicative Weil height of x ,

equal to Hk(x)1/d for x ∈ k
h(x) The absolute logarithmic Weil height of x , equal to log H(x)
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We can now state the main theorem:

Theorem 2.1. Let ε > 0. Let f (x) ∈ Ok[x] satisfy f (0) 6= 0. Then there exists a
finite set of places S′ of L such that for every u ∈ O∗k,S either

(a) N (J ( f (u))) < H(u)ε

or
(b) fi (u)OL ,S′ = αOL ,S′ (1)

for some i and some α that lies in a proper subfield of L not containing k (in
particular, if k/Q is Galois, α lies in a proper subfield of k).

With the exception of finitely many elements, the set of elements in O∗k,S not
satisfying (a) is contained in a finite union of cosets in O∗k,S of the form

T = u1O∗σ1
k,S ∪ · · · ∪ um′O

∗σm′

k,S ∪ um′+1O
∗σm′+1τ

k,S ∪ · · · ∪ umO∗σmτ
k,S ,

where u1, . . . , um ∈ O∗k,S and σ1, . . . , σm ∈ Gal(L/Q) \Gal(L/k) (not necessarily
distinct) are effectively computable.

An alternative formulation of Theorem 2.1 involving only heights is given in
Corollary 2.6. We mention also that the group O∗σi

k,S is the same as O∗F,SF
, where F

is the fixed field of σi and SF is the set of places of F lying below places of S.
Note that H( f (u))� H(u)deg f and that

Hk( f (u))= Cu N (I ( f (u)))= Cu N (J ( f (u)))N (I ( f (u))/J ( f (u))),

where Cu is a real number (roughly equal to the archimedean part of the height of
f (u)−1) satisfying Cu � H(u)ε (see Lemma 2.7). Thus, Theorem 2.1 implies that
for u ∈ O∗k,S \ T , f (u) is “mostly” supported on primes of k of degree one over Q.

Finally, let us mention some possible generalizations of Theorem 2.1. Firstly, we
note that for any integer n and u ∈ O∗k,S , we have J (un f (u)) = J ( f (u)) and
un f (u)Ok,S = f (u)Ok,S . Thus, Theorem 2.1 immediately extends to Laurent
polynomials (that is, f (x) ∈ k[x, 1/x]). However, if f (x) has a zero or pole
at x = 0, then the interpretation that for u ∈ O∗k,S \ T , f (u) is “mostly” supported
on primes of k of degree one over Q is no longer necessarily valid (the inequality
N (I ( f (u)))� Hk( f (u))1−ε may not hold in the previous remark). More generally,
Theorem 2.1 may be extended in a straightforward way to rational functions (appro-
priately using fractional ideals in place of integral ideals). In a different direction,
it seems to be an interesting problem to formulate an appropriate generalization of
Theorem 2.1 that is valid for S-integers (as opposed to just S-units), or to prove a
multivariable analogue.

Before we begin the proof, we introduce some notation. For a number field k
we denote the set of inequivalent places of k by Mk . We define the function log−

for positive real numbers x by log−(x)=min{0, log(x)}. For a place v ∈ Mk , we
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normalize the corresponding absolute value | · |v in such a way that the product
formula holds and H(x)=

∏
v∈Mk

max{1, |x |v}.

Proof of Theorem 2.1. Consider the set

U = {u ∈ O∗k,S | N (J ( f (u)))≥ H(u)ε}.

Let L be a Galois closure of k over Q. Let p be a prime of Ok of inertia degree
greater than one over Q, lying above a rational prime p ∈ Z. Let q be a prime of
OL lying above p. Then q again has inertia degree greater than one over Q. Let
D = D(q/p) ⊂ Gal(L/Q) be the decomposition group of q and let L D be the
decomposition field. Then k 6⊂ L D since p has inertia degree greater than one. It
follows that there exists σ ∈ Gal(L/Q) such that σ(q)= q, σ 6∈ Gal(L/k).

Let SL be the set of places of L lying above places of S. Let

J ′( f (u))= J ( f (u))OL ,SL .

Let q be a prime of OL ,SL dividing J ′( f (u)). From the above discussion and the
definition of J ( f (u)), there exists an element σ ∈ Gal(L/Q) \Gal(L/k) such that
σ(q) = q. Let Gal(L/Q) \ Gal(L/k) = {σ1, . . . , σm}. For i = 1, . . . ,m, define
the ideal J ′i ( f (u)) to be the smallest ideal of OL ,SL dividing J ′( f (u)) such that
σi (J ′i ( f (u))) = J ′i ( f (u)). Then J ′( f (u)) divides J ′1( f (u)) · · · J ′m( f (u)). Note
also that N (J ′( f (u)))≥ N (J ( f (u))). Let

Ui = {u ∈U | N (J ′i ( f (u)))≥ H(u)ε/m
}.

Then clearly U ⊂
⋃m

i=1 Ui .
Let r ∈ {1, . . . ,m}, and let f σr denote the image of f under the natural action

of σr . By definition, J ′r ( f (u)) divides both f (u)OL ,SL and f σr (σr (u))OL ,SL for all
u. For u ∈Ur , we therefore obtain

[L :Q]
∑
v∈ML

log−max{| f (u)|v, | f σr (σr (u))|v} ≤ − log N (J ′r ( f (u)))

≤− log H(u)ε/m
≤−

ε

m
h(u).

Theorem 2.1 will follow essentially from the following:

Lemma 2.2 [Corvaja and Zannier 2005, Proposition 4]. Let f (x), g(x) ∈ L[x] be
polynomials that do not vanish at x = 0. Then, for every ε > 0, all but finitely many
solutions (u, u′) ∈ (O∗L ,SL

)2 to the inequality∑
v∈ML

log−max{ | f (u)|v , |g(u′)|v}<−ε(max{h(u), h(u′)})

are contained in finitely many effectively computable translates of one-dimensional
subgroups of G2

m .
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Since h(u)= h(σr (u)) and u, σr (u) ∈ O∗L ,SL
, taking g = f σr it follows immedi-

ately from Lemma 2.2 that all but finitely many elements of the set

Vr = {(u, σr (u)) | u ∈Ur }

are contained in finitely many effectively computable translates of one-dimensional
subgroups of G2

m . Let X be a translate of a one-dimensional subgroup of G2
m

that contains infinitely many elements of Vr . Let (v, σr (v)) ∈ X ∩ Vr . Taking
u = v′/v ∈ O∗k,S , where (v′, σr (v

′)) ∈ X ∩ Vr , we see that infinitely many elements
of the form (u, σr (u)), u ∈O∗k,S , will lie in the associated one-dimensional subgroup
in G2

m . We now classify the possibilities for such a one-dimensional subgroup.
Suppose there exists a, b ∈ Z, not both zero, such that

uaσr (u)b = 1, (2)

for infinitely many u ∈ O∗k,S . We claim that a =±b. Let l be the order of σr . Then

ubl
= σ l

r (u)
bl
= σ l−1

r (u)−abl−1
= · · · = u(−a)l .

So ubl
−(−a)l

= 1 for infinitely many u ∈ O∗k,S . This implies that bl
= (−a)l , or

a =±b, as claimed.
Suppose first that a=−b. Then for any u ∈ O∗k,S satisfying (2) we have σr (ua)=

ua . So ua
∈O∗σr

k,S = F∩O∗k,S , where F is the fixed field of σr . It follows that O∗σr
k,S has

finite index in {u ∈ O∗k,S | u
aσr (u)−a

= 1} and that {u ∈ O∗k,S | (u, σr (u)) ∈ X ∩ Vr }

is contained in a finite number of cosets of O∗σr
k,S in O∗k,S .

Suppose now that a = b. Then for any u ∈ O∗k,S satisfying (2) we have σr (ua)=

u−a . By definition, we have u−a
∈ O∗σr τ

k,S . Then, as above, we find that

{u ∈ O∗k,S | (u, σr (u)) ∈ X ∩ Vr }

is contained in a finite number of cosets of O∗σr τ
k,S in O∗k,S .

Since there are only finitely many such X and finitely many r , we conclude that
there exists a set T as in the statement of the theorem such that U \ T is finite.

We now prove that all of the elements in T satisfy (1) for some choice of S′,
completing the proof of the theorem. Let f1, . . . , fN ∈ L[x] be the monic irreducible
factors of f (x) over L . First, consider cosets in O∗k,S of the form ui O

∗σr
k,S . From

a slight modification of the first part of the proof above, we need only consider
cosets ui O

∗σr
k,S such that for some j ∈ {1, . . . , N } and ε > 0, there are infinitely many

u ∈ O∗σr
k,S such that∑

v∈ML

log−max{ | f j (ui u)|v , | f
σr
j (σr (ui u))|v} ≤ −εh(ui u). (3)
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Note that σr (ui u) = σr (ui )u, since u ∈ O∗σr
k,S . If f j (ui x) and f σr

j (σr (ui )x) are
relatively prime in L[x], then the left-hand side of (3) is bounded from below,
independent of u ∈ O∗σr

k,S . Since there are only finitely many u ∈ O∗σr
k,S with h(ui u)

bounded, this contradicts the inequality (3) for all but finitely many u ∈ O∗σr
k,S . So

f j (ui x) and f σr
j (σr (ui )x) have a nontrivial common factor. Since f j (ui x) and

f σr
j (σr (ui )x) are both irreducible over L , they must then be equal up to multiplica-

tion by a constant factor. Thus,

f j (ui x)
ue

i
=

f σr
j (σr (ui )x)
σr (ui )e

,

where e = deg f j . It follows that for all u in O∗σr
k,S ,

f j (ui u)
ue

i
= σr

( f j (ui u)
ue

i

)
.

So f j (ui u)/ue
i ∈ k ′, the fixed field of σr . Then, for all u ∈ O∗σr

k,S , f j (ui u)/ue
i lies in

a proper subfield of L not containing k. So in this case (1) holds with S′ = SL (and
u replaced by ui u).

Now consider a coset of the form ui O
∗σr τ
k,S . Again, we may assume that for some

j and some ε > 0, (3) is satisfied for infinitely many u ∈ O∗σr τ
k,S . By definition, for

u ∈ O∗σr τ
k,S we have σr (u)= u−1. Let e = deg f j . Similar to before, if f j (ui x) and

xe f σr
j (σr (ui )/x) are relatively prime in L[x], then it follows that∑

v∈ML

log−max
{
| f j (ui u)|v , | f

σr
j (σr (ui )/u)|v

}
is bounded from below, independent of u ∈ O∗σr τ

k,S . This again gives a contradiction
with (3) and so f j (ui x) and xe f σr

j (σr (ui )/x) must have a nontrivial common factor
over L . Since f j is irreducible over L , the two polynomials must be equal up to
multiplication by a constant. Evaluating at any x = u′ ∈ O∗σr τ

k,S with f j (ui u′) 6= 0,
we find that we must have that

f j (ui x)
f j (ui u′)

=
xe f σr

j (σr (ui )/x)
u′eσr ( f j (ui u′))

.

Since (O∗σr τ
k,S )2 has finite index in O∗σr τ

k,S , we can find a finitely many elements
u′1, . . . , u′l ′ ∈ O∗σr τ

k,S with f j (ui u′l) 6= 0, l = 1, . . . , l ′, and such that for any u ∈ O∗σr τ
k,S ,

there exists some l ∈ {1, . . . , l ′} with u/u′l ∈ (O
∗σr τ
k,S )2. Let u ∈ O∗σr τ

k,S and u′l chosen
as above. Then we have the identity

σr

((u′l
u

)e/2 f j (ui u)
f j (ui u′l)

)
=

(u′l
u

)e/2 f j (ui u)
f j (ui u′l)
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and it follows that (u′l/u)
e/2 f j (ui u)/ f j (ui u′l) ∈ k ′, the fixed field of σr . We can

enlarge SL to a finite set of places S′ of L such that f j (ui u′l) is an S′-unit for all
choices of i , j , and l. Then (1) holds for all u ∈ ui O

∗σr τ
k,S . �

In the case of a cyclic subgroup of k∗ the theorem takes a particularly simple
form.

Corollary 2.3. Let a ∈ k∗. Let S be a finite set of places of k such that a is an
S-unit. Assume that for all positive integers m,

(a) the element am does not lie in a proper subfield of k, and

(b) k is not a quadratic extension of a field k ′ with N k
k′(a

m)= 1.

Let ε > 0 and let f (x) ∈ Ok[x] satisfy f (0) 6= 0. Then, for all but finitely many
integers n,

N (J ( f (an))) < H(an)ε .

Proof. Suppose that for infinitely many n, N (J ( f (an))) ≥ H(an)ε . Then by
Theorem 2.1, there exists σ ∈ Gal(L/Q) \Gal(k/Q) and u ∈ O∗k,S such that for
infinitely many n, an lies in a coset of the form uO∗σk,S or uO∗στk,S . This implies that
for some m 6= 0, am

∈ O∗σk,S or am
∈ O∗στk,S . In the first case, am lies in the proper

subfield k ∩ F of k, where F is the fixed field of σ . Suppose that am
∈ O∗στk,S and

that am does not lie in a proper subfield of k. Then k =Q(am). Since σ(am)= a−m ,
σ restricts to an automorphism of k over Q. Note that σ 2(am) = am , so σ is an
automorphism of k of order 2. Let k ′ be the fixed field of σ . Then [k : k ′] = 2,
Gal(k/k ′)= {id, σ }, and N k

k′(a
m)= amσ(am)= 1. �

We give an example related to Fibonacci numbers to show the likely necessity
of the less obvious condition (b) in Corollary 2.3.

Example 2.4. Let k = Q(
√

5) and a = ϕ = 1+
√

5
2 ∈ k∗. Let S consist of the

archimedean places of k and the prime lying above 5. Let f (x)= x+1. For n odd,
we have

ϕ2n
+1

ϕn
√

5
= Fn,

where Fn is the n-th Fibonacci number. So

f (ϕ2n)Ok,S = FnOk,S.

A well-known naïve heuristic argument suggests that there should be infinitely
many Fibonacci numbers that are prime and congruent to ±2 (mod 5) (so that these
primes are inert in k). In this case, there would be an ε > 0 and infinitely many
values of n such that N (J ( f (ϕn)))= N ( f (ϕn)) > H(ϕn)ε . This doesn’t contradict
Corollary 2.3 as N k

Q
(ϕ2)= 1.

We now give a slight reformulation of our results.
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Definition 2.5. Let D be an effective divisor on P1 defined over k and supported on
P1
\ {0,∞}=Gm . Let a ∈ k∗, a 6∈ Supp D, where Supp D is the support of D. Let

hD be the absolute logarithmic height associated to D and let hD =
∑

v∈Mk
hD,v

be a decomposition of hD into local heights (Weil functions). For a place v ∈ Mk

associated to a prime p lying above a prime p ∈ Z, let fv = fp = [Ok/p : Z/pZ].
Set fv = 1 if v|∞. We define the degree-one height of a with respect to k and D by

hD,deg1(k)(a)=
∑
v∈Mk
fv=1

hD,v(a).

Similarly, we define
hD,deg>1(k)(a)=

∑
v∈Mk
fv>1

hD,v(a).

Note that
hD(a)= hD,deg1(k)(a)+ hD,deg>1(k)(a)

and by standard properties of heights, hD,deg1(k) and hD,deg>1(k) depend on the choice
of hD and the local height functions only up to O(1).

Corollary 2.6. Let D be an effective divisor on P1 defined over k and supported on
P1
\ {0,∞}. Let f (x) ∈ Ok[x] be a polynomial defining D with monic irreducible

factors f1, . . . , fn over L. Let ε > 0. Then there exists a finite set of places S′ of L
such that for every u ∈ O∗k,S either

(a) hD,deg>1(k)(u) < εhD(u)

or

(b) fi (u)OL ,S′ = αOL ,S′

for some i and some α that lies in a proper subfield of L not containing k.

All but finitely many elements not satisfying (a) are again contained in a set T
as in Theorem 2.1. There is also a similar reformulation of Corollary 2.3 in terms
of hD,deg>1(k)(u).

Lemma 2.7. Let D be as in Corollary 2.6. For any finite set of places S′ ⊂ Mk and
any ε > 0, ∑

v∈S′
hD,v(u) < εh(u)+ O(1) (4)

for all u ∈ O∗k,S .

Proof. It suffices to show this for D a point (not equal to 0 or∞) and S′ ⊃ S. Let
E = 0+∞. Since u is an S′-unit, we have∑

v∈S′
hE,v(u)= 2h(u)+ O(1).



Ideals of degree one contribute most of the height 1231

By Roth’s theorem,∑
v∈S′

hD+E,v(u)=
∑
v∈S′

hD,v(u)+ 2h(u)+ O(1) < (2+ ε)h(u)+ O(1),

which gives (4). �

In particular, it follows from Lemma 2.7 that Corollary 2.6 remains true if we
add finitely many local heights to hD,deg>1(k) (e.g., all the archimedean ones).

Proof of Corollary 2.6. We may take as local height functions associated to D the
functions

hD,v(a)=− log− | f (a)|v, v ∈ Mk .

Using Theorem 2.1 and Lemma 2.7, we can write, for all u ∈ O∗k,S ,

hD,deg>1(k)(u)=
∑
v∈Mk
fv>1

hD,v(u)=−
∑

v∈Mk\S
fv>1

log− | f (u)|v +
∑
v∈S
fv>1

hD,v(u)

=
1
[k :Q]

log N (J ( f (u)))+
∑
v∈S
fv>1

hD,v(u)

< εh(u)+ O(1), �

3. Elliptic curves

Theorem 2.1 has a conjectural analogue for elliptic curves, following from a con-
jectural analogue of Lemma 2.2.

Conjecture 3.1 (Vojta). Let E be an elliptic curve defined over a number field k.
Let h be an ample height function on E. Let B ⊂ E(k̄)× E(k̄) be a finite set of
points with B defined over k. Let π : X → E × E be the morphism obtained by
blowing up the points in B and let Y be the exceptional divisor of π . Let hY be
a logarithmic height function with respect to Y . Let ε > 0. There exists a proper
Zariski closed subset Z(ε) of X such that for every (P, Q)∈ (E×E)(k)−π(Z(ε)),
we have

hY (π
−1(P, Q))≤ ε(h(P)+ h(Q))+ O(1).

(Conjecture 3.1 is a special case of a much more general set of conjectures made
by Vojta [1987; 2011].)

This enables us to deduce an analogue of Theorem 2.1 for elliptic curves. As in
the previous section, it will be convenient to list the notation used:
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k Fixed number field
`/k Fixed nontrivial extension of k
L Galois closure of ` over k
Gal(L/k) Galois group of L over k
Ok Ring of integers of k
S Fixed finite set of places of L , consisting of the archimedean

places of L and the places of L ramified over k
OL ,S The ring of S-integers of L
E Fixed elliptic curve given by a Weierstrass equation

y2
= x3
+ ax + b, a, b ∈ Ok

E(`)νσ For ν ∈ Aut(E) and σ ∈ Gal(L/k), the subgroup of
points x ∈ E(`) satisfying νσ(x)= x

D Fixed effective and nontrivial `-rational divisor on E
D1, . . . , DN The irreducible components of D over L
ID(P) Ideal associated to D and P (see Definition 3.2)
JD(P) The smallest divisor ideal of ID(P) supported on primes

p of O` with [O`/p : Ok/(Ok ∩ p)]> 1
N (I ) Absolute norm of an ideal I of O`
HD(P) Multiplicative height function on E corresponding to D
hD(P) Logarithm of H(P): hD(P)= log HD(P).

Definition 3.2. Let E : y2
= x3

+ ax + b, a, b ∈ Ok , be an elliptic curve. Let L
be a number field containing k, and let P, Q be distinct elements of E(L). Let
P − Q = (x0, y0) ∈ E(L). Define

IQ(P)=
∏

p⊂OL

pmax{− 1
2 ordp x0,0},

where p runs over all (finite) primes of OL (this is well-defined, independent of L ,
if we identify ideals a⊂ OL and aOL ′ , when L ⊂ L ′). If D =

∑n
i=1 Qi , Qi ∈ E(k̄),

is a nontrivial effective divisor on E , then for P 6∈ Supp(D), we define

ID(P)=
n∏

i=1

IQi (P).

Definition 3.3. Let P ∈ E(`), P 6∈Supp(D). We define the height of P with respect
to degree-one primes of `/k by

hD,deg1(`/k)(P)=
∑
v∈Mk

∑
w∈M`
w|v

fw/v=1

hD,w(P),
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where hD,w denotes a local Weil height with respect to D and w and fw/v is the
inertia degree of w over v. Similarly, define

hD,deg>1(`/k)(P)=
∑
v∈Mk

∑
w∈M`
w|v

fw/v>1

hD,w(P).

Note that, as in the previous section, we have

hD,deg1(`/k)(P)+ hD,deg>1(`/k)(P)= hD(P)+ O(1).

For P ∈ E(`) and D a divisor on E defined over `, the norm N (ID(P)) is essen-
tially just the nonarchimedean part of the (relative) height HD,`(P)= HD(P)[`:Q]

and log N (JD(P)) = [` : Q] hD,deg>1(`/k)(P) (up to O(1)). We will assume the
local heights are chosen so that this last statement is an equality.

We can now state the following theorem, which in the simplest case where `/k is
Galois, says, roughly, that the height of P with respect to D is “mostly” supported
on the degree one primes of `/k, unless the ideal ID(P) is coming from a proper
subfield of `. Note that the fields ` and k here play the roles of k and Q, respectively,
from the analogous Theorem 2.1.

Theorem 3.4. Let ε > 0. Assume that Conjecture 3.1 holds. Then, for every
P ∈ E(`), either

(a) 1
[` :Q]

log N (JD(P))= hD,deg>1(`/k)(P) < εhD(P),

or

(b) IDi (P)OL ,S = aOL ,S

for some i and some ideal a ⊂ Ok′ , where k ′ is a proper subfield of L not
containing ` (in particular, if `/k is Galois, a is contained in a proper subfield
of `).

The set of points in E(`) not satisfying (a) is contained in a finite union of cosets in
E(`) of the form

T =
⋃m

i=1 Pi + E(`)νiσi ,

where Pi ∈ E(`), σi ∈ Gal(L/k) \Gal(L/`), and νi ∈ Aut(E) for i = 1, . . . ,m.

Proof. Let Dred be the reduced divisor associated to D. Then, for some posi-
tive integer c, D < cDred and we have hD < chDred + O(1) and hD,deg>1(`/k) <

chDred,deg>1(`/k)+ O(1). So without loss of generality we may assume that D is a
reduced divisor. Let

U = {P ∈ E(`) | hD,deg>1(`/k)(P)≥ εhD(P)}.
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Let L be a Galois closure of `/k. Let w′ ∈ML lie above w ∈M` and v ∈Mk . As
in the proof of Theorem 2.1, if fw/v > 1, then there exists σ ∈Gal(L/k)\Gal(L/`)
such that σ(w′)=w′. Let Gal(L/k)\Gal(L/`)= {σ1, . . . , σm}. For i = 1, . . . ,m,
let

h(i)D,deg>1(L/k)(P)=
∑
v∈Mk

∑
w∈ML

w|v, fw/v>1
σi (w)=w

hD,w(P).

Then

hD,deg>1(`/k)(P)≤
m∑

i=1

h(i)D,deg>1(L/k)(P).

Let
Ui =

{
P ∈U

∣∣∣ h(i)D,deg>1(L/k)(P)≥
ε

m
hD(P)

}
.

Then U ⊂
⋃m

i=1 Ui . Let r ∈ {1, . . . ,m}. Ifw∈ML and σr (w)=w, then hD,w(P)=
hσr (D),w(σr (P)) and so

min{ hD,w(P), hσr (D),w(σr (P))} = hD,w(P).

Let π : X→ E × E be the morphism obtained by blowing up the points in

D× σr (D)⊂ E × E

and let Y be the exceptional divisor of π . By well-known properties of heights, for
(P, Q) 6∈ D× σr (D) and w ∈ ML , we can choose

hY,w(π
−1(P, Q))=min{ hD,w(P), hσr (D),w(Q)}.

Let Vr = {(P, σr (P)) | P ∈Ur }. It follows that for (P, σr (P)) ∈ Vr , we have

hY (π
−1(P, σr (P)))≥ h(r)D,deg>1(L/k)(P)≥

ε

m
hD(P)

>
ε

2m
(h(P)+ h(σr (P))+ O(1).

Then by Conjecture 3.1 Vr is contained in a proper Zariski closed subset of E × E .
If Vr is a finite set, then Ur is contained in a set T as in the theorem. Otherwise,
let C be a positive-dimensional component of the Zariski closure of Vr . Then C
is a curve with infinitely many rational points on it. By Faltings’ theorem, C is a
translate of a one-dimensional abelian subvariety E ′ of E × E .

Any irreducible one-dimensional abelian subvariety of E× E must be an elliptic
curve isogenous to E , via projection onto E . Since E ′ is clearly not a fiber of either
of the two projection maps, there are two isogenies φ,ψ : E ′→ E induced by the
two projection maps, with dual isogenies φ̂ and ψ̂ from E to E ′. If R = (P, Q) ∈
E ′ ⊂ E × E , then φ̂φ(R) = φ̂(P) = (deg φ̂)R and similarly ψ̂(Q) = (deg ψ̂)R.
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Thus, E ′ is contained in the set {(P, Q) ∈ E × E | (deg ψ̂)φ̂(P)= (deg φ̂)ψ̂(Q)}.
Composing with an isogeny to E we find that there are nonzero endomorphisms
f and g of E such that E ′ ⊂ {(P, Q) ∈ E × E | f (P) = g(Q)}. Note that if
(P0, σr (P0)), (P, σr (P)) ∈ Vr ∩C then (P − P0, σr (P − P0)) ∈ E ′. It follows that
there are points of the form (P, σr (P)) ∈ E ′ with P ∈ E(`) such that f (P) =
g(σr (P)).

Let K = EndL(E)⊗Q, where EndL(E) is the endomorphism ring of E over
L . Then σr is an element of a finite group acting on the finite-dimensional K -
vector space V = E(L)⊗EndL (E)K . Thus, the eigenvalues of the action of σr

must be roots of unity. But from the above, f/g is an eigenvalue of σr . So we
deduce that f/g ∈ K is a root of unity. Since K is contained in a quadratic
extension of Q, this means that f/g ∈ {±1,±i,±γ,±γ 2

}, where γ denotes a
primitive sixth root of unity. Write g = ν f . Composing both sides with the dual
endomorphism to f , we may assume that f = m, where m is a positive integer.
Then, for (P, σr (P)), (P0, σr (P0))∈Vr∩C , we have m(P−P0)= νσr (m(P−P0)).
This implies that Ur is contained in finitely many cosets of the form Pi+E(`)νiσr in
E(`), where Pi ∈ E(`) and νi ∈Aut(E). So the set of points in E(`) not satisfying
(a) is contained in a set T as in the theorem.

We now show that the set of points in the set T not satisfying condition (a)
satisfies condition (b). Let D1, . . . , DN be the irreducible components of D over L .
Consider a coset in E(`) of the form Pr + E(`)νr σr , where Pr ∈ E(`), νr ∈Aut(E),
and σr ∈ Gal(L/k) \ Gal(L/`). From the first part of the proof, we need only
consider cosets such that for some i , some ε > 0, and infinitely many elements
P ∈ E(`)νr σr , we have∑

w∈ML

min{hDi ,w(P + Pr ), hσr (Di ),w(σr (P + Pr ))}> εh(P).

Let φ : E → E be the morphism φ(P) = ν−1
r P + σr (Pr ). Since σr (P + Pr ) =

ν−1
r P + σr (Pr ) for P ∈ E(`)νrσr , we have (up to O(1))

hσr (Di ),w(σr (P + Pr ))= hσr (Di ),w(φ(P))= hφ∗σr (Di ),w(P).

Let τ be translation by Pr . So hDi ,w(P+Pr )= hτ ∗Di ,w(P)+O(1). So for infinitely
many P ∈ E(`), ∑

w∈ML

min{hτ ∗Di ,w(P), hφ∗σr (Di ),w(P)}> εh(P). (5)

If τ ∗Di and φ∗σr (Di ) have empty intersection, then as is well known,∑
w∈ML

min{hτ ∗Di ,w(P), hφ∗σr (Di ),w(P)}
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is bounded independent of P , contradicting (5). So τ ∗Di ∩φ
∗σr (Di ) 6=∅. Since

Di is irreducible over L , this implies that τ ∗Di = φ
∗σr (Di ).

It follows from the definition that for any translation τ0 and any automorphism
ν ∈ Aut(E), ID(τ0(P)) = Iτ ∗0 D(P) and ID(νP) = Iν∗D(P). This implies that for
all P ∈ E(`)νrσr ,

σr (IDi (P + Pr ))= Iσr (Di )(σr (P)+ σr (Pr ))= Iσr (Di )(φ(P))= Iφ∗σr (Di )(P)

= Iτ ∗Di (P)

= IDi (P + Pr ).

So σr fixes the ideal IDi (Pr + P), Pr + P ∈ Pr + E(`)νrσr , which implies that
IDi (P+Pr )OL ,S= aOL ,S for some ideal a of Ok′ , where k ′ is the fixed field of σr . �

If we restrict to cyclic subgroups of E(`), we obtain the following simpler version
of Theorem 3.4.

Corollary 3.5. Let P ∈ E(`) and ε > 0. If Conjecture 3.1 holds, then either

hD,deg>1(`/k)(n P) < εhD(n P)

for all but finitely many integers n, or there exists a proper subfield k ′ $ ` of `, a
positive integer m, an elliptic curve E ′/k ′, and an isomorphism φ : E→ E ′ over `
such that φ(m P) is a k ′-rational point on E ′.

Proof. Suppose that for infinitely many n, hD,deg>1(`/k)(n P) < εhD(n P). It follows
from Theorem 3.4 that for some m > 0, σ ∈Gal(L/k)\Gal(L/`), and ν ∈Aut(E),
we have m P ∈ E(`)ν

−1σ , or σ(m P) = νm P . From this it follows that m P is a
point on a twist of E , defined over k ′ ∩ `, where k ′ is the fixed field of σ . �

At the time of writing, Conjecture 3.1 is known only in the following special
case. See [McKinnon 2003] for a proof, and [Silverman 2005] for a discussion of
the implications of Vojta’s conjecture in this context.

Theorem 3.6 [McKinnon 2003]. Let E be an elliptic curve over a number field `.
Let R = End`(E). Let M be a cyclic R-submodule of E(`). Then Conjecture 3.1
holds for (P, Q) ∈ M ×M ⊂ (E × E)(`); that is, in the notation of Conjecture 3.1,
there exists a proper Zariski closed subset Z(ε) of X such that for every (P, Q) ∈
M ×M −π(Z(ε)), we have

hY (π
−1(P, Q))≤ ε(h(P)+ h(Q))+ O(1),

where hY is a logarithmic height function associated to the exceptional divisor on
the blowup X of E × E at a finite set of points and h is any fixed ample logarithmic
height on E.
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Theorem 3.7. Let E be an elliptic curve over a number field k with complex
multiplication. Let ` be the compositum of k with the imaginary quadratic field
Endk̄(E)⊗Q. Let D be a nontrivial effective divisor on E defined over `. Let
P ∈ E(`) and ε > 0. Then either

hD,deg>1(`/k)(n P) < εhD(n P)

for all but finitely many n > 0, or there exists a positive integer m, an elliptic curve
E ′/k, and an isomorphism φ : E→ E ′ over ` such that φ(m P) is a k-rational point
on E ′.

Proof. If ` = k then the theorem is vacuous. So suppose that ` is a quadratic
extension of k. Let R = Endk̄(E). First, we note that R[E(k)] has finite index
in E(`). Indeed, as is well-known [Silverman 1992, Exercise X-10.16], we have
rk E(`)= rk E(k)+rk E ′(k), where E ′ is a quadratic twist of E over `. If `=k(

√
N ),

N ∈ Z, then any element n
√

N ∈ R, with n a positive integer, induces an isogeny
(over k) between E and a quadratic twist E ′ of E over `. Thus, rk E(k)= rk E ′(k)
and we have rk E(`)= 2 rk E(k)= rk R[E(k)].

Next, we claim that Theorem 3.6 actually holds under the slightly weaker as-
sumption that M contains a cyclic R-submodule M ′ of finite index m. Indeed, one
easily reduces to considering the case where X is the blow-up of E × E at the
origin (O,O) and Y is the exceptional divisor. The claim then follows by applying
Theorem 3.6 to M ′ and from the facts

hY (π
−1(P, Q))≤ hY (π

−1(m P,m Q))+ O(1),

(P, Q) 6= (O,O), and h(m P)= m2h(P)+ O(1).
Let m be the index of R[E(k)] in E(`). Let P ∈ E(`). Then we have m P=φ(Q),

for some Q ∈ E(k) and some φ ∈ R. Let σ be the unique nonidentity element
of Gal(`/k). Then mσ(P)= σ(m P)= σ(φ(Q))= (σφ)(Q), so m P and mσ(P)
both belong to the cyclic R-submodule RQ of E(`) generated by Q. So RQ has
finite index in the subgroup of E(`) generated by RQ, P , and σ(P). Then by our
earlier claim, Conjecture 3.1 holds for the points (n P, nσ(P)) ∈ (E× E)(`), n ∈ Z.
But now the same proof as in Theorem 3.4 and Corollary 3.5 works, completing
the proof. �
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